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Abstract. We prove Hlder-continuity on rays in the direction of vectors in the (generalized)
Cameron-Martin space for functions in Sobolev spacds’inf fractional ordew < (%, 1

over infinite dimensional linear spaces. The underlying measures are required to satisfy
some easy standard structural assumptions only. Apart from Wiener measure they include
Gibbs measures on a lattice and Euclidean interacting quantum fields in infinite volume.
A number of applications, e.qg., to the two-dimensional polymer measure, are presented. In
particular, irreducibility of the Dirichlet form associated with the latter measure is proved
without restrictions on the coupling constant.

1. Introduction

Let H (R") denote the usualr, p)-Sobolev space ov@”" constructed in terms of
Fourier transforms of tempered distributions. The well-known Sobolev embedding
theorem states thatdfp > n, then every element iH;‘([RE”) admits a continuous
version ([42, Chap. 2] or [1]).

The analogue off;(R") over an abstract (infinite dimensional) Wiener space
is the Malliavin-Watanabe spac#’ which is defined in terms of the Ornstein-Uh-
lenbeck operator and which is a fundamental object in Malliavin Calculus. Since
the main Wiener functionals of interest in Malliavin Calculus atefltnctionals
obtained as stochastic integrals and solutions of stochastic differential equations
with smooth coefficients, it was the space$ with integera which were mainly
studied ([19, 27, 44])).

Recently, however, due to rising interest in refining certain results in Malliavin
Calculus and also due to the fact that many important Wiener functionals such
as local times and self-intersection local time are not smooth Wiener functionals
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but only belong to some fractional Sobolev spaces, the latter have received much
attention ([18, 25, 33, 45]).

Because of the infinite dimensionality of the underlying space, Sobolev spaces
over an abstract Wiener space lack many properties of Sobolev spaces over finite
dimensional spaces. For example, it is well-known that even smooth Wiener func-
tionals (that is, Wiener functionals belonging to all the Sobolev spaces) may be
discontinuous. Thus analogues of Sobolev-type embedding theorems do not hold.
Nevertheless, we know that for every fixed direction in the Cameron-Martin space
every element ir@}, has a modification which is almost surely absolutely contin-
uous in this direction, provideg > 1 ([21, 41]).

The corresponding result for fractional Sobolev spaces on Wiener space to be
expected is the following (see also Remark 2.2 below for the higher dimensional
analogue):

Supposexp > 1. For every fixed direction in the Cameron-Martin spaie
any element inzf; admits a modification which is éider continuous along this
direction.

We give a proof of this result which (apart from Kolmogorov’s continuity cri-
terion) is based on operator semi-group theory. It turns out that this proof works
in much more general cases than just the abstract Wiener space case. In fact, a
large class of probability measures on linear spaces satisfying some easy standard
structural conditions (see condition (C) in Subsection 2.1) can be taken to replace
Wiener measure. We describe the framework and the general result in Section 2
(cf. Theorem 2.1), where we also present some general examples in the-eade
(see Subsection 2.3).

In Section 3 we give a number of concrete examples showing that the above
class of probability measures apart from Wiener measure, in particular, includes
Gibbs measures on a lattice as well as Euclidean quantum fields with polynomial
(self-)interactionsn infinite volume

Section 4 is devoted to the proof of the general result, Theorem 2.1, while in
Section 5 we discuss applications. We first prove general results on the invariance
of closedness and irreducibility of classical Dirichlet forms under Doob transforms
(cf. Proposition 5.1 and Corollary 5.3). As a special case we recover all main results
in [2] on the stochastic quantization of the polymer meagyra R?. We can even
improve two of the main results in [2] in an essential way. First, we prove irreducibil-
ity of the corresponding Dirichlet form for all coupling constagts (—go, +00)
rather than onlyf{—go, go) as in [2] (cf. Remark 5.6 below). Second, we can prove
that the stochastic proce&g‘;f),em given by the Radon-Nikodym derivatives

ayf = dut +1h) g
du
has a version with continuous sample pathsifbk in the classical Cameron-Martin
spaceH rather than only thosk € H with bounded derivatives as proved in [2].

As another application we prove thatAf is a measurable set in the Wiener

space with Wiener measure strictly between 0 and 1, its indicgtarahnot be in
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2% with ap > 1 (cf. Proposition 5.5). This generalizes a result of D. Nualart for
the special case = 1, p = 2 ([29]).

2. A general result for a class of probability measures on linear space
2.1. Framework

Let E be a locally convex topological vector space oRRewhich is Souslin, i.e.,
the continuous image of a Polish space (&.¢s a separable Banach space). Eét
denote its dual with dualization (, ) g and let#(E) denote the Boret-algebra on
E. Let u be a positive measure 6, Z(E)) such thaiu(E) < oo and letZ(E)"
denote the completion a#(E) w.rt.u.LetLP(E; u) := LP(E; #(E), n), p > 1,
be the corresponding reaP-spaces equipped with the usual nofm .

