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Abstract We provide a complete characterisation of the Root solution to the Sko-
rokhod embedding problem (SEP) by means of an optimal stopping formulation. Our
methods are purely probabilistic and the analysis relies on a tailored time-reversal
argument. This approach allows us to address the long-standing question of a multiple
marginals extension of the Root solution of the SEP. Our main result establishes a
complete solution to the n-marginal SEP using first hitting times of barrier sets by the
time–space process. The barriers are characterised bymeans of a recursive sequence of
optimal stopping problems. Moreover, we prove that our solution enjoys a global opti-
mality property extending the one-marginal Root case. Our results hold for general,
one-dimensional, martingale diffusions.
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1 Introduction

The Skorokhod embedding problem (SEP) for Brownian motion (Bt )t≥0 consists of
specifying a stopping timeσ such that Bσ is distributed according to a given probability
measure μ on R. It has been an active field of study in probability since the original
paper by Skorokhod [39], see Obłój [29] for an account. One of the most natural ideas
for a solution is to consider σ as the first hitting time of some shape in time–space.
This was carried out in an elegant paper of Root [36]. Root showed that for any centred
and square integrable distribution μ there exists a barrier R, i.e. a subset of R+ × R

such that (t, x) ∈ R implies (s, x) ∈ R for all s ≥ t , for which BσR ∼ μ, σR =
inf{t : (t, Bt ) ∈ R}. The barrier is (essentially) unique, as argued by Loynes [26].

Root’s solution enjoys a fundamental optimality property, established by Rost [38],
that it minimises the variance of the stopping time among all solutions to the SEP.
More generally, E f (σR) ≤ E f (σ ) for any convex function f ≥ 0 and any stopping
time σ with Bσ ∼ BσR . This led to a recent revival of interest in this construction in the
mathematical finance literature, where optimal solutions to SEP are linked to robust
pricing and hedging of derivatives, see Hobson [22,23]. More precisely, optimality
of the Root solution translates into lower bounds on prices of options written on the
realised volatility. A more detailed analysis of this application in the single marginal
setting can be found in Cox and Wang [13]. In the financial context, the results in this
paper allow one to incorporate information contained in call prices at times before the
maturity time of the option on realised variance, as well as the call options which have
the same maturity as the variance option.

In recent work Cox and Wang [14] show that the barrier R may be written as the
unique solution to a Free Boundary Problem (FBP) or, more generally, to a Varia-
tional Inequality (VI). This yields directly its representation by means of an optimal
stopping problem. This observation was the starting point for our study here. Sub-
sequently, Gassiat et al. [20] used analytic methods based on the theory of viscosity
solutions to extend Root’s existence result to the case of general, integrable starting
and target measures satisfying the convex ordering condition. Using methods from
optimal transport, Beiglböck et al. [3] have also recently proved the existence and
optimality of Root solutions for one-dimensional Feller processes and, under suitable
assumptions on the target measure, for Brownian motion in higher dimensions.

The first contribution of our paper is to show that one can obtain the barrier R
directly from the optimal stopping formulation, and to prove the embedding property
using purely probabilistic methods. This also allows us to determine a number of
interesting properties of R by means of a time-reversal technique. Our results will
hold for a general one-dimensional diffusion.

Beyond the conceptual interest in deriving the Root solution from the optimal
stopping formulation, the new perspective enables us to address the long–standing
question of extending the Root solution of the Skorokhod embedding problem to the
multiple-marginals case, i.e. given a non-decreasing (in convex order) family of n
probability measures (μ0, . . . , μn) on R with finite first moment, and a diffusion X
started from the measure μ0, find stopping times σ1 ≤ · · · ≤ σn such that Xσi ∼ μi ,
and X .∧σn is uniformly integrable. Our second contribution, and the main result of
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the paper, provides a complete characterisation of such a solution to the SEP which
extends the Root solution in the sense that it enjoys the following two properties:

– First, the stopping times are defined as hitting times of a sequence of barriers,
which are completely characterized by means of a recursive sequence of optimal
stopping problems;

– Second, similar to the one-marginal case, we prove that our solution of themultiple
marginal SEP minimizes the expectation of any non-decreasing convex function
of ρn among all families of stopping times ρ1 ≤ · · · ≤ ρn , such that Xρi ∼ μi .

It is well known that solutions to the multiple marginal SEP exist if and only if
the measures are in convex order, however finding optimal solutions to the multiple
marginal SEP is more difficult. While many classical constructions of solutions to
embedding problems can, in special cases, be ordered (see [27]), in general the ordering
condition is not satisfied except under strong conditions on the measures. The first
paper to produce optimal solutions to the multiple marginal SEP was Brown et al.
[8], who extended the single marginal construction of Azéma and Yor [2] to the case
where one intermediate marginal is specified. More recently, Obłój and Spoida [31]
and Henry-Labordère et al. [21] extended these results to give an optimal construction
for an arbitrary sequence of n marginals satisfying a mild technical condition.

There are also a number of paperswhichmake explicit connections between optimal
stopping problems and solutions to the SEP, including Jacka [24], Peskir [33], Obłój
[30] and Cox et al. [12]. In these papers, the key observation is that the optimal solution
to the SEP can be closely connected to a particular optimal stopping problem; in all
these papers, the same stopping time gives rise to both the optimal solution to the SEP,
and the optimal solution to a related optimal stopping problem. In this paper, we will
see that the key connection is not that the same stopping time solves both the SEP and
a related optimal stopping problem, but rather that there is a time-reversed optimal
stopping problem which has the same stopping region as the SEP, and moreover, the
value function of the optimal stopping problem has a natural interpretation in the SEP.
The first paper we are aware of to exploit this connection is McConnell [28], who
works in the setting of the solution of Rost [37] and Chacon [10] to the SEP (see
also [13,20]), and uses analytic methods to show that Rost’s solution to the SEP has
a corresponding optimal stopping interpretation. More recently1 De Angelis [16] has
provided a probabilistic approach to understanding McConnell’s connection, using a
careful analysis of the differentiability of the value function to deduce the embedding
properties of the SEP; both the papers of McConnell and De Angelis also require
some regularity assumptions on the underlying measures in order to establish their
results. In contrast, we consider the Root solution to the SEP. As noted above, a purely
analytic connection between Root’s solutions to the SEP and a related (time-reversed)
optimal stopping problem was observed in Cox and Wang [14]. In this paper, we are
not only able to establish the embedding problems based on properties of the related
optimal stopping problem, but we are also able to use our methods to prove new results
(in this case, the extension to multiple marginal solutions, and characterisation of the

1 Indeed, we were made aware of this paper only in the final stages of completing this work.
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corresponding stopping regions), without requiring any assumptions on the measures
which we embed (beyond the usual convex ordering condition).

The paper is organized as follows. Section 2 formulates the multiple marginals
Skorokhod embedding problem, reviews the Root solution together with the corre-
sponding variational formulation, and states our optimal stopping characterization of
theRoot barrier. In Sect. 3, we report themain characterisation of themultiplemarginal
solution of the SEP, and we derive the corresponding optimality property. The rest of
the paper is devoted to the proof of the main results. In Sect. 4, we introduce some
important definitions relating to potentials, state the main technical results, and use
these to prove our main result regarding the embedding properties. The connection
with optimal stopping is examined in Sect. 5. Given this preparation, we report the
proof of the main result in Sect. 6 in the case of locally finitely supported measures.
This is obtained by means of a time reversal argument. Finally, we complete the proof
in the case of general measures in Sect. 7 by a delicate limiting procedure.
Notation and standing assumptions In the following, we consider a regular, time-
homogenous, martingale diffusion taking values on an interval I, defined on a filtered
probability space (�,F , (Ft ), P) satisfying the usual hypotheses. For (t, x) ∈ R+ ×
R, we write E

t,x for expectations under the measure for which the diffusion departs
from x at time t . We also write E

x = E
0,x . We use both (Xt ) and (Yt ) to denote the

diffusion process.While X andY denote the same object, the double notation allows us
to distinguish between two interpretations: with a fixed reference time–space domain
R+ × R, we think of (Xt ) as starting in (t, x) and running forward in time and of
(Yt ) as starting in (t, x) and running backwards in time. For a distribution ν on R, we
interpret E

ν[.] = ∫
E
x [.]ν(dx).

We suppose that the diffusion coefficient is η(x), so d〈X〉t = η(Xt )
2dt , where

η is locally Lipschitz, |η(x)|2 ≤ Cη(1 + |x |2), for some constant Cη, and strictly
positive on I◦, where we write I◦ = (aI , bI), and without loss of generality, assume
that 0 ∈ I◦; in addition, we use Ī for the closure of I, and ∂Ī for the boundary,
so ∂Ī = {aI , bI}. We assume that the corresponding endpoints are either absorbing
(in which case they are in I), or inaccessible (in which case, if for example bI is
inaccessible and finite, then P(Xt → bI as t →∞) > 0). The measures we wish to
embed will be assumed to be supported on Ī, and in the case where I �= Ī, it may
be possible to embed mass at ∂Ī by taking a stopping time which takes the value∞.
We define S := [0,∞] × Ī. We note also2 that as a consequence of the assumption
on η, we have E

x
[
X2
t

]
< ∞, and we further write mμ0(t) := E

μ0 |Xt | for suitable
measures μ0.

We will also frequently want to restart the space-time process, given some stopped
distribution in both time and space, and we will write ξ for a general probability
measure on S, with typically ξ ∼ (σ, Xσ ) for some stopping time σ . With this nota-
tion, we have, E

ξ [A] = ∫
E
t,x [A] ξ(dt, dx) and we denote (Tξ , XTξ ) the random

starting point, which then has law ξ . Since ξ may put mass on ∂Ī, we interpret the
process started at such a point as the constant process. For each of these processes,
Lx
t denotes the (semimartingale) local time at x corresponding to the process Xt , with

2 See the proof of Lemma 5.1 below for a suitable argument.
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the convention that Lx
t = 0 for t ≤ Tξ . In addition, given a barrier R, we define the

corresponding hitting time of R by X under P
ξ by:

σR = inf{t ≥ Tξ : (t, Xt ) ∈ R}.

Similarly, given a stopping time σ0 we write

σR(σ0) = inf{t ≥ σ0 : (t, Xt ) ∈ R}.

Finally, we observe that, as a consequence of the (local) Lipschitz property of η, we
know there exists a continuous transition density, p : (0,∞)× I◦ × I◦, so that

E
x [ f (Xt )] =

∫
p(t, x, y) f (y) dy,

whenever f is supported inI (see e.g. [35, TheoremV.50.11]).Weobserve thatwe then
have the following useful identities for the local time (see e.g. [25, Theorem 3.7.1]):

∫ t

0
f (Xs)η

2(Xs) ds =
∫

f (a)La
t da

and

E
y[Lx

t ] = η(x)2
∫ t

0
p(s, y, x) ds. (1.1)

2 The Root solution of the Skorokhod embedding problem

2.1 Definitions

Throughout this paper, we consider a sequence of centred probability measuresμμμn :=
(μi )i=0,...,n on Ī:

∫

I
|x |μi (dx) <∞, and

∫

I
xμi (dx) = 0, i = 0, . . . , n. (2.1)

We similarly denoteμμμk = (μ0, μ1, . . . , μk) for all k ≤ n. We say thatμμμk is in convex
order, and we denote μ0 cx . . . cx μk , if

∫

R

c(x)μi−1(dx) ≤
∫

R

c(x)μi (dx), i = 1, . . . , k for all convex functions c. (2.2)

The lower and the upper bounds of the support of μk relative to μk−1 are denoted by

	k := inf
{
x : μk

[
(−∞, x)

] �= μk−1
[
(−∞, x)

]}
and

rk := sup
{
x : μk

[
(x,∞)

] �= μk−1
[
(x,∞)

]}
. (2.3)
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We exclude the case whereμk = μk−1 as a trivial special case, and so we always have
	k < rk for all k = 1, . . . , n, as a consequence of the convex ordering. The potential
of a probability measure μ is defined by

Uμ(x) := −
∫

R

|x − y|μ(dy); x ∈ R, (2.4)

see Chacon [11]. For centred measures μμμn in convex order, we have

Uμk ≤ Uμk−1 and Uμk = Uμk−1 on (	k, rk)
c, for all k = 1, . . . , n. (2.5)

Recall that (Xt )t∈R+ is a martingale diffusion. A stopping time σ (which may take
the value ∞ with positive probability) is said to be uniformly integrable (UI) if the
process (Xt∧σ )t≥0 is uniformly integrable under P

μ0 . We denote by T the collection
of all UI stopping times.

The classical Skorokhod embedding problem with starting measure μ0 and target
measure μ1 is:

SEP(μμμ1) : find σ ∈ T such that Xσ ∼ μ1 under P
μ0 . (2.6)

We consider the problem with multiple marginals:

SEP(μμμn) : find 0 ≤ σ1 · · · ≤ σn ∈ T such that Xσk ∼ μk, k = 1, . . . , n under P
μ0 .

(2.7)

In this paper, our interest is in a generalisation of the Root [36] solution of the Sko-
rokhod embedding problem so that each stopping time σk is the first hitting time, after
σk−1, by (t, Xt )t≥0 of some subset R in S. Further, and crucially, we require that R
is a barrier in the following sense:

Definition 2.1 A set R ⊂ S is called a barrier if

– R is closed;
– if (t, x) ∈ R then (s, x) ∈ R for all s ≥ t ;
– if x ∈ {aI , bI} is finite, (0, x) ∈ R.

Given a barrierR, for x ∈ Ī, we define the corresponding barrier function:

tR(x) := inf{t ≥ 0 : (t, x) ∈ R} ∈ [0,∞]. (2.8)

SinceR is closed it follows, as observed by Root [36] and Loynes [26], that tR(·)
is lower semi–continuous on I. Also, from the second property, we see that a barrier
is the epigraph of the corresponding barrier function in the (t, x)-plane:

R = {
(t, x) ∈ R+ × I : t ≥ tR(x)

}
.
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Definition 2.2 (i) We say that a barrier is regular if {x ∈ I◦ : tR(x) > 0} is an open
interval containing zero.

(ii) For a probability measure ξ = ξ(dt, dx) on S, we say that a barrier is ξ -regular
if

P
ξ
[
σR = σR(t,x)

]
< 1for all(t, x) /∈ R, where R(t,x) = R ∪ ([t,∞)× {x}) ,

i.e. the barrier cannot be enlarged without altering the stopping distribution of the
space-time diffusion started with law ξ and run to the hitting of R.

Observe that a regular barrier is a δ(0,0)-regular barrier. We have the following
characterisation:

Remark 2.3 A barrier R is ξ -regular if and only if E
ξ
[
Lx
t∧σR

]
< E

ξ
[
Lx

σR
]
for all

(t, x) /∈ R.

Lemma 2.4 Let ξ be a probability measure on S and R a barrier such that
infx∈I tR(x) < ∞. Then σR < ∞ or limt→∞ Xt ∈ {aI , bI} P

ξ -a.s. Further, if
R is not ξ -regular then there exists a ξ -regular barrier R̃ ⊇ R such that XσR ∼ XσR̃
P

ξ -a.s.

Proof For some x0 ∈ I, we have tR(x0) < ∞ and {(t, x) : t ≥ tR(x0)} ⊂ R. If
I = R then lim supt Xt = ∞ and lim inf Xt = −∞ and it is clear that σR < ∞
P

ξ -a.s. Otherwise limt→∞ Xt ∈ {aI , bI} . IfR is not ξ -regular then by definition the
set of all barriers R̃ for which XσR ∼ XσR̃ P

ξ -a.s. is not a singleton. Then for any

two such barriers R̃1, R̃2 their union is also such a barrier, as shown by Loynes [26].
It follows that there exists a minimal such barrier with respect to the inclusion which
then necessarily has to be ξ -regular. ��

It follows that, without loss of generality, we may restrict our attention to ξ -regular
barriers. Henceforth, whenever a barrier is given it is assumed that it is a ξ -regular
barrier, where the measure ξ will be clear from the context.

