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Summary. In standard first-passage percolation onZd (with d ≥ 2), the time-
minimizing paths from a point to a plane at distanceL are expected to have
transverse fluctuations of orderLξ. It has been conjectured thatξ(d) ≥ 1/2 with
the inequality strict (superdiffusivity) at least for lowd and withξ(2) = 2/3. We
prove (versions of)ξ(d) ≥ 1/2 for all d andξ(2)≥ 3/5.
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1. Introduction

Throughout this paper, we consider standard first-passage percolation onZ
d (with

d ≥ 2)[HW]. This is a model determined by i.i.d. non-negative random variables
τ (e), indexed bye ∈ E

d, the set of nearest neighbor edgese = {u, v} with
u, v ∈ Zd separated by Euclidean distance‖u− v‖ = 1. One defines the passage
time for a finite nearest neighbor pathr as

T(r ) =
∑
e∈r

τ (e) (1.1)

and the passage time between two sitesu, v ∈ Zd as

T(u, v) = inf{T(r ) : r is a path fromu to v}. (1.2)

The passage time between a siteu and a subsetΓ of Zd( e.g., betweenu = 0
andΓ = {(v1, ..., vd) : v1 = n}) is

T(u, Γ ) = inf{T(u, v) : v ∈ Γ}. (1.3)
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First-passage percolation is often regarded as a stochastic growth model by
considering the growing random subset ofZ

d,

B̃(t) = {v : T(0, v) ≤ t}. (1.4)

WhenP(τ (e) = 0) = 0,T(u, v) is a (random) metric onZd andB̃(t) is the ball of
radiust centered at the origin. As long asP(τ (e) = 0) < pc, the critical value for
standard independent undirected bond percolation onZ

d, [K1] andE(τ (e)2) <∞
(or under weaker moment conditions [CD]), the leading order larget-growth of
B̃(t) is linear with a deterministic shape. (For a precise statement of the shape
theorem, see [K1] or [K2].)

Fluctuations of̃B(t) are described in the physics literature (see, e.g., [KS]) by
means of two exponents,χ and ξ, which describe respectively the longitudinal
and transverse fluctuations of the growing surface ofB̃(t). For example, it is
expected that the timeT(0, Γ ) when B̃(t) first reaches a planeΓ at distanceL
from the origin has a standard deviation of orderLχ while the place(s) onΓ
first reached are contained (with high probability) within a deterministic subset
of Γ whose diameter is of orderLξ. The main results of this paper are lower
bounds on the exponentξ. We remark that heuristic arguments suggest a close
relationship between lower bounds onξ and nonexistence of (doubly infinite)
geodesics (for the metricT(u, v)); some results on nonexistence (not based on
bounds forξ) appear in [LN].

There are, a priori, many possible mathematical definitions of the exponents
χ and ξ, some based on point-to-plane and some based on point-to-point pas-
sage times. One of the open foundational problems of the subject, which is not
attacked in this paper, is to prove that these various definitions all yield the same
exponents. Rather, we will treat several different definitions ofξ (primarily of
point-to-plane type) and obtain various lower bounds for these definitions.

The exponentsχ andξ are not expected to depend on the common distribution
of the τ (e)’s (nor on the direction ofΓ from the origin), at least under a certain
hypothesis on the common distribution. This hypothesis (which is discussed at
greater length in [NP]) concerns the probability assigned toλ, the bottom of
the support of the common distribution. The hypothesis, which will be assumed
in two of our main results (see Theorems 1 and 3 below), is that one of the
following two conditions be satisfied: either

λ = 0 andP(τ (e) = 0) < pc (1.5)

or else
λ > 0 andP(τ (e) = λ) < pdir

c , (1.6)

wherepdir
c is the critical value for independentdirected bond percolation onZd

(i.e., the model in which the only paths allowed are those along which every
coordinate is nondecreasing). We remark that in [BK], distributions satisfying
this hypothesis are said to beuseful.

The exponentsχ and ξ, however,are expected to depend ond, but never-
theless satisfy for alld the scaling identityχ = 2ξ− 1 (see [KS]). The predicted
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values (for models whose exponents should have the same values as in first-
passage percolation) ford = 2 areχ = 1/3 andξ = 2/3 [HH, K, HHF, KPZ].
There have been conflicting predictions about the qualitative nature ofχ and ξ
for higher dimensions ranging from lack of dependence ond [KZ] through their
decreasing withd while χ > 0 andξ > 1/2 for all d [WK, KK] to the possibility
that above some critical dimension,χ = 0 andξ = 1/2 [NR, H, CD]. Thus it is of
interest to obtain rigorous bounds on (various definitions of) the exponents which
go beyond the trivial bounds (assumingE(τ (e)2) < ∞ and P(τ (e) = 0) < pc),
0≤ χ ≤ 1 and 0≤ ξ ≤ 1.

The first such bound, due to Kesten [K3], wasχ ≤ 1/2, valid for all d.
Although there is no proof of the scaling identityχ = 2ξ − 1 (which would then
yield ξ ≤ 3/4), there is a rigorous inequalityχ′ ≥ 2ξ − 1 [NP], whereχ′ is an
exponent closely related (and perhaps equal) toχ. Because Kesten’s bound was
extended to yieldχ′ ≤ 1/2 [K3, A], one does obtain the upper boundξ ≤ 3/4,
for all d [NP]. We remark that an application of such upper bounds onξ appears
in [N].

The trivial boundχ ≥ 0 combined with the (nonrigorous) scaling identity
would yield the nontrivial boundξ ≥ 1/2 (saying that the transverse spread of
the growingB̃(t) is at least diffusive) for alld. One of the main results of this
paper (see Theorem 2 of Sect. 2) is such a diffusive lower bound onξ for all
d. We remark that even a (subdiffusive) bound of the formξ > 0 is nontrivial
(from a mathematical, if not physical, point of view). In that spirit, we will also
present (see Theorem 1 of Sect. 2) a bound of the formξ(d) ≥ 1/(d + 1), which
uses a definition ofξ with certain advantages over the one used for the bound
ξ ≥ 1/2.

Of course, the physically most interesting bounds are superdiffusive ones,
which via the scaling identity, correspond (nonrigorously) to bounds of the form
χ > 0. Such lower bounds onχ (andχ′) have been obtained (but only ford = 2)
in [NP]. By combiningχ′ ≥ 2ξ − 1 with an inequalityχ ≥ [1 − (d − 1)ξ]/2
first derived in [WA] (for a related model), it was shown in [NP] ford = 2, both
that max(χ, χ′) ≥ 1/5 and thatχ ≥ 1/8. The Wehr-Aizenman type lower bound
on χ combined with the (nonrigorous) scaling identity would yieldξ ≥ 3/5 for
d = 2. The second main result of this paper (see Theorem 3 of Sect. 2) is such
a superdiffusive lower bound ford = 2. Indeed, part of our proofs of Theorems
2 and 3 may be regarded, in a sense we will not make more precise here, as
yielding a rigorous version ofχ ≤ 2ξ − 1, complementary to the inequality
χ′ ≥ 2ξ − 1 of [NP]. Theorem 2 then follows from the trivial boundχ ≥ 0 and
Theorem 3 fromχ ≥ [1− (d − 1)ξ]/2.

In the next section, we give precise statements of all our main results. We
complete this section by giving a brief discussion of some physical background
to the phenomenon of superdiffusivity.

Physically one may regard first-passage percolation as the zero temperature
limit of a model of (undirected) polymers in a random environment. For example,
let

Γ = {(v1, ...vd) ∈ Zd : v1 + ... + vd = n}
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and let R be the set of nearest-neighbor paths (polymers) from the origin to
(any point of)Γ . We consider the “energy” of a pathr ∈ R to be the passage
time T(r ) given in (1.1) and then define the Gibbs measureνβ , at inverse tem-
peratureβ, to be the probability measure onR which assigns tor a probability
proportional to exp(−βT(r )). The Gibbs measureνβ is a random measure since
it depends on the sample pointω in the underlying probability space (Ω,F ,P)
for the τ (e)’s. In the zero temperature limit (β → ∞), the limiting measure
ν∞ assigns equal probability to allr ’s such thatT(r ) = T(0, Γ ). (We are as-
suming here that the inf in (1.2) and (1.3) is attained, which will be the case if
P(τ (e) = 0) < pc.)

On the spaceΩ×R with probability measureP(ω)ν∞(r |ω), let V denote the
endpoint (onΓ ) of r . Consider two extreme cases. In the first case, the common
distribution of theτ (e)’s is continuous so that for (a.e.)ω, ν∞ is supported on a
single r ; here, all the fluctuations inV are due to the random environment and
their magnitude is described by the first-passage exponentξ. In the second case
the τ (e)’s are all equal to a positive constant (i.e., the medium is nonrandom);
here, all fluctuations are “thermal”− i.e., due to the (β → ∞) Gibbs measure
ν∞. A moments thought shows that in this case, with our choice ofΓ , ν∞
corresponds to the distribution of ann-step simple random walk onZd in which
only the d steps which increase a single coordinate are allowed and these are
all equally likely. Clearly, in this case, the mean ofV is (n/d, ..., n/d) and its
fluctuations are of ordern1/2. We see thatξ > 1/2 means that (at least at zero
temperature) fluctuations due to the random environment dominate the thermal
fluctuations in a nonrandom environment.

We finally note that for the case just discussed of a nonrandom environment,
not only are the fluctuations of the endpointV of ordern1/2, but also the entire
path r is contained (with high probability) within a (deterministic) cylinder,
centered on the straight line from 0 to (n/d, ..., n/d), whose width is of order
n1/2. Thus our discussion of the meaning ofξ > 1/2 is also relevant for those
definitions ofξ, soon to be introduced in Sect. 2, which are based on confinement
of entire paths within cylinders rather than on confinement only of endpoints.

2. Main results

In this section, we state three theorems which give lower bounds on various
definitions of the exponentξ. Most of the section is taken up by the presentation
and explanation of these definitions. The proofs of the three theorems are given
in the following three sections.

Our first result has the formξ(d) ≥ 1/(d + 1) for two definitions of the
exponentξ, one of point-to-point type and one of point-to-plane type. Although
this inequality appears weaker than the result presented later thatξ(d) ≥ 1/2,
we include it for two reasons. First, because the definitions ofξ used in it are,
in certain senses, stronger than those used afterwards and second, because the
arguments used for it will be used again later on to obtain the superdiffusive
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boundξ(2)≥ 3/5. In fact, although it sounds strange, this superdiffusive bound
is based on combining the arguments used to proveξ(2) ≥ 1/(2 + 1) and those
used to proveξ(2)≥ 1/2.

For a nonzero vectorx in R
d and forw > 0, we defineLx to be the line

in R
d, {αx : α ∈ R}, and C (x, w) to be the cylinder inRd of radiusw and

symmetry axisLx , i.e.,

C (x, w) = {z ∈ Rd : dist(z, Lx) ≤ w}. (2.1)

Here, dist(A,B) denotes inf{‖x−y‖ : x ∈ A, y ∈ B}. For u, v ∈ Zd, we denote
the set of (time) minimizing paths betweenu andv by

M(u, v) = {r : r is a path fromu to v with T(r ) = T(u, v)}. (2.2)

Similarly we define for a subsetΓ of Zd

M(u, Γ ) = {r : r is a path fromu to Γ with T(r ) = T(u, Γ )}. (2.3)

M(u, v) andM(u, Γ ) are (a.s.) nonempty ifP(τ (e) = 0) < pc; they are (a.s.)
singleton sets if the common distribution of theτ (e)’s is continuous. We write
(for a subsetA of Rd) that M(u, v) (resp.M(u, Γ )) is in A to mean that every
r in M(u, v) (resp.M(u, Γ )) only touches sites inA.

