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Abstract We prove that when suitably normalized, small enough powers of the abso-
lute value of the characteristic polynomial of random Hermitian matrices, drawn from
one-cut regular unitary invariant ensembles, converge in law to Gaussian multiplica-
tive chaos measures. We prove this in the so-called L2-phase of multiplicative chaos.
Our main tools are asymptotics of Hankel determinants with Fisher–Hartwig singu-
larities. Using Riemann–Hilbert methods, we prove a rather general Fisher–Hartwig
formula for one-cut regular unitary invariant ensembles.
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1 Introduction

1.1 Main result

Log-correlatedGaussian fields, namelyGaussian randomgeneralized functionswhose
covariance kernels have a logarithmic singularity on the diagonal, are known to show
up in various models of modern probability and mathematical physics—e.g. in com-
binatorial models describing random partitions of integers [35], randommatrix theory
[31,34,60], lattice models of statistical mechanics [41], the construction of confor-
mally invariant random planar curves such as stochastic Loewner evolution [4,63], and
growthmodels [9] just to name a fewexamples.A recent and fundamental development
in the theory of these log-correlated fields has been that while these fields are rough
objects—distributions instead of functions—their geometric properties can be under-
stood to somedegree. For example, one candescribe the behavior of the extremal values
and level sets of the fields in a suitable sense—see e.g. [58, Section 4 and Section 6.4].

A fundamental tool in describing these geometric properties of the fields is a class
of random measures, which can be formally written as an exponential of the field. As
these fields are distributions instead of functions, exponentiation is not an operation
one can naively perform, but through a suitable limiting and normalization procedure,
these randommeasures can be rigorously constructed and they are known as Gaussian
multiplicative chaos measures. These objects were introduced by Kahane in the 1980s
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[37]. For a recent review,we refer the reader to [58] and for a concise proof of existence
and uniqueness of these measures we refer to [6].

A typical example of how log-correlated fields show up can be found in random
matrix theory. For a large class of models of random matrix theory, the following is
true: when the size of the matrix tends to infinity, the logarithm of the characteristic
polynomial behaves like a log-correlated field. This is essentially equivalent to a suit-
able central limit theorem for the global linear statistics of the random matrix—see
[31,34,60] for results concerning the GUE, Haar distributed random unitary matrices,
and the complex Ginibre ensemble.

One would thus expect that the characteristic polynomial and powers of it should
behave asymptotically like a multiplicative chaos measure. A related question was
explored thoroughly though non-rigorously in [30,32]. The issue here is that the
construction of the multiplicative chaos measure goes through a very specific approx-
imation of the Gaussian field and typically uses things like independence and
Gaussianity very strongly. In the random matrix theory situation these are present
only asymptotically. Thus the precise extent of the connection between the theory
of log-correlated processes and random matrix theory is far from fully understood.
For rigorous results concerning multiplicative chaos and the study of extrema of
approximately Gaussian log-correlated fields in random matrix theory we refer to
[2,12,46,47,57,67].

In this article we establish a universality result showing that for a class of random
Hermitian matrices, small enough powers of the absolute value of the characteristic
polynomial can be described in terms of a Gaussian multiplicative chaos measure.
More precisely, we prove the following result (for definitions of the relevant quantities,
see Sect. 2).

Theorem 1.1 Let HN be a random N × N Hermitian matrix drawn from a one-cut
regular, unitary invariant ensemble whose equilibrium measure is normalized to have
support [−1, 1]. Then for β ∈ [0,√2), the random measure

| det(HN − x)|β
E| det(HN − x)|β dx

on (−1, 1), converges in distribution with respect to the topology of weak convergence
of measures on (−1, 1) to a Gaussian multiplicative chaos measure which can be

formally written as eβX (x)− β2

2 EX (x)2dx, where X is a centered Gaussian field with
covariance kernel

EX (x)X (y) = −1

2
log |2(x − y)|.

We note that in particular, this result holds for the Gaussian Unitary Ensemble (GUE)
of randommatrices, with a suitable normalization. The proof here is a generalization of
that in [67] by the second author and relies on understanding the large N asymptotics
of quantities which can be written in the form E[eTr T (HN )

∏k
j=1 | det(HN − x j )|β j ]

for a suitable function T : R → R, x j ∈ (−1, 1) and β j ≥ 0.
It is easy to see, and we will recall the relevant derivations below, that such expec-

tations can be written in terms of Hankel determinants with Fisher–Hartwig symbols,
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andwhile such quantities (and correspondingToeplitz determinants) have been studied
in great detail [14,19,20,42], it seems that in the generality we require for Theo-
rem 1.1, many of the results are lacking. Thus we give a proof of such results using
Riemann–Hilbert techniques; see Proposition 2.10 for the precise result. This settles
some conjectures due to Forrester and Frankel—see Remark 2.11 and [28, Conjec-
ture 5 and Conjecture 8] for further information about their conjectures.

1.2 Motivations and related results

Oneof themainmotivations for thiswork is establishingmultiplicative chaosmeasures
as something appearing universally when studying the global spectral behavior of
randommatrices. This is a new type of universality result in randommatrix theory and
also suggests that it should be possible to establish some of the geometric properties
of log-correlated fields in the setting of random matrix theory as well. Perhaps on a
more fundamental level, a further motivation for the work here is a general picture
of when does the exponential of an approximation to a log-correlated field converge
to a multiplicative chaos measure. Naturally we don’t answer this question here, but
the fact that our approach works so generally, suggests that part of this argument is
something that transfers beyond random matrix theory to general models where one
expects multiplicative chaos measures to play a role.

On a more speculative level, we also mention as motivation the connection to two-
dimensional quantum gravity. It is well known that random matrix theory is related to
a discretization of two-dimensional quantum gravity, namely the analysis of random
planarmaps—see e.g. [25] for amathematically rigorous discussion of this connection.
On the other hand, multiplicative chaos measures play a significant role in the study of
Liouville quantum gravity [16,24] which is in some instances known to be the scaling
limit of a suitable model of random planar maps [48,50,52–54]. The appearance
of multiplicative chaos measures from random matrix theory seems like a curious
coincidence from this point of view, and one that deserves further study.

One interpretation of Theorem 1.1 is that it gives a way of probing the (ran-
dom fractal) set of points x where the recentered log characteristic polynomial
log | det(HN − x)| − E log | det(HN − x)| is exceptionally large. In analogy with
standard multiplicative chaos results (see e.g. [58, Theorem 4.1] or the approach of

[6]), one would expect that Theorem 1.1 implies that asymptotically, | det(HN−x)|β
E| det(HN−x)|β dx

lives on the set of points x where

lim
N→∞

log | det(HN − x)| − E log | det(HN − x)|
Var(log | det(HN − x)|) = β. (1.1)

We emphasize that this really means that the (approximately Gaussian) random vari-
able log | det(HN − x)| − E log | det(HN − x)| would be of the order of its variance
instead of its standard deviation—as the variance is exploding, this is what motivates
the claim of the log-characteristic polynomial taking exceptionally large values.More-
over, as it is known that the measure μβ vanishes for β ≥ 2, this connection suggests
that for β > 2, there are no points where (1.1) is satisfied and that β = 2 corresponds
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to the scale of where the maximum of the field lives (note that it is rigorously known
through other methods that the maximum is indeed on the scale of two times the vari-
ance of the field—see [47] and see also [2,12,57] for analogous results in the case of
ensembles of random unitary matrices). This suggests that suitable variants of Theo-
rem 1.1 should provide a tool for studying extremal values of the characteristic poly-
nomial, or even that more generally, existence of multiplicative chaos measures can be
used to study the extremal behavior of log-correlated field. This is significant because
maxima of logarithmically correlated fields (such as the log characteristic polynomial)
are believed to display universality, and have as such been extensively studied in recent
years (see e.g. [29] and references below). In fact, the construction of Gaussian mul-
tiplicative chaos measures supported on points where the value of the field is a given
fraction of the maximal value, may be viewed as part of the programme of establishing
universality for such processes. While our results do not extend to the full range of
values of β where one expects the result to be valid (roughly, we examine only the L2

regime in Gaussian multiplicative chaos terminology), we believe that an appropriate
modification of the methods of this paper eventually will yield the result in its full gen-
erality (for instance by combining itwith a suitablemodification of the approach in [6]).