2.2 Root’s solution and its PDE characterisation

The main result of Root [36] is the following.

Theorem 2.5 (Root [36]) Let μ0 = δ0, η(x) ≡ 1, and μ1 be a centred probability
measure on R with a finite second moment. Then there exists a barrier R∗ such that
σR∗ is a solution of SEP (μμμ1).

The first significant generalisation of this result is due to Root [38] who showed
that the result generalised to transient Markov processes under certain conditions. The
condition that the probability measure μ1 has finite second moment has only very
recently been further relaxed to the more natural condition that the measure has a
finite first moment. This was first achieved by Gassiat et al. [20], who have extended
Root’s result to the case of one-dimensional (time-inhomogeneous) diffusions using
PDE methods. The result was also obtained by Beiglböck [3] using methods from
Optimal Transport theory.
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218 A. M. G. Cox et al.

Remark 2.6 Loynes [26] showed, as used above in Lemma 2.4, that in Theorem 2.5
the barrier can be taken to be regular and is then unique.

We next recall the recent work of Cox and Wang [14] and Gassiat et al. [20]. For
a function u : (t, x) ∈ R+ × R �−→ u(t, x) ∈ R, we denote by ∂t u the t-derivative,
Du, D2u the first and second spacial derivatives, i.e. with respect to the x-variable,
and we introduce the (heat) second order operator

Lu := −∂t u + 1

2
η2D2u. (2.9)

Consider the variational inequality or obstacle problem:

min
{− Lu , u −Uμ1

} = 0 and u(0, ·) = Uμ0 . (2.10)

Then, based on the existence result of Root [36] and Cox and Wang [14] proved
the following result.

Theorem 2.7 ([14, Theorem 4.2] and [20, Theorem 2]) Letμμμ1 = (μ0, μ1) be centred
probability measures on R in convex order. Then, there is a unique solution u1 of
(2.10) which extends continuously to [0,∞]×[−∞,∞], and the Root solution of the
SEP(μμμ1) is induced by the regular barrier

R∗ = {
(t, x) ∈ [0,∞] × [−∞,∞] : u1(t, x) = Uμ1(x)

}
.

Moreover, we have the representation u1(t, x) = −E
∣
∣Xt∧σR∗ − x

∣
∣, for all t ≥ 0, x ∈

R.

In Cox and Wang [14], the solution to the variational inequality was determined as
a solution in an appropriate Sobolev space, while Gassiat et al. [20] show that the
solution can be understood in the viscosity sense.

2.3 Optimal stopping characterisation

The objective of this paper is to provide a probabilistic version of the last result, and
its generalisation to the multiple marginal problem. Our starting point is the classical
probabilistic representation of the solution to (2.10) as an optimal stopping problem.
Define now

u1(t, x) := sup
τ∈T t

J 1t,x (τ )with

J 1t,x (τ ) := E
x[Uμ0(Yτ )+ (Uμ1 −Uμ0)(Yτ )1{τ<t}

]
, (2.11)

where T t is the collection of all (Ft )–stopping times τ ≤ t . Then, using classical
results, see e.g. Bensoussan and Lions [6], when properly understood, u1 in (2.11) is
a solution to (2.10). Uniqueness, in an appropriate sense, of solutions to (2.10), then
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The Root solution to the multi-marginal embedding problem… 219

allows to deduce that the characterisation of the Root barrier given in Theorem 2.7
corresponds to the stopping region of the optimal stopping problem (2.11)

R1 := {
(t, x) ∈ [0,∞] × [−∞,∞] : u1(t, x) = Uμ1(x)

}
. (2.12)

The probabilistic approach we develop in this paper provides a self-contained con-
struction of the Root solution, and does not rely on the existence result of Root [36]
or PDE results. Indeed, these follow from the following direct characterisation which
is a special case of Theorem 3.1 below.

Theorem 2.8 Let μμμ1 = (μ0, μ1) be centred probability measures on Ī in convex
order. Then,R1 defined by (2.11) and (2.12) is the regular barrier inducing the Root
solution of the SEP(μμμ1). Moreover,

u1(t, x) = −E
μ0

∣
∣Xt∧σR1 − x

∣
∣, for all t ≥ 0, x ∈ R.

3 Multiple marginal Root solution of the SEP: main results

3.1 Iterated optimal stopping and multiple marginal barriers

In order to extend the Root solution to the multiple marginals SEP(μμμn), we now intro-
duce the following natural generalisation of the previous optimal stopping problem.
Denote

δUk(x) := Uμk (x)−Uμk−1(x), and u0(t, x) := Uμ0(x), t ∈ [0,∞], x ∈ Ī.

The main ingredient for our construction is the following iterated sequence of optimal
stopping problems:

uk(t, x) := sup
τ∈T t

J kt,x (τ ) where J kt,x (τ )

:= E
x
[
uk−1(t − τ,Yτ )+ δUk(Yτ )1{τ<t}

]
, 1 ≤ k ≤ n. (3.1)

The stopping regions corresponding to the above sequence of optimal stopping prob-
lems are given by:

Rk := {
(t, x) ∈ S : δuk(t, x) = δUk(x)

}
with

δuk := uk − uk−1, k = 1, . . . , n, (3.2)

and the optimal stopping time which solves (3.1) is the first entry to Rk by the time
space process starting in (t, x) and running backwards in time: τ t (k) := inf{s ≥ 0 :
(t − s,Ys) ∈ Rk} ∧ t .

Our main result shows that the same barriers used to stop the process running
forward in time:

σ0 = 0, σk := σRk (σk−1) = inf
{
t ≥ σk−1 : (t, Xt ) ∈ Rk}, k = 1, . . . , n, (3.3)
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220 A. M. G. Cox et al.

give the multiple marginals Root solution of SEP(μμμn). It is important to note that the
barriers in (3.2) are not necessarily nested—both Rk and Rk−1 may contain points
which are not in the other barrier.

An example of a possible sequence of stopping times is depicted in Fig. 1. Since
the barriers are not necessarily nested, in general σk will not be equal to the first entry
time to the barrier, only the first entry time after σk−1. It may also be the case that
σk−1 = σk . Both cases are shown in Fig. 1.

Finally, it will be useful to introduce the (time–space) measures on S defined for
all Borel subsets A of S by:

ξ k[A] := P
μ0

[
(σk, Xσk ) ∈ A

]
, k = 0, . . . , n.

We are now ready to state our main result, which includes Theorem 2.8 as a special
case.

Theorem 3.1 Letμμμn be a vector of centred probability measures on Ī in convex order.
Then Rk is a ξ k−1-regular barrier for all k = 1, . . . , n, and (σ1, σ2, . . . , σn) solves
SEP(μμμn). Moreover, we have

uk(t, x) = −E
μ0

∣
∣Xt∧σk − x

∣
∣, for all t ≥ 0, x ∈ Ī, k = 1, . . . , n. (3.4)

Our proof will proceed by induction. Its main ingredients will be summarised in
Sect. 4.

t

x

σ1 = σ2 σ3

R1 R2 R3

Fig. 1 A realisation of a Root-type solution to the multiple marginal problem. Here we depict three barriers
which are not ordered (in the sense that R1

� R2
� R3). As a result, the given realisation can enter the

second and third barriers before the first stopping time. Note also that since the first stopping time, σ1,
happens at a point which is also inside the second barrier, we have here σ1 = σ2
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Remark 3.2 In general, explicit examples of Root-type solutions to the SEP (and
by extension, its multi-marginal version) are hard to find. In fact, to the best of our
knowledge, even for the one-marginal problem in a standard Brownian setting, the
only cases where an explicit barrier can be computed are measures supported on two
points and Gaussian marginals. In some cases, the barrier can be characterised as the
solution to an integral equation, see Gassiat et al. [19]. As a result, numerical methods
seem to be the only viable approach for explicit computation of Root-type barriers.
A natural consequence of Theorem 3.1 is that numerical approaches to the multiple
stopping problem can be used to find solutions to the SEP.

3.2 Optimality

In this section, we show optimality of the constructed n-fold Root solution of the
multiple marginal Skorokhod embedding problem. We recall the main ingredients of
our embedding defined in (3.1)–(3.3). We also denote tk := tRk . Define the set of all
solutions to SEP(μμμn) in (2.7):

T (μμμn) :=
{
ρ = (ρ1, . . . , ρn) ∈ T n : ρ1 ≤ · · · ≤ ρn, and Xρi ∼ μi , i = 1, . . . , n

}
.

For a given function f : R −→ R+ we consider the optimal n-fold embedding
problem:

inf
ρ∈T (μμμn)

E
μ0

[ ∫ ρn

0
f (t)dt

]
. (3.5)

Theorem 3.3 Letμμμn be a vector of centred probability measures on Ī in convex order
and f a non-negative non-decreasing function. Then the n-tuple σ = (σ1, . . . , σn) in
(3.3) is a solution of (3.5):

σ ∈ T (μμμn) and E
μ0

[ ∫ σn

0
f (t)dt

]
≤ E

μ0
[ ∫ ρn

0
f (t)dt

]
for all ρ ∈ T (μμμn).

The above remains true for any stopping times ρ1, . . . , ρn which embed μμμ since if ρ

is not uniformly integrable then it is not minimal, see [29, Sect. 8], and we can find
smaller stopping times ρ̃ ∈ T (μμμn) for which the above bound is already satisfied.

Similar to many proofs of optimality of particular solutions to SEP, see e.g. Hobson
[23], Cox et al. [12] and Henry-Labordère et al. [21], at the heart of our argument
lies identification of a suitable pathwise inequality. Interpreting (3.5) as an iter-
ated Martingale Optimal Transport problem, the pathwise inequality amounts to an
explicit identification of the dual optimiser in the natural Kantorovich-type duality.
Our inequality is inspired by the one developed by Cox and Wang [14].

For all (t, x) ∈ R+ × Ī and k = n, . . . , 0, we introduce the functions
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ϕn+1(t, x) := f (t), ϕk(t, x) := E
t,x[ϕk+1

(
σRk , XσRk

)]
,

φk(x) :=
∫ x

0
ϕk(0, y)η(y)−2dy, ψ(x) := 2

∫ x

0

∫ y

0
η(z)−2 dz.

Our main result below involves the following functions:

hk(t, x) :=
∫ t

0
ϕk(s, x)ds − 2

∫ x

0
φk(y)dy, and

λk(x) := (hk+1 − hk)
(
tk(x), x

)
, (t, x) ∈ R+ × I. (3.6)

Lemma 3.4 Let f be a non-negative non-decreasing function. Then for all
(si , xi )0≤i≤n ⊂ R+ × Ī, with 0 = s0 ≤ s1 ≤ · · · ≤ sn, we have:

∫ sn

0
f (t)dt ≥

n∑

i=1
λi (xi )+ h1(s0, x0)

+
n∑

i=1

[
hi (si , xi )− hi (si−1, xi−1)

]− ψ(xn) f (0), (3.7)

and equality holds if (si , xi ) ∈ Ri for i = 1, . . . , n.

The proof of the above inequality is entirely elementary, even if not immediate, and is
reported in “Appendix A”. The optimality in Theorem 3.3 then essentially follows by
evaluating the above on stopped paths (ρi , Xρi ) and taking expectations. Technicalities
in the proof are mainly related to checking suitable integrability of various terms and
the proof is also reported in “Appendix A”.

Finally, we note that the above pathwise inequality could be evaluated on paths
of arbitrary martingale and, after taking expectations, would lead to a martingale
inequality. The inequality would be sharp in the sense that we have equality for X
stopped at σ in (3.3). This method of arriving at martingale inequalities is linked
to the so-called Burkholder method, see e.g. Burkholder [9], and has been recently
exploited in number of works, see e.g. Acciaio et al. [1], Beiglböck and Nutz [4] and
Obłój et al. [32].

4 The inductive step

In this section we outline the main ideas behind the proof of Theorem 3.1. The proof
proceeds by induction. At the end of each step in the induction, we will determine a
stopping time σ ξ , and the time–space distribution ξ , which corresponds to the distri-
bution of the stopped process (σ ξ , Xσξ ) under the starting measure μ0. This measure
will be the key part of the subsequent definitions. Given this stopping time, and a
new law β, we proceed to determine a new stopping time σ ξβ

, and the corresponding
time–space distribution ξβ . This stopping time will embed the law β. This inductive
step is summarised in Theorem 4.1 below.
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The Root solution to the multi-marginal embedding problem… 223

This stopping timeσ ξβ
is constructed as the solution of an optimal stopping problem

uβ , introduced below, with obstacle function appropriately defined by combining the
potential function vξ of the stopped process X .∧σξ and the difference of potentials
between the starting distribution—the spatial marginal of ξ denoted αξ—and the
target distribution β. We will also show that the function uβ is equal to the potential
function vξβ

, allowing us to iterate the procedure.
We now introduce the precise definitions. The measureμ0 will be a fixed integrable

measure throughout, and so we will typically not emphasise the dependence of many
terms on this measure.

Let ξ be the P
μ0 -time–space distribution of (σ ξ , Xσξ ) for some UI stopping time

σ ξ ∈ T . The stopped potential vξ is defined as the P
μ0 -potential of Xt∧σξ :

vξ (t, x) := −E
μ0

[|Xt∧σξ − x |], t ≥ 0, x ∈ Ī. (4.1)

Motivated by the iterative optimal stopping problems (3.1), we also introduce, for
any probability measure β on Ī, the difference of potentials

wβ := Uβ −Uαξ

where αξ (A) := ξ([0,∞)× A), A ∈ B(Ī),

and αξ cx β is equivalent to wβ ≤ 0. Moreover, since σ ξ is UI, we have

μ0 cx αξ , vξ (0, .) = Uμ0 , and vξ (t, .)↘ vξ (∞, .) := Uαξ

pointwise as t ↗∞.

(4.2)

The optimal stopping problem which will serve for our induction argument is:

uβ(t, x) := sup
τ∈T t

E
x [

vξ (t − τ,Yτ )+ wβ(Yτ )1{τ<t}
]

t ≥ 0, x ∈ Ī. (4.3)

We also introduce the corresponding stopping region

Rβ := {
(t, x) : uβ(t, x) = vξ (t, x)+ wβ(x)

}
, (4.4)

and we set

σ ξβ := inf{t ≥ σ ξ : (t, Xt ) ∈ Rβ}, and

ξβ [A] := P
ξ
[
(σ ξβ

, XσRβ ) ∈ A
]
for all A ∈ B(S). (4.5)

Theorem 4.1 Let σ ξ ∈ T with corresponding time–space distribution ξ , and β an
integrable measure such that β �cx αξ . Then σ ξβ

is a UI stopping time embedding β

and uβ = vξβ
. Moreover, Rβ is a ξβ -regular barrier.

We now show that Theorem 3.1 follows from Theorem 4.1.
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Proof of Theorem 3.1 Consider the first marginal. Let ξ = δ0 ⊗ μ0 so that σ ξ = 0,
αξ = μ0, and let β = μ1. Then vξ (t, x) = Uμ0(x) and uβ,Rβ in (4.3) and (4.4) are
equal to, respectively, u1,R1 in (3.1) and (3.2). It follows from Theorem 4.1 that the
stopping time σ1 = σ ξβ

induced byR1 = Rβ is a UI stopping time solving SEP(μμμ1)

and u1 = uβ = vξβ
, as required. We next iterate the arguments. Given the UI stopping

time σk from the kth step with its space-time measure ξ we know that vξ = uk so that,
with β = μk+1, we have uβ = uk+1 andRβ = Rk+1. Applying Theorem 4.1 we get
that σk+1 embeds μk+1, is UI and vξβ = uk+1 as required. The proof finishes after n
iterations. ��

The rest of this paper is dedicated to the proof of Theorem 4.1. The following result
isolates the main steps needed for this.