Fix p > 1 and let(T;),=0 be a @ (i.e., strongly continuous) semi-group on
LP(E; n) which is the restriction of a bounded analytic semi-group defined on the
complexification ofL? (E; jv). SUpposé&T;);>q is sub-Markovian { € L?(E; ),
0<f<1=0<Tf <1forallt > 0). In particular,(T;),;>0 extends to a
CO-semi-group on alL” (E; w) for all p’ > p. Let(L, D(L)) be the generator of
(T)=0 ONLP(E; ).

By [30, Section 2.6] forx > 0O the fractional powerfl — L)* of (1 — L) is
defined as the inverse of the bounded linear operator

—a . i OO a—=1 —t
(1— L) := r(a)/o YT dr 2.1)

wherel” denotes the classical Gamma-function. Let us define the corresponding
Bessel-Sobolev spaces (cf. [12, 20]):

Py = (L= L)LV (E; ) (2.2)

with norm
lullpo =X = L) ?ull,, ue . (2.3)
Clearly, @‘;i C 9%if o > a, p' > p.Belowfor 0 < a < 1 we want to

give conditions ork € E ensuring that every € &7 has aZ(E)"-measurable

u-versionu; such that
t— ur(z+tk), teR,

is Holder continuous for alt € E.
We need some preparations.
Fork € E define

w()=z—k, z€eE. (2.4)
Fix k € E satisfying the following condition:

(C) p is k—quasi-invariant, i.ey o 7+ = u for all s € R, and the Radon-
sk
Nikodymderivatives
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-1
sk dﬂ ’

have the following properties:
(C1) aé‘k € Ng>1L9(E; ), foralls € R, and for allg € [1, co) the function

s+ |laklly  islocally bounded ofR.
(C2) For all compactC c R

seR ,

/ %ds <oo for p-aezek .
C Agy (2)
Hereds denotes Lebesgue measurefaiWe recall that choosing appropriate ver-
sions by [4, Prop. 2.4] we may always assume ﬂj‘p(tz) is jointly measurable in
s andz and that (C.2) holds for all € E (rather than onlyt-a.e.z € E).

For examples of measurgssatisfying condition (C) we appeal to the reader’s
patience and refer to Section 3 below.

As in [21] we define the measure

ol'(A) = /I;{,uorszl(A)ds, A e HB(E) . (2.5)

Note that obviously fol € E’ (:= dual of E) with g/ {/, k) = 1 we have that
ol ol71 = ds, thats/ o s7cl = o} foralls € R, and thaw}" is equivalent tqu,

i.e., there existg@,‘f . E — (0, c0) such that
w= p,’: ~a,ﬁ‘ . (2.6)

Again by [4, Prop. 2.4] choosing appropriate versions we may always assume to
have the following relations betweet}, andp,":

m
k
ali () = m forallze E, seR (2.7)
Py (2)
-1
o (@) = (/ as"k(z)ds) forallze E . (2.8)
R

In particular, by (C2) and the remarks following it we have that

/ oy (z + sk)"tds < oo forall compactC c Randallz € E . (2.9)
c

2.2. The general result

Before we state our general result we recall the definition of one-component
Dirichlet forms from [6].
Let/ € E’ such thatz (I, k) g = 1 and define

P(z) == p{l,2)E-k,z € E, andny ;= Idg — Py . (2.10)
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Clearly, 7 (E) is a closed linear subspace Bfand
E=m(E) kR . (2.11)

Then by (2.6) and an elementary calculation we obtain that fof allE — R,
2 (R)-measurable, bounded,

/ f@uldz) = / / f(x +sk)p, (x + sk)ds wi(dx) ,  (2.12)
E mr(E) JR

where
Wi = 1 07_[]:1 , (2.13)

and correspondingly,

53]

L*(E; p) = / L2(R; p (x + sk)ds) i (dx) (2.14)
7k (E)

in the sense that eaghe L2(E; u) corresponds to a “field of vectors¥y) rem (E)
where f, ‘= f(x + k), x € m(E) (cf. [6] for details and references). Define
D(& 1) to be the set of all: € L?(E; ) such that for the corresponding ele-
ment (ux) xer, (E) IN ]fi(E) L%(R; p,’:(x + sk)ds)ur(dx) for up-a.e.x € mp(E)
thgre exists a locally absolutely continuaidisversionii, of u, on R such that
() cem) € [ gy L2 pff (x + sk)ds) i (dx). Foru € D(&,,.x) we define

3(,;‘—,(” as the element ii?(E; 1) corresponding to%)xeﬂk(lg) according to (2.14).

