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Abstract. We consider diffusion processes on a clasfRdfees. The processes are de-
fined in a manner similar to that of Le Gall's Brownian snake. Each point in the tree has
a real-valued “height” or “generation”, and the height of the diffusion process evolves as
a Brownian motion. When the height process decreases the diffusion retreats back along a
lineage, whereas when the height process increases the diffusion chooses among branching
lineages according to relative weights given by a possibly infinite measure on the family of
lineages. The class &-trees we consider can have branch points with countably infinite
branching and lineages along which the branch points have points of accumulation.

We give arigorous construction of the diffusion process, identify its Dirichlet form, and
obtain a necessary and sufficient condition for it to be transient. We show that thditld
of the diffusion is always trivial and draw the usual conclusion that bounded space-time har-
monic functions are constant. In the transient case, we identify the Martin compactification
and obtain the corresponding integral representations of excessive and harmonic functions.
Using Ray—Knight methods, we show that the only entrance laws for the diffusion are the
trivial ones that arise from starting the process inside the state—space. Finally, we use the
Dirichlet form stochastic calculus to obtain a semimartingale description of the diffusion
that involves local time additive functionals associated with each branch point of the tree.

1. Introduction

Consider the collectiogr” of bounded subsets &fthat contain their supremum. We
can think of the elements of as being arrayed in a tree-like structure in the follow-
ing way. Using genealogical terminology(B) := supB is the real-valued gener-
ation to whichB € 7 belongs an®|r := (BN]—o0,t])U{t} € 7 fort < h(B)

is the ancestor aB in generation. ForA, B € 7 the generation of the most recent
common ancestor A andB is (A, B) := sup{t < h(A) A h(B) : Alt = B|t}.
That is,7(A, B) is the generation at which the lineagestoénd B diverge. There

is a natural genealogical distance @ngiven by

D(A, B) :=[h(A) — ©(A, B)] + [h(B) — t(A, B)].
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Equivalently,
D(A, B) := SupA + supB — 2 min{SupA, supB, inf(AAB)},

whereA denotes theymmetric difference

The metric spacé7, D) is essentially theeal treeof [DT96, Ter97] (the latter
space has as its points the bounded subsétgloht contain their infimum and the
corresponding metric is such that the map fr@f, D) into this latter space given
by A — —A is an isometry). With a slight abuse of nomenclature, we will refer
here to(7, D) as the real tree.

The real tree is an example of &atree that is, a metric spacérl, d) satis-
fying the following axioms (see [DMT96, DT96, Ter97] for an overview of the
theoryR-trees and [Sha91] for a review of the extensive usd&-trlees in group
theory).

Axiom I: For all x,y e T there exists a unique isometric embeddipg,:
[0,d(x, y)] — T suchthatp, ,(0) = x ande, ,(d(x, y)) = y.

Axiom II: For every injective continuous map: [0, 1] — T one hasy ([0, 1]) =
dy),v @ ([0, d(¥ (0), ¥ (IN]).

For the real treeps (1) is given byA|(h(A) —1) forO <t < h(A) —t(A, B)
andB|(t—h(A)+2t(A, B))forh(A)—1(A, B) <t < h(A)+h(B)—2t(A, B) =
D(A, B).

In this paper we study diffusion processes with state-spaces thi-@ees.
We can describe the sort of processes we have in mind very informally for the case
of the real tree as follows.

Consider the collectiof ;. of subsetsB C R U {400} such that-co < inf B
and supB = +o0 € B. For B € &4 andr € R, extend the notation introduced
above by writingB|t := (B N] — oo, t]) U {t}. We think of & as the collection of
doubly infinite lineages in the real tree and®ff as the individual in the lineage
B € &4 in generatior.

We can equi’+ with a metric such that the balls in this metric are of the form
{B e &y Blt = Alt} forsomeA € &4 andt € R (see §2). Lelu be ao-finite
Borel measure o@ . that assigns finite mass to all such balls. Wlﬁ’& for the
(closed) support oft and.7* for the subset o consisting of points of the form
Alt for someA € o”fr andt € R. Itis not hard to see thaf # is anR-tree. As we
observe in 847" is necessarily separable where@ss far from being separable
- the removal of a single point disconne¢fsinto a collection of components, the
cardinality of which is that of the power set of the reals. Thereforeis a much
“tamer” object than7 . However,7 * can still exhibit exotic phenomena such as
points at which countably infinite branching occurs and lineages along which the
branch points have points of accumulation.

We will be interested in theZ #-valued procesX that evolves in the follow-
ing manner. The real-valued proceds where H; = h(X,), evolves as a stan-
dard Brownian motion. For smail > 0 the conditional probability of the event
{X:+e € C} given X, andH is approximately
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uly :y|Hire € C, y|Hy = Xy}
wly:ylH = X;}

In particular, ifH,+. < H;, thenX, . is approximatelyX, | H,+.. This evolution is
reminiscent of Le Gall'8rownian snak@rocess (see, for example, [Le 93, Le 944,
Le 94b, Le 95]), with the difference that the “height” procésss a Brownian mo-
tion here rather than a reflected Brownian motion and dhe of Wiener measure
on C(R,, R?) in the snake construction is played herethy

There is a large literature on random walks on trees and [Woe94, LP96] are
excellent bibliographical references. In particular, there is a substantial amount of
work on the Martin boundary of such walks beginning with [DM61, Car72, Saw78].

In the spirit of this paper, the Martin boundary of walks on non-locally finite graphs
is dealt with in [CSW93].

The literature on diffusions on tree-like or graph-like structures is more mod-
est. A general construction of diffusions on graphs using Dirichlet form methods
is given in [Var85]. Diffusions on tree-like objects are studied in [DJ93, Kre95]
using excursion theory ideas, local times of diffusions on graphs are investigated
in [EK95, EK96], and an averaging principle for such processes is considered in
[FW93]. One particular process that has achieved a substantial amount of attention
is the so-calle®Valsh’s spiderwhich is a diffusion on the tree consisting of a finite
number of semi-infinte rays emanating from a single vertex (see [Wal78, BPY89,
Tsi97, BEK"98]).

The plan of the rest of the paper is as follows. We say some more about the
structure ofR-trees in 82 and discuss a certain compactification for them in §3.
We construct the process of interest to us in 84 and identify its Dirichlet form in
85. We give a necessary and sufficient condition for transience in 86 and observe
that points are always regular for themselves. We present a class of examples in
87 that illustrate the transience/recurrence dichotomy. We use the Kolmogorov and
Hewitt-Savage zero-one laws in 88 to show that thedafield of the diffusion
is always trivial and draw the usual conclusion that bounded space-time harmonic
functions are constant. In 89 we construct a Martin compactification in the tran-
sient case and obtain corresponding integral representations for the excessive and
harmonic functions. Using Ray-Knight methods, we establish in §10 that the only
entrance laws are the “trivial” ones that arise from starting inside the state-space.
Finally, we apply the Dirichlet form stochastic calculus in 811 to obtain a semimar-
tingale decomposition of the diffusion that involves local time additive functionals
associated with each branch point of the tree. This “infinitesimal” description of
the diffusion’s dynamics further confirms the informal one given above.