Lemma 4.2 Letσ ξ ∈ T with corresponding time–space distribution ξ , andαξ cx β.
Assume further that uβ(t, .) −→ Uβ , pointwise as t ↗∞, and uβ = vξβ

. Then, σ ξβ

is a UI stopping time embedding β.

Proof From the assumptions and the definition of vξβ
we obtain

−Uβ(x) = − lim
t→∞ vξβ

(t, x) = lim
t→∞E

μ0
[|X

t∧σξβ − x |]

≥ E
μ0

[|X
σξβ − x |] = −Uαξβ

(x),

where the inequality follows from Fatou’s Lemma. This in particular implies that

αξβ
is an integrable probability measure on Ī, Uαξβ

(x) > −∞ for all x ∈ Ī, and
U ξβ

(x) − |x − mαξβ | −→ 0 as x → ∂Ī, where mαξβ := ∫
xαξβ

(dx). Since also

U ξβ
(x)−|x−mβ | −→ 0 as x → ∂Ī,wededuce from the above inequalityUβ ≤ Uαξβ

thatmαξβ = mβ , and therefore |Uαξβ

(x)−Uβ(x)| → 0 as x → ∂Ī. Then for x, y ∈ Ī,
it follows from the dominated convergence theorem that

Uβ(x)−Uβ(y) = lim
t→∞

[
vξβ

(t, x)− vξβ

(t, y)
]

= lim
t→∞E

μ0
[|X

t∧σξβ − y| − |X
t∧σξβ − x |]

= E
μ0

[|X
σξβ − y| − |X

σξβ − x |]

= Uαξβ

(x)−Uαξβ

(y).

In particular, Uβ(x) = Uαξβ

(x)+ c for some c ∈ R, for all x ∈ Ī, and by the above,
sending x → ∂Ī, we see that c = 0. We conclude that αξβ = β, i.e. X

σξβ ∼ β, which
is the required embedding property. Moreover, it follows from the Tanaka formula
together with the monotone convergence theorem that

Uβ(x) = Uαξβ

(x) = −E
μ0

[|X
σξβ − x |] = Uμ0(x)− E

μ0
[
Lx

σξβ

]
, for all x ∈ Ī.
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The uniform integrability of the stopping time σ ξβ
now follows from [18, Corol-

lary 3.4]. ��
The pointwise convergence of uβ(t, .) towards Uβ , as t → ∞ will be stated in

Lemma 5.5 (iii), while the equality uβ = vξβ
is more involved and will be shown

through a series of results, see Lemma 7.3.

Remark 4.3 We have uβ = vξβ
if and only if (vξ − uβ)(t, x) = E

ξ
[
Lx
t∧σRβ

]
, for all

t ≥ 0, x ∈ Ī. Indeed, by the Tanaka formula,

vξβ

(t, x) = Uμ0(x)− E
μ0

[
Lx
t∧σξβ

]
= vξ (t, x)− E

μ0
[
Lx
t∧σξβ − Lx

t∧σξ

]
.

Recalling that, under P
ξ , σRβ = inf{t > Tξ : (t, Xt ) ∈ Rβ}, and (under P

μ0 ),

σ ξβ = inf{t > σξ : (t, Xt ) ∈ Rβ}. Recall that, under P
ξ , the local time is set to

Lx
t = 0 for t ≤ Tξ , by convention. Then from the strong Markov property, we have

E
μ0

[
Lx
t∧σξβ − Lx

t∧σξ

]
= E

(σ ξ ,X
σξ )

[
Lx
t∧σRβ

]
= E

ξ
[
Lx
t∧σRβ

]
, and therefore:

vξβ

(t, x) = vξ (t, x)− E
ξ
[
Lx
t∧σRβ

]
, (4.6)

justifying the claimed equivalence.

Remark 4.4 Observe that the regularity of the barrier can now be seen as an easy
consequenceofLemma4.2. Suppose (in the settingofTheorem4.1),wehaveuβ = vξβ

and uβ(t, .) → Uβ pointwise as t → ∞. From (4.6), (4.2) and applying monotone

convergence to E
ξ
[
Lx
t∧σRβ

]
as t →∞, we deduce that

E
ξ
[
Lx

σRβ

]
= Uαξ

(x)−Uβ(x) = −wβ(x).

Now suppose that (t, x) /∈ Rβ . Then E
ξ
[
Lx

σRβ

]
= −wβ(x) > (vξ − uβ)(t, x) =

(vξ − vξβ
)(t, x) = E

ξ
[
Lx
t∧σRβ

]
, by (4.6). In view of Remark 2.3, this shows thatRβ

is ξ -regular.

5 Stopped potential and the optimal stopping problem

5.1 Properties of the stopped potential function

The following lemma provides some direct properties of the stopped potential. Recall
the definition mμ(t) := E

μ |Xt |. We say that a function which is Lipchitz continuous
with constant K is a K -Lipschitz function.
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Lemma 5.1 Let σ ξ ∈ T with corresponding time–space distribution ξ . Then, vξ is
concave and 1-Lipschitz-continuous in x, and non-increasing, and vξ (t, x) is (uni-
formly in x) 1

2 -Hölder continuous on [0, T ] for all T > 0. In addition

0 ≤ Uμ0(x)− vξ (t, x) = E
μ0

[
Lx
t

]− E
ξ
[
Lx
t

] ≤ √
2Cηt mμ0(t)e

Cηt ,

and the following identity holds in the distribution sense:

(
Lvξ

)
(t, dx) = −

∫ t

0
η(x)2 ξ(ds, dx); t ≥ 0, x ∈ Ī,

by which we mean that, for any stopping time σ ≤ t , we have

E
x [

vξ (t − σ,Yσ )
]− vξ (t, x) = −E

x
[∫ σ

0
η(Ys)

2 ds
∫ s

0
δYs (y) ξ(dr, dy)

]

(5.1)

= −
∫ t

0

∫

Ī
qσ (t − s, y)η(y)2

∫ s

0
ξ(dr, dy) ds

whereqσ is the space-timedensity of the process Ys (started at t and runningbackwards
in time) up to the stopping time σ .

Proof The definition of vξ (t, x) in (4.1) immediately shows that vξ is concave, 1-
Lipschitz in x , and non-increasing in t . As in Remark 4.3 above, using Tanaka’s
formula and the strong Markov property we obtain

vξ (t, x) = Uμ0(x)− E
μ0 [Lx

t∧σξ ] = Uμ0(x)− E
μ0 [Lx

t ] + E
μ0 [(Lx

t − Lx
σξ )1{σξ≤t}]

= Uμ0(x)− E
μ0 [Lx

t ] + E
ξ [Lx

t ]
= Uμ0(x)− E

μ0 [Lx
t ] +

∫

[0,t]×Ī
E
y [

Lx
t−s

]
ξ(ds, dy).

(5.2)
We now consider continuity properties of E

y
[
Lx
t

]
. First observe that, by the mar-

tingale property of Xt , we have

E
y
[
(Xt − x)2

]
= E

y
[
(Xt − y)2

]
+ (x − y)2.

Using the fact that η(x)2 ≤ Cη(1+|x |2) and the martingale property of X , we deduce

E
y
[
(Xt − y)2

]
≤ E

y
[∫ t

0
η(Xs)

2 ds

]

≤ CηE
y
[∫ t

0

(
1+ |Xs |2

)
ds

]
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≤ Cη

(

t + 2E
y
[∫ t

0

[
(Xs − y)2 + y2

]
ds

])

≤ 2Cη

(

t (1+ y2)+ E
y
[∫ t

0
(Xs − y)2 ds

])

,

where the first inequality follows via localisation and limiting argument using Fatou’s
lemma and monotone convergence. It now follows by Grönwall’s lemma that

E
y
[
(Xt − y)2

]
≤ 2Cη(1+ y2)te2Cηt ,

from which we deduce that

E
y [

Lx
t

] = E
y |Xt − x |−|x−y| ≤

√
Ey

[
(Xt − x)2

]−|x−y| ≤ √
2Cηt (1+|y|)eCηt .

(5.3)

Writing E
μ0

[
Lx
t ′
]− E

μ0
[
Lx
t

] = E
μ0

[
E
Xt

[
Lx
t ′−t

]]
for t < t ′ ≤ T , we see that

E
μ0

[
Lx
t ′
]− E

μ0
[
Lx
t

] ≤
√
2Cη(t ′ − t) (1+ mμ0(t))e

Cη(t ′−t)

≤
√
2Cη(t ′ − t) (1+ mμ0(T ))eCη(t ′−t)

and we deduce that vξ (x, t) is 1
2 -Hölder continuous on [0, T ]. Equation (5.3) also

provides the inequality

vξ (t, x) ≥ Uμ0(x)− E
μ0

[
Lx
t

] ≥ Uμ0(x)−√
2Cηt (1+ mμ0(t))e

Cηt .

It remains to compute Lvξ . First, since vξ is non-increasing in t and concave in
x , the partial derivatives ∂tv

ξ and D2v are well-defined as distributions on Ī, so Lvξ

makes sense in terms of measures.
We first consider the case where η is suitably differentiable (say smooth). Note

that by a monotone convergence argument, we can restrict to the case where
Y remains in a compact subinterval of I◦ up to σ , and hence is bounded. Let
p(t, x, y) be the transition density for the diffusion and recall that E

y
[
Lx
t

] =
η(x)2

∫ t
0 p(r, y, x)dr . It follows that for an arbitrary starting measure ν, we have

E
ν
[
Lx
t

] = ∫
ν(dy)η(x)2

∫ t
0 p(r, y, x)dr , and we directly compute (using Kol-

mogorov’s Forward Equation, which holds due to the smoothness assumption on η)
that

LE
ν
[
Lx
t

] =
∫

ν(dy)
(
− η(x)2 p(t, y, x)+η(x)2

∫ t

0

1

2
D2

(
η(x)2 p(r, y, x)

)
dr

)

=
∫

ν(dy)η(x)2
(
− p(t, y, x)+

∫ t

0
∂t p(r, y, x) dr

)

= −η(x)2
∫

ν(dy)p(0, y, x) = −η(x)2ν(dx) = 1

2
η(x)2D2U ν(dx).
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Suppose in addition that ξ has a smooth density with respect to Lebesgue measure
(which we also denote by ξ ). We then compute from (5.2) and the equation above that

Lvξ (t, dx) = L
∫ t

0

∫

Ī
E
s,y[Lx

t

]
ξ(s, y) ds dy = L

∫ t

0

∫

Ī
E
y[Lx

t−s
]
ξ(s, y) ds dy

= −
∫ t

0

∫

Ī
η(x)2δ{y}(dx)ξ(s, y) ds dy = −

∫ t

0
η(x)2ξ(s, x) ds dx .

Applying Itô’s lemma, we see that

E
x [

vξ (t − σ,Yσ )
] = vξ (t, x)− E

x
[∫ σ

0

∫ s

0
η(Ys)

2ξ(r,Ys) dr ds

]

= vξ (t, x)−
∫ t

0

∫

Ī
qσ (t − s, y)η(y)2

∫ s

0
ξ(dr, dy) ds. (5.4)

We now argue that our results hold for an arbitrary, locally Lipschitz function η.
Keeping ξ fixed as above, with a smooth density, let ηn be a sequence of Lipschitz
functions obtained from η by mollification. Note that since we are on a compact
interval, η and hence ηn are all bounded and from the mollification, we may assume
that there exists K such that η, ηn are all K -Lipschitz; moreover ξ is bounded on the
corresponding compact time–space set.

Write Yn for the solution to the SDE dY n
t = ηn(Yn

t ) dWt , and note in particular, by
standard results for SDEs (e.g. [34, Theorem V.4.15]) that supr∈[0,t] |Yn

r − Yr | → 0
almost surely (possibly after restricting to a subsequence), and inL1 asn→∞.Hence,
by bounded convergence, we get convergence of the corresponding expectations on
the right-hand side of (5.4), as n → ∞. In addition, writing vξ,n for the functions
corresponding to the diffusions Yn , we see from the first half of the proof that the
functions vξ,n, vξ are 1-Lipschitz in x , and uniformly Hölder continuous in t , for
some common Hölder coefficient. It follows from the Arzelà-Ascoli theorem that vξ,n

converge uniformly (possibly down a subsequence) to vξ . We deduce that (5.1) holds
for general η and smooth ξ .

Finally, approximating the measure ξ by smooth measures through a mollification
argument, and observing that the local times for the diffusion are jointly continuous
in x and t (by (1.1) and the discussion preceeding this equation) we conclude that we
can pass to the limit on the right-hand side of (5.2), and hence on the left-hand side of
(5.1). On the other hand, when qσ is continuous, we can also pass to the limit on the
right-hand side of (5.1). Moreover we can approximate σ by a sequence of stopping
times σ n ↘ σ such that qσ n has a continuous density, and this gives us the required
result after a monotone convergence argument. ��

For the next statement, we introduce the processes

V t := {
V t
s := vξ (t − s,Ys), s ∈ [0, t]

}
, t ∈ [0,∞], (5.5)

where V∞ is defined through vξ (∞, x) = Uαξ
(x) as in (4.2), i.e. V∞s = Uαξ

(Ys).
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Lemma 5.2 Let σ ξ ∈ T with corresponding time–space distribution ξ . Then the
processes V t and V t ′ − V t are P

x -supermartingales for all t ≤ t ′ ≤ ∞, and x ∈ Ī.

Proof In this proof we will want to take expectations with respect to both the X and Y
processes at the same time; we will assume that these are defined on a product space,
where the processes are independent. Then we will denote expectation with respect
to the X process alone by E

μ
X [A], etc, and the filtrations generated by the respective

processes by F X
s and FY

s .
We first prove the supermartingale property for the process V t . The case t = ∞ is

an immediate consequence of the Jensen inequality. Next, fix t ∈ [0,∞), and recall
that vξ (t, x) = −E

μ0
X

∣
∣Xt∧σξ − x

∣
∣ for t ≥ 0, x ∈ Ī. Then we need to show, for

0 ≤ u ≤ s,

−E
ν0
Y

[
E

μ0
X

[|X(t−s)∧σξ − Ys |
] ∣
∣FY

u

]
≤ −E

μ0
X

∣
∣X(t−u)∧σξ − Yu

∣
∣ .

Using Hunt’s switching identity (e.g. [7, Theorem VI.1.16]) we have

E
y
Y |x − Ys−u | = E

x
X |Xs−u − y| .

Using the Strong Markov property, and using Ỹ , Ẽ to denote independent copies of
Y etc., we deduce

−E
ν0
Y

[
E

μ0
X

[|X(t−s)∧σξ − Ys |
] ∣
∣FY

u

]
= −E

μ0
X

[
Ẽ
Yu
Y

∣
∣
∣X(t−s)∧σξ − Ỹs−u

∣
∣
∣
]

= −E
μ0
X

[

Ẽ
X

(t−s)∧σξ

X

∣
∣
∣X̃(s−u) − Yu

∣
∣
∣

]

= −E
μ0
X

[∣∣X(t−s)∧σξ+(s−u) − Yu
∣
∣]

≤ −E
μ0
X

[∣∣X(t−u)∧σξ − Yu
∣
∣]

where, in the final line, we used Jensen’s inequality and the fact that (t − s) ∧ σ ξ +
(s − u) ≥ (t − u) ∧ σ ξ .

