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Abstract. We consider diffusion processes on a class ofR-trees. The processes are de-
fined in a manner similar to that of Le Gall’s Brownian snake. Each point in the tree has
a real-valued “height” or “generation”, and the height of the diffusion process evolves as
a Brownian motion. When the height process decreases the diffusion retreats back along a
lineage, whereas when the height process increases the diffusion chooses among branching
lineages according to relative weights given by a possibly infinite measure on the family of
lineages. The class ofR-trees we consider can have branch points with countably infinite
branching and lineages along which the branch points have points of accumulation.

We give a rigorous construction of the diffusion process, identify its Dirichlet form, and
obtain a necessary and sufficient condition for it to be transient. We show that the tailσ -field
of the diffusion is always trivial and draw the usual conclusion that bounded space-time har-
monic functions are constant. In the transient case, we identify the Martin compactification
and obtain the corresponding integral representations of excessive and harmonic functions.
Using Ray–Knight methods, we show that the only entrance laws for the diffusion are the
trivial ones that arise from starting the process inside the state–space. Finally, we use the
Dirichlet form stochastic calculus to obtain a semimartingale description of the diffusion
that involves local time additive functionals associated with each branch point of the tree.

1. Introduction

Consider the collectionT of bounded subsets ofR that contain their supremum. We
can think of the elements ofT as being arrayed in a tree-like structure in the follow-
ing way. Using genealogical terminology,h(B) := supB is the real-valued gener-
ation to whichB ∈ T belongs andB|t := (B ∩ ] −∞, t ])∪{t} ∈ T for t ≤ h(B)

is the ancestor ofB in generationt . ForA,B ∈ T the generation of the most recent
common ancestor ofA andB is τ(A,B) := sup{t ≤ h(A) ∧ h(B) : A|t = B|t}.
That is,τ(A,B) is the generation at which the lineages ofA andB diverge. There
is a natural genealogical distance onT given by

D(A,B) := [h(A)− τ(A,B)] + [h(B)− τ(A,B)].
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Equivalently,

D(A,B) := supA+ supB − 2 min{supA, supB, inf (A4B)},
where4 denotes thesymmetric difference.

The metric space(T,D) is essentially thereal treeof [DT96, Ter97] (the latter
space has as its points the bounded subsets ofR that contain their infimum and the
corresponding metric is such that the map from(T,D) into this latter space given
by A 7→ −A is an isometry). With a slight abuse of nomenclature, we will refer
here to(T,D) as the real tree.

The real tree is an example of anR-tree: that is, a metric space(T, d) satis-
fying the following axioms (see [DMT96, DT96, Ter97] for an overview of the
theoryR-trees and [Sha91] for a review of the extensive uses ofR-trees in group
theory).

Axiom I: For all x, y ∈ T there exists a unique isometric embeddingφx,y :
[0, d(x, y)] → T such thatφx,y(0) = x andφx,y(d(x, y)) = y.

Axiom II: For every injective continuous mapψ : [0,1] → T one hasψ([0,1]) =
φψ(0),ψ(1)([0, d(ψ(0), ψ(1))]).

For the real tree,φA,B(t) is given byA|(h(A)− t) for 0 ≤ t ≤ h(A)− τ(A,B)
andB|(t−h(A)+2τ(A,B)) forh(A)−τ(A,B) ≤ t ≤ h(A)+h(B)−2τ(A,B) =
D(A,B).

In this paper we study diffusion processes with state-spaces that areR-trees.
We can describe the sort of processes we have in mind very informally for the case
of the real tree as follows.

Consider the collectionE+ of subsetsB ⊂ R ∪ {+∞} such that−∞ < inf B
and supB = +∞ ∈ B. ForB ∈ E+ and t ∈ R, extend the notation introduced
above by writingB|t := (B ∩ ] − ∞, t ])∪ {t}. We think ofE+ as the collection of
doubly infinite lineages in the real tree and ofB|t as the individual in the lineage
B ∈ E+ in generationt .

We can equipE+ with a metric such that the balls in this metric are of the form
{B ∈ E+ : B|t = A|t} for someA ∈ E+ andt ∈ R (see §2). Letµ be aσ -finite
Borel measure onE+ that assigns finite mass to all such balls. WriteE

µ
+ for the

(closed) support ofµ andTµ for the subset ofT consisting of points of the form
A|t for someA ∈ E

µ
+ andt ∈ R. It is not hard to see thatTµ is anR-tree. As we

observe in §4,Tµ is necessarily separable whereasT is far from being separable
- the removal of a single point disconnectsT into a collection of components, the
cardinality of which is that of the power set of the reals. ThereforeTµ is a much
“tamer” object thanT. However,Tµ can still exhibit exotic phenomena such as
points at which countably infinite branching occurs and lineages along which the
branch points have points of accumulation.

We will be interested in theTµ-valued processX that evolves in the follow-
ing manner. The real-valued processH , whereHt = h(Xt ), evolves as a stan-
dard Brownian motion. For smallε > 0 the conditional probability of the event
{Xt+ε ∈ C} givenXt andH is approximately
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µ {y : y|Ht+ε ∈ C, y|Ht = Xt }
µ {y : y|Ht = Xt } .

In particular, ifHt+ε < Ht , thenXt+ε is approximatelyXt |Ht+ε . This evolution is
reminiscent of Le Gall’sBrownian snakeprocess (see, for example, [Le 93, Le 94a,
Le 94b, Le 95]), with the difference that the “height” processH is a Brownian mo-
tion here rather than a reflected Brownian motion and the rôle of Wiener measure
onC(R+,Rd) in the snake construction is played here byµ.

There is a large literature on random walks on trees and [Woe94, LP96] are
excellent bibliographical references. In particular, there is a substantial amount of
work on the Martin boundary of such walks beginning with [DM61, Car72, Saw78].
In the spirit of this paper, the Martin boundary of walks on non-locally finite graphs
is dealt with in [CSW93].

The literature on diffusions on tree-like or graph-like structures is more mod-
est. A general construction of diffusions on graphs using Dirichlet form methods
is given in [Var85]. Diffusions on tree-like objects are studied in [DJ93, Kre95]
using excursion theory ideas, local times of diffusions on graphs are investigated
in [EK95, EK96], and an averaging principle for such processes is considered in
[FW93]. One particular process that has achieved a substantial amount of attention
is the so-calledWalsh’s spider, which is a diffusion on the tree consisting of a finite
number of semi-infinte rays emanating from a single vertex (see [Wal78, BPY89,
Tsi97, BEK+98]).

The plan of the rest of the paper is as follows. We say some more about the
structure ofR-trees in §2 and discuss a certain compactification for them in §3.
We construct the process of interest to us in §4 and identify its Dirichlet form in
§5. We give a necessary and sufficient condition for transience in §6 and observe
that points are always regular for themselves. We present a class of examples in
§7 that illustrate the transience/recurrence dichotomy. We use the Kolmogorov and
Hewitt-Savage zero-one laws in §8 to show that the tailσ -field of the diffusion
is always trivial and draw the usual conclusion that bounded space-time harmonic
functions are constant. In §9 we construct a Martin compactification in the tran-
sient case and obtain corresponding integral representations for the excessive and
harmonic functions. Using Ray-Knight methods, we establish in §10 that the only
entrance laws are the “trivial” ones that arise from starting inside the state-space.
Finally, we apply the Dirichlet form stochastic calculus in §11 to obtain a semimar-
tingale decomposition of the diffusion that involves local time additive functionals
associated with each branch point of the tree. This “infinitesimal” description of
the diffusion’s dynamics further confirms the informal one given above.

Notation 1.1.Given a metric spaceU, we writeC(U), B(U), bC(U), bB(U),
pC(U), andpB(U) for, respectively, the continuous, Borel, bounded continuous,
bounded Borel, positive continuous, and positive Borel functions onU.

2. More about RR-trees

We refer the reader to [DT96, DMT96, Ter97] for background onR-trees and proofs
of the facts that we outline below.
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We will only considerR-trees(T, d) that also satisfy the following additional
axioms which are satisfied by the real tree.

Axiom III: The metric space(T, d) is complete.

Axiom IV: For eachx ∈ T there is at least one isometric embeddingθ : R → T
with x ∈ θ(R).

An endof T is an equivalence class of isometric embeddings fromR+ into T,
where we regard two such embeddingsφ andψ as being equivalent if there exist
α ∈ R andβ ∈ R+ such thatα + β ≥ 0 andφ(t) = ψ(t + α) for all t ≥ β. Write
E for the set of ends ofT.

By Axiom IV, E has at least 2 points. Fix a distinguished element † ofE.
For eachx ∈ T there is a unique isometric embeddingκx : R+ → T such that
κx(0) = x andκx is a representative of the equivalence class of †. Similarly, for each
ξ ∈ E+ := E\{†} there is at least one isometric embeddingθ : R → T such that
t 7→ θ(t), t ≥ 0, is a representative of the equivalence class ofξ andt 7→ θ(−t),
t ≥ 0, is a representative of the equivalence class of †. Denote the collection of
all such embeddings by2ξ . If θ, θ ′ ∈ 2ξ , then there existsγ ∈ R such that
θ(t) = θ ′(t + γ ) for all t ∈ R. It is thus possible to select an embeddingθξ ∈ 2ξ
for eachξ ∈ E+ in such a way that for any pairξ, ζ ∈ E+ there existst0 (depending
onξ, ζ ) such thatθξ (t) = θζ (t) for all t ≤ t0 (andθξ (]t0,∞[)∩ θζ (]t0,∞[) = ∅).
Extendθξ to R∗ := R ∪ {±∞} by settingθξ (−∞) := † andθξ (+∞) := ξ .