Our point-to-point definition ofξ is

ξ(0) = sup{γ ≥ 0 : lim sup‖v‖→∞P(M(0, v) is in C (v, ‖v‖γ)) < 1}. (2.4)

According to this definition, in order that a numberγ′ exceedsξ(0), there must
exist some (deterministic) sequencevn with ‖vn‖ → ∞, such that

P(M(0, vn) is in C (vn, ‖vn‖γ′ )) → 1. (2.5)

This particular definition will be quite useful in obtaining a lower bound for
ξ because if theγ′ in (2.5) is small, the time-minimizing paths will be contained
(with high probability) in a narrow cylinder. This will imply a large variance
for the passage time (as in [WA]) which will eventually lead to a contradiction
by considering two adjacent cylinders and their respective passage times (see
Fig. 1).

Our (first) point-to-plane definition ofξ is more complicated. For ˆx a unit
vector inRd andL > 0, letΛ(x̂, L) be the half-space inZd,

Λ(x̂, L) = {u ∈ Zd : u · x̂ < L}, (2.6)

whereu · x̂ denotes the standard inner product inRd. This is the intersection of
Z

d with the half-space inRd containing the origin whose boundary is the plane
perpendicular to ˆx at distanceL from the origin. TheZd-boundary ofΛ(x̂, L),
denoted∂Λ(x̂, L), is the set ofv in Zd\Λ(x̂, L) which are the nearest neighbors
of someu in Λ(x̂, L). Our point-to-plane definition ofξ involves the containment
for large L of M(0, ∂Λ(x̂, L)) in some cylinderC (X, Lγ). Since the endpoints
of paths inM(0, ∂Λ(x̂, L)) need not be anywhere nearLx̂, there is no restriction
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on X other than it be a nonzero vector inRd for each unit vector ˆx in R
d and

L > 0. The definition is

ξ(1) = sup{γ ≥ 0 : lim supL→∞sup̂xsupXP(M(0, ∂Λ(x̂, L))
is in C (X, Lγ)) < 1}. (2.7)

According to this definition, in order that a numberγ′ exceedsξ(1), there must
exist some (deterministic) sequences ˆxn,Xn andLn →∞ such that

P(M(0, ∂Λ(x̂n, Ln)) is in C (Xn, L
γ′
n )) → 1. (2.8)

As in the point-to-pointξ(0), this definition is well suited to obtain a lower
bound forξ because a smallγ′ in (2.8) restricts the time-minimizing paths to a
narrow cylinder. We can now state our first result.

Theorem 1. For any d ≥ 2, assume that either (1.5) or (1.6) is valid and that
E(τ (e)2) <∞. Then

ξ(0) ≥ 1/(d + 1) and ξ(1) ≥ 1/(d + 1). (2.9)

Remark.We note that the hypothesis that either (1.5) or (1.6) is valid implies
var(τ (e)) > 0. We also remark that the conclusions of Theorems 2 and 3 should
remain valid without this hypothesis (although our proofs are not applicable).

Our second result has the formξ(d) ≥ 1/2 for a second point-to-plane
definitionξ(2) of the exponentξ. The methods we use for that bound are designed
specifically for point-to-plane passage and we have no further results for point-
to-point definitions ofξ. The definition ofξ(2) is weaker (i.e., a lower bound
using this definition is weaker) in two aspects and stronger in one aspect than
the definition ofξ(1).

The first weakening is that (except for distributions whereP(τ (e) = 0) > 0)
we replace minimizing paths by “almost-minimizing” paths. That is, we replace
M(u, Γ ) by

M(u, Γ ; K ) = {r : r is a path fromu to Γ with T(r ) ≤ T(u, Γ ) + K}, (2.10)

whereK ≥ 0 must haveP(τ (e) ≤ K ) > 0. Note that this will yield aξ(2) which
(in principle) depends onK . The strengthening is that (like in most of Sect. 1)
ξ(2) is defined in terms of confinement of endpoints of (almost) minimizing paths
rather than of the entire paths. Thus (restricting attention tou = 0) we define

R(Γ ; K ) = {v ∈ Γ : T(0, v) ≤ T(0, Γ ) + K}, (2.11)

and consider whetherR(∂Λ(x̂, L); K ) is probably confined in some deterministic
A(x̂, L) ⊆ ∂Λ(x̂, L) of diameterLγ . For a subsetA of Rd, its diameter, diam(A),
is the sup overx, y ∈ A of ‖x − y‖.

The second weakening can be explained as follows. For the definition ofξ(1),
when γ < ξ(1), we are guaranteed thatM(0, ∂Λ(x̂, L)) is not confined on the
scaleLγ as L → ∞ for any choice of x̂. On the other hand for our upcoming
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definition of ξ(2), we will only be guaranteed thatR(∂Λ(x̂, L); K ) is not confined
on the scaleLγ for somesequences ˆx = x̂n and L = Ln → ∞. Although ξ(2)

can be defined in a style more similar to the definition (2.7) ofξ(1), we find the
following less confusing.

ξ(2)
K = sup {γ ≥ 0 : ∃ sequences ˆxn and Ln →∞ such that

there is no deterministicAn with diam(An) ≤ Lγ such that
P(R(∂Λ(x̂n, Ln); K ) ⊆ An) → 1}.

(2.12)
Before stating our second result, we comment on why this definition is suited

to obtaining the lower bound 1/2 forξ. We first comment on why the “strength-
ening” of the definition creates no problem. Unlike Theorem 1, the derivation of
this lower bound will not involve estimates on the variance of passage times and
so there is no need for narrow confining cylinders; confinement of the endpoints
will suffice. Why are the two “weakenings” of the definition needed? The first
plays a technical role that is hard to motivate in advance of the actual proof. The
second weakening is important because forγ′ > ξ(2)

K , there will be confinement
of endpoints on the scaleLγ

′
simultaneously forall x̂’s and largeL; this is nec-

essary due to our lack of control over ˆx-dependence (caused by the anisotropy
of Zd). We can now state our second result.

Theorem 2. For any d≥ 2, assume P(τ (e) = 0) < pc and choose K≥ 0 such
that P(τ (e) ≤ K ) > 0. Then

ξ(2)
K ≥ 1/2. (2.13)

Remark.The proof of Theorem 2 actually yields a slightly stronger result than
(2.13). Namely, that the set ofγ’s given in the definition (2.12) ofξ(2)

K includes
γ = 1/2. In fact, slight changes of the arguments show that for anyC < ∞,
R(∂Λ(x̂n, Ln); K ) cannot be confined (with probability→ 1) within any An of
diameter≤ CL1/2.

Our third and final result has the formξ(2) ≥ 3/5 for yet a third point-to-
plane exponentξ(3). Since the proof is based on a combination of the arguments
used for our first two results, the definition ofξ(3) combines the weaknesses of
both ξ(1) andξ(2), as follows.

ξ(3)
K = sup {γ ≥ 0 : ∃ sequences ˆxn and Ln →∞ such that

there is no deterministicXn such that
P(M(0, ∂Λ(x̂n, Ln)); K ) is in C (Xn, Lγn )) → 1}.

(2.14)

Note thatξ(3)
K ≥ max(ξ(2)

K , ξ(1)).

Theorem 3. Assume that either (1.5) or (1.6) is valid and that E(τ (e)2) < ∞.
Choose K such that P(τ (e) ≤ K ) > 0. Then

for d = 2, ξ(3)
K ≥ 3/5. (2.15)

Remark.Our proofs of Theorems 2 and 3 can be adapted to obtain versions of
these theorems with modified definitions of the exponentsξ(2)

K andξ(3)
K (see (2.12)
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and (2.14)) where one chooses in advance a limit ˆx of the sequences ˆxn. The
additional hypothesis needed in this case for the conclusions to hold is, roughly
speaking, that the first-passage asymptotic shape (given by the shape theorem)
should not have a “corner” at a point where its boundary has a tangent vector
perpendicular to ˆx. If there is finite curvature at that point, then it should be
possible to take ˆxn ≡ x̂ in (2.12) and (2.14) (and thus obtain lower bounds for
ξ more like the fixed ˆx upper bond of 3/4 of [NP]), but we have not been able
to do so. It is expected (and in fact it is a basic assumption behind the heuristic
derivation of the relationχ = 2ξ − 1 [KS]) that (assuming conditions (1.5) and
(1.6)) the asymptotic shape boundary should actually have curvature bounded
away from zero and infinity in all directions, but this has not yet been proven.

3. The boundξ(d) ≥ 1/(d + 1)

In this section, we prove Theorem 1. The proof is based on an extension of the
arguments used in [WA] and [NP] to obtain the inequalityχ ≥ [1− (d−1)ξ]/2.
We begin with a brief sketch of the proof, whose general structure is analogous
to that used by Aizenman and Wehr [AW] in a different context. The strategy of
the proof is to obtain a pair of bounds on the variance of the time differenceδT
between a passage time for length scaleL and its spatial translate by length scale
Lγ

′
(see Figs. 1 and 2). One easily obtains an “a priori” upper bound, var(δT) =

O(L2γ′ ). The lower bound is based on a general result (see (3.4)) for functions
of independent random variables, from which we obtain, under the assumption
that the minimizing paths are confined within a cylinder of radiusO(Lγ

′
n ) (see

Figs. 1 and 2), a lower bound of the formC ′L1−(d−1)γ′
n . The assumption will be

valid (with high probability, for largeL) for any γ′ > ξ. The lower bound is
then consistent with the upper bound only ifγ′ ≥ 1/(d + 1). Since this is true
for everyγ′ > ξ, we obtainξ ≥ 1/(d + 1) as desired.

For ease of exposition, we begin the actual proof with the case of 0 or 1
valuedτ (e)’s, first handling the point-to-point exponentξ(0) and then the point-
to-plane exponentξ(1). After that, we extend the argument to general distributions
for the τ (e)’s.