Notation 1.1.Given a metric spacé, we write C(U), 4(U), bC(U), b#(U),
pC(U), andp# (V) for, respectively, the continuous, Borel, bounded continuous,
bounded Borel, positive continuous, and positive Borel functionld.on

2. More about R-trees

We refer the readerto [DT96, DMT96, Ter97] for backgroundReimees and proofs
of the facts that we outline below.
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We will only considerR-trees(T, d) that also satisfy the following additional
axioms which are satisfied by the real tree.

Axiom Ill: The metric spacé€T, d) is complete

Axiom IV: For eachx € T there is at least one isometric embeddingR — T
with x € 8(R).

An endof T is an equivalence class of isometric embeddings fRoprinto T,
where we regard two such embeddirgandys as being equivalent if there exist
a € Randg € Ry suchthaty + 8 > 0 andg (r) = ¥ (¢t + «) for all ¢ > B. Write
E for the set of ends of .

By Axiom IV, E has at least 2 points. Fix a distinguished element € .of
For eachx € T there is a unique isometric embedding : R+ — T such that
Kk, (0) = x andx, is arepresentative of the equivalence class of t. Similarly, for each
& € E4 = E\{t1} there is at least one isometric embeddihd® — T such that
t — 0(t),t > 0, is a representative of the equivalence class afid: — 0(—1),

t > 0, is a representative of the equivalence class of t. Denote the collection of
all such embeddings b®:. If 6,0 € ©¢, then there existy € R such that

0(r) =0'(t + y) forall r € R. Itis thus possible to select an embeddiiage O
foreacht € E. insuchaway that for any pajr ¢ € E. there existgy (depending

oné, ¢) such thabe (r) = 6, (¢) for all r < 1o (andbe (Jzo, oo[) N 6, (Jto, oo[) = ).
Extendé: to R* := R U {£o0} by settingd: (—oo) := T andb; (+o0) 1= &.

The ends of the real tree can be identified with the collection consisting of the
empty set and the elements&f . If we choose t to be the empty set so tifat
plays the role ok, then we can define the isometric embeddindor A € &
by 04(¢) := (AN] — o0, t]) U {t} = At in the notation of the Introduction.

The map(z, &) — 6: () from R x E; (resp.R* x E;) into T (resp.T U E)
is surjective. Moreover, ify € T U E is in 0¢(R*) N 6, (R*) for &, ¢ € E4, then
0;*(n) = 6;* (). Denote this common value bayn), theheightof ». In particular,

h(1) ;= —ooandh(§) = +ooforé € E.. Forthe real tree with corresponding iso-
metric embeddings defined as abaveR) is just supB, with the usual convention
that sup := —oo (in accord with the notation of the Introduction).

Define apartial order < on T U E by declaring that; < p if there exists
—00 <5 <t < +oo andé € E; such thaty = 0 (s) andp = ¢ (¢). For the real
tree, this partial order is the usual inclusion partial order. Eachmpaire T UE
has a well-definegreatest common lower boumda p in this partial order, with
nApeTunless)y=peE ,n="Torp=1.Forx,y e T we have

d(x,y) =h(x)+h(y) —2h(x A y)
= [h(x) = h(x A )] +[h(y) — h(x A Y)]. (2.1)

Thereforei(x) = d(x,y) — h(y) + 2h(x A y) < d(x, y) + h(y) and, similarly,
h(y) <d(x,y) + h(y), so that

lh(x) —h(Y)| < d(x,y), (2.2)

with equality ifx, y € T are comparable in the partial order (that isyik y or
y < x).
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If x,x’ € T are such thak(x A y) = h(x’ A y) forall y € T, then, by (2.1),
dx,x") =[h(x)—hxAXN]+[hE)—h(xAx)] = [h(x) —h(x AX)]+[h() —
h(x’ A x")] = 0, so thatr = x’. Slight elaborations of this argument show that if
n,n € TUE are such thati(n A y) = h(n’ A y) for all y in some dense subset of
T, thenn = 7'.

Forx,x’,z € T we have that ifi(x Az) < h(x' Az),thenx Ax' = x Az
and a similar conclusion holds with théles of x and x’ reversed; whereas if
h(x Az) = h(x’ Az),thenx Az = x' Az < x Ax'. Using (2.1) and (2.2) and
checking the various cases one finds that

lh(x A2) —h(x' A2 <d(x Az, x' A7) <d(x,x). (2.3)

Forn € TUE andt € R* with ¢ < h(n), letn|t denote the uniquge e TUE
with p < nandh(p) = t. Equivalently, ify = 0 (1) for somex € R* and¢ € E,,
thenn|r = 0 (¢) for ¢ < u. For the real tree, this definition coincides with the one
given in the Introduction.

The metric spacéE., §), where

8(8,¢) =270,

is complete. Moreover, the metrécis actually anultrametric that is,8(&,¢) <
s, mviém,¢)forallé, ¢,nekEy.

3. A compactification

Suppose in this section thé , , §) is separable. Fare R consider the set
T, ={xeT :h(x)=t}={&|t: &£ e Ey} (3.1)

of points inT that have height Foreachx € T, thesef¢ € E; : ¢|r = x}isaball

in E, of diameter at mostZ and two such balls are disjoint. The separabilitizqf

is thus equivalent to each of the s€tseing countable. In particular, separability of
E.. implies thafT is also separable, with countable densd&et: £ € E., r € Q},
say.

We can, via a standard Stor@ech-like procedure, embddJ E in a compact
metric space in such a way that for eacle T U E the mapx — h(x A y) has a
continuous extension to the compactification (as an extended real-valued function).

More specifically, letT be a countable dense subseflofLet = be a strictly
increasing, continuous function that map®onto ]0 1[. Define an injective map
I1 from T into the compact, metrisable spacef{/ by IT(x) := 7 (h(x A Y))yeT-
Identify T with TI(T) and writeT for the closure off (= TI(T)) in [0, 1]”. In other
words, a sequende,),cn C T converges to a point il if 4(x, A y) converges
(possibly to—oo) for all y € T, and two such sequenceés,),cn and (x),)nen
converge to the same point if and only if lim(x, A y) = lim, h(x, A y) for all
yeT.

We can identify distinct points ifi UE with distinct points irT. If (x,)peny € T
and¢ € E4 are such that for all € R we havet|r < x, for all sufficiently large
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n, then lim, 2(x, A y) = h(§ A y) forall y € T. We leave the identification of T
to the reader.

In fact, we hav@ = T UE. To see this, suppose that,),ey C T converges to
Xoo € T.Puthy := supcr limy, A(x, A y). Assume for the moment thats € R.
We will show thatx,, € T with h(xs) = heo- FoOr allk € N we can findy, € T
such that

1 1
hoo — — < liMAQxy A yk) < h(yk) < hoo + 7.
k n k
Observe that
Ay yo) = lim SUp(d e, 0 A 3+ d i A Ve %0 A ¥0)
n

+d (X, A ye, w))

= tim sup([A () — ke A T+ 15 A 3 = B A 3o

() = i A o))

<2+ 1+1 +2
Tk k£ I

Therefore(yi)ken is ad-Cauchy sequence and, by Axiom lll, this sequence con-
verges toy., € T. Moreover, by (2.2) and (2.3), ligh (x; A Yoo) = h(Voo) = hco-

We claim thaty,, = xo0; thatis, lim, h(x, Az) = h(yso Az) forallz € T. To
see this, fix € T ande > 0. If n is sufficiently large, then

h(xy A2) < h(yoo) + € (3-2)
and

h(yoo) — € < h(xn A Yoo) < h(yoo). (3.3)
If h(yoo A 2) < h(¥oo) — €, then (3.3) implies that., A z = x, A z. On the other
hand, ifh(yeo A 2) > h(yso) — €, then (3.3) implies that

h(xn A2) = h(yo) — €, (3.4)
and so, by (3.2) and (3.3),

[h(Yoo A 2) — h(xn, 2| < [h(Yoo) — (B(Yoo) — €)]
V[(h(yoo) + €) — (h(yoo) — €)] (3.5)
= 2e.