Regarding this programme, we mention the papers of Arguin et al. [2] which verify
the leading order of the maximum of the CUE log characteristic polynomial, as well
as Paquette and Zeitouni [57] which refined this to obtain the second order, doubly
logarithmic (“Bramson”) correction. This is consistentwith a prediction of Fyodorov et
al. [29]. In turn this was subsequently refined and generalized to the so-called circular
β-ensemble by [13] where tightness of the centered maximum was proved. For a
large class of random Hermitian matrices, the leading order behavior was established
recently by Lambert and Paquette [47], while in the case of the Riemann zeta function,
the first order termwas obtained (assuming the Riemann hypothesis) by Najnudel [55]
as well as (unconditionally) by Arguin et al. [3]. In the case of the discrete Gaussian
free field in two dimensions, the convergence in law of the recentered maximum
was obtained recently in an important paper of Bramson et al. [8]. As for Gaussian
multiplicative chaos measures (in the L2-phase), the construction in the case of CUE
random matrices was achieved by Webb [67]. Very recently, a related construction of
a Gaussian multiplicative chaos measure was obtained by Lambert et al. [46] in the
full L1 regime of CUE random matrices, but for a slightly regularized version of the
logarithm of the characteristic polynomial which is closer to a Gaussian field.

1.3 Organisation of the paper

The outline of the article is the following: in Sect. 2, we describe ourmodel and objects
of interest, our main results, and an outline of the proof. After this, in Sect. 3, we recall
how the relevant moments can be expressed as Hankel determinants as well as how
these determinants are related to orthogonal polynomials on the real line andRiemann–
Hilbert problems. In this section we also recall from [20] a differential identity for the
relevant determinants. Then in Sect. 4we go over the analysis of the relevant Riemann–
Hilbert problem. This is very similar to the corresponding analysis in [20,42], but for
completeness and due to slight differences in the proofs, we choose to present details
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of this in appendices. After this, in Sect. 5 we use the solution of the Riemann–Hilbert
problem to integrate the differential identity to find the asymptotics of the relevant
moments. Finally in Sect. 6, we put things together and prove our main results.

We have chosen to defer a number of technical proofs to the end of the paper in the
form of multiple appendices. These contain proofs of results which might be consid-
ered in some sense routine calculations by experts in random matrix and integrable
models, but which would require significant effort to readers not familiar with these
techniques. Since we hope that the paper will be of interest to different communities,
we have chosen to keep them in the paper at the cost of increasing its length.

2 Preliminaries and outline of the proof

In this section, we describe the main objects we shall discuss in this article, state our
main results, and give an outline of the proof of them.

2.1 One-cut regular ensembles of random Hermitian matrices

The basic objects we are interested in are N × N random Hermitian matrices HN

whose distribution can be written as

P(dHN ) = 1

Z̃N (V )
e−NTrV (HN )dHN , (2.1)

where dHN = ∏N
j=1 dHj j

∏
1≤i< j≤N d(ReHi j )d(ImHi j ) denotes the Lebesgue

measure on the space of N × N Hermitian matrices, TrV (HN ) denotes
∑N

j=1 V (λ j ),
where (λ j ) are the eigenvalues of HN (we drop the dependence on N from our nota-
tion), the potential V : R → R is a smooth function with nice enough growth at
infinity so that this makes sense, and Z̃N (V ) is a normalizing constant. Perhaps the
simplest model of such form is theGaussianUnitary Ensemble for which V (x) = 2x2.
This corresponds to the diagonal entries of HN being i.i.d. centered normal random
variables with variance 1/(4N ), and the entries above the diagonal being i.i.d. random
variables whose real and imaginary parts are centered normal random variables with
variance 1/(8N ) and are independent of each other and of the diagonal entries. The
entries below the diagonal are determined by the condition that thematrix isHermitian.

The distribution (2.1) induces a probability distribution for the eigenvalues of HN .
In analogy with the GUE (see e.g. [1]) one finds that the distribution of the eigenvalues
(on RN ) is given by

P(dλ1, . . ., dλN ) = 1

ZN (V )

∏

i< j

|λi − λ j |2
N∏

j=1

e−NV (λ j )dλ j , (2.2)

where ZN (V ) is a normalizing constant called the partition function. Our main goal
will be to describe the large N behavior of the characteristic polynomial of HN , and
more generally a power of this characteristic polynomial. To do this, we will have
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to impose further constraints on the function V . A general family of functions V for
which our argument works is the class of one-cut regular potentials. We will review
the relevant concepts here, but for more details, see [43].

First of all, we assume that V is real analytic on R and limx→±∞ V (x)/ log |x | =
∞. Further conditions on V are rather indirect as they are statements about the asso-
ciated equilibrium measure μV which is defined as the unique minimizer of the
functional

IV (μ) =
∫ ∫

log
1

|x − y|μ(dx)μ(dy) +
∫

V (x)μ(dx)

on the space of Borel probabilitymeasures onR. For further information aboutμV , see
e.g. [21,61]. The measure μV can also be characterized in terms of Euler–Lagrange
equations:

2
∫

log |x − y|μV (dy) = V (x) + �V , x ∈ supp(μV ) (2.3)

2
∫

log |x − y|μV (dy) ≤ V (x) + �V , x /∈ supp(μV ) (2.4)

for some constant �V depending on V .
Our first constraint on V is that the support of μV is a single interval, and we

normalize it to be [−1, 1]. In this case, on [−1, 1], μV can be written as

μV (dx) = d(x)
√
1 − x2dx, (2.5)

where d is real analytic in some neighborhood of [−1, 1]—see [21]. For one-cut
regularity, we further assume that d is positive on [−1, 1] and that the inequality (2.4)
is strict. We collect this all into a single definition.

Definition 2.1 (One-cut regular potentials) We say that the potential V : R → R is
one-cut regular (with normalized support of the equilibrium measure) if it satisfies the
following conditions:

1. V is real analytic.
2. limx→±∞ V (x)/ log |x | = ∞.
3. The support of the equilibrium measure μV is [−1, 1].
4. The inequality (2.4) is strict.
5. The real analytic function d from (2.5) is positive on [−1, 1].
The condition that the support is [−1, 1] instead of say [a, b] is not a real constraint

since the general case can be mapped to this with a simple transformation. Moreover,
note that the support of the equilibrium measure is where the eigenvalues accumulate
asymptotically, as the size of the matrix tends to infinity. So in this limit, we expect
that nearly all of the eigenvalues of HN are in [−1, 1].