The ends of the real tree can be identified with the collection consisting of the
empty set and the elements ofE+. If we choose † to be the empty set so thatE+
plays the role ofE+, then we can define the isometric embeddingθA for A ∈ E+
by θA(t) := (A∩] − ∞, t ]) ∪ {t} = A|t in the notation of the Introduction.

The map(t, ξ) 7→ θξ (t) from R × E+ (resp.R∗ × E+) into T (resp.T ∪ E)
is surjective. Moreover, ifη ∈ T ∪ E is in θξ (R∗) ∩ θζ (R∗) for ξ, ζ ∈ E+, then
θ−1
ξ (η) = θ−1

ζ (η). Denote this common value byh(η), theheightof η. In particular,
h(†) := −∞ andh(ξ) = +∞ for ξ ∈ E+. For the real tree with corresponding iso-
metric embeddings defined as above,h(B) is just supB, with the usual convention
that sup∅ := −∞ (in accord with the notation of the Introduction).

Define apartial order ≤ on T ∪ E by declaring thatη ≤ ρ if there exists
−∞ ≤ s ≤ t ≤ +∞ andξ ∈ E+ such thatη = θξ (s) andρ = θξ (t). For the real
tree, this partial order is the usual inclusion partial order. Each pairη, ρ ∈ T ∪ E
has a well-definedgreatest common lower boundη ∧ ρ in this partial order, with
η ∧ ρ ∈ T unlessη = ρ ∈ E+, η = † orρ = †. Forx, y ∈ T we have

d(x, y) = h(x)+ h(y)− 2h(x ∧ y)
= [h(x)− h(x ∧ y)] + [h(y)− h(x ∧ y)]. (2.1)

Therefore,h(x) = d(x, y) − h(y) + 2h(x ∧ y) ≤ d(x, y) + h(y) and, similarly,
h(y) ≤ d(x, y)+ h(y), so that

|h(x)− h(y)| ≤ d(x, y), (2.2)

with equality if x, y ∈ T are comparable in the partial order (that is, ifx ≤ y or
y ≤ x).
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If x, x′ ∈ T are such thath(x ∧ y) = h(x′ ∧ y) for all y ∈ T, then, by (2.1),
d(x, x′) = [h(x)−h(x∧x′)] + [h(x′)−h(x∧x′)] = [h(x)−h(x∧x)] + [h(x′)−
h(x′ ∧ x′)] = 0, so thatx = x′. Slight elaborations of this argument show that if
η, η′ ∈ T ∪ E are such thath(η ∧ y) = h(η′ ∧ y) for all y in some dense subset of
T, thenη = η′.

For x, x′, z ∈ T we have that ifh(x ∧ z) < h(x′ ∧ z), thenx ∧ x′ = x ∧ z

and a similar conclusion holds with the rôles of x and x′ reversed; whereas if
h(x ∧ z) = h(x′ ∧ z), thenx ∧ z = x′ ∧ z ≤ x ∧ x′. Using (2.1) and (2.2) and
checking the various cases one finds that

|h(x ∧ z)− h(x′ ∧ z)| ≤ d(x ∧ z, x′ ∧ z) ≤ d(x, x′). (2.3)

Forη ∈ T ∪ E andt ∈ R∗ with t ≤ h(η), let η|t denote the uniqueρ ∈ T ∪ E
with ρ ≤ η andh(ρ) = t . Equivalently, ifη = θξ (u) for someu ∈ R∗ andξ ∈ E+,
thenη|t = θξ (t) for t ≤ u. For the real tree, this definition coincides with the one
given in the Introduction.

The metric space(E+, δ), where

δ(ξ, ζ ) := 2−h(ξ∧ζ ),

is complete. Moreover, the metricδ is actually anultrametric; that is,δ(ξ, ζ ) ≤
δ(ξ, η) ∨ δ(η, ζ ) for all ξ, ζ, η ∈ E+.

3. A compactification

Suppose in this section that(E+, δ) is separable. Fort ∈ R consider the set

Tt := {x ∈ T : h(x) = t} = {ξ |t : ξ ∈ E+} (3.1)

of points inT that have heightt . For eachx ∈ Tt the set{ζ ∈ E+ : ζ |t = x} is a ball
in E+ of diameter at most 2−t and two such balls are disjoint. The separability ofE+
is thus equivalent to each of the setsTt being countable. In particular, separability of
E+ implies thatT is also separable, with countable dense set{ξ |t : ξ ∈ E+, t ∈ Q},
say.

We can, via a standard Stone–C̆ech-like procedure, embedT ∪ E in a compact
metric space in such a way that for eachy ∈ T ∪ E the mapx 7→ h(x ∧ y) has a
continuous extension to the compactification (as an extended real-valued function).

More specifically, letT be a countable dense subset ofT. Let π be a strictly
increasing, continuous function that mapsR onto ]0,1[. Define an injective map
5 from T into the compact, metrisable space [0,1]T by5(x) := π(h(x ∧ y))y∈T .
Identify T with5(T) and writeT for the closure ofT(= 5(T)) in [0,1]T . In other
words, a sequence(xn)n∈N ⊂ T converges to a point inT if h(xn ∧ y) converges
(possibly to−∞) for all y ∈ T , and two such sequences(xn)n∈N and (x′

n)n∈N

converge to the same point if and only if limn h(xn ∧ y) = limn h(x
′
n ∧ y) for all

y ∈ T .
We can identify distinct points inT∪E with distinct points inT. If (xn)n∈N ⊂ T

andξ ∈ E+ are such that for allt ∈ R we haveξ |t ≤ xn for all sufficiently large
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n, then limn h(xn ∧ y) = h(ξ ∧ y) for all y ∈ T . We leave the identification of †
to the reader.

In fact, we haveT = T ∪E. To see this, suppose that(xn)n∈N ⊂ T converges to
x∞ ∈ T. Puth∞ := supy∈T limn h(xn ∧ y). Assume for the moment thath∞ ∈ R.
We will show thatx∞ ∈ T with h(x∞) = h∞. For allk ∈ N we can findyk ∈ T
such that

h∞ − 1

k
≤ lim

n
h(xn ∧ yk) ≤ h(yk) ≤ h∞ + 1

k
.

Observe that

d(yk, y`) ≤ lim sup
n

(
d(yk, xn ∧ yk)+ d(xn ∧ yk, xn ∧ y`)

+d(xn ∧ y`, y`)
)

= lim sup
n

(
[h(yk)− h(xn ∧ yk)] + |h(xn ∧ yk)− h(xn ∧ y`)|

+[h(y`)− h(xn ∧ y`)]
)

≤ 2

k
+

(
1

k
+ 1

`

)
+ 2

`
.

Therefore,(yk)k∈N is ad-Cauchy sequence and, by Axiom III, this sequence con-
verges toy∞ ∈ T. Moreover, by (2.2) and (2.3), limn h(xn∧ y∞) = h(y∞) = h∞.

We claim thaty∞ = x∞; that is, limn h(xn ∧ z) = h(y∞ ∧ z) for all z ∈ T . To
see this, fixz ∈ T andε > 0. If n is sufficiently large, then

h(xn ∧ z) ≤ h(y∞)+ ε (3.2)

and

h(y∞)− ε ≤ h(xn ∧ y∞) ≤ h(y∞). (3.3)

If h(y∞ ∧ z) ≤ h(y∞)− ε, then (3.3) implies thaty∞ ∧ z = xn ∧ z. On the other
hand, ifh(y∞ ∧ z) ≥ h(y∞)− ε, then (3.3) implies that

h(xn ∧ z) ≥ h(y∞)− ε, (3.4)

and so, by (3.2) and (3.3),

|h(y∞ ∧ z)− h(xn, z)| ≤ [h(y∞)− (h(y∞)− ε)]

∨[(h(y∞)+ ε)− (h(y∞)− ε)] (3.5)

= 2ε.

We leave the analogous arguments forh∞ = +∞ (in which casex∞ ∈ E+)
andh∞ = −∞ (in which casex∞ = †) to the reader.

We just seen that the construction ofT does not depend onT (more precisely, any
two such compactifications are homeomorphic). Moreover, a sequence(xn)n∈N ⊂
T ∪E converges to a limit inT ∪E if and only if limn h(xn∧y) exists for ally ∈ T,
and two convergent sequences(xn)n∈N and(x′

n)n∈N converge to the same limit if
and only if limn h(xn ∧ y) = limn h(x

′
n ∧ y) for all y ∈ T.
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4. Construction of the process

Suppose thatµ is aσ -finite Borel measure onE+ such that 0< µ(B) < ∞ for
every ballB in the metricδ. In particular, the support ofµ is all of E+.