Proof of ξ(0) ≥ 1/(d + 1) for 0 or 1 valuedτ (e)’s. Let p denoteP(τ (e) = 0)
and q = 1− p. We may assume that theτ (e)’s are the coordinate variables on

the canonical probability space (Ω,F ,P) with Ω = {0, 1}Ed

, F the standard
σ-field generated by cylinder sets andP = Pp, the Bernoulli product measure. By
utilizing the symmetries ofZd, we may restrict attention in the definition (2.4)
of ξ(0) to the type ofv’s in Z

d whose first coordinate, which we denotek, is
non-negative and at least as large as the absolute value of any other coordinate.
Note that thenk is between‖v‖/d1/2 and ‖v‖. To proveξ(0) ≥ 1/(d + 1), we
will assume that (2.5) is valid for someγ′ and somev = vn of the type just
described, and then show thatγ′ ≥ 1/(d + 1).
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(0, 0)

(0,mn)

vn

vn + (0,mn)

Fig. 1. Lower and upper point-to-point minimizing paths and the cylinders,C l
n andC u

n , that contain
each of them, ford = 2

For eachvn /= 0, we consider two point-to-point passage times: a “lower”
one,Tl

n = T(0, vn), and an “upper” one corresponding to a shift upward of the
second coordinate bymn units,

Tu
n = T((0,mn, 0, ...0), vn + (0,mn, 0, ...0)). (3.1)

The positive integermn(≤ c1‖vn‖γ′ , where c1 can be taken to be 3) will be
chosen so that the two cylinders inRd,

C l
n = C (vn, ‖vn‖γ′ ) and C u

n = C l
n + (0,mn, 0, ...0), (3.2)

are (just barely) disjoint (see Fig. 1). We defineδTn to be the differenceTl
n −Tu

n

and note, by an obvious argument using the straight line paths between 0 and
(0,mn, 0, ..., 0) and betweenvn andvn + (0,mn, 0, ..., 0), that|δTn| ≤ 2mn so that

var(δTn) ≤ (2mn)2 ≤ c2‖vn‖2γ′ . (3.3)

(Here c2 = 4c1 = 12). The remainder of the proof consists in deriving a lower
bound for var(δTn), based on the assumed validity of (2.5), which would contra-
dict (3.3) if γ′ were below 1/(d + 1).

Proceeding (for a while) as in [NP],we choose an ordering,e1, e2, ..., of the
edges inEd. Let Gj be theσ-field generated byτ (ej ) and let Fj be theσ-
field generated byτ (e1), ..., τ (ej ) (with F0 the trivial σ-field). Then a martingale
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(0, 0)

(0,mn)

Xn

x̂n

x̂n

Fig. 2. Lower and upper point-to-plane minimizing paths and the cylinders,ˆC l
n and ˆC u

n , that con-
tain each of them, ford = 2. The lines in the figure perpendicular to ˆxn are given by the equations
u · x̂n = Ln and (u− (0,mn)) · x̂n = Ln; these lines indicate the (approximate) location of the subsets
of Z2, ∂Λ(x̂n, Ln) and∂Λ(x̂n, Ln) + (0,mn)

identity and a standard inequality yield (as in Lemma 2 of [NP]) the following
lower bound forδT ≡ δTn:

var(δT) =
∑∞

j =1 var[E(δT|Fj )− E(δT|Fj−1)]
≥∑∞

j =1 var[E(E(δT|Fj )− E(δT|Fj−1)|Gj )]
=
∑∞

j =1 var[E(δT|Gj )].
(3.4)

We express, for eachj , ω ∈ Ω = {0, 1}Ed

as (ωj , ω̂j ) whereωj = ω(ej )
and ω̂j is the restriction ofω to E

d\{ej }. We define three random variables
(depending only on ˆωj ): δT0

j = δT((0, ω̂j )), H u
j = Tu

n ((1, ω̂j )) − Tu
n ((0, ω̂j )) and

H l
j = Tl

n((1, ω̂j ))− Tl
n((0, ω̂j )). ThenH u

j (resp.H l
j ) is (in the language of [NP])

the indicator variable of the event thatej “matters” for Tu
n (resp. forTl

n) and we
have

δT = δT0
j + [H l

j − H u
j ]ωj (3.5)

and
E(δT|Gj ) = E(δT0

j ) + [P(H l
j = 1)− P(H u

j = 1)]ωj . (3.6)

Inserting this into (3.4) yields
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var(δT) ≥ pq
∞∑
j =1

[P(H l
j = 1)− P(H u

j = 1)]2. (3.7)

We next restrict the sum in the last inequality toj ’s with ej in C ′
n , the

intersection of the lower cylinderC l
n given in (3.2) with the boxB2‖vn‖ = {z ∈

R
d :| zi |≤ 2‖vn‖ for i = 1, ..., d}; we denote this restricted sum by

∑
j
′.

Applying the Cauchy-Schwarz inequality and denoting by|C ′
n | the number of

edges in C ′
n , we have

var(δT) ≥ pq
∑′

j [P(H l
j = 1)− P(H u

j = 1)]2

≥ (pq/|C ′
n |){
∑′

j P(H l
j = 1)−∑′

j P(H u
j = 1)}2.

(3.8)

The last two steps of the proof are to show that asn →∞,

lim inf n→∞‖vn‖−1
∑

j

′
P(H l

j = 1)≥ c3 > 0, (3.9)

while
limn→∞‖vn‖−1

∑
j

′
P(H u

j = 1) = 0. (3.10)

Once this is done, it will follow from (3.8) that for some strictly positivec4, and
largen,

var(δT) ≥ 2pqc3
2‖vn‖2/|C ′

n | ≥ c4‖vn‖2/‖vn‖1+(d−1)γ′ (3.11)

(wherec4 depends onp, d and thec3 of (3.9)). This would contradict (3.3) if
2γ′ < 1− (d − 1)γ′, i.e., if γ′ < 1/(d + 1), and the proof would be complete.
We first show (3.9) and afterwards (3.10).

Let F l
j denote the intersection of the two independent events{H l

j = 1} and
{τ (ej ) = 1}, or equivalently the event thatτ (ej ) = 1 and ej belong tosome
minimizing path forTl

n (such anej was called a “minimizing 1-edge” in [NP]).
Then

‖vn‖−1
∑

j

′

P(H l
j = 1) = ‖vn‖−1q−1

∑
j

′

P(F l
j ) ≥ q−1‖vn‖−1E(Tl

n1Ml
n is in C ′

n
),

(3.12)
where Ml

n = M(0, vn) and the inequality follows because the total num-
ber of minimizing 1-edges is at least as big as their number in a particular
minimizing path. We claim that by (2.5) and the shape theorem (see [K1]),
the RHS of (3.12) is bounded away from zero asn → ∞, which verifies
(3.9). To see this, letµ denote the time constant, the strictly positive limit
of E(T(0, (n, 0, . . . , 0))/n), and then define three events:G1

n = {Tl
n/‖vn‖ ≥

µ/(2
√

d)}, G2
n = {Ml

n is in B2‖vn‖} and G3
n = {Ml

n is in C l
n }. The RHS of

(3.12) is bounded below by [q−1µ/(2
√

d)]P(G1
n ∩G2

n ∩G3
n). The shape theorem

implies thatP(G1
n) → 1 andP(G2

n) → 1 while (2.5) states thatP(G3
n) → 1; our

claim follows.
To verify (3.10), we denote byYu

n the number of edgesej such thatH u
j = 1

and τ (ej ) = 0, and note that such an edge has the property that it is passed
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through byevery minimizing path forTu
n . ThusYu

n ≤ Zu
n , the minimum length

(i.e., no. of edges) among paths inMu
n , the set of minimizing paths forTu

n , and
so

‖vn‖−1∑′

j P(H u
j = 1) = ‖vn‖−1p−1∑′

j P(H u
j = 1 andτ (ej ) = 0)

≤ p−1‖vn‖−1E(Yu
n 1{Mu

n is in C u
n }c )

≤ p−1‖vn‖−1[E((Yu
n )2)P({Mu

n is in C u
n }c)]1/2

≤ p−1[E((Zu
n /‖vn‖)2)(1− P(Mu

n is in C u
n ))]1/2,

(3.13)
where we have used the Cauchy-Schwarz inequality. Asn →∞, P(Mu

n is in C u
n )

converges to 1 by (2.5) and so to complete the proof we need only that
E((Zu

n /‖vn‖)2) is bounded away from∞. This is a consequence of a result,
presented as Proposition B1 in Appendix B, which follows from the arguments
of [K3].

We have now completed the proof that the point-to-point exponentξ(0) satis-
fiesξ(0) ≥ 1/(d + 1) for 0 or 1 valuedτ (e)’s. We next consider the point-to-plane
exponentξ(1).

Proof thatξ(1) ≥ 1/(d + 1) for 0 or 1 valuedτ (e)’s. The proof is very similar to
the one just given forξ(0) and uses the same notation. We will assume that (2.8)
is valid for someγ′ and then showγ′ ≥ 1/(d + 1). Without loss of generality,
we assume that eachXn of (2.8) is of the type with non-negative first coordinate,
at least as large as the absolute value of any other coordinate. Although the unit
vectorx̂n of (2.8) need not be asymptotically parallel toXn (see Fig. 2), nor even
of this type, it is true (e.g., by the shape theorem) that the angle between ˆxn and
Xn must be bounded away fromπ/2 asn →∞.

Again we consider lower and upper passage times,T̂ l
n = T(0, ∂Λ(x̂n, Ln)) and

T̂u
n = T((0,mn, 0, ..., 0), ∂Λ(x̂n, Ln) + (0,mn, ..., 0)), (3.14)

with mn (≤ c5Lγ
′

n , wherec5 can be taken to be 3) chosen so that the two cylinders

ˆC l
n = C (Xn, L

γ′
n ), ˆC u

n = ˆC l
n + (0,mn, 0, ..., 0) (3.15)

are (just barely) disjoint (see Fig. 2). Then (as in (3.3)), the variance ofδT̂n ≡
T̂ l

n − T̂u
n is bounded byc6L2γ′

n (where c6 = 4c5 = 12). The remainder of the
proof is to show that (as in (3.11)) var(δT̂n) is bounded below by a constant
times (Ln)1−(d−1)γ′ , which contradicts the upper bound on the variance unless
γ′ ≥ 1/(d + 1).

To obtain this lower bound, we use essentially the same arguments as before
to obtain

var(δT̂n) ≥ pq
∑∞

j =1[P(Ĥ l
j = 1)− P(Ĥ u

j = 1)]2

≥ (pq/|C ∗
n |){

∑∗
j P(Ĥ l

j = 1)−∑∗
j P(Ĥ u

j = 1)}2

≥ c7(Ln)1−(d−1)γ′{L−1
n

∑∗
j P(Ĥ l

j = 1)− L−1
n

∑∗
j P(Ĥ u

j = 1)}2,
(3.16)
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whereĤ u
j = 1 (resp.Ĥ l

j = 1) is the event thatej matters forT̂u
n (resp.T̂ l

n), C ∗
n

denotes the intersection of̂C l
n with the boxB2Ln , and

∑
j
∗ denotes the sum over

j with ej in C ∗
n (and wherec7 depends onp, d, andc6). LettingM̂l

n (resp.M̂u
n )

denote the set of minimizing paths forT̂ l
n (resp.T̂u

n ), we obtain as analogues of
(3.12) and (3.13),

L−1
n

∑
j

∗
P(Ĥ l

j = 1)≥ q−1L−1
n E(T̂ l

n1M̂l
n is in C ∗

n
) (3.17)

and

L−1
n

∑
j

∗
P(Ĥ u

j = 1)≤ p−1[E(Ẑu
n /Ln)2(1− P(M̂u

n is in ˆC u
n ))]1/2, (3.18)

whereẐu
n is the minimum length of paths inM̂u

n .

The RHS of (3.17) is bounded away from zero asn → ∞ by (2.8) and
the shape theorem like in the analogous bound for the RHS of (3.12). Because
Ẑu

n ≤ Z∗(vn) (see (B.1)) forvn any point on∂Λ(x̂n, Ln) + (0,mn, 0, ..., 0), we see
that the RHS of (3.18) tends to zero asn → ∞ by (2.8) and Proposition 3.1.
Thus by (3.16), var(δT̂n) is bounded below by a constant times (Ln)1−(d−1)γ′ and
the proof is complete.