We leave the analogous arguments/igs = +oo (in which casexs, € E4)
andh., = —oo (in which casex,, = 1) to the reader.

We just seen that the constructiorTafoes not depend dh(more precisely, any
two such compactifications are homeomorphic). Moreover, a sequensen C
T UE converges to alimitif UE if and only if lim,, 1 (x, A y) existsforally € T,
and two convergent sequendas),en and(x;,),en converge to the same limit if
and only if lim, a(x, A y) =Ilim, h(x, Ay)forally e T.
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4. Construction of the process

Suppose that is ao-finite Borel measure ok, such that O< u(B) < oo for
every ballB in the metrics. In particular, the support gf is all of E.; .

Remark 4.1.We note that the existence of such a meaguig a more restrictive
assumption ol than it might first appear. Let be a finite measure df,. that

is equivalent tqu. Recall from (3.1) thal,, € R, is the set of points ifT with
heightt. As we remarked in 83, the sgt € E : ¢|r = x} is aball inE.. for each

x € T, and two such balls are disjoint. Because theeasure of each such ball

is non-zero, the sét, is necessarily countable and hence, by observations made in
83, both the complete metric spadeandE . are separable, and hence Lusin.

Forx € T and real numbers < ¢ with b < h(x), define a probability measure
u(x,b,c;-)yonT by

wro b, o A) = MEEEr 1Elc € A, §lb = x|b)
wuig € By 1 §|b = x|b}

Let (B;, P?) be a standard (real-valued) Brownian motion. Write :=
info<s<; Bs. Recall that the pai¢m,, B;) has joint density

2¢c—2b+a (c—2b+a)?
¢a,t(bvc) = \/;TGXF)(—T , b<a/\c,

underP“ (see, for example, Corollary 30 in Chapter 1 of [Fre83]).

Theorem 4.2. There is a Markov semigroui®;),;>o on T defined by

P f(x) := P" [u(x, my, By £)].

Furthermore there is a strong Markov process(;, P*) on T with continuous
sample paths and semigro@p;);>o.

Proof . The proof of the semigroup property oF;);>o is immediate from the
Markov property of Brownian motion and the readily checked observation that for
x,x'eT,b<c,b<h(x),andd < c A’ we have

f p(x' b s Ay p(x, b, c;dx") = pu(x, b AV, 5 A).

By Kolmogorov's extension theorem, there is a Markov prog&ssP*) onT
with semigroup(P;);>o. In order to show that a version &f can be chosen with
continuous sample paths, it suffices beca(isal) is complete and separable to
check Kolmogorov’s continuity criterion. Because of the Markov propert¥ a
further suffices to observe far > 0 that, by definition o 7;);>0,

P [d(x, X1)*]
_ pht) [f[h(x) + h(§|By) — 2h(x A (§]B)]*L{EIm; = x|m;} u(dS)]
wis € By &lmy = x|my}
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< ph [f [h(x) + B: — 2m/)° L& |m; = x|m) /L(dé)]
N wlé € By 1 &|lm; = x|m,}

< CP"™ [|h(x) —my|* + Im; — B | ]

< C'1/?

for some constants§, C’ that depend om but notonx € T.

The claim thatX is strong Markov will follow if we can show thaP, maps
bC(T) into itself (see, for example, §8l111.8, 111.9 of [RW94], — it is assumed there
that the underlying space is locally compact and the semigroup maps the space of
continuous functions that vanish at infinity into itself, but this stronger assumption
is only needed to establish the existence of a process waillag sample paths
and plays nodle in the proof of the strong Markov property). By definition, for
febx(T)andr >0

P () = fh(” [ fElOLEDb = x|b)u(ds)
t S uié € EL 1 &b = x|b}

2¢—2b+h(x) (c — 2b + h(x))?
x\/; 372 exp<— o ) dcdb

for + > 0. The right-hand side can be written S [ Ff.(b, ¢)dcdb for
a certain functionFs, . Recall from (2.2) thath(x) — h(x")| < d(x, x"). Also,
if b < h(x), thenx’|b = x|b for x’ such thatd(x, x’) < h(x) — b. There-
fore, limy_,, Fr, (b, c) = Fyx(b,c) except possibly ab = h(x). Moreover,
if sup, | f(x)| < C,then|Fy (b, c)| < CF1,(b,c). Because

o0 o o0 o
lim / / Fiy(b,c)dcdb=Ilm 1=1= / / F1x(b,c)dcdb,
—00 J —00 —00 J —00

x'—x x'—x

a standard generalisation of the dominated convergence theorem (see, for exam-
ple, Proposition 18 in Chapter 11 of [Roy68]) shows thafife »#(T), then
P, f ebC(T)fort > 0. 0

5. Symmetry and the Dirichlet form

Write A for Lebesgue measure dh Consider the measusethat is obtained by
pushing forward the measure® 1 onE x R with the map(, a) — &|a. Note
that forx € T with 2(x) = h* ande > 0 we have

v{iyeT:d(x,y) <€}
vy eT:y|(h* —e) =x|(h" =€), " —€ < h(y) < h* + €}
< 2epfg € B4 1E[(h" —€) = x|(h" — )}
That is,v assigns finite mass to balls Thand, in particular, is Radon.
We begin by showing that each operaf®t + > 0, can be continuously ex-

tended fromb2(T) N L2(T, v) to L(T, v) and that the resulting semigroup is a
strongly continuous, self-adjoint, Markovian semigrouplT, v).
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Observe that iff € b%(T), then

_ hONe £ (gle)1{E|b = x|b)
P f(x) = /I;+ /[R/—oo LIE CEs DD =x|b}¢h(x)’t(b’ c)dbdc u(dg)

_ / o) /h““h‘” Lixlb = ylb)
“ R e WEeE i Eb=xib)
X\/?h(x) +h(y) —2b exp(_ (h(x) + h(y) — 2b)?
4

372 o ) dbv(dy)

h(xAy) 1
_/Tf(y)/_oo W€ CEs Elb=x1b)

X\/?wx) +th)—=2b ([ () +h() —2h)?
T 13/2 P 2t

) dbv(dy)

fort > 0. Consequently?; f (x) = fT p:(x,y) f(y) v(dy) for the jointly continu-
ous, everywhere positive transition density

( )__/hmy) 1 ﬁh(xwh(y)—%
PROY= ] 0 WEeEr Eb=xb)V 7 132

o2
xexp(—(h(x)+h2(ty) 25) ) db. (5.1)

Moreover, becausp{é € E; : &|b = x|b} = u{é € E4 : &|b = y|b} when
b < h(x Ay) (equivalently, when|b = y|b), we havep,(x, y) = p;(y, x). There-
fore there exists a self-adjoint, Markovian semigrouplaiT, v) that coincides
with (P,);0 onbZ(T) N L(T, v) (cf. §1.4 of [FOT94]). With the usual abuse of
notation, we also denote this semigroup(i#y);>o.