Note that, since; > 0,

o*u
Ur— —
ok
is a well-defined operator ab?(E; ). Define
oHtu otv
£ = | ——du; D(& . 2.1
Suntun ) = [ TR dus wve D&, (2.15)

(& k, Z(6,.1)) Is calledone-component Dirichlet formn L2(E; ) ifitis closed
(which is e.g. the case if (C.2) holds, cf. [6, Theorem 2.2]).
Now we are prepared to state our general result:

Theorem 2.1. Letp > 1and letE, u, (T;);>0 be as above and lét € E satisfy
condition (C1). Assume that the following condition holds:

(A) There exisfT', C € (0, co) such that for allz € (0, T], T; (L*°(E; 1)) C
D(& 1) and

T f

1=

I, <CITifll,1 forall f e L®(E; ).

Leta € (%, 1). Then everyi € @g has a?/S’(E)“-measurableu-versionuk such
that for aﬁz e E,
t— up(z+1tk), teR,

is Holder-continuous of ordeg for all 8 € (0, @ — %).
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Remark 2.2. Theorem 2.1 has its obvious generalization to obtawersionsu
ofu € ¥ fork == (k1,...,ky) € E" sothatforallz € E,

(11, ty) — up(z + ks + -+ t,ky),  (t1, ..., 1) € R"
is Holder-continuous of ordes forall 8 € (0, o« — %) providedo € (%, 1,neN.

The proof of Theorem 2.1 will be given in Section 4 below. Eoncreteexam-
ples where condition (A) holds we again refer to Section 3. For the gase? a
whole class of examples will be discussed in the next subsection. They are provided
by the classical gradient Dirichlet forms introduced in [6].

2.3. Classical gradient Dirichlet forms

Let E, u be as in the previous subsection and assume there exists a real separable
Hilbert space(H, (, )) densely and continuously embedded iftoH should be
thought of as a “tangent space”foat eachy € E. LetK be a dense linear subspace

of H such that Condition (C) in Subsection 2.1 holds forkal K. Define

D&y = {u € ﬂ D(& 1) | there exists @#(E)/%(H)-measurable
keK

functionVu : E —— H such that for each € K,
o*u
(Vu(z), k)g = W(Z) for u-a.e.z € E and

f (Vu(z), Vu (@) u u(dz) < oo} : (2.16)
E

and foru, v € D(&,.)
Eu(u,v) = /E(Vu(z),Vv(z))H,u(dz) . (2.17)

Thenby[6, Theorem 3.100£' ., D(&,,)) is asymmetric Dirichlet fornonL2(E; u)
in the sense of e.g. [28]. Most importantly,

(&u, D(&)) is closed (2.18)

i.e., D(&,,) equipped with the Hilbertian nor (-, -) + | - 13)Y/? is complete.

The conditions in [6, Theorem 3.10] are, in fact, satisfied, since éverk satis-

fies condition (C2). We also note that any finitely based bounded smooth cylinder
function

E > < [ f(E’(ll,Z)E7 ceey E’(lva)E) )

Ii,....ln € E', f € C;°(R™), belongs toD(&,,), so (&,, D(6,)) is densely
defined.

In [6] (&, D(&,,)) was callecclassical (gradient) Dirichlet formWe do not
recall the general definition of a Dirichlet form (since we do not really use it below)
butinstead refer to [11], [9], [28], [13]. We only need the fact tt#gt, D(&£,,)) has
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associated to it a unique negative definite self-adjoint linear opetatarD(L,.))
satisfying

&p(u,v) = (,/—Lﬂu, ’/_L“U)LZ(E-M)
forallu, v e D@, =D (V=Ly) - (2.19)

Let7, := ¢'Lr,t > 0, denote the corresponding strongly continuous semi-group on
L%(E; p). Then(T;),>o satisfies all assumptions imposed on tes@mi-group in
Subsection 2.1 (cf. e.g. [28, Chap. |, Section 1.2]). Furthermore, as follows directly
from spectral theory we then have

D(&,) = D3, Ti(L2(E; p) C D(&,) C D(6,y) forallke K

WhereQ% is as defined in Subsection 2.1 with taking the ble of L. In particular,
for all k € K condition (A) in Theorem 2.1 holds with = 2 for the semi-group
(T1)1=0, Since

Epx(u,u) < const.é,(u,u) forallu e D(&,) .
Hence Theorem 2.1 applies for &l K, p = 2.

Remark 2.3. In fact the assumption th&¥,,, D(&,,)) is of gradient type made
above is not necessary. Everything works for the more general (but mostly less
interesting) classical Dirichlet forms discussed in [6, Theorem 3.8]

3. Examples

Apart from Gaussian cases (see Subsections 3.1 and 3.3) we particularly want to
present in detail the Euclided(®)2-quantum field in infinite volume as a “really
non-Gaussian” measure (i.e., not absolutely continuous w.r.t. a Gaussian measure)
towhich Theorem 2.1 applies (cf. Subsection 3.4 below). Other non-Gaussian cases,
i.e., Gibbs measures on a lattice are only briefly touched upon in Subsection 3.2.