Proof thatξ(0) ≥ 1/(d + 1) for generalτ (e)’s. The extension from 0 or 1 valued
τ (e)’s proceeds along the lines of an analogous extension in Sect. 4 of [NP]. The

τ (e)’s are now the coordinate variables on the space (Ω,F ,P) with Ω = R E
d

(or [0,∞) E
d

), F is the standardσ-field generated by cylinder sets andP is the
product measure of the common distribution of theτ (e)’s. We define, as in the
0 or 1 valued case: the random variablesTl

n, Tu
n , δTn = Tl

n − Tu
n ; the cylinders

C l
n , C u

n andC
′

n ; theσ-fields Gj andFj ; and we express, for eachj , ω ∈ Ω as
(ωj , ω̂j ).

Although |δTn| is no longer bounded (pointwise) by a multiple ofmn, its
variance is stillO(mn

2) becauseE(τ (e)2) <∞, and so var(δTn) = O(‖vn‖2γ′ ) as
in (3.3). A lower bound for the variance ofδT = δTn can be obtained by starting
with the martingale bound (3.4).

To then obtain a lower bound for var[E(δT|Gj )], we introduce the following
random variables, where] denotes eitherl or u,

D ]
j = D ]

j (ω̂j ) = inf{ ωj ≥ λ : for ω = (ωj , ω̂j ), no minimizing
path forT]

n passes throughej }. (3.19)

Let λ denote the essential infimum of theτ (e)’s (i.e., the bottom of the support
of their common distribution as in (1.5) and (1.6)). Then (forωj ≥ λ),

T]
n (ω) = T]

n ((ωj , ω̂j )) = T]
n ((λ, ω̂j )) +

{
ωj − λ, if ωj < D ]

j ,

D ]
j − λ, if ωj ≥ D ]

j .
(3.20)
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Note that ifsomeminimizing path forT]
n passes throughej , thenD ]

j ≥ ωj , but

if D ]
j > ωj , thenevery minimizing path forT]

n passes throughej .
We choose constantsb′ ≥ b > a ≥ λ′ such that

p ≡ P(λ′ ≤ τ (e) ≤ a) > 0, q ≡ P(b ≤ τ (e) ≤ b′) > 0. (3.21)

More specific choices will be made below. For a givenj , let us denote the events
{λ′ ≤ τ (ej ) ≤ a} and{b ≤ τ (ej ) ≤ b′} by D0 andD1 and define, forδ = 0 or
1,

xδ = E(E(δT|Gj )1Dδ )/P(Dδ). (3.22)

Then by an elementary argument (see, e.g., Lemma 3 of [NP])

var[E(δT|Gj )] ≥ pq
p + q

(x1 − x0)2. (3.23)

We will use (3.20) to expressE(δTn|Gj ) as a specific function ˆg(ωj ). Then by
the definition ofxδ we have

x1 − x0 ≥ inf{ĝ(θ) : b ≤ θ ≤ b′} − sup{ĝ(θ) : λ′ ≤ θ ≤ a}. (3.24)

Define the functiongθ (on R) by

gθ(D ) =

{
θ if D > θ,
D if D ≤ θ.

(3.25)

Then from (3.20) we have ˆg given by

ĝ(θ) = K + E(gθ(D l
j )− gθ(D u

j )), (3.26)

whereK is a constant (depending onj ). Sincegθ is monotonic inθ, we have
from (3.24)

x1 − x0 ≥ E(gb(D l
j )− gb′ (D u

j )− ga(D l
j ) + gλ′ (D u

j ))
= E(gb(D l

j )− ga(D l
j )− [gb′ (D u

j )− gλ′ (D u
j )])

≥ (b− a)P(D l
j ≥ b)− (b′ − λ′)P(D u

j > λ′).
(3.27)

and so

|x1 − x0| ≥ [(b− a)P(D l
j ≥ b)− (b′ − λ′)P(D u

j > λ′)]+ (3.28)

where [θ]+ = θ1θ≥0 denotes the positive part ofθ. Combining the martingale
bound (3.4) with (3.23) and (3.28), we have

var(δT) ≥ c8

∞∑
j =1

[c9P(D l
j ≥ b)− P(D u

j > λ′)]+
2
, (3.29)

wherec8 = (p + q)−1pq(b′ − λ′)2 andc9 = (b′ − λ′)−1(b− a).
Now we restrict the sum in the last expression to the edges inC ′

n and use
the Cauchy- Schwarz inequality to obtain the analogue of (3.8):
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var(δT) ≥ (c8/|C ′
n |){
∑′

j [c9P(D l
j ≥ b)− P(D u

j > λ′)]+}2

≥ (c8/|C ′
n |)[c9

∑′
j P(D l

j ≥ b)−∑′
j P(D u

j > λ′)]+
2
.

(3.30)

As in the proof for 0 or 1 valuedτ (e)’s (see (3.9) and (3.10) and the subsequent
discussion there), it only remains to show that

lim inf n→∞‖vn‖−1
∑

j

′
P(D l

j ≥ b) > 0 (3.31)

and
limn→∞‖vn‖−1

∑
j

′
P(D u

j > λ′) = 0. (3.32)

To obtain (3.32), we recall that ifD u
j > ωj , then every minimizing path

for Tu
n passes throughej . We now chooseλ′ = a = λ if P(τ (e) = λ) > 0 and

otherwise chooseλ′ > λ; in either case,p′ ≡ P(τ (e) ≤ λ′) > 0 and we have

P(D u
j > λ′) = (p′)−1P(τ (e) ≤ λ′,D u

j > λ′)
≤ (p′)−1P(every minimizing path forTu

n passes throughej ).
(3.33)

Thus we have, exactly as in (3.13), that‖vn‖−1 times
∑

j
′P(D u

j > λ′) is bounded
by the last expression in (3.13) (except) withp replaced byp′. As in the 0 or 1
valued case, (3.32) now follows by (2.5) and Proposition B1.

It remains to verify (3.31). If an edgeej hasD l
j ≥ b andωj < b, then it

must be passed through byevery minimizing path forTl
n. Letting Ŵl

n denote the
total number of such edges and ˆp = P(τ (e) < b), we thus have (as an initial
replacement for (3.12))∑

j
′P(D l

j ≥ b) = p̂−1∑
j
′P(D l

j ≥ b, τ (ej ) < b)
≥ p̂−1E(Ŵl

n 1Ml
n is in C ′

n
)

≥ p̂−1E(Ŵl
n )− p̂−1[E((Ŵl

n )2)(1− P(Ml
n is in C

′
n ))]1/2.

(3.34)
But Ŵl

n ≤ Zl
n, the minimum length among paths inMl

n, and so, by Proposi-
tion B1,‖vn‖−2E((Ŵl

n )2) is bounded away from∞, while P(Ml
n is in C

′
n ) → 1

by (2.5). Thus

lim inf n→∞‖vn‖−1∑′
j P(D l

j ≥ b) ≥ lim inf n→∞‖vn‖−1p̂−1E(Ŵl
n )

= lim infn→∞‖vn‖−1∑∞
j =1 P(D l

j ≥ b).
(3.35)

We saye is a minimizing b-edge for Tl
n if τ (e) ≥ b and someminimizing

path for Tl
n passes throughe and we denote byWl

n the total number of such
edges. Ifej is a minimizing b-edge forTl

n, then D l
j ≥ b and so the RHS of

(3.35) is bounded below by the lim inf of‖vn‖−1E(Wl
n ).

Thus, to complete the verification of (3.31), it now suffices to have the ex-
pectation ofWl

n/‖vn‖ bounded away from zero asn →∞. If P(τ (e) = λ) < pc,
thenλ′, a, b andb′ could have been chosen so thatP(τ (e) < b) < pc and such
a lower bound onWl

n/‖vn‖ would easily follow from the shape theorem (as in
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case (a′) of Sect. 4 of [NP]). Under the more general hypotheses of Theorem 1
(i.e., to include cases whereλ > 0 andpc ≤ P(τ (e) = λ) < pdir

c ), such a lower
bound onWl

n/‖vn‖ follows from the results of [BK], as stated in Proposition B2
of Appendix B below. This completes the proof thatξ(0)≥ 1/(d + 1) for general
τ (e)’s.

Proof that ξ(1) ≥ 1/(d + 1) for generalτ (e)’s. This proof is a combination of
the appropriate arguments used forξ(0) ≥ 1/(d + 1) for generalτ (e)’s with those
used forξ(1) ≥ 1/(d + 1) for 0 or 1 valuedτ (e)’s. We leave the details to the
reader, but remark that for unboundedτ (e)’s, it can be shown that var(δT̂n) =
O(mn

2) = O(Ln
2γ′ ) by a straightforward conditioning argument.

4. The boundξ(d) ≥ 1/2

In this section, we prove Theorem 2. We begin with a heuristic sketch of the
proof, restricted (for simplicity) tod = 2 and distributions whereP(τ (e) = 0) > 0.
Choose anyγ′ > ξ. The key ingredient of the proof is the construction, for each
largeL, of a closed polygon with certain properties (see Fig. 4): Every point on
the polygon is at distance aboutL (i.e., up to a factor bounded away from 0 and
∞ as L → ∞) from the origin. Each segmentLi is of length aboutLγ

′
and

thus there are aboutL1−γ′ segments. Associated to eachLi is a deterministic
subsetAi of Z2 with diameter substantially smaller than the length ofLi such
that (with probability close to 1) all time-minimizing paths (from the origin to
∂Λ(x̂i , Li ) whereLi is a segment of the line,{y ∈ R2 : y · x̂i = Li }) terminate
on Ai . A crucial property of the polygon is that eachAi is near the midpoint of
Li . The construction of the polygon is done inductively (see Proposition 4.1)
by adding one segment at a time and determining ˆxi +1 (in order that this crucial
property be valid) by using “continuity” in the dependence ofAi +1 on x̂i +1 (see
Appendix A).

To complete our heuristic sketch, once we have constructed the polygons, we
note that the average angle between successive segments is about 1/L1−γ′ and
thus at least one such angle isO(Lγ

′−1). Concentrating on that pair of segments,
Lj andLj +1, we may assume (without loss of generality) that the passage time to
∂Λ(x̂j , Lj ) is ≤ that to∂Λ(x̂j +1, Lj +1)(with probability at least 1/2). From Fig. 6,
we see that the distance fromAj (near the center ofLj ) to ∂Λ(x̂j +1, Lj +1) is
O(Lγ

′ · Lγ
′−1). If γ′ ≤ 1/2, this isO(1) which means it takes onlyO(1) edges

to extend a time-minimizing path to∂Λ(x̂j , Lj ) into a path to∂Λ(x̂j +1, Lj +1). If
theseO(1) edges all haveτ (e) = 0 (which happens with probability bounded
away from 0 asL →∞), then the extended path will be a time-minimizing path
to ∂Λ(x̂j +1, Lj +1) but will not terminate onAj +1. This contradicts the defining
property of Aj +1 and shows thatγ′ ≤ 1/2 is impossible. We now begin the
detailed proof.

For the fixedK ≥ 0 of the theorem, chosen so thatP(τ (e) ≤ K ) > 0, we
choose a fixedε > 0 such thatε < (1/2)P(τ (e) ≤ K ). The proof of Theorem
2 (and eventually of Theorem 3 as well) is based on the construction, for each
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large L, of certain (polygonally) convex sets inRd containing the origin with
certain properties, some of which we now state. Ford = 2, this set, divided by
a constant timesL, may be regarded, for largeL, as an approximation to the
asymptotic shape (of the shape theorem).