Because is RadonpC(T) N LY(T, v) is dense inL2(T, v). It is immediate
from the definition of(P;),>o that lim, o P; f(x) = f(x) forall f € bC(T) and
x € T. Therefore, by Lemma 1.4.3 of [FOT94], the semigr@®p),>o is strongly
continuous orL2(T, v).

We now proceed to identify the Dirichlet form corresponding ®9),>o.

Definition 5.1. Let .« denote the class of functions € bC(T) such that there
existsg € #(T) with the property that

b
FEIB) - f(Ela) =f ¢Elwydu, E€Es, —co<a<bhb<oo (52)

a

Note foré € E, thatif A € #4(R) with A C [a, b], where—oco < a < b < o0,
then
ul{g € By 1 glb =§I1b} A(A) < v{élu iu € A}
< p{¢ € Ey i ¢la = §&la} A(A).
Therefore, the functiog in (5.2) is unique up te-null sets, and (with the usual

convention of using function notation to denote equivalence classes of functions)
we denoteg by V £
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Definition 5.2. Write & for the class of functiong’ € .«Z N L%(T, v) such that
VfeLT,v).

Remark 5.3.By the observations made in Definition 5.1, the integg’a‘g'(s lu) du
is well-defined for any € E; andg € L%(T, v).

Theorem 5.4. The Dirichlet formg’ corresponding to the strongly continugssif-
adjoint, Markovian semigroufy?;);>o on L2(T, v) has domainz and is given by

1
(8 =3 fT Vix)Vgx)vdx), f,g€Z. (5.3)

Proof . A virtual reprise of the argument in Example 1.2.2 of [FOT94] shows that
the form¢&” given by the right-hand side of (5.3) is a Dirichlet form.

Let (G4)o>0 denote the resolvent corresponding(#®)>o: that is,Go f =
f(;’o e~ P, fdtfor f € L2(T, v). In order to show thaf = &, it suffices to show
that G, (L%(T,v)) € Z andé,,(Gq f. 8) = & (Gaf. g) + a(f. g) = (f. g) for
f € L%T,v) andg € &, where we writg(-, -) for the L2(T, v) inner product. (cf.
the proof of Theorem 1.3.1in [FOT94]) By a simple approximation argument, it fur-
ther suffices to check tha, (b%(T) N L%(T,v)) € Z andé,(Go f, g) = (f, &)
for f € b#B(T)NL3(T,v) andg € Z.

Observe that

o0
/ e g (b,c)dt = 2exp<—v 20(c — 2b + a)) , b<anc,
0

(see Equations 3.71.13 and 6.23.15 of [Wat44]). Therefore ffar b#(T) N
L3(T, v) we have

h(x) o0
Gof(x) =2 / / 1w(x, b, c; fle~V2e=2th) gegp (5.4)
—0o0 b

Thus,G, f € o/ with

o]

V(Gof)(x) =2 / (s h(x), ¢; f)e V2D ge — /2aGy f (x).
)

h(x
(5.5)
In order to show thaG, f € Z is remains to show that the first term on the

right-hand side of (5.5) is ifL%(T, v). By the Cauchy—Schwarz inequality and
recalling the definition off, from (3.1),

o) 2
/ |:/ wix, h(x),c; f)e_*/E(c_h(x)) dc:| v(dx)
T h

(x)
2
[ /oo Je, FEIOUEla = huds) _ dc}

:/_MZ (€ €la = x)

x€eTy,

xpfé D &la =x}da
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1 <[ fe, FElOLUEla = p@)* o
Cad
fsz_oox; / [ wlE : Ela =) }e ‘

i © £la = x}da

1 [ [ e e FPEIOUEla = xtu@s) _ o
+ c—a d
242 /wZT / WE Ela=x) ‘

Xulé 1 &la=x}da

1o rer 2 —VZa(c—a)
- - d dcd
sz_m/a _/E+f(EIC)u( s>}e cda

_Lr 2¢10) de n(dg) = — [ F2(x) vidn)
—M/_mE+f<f|c>cu<$—4a[Tf<xv(x<oo,

=

as required.
From (5.5) we have fog € & that

& (Gof, g)
= / / U M(Ela,a,c;f)e_‘@(“_“)dC}Vg(é‘la)u(dé)da
—o00 JE+ a

1 o0
e / /E G f(0)Vg(Ela), u(d) da. (5.6)
—oo JE+

Consider the first term on the right-hand side of (5.6). Note that it can be written

as
/OO Z |:fw fE+ fElo)l{Ela =X}M(d§)e_@(c—a) dc]

w0 ulé “€la = x)
xVg()ult : £la = x}da

= /00 / [/OO f(X|c)e*«/5(cfa) dc] Vg(&la) u(dé) da. (5.7)
—o0 JE+ LJa

Substitute (5.7) into (5.6), integrate by parts, and use (5.5) to get that
o
§Guf.0) = | [ felogeiodana
E+ —0oQ

—V2a / b [ / " Fxle)e VR0 dc} g(&la) da p(d)

E+ —00

+@/ /'OO |:/Oo,u(§|a,a,c; f)e_m(c_“) dc:|
Ei J—oo LJa

xg(Ela) da p(dg) — o fE / G f El)g(Ela) da u(dx).

Argue asin (5.7) to see that the second and third terms on the right-hand side cancel
and so
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éa/(Gafv g) = (f’ g) - a(GOtf’ g)’

as required. 0

Remark 5.5.We wish to apply toX the theory of symmetric processes and their as-
sociated Dirichlet forms developed in [FOT94]. Becalise not generally locally
compact, we cannot do so directly. Rather, we have to proceed via the embedding
results outlined in §7.3 of [FOT94]. We quickly check the relevant conditions for
these results to apply.

As usual, se’1 := & + (-, -) with domainZ. We begin by showing that condi-
tions (C.1) — (C.3) in 87.3 of [FOT94] hold. That is, there is a countably generated
subalgebr® C bC(T) N & such that? is §1—dense inZ, € separates points of
T, and for eachx € T there existsf € @ with f(x) > 0. Let%p be a countable
subset ofhC(T) N L(T, v) that separates points @fand is such that for every
x € T there existsf € %o with f(x) > 0. Let% be the algebra generated by
the countable collectioly), G, %o, where the union is over the positive rationals.
Itis clear that? is &1-dense inZ. We observed in the proof of Theorem 4.2 that
P; :bC(T) = bC(T) forallr = 0andlim o P, f(x) = f(x) forall f € bC(T).
Thus,G, : bC(T) — bC(T) foralla > 0 and lim,_, oc Gy f (x) = f(x) for all
f € bC(T). Therefore® separates points df and for everyx € T there exists
f € € with f(x) > 0.

It remains to check that the tightness condition (7.3.2) of [FOT94] holds. That
is, for alle > 0 there exists a compact s€tsuch that Caff \ K) < ¢ where Cap
denotes the capacity associated with However, it follows from the sample path
continuity of X and Theorem 1V.1.15 of [MR92] that, in the terminology of that
result, the procesk is v-tight. Conditions 1V.3.1 (i)—(iii) of [MR92] then hold by
Theorem IV.5.1 of [MR92], and this suffices by Theorem 111.2.11 of [MR92] to
establish condition (7.3.2) of [FOT94].