Remark 4.1.We note that the existence of such a measureµ is a more restrictive
assumption onT than it might first appear. Letµ be a finite measure onE+ that
is equivalent toµ. Recall from (3.1) thatTt , t ∈ R, is the set of points inT with
heightt . As we remarked in §3, the set{ζ ∈ E+ : ζ |t = x} is a ball inE+ for each
x ∈ Tt and two such balls are disjoint. Because theµ measure of each such ball
is non-zero, the setTt is necessarily countable and hence, by observations made in
§3, both the complete metric spacesT andE+ are separable, and hence Lusin.

Forx ∈ T and real numbersb < c with b < h(x), define a probability measure
µ(x, b, c; ·) onT by

µ(x, b, c;A) := µ{ξ ∈ E+ : ξ |c ∈ A, ξ |b = x|b}
µ{ξ ∈ E+ : ξ |b = x|b} .

Let (Bt , P a) be a standard (real-valued) Brownian motion. Writemt :=
inf 0≤s≤t Bs . Recall that the pair(mt , Bt ) has joint density

φa,t (b, c) :=
√

2

π

c − 2b + a

t3/2
exp

(
− (c − 2b + a)2

2t

)
, b < a ∧ c,

underPa (see, for example, Corollary 30 in Chapter 1 of [Fre83]).

Theorem 4.2. There is a Markov semigroup(Pt )t≥0 onT defined by

Ptf (x) := Ph(x) [µ(x,mt , Bt ; f )] .
Furthermore, there is a strong Markov process(Xt ,Px) on T with continuous
sample paths and semigroup(Pt )t≥0.

Proof . The proof of the semigroup property of(Pt )t≥0 is immediate from the
Markov property of Brownian motion and the readily checked observation that for
x, x′ ∈ T, b < c, b < h(x), andb′ < c ∧ c′ we have∫

µ(x′, b′, c′;A)µ(x, b, c; dx′) = µ(x, b ∧ b′, c′;A).

By Kolmogorov’s extension theorem, there is a Markov process(Xt ,Px) onT
with semigroup(Pt )t≥0. In order to show that a version ofX can be chosen with
continuous sample paths, it suffices because(T, d) is complete and separable to
check Kolmogorov’s continuity criterion. Because of the Markov property ofX, it
further suffices to observe forα > 0 that, by definition of(Pt )t≥0,

Px
[
d(x,Xt )

α
]

= Ph(x)
[∫

[h(x)+ h(ξ |Bt)− 2h(x ∧ (ξ |Bt))]α1{ξ |mt = x|mt }µ(dξ)
µ{ξ ∈ E+ : ξ |mt = x|mt }

]



368 S.N. Evans

≤ Ph(x)
[∫

[h(x)+ Bt − 2mt ]α1{ξ |mt = x|mt }µ(dξ)
µ{ξ ∈ E+ : ξ |mt = x|mt }

]
≤ CPh(x)

[ |h(x)−mt |α + |mt − Bt |α
]

≤ C′tα/2

for some constantsC,C′ that depend onα but not onx ∈ T.
The claim thatX is strong Markov will follow if we can show thatPt maps

bC(T) into itself (see, for example, §§III.8, III.9 of [RW94], – it is assumed there
that the underlying space is locally compact and the semigroup maps the space of
continuous functions that vanish at infinity into itself, but this stronger assumption
is only needed to establish the existence of a process with càdl̀ag sample paths
and plays no r̂ole in the proof of the strong Markov property). By definition, for
f ∈ bB(T) andt > 0

Ptf (x) =
∫ h(x)

−∞

∫ ∞

b

∫
f (ξ |c)1{ξ |b = x|b}µ(dξ)
µ{ξ ∈ E+ : ξ |b = x|b}

×
√

2

π

c − 2b + h(x)

t3/2
exp

(
− (c − 2b + h(x))2

2t

)
dc db

for t > 0. The right-hand side can be written as
∫ ∞
−∞

∫ ∞
−∞ Ff,x(b, c) dc db for

a certain functionFf,x . Recall from (2.2) that|h(x) − h(x′)| ≤ d(x, x′). Also,
if b < h(x), then x′|b = x|b for x′ such thatd(x, x′) ≤ h(x) − b. There-
fore, limx′→x Ff,x′(b, c) = Ff,x(b, c) except possibly atb = h(x). Moreover,
if supx |f (x)| ≤ C, then|Ff,x(b, c)| ≤ CF1,x(b, c). Because

lim
x′→x

∫ ∞

−∞

∫ ∞

−∞
F1,x′(b, c) dc db = lim

x′→x
1 = 1 =

∫ ∞

−∞

∫ ∞

−∞
F1,x(b, c) dc db,

a standard generalisation of the dominated convergence theorem (see, for exam-
ple, Proposition 18 in Chapter 11 of [Roy68]) shows that iff ∈ bB(T), then
Ptf ∈ bC(T) for t > 0.

5. Symmetry and the Dirichlet form

Write λ for Lebesgue measure onR. Consider the measureν that is obtained by
pushing forward the measureµ⊗ λ on E+ × R with the map(ξ, a) 7→ ξ |a. Note
that forx ∈ T with h(x) = h∗ andε > 0 we have

ν{y ∈ T : d(x, y) ≤ ε}
≤ ν{y ∈ T : y|(h∗ − ε) = x|(h∗ − ε), h∗ − ε ≤ h(y) ≤ h∗ + ε}
≤ 2εµ{ξ ∈ E+ : ξ |(h∗ − ε) = x|(h∗ − ε)}.

That is,ν assigns finite mass to balls inT and, in particular, is Radon.
We begin by showing that each operatorPt , t > 0, can be continuously ex-

tended frombB(T) ∩ L2(T, ν) to L2(T, ν) and that the resulting semigroup is a
strongly continuous, self-adjoint, Markovian semigroup onL2(T, ν).
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Observe that iff ∈ bB(T), then

Ptf (x) =
∫

E+

∫
R

∫ h(x)∧c

−∞
f (ξ |c)1{ξ |b = x|b}
µ{ξ ∈ E+ : ξ |b = x|b}φh(x),t (b, c) db dc µ(dξ)

=
∫

T
f (y)

∫ h(x)∧h(y)

−∞
1{x|b = y|b}

µ{ξ ∈ E+ : ξ |b = x|b}

×
√

2

π

h(x)+ h(y)− 2b

t3/2
exp

(
− (h(x)+ h(y)− 2b)2

2t

)
db ν(dy)

=
∫

T
f (y)

∫ h(x∧y)

−∞
1

µ{ξ ∈ E+ : ξ |b = x|b}

×
√

2

π

h(x)+ h(y)− 2b

t3/2
exp

(
− (h(x)+ h(y)− 2b)2

2t

)
db ν(dy)

for t > 0. Consequently,Ptf (x) = ∫
T pt (x, y)f (y) ν(dy) for the jointly continu-

ous, everywhere positive transition density

pt (x, y) : =
∫ h(x∧y)

−∞
1

µ{ξ ∈ E+ : ξ |b = x|b}

√
2

π

h(x)+ h(y)− 2b

t3/2

× exp

(
− (h(x)+ h(y)− 2b)2

2t

)
db. (5.1)

Moreover, becauseµ{ξ ∈ E+ : ξ |b = x|b} = µ{ξ ∈ E+ : ξ |b = y|b} when
b ≤ h(x∧y) (equivalently, whenx|b = y|b), we havept (x, y) = pt (y, x). There-
fore there exists a self-adjoint, Markovian semigroup onL2(T, ν) that coincides
with (Pt )t≥0 onbB(T) ∩ L2(T, ν) (cf. §1.4 of [FOT94]). With the usual abuse of
notation, we also denote this semigroup by(Pt )t≥0.

Becauseν is Radon,bC(T) ∩ L1(T, ν) is dense inL2(T, ν). It is immediate
from the definition of(Pt )t≥0 that limt↓0Ptf (x) = f (x) for all f ∈ bC(T) and
x ∈ T. Therefore, by Lemma 1.4.3 of [FOT94], the semigroup(Pt )t≥0 is strongly
continuous onL2(T, ν).

We now proceed to identify the Dirichlet form corresponding to(Pt )t≥0.

Definition 5.1. Let A denote the class of functionsf ∈ bC(T) such that there
existsg ∈ B(T) with the property that

f (ξ |b)− f (ξ |a) =
∫ b

a

g(ξ |u) du, ξ ∈ E+, −∞ < a < b < ∞. (5.2)

Note forξ ∈ E+ that if A ∈ B(R) with A ⊆ [a, b], where−∞ < a < b < ∞,
then

µ{ζ ∈ E+ : ζ |b = ξ |b} λ(A) ≤ ν{ξ |u : u ∈ A}
≤ µ{ζ ∈ E+ : ζ |a = ξ |a} λ(A).

Therefore, the functiong in (5.2) is unique up toν-null sets, and (with the usual
convention of using function notation to denote equivalence classes of functions)
we denoteg by ∇f .
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Definition 5.2. Write D for the class of functionsf ∈ A ∩ L2(T, ν) such that
∇f ∈ L2(T, ν).