The sets will be the intersection of a finite number of half planes inR
d,

Λ̃(x̂i , Li ) = {y ∈ Rd : y · x̂i < Li }, (4.1)

with each unit vector ˆxi in the 1-2 plane and eachLi in [L/
√

2,
√

2L]. The sets
will be invariant under reflections of either (or both) of the 1 and 2 coordinates
and under their interchange. Ford = 2: The boundary of the set is a polygonPL

(see Fig. 3) each of whose segmentsLi is an interval of one of the (d = 2) lines,

∂Λ̃(x̂i , Li ) = {y ∈ R2 : y · x̂i = Li }; (4.2)

four of the x̂i ’s are (±1, 0), (0,±1) with correspondingLi ’s equal toL; all the
segments, except the four with ˆxi = (±1,±1)/

√
2, have the same length 4D and

those special four segments have length between 4D and 12D . The value ofD
will be required to satisfyD ≥ D̄L with D̄L defined below. Ford > 2: The
convex set is a “polygonal barrel” whose boundary is of the formPL × R

d−2

with PL as in the two-dimensional case.
Because of the symmetries of our construction within the 1-2 plane, we will

henceforth concentrate on the unit vectors ˆx(θ) of the form (cosθ, sinθ,0,...,0)
with 0 ≤ θ ≤ π/2. For givenθ and L (and our fixedK and ε), a deterministic
subsetA = A(θ, L) of theZd-boundary∂Λ(x̂(θ), L) will be calledacceptable(for
θ, L) if

P(R(∂Λ(x̂, L); K ) ⊆ A(θ, L)) ≥ 1− ε. (4.3)

For givenθ andL, we consider slabs inZd of thicknessD ′ (see Fig. 4),

S(θ, γ′,D ′) = {y ∈ Zd : −D ′/2≤ y1(−sinθ) + y2(cosθ)− γ′ ≤ D ′/2}, (4.4)

and consider the smallestD ′ for which some such slab contains an acceptable
A. This leads to our definition of̂DL(θ) and D̄L as

D̂L(θ) = c10 + inf{D : for someγ′,S(θ, γ′,D)
⋂
∂Λ(x̂(θ), L)

is acceptable forθ, L}, (4.5)

wherec10 = 2 +
√

d + 1/2, and

D̄L = sup{D̂L′ (θ) : 0≤ θ ≤ π/2, L/
√

2≤ L′ ≤
√

2L}. (4.6)

(The reason for this choice ofc10 is explained later.) For each 0≤ θ ≤ π/2 and
L > 0, we may then choose some ¯γ = γ̄(θ, L) such that

Ā(θ, L) ≡ S(θ, γ̄(θ, L), D̂L(θ))
⋂

∂Λ(x̂(θ), L) (4.7)

is acceptable forθ, L.
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Becauseε < 1/2, it follows from the definition of acceptable and from
the reflection and interchange symmetries of the 1-2 plane, that the setsĀ(θ, L)
for θ = 0, π/4 and π/2 respectively intersect the sets{y ∈ Z

d : y2 = 0},
{y ∈ Z

d : y1 = y2} and {y ∈ Z
d : y1 = 0}. The crucial property of our

constructedPL (with x̂i = x̂(θi )) will be the similar requirement forevery i
that Ā(θi , Li ) (almost) intersects the midpoint of the correspondingi th segment
of the polygon (× R

d−2). The following proposition (see also Fig. 3) basically
gives the intersection ofPL with the sector{θ : 0 ≤ θ ≤ π/4} with the crucial
property given as item (f); the remaining 7/8 ofPL is then determined by the
symmetries in the 1-2 plane.

z(0)

z(1)

z(2)

z(3)

L3

L2

L1

x̂2

Fig. 3. A sketch of the polygonPL . In this example,ML = 3 and the polygon is composed of
16 = (8ML − 8) line segments,L1,L2, . . . ,L16 . L1 is perpendicular to ˆx1 = (1, 0), has midpoint
(L, 0) and is of length 4D . L2 is perpendicular to some unit vector ˆx2, is of length 4D and is at some
distanceL2 from the origin.L3 is perpendicular to ˆx3 = (1/

√
2, 1/

√
2), has midpoint (L3, L3)/

√
2

for someL3 and, in general, is of length between 4D and 12D ; in this sketch, it is of length 4D

Proposition 4.1. For any L such thatD̄L ≤ (1/2)tan(π/8)L and any D in the
interval [D̄L, (1/2)tan(π/8)L], there exist ML + 1 ≥ 3 points in the 1-2 plane,
z(i ) = (z(i )

1 , z(i )
2 , 0, ..., 0), 0≤ i ≤ ML, with the following properties:

(a) (z(0)
1 , z(0)

2 ) = (L,−2D), (z(1)
1 , z(1)

2 ) = (L,+2D),
(b) z(i−1)

1 > z(i )
1 > 0 and 0 < z(i−1)

2 < z(i )
2 for 2≤ i ≤ ML,

(c) (z(ML)
1 , z(ML)

2 ) = (z(ML−1)
2 , z(ML−1)

1 ),
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(d) the line segmentsLi between z(i−1) and z(i ), which are intervals of
{(y1, y2) : y1cosθi +y2sinθi = Li }, satisfy0≤ θi < θi +1 ≤ π/4 for 1≤ i ≤ ML−1
(with θ0 = 0, θML = π/4),

(e) the length ofLi is 4D for 1≤ i ≤ ML−1 and is in[4D , 12D ] for i = ML,
(f) for every i = 1, ...,ML, the setĀ(θi , Li ) is within distanceᾱ/2 of the

midpoint ofLi (hereᾱ is the fixed geometrical constant
√

d + 1).

Proof. The z(i )’s are constructed inductively withz(0) andz(1) given by property
(a). We suppose we have so far constructedz(0), ..., z(i ), satisfying all the proper-
ties up to that stage, withθi < π/4 and with the distanceQi from z(i ) to the 45◦

line, {y ∈ Zd : y1 = y2}, satisfyingQi ≥ 2D . (We note that the condition that
D ≤ (1/2)tan(π/8)L insures thatQi ≥ 2D at least fori = 1). If Qi ≤ 6D then
we setML = i + 1 and definez(ML) by property (c); this will yield property (e)
for i = ML. If Qi > 6D then z(i +1) must be in the 1-2 plane exactly at distance
4D from z(i ) with

z(i +1) = z(i ) + 4D(−sinθ, cosθ, 0, ..., 0)

for someθ = θi +1 to be chosen. Let L(θ)(= Li +1) denote the distance between the
origin and the line whose segmentLi +1 connectsz(i ) and z(i +1). The induction
will proceed, and this proof will be complete, if we can show thatθ can be
chosen in the open interval (θi , π/4) such thatĀ(θ, L(θ)) is within distance ¯α/2
of the midpoint ofLi +1.

To see thatθ can be so chosen, consider the slab of widthα, S(θ) ≡
S(θ, γ′(θ), α) centered on this midpoint by choosingγ′(θ) = z(i )

1 (−sinθ) +
z(i )

2 (cosθ) + 2D (see Fig. 4). Note that forθ = θi , S(θ) is at distance 2D − α
2 + 2D

from the midpoint ofLi , and so by property (f) forLi (and the fact that̄A(θi , Li )
is of width D̂L(θi ) ≤ D̄L ≤ D), we see thatA(θi ) ≡ Ā(θi , L(θi )) is below S(θi )(see
Fig. 5). Forθ = π/4, S(π/4) is at distance at least 6D − 2D − α

2 below the 45◦

line; because the 45◦ line must intersectA(π/4) (as noted in the paragraph pre-
ceding Proposition 4.1), we see thatA(π/4) is above S(π/4). To find an angleθ
in (θi , π/4) with the desired property, we need a kind of weak continuity result
for A(θ). This is precisely given by Proposition A2 of Appendix A, which is
applicable forα sufficiently large (so that each̄A(θ, L) is α-connected); we can
takeα =

√
d and ᾱ =

√
α2 + 1. This completes the proof of Proposition 4.1.

To use Proposition 4.1 for the proof of Theorem 2, we first need a relation
between the largeL behavior of D̄L (defined in (4.6)) and the value of the
exponentξ(2)

K (defined in (2.12)). Such a relation (see the discussion in Sect. 2
just preceding Theorem 2) is simply that for anyγ > ξ(2)

K , it must be (for any
ε, as chosen at the beginning of this section) thatD̄L ≤ Lγ for all large L. To
prove thatξ(2)

K ≥ 1/2, we will assume (for the chosenε) that D̄L = o(L1/2) and
then apply Proposition 4.1 withD = D̄L to derive a contradiction. Note that the
hypothesisD̄L ≤ 1

2tan(π/8)L of the proposition is valid for largeL.
The application of Proposition 4.1 is based on an elementary argument that

the changes in angle4θi = θi +1 − θi between succesive facets of the polygon
cannot all be large. We first note that since eachLi has length≤ c11D̄L (where
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b

x̂ = (cosθ, sinθ)

a

D ′

S

γ

Fig. 4. The setS(θ, γ′,D ′), in this d = 2 example, is the set of points inZ2 falling within the
indicated slabS of width D ′. The slab is parallel to ˆx = (cosθ, sinθ) and perpendicular to the
dashed line, which is at distanceL from the origin. The pointb on this line and in the center of the
slab, is at distanceγ′ from the pointL(cosθ, sinθ) ; in the proof of Proposition 4.1 (and in Appendix
A), asθ varies,b remains at a fixed distanceγ = 2D from a pointa on this line which is also fixed

S(θi ) z(i−1)

z(i ) A(θi )

z(i +1)

Fig. 5. The line segmentLi , betweenz(i−1) and z(i ) is perpendicular to ˆxi = (cosθi , sinθi ). The
set A(θi ), whose approximate location is indicated, comes near the center ofLi . The slabS(θi ) is
parallel tox̂i but its center is about 2D abovez(i ) and henceA(θi ) is belowS(θi )
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c11 = 12), and the total length of theLi ’s is at leastc12L (wherec12 = 4
√

2),
it must be thatML ≥ c13L/D̄L (where c13 = c12/(8c11)). We next note that
the sum of theML angle changes4θi is exactlyπ/4 and the smallest4θi is
bounded by the average4θi which is π/(4ML). We conclude that there exists
somej ∈ {1, ...,ML−1} such that

4θj = O(D̄L/L) = o(L−1/2). (4.8)

We now focus attention on the two half spaces (inZd), Λ = Λ(x̂(θj ), Lj ) and
Λ′ = Λ(x̂(θj +1), Lj +1) and the passage timesT = T(0, ∂Λ), T ′ = T(0, ∂Λ′). The
(random) sets of endpoints of exactly minimizing paths areR = R(∂Λ; 0) and
R′ = R(∂Λ′; 0) and those of almost minimizing paths areR(K ) = R(∂Λ; K ) and
R′(K ) = R(∂Λ′; K ). The deterministic replacements forR(K ) andR′(K ) are (see
(4.7)) Ā = Ā(θj , Lj ) and Ā′ = Ā(θj +1, Lj +1). Ā and Ā′ are of diameter at most
D̄L and (by property (f) of Proposition 4.1) are within a bounded (asL → ∞)
distance of the midpoints of the respective segmentsL = Lj andL ′ = Lj +1.
Each of the two segments is of length at least 4D̄L. Note that the distance between
Ā and Ā′ must be at leastD̄L − c14 with c14 = ᾱ/2. SinceD̄L ≥ c10 = 2 + ᾱ/2
(see (4.5)-(4.6)), this distance exceeds one.