We also point out that this is a non-empty class of functions V, since for the GUE
(V (x) = 2x2), it is known that all of the conditions of Definition 2.1 are satisfied—in
particular d(x) = 2/π in this case.
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2.2 The characteristic polynomial and powers of its absolute value

As mentioned, our main goal is to describe the large N behavior of the characteristic
polynomial of HN . There are several possibilities for what one might want to say. One
could consider the characteristic polynomial at a single point, say inside the support
of the equilibrium measure, in which case one might expect in analogy with random
unitary matrices [40] that the logarithm of the characteristic polynomial should, as
a linear statistic of eigenvalues, be asymptotically a Gaussian random variable with
exploding variance. One could consider the behavior of the characteristic polynomial
in a microscopic neighborhood of a fixed point, where one might expect it to be
asymptotically a random analytic function as it is for the CUE—see [13], or one could
consider the logarithm of the absolute value of the characteristic polynomial on a
macroscopic scale inside or outside the support of the equilibrium measure. For the
GUE, on the macroscopic scale and in the support of the equilibrium measure, it is
known [31] that the recentered logarithm of the absolute value of the characteristic
polynomial behaves like a random generalized function which is formally a Gaussian
process with a logarithmic singularity in its covariance.

Our goal is to “exponentiate” this last statement. (Note that since the limiting
process describing the logarithmof a the characteristic polynomial is only a generalized
function, and not an actual function defined pointwise, taking its exponential is a priori
highly nontrivial). More precisely, we make the following definitions.

Definition 2.2 For N ∈ Z+, let HN be distributed according to (2.1). For x ∈ C,
define

PN (x) = det(HN − x1N×N ) =
N∏

j=1

(λ j − x). (2.6)

Moreover, let

XN (x) = log |PN (x)| =
N∑

j=1

log
∣
∣λ j − x

∣
∣ , (2.7)

and for β > 0, define the following measure on (−1, 1):

μN ,β(dx) = eβXN (x)

EeβXN (x)
dx = |PN (x)|β

E|PN (x)|β dx . (2.8)

While exponentiating a generalized function in general is impossible, it turns out
that in our setting, the correct description of such a procedure is in terms of random
measures known as Gaussian multiplicative chaos measures. We now describe some
of the basics of the relevant theory.

2.3 Gaussian multiplicative chaos

Gaussian multiplicative chaos is a theory going back to Kahane [37] with the aim
of defining what the exponential of a Gaussian random (possibly generalized) func-
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tion should mean when the covariance kernel of the Gaussian process has a suitable
structure, aswell as describing some geometric properties of theseGaussian processes.

Kahane proved, that if the covariance kernel has a logarithmic singularity, but
otherwise has a particularly nice form, then with a suitable limiting and normalizing
procedure, the exponential of the corresponding generalized function can be indeed
understood as a random multifractal measure, known as a Gaussian multiplicative
chaos measure. For a recent review of the theory, see [58] and for a concise proof for
existence and uniqueness, see [6].

Recently, these measures have found applications in constructing random SLE-
like planar curves through conformal welding [4,63], quantum Loewner evolution
[51], the random geometry of two-dimensional quantum gravity [16,24]—see also
the lecture notes [7,59], and even in models of mathematical finance [5]. Complex
variants of these objects are also connected to the statistical behavior of the Riemann
zeta function on the critical line [62]. Perhaps their greatest importance is the role they
are believed to play in describing the scaling limits of random planar maps embedded
conformally—see [52–54] and [7]. In all of these cases, the covariance kernel of the
Gaussian field has a logarithmic singularity on the diagonal.

In this section we will give a brief construction of the measures which are relevant
to us. The random distribution we will be interested in is the whole-plane Gaussian
free field restricted to the interval (−1, 1) with a suitable choice of additive constant.
Formally we will want to consider a Gaussian field X defined on (−1, 1) such that it
has a covariance kernel EX (x)X (y) = − 1

2 log[2|x − y|]. It can be shown that it is
possible to construct such an object as a random variable taking values in a suitable
Sobolev space of generalized functions, see [31]. However, we will only need to
work with approximations to this distribution which are well defined functions, so we
will not need this fact. To motivate our definitions, we first recall a basic fact about
expanding log |x − y| for x, y ∈ (−1, 1) in terms of Chebyshev polynomials—see
e.g. [56, Appendix C], [27, Exercise 1.4.4], or [33, Lemma 3.1] for a proof.

Lemma 2.3 Let x, y ∈ (−1, 1) and x �= y. Then

log |x − y| = − log 2 −
∞∑

n=1

2

n
Tn(x)Tn(y), (2.9)

where Tn is a Chebyshev polynomial of the first kind, i.e. it is the unique polynomial
of degree n satisfying Tn(cos θ) = cos nθ for all θ ∈ [0, 2π ].

Thus formally, if (Ak)
∞
k=1 were i.i.d. standard Gaussians and one defined

G(x) =
∞∑

j=1

A j√
j
Tj (x),

then one would have EG(x)G(y) = − 1
2 log[2|x − y|]. Motivated by this, we make the

following definition.
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Definition 2.4 Let (Ak)
∞
k=1 be i.i.d. standard Gaussian random variables. For x ∈

(−1, 1) and M ∈ Z+, let

GM (x) =
M∑

j=1

A j√
j
Tj (x). (2.10)

We then want to understand eβG (for suitable β) as a limit related to eβGM as
M → ∞. The precise statement is the following:

Lemma 2.5 Consider the random measure

μ
(M)
β (dx) = eβGM (x)− β2

2 EGM (x)2dx (2.11)

on (−1, 1). For β ∈ (−√
2,

√
2), μ(M)

β converges weakly almost surely (when the
i.i.d. Gaussians are realized on the same probability space) to a non-trivial random
measure μβ on (−1, 1), as M → ∞.

This measure μβ is the limiting object in Theorem 1.1. The basic idea is that

the sequence μ
(M)
β is a measure-valued martingale, and it turns out that for β ∈

(−√
2,

√
2), it is bounded in L2 so by standard martingale theory it has a non-trivial

limit. The L2-boundedness is somewhat non-trivial and we will return to the details
later.

Remark 2.6 The measure μβ exists actually for larger values of |β| as well. It essen-
tially follows from the standard theory of multiplicative chaos, or alternatively the
approach of [6], that a non-trivial limiting measure exists for β ∈ (−2, 2). In fact,
comparing with other log-correlated fields, it is natural to expect that with a suitable
deterministic normalization, that differs from ours for some values of β, it is possible
to construct a non-trivial limiting object for all β ∈ C. However, for complex β, the
limit might not be in general a measure (not even a signed measure), but only a dis-
tribution. We refer to [45] for a study in complex multiplicative chaos and to [49] for
defining μβ for large real β. Our approach for proving convergence relies critically
on calculating second moments and it is known for example that the total mass of the
measure μβ has a finite second moment only for β ∈ (−√

2,
√
2), so our approach is

not directly possible for proving a corresponding result in the full range of values of
β where we would expect the result to hold. However, combining our results, those of
[15], and the approach of [46] should yield the result for β ∈ (0, 2). This being said,
we wish to point out that while the limiting object μβ should exist for all complex β,
one should not expect thatμN ,β converges to it if the real part of β is too negative—e.g.

if β ≤ −1, then with overwhelming probability,
∫ 1
−1 f (x)|PN (x)|βdx will be infinite

and one can not hope for convergence. To avoid this type of complications, we focus
on non-negative β.