3.1. Abstract Wiener spaces

Let u be a Gaussian mean-zero measuréfonZ(E)) whosereproducing kernel
Hilbert spaceor Cameron-Martin spaces H, i.e.,(E, H, i) is anabstract Wiener
spacdf E is a separable Banach space ([15]). Then by the classical Cameron-Mar-
tin Theorem condition (C) in Subsection 2.1 holds forkat H(C E). (cf. e.g.,
[28, Chap. I, Lemma 3.12]).

Let (T;);>0 be the ®-semi-group defined in Subsection 2.3 f6r H, i as
above anK = H. Itis well-known that(T;);>0 is given byMehler’s formulai.e.,
fort >0, f € L2(E; p)

T f(z) = /E fleT'z+V1—e27)udz) (3.1)
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for u-a.e.z € E (cf. [7, Sect. 5] resp. [8, Sect. 6] which even cover more general
“tangent spacesH resp. non-symmetric cases). Then condition (A) in Theorem
2.1 holds for allp > 1. This follows fromMeyer’s equivalencéVe refer e.g. to
[41] for details. So, Theorem 2.1 applies in this case fokall H and allp > 1,

and thus we have proved what was asserted in the introduction of this paper.

3.2. Gibbs measures for lattice systems

Condition (C2) for allk in a dense subspace @&f has been verified for a large
class of Gibbs measures on lattices with finite and infinite dimensional single spin
spaces in [4, Subsections 4.1 resp. 4.2]. In these dagea subspace i resp.
([0, 1], RMZ“.

Condition (C.1) can easily be checked for many concrete interactions. So, by
Subsection 2.3 fo(T;);>0 as defined there witllf = I5(Z%) and K := linear
span of the canonical basis b{Z¢), Theorem 2.1 applies witp = 2. (cf. [4,
Subsection 4.1]).

3.3. The free Euclidean field

Let E := Z' := Z'(RY) (i.e., the space of Schwartz distributions &f) and let
w = uo be thefree Euclidean fieldf massm > 0 onR?, i.e., the mean-zero
Gaussian measure of%(2’) with covariance

/ (11, 2) 7 712, 2) 9 o(dz)

= (. (A +mA ) e i=CE®Y L (32)

L2(R4;dx
whereA denotes the Laplacian aatt Lebesgue measure &f. Since the Cam-
eron-Martin space (i.e., the reproducing kernel Hilbert space)dos H ~12(R?)
(i.e., the dual of the classical Sobolev space of ordedZ{fR?; dx)), as in Subsec-
tion 3.1 it follows by the Cameron-Martin Theorem that condition (C), in particular,
holds for allk € K := 2. Let (T;);>0 be the ®-semi-group defined in Subsection
2.3forE, K, 1 as above but with

H = L%(R%: dx) .

(So in contrast to Subsection 3.H, is notthe Cameron-Martin space af.) It
is well-known (cf. [7, Sect. 5]) thatl;);>o is given by the followinggeneralized)
Mehler formula

T, f(z) = / Fle 1z 41— em2asmD 2y 0 (d'y

for uo-a.ez € E , (3.3)

for all f € L2(E;up), t > 0. In particular, it follows by [38, Theorem 3.1]
that Meyer’s equivalence also holds in this case at least for finitely based smooth
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functions whose derivatives of all orders are polynomially bounded. (We should
mention that this theorem really applies though only stated in [38] for separable
Banach spaceEB. But as follows from [7, Sect. 5] (see, in particular, [5, Example
5.6] for a similar case)?’ above can always be replaced by a properly constructed
separable Banach space). So, foralt- 1, condition (A) holds at least for such
nice functionsu. But since such functions are denselifi(E; o) and since by
analyticity T; is continuous fronl.? (E; g) to 9}, forallr > 0, it follows that (A)
holds for allu € L?(E; o). So, Theorem 2.1 applies for dlle Z and allp > 1

in this case foKT;);>o0 as in (3.3).

Remark 3.1. Above we considered the case of the free field only for simplicity
and since we need it in the next subsection. Everything above, of course, extends
for properly chosen spacésin full generality to the situation considered in [38]

3.4. EuclideanP (®)2-quantum fields in infinite volume

Letd = 2. Asinthe previous subsection Bt= %' = Z/(R?), H := L?(R?; dx),
K := 9 = 2(R?) andug the free Euclidean field of mass > 0 onR?.