Remark 5.3.By the observations made in Definition 5.1, the integral
∫ b
a
g(ξ |u) du

is well-defined for anyξ ∈ E+ andg ∈ L2(T, ν).

Theorem 5.4. The Dirichlet formE corresponding to the strongly continuous, self-
adjoint, Markovian semigroup(Pt )t≥0 onL2(T, ν) has domainD and is given by

E(f, g) = 1

2

∫
T

∇f (x)∇g(x) ν(dx), f, g ∈ D. (5.3)

Proof . A virtual reprise of the argument in Example 1.2.2 of [FOT94] shows that
the formE′ given by the right-hand side of (5.3) is a Dirichlet form.

Let (Gα)α>0 denote the resolvent corresponding to(Pt )t≥0: that is,Gαf =∫ ∞
0 e−αtPtf dt for f ∈ L2(T, ν). In order to show thatE = E′, it suffices to show

thatGα(L2(T, ν)) ⊆ D andE′
α(Gαf, g) := E′(Gαf, g) + α(f, g) = (f, g) for

f ∈ L2(T, ν) andg ∈ D, where we write(·, ·) for theL2(T, ν) inner product. (cf.
the proof of Theorem 1.3.1 in [FOT94]) By a simple approximation argument, it fur-
ther suffices to check thatGα(bB(T) ∩ L2(T, ν)) ⊆ D andE′

α(Gαf, g) = (f, g)

for f ∈ bB(T) ∩ L2(T, ν) andg ∈ D.
Observe that∫ ∞

0
e−αtφa,t (b, c) dt = 2 exp

(
−

√
2α(c − 2b + a)

)
, b < a ∧ c,

(see Equations 3.71.13 and 6.23.15 of [Wat44]). Therefore, forf ∈ bB(T) ∩
L2(T, ν) we have

Gαf (x) = 2
∫ h(x)

−∞

∫ ∞

b

µ(x, b, c; f )e−
√

2α(c−2b+h(x)) dc db. (5.4)

Thus,Gαf ∈ A with

∇(Gαf )(x) = 2
∫ ∞

h(x)

µ(x, h(x), c; f )e−
√

2α(c−h(x)) dc −
√

2αGαf (x).

(5.5)

In order to show thatGαf ∈ D is remains to show that the first term on the
right-hand side of (5.5) is inL2(T, ν). By the Cauchy–Schwarz inequality and
recalling the definition ofTt from (3.1),

∫
T

[∫ ∞

h(x)

µ(x, h(x), c; f )e−
√

2α(c−h(x)) dc
]2

ν(dx)

=
∫ ∞

−∞

∑
x∈Ta

[∫ ∞

a

∫
E+ f (ξ |c)1{ξ |a = x}µ(dξ)

µ{ξ : ξ |a = x} e−
√

2α(c−a) dc

]2

×µ{ξ : ξ |a = x} da
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≤ 1

2
√

2α

∫ ∞

−∞

∑
x∈Ta


∫ ∞

a

[∫
E+ f (ξ |c)1{ξ |a = x}µ(dξ)

µ{ξ : ξ |a = x}

]2

e−
√

2α(c−a) dc




×µ{ξ : ξ |a = x} da

≤ 1

2
√

2α

∫ ∞

−∞

∑
x∈Ta

[∫ ∞

a

∫
E+ f

2(ξ |c)1{ξ |a = x}µ(dξ)
µ{ξ : ξ |a = x} e−

√
2α(c−a) dc

]

×µ{ξ : ξ |a = x} da
= 1

2
√

2α

∫ ∞

−∞

∫ ∞

a

[∫
E+
f 2(ξ |c)µ(dξ)

]
e−

√
2α(c−a) dc da

= 1

4α

∫ ∞

−∞

∫
E+
f 2(ξ |c) dc µ(dξ) = 1

4α

∫
T
f 2(x) ν(dx) < ∞,

as required.
From (5.5) we have forg ∈ D that

E′(Gαf, g)

=
∫ ∞

−∞

∫
E+

[∫ ∞

a

µ(ξ |a, a, c; f )e−
√

2α(c−a) dc
]

∇g(ξ |a)µ(dξ) da

−1

2

√
2α

∫ ∞

−∞

∫
E+
Gαf (x)∇g(ξ |a), µ(dξ) da. (5.6)

Consider the first term on the right-hand side of (5.6). Note that it can be written
as ∫ ∞

−∞

∑
x∈Ta

[∫ ∞

a

∫
E+ f (ξ |c)1{ξ |a = x}µ(dξ)

µ{ξ : ξ |a = x} e−
√

2α(c−a) dc

]

×∇g(x)µ{ξ : ξ |a = x} da
=

∫ ∞

−∞

∫
E+

[∫ ∞

a

f (x|c)e−
√

2α(c−a) dc
]

∇g(ξ |a)µ(dξ) da. (5.7)

Substitute (5.7) into (5.6), integrate by parts, and use (5.5) to get that

E′(Gαf, g) =
∫

E+

∫ ∞

−∞
f (ξ |a)g(ξ |a) da µ(dx)

−
√

2α
∫

E+

∫ ∞

−∞

[∫ ∞

a

f (x|c)e−
√

2α(c−a) dc
]
g(ξ |a) da µ(dξ)

+
√

2α
∫

E+

∫ ∞

−∞

[∫ ∞

a

µ(ξ |a, a, c; f )e−
√

2α(c−a) dc
]

×g(ξ |a) da µ(dξ)− α

∫
E+

∫ ∞

−∞
Gαf (ξ |a)g(ξ |a) da µ(dx).

Argue as in (5.7) to see that the second and third terms on the right-hand side cancel
and so
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E′(Gαf, g) = (f, g)− α(Gαf, g),

as required.

Remark 5.5.We wish to apply toX the theory of symmetric processes and their as-
sociated Dirichlet forms developed in [FOT94]. BecauseT is not generally locally
compact, we cannot do so directly. Rather, we have to proceed via the embedding
results outlined in §7.3 of [FOT94]. We quickly check the relevant conditions for
these results to apply.

As usual, setE1 := E+ (·, ·)with domainD. We begin by showing that condi-
tions (C.1) – (C.3) in §7.3 of [FOT94] hold. That is, there is a countably generated
subalgebraC ⊆ bC(T) ∩ D such thatC is E1–dense inD, C separates points of
T, and for eachx ∈ T there existsf ∈ C with f (x) > 0. LetC0 be a countable
subset ofbC(T) ∩ L2(T, ν) that separates points ofT and is such that for every
x ∈ T there existsf ∈ C0 with f (x) > 0. Let C be the algebra generated by
the countable collection

⋃
α GαC0, where the union is over the positive rationals.

It is clear thatC is E1-dense inD. We observed in the proof of Theorem 4.2 that
Pt : bC(T) → bC(T) for all t ≥ 0 and limt↓0Ptf (x) = f (x) for all f ∈ bC(T).
Thus,Gα : bC(T) → bC(T) for all α > 0 and limα→∞ αGαf (x) = f (x) for all
f ∈ bC(T). Therefore,C separates points ofT and for everyx ∈ T there exists
f ∈ C with f (x) > 0.

It remains to check that the tightness condition (7.3.2) of [FOT94] holds. That
is, for all ε > 0 there exists a compact setK such that Cap(T\K) < ε where Cap
denotes the capacity associated withE1. However, it follows from the sample path
continuity ofX and Theorem IV.1.15 of [MR92] that, in the terminology of that
result, the processX is ν-tight. Conditions IV.3.1 (i)–(iii) of [MR92] then hold by
Theorem IV.5.1 of [MR92], and this suffices by Theorem III.2.11 of [MR92] to
establish condition (7.3.2) of [FOT94].

6. Recurrence, transience, and regularity of points

The Green operatorGassociated with the semigroup(Pt )t≥0 is defined byGf (x) :=∫ ∞
0 Ptf (x) dt = supα>0Gαf (x) for f ∈ pB(T). In the terminology of [FOT94],

we say thatX is transientisGf < ∞, ν-a.e., for anyf ∈ L1+(T, ν), whereasX is
recurrentif Gf ∈ {0,∞}, ν-a.e., for anyf ∈ L1+(T, ν).

As we observed in §5,X has symmetric transition densitiespt (x, y) with re-
spect toν such thatpt (x, y) > 0 for allx, y ∈ T. Consequently, in the terminology
of [FOT94],X is irreducible. Therefore, by Lemma 1.6.4 of [FOT94],X is either
transient or recurrent, and ifX is recurrent, thenGf = ∞ for anyf ∈ L1+(T, ν)
that is notν-a.e. 0.

Taking limits asα ↓ 0 in (5.4), we see that

Gf (x) =
∫

T
g(x, y)f (y) ν(dy),

where
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g(x, y) : = 2
∫ h(x∧y)

−∞
1

µ{ξ : ξ |b = x|b} db

= 2
∫ h(x∧y)

−∞
1

µ{ξ : ξ |b = y|b} db. (6.1)

Note that the integrals∫ a

−∞
1

µ{ξ : ξ |b = ζ |b} db, a ∈ R, ζ ∈ E+, (6.2)

are either simultaneously finite or infinite. The following is now obvious.