Now suppose t ′ ≥ t , and consider V t ′
s −V t

s for 0 ≤ s ≤ t ≤ t ′. A similar calculation
to that above shows that for u ≤ s,

E
ν0
Y

[
V t ′
s − V t

s |FY
u

]
= E

μ0
X

[∣∣X(t−s)∧σξ+(s−u) − Yu
∣
∣− ∣

∣X(t ′−s)∧σξ+(s−u) − Yu
∣
∣]

= E
μ0
X

[∣∣X(t−u)∧σ̃ − Yu
∣
∣− ∣

∣X(t ′−u)∧σ̃ − Yu
∣
∣] ,

where σ̃ := σ ξ+(s−u). Note that for any r ′ > r , the process |Xr∧u− y|−|Xr ′∧u− y|
is a supermartingale for u ≥ 0. It follows that, since σ ξ ≤ σ̃ ,
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E
ν0
Y

[
V t ′
s − V t

s |FY
u

]
= E

μ0
X

[∣
∣X(t−u)∧σ̃ − Yu

∣
∣− ∣

∣X(t ′−u)∧σ̃ − Yu
∣
∣
]
,

≤ E
μ0
X

[∣∣X(t−u)∧σξ − Yu
∣
∣− ∣

∣X(t ′−u)∧σξ − Yu
∣
∣]

= V t ′
u − V t

u .

��

5.2 The optimal stopping problem

In this section we derive some useful properties of the function uβ(t, x). We first state
some standard facts from the theory of optimal stopping. Introduce

τ t := inf{s ≥ 0 : (t − s,Ys) ∈ Rβ} ∧ t, for all t ≥ 0. (5.6)

Proposition 5.3 Let σ ξ ∈ T with corresponding time–space distribution ξ , and
αξ cx β. Then for all (t, x) ∈ S, τ t ∈ T t is an optimal stopping rule for the
problem uβ in (4.3):

uβ(t, x) = E
x [

vξ (t − τ t ,Yτ t )+ wβ(Yτ t )1{τ t<t}
]
, (5.7)

and the process
(
uβ(t − s,Ys)

)
is a P

x -martingale for s ∈ [0, τ t ] and a P
x -

supermartingale for s ∈ [0, t].
Proof Recall that under P

t,x the diffusion Yr , r ≥ t departs from x at time t , and when
t = 0, we write P

0,x = P
x . Then we have for 0 ≤ s ≤ t :

uβ(t − s, x) = ut (s, x) := sup
s≤τ≤t

E
s,x[vξ (t − τ,Yτ )+ wβ(Yτ )1{τ<t}

]
. (5.8)

Notice that ut (s, x) is a classical optimal stopping problem with horizon t , and obsta-
cle Zs := vξ (t − s, Ys) + wβ(Ys)1{s<t}, s ∈ [0, t], satisfying the condition of upper
semicontinuity under expectation, i.e. lim supn→∞ E

x [Zθn ] ≤ E
x [Zθ ] for any mono-

tone sequence of stopping times θn converging to θ . Under this condition, it is proved
in El Karoui [17] that the standard results of optimal stopping holds true. In particular,
the process

(
uβ(t − s,Ys)

)
s≤t satisfies the announcedmartingale and supermartingale

properties, and an optimal stopping time for the problem ut (0, x) = uβ(t, x) is

t ∧ inf
{
s ≥ 0 : ut (s,Ys) = vξ (t − s,Ys)+ wβ(Ys)

}
,

which is exactly τ t . ��
Remark 5.4 Note that, taking τ = t in (4.3), uβ(t, x) ≥ E

x [Uμ0(Yt )] = Uμ0(x) +
E
x
[∫

Uμ0 ′′(dy)Ly
t
] := Ut (x). Suppose ([0, t] × I◦) ∩ Rβ = ∅ then, from (5.7),

uβ(t, x) = Ut (x) > Uβ(x) for all x ∈ R. We now consider the cases where I = R,
Ī = (−∞, bI ], bI <∞ and Ī = [aI , bI ] a finite interval separately.

In the case where I = R, we have E
x
[
Ly
t
]→∞ as t →∞, for any x, y ∈ I.
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As Ut (x) → −∞ for all x as t → ∞, it is impossible that Ut (x) > Uβ(x) for
all x ∈ R and all t ≥ 0. So there always exists x ∈ I with tβ(x) < ∞ and hence
Rβ �= ∅.

Similarly consider the case where Ī = (−∞, bI ]. From the properties of the
diffusion, we know that Xt → bI almost surely as t →∞.Moreover, sinceE

x [Xt ] =
x and −|x | ≥ Uμ0(x) ≥ −|x | − c, for some c ∈ [0,∞), we must have Ut (x) →
−bI + (x − bI) as t → ∞ for x ∈ Ī. Since β is centred, |Uβ(x) + |x || → 0 as
x → −∞, and hence we cannot have Ut (x) > Uβ(x) for all x ∈ I◦ and all t ≥ 0.
Hence there always exists x ∈ I◦ with tβ(x) <∞ and hence Rβ �= ∅.

Finally consider the case where Ī = [aI , bI ]. Hence limt→∞ Xt ∈ {aI , bI}, and
a similar argument to above gives Ut (x) → aI − x−aI

bI−aI (bI + aI) as t → ∞, for

x ∈ Ī. This limit corresponds to U ν̃ (x), where ν̃ is the centred measure supported on
{aI , bI}, and it is easy to check that this potential is strictly smaller than the potential
of any other centred measure supported on Ī, and so for any other measure, there
always exists x ∈ I◦ with tβ(x) <∞ and henceRβ �= ∅. The case of the measure ν̃

is trivial, and we exclude this from subsequent arguments.

Lemma 5.5 Letσ ξ ∈ T with corresponding time–space distribution ξ , andαξ cx β.
Then:

(i) the function uβ is 1-Lipschitz-continuous in x, non-increasing and uβ is 1
2 -

Hölder-continuous in t , and there is a constant C which is independent of β

such that |uβ(t, x)− uβ(t ′, x)| ≤ C(1+ |x |)√|t − t ′|;
(ii) uβ−vξ is non-increasing in t; in particular, uβ is non-increasing in t and concave

in x;
(iii) uβ(0, .) = Uμ0 , Uβ ≤ vξ + wβ ≤ uβ ≤ vξ , and uβ(t, .) ↘ Uβ pointwise as

t ↗∞.

Proof (i) The 1-Lipschitz-continuity of uβ(t, x) in x follows directly from the Lip-
schitz continuity of vξ and wβ in x . Then the 1

2 -Hölder continuity in t follows by
standard arguments using the dynamic programming principle (for example, as a sim-
ple modification of the proof of Proposition 2.7 in Touzi [40]).

(ii) Let t ′ > t , fix ε > 0, and let τ ′ ∈ T t ′ be such that

uβ(t ′, x)− ε ≤ E
x [

vξ (t ′ − τ ′,Yτ ′)+ wβ(Yτ ′)1{τ ′<t ′}
]

= E
x
[
V t ′

τ ′ + wβ(Yτ ′)1{τ ′<t ′}
]
.

Recall from Lemma 5.2 the supermartingale properties of the process V t introduced
in (5.5). Then

E
x
[
V t ′

τ ′
]
≤ E

x
[
V t ′
t∧τ ′

]
= E

x
[
V t ′
t∧τ ′ − V t

t∧τ ′
]

+E
x [

V t
t∧τ ′

] ≤ V t ′
0 − V t

0 + E
x [

V t
t∧τ ′

]
.

In addition, since wβ ≤ 0, we have:
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E
x [

wβ(Yτ ′)1{τ ′<t ′}
] ≤ E

x [
wβ(Yτ ′)1{τ ′<t}

]

= E
x [

wβ(Yτ ′∧t )1{τ ′<t}
]
.

Putting these together, we conclude that

uβ(t ′, x)− vξ (t ′, x)− ε ≤ E
x [

V t
t∧τ ′ + wβ(Yτ ′∧t )1{τ ′<t}

]

−vξ (t, x) ≤ uβ(t, x)− vξ (t, x).

By the arbitrariness of ε > 0, this shows uβ − vξ is non-increasing in t , and implies
that uβ inherits from vξ the non-increase in t . By the supermartingale property of
the process

(
uβ(t − s,Ys)

)
s∈[0,t] in Proposition 5.3, this in turns implies that uβ is

concave in x .
(iii) By definition, uβ(0, x) = vξ (0, x) = Uμ0(x). Since vξ (t, x) ≥ Uαξ

(x), we
have uβ(t, x) ≥ vξ (t, x) + wβ(x) ≥ Uβ(x). On the other hand, since wβ(x) ≤ 0,
we have uβ(t, x) ≤ supτ≤t E

x
[
vξ (t − τ,Yτ )

] ≤ vξ (t, x) by the supermartingale
property of V t established in the previous Lemma 5.2.

In the rest of this proof, we show that uβ(t, x)→ Uβ(x) as t →∞ for all x ∈ Ī.
We consider three cases:

– Suppose (t0, x) ∈ Rβ for some t0 ≥ 0. Then, for any t ≥ t0, τ t = 0 and
uβ(t, x) = vξ (t, x) + wβ(x) which converges to Uαξ

(x) + wβ(x) = Uβ(x), as
t →∞.

– Suppose that (tn, xn) ∈ Rβ for some sequence (tn, xn)n≥1 with xn → x . Then it
follows from theprevious case thatuβ(t, xn)→ Uβ(xn), and thereforeuβ(t, x)→
Uβ(x) by the Lipschitz-continuity of uβ .

– Otherwise, suppose that [0,∞] × (x − ε, x + ε) does not intersect Rβ for some
ε > 0. Let (ax , bx ) := ∪(a, b) over all a ≤ x − ε < x + ε ≤ b such that
[0,∞]× (a, b) does not intersectRβ . By Remark 5.4, we may assumeRβ is not
empty and hence (ax , bx ) �= I◦. In the subsequent argument, we assume that ax is
finite, the case where bx is finite follows by the same line of argument. The optimal
stopping time τ t in (5.6) satisfies τ t ≥ Hax ,bx := inf{r ≥ 0 : Yt /∈ (ax , bx )}
and τ t → Hax ,bx , P

x -almost surely. If both ax and bx are finite, we use the
inequality uβ(t, x) ≥ Uβ(x), together with Fatou’s Lemma, Lemmas 5.1 and 5.2,
and bounded convergence, to see that

Uβ(x) ≤ lim
t→∞ uβ(t, x) = lim

t→∞E
x [

vξ (t − τ t ,Yτ t )+ wβ(Yτ t )
]

≤ lim
t→∞E

x [
vξ (t − Hax ,bx ,YHax ,bx

)
]+ E

x [
wβ(YHax ,bx

)
]

≤ E
x
[
lim
t→∞ vξ (t − Hax ,bx ,YHax ,bx

)+ wβ(YHax ,bx
)
]

= E
x [
Uβ(YHax ,bx

)
] ≤ Uβ(x). (5.9)

Hence limt→∞ uβ(t, x) = Uβ(x), and Uβ is linear on (ax , bx ).
For the general case where bx may be infinite, a more careful argument is needed.

Since wβ := (Uβ −Uαξ
)(x)→ 0 as |x | → 0, it follows that δ := max(−wβ) <∞.
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Fix ε > 0 and choose c sufficiently large that δ/(c − ax ) < ε. Let Hc := inf{s ≥ 0 :
Ys ≥ c} and note that τ t ∧ Hc → Hax ,c = inf{t ≥ 0 : Yt /∈ (ax , c)} as t →∞. Then
by the martingale property of uβ on t ≤ τ t , and the fact that uβ ≤ vξ , we have

uβ(t, x) = E
x [

uβ(t − τ t ∧ Hc,Yτ t∧Hc)
]

≤ E
x [1]{τ t≤Hc} (v

ξ + wβ)(t − τ t ∧ Hc,Yτ t∧Hc )

+ 1{τ t>Hc}v
ξ (t − τ t ∧ Hc,Yτ t∧Hc )

≤ E
x [

vξ (t − τ t ∧ Hc,Yτ t∧Hc)+ wβ(Yτ t∧Hc)1{τ t∧Hc<t}
]+ δP

x [τ t > Hc],

where we wrote wβ(t, x) = wβ(x). Taking limits as t → ∞, and using Fatou as
above, it follows from the definition of c that:

Uβ(x) ≤ lim
t→∞ uβ(t, x) ≤ E

x [
Uβ(YHax ,c )

]+ ε

= x − ax
c − ax

Uβ(c)+ c − x

c − ax
Uβ(ax )+ ε. (5.10)

Taking ε ↘ 0 and using concavity of Uβ we get that limt→∞ uβ(t, x) = Uβ(x), and
Uβ is linear on (ax , c). Letting c→∞ we conclude that Uβ is linear on (ax ,∞). ��

5.3 Existence and basic properties of the barrier

We denote the barrier function corresponding to the regular barrierRβ defined in (4.4)
with tβ := tRβ . It will be used on many occasions in our proofs. Recall from (2.3)
the definition of the support of a measure μk in terms of the measure μk−1. In what
follows, we write 	β, rβ for the bounds of the support of β in terms of the measure
αξ .

Corollary 5.6 Let σ ξ ∈ T with corresponding time–space distribution ξ , and αξ cx
β. Then, the set Rβ is a (closed) barrier, and moreover

(i)
([0,∞] × (	β, rβ)c

) ⊂Rβ ;
(ii) Rβ ∩ ([0,∞] × (a, b)) = ∅ if and only if β[(a, b)] = 0 and wβ < 0 on (a, b);
(iii) tβ(x) = 0 if and only if wβ(x) = 0.

Proof For (t, x) ∈ Rβ , we have uβ(t, x) = vξ (t, x)+wβ(x) and it is then immediate
from (iii) and (ii) of Lemma 5.5 that uβ(t ′, x) = vξ (t ′, x)+wβ(x) and so (t ′, x) ∈ Rβ ,
for all t ′ > t . By the continuity of vξ and uβ , established in Lemmas 5.1 and 5.5, we
conclude that Rβ is a closed barrier.

(i) For x /∈ (	β, rβ), we have Uαξ
(x) = Uβ(x) and hence wβ(x) = 0. It follows

from Lemma 5.5 (iii) that uβ(t, x) = vξ (t, x) and hence (t, x) ∈ Rβ for all t ≥ 0
so that [0,∞] × (	β, rβ)c ⊂ Rβ .

(ii) In the proof of Lemma 5.5 (iii), it was shown that the conditionRβ ∩ ([0,∞]×
(a, b)) = ∅ implies that Uβ is linear on (a, b), i.e. β[(a, b)] = 0, see (5.10).
Moreover, the last argument in (i) above also implies that wβ(x) < 0 for all
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x ∈ (a, b) whenever Rβ ∩ ([0,∞]× (a, b)) = ∅. This provides the implication
�⇒.

Suppose now that β[(a, b)] = 0 and wβ < 0 on (a, b). For fixed x ∈ (a, b), we
have:

uβ(t, x) ≥ E
x [

vξ (t − Ha,b ∧ t,YHa,b∧t )+ wβ(YHa,b∧t )1{Ha,b<t}
]

> E
x [

vξ (t − Ha,b ∧ t,YHa,b∧t )+ wβ(YHa,b∧t )
]

≥ vξ (t, x)−Uαξ

(x)+Uβ(x) = vξ (t, x)+ wβ(x).