Clearly, forgs, ..., ¢; € 9, ]_[ljzl (@i, Yo € LA(Z'; no). Define forn € N,
P = p=m _ p=n=D wjth p(= being the closed linear span of the monomials
1‘[{':l (@i, Vg, j <nin L%(Z'; uo). Now if ¢ € (0,1], h € LY (R?; 12) and
n € N, define :z* : (h) to be the unique element iR™ such that

n

/.Q/ZZ”: (h) ZH@(%')@’: duo

i=1
=n! A 1 ( fR A +mA) T =y g (yl-)#(dm) h(x) 3%(dx)
i=1

where : []i_; o( ¢i,)o : is the orthogonal projection df[/_; 4 ( ¢i, ) in
L2(Z'; no) onto P™ (see [39, p.12] for an explicit definition of the "Wick prod-
uct”: [T'_1 2(¢i, Yo :and [39, §V.1] for the existence ot” : (h)). Clearly, for
hi, ho € LYTe(R2%:22), 0, B e R

M (@hy - Bho) =a " () +B " (h2) po—aee . (3.4)

Let P : R — R be defined by
2N
P(s):=) bys". s€R (3.5)
n=0
b, € R, N € Nandbyy > 0. Define forU c R2, U open, bounded,

2N
ay(@) =) by 2" (L) (3.6)
n=0
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where as usuall means indicator function df. We have that
e e LP(Z'; uo) forall p e[1, 00) (3.7)

(cf. [39, §5.2] and [14]).
Define forU c R?, U open,

IU) :={p €7 |suppp C U} ,

and leto (U) be the subr-algebra of%#(Z’) generated by alp € 2(U). For
A C R? define

o(A):= [ o).

AcU
U open

Definition 3.2. ([16, 17]) A probability measure on (2, #(2")) is called aGu-
erra—Rosen—-Simonr{GRS)-Gibbs stat&ith coupling constant > 0 if for any
U c R2, U open and bounded,

(1) v, (i-e., the restriction ob to o (U)) is absolutely continuous with respect
10 Lo,y -
@iy Ey[f|oUS] =E,f|o(@U)]v-a.e.forany (U)-measurablef : ' —
Ry (WhereU¢ := R2\ U anddU means topological boundary of).
(iii) Foreveryo (U)-measurablg’ : 2 — Ry

_ Eulfe | o(3U)] _
E\[f|o@U)] = Epole 0 [0 00)] v—a.e .

Let @, denote the set of all GRS-Gibbs states with coupling congtan.

From now on we fixa > 0.

Remark 3.3. (i) In [35] a (local) specificatiomn;})UE[L was constructed such that
the associated Gibbs states are exactly the GRS-Gibbs states above and a repre-
sentation formula of arbitrary GRS-Gibbs states in terms of extremal Gibbs states
was derived. We refer to [35] for the precise definitior(mt,)UE[L. We emphasize
that it is entirely useless to construct some abstract specification so that the asso-
ciated Gibbs states are exactly the GRS-Gibbs states. The point of [35] is that the
corresponding kernels are given &yplicitformulae.

(i) By [35, Theorems 5.4 and 5.6] in Definition 3.2 (i) “absolutely continuous”
can be replaced by "equivalent”.

(iii) We have that9, # ¢ and, in general, #, > 1 as shown in the above
quoted literature (cf. e.g. [16, 17, 10, 35, 34]).

Fork € ,t € R, define for; ¢ &’

ark(z) i= a%(2)- aj(z) (3.8)
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where

1
a%(2) = exp[—t (=D +m?)k,2) g — Etz <(_A +m?)k, k)LZ(RZ'dx):|
(3.9

and

n—1

2N
M\ n—i . i qn—i
aj(2) = exp[—,\ X_(:)b,, Z(; (l,)z 7k )] : (3.10)
The reader should forgive us concerning the abuse of notation concerning (3.6) and
(3.8).

Define the convex set

95.0:={u € %] (C1) holds for alk € &} .

Remark 3.4. By [14, Lemma 12.5.2] we know th&t, o # ¢ at least if the poly-
nomial P is of type “even plus lineat”

By (the easy half of) [4, Theorem 4.11] we know that everg ¥, is k-quasi-in-
variant for everyk € & with corresponding Radon-Nikodym derivative given by
(3.8). In particular, (C2) holds. So, by Subsection 2.3(f§);>0 as defined there,
Theorem 2.1 applies to gl € ¥, o and allk € & with p = 2.

4. Proof of Theorem 2.1

Consider the situation of the theorem anddixp as there. We need two lemmas:
Lemma 4.1. There exist€, € (0, oo) such that for alr > Oand allu € 9;

. _ 1l _1
() 1Tullp1 < Cot 239 72" |lul| 4,
(i) 1 Tu — ullp < Cot*? ull g

Proof. (i):
I Tullpa = 1(1— LYY*Tyul,
— 11— D) OT,L - 1) ],
< Cot 30 )|, g (4.1)

where the last inequality follows by [30, Theorem 6.13 (c)].
(ii): The assertion follows by [30, Theorem 6.13 (d)]. Q.E.D.