2.4 Outline of the proof

In this section we define the main objects we analyze in the proof of Theorem 1.1,
and state the main results we need about them. Motivated by the approach in [67],
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we will consider an approximation to μN ,β , and we will denote this by μ̃
(M)
N ,β , where

M is an integer parametrizing the approximation. Using known results about the
linear statistics of one-cut regular ensembles, it will be clear that as N → ∞ for
fixed M, μ̃

(M)
N ,β → μ

(M)
β in distribution. Thus our goal is to control the difference

μN ,β − μ̃
(M)
N ,β , when we first let N → ∞ and then M → ∞.

Let us begin by defining our approximation μ̃
(M)
N ,β . It is essentially just truncating the

Fourier-Chebyshev series of XN , but we have to be slightly careful as the eigenvalues
can be outside of [−1, 1] with non-zero probability.

Definition 2.7 Fix M ∈ Z+ and ε > 0 (small and possibly depending on M). Let
T̃ j (x) be a C∞(R)-function with compact support such that T̃ j (x) = Tj (x) for each
x ∈ (−1 − ε, 1 + ε). Then define for x ∈ (−1, 1)

X̃ N ,M (x) = −
M∑

k=1

2

k

⎡

⎣
N∑

j=1

T̃k
(
λ j
)
⎤

⎦ Tk(x), (2.12)

and

μ̃
(M)
N ,β(dx) = eβ X̃N ,M (x)

Eeβ X̃N ,M (x)
dx . (2.13)

Remark 2.8 Our reasoning here is that if we pretended that all of the λ j are in the
interval (−1, 1), we could make use of Lemma 2.3. Then XN would coincide with
the above expansion for M = ∞ and T̃ j replaced by Tj . Outside of the interval, we

have to use T̃k instead of Tk , as otherwise Eeβ X̃N ,M (x) might not exist for all values of
x and M .

We will break our main statement down into parts now. The statement of our
Theorem 1.1 is equivalent to saying that for each bounded continuous ϕ : (−1, 1) →
[0,∞), μN ,β(ϕ) := ∫ 1

−1 ϕ(x)μN ,β(dx) converges in distribution to μβ(ϕ). It will
actually be enough to assume that ϕ has compact support in (−1, 1), i.e. to prove
vague convergence. We will be more detailed about these statements in the actual
proof in Sect. 6. The way we will prove vague convergence is to write

μN ,β(ϕ) = [μN ,β(ϕ) − μ̃
(M)
N ,β(ϕ)] + μ̃

(M)
N ,β(ϕ).

By using standard central limit theorems for linear statistics of one-cut regular
ensembles, and the definition of μβ , we will see that the second term here tends to
μβ(ϕ) in the limit where first N → ∞, and then M → ∞. Our main result will then
follow from showing that the second moment of the first term tends to zero in the same
limit. We formulate this as a proposition.

Proposition 2.9 If we first let N → ∞ and then M → ∞, then for β ∈ (0,
√
2) and

each compactly supported continuous ϕ : (−1, 1) → [0,∞), μ̃
(M)
N ,β(ϕ) converges in

distribution to μβ(ϕ), and

lim
M→∞ lim

N→∞E|μN ,β(ϕ) − μ̃
(M)
N ,β(ϕ)|2 = 0. (2.14)
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Proving the second statement takes up most of this article. Expanding the square,
we see that what is critical is having uniform asymptotics for EeβXN (x),Eeβ X̃N ,M (x),
Eeβ(XN (x)+XN (y)),Eeβ(X̃N ,M (x)+X̃N ,M (y)), and Eeβ(XN (x)+X̃N ,M (y)). More precisely,
we have:

E|μN ,β(ϕ) − μ̃
(M)
N ,β(ϕ)|2 =

∫∫

ϕ(x)ϕ(y)
E(eβXN (x)+βXN (y))

E(eβXN (x))E(eβXN (y))
dxdy

− 2
∫∫

ϕ(x)ϕ(y)
E(eβXN (x)+β X̃N ,M (y))

E(eβXN (x))E(eβ X̃N ,M (y))
dxdy

+
∫∫

ϕ(x)ϕ(y)
E(eβ X̃N ,M (x)+β X̃N ,M (y))

E(eβ X̃N ,M (x))E(eβ X̃N ,M (y))
dxdy.

Each of these expectations here can be expressed as E
∏N

j=1 h(λ j ) for a suitable
function h : R → R. For instance,

eβXN (x)+β X̃N ,M (y) =
N∏

j=1

|λ j − x |βeT (λ j ); where T (λ) = T (λ; y)

= −β

M∑

k=1

2

k
T̃k(λ)Tk(y).

As we will recall in Sect. 3, such quantities can be expressed in terms of Hankel
determinants. Moreover, all of these Hankel determinants have a very specific type of
symbol: one with so-called Fisher–Hartwig singularities. To explain what this means
here, a Hankel matrix is a matrix in which the skew-diagonals are constant. They are
closely related to Toeplitz matrices where the diagonals themselves are constant (these
arise typically in the study of CUE and related random matrix ensembles rather than
the GUE-type ensembles considered in this paper). In the case we will be interested in,
the (i, j)th coefficient of theHankel matrix will be of the form

∫
R
xi+ j h(x)e−NV (x)dx

where h is as above. When h is smooth enough and doesn’t have any roots, then the
asymptotic analysis of such determinants would follow from the classical strong Szegő
theorem (actually this theorem applies in the Toeplitz case rather than the Hankel case,
but here this isn’t a crucial distinction). However in our situation h typically contains at
least one root of the form |x−xi |βi , which greatly complicates the task of analysing the
corresponding determinant. This type of behavior is an example of a Fisher–Hartwig
singularity. (In general a Fisher–Hartwig singularity might also include a jump at xi
corresponding to the symbol also having a term of the form eγ Im log(x−xi )).

The asymptotics of Hankel determinants with Fisher–Hartwig singularities is still
very much a subject of active research, and much information is already available
using the steepest descent technique due to Deift and Zhou [23]; see in particular the
papers [14,19,20,42] which play an important role in our proof. Yet results in the
generality we need seem to still be lacking in the literature. What suffices for us is the
following result (which we will only use with k = 1 or k = 2, but since there is no
added difficulty in proving it for a general value of k we will do so).
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Proposition 2.10 Let T ∈ C∞(R) be real analytic in some neighborhood of [−1, 1]
and have compact support. Let k ∈ Z+ be fixed, and let β1, . . ., βk ∈ [0,∞) be
fixed. Moreover, let x1, . . ., xk ∈ (−1, 1) be distinct. Finally let HN be a N × N
random Hermitian matrix drawn from a one-cut regular unitary invariant ensemble

with potential V . Then for C(β) = 2
β2

2
G(1+β/2)2

G(1+β)
, where G is the Barnes G function,

we have as N → ∞,

E

⎡

⎣e
∑N

j=1 T (λ j )
k∏

i=1

| det(HN − xi )|βi
⎤

⎦

=
k∏

j=1

C(β j )
(
d(x j )

π

2

√
1 − x2j

)
β2j
4
(
N

2

) β2j
4
e(V (x j )+�V )

β j
2 N

∏

1≤i< j≤k

|2(xi − x j )|−
βi β j
2

× e
N
∫ 1
−1 T (x)d(x)

√
1−x2dx+∑k

j=1
β j
2

[
∫ 1
−1

T (x)

π
√

1−x2
dx−T (x j )

]

× e
1

4π2

∫ 1
−1 dy

T (y)√
1−y2

P.V .
∫ 1
−1

T ′(x)
√

1−x2
y−x dx

(1 + o(1)) (2.15)

uniformly on compact subsets of {(x1, . . ., xk) ∈ (−1, 1)k : xi �= x j for i �= j}. Here
P.V .