6. Recurrence, transience, and regularity of points

The Green operat@r associated with the semigroup ), >oisdefined byG f (x) =
f(;’o P f(x)dt =sup,.qGqf(x)for f € p#(T). Inthe terminology of [FOT94],
we say thatX istransientis Gf < oo, v-a.e., for anyf € Li(T, V), whereasX is
recurrentif Gf € {0, oo}, v-a.e., for anyf € Li(T, V).

As we observed in 85X has symmetric transition densiti@s(x, y) with re-
spect tov such thap; (x, y) > Oforallx, y € T. Consequently, in the terminology
of [FOT94], X isirreducible Therefore, by Lemma 1.6.4 of [FOT94Y, is either
transient or recurrent, and X is recurrent, theit; f = oo for any f € L}L(T, V)
that is notv-a.e. 0.

Taking limits asx | 0in (5.4), we see that

Gf(X)=/Tg(x,y)f(y)v(dy),

where
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=2 e ! db
coni=2f  rem
2 o ! 6.1
= —db. .
fm pig 2 §lb = y|b} 64

Note that the integrals

a 1
————db, R, E., 6.2
/,oou{s:abzab} aeR Ceky (62)

are either simultaneously finite or infinite. The following is now obvious.

Theorem 6.1. If the integrals in(6.2) are finite(resp. infinitd, theng(x, y) < oo
(resp.g(x, y) = oo) forall x, y € T and X is transient(resp. recurrent

Remark 6.2.For B € #(T) write o := inf{t > 0 : X; € B}. We note from
Theorem 4.6.6 and Problem 4.6.3 of [FOT94] tha®tf{op < oo} > 0 for some
x € T,thenP*{op < oo} > O forallx € T. Moreover, ifX is recurrent, then
P*{op < oo} > O forsomex € T implies thatP*{VN e N, 3t > N : X; € B} =
lforallx eT.

Giveny e T, write o, for o). SetC = {z € T : y < z}. Pickx < y with
x # y. By definition of (P;),;>0, P*{X; € C} > O for allr > 0. In particular,
P*{oc < oo} > 0. It follows from Axioms | and Il that ify : Ry — T is any
continuous map witHx, z} c y(Ry) for somez € C, theny € y(R,) also.
Therefore, by the sample path continuityXofP*{o, < oo} > 0O for this particular
choice ofx. However, Remark 6.2 then gives tii&t{o, < oo} > Oforallx € T.
By Theorem 4.1.3 of [FOT94] we have that points are regular for themselves. That
is,P*{o, =0} =1forallx e T.

7. Examples

In this section we exhibit a parametric family®ftrees(T, d) with measureg on
the corresponding collection of enffs. such that associated processs either
recurrent or transient depending on the parameter values.

Fix a prime numberp and constants_, ry > 1. Let Q denote the rational
numbers. Define an equivalence relatioron Q@ x R as follows. Giveru, b € Q
with a # b writea — b = p*@? (m/n) for somev(a, b), m, n € Z with m andn

not divisible byp. Forv(a, b) > 0 putw(a, b) = Z;’i"db) ri., and forv(a, b) <0

putw(a, b) :==1— Zi_:”é“’b) ri. Setw(a, a) := +o00. Given(a, s), (b, 1) € QxR
declare thata, s) ~ (b, t) ifand only if s = ¢ < w(a, b). Note that

v(a,c) > v(a,b) Av(b,c) (7.2)

so that
w(a, c) > w(a,b) Aw(b,c) (7.2)

and~ is certainly transitive (reflexivity and symmetry are obvious).
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Let T denote the collection of equivalence classes for this equivalence rela-
tion. Define a partial ordex on T as follows. Suppose that y € T are equiv-
alence classes with representativess) and (b, t). Say thatr < y if and only
if s < w(a,b) A t. It follows from (7.2) that< is indeed a partial order. A pair
x,y € T with representativeg:, s) and(b, t) has a unique greatest common lower
boundx A y in this order given by the equivalence class@fs A t A w(a, b)),
which is also the equivalence class(bfs At A w(a, b)).

For x € T with representativéa, s), puti(x) = s. Define a metrial on T
by settingd (x, y) := h(x) + h(y) — 2h(x A y). We leave it to the reader to check
that (T, d) is anR—tree satisfying Axioms |-V, and that the definitionsxok y,

x Ay andh(x) fitinto the general framework of 82, with the &t corresponding
to @ x R-valued paths +— (a(s), s) such that < w(a(s), a(t)) A t.

Note that there is a natural Abelian group structur&aqnif &£ and¢ correspond
to pathss — (a(s), s) ands +— (b(s), s), then defing& + ¢ to correspond to the
paths — (a(s) + b(s), s). We mention in passing that there is a bi-continuous
group isomorphism betwedh, and the additive group of the-adic integer€),,.
(This map is, however, not an isometnfif. is equipped with thé metric andQ,,
is equipped with the usug-adic metric.)

Define a Borel measure on E as follows. Write--- < w_1 < wg =1 <
w1 < wp < ---forthe possible values af (-, -). That is,w; = Zf:o rj_ if k>0,
whereasw;, =1 - Zi_=k0 riif k < 0. By construction, closed balls i, all have
diameters of the form2% for somek € Z and such a ball is the disjoint union of
p balls of diameter 2"++1. We can therefore uniquely defipeby requiring that
each closed ball of diameter 2+ has masg —*. The measurg is nothing but the
(unique up to constants) Haar measure on the locally compact Abelian Braup

Applying Theorem 6.1, we see thaf will be transient if and only if
Z,fiop—"rf < 00, that is, if and only ifr— < p. As one might have expected,
transience and recurrence are unaffected by the valug:ofheorem 6.1 shows
that transience and recurrence are features of the structiréngfar” t, whereas
r+ only dictates the structure of tiie“near” points ofE...

8. Triviality of the tail o-field

Theorem 8.1. For all x € T the tailo-field(,.qo {X; : t > s} isP*-trivial (that
is, consists of sets with*-measure) or 1).

Proof . Fix x € T. By the continuity of the sample paths &f o, = inf{r >
0:h(X,) = a}. Becausé: (X) is a Brownian motion, this stopping time% -a.s.
finite. PutTp := 0 andTy = oynw)—k) for k = 1,2, ... By the strong Markov
propertywe getthd* {77 < To < --- < oo} = 1. SetX (¢) := X (Tx+1)ATry1)
fork =0, 1, ... Note that the taib-field in the statement of the result can also be
written as( \,.q 0 {(Te, X¢) : € > k}.

By the strong Markov property, the pait@y 1 — T, X))z o are independent.
Moreover, by the spatial homogeneity of Brownian motion, the random variables
(Tiv1 — T2 are identically distributed. The result now follows from Lemma
8.2 below. O
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Lemma 8.2. Let ((Y,, Z,)).en be a sequence of independ&ik U-valued ran-
dom variableswhere(U, %) is a measurable space. Suppose further that that the
random variabley,,n € N, have acommon distribution. PUt, := Y1+---+7,,.
Then the taib-field (" >~_; o {(W,, Z,) : n > m} is trivial.

Proof . Consider a real-valued random varialehat is measurable with respect
to the tailo-field in the statement. For eaeh € N we have by conditioning on
a{W, : n > m} and using Kolmogorov's zero-one law that there is{&,, : n >
m}-measurable random variab#g, such thatV, = V almost surely. Consequent-
ly, there is a random variablé’ measurable with repect {0),_; o {W, : n > m}
such thatV’ = v almost surely, and the proof is completed by an application of
the Hewitt—Savage zero-one law. 0

Definition 8.3. A function f € Z(T x Ry) (resp.f € %(T)) is said to bespace-
time harmonidqresp.harmoniq if 0 < f < coand P f(-,t) = f(-,s +t) (resp.
Psf = f)foralls,t > 0.