Here we have used the strict inequality wβ(y) < 0 for all y ∈ (a, b) to get the
second line. To get the final line, we use Lemma 5.2 to deduce that Lvξ (t, dx) =
−η(x)2

∫ t
0 ξ(ds, dx) ≥ −η(x)2αξ (dx) = LUαξ

(dx), and hence that vξ (t − s,Ys)+
wβ(Ys) is a submartingale up to Ha,b ∧ t , given that Uβ(x) is linear on (a, b).

This shows that uβ(t, x) > vξ (t, x)+wβ(x), and hence (t, x) /∈ Rβ , for all t ≥ 0,
and x ∈ (a, b).

(iii) If wβ(x) = 0 then uβ(t, x) = vξ (t, x) for all t , by (iii) of Lemma 5.5, and so
(t, x) ∈ Rβ for all t ≥ 0. Recalling that vξ (0, x) = uβ(0, x) = Uμ0(x), we conclude
that (0, x) ∈ Rβ only if wβ(x) = 0. ��
Remark 5.7 (On Rβ having rays for arbitrary large |x |) We can now deduce from
the proof of the convergence uβ ↘ Uβ , as t ↗ ∞ in Lemma 5.5 (iii), that for any
N > 0 there exist x ≤ (−N ) ∨ aI < N ∧ bI ≤ y such that tβ(x) < ∞ and
tβ(y) < ∞. In the proof, we show that for any point x such that tβ(x) = ∞ either
there exists points a < x < b such that tβ(a), tβ(b) < ∞ or there exists an a less
than x such that for any c large enough Uβ is linear on (a, c). Letting c → ∞, and
using the fact that Uβ(c) + |c| → 0, we conclude that Uβ(y) = −|y| for all y ≥ a.
Then Uβ(y) ≤ Uαξ

(y) ≤ Uμ0(y) ≤ −|y| = Uβ(y) implies Uβ(y) = Uαξ
(y). In

particular, wβ(x) = 0, and by Corollary 5.6 we contradict the initial assumption that
x is not in the barrier.

Remark 5.8 (On the structure of the stopping region) Letαξ , β be integrablemeasures
in convex order. It follows from Corollary 5.6 that the barrier can be divided into at
most countably many (possibly infinite) non-overlapping open intervals J1, J2, J3, . . .
such that Jk = (ak, bk), for ak < bk , on which tβ(x) > 0 for all x ∈ (ak, bk) and((⋃∞

k=1 Jk
)� × [0,∞]

)
⊆ Rβ .

Observing that in both the embedding, and the optimal stopping perspectives, the
process started from x ∈ Jk never exits each interval Jk , it is sufficient to consider
each interval separately, noting that in such a case, uβ(t, x) = vξ (t, x) for all t ≥ 0,

and all x ∈ (⋃∞
k=1 Jk

)�. In the subsequent argument, we will assume that we are on
a single such interval Jk , which may then be finite, semi-infinite, or equal to I◦. In
addition, if the measures αξ , β are in convex order, then their restrictions to each Jk
are also in convex order.

Remark 5.9 (OnRβ for atomic measures) Let αξ , β be integrable measures in convex
order. Bearing in mind Remark 5.8, we suppose that β is a probability measure on Ī
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such that for some integer n′ ≥ 1, and some ordered scalars x1 < · · · < xn′ , we have∑n′
i=1 β[{xi }] = 1 and β[{xi }] > 0 for all i = 1, . . . , n′. From the representation of

the optimal stopping time τ t , see Proposition 5.3 above, and the form of the set Rβ

implied by Corollary 5.6, it follows that

uβ(t, x) = sup
τ∈T (x1,...,xn′ )

E
x [

vξ (t − τ,Yτ )+ wβ(Yt )1{τ<t}
]
, (5.11)

where T (x1, . . . , xn′) is the set of stopping times τ such that τ ≤ Hx1,xn′ and Yτ ∈
{x1, . . . xn′ } a.s.

6 Locally finitely supported measures

A probability measure β is said to be αξ -locally finitely supported if its support

intersects any compact subset of supp(αξ , β) = {x : Uαξ
(x) > Uβ(x)} at a finite

number of points. The measure β is αξ -finitely supported if its support intersects
supp(αξ , β) at a finite number of points. Throughout, αξ will be fixed, so we will
typically only refer to (locally) finitely supportedmeasures. Observe that an integrable,
centred measure β can only be finitely supported if 	β and rβ are both finite—indeed,
in this case a locally finitely supported measure is finitely supported if and only if rβ

and 	β are both finite.

6.1 Preparation

We start with two preliminary results which play crucial roles in the next section where
we establish the main result for finitely supported measures. The first result is the key
behind the time-reversal methodology which underpins the main results, see Sect. 3.1.
Here, we give a natural proof in the case where X = B is a Brownian motion, when
the proof has a simple intuition.3 In “Appendix B” we give a PDE proof which works
in the more general diffusion setting.

To understand the importance of the result, it is helpful to think of the local time
of X and of Y on the two sides of the announced equality. This result is then used
to obtain the key equality vξβ = uβ in a “box” setting where the barrier is locally
composed of two rays. The case of finitely supported measures is then obtained with
an inductive argument in Sect. 6.2.

Lemma 6.1 Let L be the local time of a Brownian motion B. For any a < x < y < b
and t ≥ 0 we have E

x
[
Ly
t∧Ha,b

] = E
y
[
Lx
t∧Ha,b

]
.

3 Given its importance, we have discussed this result with many colleagues. Our first proof used an explicit
formula for the density pc in P

x
c
[
Bs ∈ dy, s < H0,c

] = pc(s, x, y)dy, see Proposition 2.8.10 p. 98 in
Karatzas and Shreve [25] The current proof uses a clever coupling trick devised by Tigran Atoyan.
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Proof Without loss of generality we suppose b − y > x − a and introduce two
additional points c = x−(b− y) and d = y+(x−a) so that c < a < x < y < d < b
with b − d = a − c. Note that by translation invariance and symmetry of Brownian
motion we have

E
y[Lx

t∧Ha,b

] = E
x[Ly

t∧Hc,d

]
.

Using this in the desired equality, and subtracting E
x
[
Ly
t∧Hc,b

]
, we see that it suffices

to show that

E
x[Ly

t∧Hc,b
− Ly

t∧Ha,b

] = E
x[Ly

t∧Hc,b
− Ly

t∧Hc,d

]
.

Finally, by shift invariance, we may suppose without loss of generality that x = 0.
Consider three independent Brownian motions B(3), B(4), B(5) starting from 0 and
denote H (i) the hitting times for B(i). Further, let ρ(3) = inf{t ≥ H (3)

a : B(3)
t = 0}.

Define two new processes

B(1)
t := B(3)

t∧ρ(3) + B(4)

(t−t∧ρ(3))∧H (4)
y
+ B(5)

t−t∧(ρ(3)+H (4)
y )

B(2)
t := B(4)

t∧H (4)
y
− B(3)

(t−t∧H (4)
y )∧ρ(3)

+ B(5)

t−t∧(ρ(3)+H (4)
y )

(6.1)

and observe these are standard Brownian motions. This construction is depicted in
Fig. 2. We denote Ly,(i) the local time of B(i) at level y.

Recall that c < a < d < b and consider Ly,(1)

t∧H (1)
c,b

− Ly,(1)

t∧H (1)
a,b

. For this quantity to be

non-zero the following have to happen prior to t : first B(1) has to hit a without reaching
b, then it has to come back to x = 0 and continue to y without ever reaching c. This
happens at time ρ(3) + H (4)

y and from then onwards the local time Ly,(1) is counted

before time t ∧ H (1)
c,b and we see that it simply corresponds to L0,(5). With a similar

reasoning for Ly,(2), we see that our construction gives us the desired coupling:

Ly,(1)

t∧H (1)
c,b

− Ly,(1)

t∧H (1)
a,b

= L0,(5)

(t−t∧(ρ(3)+H (4)
y ))∧H (5)

c−y,b−y
= Ly,(2)

t∧H (2)
c,b

− Ly,(2)

t∧H (2)
c,d

and taking expectations gives the required result. ��
We now prove an important consequence of the above result, which will form the

basis of an induction argument.

Lemma 6.2 Letσ ξ ∈ T with corresponding time–space distribution ξ , andαξ cx β.
Let a < b and t0 > 0 be such that [t0,∞]× {a, b} ⊂ Rβ , (0,∞)× (a, b)∩Rβ = ∅,
and (vξβ − uβ)(t0, ·) = 0 on [a, b]. Then vξβ − uβ = 0 on [t0,∞)× [a, b].
Proof In view of Remark 4.3, and the continuity of vξβ − uβ , it is sufficient to show
that
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t

B
(i)
t

a

b

c

d

x

y

H(3)
a =H

(1)
a,b ρ(3)

ρ(3) + H(4)
y H

(1)
c,b =H

(2)
c,b

B
(1)
t

B
(2)
t

H
(2)
c,d =H(4)

y + H(3)
a

Fig. 2 A depiction of the Brownianmotions B(1) and B(2) constructed in the proof of Lemma 6.1. Observe
that the blue and green sections in each process are mirror images, up to translation, while the magenta
sections are equal, up to translation (color figure online)

vξ (t, x)− uβ(t, x)+ uβ(t0, x)− vξ (t0, x)

= E
ξ
[
Lx
t∧σRβ

]
− E

ξ
[
Lx
t0∧σRβ

]
for t ≥ t0, x ∈ (a, b). (6.2)

We fix x ∈ (a, b). Since [t0,∞]× {a, b} ⊂ Rβ , (0,∞)× (a, b) ∩Rβ = ∅, we have
the decomposition

E
ξ
[
Lx
t∧σRβ

]
− E

ξ
[
Lx
t0∧σRβ

]
= E

ξ
[(
Lx
t∧σRβ

− Lx
t0∧σRβ

)
1{Tξ <t0}

]

+ E
ξ
[(
Lx
t∧σRβ

− Lx
Tξ∧t

)
1{t0≤Tξ <t,XTξ ∈(a,b)}

]

= E
ξ
[(
Lx
t∧σRβ

− Lx
t0∧σRβ

)
1{Tξ <t0<σRβ }

]

+ E
ξ
[(
Lx
t∧Ha,b

− Lx
Tξ∧t

)
1{t0≤Tξ <t,XTξ ∈(a,b)}

]

=
∫

(a,b)
E

(t0,y)
[
Lx
t∧Ha,b

]
m(dy)

+
∫

[t0,t]

∫

(a,b)
E

(s,y)
[
Lx
t∧Ha,b

]
ξ(ds, dy), (6.3)

where we introduced the measurem(dy) := P
ξ
[
Xt0 ∈ dy, Tξ < t0 < σRβ

]
, and used

the fact that, conditional on starting in {t0} × (a, b), the stopping times σRβ and Ha,b

are equal (and starting on {t0} × (a, b)�, we never hit x before σRβ ). Observe that for
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y ∈ (a, b), we have

m(dy)+ ξ(dy; s ≥ t0) = P
ξ
[
Xt0 ∈ dy, Tξ < t0 < σRβ

]+ P
ξ
[
XTξ ∈ dy, Tξ ≥ t0

]

= P
ξ
[
X(t0∧σRβ )∨Tξ

∈ dy
]
=: λ(dy), (6.4)

since XσRβ /∈ (a, b) by the assumptions onRβ . Moreover, since σ ξ is a UI embedding

of αξ , it follows from the Tanaka formula that for y ∈ (a, b), we have

Uλ(y) = Uαξ

(y)− E
ξ
[
Ly
t0∧σRβ

]
= Uαξ

(y)− (vξ − uβ)(t0, y),

where the last equality follows from the assumption that (vξβ−uβ)(t0, .) = 0 on [a, b]
together with Remark 4.3. Since D2Uλ(dy) = λ(dy), this provides by substituting in
(6.4) that for y ∈ (a, b):

m(dy)=− 1

2
D2Uλ(y)dy−ξ(dy, s ≥ t0)=1

2
D2 (

vξ − uβ
)
(t0, dy)+ ξ(dy, s < t0).

Plugging this expression in (6.3), we get

E
ξ
[
Lx
t∧σRβ

]
− E

ξ
[
Lx
t0∧σRβ

]
= 1

2

∫

(a,b)
E

(t0,y)
[
Lx
t∧Ha,b

]
D2(vξ − uβ)(t0, dy)

+
∫

[0,t]

∫

(a,b)
E

(s∨t0,y)
[
Lx
t∧Ha,b

]
ξ(ds, dy).

The required result now follows from the following claims involving ζ := inf{s ≥ 0 :
(t − s,Ys) /∈ [0, t − t0] × (a, b)}:

∫

(a,b)

∫

[0,t]
E

(s∨t0,y)
[
Lx
t∧Ha,b

]
ξ(ds, dy) = vξ (t, x)− E

x [
vξ (t − ζ, Yζ )

]
, (6.5)

1

2

∫

(a,b)
E

(t0,y)
[
Lx
t∧Ha,b

]
D2vξ (t0, dy) = E

x [
vξ (t0,Yζ )

]− vξ (t0, x), (6.6)

−1

2

∫

(a,b)
E

(t0,y)
[
Lx
t∧Ha,b

]
D2uβ(t0, dy) = uβ(t0, x)− uβ(t, x)

+E
x [

vξ (t − ζ, Yζ )− vξ (t0,Yζ )
]
,

(6.7)

which we now prove.
(i) To prove (6.5), we use Itô’s formula (possibly after mollification) to get

vξ (t, x) = E
x [

vξ (t − ζ,Yζ )
]+ E

x
[∫ ζ

0
Lvξ (t − s,Ys) ds

]

.
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Using Lemma 5.1 and writing pζ (r, x, y)dy := P
x (Yr ∈ dy, r < ζ), this provides:

vξ (t, x) − E
x [

vξ (t − ζ,Yζ )
]

=
∫

y∈(a,b)

∫ t−t0

0
η(y)2 pζ (r, x, y) dr

(

−
∫ t−r

0
ξ(ds, dy)

)

=
∫

y∈(a,b)

∫ t

t0
η(y)2 pζ (t − u, x, y) du

(

−
∫ u

0
ξ(ds, dy)

)

=
∫

y∈(a,b)

∫ t

0

∫ t

t0∨s
η(y)2 pζ (t − u, x, y) du ξ(ds, dy)

=
∫

y∈(a,b),s∈[0,t]
E

(s∨t0,y)
[
Lx
t∧Ha,b

]
ξ(ds, dy).

(ii) We next prove (6.6). Since vξ (t0, .) is concave by Lemma 5.1, it follows from the
Itô-Tanaka formula that:

E
x [

vξ (t0,Yζ )
]− vξ (t0, x) = 1

2

∫

(a,b)
E
x
[
Ly

ζ

]
D2vξ (t0, dy)

= 1

2

∫

(a,b)
E

(t0,y)
[
Lx
t∧Ha,b

]
D2vξ (t0, dy),

where the last equality follows from Lemma 6.1 together with a coordinate shift.
(iii) Finally we turn to (6.7). Recall that uβ = vξ +wβ on [t0,∞]× {a, b} ⊂ Rβ .

Then, since Yζ ∈ {a, b} on {ζ < t − t0}, we have:

uβ(t − ζ,Yζ ) = uβ(t0,Yζ )1{ζ=t−t0} +
(
vξ (t − ζ,Yζ )+ wβ(Yζ )

)
1{ζ<t−t0}

= uβ(t0,Yζ )1{ζ=t−t0} +
(
vξ (t − ζ,Yζ )+ wβ(Yζ )

)
1{ζ<t−t0}

+ (
vξ (t − ζ,Yζ )− vξ (t0,Yζ )

)
1{ζ=t−t0}

= uβ(t0,Yζ )1{ζ=t−t0} + vξ (t − ζ, Yζ )− vξ (t0,Yζ )

+ (
wβ(Yζ )+ vξ (t0,Yζ )

)
1{ζ<t−t0}

= uβ(t0,Yζ )+ vξ (t − ζ,Yζ )− vξ (t0,Yζ ).