∫
denotes the Cauchy principal value integral. Moreover, if there exists a fixed

M ∈ Z+, such that in some fixed neighborhood of [−1, 1], T (x) = ∑M
j=1 α j Tj (x),

then the above asymptotics are uniform also in compact subsets of {(α1, . . ., αM ) ∈
R

M }.
Remark 2.11 As mentioned in the introduction, this settles some conjectures due to
Forrester and Frankel—see [28, Conjecture 5 and Conjecture 8] for more details. In
terms of the potential V , we actually improve on the conjectures as these are only stated
for polynomial V , but concerning the functions T , our results are not as general as
those appearing in the conjectures of Forrester and Frankel. This being said, one could
easily relax some of our regularity assumptions on T . In fact, the compact support
or smoothness outside of a neighborhood of the interval [−1, 1] play essentially no
role in our proof, but as this is a simple and clear way of stating the result, we do not
attempt to state things in their greatest generality. Moreover, using techniques from
[20], one could attempt to generalize our estimates and prove a corresponding result
when T is less smooth also on [−1, 1]. Again, this is not necessary for our main goal,
so we don’t pursue this further.

We also mention that after the first version of this article appeared, Charlier [11]
proved an extension of this result to the casewhere the symbol can also have jump-type
singularities.

We prove our results throughRiemann–Hilbert methods. In particular, we first show
that with a suitable differential identity, and some analysis of a Riemann–Hilbert
problem, we can relate the T = 0 case to the T �= 0 case. Then with another
differential identity (and further analysis of another Riemann–Hilbert problem) we
relate the T = 0, general V -case to the GUE with T = 0. The asymptotics in the
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T = 0 case for the GUE have been obtained by Krasovsky [42]. Using these, we are
able to prove Proposition 2.10.

As we will need uniform asymptotics forEeβXN (x)+βXN (y) and other terms, Propo-
sition 2.10 is not quite enough for us. For uniform estimates, we will rely on a recent
result of Claeys and Fahs [14], which combined with Proposition 2.10 will let us prove
Proposition 2.9.

Next we review the connection between expectations of the form (2.15), Hankel
determinants, and Riemann–Hilbert problems.

3 Hankel determinants and Riemann–Hilbert problems

In this section, we recall how the expectations we are interested in can be written
as Hankel determinants, which are related to orthogonal polynomials, which in turn
can be encoded into a Riemann–Hilbert problem. We also recall certain differential
identities we will need for analyzing the expectations we are interested in. While our
discussion is very similar to that in e.g. [19,20], there are someminor differences as we
are dealingwithHankel determinants instead of Toeplitz ones.We choose to give some
details for the convenience of a reader with limited experience with Riemann–Hilbert
problems.

3.1 Hankel determinants and orthogonal polynomials

Terms of the form E
∏N

j=1 f (λ j ) can be written in determinantal form due to
Andreief’s identity—for a proof, one can use e.g. [1, Lemma 3.2.3] with the functions
fi (x) = f (x)e−NV (x)xi−1 and gi (x) = xi−1 as well as the product representation of
the Vandermonde determinant.

Lemma 3.1 Let f : R → R be a nice enough function (measurable and nice enough
decay that all the relevant integrals converge absolutely). Then

E

N∏

j=1

f (λ j ) = N !
ZN (V )

det

(∫

R

xi+ j f (x)e−NV (x)dx

)N−1

i, j=0
. (3.1)

where ZN (V ) is as in (2.2).

Let us introduce some notation for the Hankel determinant here.

Definition 3.2 For nice enough functions f : R → R, (so that the integrals exist) let

Dk( f ) = Dk( f ; V ) = det

(∫

R

xi+ j f (x)e−NV (x)dx

)k

i, j=0
. (3.2)

As the notation suggests, we will suppress the dependence on V when it’s conve-
nient. We suppress the dependence on N always.
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It is a well known result in the theory of orthogonal polynomials, that such deter-
minants can be written in terms of orthogonal polynomials. For the convenience of
the reader, we offer a proof for the following result.

Lemma 3.3 Let f : R → R be positive Lebesgue almost everywhere, have nice
enough regularity and growth at infinity, and let (p j (x; f, V ))∞j=0 be the sequence
of real polynomials which have a positive leading order coefficient and which are
orthonormal with respect to themeasure f (x)e−NV (x)dx onR (wewill write p j (x; f )
when we wish to suppress the dependence on V and we will always suppress the
dependence on N ):

∫

R

p j (x; f )pk(x; f ) f (x)e−NV (x)dx = δ j,k, (3.3)

and p j (x; f ) = χ j ( f )x j + O(x j−1) as x → ∞, where χ j ( f ) > 0. Then

Dk( f ) =
k∏

j=0

χ j ( f )
−2. (3.4)

Note that due to our assumptions on f , the above polynomials do exist as we
can construct them by applying the determinantal representation associated with the
Gram–Schmidt procedure to the monomials.

Proof Consider the space of real polynomials, equipped with an inner product given
by the L2 inner product onRwith weight f (x)e−NV (x). A consequence of the Gram–
Schmidt procedure applied to the sequence of monomials in this inner product space
is the following: for j ≥ 1

p j (x; f ) = 1
√
Dj−1( f )Dj ( f )

∣
∣
∣
∣
∣
∣
∣
∣
∣

∫
f (y)e−NV (y)dy · · · ∫

y j f (y)e−NV (y)dy
...

. . .
...

∫
y j−1 f (y)e−NV (y)dy · · · ∫ y2 j−1 f (y)e−NV (y)dy

1 · · · x j

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

(3.5)

where for j = 0 the determinant is replaced by 1, and D−1( f ) = 1.
Note that from our assumption on f and an easy generalization of Lemma 3.1,

Dj ( f ) > 0 for all j ≥ 0, so these polynomials exist. From (3.5) one sees that χ j ( f )—
the coefficient of x j in p j (x; f )—equals

√
Dj−1( f )/Dj ( f ). The claim then follows

as the product has a telescopic form, and we defined D−1( f ) = 1. 
�

3.2 Riemann–Hilbert problems and orthogonal polynomials

We now recall a result going back to Fokas, Its, and Kitaev [26] about encoding
orthogonal polynomials on the real line into aRiemann–Hilbert problem. In our setting,
the relevant result is formulated in the following way.
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Proposition 3.4 (Fokas, Its, and Kitaev) Let T be a real valued C∞(R) function with
compact support, let (β j )

k
j=1 ∈ [0,∞)k , (x j )kj=1 ∈ (−1, 1)k , and xi �= x j for i �= j .