Theorem 6.1. If the integrals in(6.2) are finite(resp. infinite), theng(x, y) < ∞
(resp.g(x, y) = ∞) for all x, y ∈ T andX is transient(resp. recurrent).

Remark 6.2.For B ∈ B(T) write σB := inf {t > 0 : Xt ∈ B}. We note from
Theorem 4.6.6 and Problem 4.6.3 of [FOT94] that ifPx{σB < ∞} > 0 for some
x ∈ T, thenPx{σB < ∞} > 0 for all x ∈ T. Moreover, ifX is recurrent, then
Px{σB < ∞} > 0 for somex ∈ T implies thatPx{∀N ∈ N, ∃t > N : Xt ∈ B} =
1 for all x ∈ T.

Giveny ∈ T, write σy for σ{y}. SetC = {z ∈ T : y ≤ z}. Pick x ≤ y with
x 6= y. By definition of (Pt )t≥0, Px{Xt ∈ C} > 0 for all t > 0. In particular,
Px{σC < ∞} > 0. It follows from Axioms I and II that ifγ : R+ 7→ T is any
continuous map with{x, z} ⊂ γ (R+) for somez ∈ C, theny ∈ γ (R+) also.
Therefore, by the sample path continuity ofX, Px{σy < ∞} > 0 for this particular
choice ofx. However, Remark 6.2 then gives thatPx{σy < ∞} > 0 for all x ∈ T.
By Theorem 4.1.3 of [FOT94] we have that points are regular for themselves. That
is, Px{σx = 0} = 1 for all x ∈ T.

7. Examples

In this section we exhibit a parametric family ofR-trees(T, d)with measuresµ on
the corresponding collection of endsE+ such that associated processX is either
recurrent or transient depending on the parameter values.

Fix a prime numberp and constantsr−, r+ ≥ 1. Let Q denote the rational
numbers. Define an equivalence relation∼ on Q × R as follows. Givena, b ∈ Q

with a 6= b write a − b = pv(a,b)(m/n) for somev(a, b),m, n ∈ Z with m andn
not divisible byp. Forv(a, b) ≥ 0 putw(a, b) = ∑v(a,b)

i=0 ri+, and forv(a, b) < 0

putw(a, b) := 1−∑−v(a,b)
i=0 ri−. Setw(a, a) := +∞. Given(a, s), (b, t) ∈ Q×R

declare that(a, s) ∼ (b, t) if and only if s = t ≤ w(a, b). Note that

v(a, c) ≥ v(a, b) ∧ v(b, c) (7.1)

so that
w(a, c) ≥ w(a, b) ∧ w(b, c) (7.2)

and∼ is certainly transitive (reflexivity and symmetry are obvious).
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Let T denote the collection of equivalence classes for this equivalence rela-
tion. Define a partial order≤ on T as follows. Suppose thatx, y ∈ T are equiv-
alence classes with representatives(a, s) and(b, t). Say thatx ≤ y if and only
if s ≤ w(a, b) ∧ t . It follows from (7.2) that≤ is indeed a partial order. A pair
x, y ∈ T with representatives(a, s) and(b, t) has a unique greatest common lower
boundx ∧ y in this order given by the equivalence class of(a, s ∧ t ∧ w(a, b)),
which is also the equivalence class of(b, s ∧ t ∧ w(a, b)).

For x ∈ T with representative(a, s), put h(x) := s. Define a metricd on T
by settingd(x, y) := h(x)+ h(y)− 2h(x ∧ y). We leave it to the reader to check
that(T, d) is anR–tree satisfying Axioms I–IV, and that the definitions ofx ≤ y,
x ∧ y andh(x) fit into the general framework of §2, with the setE+ corresponding
to Q × R-valued pathss 7→ (a(s), s) such thats ≤ w(a(s), a(t)) ∧ t .

Note that there is a natural Abelian group structure onE+: if ξ andζ correspond
to pathss 7→ (a(s), s) ands 7→ (b(s), s), then defineξ + ζ to correspond to the
paths 7→ (a(s) + b(s), s). We mention in passing that there is a bi-continuous
group isomorphism betweenE+ and the additive group of thep-adic integersQp.
(This map is, however, not an isometry ifE+ is equipped with theδ metric andQp

is equipped with the usualp-adic metric.)
Define a Borel measureµ on E+ as follows. Write· · · ≤ w−1 ≤ w0 = 1 ≤

w1 ≤ w2 ≤ · · · for the possible values ofw(·, ·). That is,wk = ∑k
i=0 r

i+ if k ≥ 0,
whereaswk = 1 − ∑−k

i=0 r
i− if k < 0. By construction, closed balls inE+ all have

diameters of the form 2−wk for somek ∈ Z and such a ball is the disjoint union of
p balls of diameter 2−wk+1. We can therefore uniquely defineµ by requiring that
each closed ball of diameter 2−wk has massp−k. The measureµ is nothing but the
(unique up to constants) Haar measure on the locally compact Abelian groupE+.

Applying Theorem 6.1, we see thatX will be transient if and only if∑∞
k=0p

−krk− < ∞, that is, if and only ifr− < p. As one might have expected,
transience and recurrence are unaffected by the value ofr+: Theorem 6.1 shows
that transience and recurrence are features of the structure ofT “near” †, whereas
r+ only dictates the structure of theT “near” points ofE+.

8. Triviality of the tail σ-field

Theorem 8.1. For all x ∈ T the tailσ -field
⋂
s≥0 σ {Xt : t ≥ s} is Px-trivial (that

is, consists of sets withPx-measure0 or 1).

Proof . Fix x ∈ T. By the continuity of the sample paths ofX, σx|a = inf {t >
0 : h(Xt ) = a}. Becauseh(X) is a Brownian motion, this stopping time isPx-a.s.
finite. PutT0 := 0 andTk := σx|(h(x)−k) for k = 1,2, . . . By the strong Markov
property we get thatPx{T1 < T2 < · · · < ∞} = 1. SetXk(t) := X((Tk+t)∧Tk+1)

for k = 0,1, . . . Note that the tailσ -field in the statement of the result can also be
written as

⋂
k≥0 σ {(T`,X`) : ` ≥ k}.

By the strong Markov property, the pairs((Tk+1−Tk,Xk))∞k=0 are independent.
Moreover, by the spatial homogeneity of Brownian motion, the random variables
(Tk+1 − Tk)

∞
k=0 are identically distributed. The result now follows from Lemma

8.2 below.
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Lemma 8.2. Let ((Yn, Zn))n∈N be a sequence of independentR × U-valued ran-
dom variables, where(U,U) is a measurable space. Suppose further that that the
random variablesYn,n ∈ N, have a common distribution. PutWn := Y1+· · ·+Yn.
Then the tailσ -field

⋂∞
m=1 σ {(Wn,Zn) : n ≥ m} is trivial.

Proof . Consider a real-valued random variableV that is measurable with respect
to the tailσ -field in the statement. For eachm ∈ N we have by conditioning on
σ {Wn : n ≥ m} and using Kolmogorov’s zero-one law that there is aσ {Wn : n ≥
m}-measurable random variableV ′

m such thatV ′
m = V almost surely. Consequent-

ly, there is a random variableV ′ measurable with repect to
⋂∞
m=1 σ {Wn : n ≥ m}

such thatV ′ = V almost surely, and the proof is completed by an application of
the Hewitt–Savage zero-one law.

Definition 8.3. A functionf ∈ B(T × R+) (resp.f ∈ B(T)) is said to bespace-
time harmonic(resp.harmonic) if 0 ≤ f < ∞ andPsf (·, t) = f (·, s + t) (resp.
Psf = f ) for all s, t ≥ 0.

Remark 8.4.There does not seem to be a generally agreed upon convention for the
use of the term “harmonic”. It is often used for the analogous definition without
the requirement that the function is non-negative, andPtf (x) = Px [f (Xt )] is
sometimes replaced byPx [f (Xτ )] for suitable stopping timesτ . Also, the terms
invariantandregularare sometimes used.

The following is a standard consequence of the triviality of the tailσ -field and
irreducibility of the process, but we include a proof for completeness.

Corollary 8.5. There are no non-constant bounded space-time harmonic functions
(and hence, a fortiori, no non-constant bounded harmonic functions).

Proof . Suppose thatf is a bounded space-time harmonic function. For eachx ∈ T
ands ≥ 0 the process(f (Xt , s + t))t≥0 is a boundedPx-martingale. Therefore
lim t→∞ f (Xt , s + t) existsPx-a.s. andf (x, s) = Px [lim t→∞ f (Xt , s + t)] =
lim t→∞ f (Xt , s + t), Px-a.s., by the triviality of the tail. By the Markov property
and the fact thatX has everywhere positive transition densities with respect toν

we get thatf (s, x) = f (t, y) for ν-a.e.y for eacht > s, and it is clear from this
thatf is a constant.