Lemma 4.2. Suppose’ € (1, p), f € L¥(E; ), t € (0,T], M € N, andz,
tp € [-M, M], 1 < tp. Then

l ’
N7t f (- +12k) = Ti f (- +11k) ]y < C 5|UP llag,| 7 o — 1 17 fllpa , (4.2)
|s|l<M !

p=p

(whereC, T are as in condition (A)).
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Proof. SetG := T; f. Then by condition (A) we havé € D(&, ) and, therefore,
using (2.12) we obtain (witls, as in the definition oD (& 1)) that

G (- +12k) = G(- + t1b) |l

B B , 1/p
[/ / |Gx(s +12) — Gy(s +11)|? p,ﬁ‘(ersk)dsuk(dX)}
7 (E) JR

; - / 1/1)/
2dG
= - oy (x + sk) ds pr(dx)
w(E) JR
Sltz—tll / / / —
e (E) J11
1/p’
,O;:(x + (s —1)k)dsdt uy (dx)]
= P e 4
e[ [7] [
@7 n Jr(E) dS
1/p'
aﬁtk(x + sk)p,’:(x + sk)ds ui(dx) dr:|
1/p'
MG |P
1) —t dud
(212>|2 a7 [/ / oy dn T}
1
<lp—nl sup 1Y 158 m S
|lt|l<M p*p’
= Cliz—nl sup ld%0"2 1Gllpa - Q.E.D.
A) lT|l<M p*p

Now we are prepared to prove Theorem 2.1.

Proof of Theorem 2.1Let p’ € (1, p), M € N, ands, s € [-M, M] such that
|t —s| < T whereT is as in condition (A). Choose the unique= N such that

27'T < |t —s| < 27T . (4.3)

Sett, := (27"T)2. We note that i, := inf (supu, —m), m), m € N, then by the
analyticity of (7;);>0,

M Tyt — Tyl =0 .

Hence by Lemmas 4.1, 4.2 and (C1)
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lu(- + thk) —u(-+ skl
< llu +tk) — Ty,u(- + skl pr + T, (- + sk) — u(- + sk)|l
+limsup|| T, u(- +tk) — Ty, um (- + th) |l
m—0oQ0

+lim sup|| T, um (- + sk) — Ty, u(- + sk) ||

m—0oQ

+lim sup|| T, um (- + tk) — Ty, um (- + skl

m—0oQ

1p 2 .
< sup llaw |V} (ZCatff/ + Clr —s|lim SUPIITanmIIp,l)

lt|<M p—r m—00

1/p 2 R e )
< Cy sup llanlM? (2»‘7/ +Clt —slt, 27 ° ) llull po

|lt|l<M p—r'

<2Cq sup flacl”y (1+C27) It = s*llullpa -

|T|I<M P=pr

Sinceap’ > 1, it follows by Kolmogorov’s theorem (cf. e.g. [40, Corollary 2.1.4])
that there exists #(R) ® %(E)“-measurable functiog : R x E —> R such that
forallz € E, g(-, z) is Holder-continuous of ordes forall 8 € (0, @ — %) and for
alr e R,

u(-+tk)y=g,) pn—ae.. (4.4)
Now we fix aZ(E)-measurablec-version ofu and define fot € E
T, ={teR| gt ,z) =u(z+1tk)} . (4.5)

Since by (4.4) and Fubini’s theoref has full Lebesgue measure fora.e.z € E,
we can findDy € Z(E)" with u(Dy) = 1 and

ds(R\T;) =0 and QcC7T, forallze Dy . (4.6)
Now for z € E we define

4 (D) :Z{g(t,zo) if z=tk+z0€R-k+ Dy

0 if 2 € E\(R-k + Dy) . “.7)

Of course, representations=tk + zo of z € R- k + Dy witht € R, z9 € Dy are
not unique. So, we first have to show thatis well-defined. Suppose

1k +z1 =tk + 22 (4.8)
with 71, 12 € R, z1, z2 € Dg. Thenfor allt € (T, — 1) N (T3, — 12),

gt +11,z21) =u(zy1 + @ +r)k)
=u(z2 + (t + )k)
=gt +12,22).

Since(T;, — t1) N (T3, — t2) has full Lebesgue-measure and sig¢e z;),i = 1, 2,
are continuous, it follows that

gt +1,z1) =gt +m,z2)foralreR .
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In particular, forr = 0 we obtain

g(t1, z1) = g(t2, z2)

souy is well-defined.
It remains to show that; has the desired properties. Since @ c 7, for all
z € Dg, we have that

up(z) =g@0,2) =u(z) forallze Dy ,
SO
Up =u pu—a.e..
Furthermore,let € E.If z e R-k + Dy, i.e.,z =tk +zo,t € R, zg € Dy, then
ug(z +sk) =g(s+t,z0) forallseR . (4.9)

But, if z € E\(R -k + Dy), thensk +z € E\(R - k + Dy) for all s € R (because
if sk 4+z=ntk+z1,t1 € R, z1 € Dy, then

= —k+z1€R-k+Dy) .
Hence
ur(z+sk)y=0 forallseR . (4.10)
(4.9) and (4.10) imply that foral € E
s+— up(z+sk), seR,

has the desired &lder-continuity property and the proof is completed. Q.E.D.