Let V be some real analytic function on R satisfying limx→±∞ V (x)/ log |x | = ∞.
For λ ∈ R, define

f (λ) = eT (λ)
k∏

j=1

∣
∣λ − x j

∣
∣β j , (3.6)

and let p j (x; f ) be as in Lemma 3.3, with the relevant measure being f (λ)e−NV (λ)dλ

on R. Consider the 2 × 2 matrix-valued function

Y (z) = Y j (z; f, V )

=
(

1
χ j ( f )

p j (z; f ) 1
χ j ( f )

∫
R

p j (λ; f )
λ−z

f (λ)e−NV (λ)dλ
2π i

−2π iχ j−1( f )p j−1(z; f ) −χ j−1( f )
∫
R

p j−1(λ; f )
λ−z f (λ)e−NV (λ)dλ

)

,

(3.7)

for z ∈ C\R. Then Y is the unique solution to the following Riemann–Hilbert problem:
find a function Y : C\R → C

2×2 such that

1. Y is analytic.
2. On R,Y has continuous boundary values Y±, i.e. Y±(λ) = limε→0+ Y (λ ± iε)

exists and is continuous for all λ ∈ R. Moreover, Y± are related by the jump
condition

Y+(λ) = Y−(λ)

(
1 f (λ)e−NV (λ)

0 1

)

, λ ∈ R. (3.8)

3. As z → ∞,

Y (z) = (I + O(z−1))

(
z j 0
0 z− j

)

. (3.9)

Remark 3.5 Typically for Riemann–Hilbert problems related to Toeplitz and Hankel
determinants with Fisher–Hartwig singularities (e.g. [14,19,20]) one says that the
boundary values are continuous on the relevant contour minus the singularities x j , and
then imposes conditions on the behavior of Y near the singularities. This is relevant
when one of the β j is negative or non-real, but as we will shortly mention, in our case
the boundary values are truly continuous on R and no further condition is needed.

Sketch of proof The proof for uniqueness is the standard one: one first looks at some
solution to the RHP, say Y . From the jump condition, it follows that det Y is continuous
across R, so it is entire. From the behavior of Y at infinity, it follows that det Y is
bounded, so byLiouville’s theoremand the behavior at infinity, one sees that det Y = 1.
In particular, (as amatrix) Y is invertible and the inversematrixY−1 is analytic inC\R.
Now if Ỹ is another solution, we see that Ỹ Y−1 is analytic in C\R and continuous
across R, so it is entire. From the behavior at infinity, Ỹ (z)Y (z)−1 → I (the 2 × 2
identity matrix) as z → ∞, so again by Liouville, Ỹ = Y .

Consider then the statement that Y given in terms of the orthogonal polynomials is
a solution. The analyticity condition is obvious. The continuity of the boundary values
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of the first column is obvious since we are dealing with polynomials. For the second
column, the Sokhotski-Plemelj theorem implies that the boundary values of the second
column can be expressed in terms of p j f e−NV (or p j replaced by p j−1) and itsHilbert
transform (see e.g. [64, Chapter V] for an introduction to the Hilbert transform). The
first term is obviously continuous. For the Hilbert transform, we note that p j f e−NV

is Hölder continuous, so as the Hilbert transform preserves Hölder regularity (see [64,
Chapter V.15]), we see that the boundary values of Y are continuous.

For the jump condition (3.8) and behavior at infinity (3.9), we refer to analogous
problems in [18, Section 3.2 and Section 7]. 
�

We next discuss how deforming V or T changes DN−1( f ; V ).

3.3 Differential identities

Let us fix our potential V (and drop dependence on it from our notation) and first
consider how deforming T changes DN−1( f ).

The proof of the following result is a minor modification of the proof of [20,
Proposition 3.3], but for completeness, we give a proof in “Appendix A”. The role of
this result is that if we know the asymptotics in the case T = 0, instead of studying Y j

for all j , it’s enough to study YN though with a one-parameter family of deformations
of T .

Lemma 3.6 Let T : R → R be a C∞ function with compact support, let (β j )
k
j=1 ∈

[0,∞)k , (x j )kj=1 ∈ (−1, 1)k , and xi �= x j for i �= j . For t ∈ [0, 1] and λ ∈ R, define

ft (λ) =
[
1 − t + teT (λ)

] k∏

j=1

|λ − x j |β j . (3.10)

Let Y (z, t) be as in (3.7) with j = N , f = ft , and pl(x; f ) = pl(x; ft ) the
orthonormal polynomials with respect to the measure ft (λ)e−NV (λ)dλ on R. Then

∂t log DN−1( ft ) = 1

2π i

∫

R

[Y11(x, t)∂xY21(x, t)

−Y21(x, t)∂xY11(x, t)] ∂t ft (x)e
−NV (x)dx, (3.11)

where the indices of Y refer to matrix entries.

The object we are interested in is DN−1( f1) which we can analyze by writing

log DN−1( f1) = log DN−1( f0) +
∫ 1

0

∂

∂t
log DN−1( ft )dt.

For the GUE, the asymptotics of DN−1( f0)—the case T = 0—were investigated
in [42], so a consequence of Lemma 3.6 is that if we understand the asymptotics of
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Y (z, t) well enough, we are able to study the asymptotics of DN−1( f1) in the GUE
case.

The other deformation we will consider is what happens when we interpolate
between the potentials V0(x) = 2x2 (the GUE) and V1(x) = V (x) in the T = 0
case.

Lemma 3.7 Let (β j )
k
j=1 ∈ [0,∞)k, (x j )kj=1 ∈ (−1, 1)k , and xi �= x j for i �= j . Let

f be defined by (3.6) with T = 0 and let V : R → R be a real analytic function
satisfying limx→±∞ V (x)/ log |x | = ∞. Define for s ∈ [0, 1]

Vs(x) = (1 − s)2x2 + sV (x). (3.12)

Let us then write Y (z; Vs) for Y defined as in (3.7) with j = N , V = Vs and
p j (x; f ) = p j (x; f, Vs). Then using the notation of (3.2)

∂s log DN−1( f ; Vs)
= −N

1

2π i

∫

R

[Y11(x; Vs)∂xY21(x; Vs)
−Y21(x; Vs)∂xY11(x; Vs)] f (x)[∂sVs(x)]e−NVs (x)dx . (3.13)

Again, we give a proof in “Appendix A”. The role of this differential identity is that
if we understand the asymptotics of Y (z; Vs) well enough, then by integrating (3.13),
we can move from the GUE asymptotics to the general ones.

We mention that both of these identities are of course true for a much wider class
of symbols than what we state in the results (in particular, in Lemma 3.7 the condition
T = 0 is not necessary for anything). This is simply the generality we use them in.
Next we move on to describing how to study the large N asymptotics of Y (z, t) and
Y (z; Vs).

4 Solving the Riemann–Hilbert problem

In this section we will finally describe the asymptotic behavior of Y (z, t) and Y (z; Vs)
as N → ∞. The typical way this is done is through a series of transformations to the
RHP, ultimately leading to a RHP where the jump matrix is asymptotically close to
the identity matrix as N → ∞, and the behavior at infinity is close to the identity
matrix. Then using properties of the Cauchy-kernel, the final RHP can be solved in
terms of a Neumann series solution of a suitable integral equation. Moreover, each
term in the series expansion is of lower and lower order in N . We will go into further
details about this part of the problem in Sect. 4.5, but we will start with transforming
the problem.