a′

b

b′

∆θj = O(D/L)

X

X′
L ′

L

a

Fig. 6. The segmentsL = Lj and L ′ = Lj +1 have lengths of orderD . The setsĀ and Ā′ are

near the midpointsX andX′. The doubled segmentL̂ (resp.L̂ ′) extends froma to b (resp.a′ to
b′) . Every point inL̂ is within distanceO(D2/L) of some point inL̂ ′ and vice-versa. In Sect. 4,
D = o(L1/2), and in Sect. 5,D = O(Lγ

′
)

Because of (4.8), simple Euclidean geometry (see Fig. 6) shows thatĀ must
be close enough to∂Λ′ so that every site in̄A is either in∂Λ′ or has a neighbor
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in ∂Λ′ (with a similar closeness result for̄A′ and∂Λ). Let B denote the set of
sites in∂Λ′ which are inĀ

⋃
∂Ā and letB denote the set of edges from sites

in Ā to sites inB. Similarly, let B′ denote the set of sites in∂Λ which are in
Ā′
⋃
∂Ā′ and letB ′ denote the set of edges from sites inĀ′ to sites inB′. Let

F0 denote theσ-field generated by allτ (e)’s exceptthose inB
⋃

B ′. Let T0

(resp.T0
′) denote the inf of passage timesT(r ) among all pathsr from the origin

to Ā (resp. toĀ′) which only use edgesother than those inB
⋃

B ′. T0 and
T0
′ may be regarded as approximations toT andT ′ which (unlikeT andT ′) are

F0-measurable. By conditioning onF0, we have (compare (A.12) of Appendix
A)

P(T(0,B) ≤ T0 + K |F0) ≥ P(τ (e) ≤ K ) (4.9)

(with a similar inequality interchanging primed and unprimed quantities).
Now at least one of the two events,T0 ≤ T ′0 or T ′0 ≤ T0 must occur with

probability at least 1/2. Suppose (without loss of generality) thatP(T0 ≤ T ′0) ≥
1/2. Then from (4.9),

P(T(0,B) ≤ T ′0 + K ) ≥ (1/2)P(τ (e) ≤ K ). (4.10)

Although T ′0 may exceedT(0, Ā′), it can only do so if a minimizing path for
T(0, Ā′) either passes throughB, in which caseT(0,B) ≤ T(0, Ā′), or else
passes throughB′, in which caseR′(K ) 6⊆ Ā′; we conclude thatT(0,B) ≤ T ′0 +K
implies that eitherT(0,B) ≤ T(0, Ā′) + K or R′(K ) 6⊆ Ā′ and so

P(T(0,B) ≤ T(0, Ā′) + K or R′(K ) 6⊆ Ā′) ≥ (1/2)P(τ (e) ≤ K ) > ε. (4.11)

We now show that this together with the fact (see (4.3)) that

P(R′(K ) ⊆ Ā′) ≥ 1− ε (4.12)

leads to a contradiction.
The contradiction comes about because (4.11)-(4.12) imply

P(R′(K ) ⊆ Ā′ andT(0,B) ≤ T(0, Ā′) + K ) > 0. (4.13)

On the other hand, sinceR′ ≡ R(∂Λ′; 0) ⊆ R(∂Λ′; K ) ≡ R′(K ), R′(K ) ⊆ Ā′

impliesR′ ⊆ Ā′ so that thenT(0, Ā′) = T(0, ∂Λ′) and soT(0,B) ≤ T(0, ∂Λ′)+K
which implies (from the definition (2.11) ofR(∂Λ′; K )) that some site inB must
belong toR′(K ). But this contradictsR′(K ) ⊆ Ā′ sinceB and Ā′ are disjoint.
This is because all sites inB are within distance one of̄A and the distance from
Ā to Ā′ is (as mentioned above) strictly bigger than one. The proof of Theorem
2 is now complete.
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L̂ ′

L̂

C ′

0

X′

X

C

Fig. 7. The cylindersC ≡ C (X, Lγ ) andC ′ ≡ C (X′, Lγ ) and minimizing paths confined to the
cylinders C and C ′ respectively. The distance betweenX and X′ is of order Lγ

′
and thus the

intersection ofC andC ′ is within distanceO(L(1−(γ−γ′)) of the origin

5. The boundξ(2)≥ 3/5

In this section, we prove Theorem 3. Once more, we begin with a heuristic
sketch of the proof, restricted to the case whereP(τ (e) = 0) > 0. This proof
combines the geometric argument which showedξ(d) ≥ 1/2 (Theorem 2) with
the martingale-based argument which showedξ(d) ≥ 1/(d + 1) (Theorem 1) to
yield ξ(2)≥ 3/5, a seeming counterexample to the principle of “no free lunch”.
We choose anyγ′ > ξ and use the same polygons and same specially chosen
segmentsLj andLj +1 as in our sketch of the proof of Theorem 2. But now we
note that the time-minimizing paths are (with high probability) contained within
narrow strips terminating near the centers of the two segments (see Fig. 7). As in
Theorem 2, the distance of each termination region from the linear extension of
the other segment isO(L2γ′−1). Thus the differenceδT between the two passage
times has var(δT) = O([L2γ′−1]2). On the other hand, like in Theorem 1, there
is a lower bound on this variance coming from a martingale-based inequality
(see (3.4)) combined with the restriction (with high probability) of the respective
minimizing paths to the mostly disjoint strips of Fig. 7 (as in [WA, AW]). This
lower bound is of orderL1−(d−1)γ′ = L1−γ′ , so that to avoid a contradiction, it
must be that 2(2γ′−1)≥ 1−γ′ or γ′ ≥ 3/5. Since this is valid for anyγ′ > ξ(3),
we obtainξ(3) ≥ 3/5. We now proceed with the detailed proof of Theorem 5.
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As in our proof ofξ(d) ≥ 1/2 in the last section, we choose a fixed positive
ε < 1

2P(τ (e) ≤ K ). Becauseξ(3)
K ≥ ξ(2)

K , we see that for anyγ′ > ξ(3)
K , the quantity

D̄L, as defined in Sect. 4, iso(Lγ
′
). If γ′ < 1, then for largeL, the hypothesis

of Proposition 4.1 that̄DL ≤ 1
2sin(π/8)L is valid and we will use the polygon

construction of that proposition, but this time withD = Lγ
′

(rather thanD̄L).
As in the derivation of (4.8), there is somej such that

4θj = O(D/L) = O(L−(1−γ′)). (5.1)

As in that part of Sect. 4, we focus on the half spaceΛ = Λ(x̂(θj ), Lj ) and
Λ′ = Λ(x̂(θj +1), Lj +1) and the passage timesT, T ′ along with the random setsR,
R′ and their deterministic replacementsĀ and Ā′.

Let X andX ′ respectively denote the midpoints of the line segmentsL = Lj

and L ′ = Lj +1 of the polygon. Note that becauseL and L ′ have lengths at
least 4Lγ

′
and4θj → 0 asL → ∞ by (5.1), the distance betweenX and X ′ is

at least 3Lγ
′

for large L. We choose someγ in (ξ(3)
K , γ′). Becauseγ > ξ(3)

K and
becausēA is at a bounded distance fromX and has a diameter which iso(Lγ),
it follows that the set of approximately minimizing paths,M((0, ∂Λ); K ), and
henceM ≡ M(0, ∂Λ), the set of actually minimizing paths, is asymptotically
contained in the cylinderC ≡ C (X, Lγ)(see Fig. 7); i.e.,

P(M is in C ) → 1 asL →∞. (5.2)

Similarly, M′ ≡ M(0, ∂Λ′) is contained inC ′ ≡ C (X ′, Lγ):

P(M′ is in C ′) → 1 asL →∞. (5.3)

To prove thatξ(3)
K ≥ 3/5, we will show that (5.1)-(5.3) imply thatγ′ ≥ 3/5.

The argument for doing that is a modification of the one used in Sect. 3 to prove
ξ(1) ≥ 1/(d + 1), as we now explain.

Roughly speaking, we want to useT andT ′ as replacements for thêTl
n and

T̂u
n of Sect. 3 (see the discussion surrounding (3.14) there). But a basic ingredient

in Sect. 3 was an upper bound onT̂ l
n − T̂u

n (or, in the case of unboundedτ (e)’s,
a bound on its variance) and we cannot easily get a useful upper bound directly
for T −T ′. So we will approximateT andT ′ by two other variables, as follows.

The endpoints ofL = Lj are z(j−1) and z(j ) and those ofL ′ = Lj +1 are
z(j ) and z(j +1). Let us extendL in the direction ofL ′ by doubling its length;
i.e., we defineL̂ as the segment with endpointsz(j−1) andz(j ) + (z(j ) − z(j−1)).
Similarly we extendL ′ in the direction ofL by definingL̂ ′ to have endpoints
z(j ) − (z(j +1) − z(j )) and z(j +1). Let ∂̂Λ (resp., ∂̂Λ′) be the set of sites in∂Λ
(resp.,∂Λ′) within distance one ofL̂ (resp.L̂ ′) and then definêT = T(0, ∂̂Λ)
and T̂ ′ = T(0, ∂̂Λ′) with corresponding sets of minimizing pathsM̂ and M̂′.
Because of (5.1) and the lengths of̂L and L̂ ′, it follows that for largeL,
every site in∂̂Λ is within distancec15L2γ′−1 of ∂̂Λ′ (wherec15 is a geometrical
constant) and vice-versa (see Fig. 6). It is not hard to show that consequently
(and analogously to the bound var(δT̂n) = O(mn

2) in the proof of Sect. 3 that
ξ(1) ≥ 1/(d + 1) for generalτ (e)’s)
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var(T̂ − T̂ ′) = O([L2γ′−1]2). (5.4)

The remainder of the proof is to obtain a lower bound on the variance, as a
consequence of (5.2)-(5.3), of orderL1−γ (i.e., L1−(d−1)γ with d = 2). This will
imply a contradiction unless 2(2γ′ − 1)≥ 1− γ ≥ 1− γ′, i.e., unlessγ′ ≥ 3/5.