5. Applications

The general results presented in Subsections 5.1 and 5.2 below are motivated by
the applications to the polymer measure deédiscussed in Subsection 5.3.

5.1. Invariance of closedness under Doob transforms

We consider the situation of Subsection 2.3. SoHetH, K, u, (&, D(&)).
(L, D(L,)) and(T;);>0 be as defined there. In particular, condition (C) holds for
allk € K. LetZ¢ be the Sobolev space correspondingte= L. Letp e (1, oo)
and assume throughout this and the next subsection that:

Condition (A) holds for alk € K . (5.0

By the results in Subsection 2.3 condition (5.0) always holdgfer 2.
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Proposition 5.1. Leta € (%, D,ue and f € C(R) suchthatp := f(u) >0

u-a.e.andp € LY(E; ). Then(éy.., D(8,.,)) (defined as in Subsection 2.3 with
¢ - w replacingu) is closed onL2(E; ¢- ) (cf. (2.18) in Subsection 2.3).

Remark 5.2. (i) The Dirichlet form (&y.., D(6y..)) IS Sometimes called the
Doob-transformof (&', D(&,)). So, by Proposition 5.1 we have “invariance of
closedness” under such transforms.

(ii) Of course, Proposition 5.1 has its natural analogue for the one-component
Dirichlet forms (&', x, D(& k) introduced in Subsection 2.2 as well as for the
more general classical Dirichlet forms mentioned in Remark 2.3.

(i) Proposition 5.1 is well-known forr > 1 in particular cases (cf. e.g. [28]
or [36]).

(iv) We note that (C2) might not hold fdr € K and¢-u replacingu. But
the mere definition oi&',, D(&,.)) in Subsection 2.3 does not require this. So,
(g, D(Ey.)) is really defined in the same way &$,,, D(&,,)).

Proof of Proposition 5.1Applying (2.12) we getforakt € K andallg : £ — R,
2 (R)-measurable, bounded,

f 89 u(dz) = / / 8(x + sk)gi (x + sk) py (x + sk) ds i (dx)
E mr(E) JR
(5.1)
wheregy ;= f(uy) anduy is as in Theorem 2.1. Now the assertion follows directly
from [6, Theorem 3.10], since evekye K satisfies (C.2) (fo).
Q.E.D.

5.2. Invariance of irreducibility under Doob-transforms

We consider the same situation as in the previous subsection. In particular, condi-
tion (5.0) is still in force. We recall that a Dirichlet fort#, D(&)) on L2(E; 1))
is calledirreducible, if

ve D), &w,v)=0=v=const. (5.2)
It is well-known that it is enough to check (5.2) for bounde(tf. [28, Chap.
I, Proposition 4.17].

Corollary 5.3. Leta € (%,1), u € 91‘;‘, and f € C(R), f > 0, such that
¢ = f(u) € LYE;p). Then, if(&,, D(&,)) is imeducible onL?(E; w), so
iS (> D(E ) ONLA(E; - 10)).

Proof. Letv € D(&y..) N L*®(E; ¢ - 1) such that,.,. (v, v) = 0 and letk € K.
Then by (5.1) (withy as defined there)

991y \ 2 di, 2
o:/( ) ‘”kdl‘:/ /(—@)) @i (x+sk) py (x+sk) ds pr(dx) .
E\ 9k w(E)JR\ ds
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Sinceyy (x +sk) > Oforallx € mi(E), s € R, itis easily seenthat e D(&,,)

and
dv 2 dHv\2
0=/ f( x(s)) H(x + sk)ds (dx)=/ (—) du .
i (E) JR ds pk M E ok H

Consequentlyy € D(&,) andé, (v, v) = 0, sov = const.u-a.e., hence - u-a.e..
Q.E.D.

We emphasize that Corollary 5.3 is really a consequence of the explicit descrip-
tion of the domainsD(&,,) andD(&,.,,) which are otherwise quite unrelated.

Remark 5.4. For a characterization of irreducibility of Dirichlet forms of type

(6., D(6,)) we refer to [4, Theorem 3.3]. It is well-known that in the cases dis-
cussed in Subsections 3.1 and 3.3, i.e., the case of an abstract Wiener space resp.
the free Euclidean field, we have irreducibility. The same is true for infinite volume
EuclideanP (®),-measures (cf. Subsection 3.4) if the coupling constassmall
enough. We refer to [4, Remark 4.15 (iii)] for details. So, Corollary 5.3 applies in

all these cases (but only fgr= 2 in the latter situation).