While we never have both s, t ∈ (0, 1), we will find it notationally convenient to
consider Y (z) to be defined as in (3.7) with f = ft and V = Vs . We suppress all
of this in our notation for Y . We will also focus on functions T with the regularity
claimed in Proposition 2.10 which was stronger than what we stated in the differential
identities.
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4.1 Transforming the Riemann–Hilbert problem

Let us introduce some further notation to simplify things later on. Let T satisfy the
conditions of Proposition 2.10, and let

Tt (λ) = log(1 − t + teT (λ)) (4.1)

so that in the notation of Lemma 3.6

ft (λ) = eTt (λ)
k∏

j=1

|λ − x j |β j ,

and let us assume that the singularities are ordered: x j < x j+1.
The series of transformations we will now start implementing is a minor modifica-

tion of that in [42, Section 4].

4.1.1 The first transformation

Our first transformation will change the asymptotic behavior of the solution to the
RHP so that it is close to the identity as z → ∞, as well as cause the distance between
the jump matrix and the identity matrix to be exponentially small in N when we’re
off of the interval [−1, 1]. The proofs of the statements of this section are either
elementary or straightforward generalizations of standard ones in the RHP-literature,
but for the convenience of readers unfamiliar with the literature, they are sketched in
“Appendix B”. Let us now make the relevant definitions.

Definition 4.1 In the notation of (2.5), for s ∈ [0, 1] as above, let

ds(λ) = (1 − s)
2

π
+ sd(λ), (4.2)

and for z ∈ C\(−∞, 1], let

gs(z) =
∫ 1

−1
ds(λ)

√
1 − λ2 log(z − λ)dλ, (4.3)

where the branch of the logarithm is the principal one. We also define

�s = (1 − s)(−1 − 2 log 2) + s�V , (4.4)

where �V is the constant from (2.3) and (2.4). Finally, for z ∈ C\R, let

T (z) = e−N�sσ3/2Y (z)e−N (gs (z)−�s/2)σ3 , (4.5)

where

σ3 =
(
1 0
0 −1

)

and eqσ3 =
(
eq 0
0 e−q

)

.
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Before describing the jump structure and normalization of T near infinity, we first
point out some simple facts about the boundary values of gs on R which follow from
its definition and (2.3) (details may be found in “Appendix B”).

Lemma 4.2 For λ ∈ R, let gs,±(λ) = limε→0+ gs(λ ± iε). Then for λ ∈ (−1, 1) and
s ∈ [0, 1]

gs,+(λ) + gs,−(λ) = Vs(λ) + �s . (4.6)

There exist M,C > 0 (independent of s) so that for λ ∈ R\[−1, 1],

gs,+(λ) + gs,−(λ) − Vs(λ) − �s ≤
{

−C(|λ| − 1)3/2, |λ| − 1 ∈ (0, M)

− log |λ|, |λ| − 1 > M
. (4.7)

For λ ∈ R

gs,+(λ) − gs,−(λ) =

⎧
⎪⎨

⎪⎩

2π i, λ < −1

2π i
∫ 1
λ
ds(x)

√
1 − x2dx, |λ| < 1

0, λ > 1

. (4.8)

The function gs,+ − gs,− along with an analytic continuation of it will play a
significant role in our analysis of the Riemann–Hilbert problem, so we give it a name.

Definition 4.3 LetU ⊂ C be an open neighborhood ofR into which d has an analytic
continuation. For z ∈ U\((−∞,−1] ∪ [1,∞)) and s ∈ [0, 1], let

hs(z) = −2π i
∫ z

1
ds(w)

√
1 − w2dw, (4.9)

where the square root is according to the principal branch (i.e.
√
1 − w2 = e

1
2 log(1−w2)

and the branch of the logarithm is the principal one), and the contour of integration is
such that it stays in U and does not cross (−∞,−1] ∪ [1,∞).

The function hs will often appear in the form e±Nhs and to estimate the size of
such an exponential, we will need to know the sign of Re(hs). For this, we use the
following elementary fact.

Lemma 4.4 In a small enough open neighborhood of (−1, 1) (independent of s) in
the complex plane,

Re(hs(z)) > 0 i f Im(z) > 0

and
Re(hs(z)) < 0 i f Im(z) < 0

for all s ∈ [0, 1], and if we restrict to a fixed set in the upper half plane such that the
set is bounded away from the real axis, but inside this neighborhood of (−1, 1), we
have e.g. Re(hs(z)) ≥ ε > 0 for some ε > 0 independent of s. A similar result holds
in the lower half plane.
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Again, see “Appendix B” for details on the proof of this and the next result, which
describes the Riemann–Hilbert problem T solves.

Lemma 4.5 The function T : C\R → C
2×2 defined by (4.5) is the unique solution

to the following Riemann–Hilbert problem.

1. T : C\R → C
2×2 is analytic.

2. On R, T has continuous boundary values T± and these are related by the jump
conditions

T+(λ) = T−(λ)

(
e−Nhs (λ) ft (λ)

0 eNhs (λ)

)

, λ ∈ (−1, 1) (4.10)

and

T+(λ) = T−(λ)

(
1 ft (λ)eN (gs,+(λ)+gs,−(λ)−�s−Vs (λ))

0 1

)

, λ ∈ R\[−1, 1].
(4.11)

3. As z → ∞,

T (z) = I + O(|z|−1). (4.12)

The jump matrix given by (4.10) and (4.11) already looks good for λ /∈ [−1, 1],
in the sense that it is exponentially close to the identity, (compare (4.11) with (4.7)).
However, the issue is that across (−1, 1), the jump matrix is not close to the identity
in any way. We will next address this issue by performing a second transformation.

4.1.2 The second transformation

As customary in this type of problems, the next step is to “open lenses”. That is, we
will add further jumps to the problem off of the real line. Due to a nice factorization
property of the jump matrix for T , the new jump matrix will be close to the identity
on the new jump contours when we are not too close to the points ± 1 or x j .

Before going into the details of this, we will define an analytic continuation of ft
into a subset of C. Recall from our assumptions in Proposition 2.10 that on (−1 −
ε, 1+ ε), T (x) is real analytic. Thus T certainly has an analytic continuation to some
neighborhood of [−1, 1]. Moreover as it is real on [−1, 1], we see that in some small
enough complex neighborhood of [−1, 1] (which is independent of t), 1− t + teT (z)

has no zeroes for any t ∈ [0, 1]. Thus Tt (see (4.1)) has an analytic continuation to
this neighborhood for all t ∈ [0, 1]. We use this to define the analytic continuation of
ft .
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Fig. 1 Opening of lenses, k = 1. The signs indicate the orientation of the curves: the + side is the left side
of the curve and − the right

Definition 4.6 LetU[−1,1] be some neighborhood of [−1, 1] which is independent of
t and in which Tt is analytic for t ∈ [0, 1]. In this domain, and for 1 ≤ l ≤ k − 1, let

ft (z) = eTt (z) ×

⎧
⎪⎨

⎪⎩

∏k
j=1(x j − z)β j , Re(z) < x1

∏l
j=1(x j − z)β j

∏k
j=l+1(z − x j )β j , Re(z) ∈ (xl , xl+1)

∏k
j=1(z − x j )β j , Re(z) > xk

,

(4.13)
where the powers are according to the principal branch.