Remark 8.4.There does not seem to be a generally agreed upon convention for the
use of the term “harmonic”. It is often used for the analogous definition without
the requirement that the function is non-negative, &hf(x) = P*[f(X;)] is
sometimes replaced W[ f (X,)] for suitable stopping times. Also, the terms
invariantandregular are sometimes used.

The following is a standard consequence of the triviality of thestdikld and
irreducibility of the process, but we include a proof for completeness.

Corollary 8.5. There are no non-constant bounded space-time harmonic functions
(and hencea fortiori, no non-constant bounded harmonic functions).

Proof . Suppose thaf is a bounded space-time harmonic function. For eaehl’
ands > 0 the process$f(X;, s + 1)):>0 is a bounded®*-martingale. Therefore
liM; 500 f( Xy, s + 1) existsP*-a.s. andf (x, s) = P¥[lim; o0 f(X;, s +1)] =
lim; o f(X;, s + 1), P*-a.s., by the triviality of the tail. By the Markov property
and the fact thak has everywhere positive transition densities with respeet to
we get thatf (s, x) = f(z, y) for v-a.e.y for eacht > s, and it is clear from this
that f is a constant. 0

Remark 8.6.The conclusion of Corollary 8.5 for harmonic functions has the fol-
lowing alternative probabilistic proof. By the arguments in the proof of Theorem
8.1 we have that it € Z is such thatt < h(x), thenP*{oy, < oxjn-1 <
Oxln—2) < --- < oo} = 1. Suppose thaf is a bounded harmonic function.
Then f(x) = P*[lim;— » f(X;)] = lim;_ f(x|(—k)). Now note for each pair
x,y € T thatx|(—k) = y|(—k) for k € N sufficiently large.

9. Martin compactification and excessive functions

Suppose in this section thatis transient. Recall that € #(T) is excessivéor
(P)i=0if0 < f < o0, Pif < f,and limoP;f = f pointwise. Recall the
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definition of harmonic function from §8. In this section we will obtain an integral
representation for the excessive and harmonic functions.

Fix xo € T and definek : T x T — R, the correspondinlylartin kerne| by

h

g(r,y) M i < Elb = ylb)~tdb
g0, y) MU e b = yib)1db
U g < Elb = x|b)~1db

I i < €1b = xolb)~tdb

k(x,y) =

(9.1)

Note that the functiot is continuous in both arguments and

X
P*{o, < oo} < PYyo, < oo}t < oo,

O<PX{O'XO <oo}§k(x,y) m_

We can follow the standard approach to constructing a Martin compactification
when there are well-behaved potential kernel densities (e.g. [KW65, Mey70]). That
is, we choose a countable, dense sulfset T and compactifyl’ using the sort of
Stone-€ech-like procedure described in 83 to obtain a metrisable compactification
TM such that a sequence, ),y C T converges if and only if limk(x, y,) exists
for all x € T. Recall the compactification of §3.

Proposition 9.1. The compact metric spac&and T are homeomorphic, so that
TM can be identified witd U E. If we define

JIEAY e - Elb = nlb)ldb

k(x,n) = == :
SO e - g |b = b} 1db

xeT, neTUE;,

andk(x, T) = 1, thenk(x, -) is continuous oM U E. Moreover,

sup sup k(x,n) < oo
xeB neTUE

forallballs B C T.

Proof . The rest of the proof will be almostimmediate once we show for a sequence
(Vn)nen C T that lim, k(x, y,) exists for allx € T if and only if lim, A(x A y,)
exists (in the extended sense) foralk 7.

Itis clear that if lim, 2(x A y,) exists for allx € T, then lim, k(x, y,) exists
forallx e T.

Suppose, onthe other hand, thatjikix, y,) existsforallk € T butlim, h(x’'A
v,) does not exist for some€ € T. Thenwe canfind > 0 anda < h(x’) —e such
thatx” := x'|la € T, liminf, h(x’ Ay,) <a—e€,andlimsuph(x’ Ay,) > a+e.
This implies that for anyv € N there existy, g > N such thati(x” A y,) =
h(x" A yp) andh(x” A y,) = a < a+¢€/2 < h(x" A y,). We thus obtain the
contradiction ) )

liminf X6 ) iy @) _ g
no k(x”, yn) n g(x", yn)
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while
k I /
lim sup—(x 2 dn) lim sup—g(x 2 Yn)
n o k(X7 ) n o &(x", yu)
oS ulg Elb = x|y db
> = . — 7 > 1. 0O
JE o nlE €L =x'|b}"1db

The following theorem essentially follows from results in [Mey70], with most
of the work that is particular to our setting being the argument that the points of
E. are, in the terminology of [Mey70minimal Unfortunately, the standing as-
sumption in [Mey70] is that the state-space is locally compact. The requirement for
this hypothesis can be circumvented using the special features of our process, but
checking this requires a fairly close reading of much of [Mey70]. Later, more prob-
abilistic or measure-theoretic, approaches to the Martin boundary such as [Dyn72,
GM73, Gar76, Jeu78] do not require local compactness, but are rather less concrete
and less pleasant to compute with. We therefore sketch the relevant arguments.

Definition 9.2. An excessive functiorf is said to be gotentialif lim ;- P, f =
0. (The ternpurely excessive functiaa also sometimes used.)

Theorem 9.3. If u is an excessive functipthen there is a unique finite measure
yonT =T U E such thatu(x) = fTuE k(x,n) y(dn), x € T. Furthermore u is
harmonic(resp. a potentiglif and only ify (T) = 0 (resp.y (E) = 0).

Proof . From Theorem IX.T64 in [Mey66] there exists a sequege,en Of
non-negative functions such th@tf1(x) < Gfo(x) < --- < G, f(x) 1 u(x) as

n — oo for all x € T. Define a measurg, by y, (dy) := g(xo, y) fn(y) v(dy),

so thatGf,, (x) = fT k(x, y) y.(dy). Note thaty,,(T) = Gf,(x0) < u(xg) < oo.

We can think of(y,).en as a sequence of finite measures on the compact 3pace
with bounded total mass. Therefore, there exists a subsequeneey such that

y = lim, y,, exists in the topology of weak convergence of finite measurek.on
By Proposition 9.1, each of the functioké&, -) is bounded and continuous, and so

/ k(e ) y(dn) = lim / ke, 1) vy ()
TUE ¢t JTUE

= |I2T'I /Tk(x’y) Vmg(d)’)
= ||En anZ(X) = u(x).

Write k,, for the excessive functiok(-, n), n € T U E. Each of the functions,,
y € T, is clearly a potential. A direct calculation using (5.4), which we omit, shows
thatif ¢ € E, thenaGyk: = ke for all « > 0, and this implies that: is harmonic.

This completes the proof of the theorem except for the uniqueness claim. From
Proposition 9.1, all excessive functions are bounded on balls and hénisgrable
on balls. We can therefore equip the cone of excessive functions with the metri-
sableLl (T, v) topology. Consider the convex set of excessive functiosach

loc
thatu(xg) = 1. Any measure appearing in the representation of such a function
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is necessarily a probability measure. Given a sequénggcn of such functions,
we can, by the weak compactness argument described above, find a subsequence
(un,)een that converges bounded pointwise, and hence alﬁﬁwﬂ, V), to some
limit u. Therefore the excessive functions are a cone over a compact metrisable
base. Moreover, this cone is a lattice in the associated intrinsic (that is, strong)
order (see 8XV.4 of [Mey67]).