Remark 8.6.The conclusion of Corollary 8.5 for harmonic functions has the fol-
lowing alternative probabilistic proof. By the arguments in the proof of Theorem
8.1 we have that ifn ∈ Z is such thatn < h(x), thenPx{σx|n < σx|(n−1) <

σx|(n−2) < · · · < ∞} = 1. Suppose thatf is a bounded harmonic function.
Thenf (x) = Px [lim t→∞ f (Xt )] = limk→∞ f (x|(−k)). Now note for each pair
x, y ∈ T thatx|(−k) = y|(−k) for k ∈ N sufficiently large.

9. Martin compactification and excessive functions

Suppose in this section thatX is transient. Recall thatf ∈ B(T) is excessivefor
(Pt )t≥0 if 0 ≤ f < ∞, Ptf ≤ f , and limt↓0Ptf = f pointwise. Recall the
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definition of harmonic function from §8. In this section we will obtain an integral
representation for the excessive and harmonic functions.

Fix x0 ∈ T and definek : T × T → R, the correspondingMartin kernel, by

k(x, y) : = g(x, y)

g(x0, y)
=

∫ h(x∧y)
−∞ µ{ξ : ξ |b = y|b}−1db∫ h(x0∧y)
−∞ µ{ξ : ξ |b = y|b}−1db

=
∫ h(x∧y)
−∞ µ{ξ : ξ |b = x|b}−1db∫ h(x0∧y)

−∞ µ{ξ : ξ |b = x0|b}−1db
. (9.1)

Note that the functionk is continuous in both arguments and

0< Px{σx0 < ∞} ≤ k(x, y) = Px{σy < ∞}
Px0{σy < ∞} ≤ Px0{σx < ∞}−1 < ∞.

We can follow the standard approach to constructing a Martin compactification
when there are well-behaved potential kernel densities (e.g. [KW65, Mey70]). That
is, we choose a countable, dense subsetT ⊂ T and compactifyT using the sort of
Stone–̆Cech-like procedure described in §3 to obtain a metrisable compactification
TM such that a sequence(yn)n∈N ⊂ T converges if and only if limn k(x, yn) exists
for all x ∈ T . Recall the compactificationT of §3.

Proposition 9.1. The compact metric spacesT andTM are homeomorphic, so that
TM can be identified withT ∪ E. If we define

k(x, η) :=
∫ h(x∧y)
−∞ µ{ξ : ξ |b = η|b}−1db∫ h(x0∧y)
−∞ µ{ξ : ξ |b = η|b}−1db

, x ∈ T, η ∈ T ∪ E+,

andk(x,†) = 1, thenk(x, ·) is continuous onT ∪ E. Moreover,

sup
x∈B

sup
η∈T∪E

k(x, η) < ∞

for all ballsB ⊂ T.

Proof . The rest of the proof will be almost immediate once we show for a sequence
(yn)n∈N ⊂ T that limn k(x, yn) exists for allx ∈ T if and only if limn h(x ∧ yn)
exists (in the extended sense) for allx ∈ T .

It is clear that if limn h(x ∧ yn) exists for allx ∈ T , then limn k(x, yn) exists
for all x ∈ T .

Suppose, on the other hand, that limn k(x, yn)exists for allx ∈ T but limn h(x
′∧

yn) does not exist for somex′ ∈ T . Then we can findε > 0 anda < h(x′)−ε such
thatx′′ := x′|a ∈ T , lim inf n h(x′ ∧ yn) ≤ a− ε, and lim supn h(x

′ ∧ yn) ≥ a+ ε.
This implies that for anyN ∈ N there existsp, q ≥ N such thath(x′′ ∧ yp) =
h(x′ ∧ yp) andh(x′′ ∧ yq) = a < a + ε/2 < h(x′ ∧ yq). We thus obtain the
contradiction

lim inf
n

k(x′, yn)
k(x′′, yn)

= lim inf
n

g(x′, yn)
g(x′′, yn)

= 1,
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while

lim sup
n

k(x′, yn)
k(x′′, yn)

= lim sup
n

g(x′, yn)
g(x′′, yn)

≥
∫ a+ε/2
−∞ µ{ξ : ξ |b = x′|b}−1 db∫ a
−∞ µ{ξ : ξ |b = x′|b}−1 db

> 1.

The following theorem essentially follows from results in [Mey70], with most
of the work that is particular to our setting being the argument that the points of
E+ are, in the terminology of [Mey70],minimal. Unfortunately, the standing as-
sumption in [Mey70] is that the state-space is locally compact. The requirement for
this hypothesis can be circumvented using the special features of our process, but
checking this requires a fairly close reading of much of [Mey70]. Later, more prob-
abilistic or measure-theoretic, approaches to the Martin boundary such as [Dyn72,
GM73, Gar76, Jeu78] do not require local compactness, but are rather less concrete
and less pleasant to compute with. We therefore sketch the relevant arguments.

Definition 9.2. An excessive functionf is said to be apotentialif lim t→∞ Ptf =
0. (The termpurely excessive functionis also sometimes used.)

Theorem 9.3. If u is an excessive function, then there is a unique finite measure
γ on T = T ∪ E such thatu(x) = ∫

T∪E k(x, η) γ (dη), x ∈ T. Furthermore, u is
harmonic(resp. a potential) if and only ifγ (T) = 0 (resp.γ (E) = 0).

Proof . From Theorem IX.T64 in [Mey66] there exists a sequence(fn)n∈N of
non-negative functions such thatGf1(x) ≤ Gf2(x) ≤ · · · ≤ Gnf (x) ↑ u(x) as
n → ∞ for all x ∈ T. Define a measureγn by γn(dy) := g(x0, y)fn(y) ν(dy),
so thatGfn(x) = ∫

T k(x, y) γn(dy). Note thatγn(T) = Gfn(x0) ≤ u(x0) < ∞.
We can think of(γn)n∈N as a sequence of finite measures on the compact spaceT
with bounded total mass. Therefore, there exists a subsequence(n`)`∈N such that
γ = lim` γn` exists in the topology of weak convergence of finite measures onT.
By Proposition 9.1, each of the functionsk(x, ·) is bounded and continuous, and so∫

T∪E
k(x, η) γ (dη) = lim

`

∫
T∪E

k(x, η) γn`(dη)

= lim
`

∫
T
k(x, y) γn`(dy)

= lim
`
Gfn`(x) = u(x).

Write kη for the excessive functionk(·, η), η ∈ T ∪ E. Each of the functionsky ,
y ∈ T, is clearly a potential. A direct calculation using (5.4), which we omit, shows
that if ξ ∈ E, thenαGαkξ = kξ for all α > 0, and this implies thatkξ is harmonic.

This completes the proof of the theorem except for the uniqueness claim. From
Proposition 9.1, all excessive functions are bounded on balls and henceν-integrable
on balls. We can therefore equip the cone of excessive functions with the metri-
sableL1

loc(T, ν) topology. Consider the convex set of excessive functionsu such
thatu(x0) = 1. Any measure appearing in the representation of such a functionu
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is necessarily a probability measure. Given a sequence(un)n∈N of such functions,
we can, by the weak compactness argument described above, find a subsequence
(un`)`∈N that converges bounded pointwise, and hence also inL1

loc(T, ν), to some
limit u. Therefore the excessive functions are a cone over a compact metrisable
base. Moreover, this cone is a lattice in the associated intrinsic (that is, strong)
order (see §XV.4 of [Mey67]).

Uniqueness will now follow from the standard Choquet uniqueness theorem
(see, for example, Theorem XI.T29 of [Mey66]) provided we can show for all
η ∈ T ∪E that if kη = ∫

kη′ γ (dη′) for some finite measureγ , thenγ is necessarily
the point mass atη.

Consider first the case of representingkξ for someξ ∈ E+. For x ∈ T and
a > h(x ∧ ξ)

kξ (x) ≥ Px [kξ (Xσξ |a )]

= g(x, ξ |a)
g(ξ |a, ξ |a)k(ξ |a, ξ)

=
∫ h(x∧(ξ |a))
−∞ µ{ζ : ζ |b = (ξ |a)|b}−1 db∫ h(ξ |a)

−∞ µ{ζ : ζ |b = (ξ |a)|b}−1 db

×
∫ h((ξ |a)∧ξ)
−∞ µ{ζ : ζ = ξ |b}−1 db∫ h(x0∧ξ)
−∞ µ{ζ : ζ |b = ξ |b}−1 db

=
∫ h(x∧ξ)
−∞ µ{ζ : ζ |b = ξ |b}−1 db∫ a

−∞ µ{ζ : ζ |b = ξ |b}−1 db

×
∫ a
−∞ µ{ζ : ζ = ξ |b}−1 db∫ h(x0∧ξ)

−∞ µ{ζ : ζ |b = ξ |b}−1 db

= kξ (x).

Thuskξ (x) = Px [kξ (Xσξ |a )] for all a sufficiently large. On the other hand, a similar
argument shows forξ ′ ∈ E+\{ξ} that

kξ ′(x) ≥ Px [kξ ′(Xσξ |a )]

and

Px [kξ ′(Xσξ |a )] =
∫ h(ξ∧ξ ′)
−∞ µ{ζ : ζ |b = ξ |b}−1 db∫ a

−∞ µ{ζ : ζ |b = ξ |b}−1 db
kξ ′(x),

for sufficiently largea, where the right-hand side converges to 0 asa → 0. Sim-
ilarly, lima→∞ Px [k†(Xσξ |a )] = 0. This clearly shows that ifkξ = ∫

E kξ ′ γ (dξ ′),
thenγ cannot assign any mass toE\{ξ}. Uniqueness for the representation ofk† is
handled similarly.