By the previous remark the following generalizes a result due to D. Nualart
who proved this forr = 1, p = 2 in the abstract Wiener space case ([29, p.31,
Remark 2]).

Proposition 5.5. Leta € (%, 1) and suppose thd#',,, D(&},)) isirreducible. Let
14 € #(E) be suchthafly € 5. Thenu(A) = 1orO.

Proof. Letu := 14 andk € K. Letu; be asin Theorem 2.1. Thenfara.ez € E
up(z +tk) = La(z +1tk) €{0,1} forallr € Q ,
hence by [4, Lemma 3.4]
u e D(&yx) andéy i (u, u) = 0.

Consequentlyy € D(&,) andé, (4, u) = 0, sou = 14 = const.u-a.e. and the
assertion follows.

Q.E.D.

5.3. The two-dimensional polymer measure

Let us first recall the (rigorous) definition of the two dimensional polymer mea-
sureu,. Let E := Co([0, 1], R?) be the set of all continuous pathsi? indexed
by [0, 1] and starting at zero, equipped with the uniform topology. Lgtenote
Wiener measure ofE, #(E)). Let H be the classical Cameron-Martin space, i.e.,

1
H := {h € E | h is absolutely continuous anj|%, := / lh(s)|?ds < oo} .
0
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Then(E, H, up) is an abstract Wiener space. logte, A) be theself-intersection
local timeatx € R2 of z € E on the setd C [0, 1] x [0, 1], i.e.,

Ol(x,A)=/8x(zs—z,)dsdt .
A

(For its precise definition, the reader is referred to [37] and the references therein.)
It is well-known thatx (0, {(s,¢) : 0 <s <t < 1}) = o0, up-a.e.. Therefore, one
has to use renormalization. To this end we set

20 -1 2i—1 2i—1 2 , -
al,k:a<07[ 2]( ) 2k )X[ 2]( ,?)), l=1,...,2 5

k=1,2,...

Let E,,, denote the expectation with respecidg and set

n 2k-1

Eni= )Y (@ik — Epoatin), n>1.

k=1i=1

Then one can prove (see [23], [43]) th@t),>0 is almost surely convergent to
a random variablé e L2(E; o) and lim,_ o E,0l&, — &% = 0. The random
variable¢ is usually called theormalized self-intersection local tine planar
Brownian motion. One can prove that therggse (0, oo) (see e.qg. [24],[31]) such
that

<00, Vge(—go,00),

E 1o €XP(—g£) {z o Vg e (—oo—g0) . (5.3)

The two-dimensional polymer measyrg is defined by

Ig i= (Eyuq €Xp(—g&)) L exp(—g&)po, & € (—go, 0) .

Below we assume thgte (—go, 00). It has been proved in [3] thate EZ‘;\EZ% for
all « < 1. Hence by the result in Subsection 3.1 (cf. Remark 5.3) both Proposition
5.1 and Corollary 5.3 apply withf (x) := exp(—gx), x € R; u :=&.

Let us close with commenting on the relation and, particularly, the progress
w.r.t. the result in [2].

Remark 5.6. (i) Let (&,,, D(61,)) on L(E; v,) be as defined in [2, Section 1].
Then by definitionD(&,,) D D(&,,) andéy, = &y, on D(&y,) x D(&y,).
Hence the closedness @f,,,, D(&,,)) on L2(E; Wg) ensured by Proposition 5.1
implies Theorem 1.1in[2], which was essential there for constructing the stochastic
guantization of the two-dimensional polymer measure (cf. [2, Theorem 1.2]).

(ii) The irreducibility of (&,,, D(&,,)) for all g € (—go, 00) ensured by
Corollary 5.3 generalizes [2, Theorem 1.5] where the same result was proved for
(&v,, D(6y,)), butonly forg € (—go, go) and by a completely different method.

(iii) Obviously, by the Cameron-Martin Theorem for &l H,t € R,

a¥ (g) = ¢ 8ECHD—£G) 1 Jo k() dz()=321k1%,
t
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for u-a.e.z € E, wherefolk(s)dz(s) is the I6-integral w.r.t. the Brownian motion
(z(s))o<s<1 underug. Choosingy as in Theorem 2.1 we obtain a generalization of

[2, Theorem 1.4] tall directionsk in the Cameron-Martin space rather than only
those with bounded derivatives as proved in [2]. Since this was a question posed
by a referee to [2], we formulate this result as a theorem below.

Theorem 5.7. Letforh ¢ H

e . d(pgo Tz;l)

a,, = , telR.
th d,LLg

Then the processat’if)tew has a version with continuous sample paths for all
heH.
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