Uniqueness will now follow from the standard Choquet uniqueness theorem
(see, for example, Theorem XI1.T29 of [Mey66]) provided we can show for all
n € TUEthatifk, = [ k, y(dn’) for some finite measure, theny is necessarily
the point mass ajf.

Consider first the case of representingfor some¢ € E. Forx € T and
a>hxnE)

ke (x)

v

P*[ke (Xoy,)]

¢(x. £la)
= =" "k s
GEla tla) 108

D e gl = (Ela) b)Yt db
S e s clb = (Ela) byt db
I e g =Elb) b
JMED e g lb = Elb)Ldb
SO e eib = glpy b
T nlg i ¢lb =&lb) Ldb
[fonlcc=¢bytab

X
SIS e g b = Elb)"Ldb
= ke (x).

Thuske (x) = P [ke (X4, )] for all a sufficiently large. On the other hand, a similar
argument shows faf’ € E \{£} that

ke (x) > P [ks’(ng\a ]

and
SN i el = gbyLab
[e e ¢clb = EpyLdb

for sufficiently largea, where the right-hand side converges to @as 0. Sim-
ilarly, im 4 oo P*[k+(Xo, )] = 0. This clearly shows that ¥ = Jg ket y ("),
theny cannot assign any massEq{&}. Uniqueness for the representatiorkefs
handled similarly.

Unigueness for the representationkof y € T, is an immediate consequence
of the principle of masses (see Proposition 1.1 of [GG83]). 0

Px[ké/(x(fgm)] = ker(x),
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Remark 9.4.Theorem 9.3 can be used as follows to give an analytic proof (in the
transient case) of the conclusion of Corollary 8.5 that bounded harmonic functions
are necessarily constant.

First extend the definition of the Green kergeto T U E by setting

h(nAp) 1
gmp):Z/ Wl¢ 2 lb = nlb)~tdb

—0o0

h(nAp) 1
=2/ p{s 1 ¢lb = plb}~"db.
—00
By Theorem 9.3, non-constant bounded harmonic functions exist if and only if
there is a non-trivial finite measugeconcentrated o such that

sup| k(x,¢)y(d¢) < oo. (9.2)
xeT JE4
Note that for any balB c E,; of the formB = {¢ € Ey : ¢|h(x*) = x*}
for h(x*) > h(xp) we haveg(xog, ) = g(xo, x™). Thus, by possibly replacing
the measure in (9.2) by its trace on a ball, we have that non-constant bounded
harmonic functions exist if and only if there is a probability measure (that we also
denote byy) concentrated on a balt C E such that

sup [ g(x,¢)y(dg) < oo. (9.3)
xeT JB

Observe thag (£]t, ¢) increases monotonically tg(¢, ¢) ast — oo and so, by
monotone convergence, (9.3) holds if and only if

sup | g(,¢)y(dg) < oco. (9.4)
SEE+ B

It is further clear that if (9.4) holds, then
| [ seovaeyan <. (©.5)

Suppose that (9.5) holds. Fbre R write TZ for the subset off, consisting
of x € Ty, such thaty{¢ € B : n|b = x} > 0. In other Words,TZ is the col-
lection of points of the formy|b for somen in the closed support gf. Note that
ZxETZ w{n : nlb = x} < w(B) if 27" is at most the diameter a8. Applying
Jensen’s inequality, we obtain the contradiction

//g(€,§)y(d§)y(d§)

1{elb = ¢|b)
=2 d dc)db
/ /ﬁummbsm (&) y (@)

yin: nlb = £1b)
d&)db
/ AMnmbSM(S)
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[ wln:nlb=&b) -
2 —— v db
= /_oo [/B i b=} " 5)}

win 2 nlb = x}
=2 nlb = db
[ Z b =x) V0 e =

= Q.

10. Entrance laws

Recall that grobability entrance lavior the semigroug P, );>o is a family (y;):~o
of probability measures oh such thaty; P, = y,, for all s, 7 > 0. Given such a
probability entrance law, we can construct on some probability sgface, P) a
continuous process that, with a slight abuse of notation, we denete(X;);-o
such thatX, has lawy, and X is a time-homogeneous Markov process with tran-
sition semigroug P;);>o.

In this section we show that the only probability entrance laws are the trivial
ones.

Theorem 10.1. If (y1);~0 is a probability entrance law fo{P;);>o, theny; = yo P,
t > 0, for some probability measung onT.

Proof . Constructa Ray—Knight compactificatiéhi®, p), say, asin §17 of [Sha88].
Write (F,),Zo and(G4)«-0 for the corresponding extended semigroup and resol-
vent.

ConstructX with one-dimensional distributior(s;),~.o and semigroupp;);>o
as described above. By Theorem 40.4 of [Sha88], X, exists in the Ray to-
pology, and ifyp denotes the law of this limit, thepy P, is concentrated of for
allr > 0 andy; is the restriction ofp P; to T. We therefore need to establish that
yp IS concentrated off. Moreover, it suffices to consider the case wheris a
point mass at somey € TX, so that lim o X, = xo in the Ray topology. Note by
Theorem 4.10 of [Sha88] that the getrdfield oy =) 0{X; : 0 <t <€} is
trivial underP in this case.

By construction of P;);>0, the family obtained by pushing forward eaghby
the maph is an entrance law for standard Brownian motiorfoiBecause Brown-
ian motion is a Feller—Dynkin process, the only entrance laws for it are the trivial
ones(pQ;);~0, Where(Q;);>o is the semigroup of Brownian motion andis a
probability measure oR. Thus, by the trivialityZ o, there is a constartip € R
such that limo 7 (X;) = ho, P-a.s.

As usual, regard functions oh as functions om ® by extending them to be
0 onTR\T. For everyf € b%(T) we have by Theorem 40.4 of [Sha88] that
lim, 0 G f(X,) = 1im; 0 Go f(X:) = Go f (x).

From (5.4),

G f (x) = fT gar, ) () v(dy),
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where
[T exp(—2a(h(x) + h(y) — 2b))
8a(x,y) -—2/_00 wi€ 1 £|b = x|b} @
h(xAy) — -
_ 2/ D exp—v2u(h(x) +h(y) = 2b) (10.1)
. pi§ 1 §1b = y|b}

It follows straightforwardly that limyo 2(X; A y) exists for ally € T, P-a.s., and
S0, by the discussion in 83 and the triviality #fo,, there existg) € T U E such
thati(n) < ho and lim o h(X; A y) = h(n A y), P-a.s. Note, in particular, that
we actually havey € T U {f} becausé:(n) < oo. Moreover, we conclude that

/0 ey (f)di = Ga f (x0)

B 2/ /h(WAY) ex“—@(ho + h(y) — 2b)) db
=2/ || & b = yIb]

} v(dy)

forall f € bA(T).

We cannot have = T, because this would imply that is the null measure for
allt > 0.1f n € T andhg = h(n), then we have,; =, P;.