Uniqueness for the representation ofky , y ∈ T, is an immediate consequence
of the principle of masses (see Proposition 1.1 of [GG83]).
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Remark 9.4.Theorem 9.3 can be used as follows to give an analytic proof (in the
transient case) of the conclusion of Corollary 8.5 that bounded harmonic functions
are necessarily constant.

First extend the definition of the Green kernelg to T ∪ E by setting

g(η, ρ) := 2
∫ h(η∧ρ)

−∞
µ{ζ : ζ |b = η|b}−1 db

= 2
∫ h(η∧ρ)

−∞
µ{ζ : ζ |b = ρ|b}−1 db.

By Theorem 9.3, non-constant bounded harmonic functions exist if and only if
there is a non-trivial finite measureγ concentrated onE+ such that

sup
x∈T

∫
E+
k(x, ζ ) γ (dζ ) < ∞. (9.2)

Note that for any ballB ⊂ E+ of the formB = {ζ ∈ E+ : ζ |h(x∗) = x∗}
for h(x∗) ≥ h(x0) we haveg(x0, ζ ) = g(x0, x

∗). Thus, by possibly replacing
the measureγ in (9.2) by its trace on a ball, we have that non-constant bounded
harmonic functions exist if and only if there is a probability measure (that we also
denote byγ ) concentrated on a ballB ⊂ E+ such that

sup
x∈T

∫
B

g(x, ζ ) γ (dζ ) < ∞. (9.3)

Observe thatg(ξ |t, ζ ) increases monotonically tog(ξ, ζ ) as t → ∞ and so, by
monotone convergence, (9.3) holds if and only if

sup
ξ∈E+

∫
B

g(ξ, ζ ) γ (dζ ) < ∞. (9.4)

It is further clear that if (9.4) holds, then∫
B

∫
B

g(ξ, ζ ) γ (dξ) γ (dζ ) < ∞. (9.5)

Suppose that (9.5) holds. Forb ∈ R write Tγb for the subset ofTb consisting
of x ∈ Tb such thatγ {ξ ∈ B : η|b = x} > 0. In other words,Tγb is the col-
lection of points of the formη|b for someη in the closed support ofγ . Note that∑
x∈Tγb

µ{η : η|b = x} ≤ µ(B) if 2−b is at most the diameter ofB. Applying
Jensen’s inequality, we obtain the contradiction∫

B

∫
B

g(ξ, ζ ) γ (dξ) γ (dζ )

= 2
∫ ∞

−∞

∫
B

∫
B

1{ξ |b = ζ |b}
µ{η : η|b = ξ |b} γ (dξ) γ (dζ ) db

= 2
∫ ∞

−∞

∫
B

γ {η : η|b = ξ |b}
µ{η : η|b = ξ |b} γ (dξ) db
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≥ 2
∫ ∞

−∞

[∫
B

µ{η : η|b = ξ |b}
γ {η : η|b = ξ |b} γ (dξ)

]−1

db

= 2
∫ ∞

−∞


 ∑
x∈Tγb

µ{η : η|b = x}
γ {η : η|b = x} γ {η : η|b = x}




−1

db

= ∞.

10. Entrance laws

Recall that aprobability entrance lawfor the semigroup(Pt )t≥0 is a family(γt )t>0
of probability measures onT such thatγsPt = γs+t for all s, t > 0. Given such a
probability entrance law, we can construct on some probability space(�,F,P) a
continuous process that, with a slight abuse of notation, we denoteX = (Xt )t>0
such thatXt has lawγt andX is a time-homogeneous Markov process with tran-
sition semigroup(Pt )t≥0.

In this section we show that the only probability entrance laws are the trivial
ones.

Theorem 10.1. If (γt )t>0 is a probability entrance law for(Pt )t≥0, thenγt = γ0Pt ,
t > 0, for some probability measureγ0 onT.

Proof . Construct a Ray–Knight compactification(TR, ρ), say, as in §17 of [Sha88].
Write (P t )t≥0 and(Gα)α>0 for the corresponding extended semigroup and resol-
vent.

ConstructX with one-dimensional distributions(γt )t>0 and semigroup(Pt )t≥0
as described above. By Theorem 40.4 of [Sha88], limt↓0Xt exists in the Ray to-
pology, and ifγ0 denotes the law of this limit, thenγ0P t is concentrated onT for
all t > 0 andγt is the restriction ofγ0P t to T. We therefore need to establish that
γ0 is concentrated onT. Moreover, it suffices to consider the case whenγ0 is a
point mass at somex0 ∈ TR, so that limt↓0Xt = x0 in the Ray topology. Note by
Theorem 4.10 of [Sha88] that the germσ -field F0+ := ⋂

ε σ {Xt : 0 ≤ t ≤ ε} is
trivial underP in this case.

By construction of(Pt )t≥0, the family obtained by pushing forward eachγt by
the maph is an entrance law for standard Brownian motion onR. Because Brown-
ian motion is a Feller–Dynkin process, the only entrance laws for it are the trivial
ones(ρQt)t>0, where(Qt )t≥0 is the semigroup of Brownian motion andρ is a
probability measure onR. Thus, by the trivialityF0+, there is a constanth0 ∈ R

such that limt↓0 h(Xt ) = h0, P-a.s.
As usual, regard functions onT as functions onTR by extending them to be

0 on TR\T. For everyf ∈ bB(T) we have by Theorem 40.4 of [Sha88] that
lim t↓0Gαf (Xt ) = lim t↓0Gαf (Xt ) = Gαf (x).

From (5.4),

Gαf (x) =
∫

T
gα(x, y)f (y) ν(dy),
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where

gα(x, y) := 2
∫ h(x∧y)

−∞
exp(−√

2α(h(x)+ h(y)− 2b))

µ{ξ : ξ |b = x|b} db

= 2
∫ h(x∧y)

−∞
exp(−√

2α(h(x)+ h(y)− 2b))

µ{ξ : ξ |b = y|b} db. (10.1)

It follows straightforwardly that limt↓0 h(Xt ∧ y) exists for ally ∈ T, P-a.s., and
so, by the discussion in §3 and the triviality ofF0+, there existsη ∈ T ∪ E such
thath(η) ≤ h0 and limt↓0 h(Xt ∧ y) = h(η ∧ y), P-a.s. Note, in particular, that
we actually haveη ∈ T ∪ {†} becauseh(η) < ∞. Moreover, we conclude that∫ ∞

0
e−αtγt (f ) dt = Gαf (x0)

= 2
∫

T

[∫ h(η∧y)

−∞
exp(−√

2α(h0 + h(y)− 2b))

µ{ξ : ξ |b = y|b} db

]
ν(dy)

for all f ∈ bB(T).
We cannot haveη = †, because this would imply thatγt is the null measure for

all t > 0. If η ∈ T andh0 = h(η), then we haveγt = δηPt .
We therefore need only rule out the possibility thatη ∈ T but h(η) < h0. In

this case we have∫ ∞

0
e−αtγt (f ) dt = exp

(
−

√
2α(h0 − h(η))

) ∫ ∞

0
e−αt δηPt (f ) dt

and so, by comparison of Laplace transforms,γt = ∫ t
0 δηPt−s κ(ds), whereκ is a

certain stable-12 distribution. In particular,γt has total massκ([0, t ]) < 1 and is not
a probability distribution.

11. Local times and semimartingale decompositions

Our aim in this section is to give a semimartingale decomposition for the process
Hξ(t) := h(Xt ∧ ξ), t ≥ 0, for ξ ∈ E+. From the intuitive description ofX in
the Introduction, we expectHξ to remain constant over time intervals whenXt is
not in the rayRξ := {x ∈ T : x ≤ ξ}. During time intervals whenXt is in Rξ we
expectHξ to evolve as a standard Brownian motion except at branch points ofT
where it receives negative “kicks” from a local time additive functional in the same
manner that skew Brownian motion receives kicks at 0, with the magnitude of the
kicks related to how muchµ-mass is being lost to the rays that are branching off
from Rξ . To make this description precise, we first need to introduce appropriate
local time processes.

We showed in §6 thatPx{σy < ∞} for anyx, y ∈ T. By Theorems 4.2.1 and
2.2.3 of [FOT94], the point massδy at anyy ∈ T belongs to the set of measuresS00.
(See (2.2.10) of [FOT94] for a definition ofS00. Another way of seeing thatδy is
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in S00 is just to observe that supx gα(x, y) < ∞ for all α > 0.) By Theorem 5.1.6
of [FOT94] there exists for eachy ∈ T a strict sense positive continuous additive
functionalLy with Revuz measureδy . As usual, we callLy the local timeaty.