Wenext use the fact that [0,∞]×(a, b) does not intersectRβ to compute for x ∈ (a, b)
that

uβ(t, x) = E
x [

uβ(t − ζ,Yζ )
]

= E
x [

uβ(t0,Yζ )+
(
vξ (t − ζ, Yζ )− vξ (t0,Yζ )

)]

= uβ(t0, x)+ 1

2
E
x
[∫

(a,b)
Ly

ζ D
2uβ(t0, dy)

]

+E
x [

vξ (t − ζ,Yζ )− vξ (t0,Yζ )
]
,
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by application of the Itô-Tanaka formula, due to the concavity of the function uβ(t, .),
as established in Lemma 5.5. We finally conclude from Lemma 6.1/B.1 that

uβ(t, x) = uβ(t0, x)+ 1

2

∫

(a,b)
E

(t0,y)
[
Lx
t∧Ha,b

]
D2uβ(t0, dy)

+E
x [

vξ (t − ζ,Yζ )− vξ (t0,Yζ )
]
.

��

6.2 The case of finitely supported measures

We now start the proof of Theorem 4.1 for a (relatively) finitely supported probability
measure β, where we call a measure on R finitely supported if it is supported on a
finite set of points. Recall from Lemma 4.2 and Lemma 5.5 (iii) that we need to prove
that uβ = vξβ

. When there is no risk of confusion we write σβ for σRβ . In the sequel,
we will say that β is αξ -supported on n points if the measure β restricted to (	β, rβ)

is a discrete measure, supported on n points.

Proposition 6.3 Let σ ξ ∈ T with corresponding time–space distribution ξ , and β an
αξ–finitely supported measure such that αξ cx β. Then uβ = vξβ

and Theorem 4.1
holds for β.

The proof proceeds by induction on the number of points in the support of β|(	β ,rβ).
The case where αξ = β is trivial, since it follows immediately from (iii) of Corol-
lary 5.6 that Rβ = S. Hence we suppose that 	β < rβ . We start with the case where
β|(	β ,rβ) contains no points, and therefore all mass starting in (	β, rβ) under ξ will
be embedded at the two points 	β, rβ .

Lemma 6.4 Let σ ξ ∈ T with corresponding time space distribution ξ , and αξ cx β

with β((	β, rβ)) = 0. Then vξβ = uβ holds for all (t, x) ∈ S.

Proof Note first that the convex ordering of β and αξ implies that αξ ([	β, rβ ]) =
β([	β, rβ ]). Moreover, as we ruled out the case β = αξ and Uβ is linear on (	β, rβ),
we haveUαξ

(x) > Uβ(x) for all x ∈ (	β, rβ). It then follows from Corollary 5.6 that
Rβ = R+ ×

(
Ī \ (	β, rβ)

)
and σβ = inf{t ≥ 0 : Yt /∈ (	β, rβ)} is the first hitting

time of
(
Ī \ (	β, rβ)

)
. The result now follows from an application of Lemma 6.2. ��

The proof of Proposition 6.3 will be complete when we establish that the following
induction step works.

Lemma 6.5 Let σ ξ ∈ T with time–space distribution ξ . Assume vξβ = uβ for any
β �cx αξ which is αξ -supported on n points. Then, vξβ = uβ for any measure β

which is αξ -supported on n + 1 points.
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Proof Let β be a centred probabilitymeasure αξ -supported on the n+1 ordered points
x := {x1, . . . , xn+1}, with β[{xi }] > 0 for all i = 1, . . . , n + 1. By Remark 5.9, the
setRβ is of the form

Rβ = ([0,∞] × (
Ī \ (	β, rβ)

) ) n+1⋃

i=1

([ti ,∞)× {xi }
)
for some t1, . . . , tn+1 > 0.

Let j be such that t j = maxi ti , so that [t j ,∞) × {x j } is a horizontal ray in Rβ

starting farthest away from zero. Define a centred probability measure αξ–supported
on x(− j) := x\{x j } by conveniently distributing the mass of β at x j among the closest
neighboring points:

β∗ = β + β[{x j }]
(
− δ{x j } +

x j+1 − x j
x j+1 − x j−1

δ{x j−1} +
x j − x j−1
x j+1 − x j−1

δ{x j+1}
)
.

1. Let I j = (x j−1, x j+1). We first prove that

uβ(t, x) = uβ∗(t, x), (t, x) ∈ ([0,∞] × Ī \ I j
) ∪ ([0, t j ] × I j

)
. (6.8)

By a direct calculation, we see that Uβ∗(x) = Uβ(x) for x /∈ I j , and Uβ∗ is
affine and strictly smaller than Uβ on I j . Consider first x /∈ I j . Recall (5.7) with
the optimal stopping time τ t being the minimum of t and the first entry to Rβ

for the diffusion X started in (t, x) and running backward in time. However since
max{t j−1, t j+1} ≤ t j it follows that Yτ t �= x j on τ t < t . In consequence, we can
rewrite (5.11) as

uβ(t, x) = sup
τ∈T (x)

Jβ
t,x (τ ) = sup

τ∈T (x(− j))

Jβ
t,x (τ )

= sup
τ∈T (x(− j))

Jβ∗
t,x (τ ) = uβ∗(t, x) for t ≥ 0, x /∈ I j .

Ananalogous argument shows uβ(t, x) = uβ∗(t, x) for x ∈ I j \{x j } and t ≤ t j and
for x = x j and t < t j . By continuity of uβ we also have uβ(x j , t j ) = uβ∗(x j , t j ).

2. We now prove that uβ = vξβ
holds for all (t, x).

2.1. From the fact that uβ(t, x) = uβ∗(t, x), for x /∈ I j , together with β∗(I j ) = 0, it
follows that Rβ = Rβ∗ ∪ ([t j ,∞)× {x j }

)
. Consequently, for all t ≤ t j and all

s ≥ 0,

Xt∧σRβ∗ = Xt∧σRβ and Xs∧σRβ∗ 1Ī\I j (Xs∧σRβ∗ ) = Xs∧σRβ 1Ī\I j (Xs∧σRβ ), a.s.

It follows from the induction hypothesis thatuβ = vξβ
holds for all x ∈ R, t ≤ t j ,

and for all x /∈ I j .
2.2. It remains to consider x ∈ (x j−1, x j+1) and t > t j . For x ∈ (x j , x j+1), we

now know that uβ = vξβ
holds at t = t j , and Rβ places no points in [0,∞) ×
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(x j , x j+1). Then, it follows from Lemma 6.2 that uβ = vξβ
on (x j , x j+1). The

same argument applies for x ∈ (x j−1, x j ). ��

6.3 The case of locally finitely supported measures

In this subsection, we consider the case of measures β which are αξ–finitely supported
on any compact subset of R, but could have an accumulation of atoms at −∞ or
∞. We will establish Theorem 4.1 for such β by suitably approximating β with a
sequence ofmeasureswithαξ -finite support. Recall that 	β = sup{x : αξ ((−∞, y]) =
β((−∞, y]) ∀y ≤ x} = sup{x : Uαξ

(y) = Uβ(y) ∀y ≤ x}, and similarly for rβ . The
desired result has already been shown when −∞ < 	β ≤ rβ < ∞, see Proposition
6.3, so we consider the case where at least one of these is infinite. For simplicity, we
suppose that both are infinite (and hence I = R), the case where only one is being
similar. The approximation is depicted graphically in Fig. 3.

For N > 0, we observe that we can define a new measure βN , and constants
	N < N , r N > N such that βN ([−N , N ] ∩ A) = β([−N , N ]) ∩ A) for A ∈ B(R),
βN ([	N , r N ]� ∩ A) = αξ ([	N , r N ]� ∩ A), and βN ((	N ,−N ) ∪ (N , r N )) = 0. In
particular, to construct such ameasure, we can setUβN

(x) = Uβ(x) for x ∈ [−N , N ],
and extend linearly to the right of N , with gradient (Uβ)′+(N ) until the function meets

Uαξ
, at the point r N , from which point on, we take UβN

(x) = Uαξ
(x); a similar

construction follows from −N . The existence of the point r N follows from the fact
that Uβ(x)−Uαξ

(x)→ 0 as x →∞, which in turn is a consequence of the convex
ordering property. This construction guarantees

UβN
(x) ≥ Uβ(x) for all x ∈ R,

UβN
converges uniformly to Uβ and

N−N rN�N

Uαξ(x)

Uβ(x)

UβN (x)

Fig. 3 A graphical representation of the construction of the measure βN in terms of the potential functions
of the measures αξ and β
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UβN
(x) = Uαξ

(x) for x /∈ (	N , r N ).

In particular, βN is a sequence of atomic measures with αξ -finite support. Hence, by
Proposition 6.3, Theorem 4.1 holds for these measures. Moreover, we can prove the
following:

Lemma 6.6 Let σ ξ ∈ T with corresponding time–space distribution ξ , and β a
locally finitely supported measure such that αξ cx β. Let βN be the sequence of
measures constructed above. Then the sequence

(
RβN ∩ ([0,∞)× [−N , N ]))N≥1 is

non-decreasing, and

Rβ = R :=
⋃

N≥1

(
RβN ∩ ([0,∞)× [−N , N ])).

Proof We proceed in two steps:

1. We first show that
(
RβN ∩ ([0,∞)×[−N , N ]))N≥1 is non-decreasing andRβ ⊇

R. Recall that Uβ(x) ≤ UβN ′
(x) ≤ UβN

(x) for N ′ ≥ N . Then, by definition

of the optimal stopping problem, we see that uβ(t, x) ≤ uβN ′
(t, x) ≤ uβN

(t, x).

However, we have Uβ(x) = UβN ′
(x) = UβN

(x) for x ∈ [−N , N ] by construc-
tion, and so if it is optimal to stop for βN , it is also optimal to stop for βN ′ and
for β. It follows that, for x ∈ [−N , N ], (t, x) ∈ RβN

implies (t, x) ∈ RβN
and

(t, x) ∈ Rβ . The desired monotonicity follows instantly and Rβ ⊇ R follows
since Rβ is closed.

2. It remains to show the reverse inclusion R ⊇ Rβ .
First, observe that for the points where tR(x) = 0 or tR(x) = ∞ the inclusion
holds. This is an immediate consequence of Corollary 5.6 togetherwith the relation
between the measures β and βN .
The rest of the proof is devoted to showing that for a point x in the support of β

with 0 < t ′ := tR(x) <∞, we have (t, x) /∈ Rβ for all t < t ′. We first carry our
preparatory computations which follow two cases. Then we combine the two to
give the final result.

2.1. Since Theorem 4.1 holds for βN , we have uβN = vξβN

. It then follows from

Remark 4.4 that E
ξ
[
Lx

σβN

]
= (

Uαξ − UβN )
(x) =: ε0 and ε0 > 0 for our x .

Denote H−N0,N0 = inf{t ≥ Tξ : |Xt | ≥ N0}. Then, for sufficiently large N0, we

have E
ξ

[

Lx
σRβN ∧H−N0,N0

]

> ε0/2 for all N ≥ N0. Note that limN→∞RβN ∩
([0,∞) × [−N0, N0]) = R ∩ ([0,∞) × [−N0, N0]). Letting N → ∞, we
conclude that

E
ξ
[
Lx

σR∧H−N0,N0

]
≥ ε0/2.

This means that, for all t < t ′ with t ′ − t sufficiently small there is a positive
probability under P

ξ that the process reaches (t, x) before hitting R (and hence
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t

x

t′1

x1

t′2

x2

ξ

ξ
A

A+

A

D2

D1

Fig. 4 The possible cases considered in step 3.1. of the proof of Lemma 6.6. In the first case, shown in the
bottom half of the diagram, paths starting at (t ′1, x1) can only reach points in the support of ξ (denoted by

the red line) which are at time 0. In this case, we are interested on the behaviour of the process on the set A
shown, given that it does not leave the setD1. In the second case, the process starting at (t

′
2, x2) can reach

points in the support of ξ which are not in the set {t = 0}. In this case, we are interested in the behaviour of
the process on the sets A and A+ depicted, given that the process does not leave D2 (color figure online)

alsoRβN
) or exiting [−N0, N0]. In particular, considering possible paths, we can

reverse this: for any such t < t ′, running backwards, there exists a positive prob-
ability that we will reach the support of ξ before hitting R or exiting a bounded
interval. More specifically, writing x− = sup{y < x : (0, y) ∈ R}, x+ =
inf{y > x : (0, y) ∈ R}, and ε = t ′ − t , for some ε sufficiently small at least
one of the following two cases described below is true. We refer to Fig. 4 for a
graphical interpretation of the two cases, and a number of the important quantities
described below.

Case 1 The only points of the support of ξ which can be reached from (t ′, x) without
exiting R are in {0} × (x−, x+). Let A ⊆ (x−, x+) be a closed and bounded
interval such that ξ({0} × A) > 0. Observe that the measures βN are αξ -
finitely supported, and hence RβN ∩ (R+ × ([x − ε, x + ε] \ {x})) = ∅ for
some ε > 0, and all N . Moreover, we may assume that ε is also sufficiently
small that [0, 2ε] × [inf A ∧ x − ε, sup A ∨ x + ε] ∩R = ∅.
For such an ε, write

D := ([0, 2ε] × [inf A ∧ x − ε, sup A ∨ x + ε] ∪ [0, t ′)× [x − ε, x + ε])
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and note that R ∩D = ∅.
Our aim is now to use the expression of Lvξ in Lemma 5.1, to show that V t ′

is a strict supermartingale on A := [0, ε] × A. Recall that t = t ′ − ε and
define

τN = inf{s > 0 : (t ′ − s, Ys) ∈ RβN } ∧ t, τ = inf{s > 0 : (t ′ − s, Ys) ∈ R} ∧ t

τ ε
N = inf{s > 0 : (t ′ − s, Ys) ∈ RβN } ∧ t ′, τ ε = inf{s > 0 : (t ′ − s, Ys) ∈ R} ∧ t ′

and
τD = inf{s > 0 : (t ′ − s,Ys) /∈ D} ∧ t ′.

Recall the family of supermartingales V t defined in (5.5). We want to show

that E
x
[
V t ′

τN
− V t ′

τ ε
N

]
≥ δ > 0 for some constant δ which is independent of

N . Since τD∧ t ≤ τN ≤ τ ε
N for all N , the event {τD > t} isFτN -measurable.

Hence it is sufficient to show that E
x
[(

V t ′
τN
− V t ′

τ ε
N

)
1{τD>t}

]
≥ δ. Using the

supermartingale property of V t ′ , we can further reduce this to showing that

E
x
[(

V t ′
τN
− V t ′

τ ε
N∧τD

)
1{τD>t}

]
≥ δ.

Note that on {τD > t}we have τN = t and τ ε
N ≥ τD .We nowwrite q(t ′−s, y)

for the space-time density of the process (t ′ − s, x +Ys) killed when it leaves
D, i.e.