By essentially the same arguments used in Sect. 3 for the proof thatξ(0) ≥
1/(d + 1) for generalτ (e)’s, we obtain the bound

var(T̂ − T̂ ′) ≥ c8

∞∑
j =1

[c9P(D̂j ≥ b)− P(D̂ ′
j ≥ λ)]+

2
, (5.5)

where D̂j and D̂ ′
j are respectively exactly as in (3.19) but withT]

n replaced

respectively byT̂ and T̂ ′.
We next restrict the summation in (5.5) to a subset of thej ’s. We define ˆC

as the intersection ofC and the boxB2‖X‖; its area is of orderL1+γ . Denoting by∑̂
j the restricted sum overj ’s with ej in ˆC , we then have from (5.5) (compare

(3.30)),

var(T̂ − T̂ ′) ≥ (c8/| ˆC |)[c9

∑̂
j
P(D̂j ≥ b)−

∑̂
j
P(D̂ ′

j ≥ λ)]+

2

, (5.6)

where | ˆC |, the number of edges inˆC , is of orderL1+γ . As in Sect. 3, it only
remains to show that

lim inf L→∞L−1
∑̂

j
P(D̂j ≥ b) > 0, (5.7)

and

lim supL→∞L−1
∑̂

j
P(D̂ ′

j > λ′) = 0. (5.8)

To obtain (5.7), we begin by noting that ifM is in C then any minimizing
path for T = T(0, ∂Λ) automatically has its right endpoint in (a subset of) the
extended intervalL̂ and so is a minimizing path for̂T. ThusM in C implies
M̂ is in ˆC and so by (5.2) and the shape theorem,P(M̂ is in ˆC ) → 1 as
L →∞. Our analogue of (3.34) in this case is then∑̂

j P(D̂j ≥ b) = p̂−1∑̂
j P(D̂j ≥ b, τ (ej ) < b)

≥ p̂−1E[ŴL1M̂ is in ˆC ]
≥ p̂−1E[ŴL] − p̂−1[E(Ŵ2

L )(1− P(M̂ is in ˆC ))]1/2,

(5.9)

where ŴL denotes the total number of edges havingD̂j ≥ b and τ (ej ) < b.
Now ŴL ≤ ZL, the minimum length among paths inM̂, and it follows
from Proposition A1 thatL−2E(Ŵ2

L ) is bounded away from infinity. Because
P(M̂ is in ˆC ) → 1, we thus have

lim inf L→∞L−1∑̂
j P(D̂j ≥ b) ≥ lim inf L→∞p̂−1L−1E(ŴL)

= lim infL→∞L−1∑∞
j =1 P(D̂j ≥ b).

(5.10)
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As in the discussion following (3.35), to obtain (5.7) it now suffices to show
thatE(WL)/L is bounded away from zero, whereWL is the number of minimizing
b-edges forT̂. This now follows from part c) of Proposition B2.

To obtain (5.8), we definẽC asĈ\BL1−δ , where 0< δ < γ′ − γ, and denote
by
∑̃

j the restricted sum overj ’s with ej in C̃ . The removal of the boxBL1−δ

makesC̃ disjoint fromC ′ for largeL (see Fig. 7). We note that ifM′ is in C ′,
then any minimizing path for̂T ′ is also a minimizing path forT ′ and so is in
C ′ and hence (for largeL) does not touch̃C . Thus, writing

L−1
∑̂

j

P(D̂
′
j > λ′) = L−1

∑̃
j

P(D̂
′
j > λ′) + L−1

∑
j

R
P(D̂

′
j > λ′), (5.11)

where
∑

j
R denotes the sum over the remaining edges inˆC which are not in

˜C , we have for the first term on the RHS, as in the discussion following (3.33),
the bound

L−1∑̃
j P(D̂

′
j > λ′) ≤ L−1(p′)−1∑̃

j P(every path inM̂
′

passes throughej )

≤ (p′)−1L−1∑∞
j =1 P({every path inM̂

′
passes throughej }

∩{M′
is in C

′}c)
≤ (p′)−1[E((ZL/L)2)(1− P(M

′
is in C

′
))]1/2,

(5.12)
where ZL is the minimum length among minimizing paths forT̂

′
. Because of

(5.3), to show that the first term on the RHS of (5.11) tends to zero, it suffices
if E((ZL/L)2) is bounded asL →∞. That follows from Proposition A1.

For the second term on the RHS of (5.11), we have, where we denote by
∂(L) the boundary ofBL ∩ Z2,

L−1∑
j
RP(D̂

′
j > λ′) ≤ (p′)−1L−1Einfr∈M̂′ [no. of edges inr touchingBL1−δ ]

≤ (p′)−1L−1Esupv∈∂(L1−δ)supr∈M(0,v)[no.of edges inr ]
≤ (p′)−1L−1Esupv∈∂(L1−δ)Z

∗(v)
= (p′)−1L−1E(Z∗L1−δ ),

(5.13)
whereZ∗(v) is defined in (B.1) of Appendix B andZ∗L is defined as in (B.1) but
with T(0, v) replaced by

TL = supv∈∂(L)T(0, v). (5.14)

We claim thatE(TL) = O(L) so that, by the Remark following Proposition B1,
E(Z∗L1−δ ) = O(L1−δ), which shows that the last expression in (5.13) tends to zero.
The claim is justified by using the fact that for eachv ∈ ∂(L), E(T(0, v)) ≤ c16L
and (from [K3]), var(T(0, v)) ≤ c17L, so

E(TL/L) =
∫∞

0 P(TL/L ≥ y)dy
≤ c18 +

∫∞
2c16
{∑v∈∂(L) P(T(v)/L ≥ y)}dy

≤ c18 +
∫∞

2c16
{∑v∈∂(L) P[T(v)− E(T(0, v)) ≥ (y − c16)L]}dy

≤ c18 +
∫∞

c16
{∑v∈∂(L)(xL)−2var(T(0, v))}dx

≤ c18 +
∫∞

c16
c19x−2dx ≡ c20.

(5.15)
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Here, c16 through c20 depend only on the common distribution of theτ (e)’s.
Although this last series of bounds is far from optimal, it does serve to verify
our claim (ford = 2) and complete the proof of Theorem 3.

Appendix A

Continuity for point-to-plane passage

In this appendix, we consider standard first-passage percolation onZ
d (with

d ≥ 2) determined by i.i.d. variables{τ (e) : e ∈ Ed} with P(τ (e) = 0) < pc, the
critical value for standard independent bond percolation onZ

d. As usual,T(u, v)
denotes the passage time between sitesu, v ∈ Z

d and for Γ ⊆ Z
d, T(u, Γ )

denotes the passage time betweenu andΓ (see (1.2)-(1.3)).
For any deterministicΓ , it is not hard to see that (a.s.) the inf in the definition

(1.3) of T(u, Γ ) is assumed, that is{v ∈ Γ : T(u, v) = T(u, Γ )} is nonempty.
More generally, we define for anyK ≥ 0,

Ru(Γ ; K ) = {v ∈ Γ : T(u, v) ≤ T(u, Γ ) + K}; (A.1)

when u = 0, the origin, we will delete the subscript. We will focus onR(Γ ; K )
whenΓ = Γ (θ) is (roughly speaking) a (d − 1)-dimensional hyperplane rotated
by angleθ. Our purpose is to derive some “continuity” properties ofR(Γ (θ); K )
as a function ofθ. For the purposes of this paper, we take fixed realz1 > 0,
z2 > 0 and consider the half-space

Λ(θ) = {y = (y1, ..., yd) ∈ Zd : y1cosθ + y2sinθ < z1cosθ + z2sinθ}; (A.2)

and its boundary

∂Λ(θ) = {x ∈ Zd\Λ(θ) : ‖x − y‖ = 1 for somey ∈ Λ(θ)}. (A.3)

As θ varies,∂Λ(θ) rotates around the subspace{(z1, z2, ẑ) : ẑ ∈ Rd−2}. We will
restrict attention to 0≤ θ ≤ π/2.

Rather than deal directly with the random setsR(∂Λ(θ); K ), we will replace
them with deterministic setsA(θ) ⊆ ∂Λ(θ) such that

P(R(∂Λ(θ); K ) ⊆ A(θ)) ≥ 1− ε, (A.4)

whereε must be sufficiently small so that

0 < ε <
1
2

P(τ (e) ≤ K ). (A.5)

Evidently, for such anε andA(θ) to exist,K must be such that

P(τ (e) ≤ K ) > 0. (A.6)

Note thatK = 0 is allowed if the common distribution of theτ (e)’s has an atom
at 0. For the remainder of the appendix, we suppose that fixedK ≥ 0 and ε



586 C. Licea et al.

satisfying (A.5)-(A.6) have been chosen and that for the fixedz1 > 0 andz2 > 0,
a deterministicA(θ) satisfying (A.4) has been chosen for eachθ ∈ [0, π/2].

The first continuity proposition is as follows. We postpone presenting the
proof until stating the second continuity proposition, which is a consequence of
the first.

Proposition A1. If θn → θ̄, then

dist(A(θn),A(θ̄)) ≤ 1, for all largen. (A.7)

As θ varies, we want to consider certain slabsS(θ) which rotate along with
∂Λ(θ). For a fixed realγ andα ≥ 1, the slabsS(θ) are defined as

S(θ) = {y ∈ Zd : −α

2
≤ [y1(−sinθ)+y2(cosθ)]−[z1(−sinθ)+z2(cosθ)]−γ ≤ α

2
}.

(A.8)
This is the same as theS(θ, γ′,D ′) defined in (4.4) withD ′ = α and γ′ =
z1(−sinθ) +z2(cosθ) +γ (see Fig. 4). Roughly speaking, this is a slab of thickness
α centered on a (d − 1)-dimensional plane which intersects the plane∂Λ(θ) in
the (d − 2)-dimensional subspace (z1, z2) × R

d−2 + γ(−sinθ, cosθ, 0̂). The next
proposition will be used to choose aθ so thatA(θ) intersectsS(θ). We sayA(θ)
is α′-connected, whereα′ > 0, if every pair of sitesu andv in A(θ) is connected
by a sequence of sites inA(θ), u0 = u, u1, ..., un = v, with ‖ui − ui−1‖ ≤ α′ for
every i . We sayA(θ) is below (resp. above)S(θ) if every y ∈ A(θ) satisfies

[y1(−sinθ) + y2(cosθ)] − [z1(−sinθ) + z2(cosθ)] − γ < −α

2
(resp. >

α

2
). (A.9)

Proposition A2. Suppose0 ≤ θi < θf ≤ π/2 are such that A(θi ) is below
S(θi ) and A(θf ) is above S(θf ). Suppose also that each A(θ) is α′-connected with
α′ ≤ α. Then there exists someθ ∈ (θi , θf ) such that A(θ) intersects S(θ).

Proof of Proposition A1.Let us denoteΛ(θn) by Λn andΛ(θ̄) by Λ. It is not
necessarily the case thatΛn → Λ, as can be seen, for example, in the case where
z1 andz2 are integers and̄θ=0. By considering separately the subsequence with
θn ≥ θ̄ and the one withθn ≤ θ̄, we may without loss of generality assume, say,
that θn ≤ θ̄ for all n. Then, sinceΛ is anopenhalf-space (intersected withZd),
we have thatΛn → Λ′ (i.e., for every finiteB ⊂ Z

d, Λn
⋂

B = Λ
⋂

B for all
largen) and∂Λn → ∂Λ′, whereΛ′ is some subset ofZd satisfying

Λ ⊆ Λ′ ⊆ Λ∗ ≡ Λ ∪ ∂Λ. (A.10)

Note that this implies thatT(0, ∂Λ′) ≥ T(0, ∂Λ). Using (A.10) and the fact that
every y ∈ ∂Λ has some (nearest) neighbor in the complement ofΛ∗, it follows
that everyy ∈ ∂Λ is either in∂Λ′ or else has a nearest neighbor in∂Λ′\∂Λ. We
let E (y) denote the edge leading fromy to one such neighbor.