Definition 11.1. Givenξ ∈ E+, writemξ for the Radon measure onT that is sup-
ported on the rayRξ and for eacha ∈ R assigns massµ{ζ ∈ E+ : ζ |a = ξ |a} to
the set{ξ |b : b ≥ a} = {x ∈ Rξ : h(x) ≥ a}.
Remark 11.2.Note thatmξ is a discrete measure that is concentrated on the count-
able set of points of the formξ ∧ ζ for someζ ∈ E+\{ξ} (that is, on the points
where other rays branch fromRξ ).

Theorem 11.3. For eachξ ∈ E+ andx ∈ T the processHξ has a semimartingale
decomposition

Hξ(t) = Hξ(0)+Mξ(t)− 1

2

∫
Rξ

Ly(t)mξ (dy), t ≥ 0,

underPx , whereMξ is a continuous, square-integrable martingale with quadratic
variation

〈Mξ 〉(t) =
∫ t

0
1{X(s) ≤ ξ} ds, t ≥ 0.

Moreover, the martingalesMξ andMξ ′ for ξ, ξ ′ ∈ E+ have covariation

〈Mξ,Mξ ′ 〉t =
∫ t

0
1{X(s) ≤ ξ ∧ ξ ′} ds, t ≥ 0.

Proof . For ξ ∈ E+, x ∈ T, andA ∈ N, sethξ (x) = h(x ∧ ξ) andhAξ (x) =
(−A) ∨ (h(x ∧ ξ) ∧ A).

It is clear thathAξ is in the domainD of the Dirichlet formE, with ∇hAξ (x) =
1{ξ |(−A) ≤ x ≤ ξ |A}. Givenf ∈ D, it follows from the product rule that

2E(hAξ f, h
A
ξ f )− E((hAξ )

2, f ) =
∫

T
f (x)1{ξ |(−A) ≤ x ≤ ξ |A} ν(dx).

In the terminology of §3.2 of [FOT94], theenergy measurecorresponding tohAξ is

νAξ (dx) := 1{ξ |(−A) ≤ x ≤ ξ |A} ν(dx). A similar calculation shows that the joint

energy measure corresponding to a pair of functionshAξ andhA
′

ξ ′ is 1[{ξ |(−A) ≤
x ≤ ξ |A} ∩ {ξ ′|(−A′) ≤ x ≤ ξ ′|A′}] ν(dx) = (νAξ ∧ νA′

ξ ′ )(dx) in the usual lattice
structure on measures.

An integration by parts establishes that for anyf ∈ D we have

E(hAξ , f ) = 1

2

∫
T
f (x) m̃Aξ (dx),

where

m̃Aξ := mAξ − µ{ζ : ζ |(−A) = ξ |(−A)}δξ |(−A) + µ{ζ : ζ |A = ξ |A}δξ |A
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with

mAξ (dx) := 1{ξ |(−A) ≤ x ≤ ξ |A}mξ(dx).

Now νAξ is the Revuz measure of the strict sense positive continuous additive

functional
∫ t

0 1{ξ |(−A) ≤ X(s) ≤ ξ |A} ds andνAξ ∧ νA
′

ξ ′ is the Revuz measure

of the strict sense positive continuous additive functional
∫ t

0 1[{ξ |(−A) ≤ X(s) ≤
ξ |A} ∩ {ξ ′|(−A′) ≤ X(s) ≤ ξ ′|A′}] ds. A straightforward calculation shows that
supx

∫
gα(x, y)m

A
ξ (dy) < ∞, and somAξ ∈ S00 is the Revuz measure of the

strict sense positive continuous additive functional
∫
Rξ
Ly(t)mAξ (dy) (because the

integral is just a sum, we do not need to address the measurability ofy 7→ Ly(t)).
PutHA

ξ (t) := hAξ (X(t)), t ≥ 0. Theorem 5.2.5 of [FOT94] applies to give that

HA
ξ (t) = HA

ξ (0)+MA
ξ (t)− 1

2

∫
Rξ

Ly(t) m̃Aξ (dy), t ≥ 0,

underPx for eachx ∈ T, whereMA
ξ is a continuous, square-integrable martingale

with quadratic variation

〈MA
ξ 〉(t) =

∫ t

0
1{ξ |(−A) ≤ X(s) ≤ ξ |A} ds.

Moreover, the martingalesMA
ξ andMA′

ξ ′ for ξ, ξ ′ ∈ E+ have covariation

〈MA
ξ ,M

A′
ξ ′ 〉(t)

=
∫ t

0
1

[{ξ |(−A) ≤ X(s) ≤ ξ |A} ∩ {ξ ′|(−A′) ≤ X(s) ≤ ξ ′|A′}] ds.

In particular,

〈MB
ξ −MA

ξ 〉(t)

=
∫ t

0
1 [{ξ |(−B) ≤ X(s) ≤ ξ |B}\{ξ |(−A) ≤ X(s) ≤ ξ |A}] ds (11.1)

for A < B.
For eacht ≥ 0 we have thatHA

ξ (s) = Hξ(s) and
∫
Rξ
Ly(s) m̃Aξ (dy) =∫

Rξ
Ly(s)mξ (dy) for all 0 ≤ s ≤ t whenA > sup{|Hξ(s)| : 0 ≤ s ≤ t}, Px-a.s.

Therefore there exists a continuous processMξ such thatMA
ξ (s) = Mξ(s) for all

0 ≤ s ≤ t whenA > sup{|Hξ(s)| : 0 ≤ s ≤ t}, Px-a.s. It follows from (11.1) that
limA→∞ Px [sup0≤s≤t |MA

ξ (s) − Mξ(s)|2] = 0. By standard arguments, the pro-
cessesMξ are continuous, square-integrable martingales with the stated quadratic
variation and covariation properties.
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Remark 11.4.There is more that can be said about the processHξ . For instance,
givenx ∈ T andξ ∈ E+ with x ∈ Rξ anda > h(x), we can explicitly calculate
the Laplace transform of inf{t > 0 :Hξ(t) = a} = σξ |a underPx . We have

Px [exp(−ασξ |a)] = gα(x, ξ |a) / gα(ξ |a, ξ |a),

wheregα is given explicitly by (10.1). WhenX is transient, the distribution ofσξ |a
has an atom at∞ and we have

Px

{
sup

0≤t<∞
Hξ(t) ≥ a

}
= Px{σξ |a < ∞} = g(x, ξ |a) / g(ξ |a, ξ |a).

By the strong Markov property, the càdl̀ag process(σξ |a)a≥h(x) has independent (al-
though, of course, non-stationary) increments underPx , with the usual appropriate
definition of this notion for non-decreasingR ∪ {+∞}-valued processes.

Remark 11.5.The stochastic calculus can be used to further analyseX. As a typ-
ical example, whenX is transient consider the harmonic functionskξ = k(·, ξ),
ξ ∈ E+, introduced in §9 and the corresponding harmonic transformed lawsPxkξ ,

x ∈ T. That is,Pxkξ , x ∈ T, is the collection of laws of a Markov processXξ such

thatPxkξ [f (X
ξ
t )] = kξ (x)

−1Px [kξ (Xt )f (Xt )], f ∈ bB(T). Recall that(h(Xt ))t≥0

is a standard Brownian motion underPx . Arguing as in the proof of Theorem 11.3
and using Girsanov’s theorem, we have underPxkξ that

h(X
ξ
t ) = h(X

ξ
0)+Wt +Dt,

whereW is a standard Brownian motion and

Dt =
∫ t

0

[
1{Xs ≤ ξ}

µ{ζ : Xs ≤ ζ }
] / [∫ h(Xs)

−∞
1

µ{ζ : Xs |b ≤ ζ } db
]
ds.

In other words, whenXξt is not on the rayRξ the height processh(Xξt ) evolves as

a standard Brownian motion, but whenXξt is on the rayRξ the height experiences
an added positive drift. We leave the details to the reader.
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[BEK+98] Barlow, M.T.,Émery, M., Knight, F.B., Song, S., Yor, M.: Autour d’un théor̀eme
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[MR92] Ma, Z.-M., Röckner, M.: Introduction to the Theory of (Non-Symmetric) Di-
richlet Forms, Springer, Berlin, 1992

[Roy68] Royden, H.L.: Real Analysis, Collier MacMillan-New York, 2nd edition, 1968
[RW94] Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales,

Volume I: Foundations, Wiley, 2nd edition, 1994
[Saw78] Sawyer, S.: Isotropic random walks in a tree, Z. Wahrsch. Verw. Gebiete42,

279–292 (1978)
[Sha88] Sharpe, M.: General Theory of Markov Processes, Academic Press, San Diego,

1988
[Sha91] Shalen, P.B.: Dendrology and its applications, In Group theory from a geomet-

rical viewpoint (Trieste, 1990), pages 543–616, World Scientific Publishing,
River Edge, NJ, 1991

[Ter97] Terhalle, W.F.:R-trees and symmetric differences of sets, European J. Combin.
18, 825–833 (1997)

[Tsi97] Tsirelson, B.: Triple points: from non-Brownian filtrations to harmonic mea-
sures, Geom. Funct. Anal.7, 1096–1142 (1997)

[Var85] Varopoulos, N.T.: Long range estimates for Markov chains, Bull. Sc. Math.109,
225–252 (1985)

[Wal78] Walsh, J.B.: A diffusion with discontinuous local time, In Temps Locaux,
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