E
x [ f (Ys); s < τD] =

∫
q(t ′ − s, y) f (y) dy

for smooth functions f . Then from the form ofD, we know that q is bounded
away from zero on A, and applying Lemma 5.1 we have

E
x
[(

V t ′
τN
− V t ′

τ ε
N∧τD

)
1{τD>t}

]
≥ −

∫

(t ′−s,y)∈A
q(t ′ − s, y)Lvξ (t ′ − s, dy)ds

≥
∫

(t ′−s,y)∈A
η(y)2q(t ′ − s, y)ξ(0, dy)ds,

by the assumption on the support of ξ under consideration. By the assumption
on ξ , and the fact that q is bounded below on A, this final term is strictly
positive, and independent of N , so:

E
x
[
V t ′

τN
− V t ′

τ ε
N

]
≥ δ (6.9)

for some δ > 0 independent of N .
Case 2 There exists a bounded rectangle A ⊂ (0, t ′) × (x−, x+) such that ξ(A) >

0, all points of A can be reached from (t ′, x) via a continuous path which
does not enter R, and the process spends a strictly positive time in A. More
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specifically, for all sufficiently small ε > 0, we can choose a	, ar , sA such
that A = [sA, sA + ε/2)× [a	, ar ], ξ(A) > 0, sA + 3ε < t ′ and the set

D := ([sA, sA + ε] × [a	 − ε, ar + ε]) ∪ ([sA + ε, sA + 2ε]
×[a	 ∧ x − ε, ar ∨ x + ε])
∪ ([sA + 2ε, t ′] × [x − ε, x + ε])

satisfies D ∩R = ∅. Further, recalling the definitions of τD and τN above,
we have τD ≤ τN P

x -a.s.. In a similar manner to above, we now write
q̃(t ′ − s, y) for the space-time density of the process (t ′ − s, x + Ys) killed
when it leaves D, and observe that q̃ is bounded away from zero on the set
A+ := [sA + ε/2, sA + ε] × [a	, ar ]. It follows from Lemmas 5.1 and 5.2
that:

E
x
[∫ τN

0

(
Lvξ (t − s,Ys)− Lvξ (t ′ − s,Ys)

)
ds

]

≥ E
x

[∫ τ D

0

(
Lvξ (t − s,Ys)− Lvξ (t ′ − s,Ys)

)
ds

]

≥
∫

(t ′−s,y)∈D
q̃(t ′ − s, y)

(
Lvξ (t − s, y)− Lvξ (t ′ − s, y)

)
ds dy

≥
∫

(t ′−s,y)∈A+
η(y)2q̃(t ′ − s, y)ξ([sA, sA + ε/2), dy)ds

where in the last line we applied Lemma 5.1 and the fact that for (t ′ − s, y) ∈
A+

(
Lvξ (t − s, y)− Lvξ (t ′ − s, y)

)
dy

= η(y)2ξ([t − s, t ′ − s), dy) ≥ η(y)2ξ([sA, sA + ε/2), dy).

It follows that we can choose δ > 0 independent of N such that

E
x
[∫ τN

0

(
Lvξ (t − s,Ys)− Lvξ (t ′ − s,Ys)

)
ds

]

≥ δ,

which, by an application of Itô’s formula, implies that

E
x
[
V t

τN
− V t ′

τN

]
≥ vξ (t, x)− vξ (t ′, x)+ δ. (6.10)

Finally, observe that, in view of the supermartingale properties of Lemma 5.2, we can
combine (6.9) and (6.10) to get:

E
x
[
V t

τN
− V t ′

τN

]
+ E

x
[
V t ′

τN
− V t ′

τ ε
N

]
≥ vξ (t, x)− vξ (t ′, x)+ δ (6.11)
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for some δ > 0 independent of N , and for any ξ satisfying the conditions of the
lemma.

2.2. We are now ready to exploit the above to establish that (t, x) /∈ Rβ for t < t ′. Take
the values of t, ε, δ determined above, and consider the following calculation:

uβN
(t, x)− vξ (t, x) ≥ E

x
[
V t

τN
+ wβN

(YτN )1{τN<t}
]
− vξ (t, x)

≥ E
x
[
V t

τN
− V t ′

τN

]
+ E

x
[
V t ′

τN
− V t ′

τ ε
N

]

+ E
x
[
wβN

(YτN )1{τN<t} − wβN
(Yτ ε

N
)1{τ ε

N<t ′}
]

+ E
x
[
V t ′

τ ε
N
+ wβN

(Yτ ε
N
)1{τ ε

N<t ′}
]
− vξ (t, x)

≥ (
vξ (t, x)− vξ (t ′, x)

)+ δ + uβN
(t ′, x)− vξ (t, x).

Here we use (6.11) for the first two terms in the second inequality; the third term
in the second inequality is at least 0 using the fact that τN < t implies that
τ ε
N = τN < t , and wβN (·) ≤ 0. It then follows, since vξ is non-increasing in t ,
that

uβN
(t, x)− vξ (t, x) ≥ uβN

(t ′, x)− vξ (t ′, x)+ δ ≥ wβN
(x)+ δ ≥ wβ(x)+ δ.

We now use the fact that δ > 0 independently of N , and uβN
(t, x) → uβ(t, x)

as N → ∞ to deduce that uβ(t, x) − vξ (t, x) > wβ(x). In particular, it is not
optimal to stop immediately for the uβ optimal stopping problem at (t, x) with
t < t ′, whenever 0 < tR(x) <∞. ��

Proposition 6.7 Let σ ξ ∈ T with corresponding time–space distribution ξ , and let
β be a locally finitely supported measure such that αξ cx β. Then uβ = vξβ

and
Theorem 4.1 holds for β.

Proof It follows from Lemma 6.6 that σβN
decreases to σβ , and X

σβN converges to
Xσβ in probability, and therefore Xσβ ∼ β. Finally, if we write H±N = inf{t ≥ Tξ :
|Xt | = N }, we also have

E
ξ
[
Lx
t∧σβ

] = lim
N→∞E

ξ
[
Lx
t∧σβ∧H±N

]

= lim
N→∞E

ξ

[

Lx
t∧σβN ∧H±N

]

= lim
N→∞

[
vξ (t, x)− uβN

(t, x)
]

= vξ (t, x)− uβ(t, x),

where we used (4.6) and monotone convergence. It follows from Remark 4.3 that
vξβ = uβ .
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Since Xσβ ∼ β and X0 ∼ α, and vξ (t, x) − uβ(t, x) → −wβ(x) as t → ∞, by

monotone convergence, we haveE
ξ
[
Lx
t∧σβ

]
= −wβ(x), and hence by Elworthy et al.

[18, Corollary 3.4], σβ is a UI stopping time. Finally, we deduce thatRβ is ξ -regular
using (4.4) and taking limits in the equation above to conclude that (t, x) ∈ Rβ if and

only if E
ξ
[
Lx
t∧σβ

]
= wβ(x) = E

ξ
[
Lx

σβ

]
. From Remark 2.3, it follows that Rβ is

ξ -regular. ��

7 The general case

In this section, we complete the proof of Theorem 4.1. We fix σ ξ ∈ T with its
corresponding time–space distribution ξ , and let β be an arbitrary integrable measure
such that β �cx αξ . We start by approximating β with a sequence of locally finitely
supported measures. Let

I km := [k2−m, (k + 1)2−m] ∩ Ī, and tkm := min
x∈I km

tβ(x)

= tβ(xkm) with (tkm, xkm) ∈ Rβ, xkm ∈ I km . (7.1)

We set tkm = ∞ when there are no points of Rβ in [0,∞) × I km , see Corollary 5.6
for a characterisation. The existence of a minimizer xkm follows from the lower semi-
continuity of the barrier function tβ which, in turn, is implied by the closedness
property of the barrier Rβ . If there exists more than one minimiser, we choose the
smallest: xkm = min{x ∈ I km : tβ(x) = tkm}, so that if (t, x) = (tkm, xkm), then
(t, x) = (tk

′
m+1, xk

′
m+1) for some k′. Note that 0 ≤ xk+1m − xkm ≤ 2−m+1.

We now determine a sequence of approximating measures defined as follows: the
measure βm is defined through its potential function, Uβm

(x), and we set Uβm
(x) to

be the smallest concave function such thatUβm
(xkm) = Uβ(xkm) for all k. In particular,

we deduce that Uβm
(x) ≤ Uβm+1

(x) ≤ Uβ(x); moreover, βm has the same mean as
β, βm �cx βm+1 �cx β and Uβm

(x) − Uβ(x) → 0 as x → ∂I for each m. This
approximation is depicted in Fig. 5.

Each βm is locally finitely supported, and so we can apply Proposition 6.7 to each
βm . Write Rm := Rβm

for the corresponding barrier. A typical sequence of barriers
are depicted in Fig. 6. Since the potentials of the measures are increasing, we have
uβm

(t, x) ≤ uβm+1
(t, x); in addition, the function Uβm

(x) is piecewise linear, and so
(t, x) ∈ Rm implies x = xkm = xk

′
m+1, for some k, k′, and Uβm

(x) = Uβm+1
(x) =

Uβ(x). In consequence, for such an x we have

vξ (t, x)+ wβ(x) = vξ (t, x)+ wβm+1
(x) = vξ (t, x)+ wβm

(x)

≤ uβm
(t, x) ≤ uβm+1

(t, x) ≤ uβ(t, x) (7.2)

and it follows from the optimal stopping formulation that tRm (x) ≤ tRm+1(x) ≤
tβ(x)—i.e. new spikes may appear, but existing spikes get smaller. Taking a sequence
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t

x

(a) Smallest point in the barrier

x

(b) Construction of the potential

t

x

(c) A refined partition

x

(d) The increased potential

Fig. 5 The approximation sequence of a general measure β. In (a), the red points denote the smallest
point in the barrier for the given subdivisions (marked in gray). In (b), the original potential (in blue) is
interpolated at the corresponding x-values, to produce a smaller potential corresponding to a measure βm .
In (c), a finer set of intervals are used to produce additional approximating points. Note that the previous
(red) points are all in the new set of approximating points. In (d), these points are used to produce the
potential of a new measure βm+1 (color figure online)

km such that x = xkmm for all m ≥ m0, for some m0, we see that tRm (x) increases to a
limit. We now establish that this limit is equal to tβ(x).

Lemma 7.1 Let

R :=
⋂

m≥0

⋃

k≥m
Rk . (7.3)
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Fig. 6 The sequence of barriers
constructed by the
approximation sequence. The
red barrier corresponds to βm ,
and the green barrier to βm+1.
Where the barriers have
common atoms, the green
barrier is to the right of the left
barrier, however new ‘spikes’
appear for the green barrier. The
blue line denotes the barrier Rβ

(color figure online)
t

x

ThenR = Rβ and for any x of the form x = xkmm , for some sequence of indices (km),
tRm (x)↗ tβ(x).

Proof We first show R ⊆ Rβ . Let (t, x) ∈ ⋂
m≥0

⋃
k≥m Rk . Then, for all m ≥ 1,

there is km ≥ m such that (t, x) ∈ Rkm , i.e. (uβkm − vξ )(t, x) = wβkm
(x) = wβ(x).

However uβkm
(t, x)→ uβ(t, x) asm →∞, and so (uβ−vξ )(t, x) = wβ(x), proving

that (t, x) ∈ Rβ . This shows that
⋂

m≥0
⋃

k≥m Rk ⊂ Rβ , and therefore R ⊂ Rβ by
the closeness of Rβ .

We now show the reverse inclusion,Rβ ⊆ R. For (t, x) ∈ Rβ , and ε > 0, choose
m0 so that 2−m0 < ε. Then there exists x ′ such that |x− x ′| < ε and (t ′, x ′) ∈ Rm0 for
some t ′ and tβ(x ′) ≤ tβ(x) ≤ t by our choice of points xkm . Further, as argued above,
tRm0 (x ′) ≤ tRm (x ′) ≤ tβ(x ′) ≤ t so that (t, x ′) ∈ Rm for all m ≥ m0. It follows that
(t, x) ∈ R.

The above shows R = Rβ , or equivalently tR = tβ . As observed above, for
x = xkmm , we have tRm (x) is an increasing sequence inm and hence converges to some
limit which we denote t (x). By the barrier property of each Rm and the definition of
Rwe see that (t (x), x) ∈ R. It follows that tR(x) ≤ t (x) ≤ tβ(x) and hence all three
are equal. ��
Proposition 7.2 Consider the approximation sequence above and defineσm = σRm∧
σRβ . Then:

(i) The process (Xt∧σm )t≥Tξ is uniformly integrable under P
ξ ;

(ii) σm → σRβ ;

(iii) E
ξ
[
Lx
t∧σRβ

]
≤ vξ (t, x)− uβ(t, x).

Proof (i) By definition σm ≤ σRm and, from Proposition 6.7, the same process
stopped at σRm is uniformly integrable, which implies the result.

(ii) Suppose that σm does not converge a.s. to σRβ . Takeω such that, possibly passing
to a subsequence, we have that σm(ω) → t∞ for some t∞ < σRβ (ω). Then
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necessarily (tm, ym) := (σm(ω), Xσm (ω)) ∈ Rm for m large enough. This gives

vξ (tm, ym)+ wβ(ym) = vξ (tm, ym)+ wβm
(ym) = uβm

(tm, ym).

We take limits on both sides. The left-hand side converges to vξ (t∞, y∞)+wβ(y∞)

by continuity of wβ and joint continuity of vξ , see (5.2). For the right-hand side we
use 1-Lipschitz continuity of each uβm

(t, ·) and 1/2-Hölder continuity in t as given
in Lemma 5.5. This shows, with Xt∞ =: y∞, that

|uβm
(t∞, y∞)− uβm

(tm, ym)| ≤ C(1+ |y∞|)
√|t∞ − tm | + |y∞ − ym |

for a constant C independent of m, and hence

lim
m→∞ uβm

(tm, ym) = lim
m→∞ uβm

(t∞, y∞) = uβ(t∞, y∞),

which then shows that (t∞, y∞) ∈ Rβ and hence σRβ (ω) ≤ t∞ which gives the
desired contradiction.

(iii) Using the above, together with Proposition 6.7 and Remark 4.3, we deduce
that

E
ξ
[
Lx
t∧σRβ

]
= lim

m→∞E
ξ
[
Lx
t∧σm

] ≤ lim
m→∞E

ξ
[
Lx
t∧σRm

]

= lim
m→∞

[
vξ (t, x)− uβm

(t, x)
]
= vξ (t, x)− uβ(t, x).

��
Lemma 7.3 We have vξβ = uβ and σ ξβ

is a UI stopping time embedding β.

Proof It suffices to show the first equality as the rest follows from Lemmas 5.5 (iii)
and 4.2. Given (iii) of Proposition 7.2 and Remark 4.3, it remains only to show

that E
ξ
[
Lx
t∧σRβ

]
≥ vξ (t, x) − uβ(t, x). We consider the alternative approximat-

ing sequence: R̃m := Rm ∩ Rβ . Recall from above that if (t, x) ∈ Rm then
tRm (x) ≤ tRm+1(x) ≤ tβ(x) from which it follows that R̃m is an increasing sequence
of barriers. Moreover, from the definition of the points xkm , we have σR̃m ↘ σRβ ,

since when we hit Rβ , we are guaranteed to hit R̃m as soon as we have travelled at
least 2−m+1 in both directions. However σR̃m ≥ σRm , and therefore:

E
ξ
[
Lx
t∧σRm

]
≤ E

ξ
[
Lx
t∧σR̃m

]
→ E

ξ
[
Lx
t∧σRβ

]
.

But also E
ξ
[
Lx
t∧σRm

]
= vξ (t, x) − uβm

(t, x) → vξ (t, x) − uβ(t, x) and the result

follows. ��
We note that ξβ -regularity of Rβ now follows from Remark 4.4. The proof of

Theorem 4.1 is complete.
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A Proofs of the optimality results

We prove here the results announced in Sect. 3.2. We start by establishing the required
pathwise inequality.

Proof of Lemma 3.4 We proceed in three steps.