Let F denote theσ-field generated by theτ (e)’s with at least one site of
e in Λ. Conditional onF , one can determineT(0, ∂Λ) and find a path within
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Λ (except for its last edge) from 0 to somey ∈ ∂Λ whose passage time equals
T(0, ∂Λ). If y ∈ ∂Λ′ thenT(0, ∂Λ′) = T(0, ∂Λ); if y /∈ ∂Λ′, then still

T(0, ∂Λ′) ≤ T(0, ∂Λ) + τ (E (y)). (A.11)

This immediately implies that (a.s.)

P(T(0, ∂Λ′) ≤ T(0, ∂Λ) + K |F ) ≥ P(τ (e) ≤ K ). (A.12)

We further claim that ifT(0, ∂Λ′) ≤ T(0, ∂Λ) + K , then

dist(R(∂Λ′; 0),R(∂Λ; K )) ≤ 1. (A.13)

To see this, find a path withinΛ′ (except for its last edge) from 0 to somez ∈ ∂Λ′

whose passage time equalsT(0, ∂Λ′). If z /∈ ∂Λ, then by (A.10), its predecessor
on the path, which we denotey, is in ∂Λ; if z ∈ ∂Λ, then lety = z. In either
case, we have

T(0, y) ≤ T(0, z) = T(0, ∂Λ′) ≤ T(0, ∂Λ) + K , (A.14)

and thusy ∈ R(∂Λ; K ), which gives (A.13). Combining (A.12) and (A.13) yields
that

P(dist(R(∂Λ′; 0),R(∂Λ; K )) ≤ 1)≥ P(τ (e) ≤ K ). (A.15)

We next need to relateR(∂Λn; 0) to R(∂Λ′; 0). SinceP(τ (e) = 0) < pc, it
follows that for anyδ > 0, there is some finiteBδ ⊂ Z

d so that with probability
at least 1− δ, R(∂Λ′; 0) and R(∂Λ(θ); 0) for every θ ∈ [0, 2π] are contained
within Bδ. Since∂Λn → ∂Λ′, it follows that for n ≥ n0(δ),

P(R(∂Λn; 0) = R(∂Λ′; 0))≥ 1− δ. (A.16)

Thus (A.15) shows that forn ≥ n0(δ)

P(dist(R(∂Λn; 0),R(∂Λ; K )) ≤ 1)≥ P(τ (e) ≤ K )− δ. (A.17)

Consider the event appearing on the LHS of (A.17) along with the event in
(A.4) with θ = θn (which implies thatR(∂Λn; 0) ⊆ A(θn)) and finally the event
in (A.4) with θ = θ̄. The intersection of these three events has (for largen)
probability at leastP(τ (e) ≤ K )− 2ε− δ. But intersection is impossible unless
dist(A(θn),A(θ̄)) ≤ 1. By (A.5), we may choose

0 < δ < P(τ (e) ≤ K )− 2ε, (A.18)

so that the intersection has strictly positive probability for all largen, which
implies (A.7) and completes the proof of Proposition A1.

Proof of Proposition A2.Let

θ̄ = sup{θ ∈ [θi , θf ] : A(θ) is belowS(θ)}. (A.19)
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Suppose we can prove that it is neither the case thatA(θ̄) is aboveS(θ̄) nor that
A(θ̄) is belowS(θ̄). If so, thenA(θ̄) must intersectS(θ̄) (proving the proposition),
since otherwiseA(θ̄) could not beα′-connected withα′ ≤ α (which was assumed
in the proposition). IfA(θ̄) were aboveS(θ̄), then θ̄ > θi and there would exist
some sequenceθn (with θi ≤ θn < θ̄) such thatθn → θ̄ with A(θn) below S(θn)
for eachn. But then since the width ofS(θ̄) is α ≥ 1, it would follow that
dist(A(θn),A(θ̄)) > 1 for all n, which would contradict Proposition A1. IfA(θ̄)
were belowS(θ̄), then θ̄ < θf and there would exist some sequenceθn (with
θ̄ < θn ≤ θf ) such thatθn → θ̄ with A(θn) aboveS(θn) for eachn. As in the
previous case, this would contradict Proposition A1. ThusA(θ̄) is neither above
S(θ̄) nor is it belowS(θ̄) and the proof is complete.

Appendix B

Some technical estimates

In this appendix, we present two propositions, concerning standard first-passage
percolation onZd. The first of these concerns the relation between the lengths
and passage times of long paths. It follows from the arguments of [K3]. The
second proposition concerns the number of edges in minimizing paths taking
values in a specified subsetA of the real line; it follows from the arguments of
[BK].

Proposition B1 [K3]. For any d≥ 2, assume P(τ (e) = 0) < pc and E(τ (e)2) <
∞. Define forv ∈ Zd,

Z∗(v) = sup{m : ∃ a (site self-avoiding) path r starting at 0 with m
edges such that T(r ) ≤ T(0, v)};

(B.1)

then there is a K<∞ such that

E(Z∗(v)2) ≤ K‖v‖2 for all v ∈ Zd. (B.2)

Proof.We follow the proof of Eq. (2.25) of [K3]. For each nonzerov = (v1, ..., vd)
choose a pathr (v) with ‖v‖1 = |v1| + ... + |vd| edges from the origin tov. Then
T(r (v)), which is the sum of‖v‖1 i.i.d. τ (e)’s, is an upper bound forT(0, v) and

E((Z∗(v)/‖v‖1)2) =
∫∞

0 P(Z∗(v)2 ≥ y‖v‖1
2)dy =

∫∞
0 2zP(Z∗(v) ≥ z‖v‖1)dz

≤ ∫∞0 2zP(T(r (v)) ≥ az‖v‖1)dz+∫∞
0 2zP(Z∗(v) ≥ z‖v‖1 andT(r (v)) < az‖v‖1)dz

≤ (a‖v‖1)−2E(T(r (v))2) +
∫∞

0 2zg(z‖v‖1, az‖v‖1)dz
= {‖v‖2

1[E(τ (e))]2 + ‖v‖1var(τ (e))}[a2‖v‖1
2]−1

+2[‖v‖1
2]−1

∫∞
0 zg(z, az)dz

(B.3)
where
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g(z, az) = P{ ∃ a (site self-avoiding) pathr
from the origin with ≥ z edges andT(r ) ≤ az}. (B.4)

To complete the proof of the proposition, it suffices to show that the final integral
in (B.3) is finite for small positivea. To see this, pick someδ > 0 such that
P(τ (e) ≤ δ) < pc. If we call an edgee open if τ (e) ≤ δ and closed ifτ (e) > δ,
we may regard this as a subcritical standard bond percolation model. In order
that T(r ) ≤ az, the pathr must clearly have≤ az/δ closed edges. Thus

g(z, az) ≤ P( ∃ a (site self-avoiding) pathr
from the origin with ≥ z edges, at most
za/δ of which are closed).

(B.5)

It is known [K1, Proposition 5.8] that in subcritical percolation, fora/δ suffi-
ciently small, the RHS of (B.5) is bounded by exp(−c5z) for somec5 > 0.

Remark.A minor variation of the above proof shows that ifTn is a sequence
of random variables withE(Tn) = O(n), then Z∗n , defined as in (B.1) but with
T(0, v) replaced byTn, hasE(Z∗) = O(n).

Our next proposition states a result concerning the number of edges in a
minimizing path that have passage times assuming values in a specified range.
This result essentially follows from the arguments of van den Berg and Kesten
[BK]. We start by ordering all paths onZd in some arbitrary (deterministic) way
and for a subsetΓ ⊂ Z

d we defineπ(Γ ) as the first path in that ordering such
thatπ(Γ ) ∈ M(0, Γ ).

Proposition B2 [BK]. For any d≥ 2, assume that either (1.5) or (1.6) is valid
and that E(τ (e)2) <∞. Let A be a Borel set on the real line with P(τ (e) ∈ A) > 0.
Then:

a) lim inf‖v‖→∞‖v‖−1E{no. of edges e∈ π(v) with τ (e) ∈ A} > 0.

b) lim infL→∞L−1infx̂E{ no. of edges e∈ π(∂Λ(x̂, L)) with τ (e) ∈ A} > 0.

c) LetΓL ⊂ Z
d with diamΓL = o(L) and lim infL→∞L−1 dist(0, ΓL) > 0, then

lim inf L→∞L−1E{no. of edgese ∈ π(ΓL) with τ (e) ∈ A} > 0.

Remark.In [BK] it is pointed out that part a) in the case wherev = nê1, with
ê1 = (1, 0, ..., 0), is a consequence of their Theorem 2.13. The general case stated
above can be obtained from a simple extension of their arguments and we sketch
the proof for completeness.

Proof. Let F denote the common distribution function of the passage timesτ (e).
For a unit vector ˆx in R

d, denote byv(n, x̂), the closest site inZd to nx̂ (or
anyone of them in the event of a tie). Then the time constant along the direction
of x̂ is defined by

µx̂(F ) = limn→∞
T(0, v(n, x̂))

n
, (B.6)
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where the existence of the limit a.s. and inL1 is a consequence of the subadditive
ergodic theorem. A crucial result is that ifF and G are distribution functions
with finite means satisfying (1.5) and (1.6) and ifF (x) ≥ G(x) for all x ∈ R,
with F 6≡ G, then for all unit vectors ˆx, µx̂(G) > µx̂(F ). This result is stated
in [BK] (see their Theorem 2.13) for ˆx = ê1 but the result for general ˆx follows
from the same arguments. In particular, the key step in the arguments of van den
Berg and Kesten is alocal modification argument (see p.73 and p.78 of [BK])
for certain boxes crossed by a minimizing path; the value of ˆx is irrelevant to
that argument. We also remark that similar modification arguments were used in
the general ˆx setting in [NP].

Proposition B2 is a now straightforward consequence of this general result
of van den Berg and Kesten. To see this, assume that the conclusion of part a)
does not hold. Then we can find a boundedA with P(τ (e) ∈ A) > 0 and (by
compactness) a sequence of pointsvn ∈ Z

d with ‖vn‖ → ∞ and vn/‖vn‖ →
some ˆx (so that by the continuity ofµx̂(F ), limn→∞‖vn‖−1E[T(0, vn)] = µx̂(F ))
such that

lim inf n→∞
E[no. of e ∈ π(v) with τ (e) ∈ A]

‖vn‖ = 0. (B.7)

Consider now passage times having distributionG obtained fromF by push-
ing the mass from the setA to the setA+δ with δ > 0, as follows:G is the distribu-
tion of h(τ (e)) whereh is defined byh(t) = t for t /∈ A andh(t) = t +δ for t ∈ A.
Clearly, G(x) ≤ F (x) and F 6≡ G so we should haveµx̂(G) > µx̂(F ). On the
other hand a simple argument now shows that if (B.7) holds, thenµx̂(G) ≤ µx̂(F ),
a contradiction. This proves part a).

To obtain part b), we notice that ifτ (e) has distributionF , it follows from
the shape theorem that for every unit vector ˆx, there exists a unit vector ˆy(x̂),
with ŷ(x̂) · x̂ ≥ 1/

√
2, such that

limL→∞
T(0, ∂Λ(x̂, L))

L
=
µŷ(F )
ŷ · x̂

; (B.8)

ŷ(x̂) is a direction such that some tangent plane to the boundary of the asymptotic
shape, where it intersects the ˆy-ray, is perpendicular to ˆx. The proof can now be
completed by using an argument along the same lines as the one sketched for
part a). We leave the details of the proof of part c) to the reader.
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