We therefore need only rule out the possibility thag T buth(n) < ho. In
this case we have

/0 e~y (f)dt = exp(—@(ho —~ h(n)))/o e o,y P (f)dt

and so, by comparison of Laplace transforms— fé 8y Pi—s k(ds), wherex is a

certain stabl% distribution. In particulary, has total mass([0, ¢]) < 1 and is not
a probability distribution. 0

11. Local times and semimartingale decompositions

Our aim in this section is to give a semimartingale decomposition for the process
He(t) '= h(X, NE),t = 0, for& € E4. From the intuitive description aX in
the Introduction, we expedi to remain constant over time intervals wh¥nis
not in the rayR;: := {x € T : x < &}. During time intervals wheX, is in Rz we
expectH; to evolve as a standard Brownian motion except at branch poirfts of
where it receives negative “kicks” from a local time additive functional in the same
manner that skew Brownian motion receives kicks at 0, with the magnitude of the
kicks related to how much-mass is being lost to the rays that are branching off
from Re. To make this description precise, we first need to introduce appropriate
local time processes.

We showed in 86 tha®* {0, < oo} for anyx, y € T. By Theorems 4.2.1 and
2.2.3 of [FOT94], the point mags atanyy € T belongs to the set of measuris.
(See (2.2.10) of [FOT94] for a definition &bo. Another way of seeing thay, is



382 S.N. Evans

in Soo is just to observe that sug, (x, y) < oo forall « > 0.) By Theorem 5.1.6
of [FOT94] there exists for each € T a strict sense positive continuous additive
functional L with Revuz measuré,. As usual, we calL” thelocal timeat y.

Definition 11.1. Given& e E., write m¢ for the Radon measure dnthat is sup-
ported on the rayR;: and for eacl: € R assigns masg{; € E; : {|a = £|a} to
the set&|b: b > a} = {x € Re : h(x) > a}.

Remark 11.2.Note thatn is a discrete measure that is concentrated on the count-
able set of points of the forra A ¢ for some¢ € E\{§} (that is, on the points
where other rays branch froiy).

Theorem 11.3. For eaché € E; andx € T the procesdd; has a semimartingale
decomposition

1
Hg(t) = Hg (0) + Mg (1) — E/R LY (t)ymg(dy), t=0,
:

underP*, whereM; is a continuoussquare-integrable martingale with quadratic
variation

t
(M) (1) =/ 1{X(s) <&tds, 1=0.
0

Moreover, the martingalesfs and M for £, ¢’ € E.. have covariation

t
(e Mo, = [ UXG) =g ng)ds, 120
0

Proof. Foré € Ey, x € T, andA € N, sethg(x) = h(x A &) andh?(x) =
(—A)V (h(x ANE) A A).

It is clear tha\‘hé4 is in the domainz of the Dirichlet formé&, with th‘(x) =
1{&|(—A) < x < &|A}. Given f € 2, it follows from the product rule that

26(h f.hEf) — E(hEH?, f) = /T FEOLEN(-A) < x <&|A}v(dx).

In the terminology of §3.2 of [FOT94], thenergy measureorresponding tag‘ is
v?(dx) = 1{&|(—A) < x < &|A}v(dx). Asimilar calculation shows that the joint
energy measure corresponding to a pair of functk@andhg‘,’ is 1[{&](—A) <

x <EJAYNEI(=A) < x <€A v(dx) = W) A ué‘j’)(dx) in the usual lattice
structure on measures.
An integration by parts establishes that for ghy 2 we have

1
s ) =5 /T F0) i (),
where

g =mf — (e L) (—A) = E[(—A)Sey—a) + 1L T C|A = E|A}Sg A
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with
m{ (dx) = HE|(—A) < x < §|A)me(dx).

Now vg‘ is the Revuz measure of the strict sense positive continuous additive
functional f; 1{£|(—A) < X(s) < &|A}ds and vg‘ A vg‘,/ is the Revuz measure
of the strict sense positive continuous additive functiqféa]l[{§|(—A) <X(@s) <
E|AYN{E'|(—A") < X (s) < &'|A'}] ds. A straightforward calculation shows that
sup, [ gu(x, y)m?(dy) < o0, and SOm? € Soo is the Revuz measure of the

strict sense positive continuous additive functiof}giley (3] mg‘(dy) (because the

integral is just a sum, we do not need to address the measurability-ofL” (¢)).
PutHé“(t) = hg‘(X(t)), t > 0. Theorem 5.2.5 of [FOT94] applies to give that

1
HA® = HA©) + MA® - 5 /Rs LY@ty 120,

underP* for eachx € T, whereMgA is a continuous, square-integrable martingale
with quadratic variation

t
(M2 (1) = /O LE|(—A) < X(5) < £|A}ds.
Moreover, the martingaleﬂé“ andM?,/ for &, &’ € E have covariation

(ME, ME) (1)

t
= /o 1[{E1(—A) = X(s) < EIA)N{E'1(—A) < X(s) = §'1A"}] ds.

In particular,
(MP — M) ()

=/0 1[{§1(=B) = X(s) < &§IBI\{EI(—A) = X(s) <§|A}] ds  (11.1)

for A < B.
For eachr > 0 we have thatHéA(s) = H:(s) and ng Ly(s)ﬁzg‘(dy) =

fRE LY(s)mg(dy) forall0 < s <t whenA > suf|He(s)| : 0 <s <}, P*-a.s.

Therefore there exists a continuous prock&gssuch thatll/lé;“ (8) = M¢(s) for all

0 <s <rwhenA > suf|H(s)| : 0 <s <t}, P*-a.s. It follows from (11.1) that
lim 4 00 P¥[SURY<s <, |M§‘ (s) — M¢ (s)14] = 0. By standard arguments, the pro-
cessed/; are continuous, square-integrable martingales with the stated quadratic
variation and covariation properties. 0
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Remark 11.4.There is more that can be said about the proégss-or instance,
givenx € T andé € E; with x € Rg anda > h(x), we can explicitly calculate
the Laplace transform of ifif > O : H () = a} = o¢|, underP*. We have

P*[exp(—aogia)] = ga(x, §la) / ga(§la, la),

whereg,, is given explicitly by (10.1). WheiX is transient, the distribution ef;,
has an atom ato and we have

p* { sup Hg(t) > a} = P{oga < 0o} = g(x, &la) / g(la, &la).

O<t<oo

By the strong Markov property, thédkg proceséog |1 )q>i(x) has independent (al-
though, of course, non-stationary) increments ufittewith the usual appropriate
definition of this notion for non-decreasitiyu {+o0o}-valued processes.

Remark 11.5.The stochastic calculus can be used to further anatysss a typ-
ical example, wherX is transient consider the harmonic functidis= (-, &),
& € E,4, introduced in 89 and the corresponding harmonic transformedlﬂﬁgvs

x € T. Thatis,P; , x € T, is the collection of laws of a Markov procex$ such
thatﬂj’is[f(Xf)] = ke ()P ke (X0) f (X0, f € bA(T). Recall that/(X))=o

is a standard Brownian motion undet. Arguing as in the proof of Theorem 11.3
and using Girsanov’'s theorem, we have ur[ﬂgrthat

h(XE) = h(X5) + W, + Dy,

whereW is a standard Brownian motion and

D _/[[M}/ /”(X”;db s
"o Lule i xs <) oo LI XD <) '

In other words, When(f is not on the rayR; the height procesls(Xf) evolves as

a standard Brownian motion, but Whmﬁ is on the rayR; the height experiences
an added positive drift. We leave the details to the reader.
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