1. We first observe that ϕk ≥ ϕk+1 for all k = 1, . . . , n, and ϕn = ϕn+1 on Rn .
Indeed, notice that ϕk(t, x) = E

t,x [ f (ζ k)], where ζ k is the first time we enterRn ,
having previously entered the barriers Rn−1,Rn−2, . . . ,Rk in sequence. Then
ζ k ≥ ζ k+1, P

t,x -a.s. implying that ϕk ≥ ϕk+1 by the non-decrease of f .
2. We next compute that:

(hk − hk−1)(t, x)− λk−1(x) =
∫ t̄ k−1(x)

t
(ϕk−1 − ϕk)(s, x)ds. (A.1)

Then, hk − hk−1 − λk−1 ≥ 0 for t ≤ t̄ k−1(x), by Step 1. Next, notice that
t ≥ t̄ k−1(x) if and only if (s, x) ∈ Rk−1 for all s ∈ [t̄ k−1(x), t], and that in this
case σRk−1 = s, P

s,x -a.s., implying that ϕk−1(s, x) = ϕk(s, x). Hence:

hk ≥ hk−1 + λk−1 k = 2, . . . , n, with equality on Rk−1. (A.2)

3. By the previous steps, we have:

n∑

i=1
λi (xi )+

n∑

i=1

[
hi (si , xi )− hi (si−1, xi−1)

]+ h1(s0, x0)

=
n∑

i=1
λi (xi )+

n−1∑

i=1

[
hi (si , xi )− hi+1(si , xi )

]+ hn(sn, xn)

≤ λn(xn)+ hn(sn, xn), with

“ = ” if (si , xi ) ∈ Ri , i = 1, . . . , n − 1,
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=
∫ sn

0
f (t)dt − ψ(xn) f (0)−

∫ t̄ n(xn)

sn
(ϕn − ϕn+1)(t, xn)dt

≤
∫ sn

0
f (t)dt − ψ(xn) f (0), with “ = ” if (sn, xn) ∈ Rn,

where we used (A.1) and φn+1(x) = f (0)
∫ x
0 η(y)−2 dy. ��

To be able to take expectations in the pathwise inequality when applied to the
stopped diffusion, we need to establish suitable (sub)martingale properties. These are
isolated in the following lemma.

Lemma A.1 Let f be bounded non-negative and non-decreasing, and assume

∫ .

0
φk(Xs)dXs is a P

μ0 − martingale for allk = 1, . . . , n + 1. (A.3)

Then, for all k = 1, . . . , n, the process {hk(t, Xt ) − hk(0, X0), t ≥ 0} is a P
μ0 -

submartingale, and a P
μ0 -martingale on

[
σk−1, σk

]
.

Proof First, applying the Itô-Tanaka formula to the second term in the definition of
hk , we have

hk(t, Xt ) = hk(0, X0)+
∫ t

0
ϕk(u, Xt )du − 2

∫ t

0
φk(Xu)dXu

−
∫ t

0
ϕk(0, Xu)du, t ≥ 0.

Since 0 ≤ ϕk(u, x) ≤ ‖ f ‖∞ < ∞, (A.3) shows that hk(t, Xt ) − hk(0, X0) differs
from a martingale by a bounded random variable and in particular is integrable. We
now proceed in two steps.

1. For 0 ≤ s ≤ t , using the above decomposition and (A.3), we have

E
μ0
s

[
hk(t, Xt )

]− hk(0, X0) =
∫ t

0
E

μ0
s

[
ϕk(u, Xt )

]
du

−
∫ t

0
E

μ0
s

[
ϕk(0, Xu)

]
du − 2

∫ s

0
φk(Xu)dXu

where E
μ0
s := E

μ0 [.|Fs]. We shall prove in Step 2 below that

E
μ0
s

[
ϕk(u, Xt )

] ≥ E
μ0
s

[
ϕk

(
u − (t − s), Xs

)]
for u ∈ [t − s, t], (A.4)

E
μ0
s

[
ϕk(u, Xt )

] ≥ E
μ0
s

[
ϕk(0, Xt−u)

]
for u ∈ [0, t − s], (A.5)

and

equality holds in (A.4)− (A.5) ifσk−1 ≤ s ≤ t ≤ σk . (A.6)
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Then,

E
μ0
s

[
hk(t, Xt )

]− hk(0, X0) ≥
∫ t−s

0
E

μ0
s

[
ϕk(0, Xt−u)

]
du

+
∫ t

t−s
E

μ0
s

[
ϕk(u − (t − s), Xs)

]
du

−
∫ t

0
E

μ0
s

[
ϕk(0, Xu)

]
du − 2

∫ s

0
φk(Xu)dXu

=
∫ t

s
E

μ0
s

[
ϕk(0, Xu)

]
du +

∫ s

0
E

μ0
s

[
ϕk(u, Xs)

]
du

−
∫ t

0
E

μ0
s

[
ϕk(0, Xu)

]
du − 2

∫ s

0
φk(Xu)dXu

= hk(s, Xs)− hk(0, X0)

with equality if σk−1 ≤ s ≤ t ≤ σk .
2. (i) We first argue, for all (s, x) ∈ R+ × R, that

{
ϕk

(
t, Xt

)}
t≥s is a submartingale on[s,∞), and a martingale on [s, σRk ], P

s,x − a.s.

(A.7)

Themartingale property is immediate from the definition of ϕk . The submartingale
property follows from the following induction. First, the claim is obvious for
k = n+1 by the fact that f is non-decreasing.Next, suppose that the submartingale
property in (A.7) holds for some k + 1. Introduce the stopping times σ t

Rk :=
inf{u ≥ t : (u, Xu) ∈ Rk}, and notice that σ t

Rk ≥ σ r
Rk for s ≤ r ≤ t . Then,

denoting by X̃ , σ̃ independent copies of the same objects, and using the induction
hypothesis, we see that:

E
(s,x) [ϕk(t, Xt )|Fr ] = E

(s,x)
[
E

(t,Xt )
[
ϕk+1(σ̃Rk , X̃ σ̃Rk )

]
|Fr

]

= E
(s,x)

[
ϕk+1(σ t

Rk , Xσ t
Rk

)|Fr

]

≥ E
(s,x)

[
ϕk+1(σ r

Rk , Xσ r
Rk

)|Fr

]

= ϕk(r, Xr ).

(ii) We now prove (A.4). For u ≥ t − s, it follows from (A.7) that

E
μ0
s

[
ϕk(u, Xt )

] = E
0,Xs

[
ϕk(u, X̃t−s)

] = E
u−(t−s),Xs

[
ϕk(u, X̃u)

]

= E
u−(t−s),Xs

[
ϕk+1(σ̃ u

Rk , X̃ σ̃ u
Rk

)
]

≥ E
u−(t−s),Xs

[
ϕk+1(σ̃Rk , X̃ σ̃Rk )

]

= ϕk
(
u − (t − s), Xs

)
, P

μ0 − a.s.

(A.8)
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(iii) We next prove (A.5). For u ≤ t − s, using again (A.7), we see that:

E
μ0
s

[
ϕk(u, Xt )

] = E
μ0
s

[
E
0,Xt−u [ϕk(u, X̃u)

]]

≥ E
μ0
s

[
E
0,Xt−u [ϕk(0, X̃0)

]]

= E
μ0
s

[
ϕk(0, Xt−u)

]
. (A.9)

(iv) Finally, to prove (A.6), we observe that the equality was lost in (A.4) and
(A.5) only because of the inequalities in (A.8) and (A.9), which in turn become
equalities provided that (u, Xu) does not enter Rk for u ∈ [s, t). The condition
that σk−1 ≤ s ≤ t ≤ σk ensures this is true. ��

Proof of Theorem 3.3 Finally, we complete the proof of the main result in Sect. 3.2.
First, by monotone convergence arguments and since ψ is convex, note that

E
μ0 [ρn] =

∫
ψ(x)(μn − μ0)(dx) =

∫
(Uμ0(x)−Uμn (x))dx (A.10)

is the same for all ρ ∈ T (μμμn) so that adding a constant to f does not change the
problem. We shall normalise f by taking f (0) = 0 and exclude the trivial case
f ≡ 0. If the quantities in (A.10) are equal to+∞ then there is nothing to prove. We
thus assume that (A.10) is finite. Note that this might be so even if

∫
ψ(x)μi (dx) = ∞

for each 0 ≤ i ≤ n. More generally, thanks to the convex ordering of measures, one
can define the integral

∫
g(x)(μ j − μi )(dx) for a convex g and 0 ≤ i ≤ j ≤ n. This

is done by considering gk ↗ g which are convex, equal to g on a compact set and
affine on the complement. Further, if h = h − g + g with (h − g) and g convex with
finite integrals against (μ j − μi ) then the integral

∫
h(x)(μ j − μi )(dx) is also well

defined and finite, see Beiglböck et al. [5] for details. We shall use this fact below
repeatedly together with

∫
ψ(x)(μ j − μi )(dx) <∞ which follows from (A.10).

Without loss of generality, we may assume that f is bounded, the general case
follows from a direct monotone convergence argument. Then 0 ≤ ϕi ≤ ‖ f ‖∞ for
all i , and in particular, |φi (x)| ≤ ‖ f ‖∞|ψ ′(x)|. We define κi (x) :=

∫ x
0 φi (y)dy =

−hi (0, x)/2, and observe that κi (x) is then a non-negative, convex function with
0 ≤ κ ′′i (x) ≤ ‖ f ‖∞η(x)−2 so that ‖ f ‖∞ψ(x) − κi (x) is a non-negative convex
function. We conclude that

∫
κi (x)(μ j − μk)(dx) <∞, 0 ≤ k ≤ j ≤ n. Moreover,

we have κi (x) ≥ κi+1(x) for all x ∈ Ī since ϕi ≥ ϕi+1, as argued above.
The aim is now to take expectations in (3.7) for (si , xi ) = (ρi , Xρi ), where ρ ∈

T (μμμn). To do this, we need to check that the expectations under P
μ0 of individual

terms on the right-hand side of (3.7) are well defined.
We can rewrite the first two terms on the right-hand side of (3.7) as:

n∑

i=1
λi (xi )+ h1(0, x0) =

n∑

i=1

∫ t i (xi )

0
(ϕi+1(s, xi )− ϕi (s, xi )) ds

+ 2
n∑

i=1

∫ xi

xi−1
φi (y)dy,
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where we used that f (0) = 0 so that κn+1 ≡ 0 and hn+1(t, x) =
∫ t
0 f (u)du. The

expectation of the first two terms is then equal to

n∑

i=1

∫ ∫ t i (x)

0
(ϕi+1(s, x)− ϕi (s, x))ds μi (dx)+ 2

n∑

i=1

∫
κi (x)(μi − μi−1)(dx).

The integrals in the second sum are well defined and finite by the discussion above.
As for the first sum, observe that

0 ≤
∫ ∫ t i (x)

0
(ϕi (s, x)− ϕi+1(s, x))ds μi (dx) ≤ ‖ f ‖∞E

μ0
[
t i (Xσi )

]

≤ ‖ f ‖∞E
μ0 [σi ] <∞.

Using |ϕi | ≤ ‖ f ‖∞, E
μ0 [ρn] <∞ and integrability properties of κi we see that the

local martingale

∫ t

0
φi (Xu)dXu = κi (Xt )− κi (X0)− 1

2

∫ t

0
ϕi (0, Xu)du,

is a martingale on [0, ρn]. It then follows from Lemma A.1 that

E
μ0

[
hi (ρi , Xρi )− hi (ρi−1, Xρi−1)

] ≥ 0, i = 1, . . . , n,

with equality if ρi = σi . Taking expectations under P
μ0 in (3.7), we deduce that

E
μ0

[∫ ρn

0
f (t) dt

]

≥
n∑

i=1

∫ ∫ t i (x)

0
(ϕi+1(s, x)

−ϕi (s, x))ds μi (dx)+ 2
n∑

i=1

∫
κi (x)(μi − μi−1)(dx),

with equality when we replace ρn with σn . ��

B Extension to continuous Markov local martingales

The following statement extends Lemma 6.1 to a class of continuous Markov local
martingales.

Lemma B.1 Let X be a local martingale with d〈X〉t = η(Xt )
2dt, for some locally

Lipschitz function η, and let a < b be fixed points in I◦, and Ha,b the first exit time of
X from the interval (a, b). Then

E
x
∣
∣Xt∧Ha,b − y

∣
∣ = E

y
∣
∣Xt∧Ha,b − x

∣
∣ for all x, y ∈ [a, b].
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Proof Le y ∈ (a, b) be fixed, and denote XH := X .∧Ha,b . We decompose the proof
in three steps.
Step 1 By dominated convergence the function u(t, x) := E

x
∣
∣XH

t − y
∣
∣ is continuous,

and it follows from classical argument using the tower property that u is a viscosity
solution of the equation

(
∂t u − 1

2η
2D2u

)
(t, x) = 0 for t ≥ 0, x ∈ (a, b)

u(x, a) = y − a, u(x, b) = b − y, x ∈ (a, b).
(B.1)

Step 2 Similarly, the function v(t, x) := E
y
∣
∣XH

t −x
∣
∣ is a continuous function, and is in

addition convex in the x-variable. Denote by L(XH ) the local time of the continuous
martingale XH . Using the Itô-Tanaka formula, we see that:

v(t + h, x)− v(t, x) = E
y[Lx

t+h(X
H )− Lx

t (X
H )

]
.

By the density occupation formula, this provides for all Borel subset A of [a, b]:
∫

A

∫ t+h

t
∂tv(ds, x)dx =

∫

A

(
v(t + h, x)− v(t, x)

)
dx

=
∫

A
η2(x)

∫ t+h

t
P
XH
s (dx)ds,

where P
XH
s denotes the distribution function of XH

s . Notice that P
XH
s = 1

2D
2v(s, .).

Then:

∫

A

∫ t+h

t
∂tv(ds, x)dx =

∫

A

∫ t+h

t

1

2
η2(x)dsD2v(s, dx).

Let ϕε be a C∞-molifier, and set vε(t, x) =
∫

v(t − s, x − y)ϕε(s, y)dsdy. Then, vε

is smooth, and it follows from the last equality that

∫

A

∫ t+h

t

(
∂tvε − 1

2
η2D2vε − Rε

)
(s, x)dsdx = 0,

where Rε(s, x) :=
∫ (

η2(x)− η2(x − y)
)
D2v(r − s, x − y)ϕε(r, y)drdy. Since η is

Lipschitz on [a, b], and v is bounded, we see that

∣
∣Rε(s, x)

∣
∣ ≤ c

∫
D2{|x − y|ϕε(r − s, x − y)}drdy

= c
∫

[
D{|x − y|ϕε(r − s, x − y)}]badr =: rε −→ 0, as ε→ 0.

By the arbitrariness of h > 0 and the Borel subset A of [a, b], this shows that

∂tvε − 1

2
η2D2vε − rε ≥ 0and∂tvε − 1

2
η2D2vε + rε ≤ 0 on R+ × (a, b).
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Since vε −→ v, locally uniformly, it follows from the stability result of viscosity
solutions that v is a viscosity solution of ∂tv− 1

2η
2D2v = 0 on R+ × (a, b). We also

directly see that v(t, a) = y − a and v(t, b) = b − y. Hence v is also a viscosity
solution of (B.1).
Step 3 To conclude that u = v, we now use the fact that Eq. (B.1) has a unique
C0(R+ × [a, b]) viscosity solution. Indeed the corresponding equation satisfied by
eλt u(t, x), for an arbitrary λ > 0, satisfies the conditions of Theorem 8.2 of Crandall
et al. [15]. ��
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