We will now impose some conditions on our new jump contours. Later on, we will
be more precise about what we exactly want from them, but for now, we will ignore
the details.

Definition 4.7 For j = 1, . . ., k + 1, let �+
j (�−

j ), be a smooth curve in the upper
(lower) half plane from x j−1 to x j , where we understand x0 as −1 and xk+1 as 1. The
curves are oriented from x j−1 to x j and independent of t, s, and N . Moreover, they
are contained in U[−1,1].

The domain between �+
j and �−

j is called a lens. The domain between �+
j and R

is called the top part of the lens, and that between �−
j and R the bottom part of the

lens. See Fig. 1 for an illustration.

Remark 4.8 Our definition here and our coming construction implicitly assume that
β j �= 0 for all j . If one (or more) β j = 0, one simply ignores the corresponding x j
(so e.g. one connects x j−1 to x j+1 with a curve in the upper half plane etc).

We use these contours in our next transformation.
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Definition 4.9 For z /∈ � := ∪k+1
j=1(�

+
j ∪ �−

j ) ∪ R, let

S(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

T (z), outside of the lenses

T (z)

(
1 0

− ft (z)−1e−Nhs (z) 1

)

, top part of the lenses

T (z)

(
1 0

ft (z)−1eNhs (z) 1

)

, bottom part of the lenses

. (4.14)

Remark 4.10 Note that S depends on our choice of the contours � (as well as s, t,
and N ), but we suppress this in our notation. We also point out that as ft has zeroes
at the singularities, the entries in the first column of S(z) blow up when z approaches
a singularity from within the lens. Moreover, we see that we have discontinuities at
the points ± 1. Thus the boundary values are no longer continuous on R, but on
R\{x j : j = 0, . . ., k + 1}, where again x0 = −1 and xk+1 = 1.

Using the definition of S, the RHP for T , and the fact that

(
e−Nhs (λ) ft (λ)

0 eNhs (λ)

)

=
(

1 0
eNhs (λ) ft (λ)−1 1

)(
0 ft (λ)

− ft (λ)−1 0

)(
1 0

e−Nhs (λ) ft (λ)−1 1

)

it is simple to check what the Riemann–Hilbert problem for S should be; we omit the
proof.

Lemma 4.11 S is the unique solution to the following Riemann–Hilbert problem:

1. S : C\� → C
2×2 is analytic.

2. S has continuous boundary values on �\{x j }k+1
j=0 and they are related by the jump

conditions

S+(λ) = S−(λ)

(
1 0

ft (λ)−1e∓Nhs (λ) 1

)

, λ ∈ ∪k+1
j=1�

±
j \{xl}k+1

l=0 , (4.15)

S+(λ) = S−(λ)

(
0 ft (λ)

− ft (λ)−1 0

)

, λ ∈ (−1, 1)\{x j }kj=1, (4.16)

and

S+(λ) = S−(λ)

(
1 ft (λ)eN (gs,+(λ)+gs,−(λ)−�s−Vs (λ))

0 1

)

, λ ∈ R\[−1, 1].
(4.17)

In (4.15) the∓ and± notation means that we have e−Nhs in the jump matrix when
we cross �+

j and eNhs when we cross �−
j .

3. S(z) = I + O(|z|−1) as z → ∞.
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4. For j = 1, . . ., k, S(z) is bounded as z → x j from outside of the lenses, but when
z → x j from inside of the lenses,

S(z) =
(
O
(|z − x j |−β j

)
O(1)

O
(|z − x j |−β j

)
O(1)

)

. (4.18)

Moreover, S is bounded at ± 1.

We are now in a situation where if we are on one of the �±
j or on R\[−1, 1] and

not close to one of the points ± 1 or x j , then the distance of the jump matrix from the
identity matrix is exponentially small in N . We thus need to do something close to the
points ± 1 and x j as well as on the interval (−1, 1) to get a small norm problem, i.e.
one that can be solved in terms of a Neumann series.

The way to proceed here is to construct functions which are solutions to approxi-
mations of the Riemann–Hilbert problem where we expect the approximations to be
good if we are close to one of the points ± 1 or x j , or then alternatively when we are
far away from them and we expect the approximate problem related to the behavior
on (−1, 1) to determine the behavior of S. We then construct an ansatz to the original
problem in terms of these approximations. This will lead to a small norm problem.

These approximations are often called parametrices, and we will start with the
solution far away from the points ± 1 and x j . This case is often called the global
parametrix.

4.2 The global parametrix

Our goal is to find a function P(∞)(z) such that it has the same jumps as S(z) across
(−1, 1), is analytic elsewhere, and has the correct behavior at infinity. We won’t go
into great detail about how such problems are solved, but we will build on similar
problems solved in [42, Section 4.2] (see also for example [44, Section 5]). We will
simply state the result here and sketch a proof in “Appendix C”. Later on we will need
some regularity properties of the solution considered here so we will state and prove
the relevant facts here.

We now define our global parametrix.

Definition 4.12 Let us write for z /∈ (−∞, 1]

r(z) = (z − 1)1/2(z + 1)1/2 (4.19)

and

a(z) = (z − 1)1/4

(z + 1)1/4
, (4.20)

where the powers are taken according to the principal branch. Then for t ∈ [0, 1] and
z /∈ (−∞, 1], let

Dt (z) = (z + r(z))−A exp

[
r(z)

2π

∫ 1

−1

Tt (λ)√
1 − λ2

1

z − λ
dλ

] k∏

j=1

(z − x j )
β j /2 (4.21)
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whereA =∑k
j=1 β j/2 and the powers are according to the principal branch. Finally,

for z /∈ (−∞, 1] and t ∈ [0, 1], define the global parametrix

P(∞)(z) = P(∞)(z, t) = 1

2
Dt (∞)σ3

(
a(z) + a(z)−1 −i(a(z) − a(z)−1)

i(a(z) − a(z)−1) a(z) + a(z)−1

)

Dt (z)
−σ3 ,

(4.22)

where Dt (∞) = limz→∞ Dt (z) = 2−Ae
1
2π

∫ 1
−1

Tt (λ)√
1−λ2

dλ
.

Remark 4.13 It’s simple to check that r and a are continuous across (−∞,−1) so
they can be analytically continued to C\[−1, 1]. Using the fact that r(λ) is negative
for λ < −1, one can check that also Dt is continuous across (−∞,−1), so in fact
P(∞) is analytic in C\[−1, 1].

We also point out that as T0(λ) = 0 (recall (4.1)) we can also write

P(∞)(z, t) = e
σ3
2π

∫ 1
−1

Tt (λ)√
1−λ2

dλ
P(∞)(z, 0)e

−σ3
r(z)
2π

∫ 1
−1

Tt (λ)√
1−λ2

dλ
z−λ

. (4.23)

The relevance of this parametrix stems from the following lemma.

Lemma 4.14 For each t ∈ [0, 1], P(∞)(·) = P(∞)(·, t) satisfies the following
Riemann–Hilbert problem.

1. P(∞) : C\[−1, 1] → C
2×2 is analytic.

2. P(∞) has continuous boundary values on (−1, 1)\{x j }kj=1, and satisfies the jump
condition

P(∞)
+ (λ) = P(∞)

− (λ)

(
0 ft (λ)

− ft (λ)−1 0

)

, λ ∈ (−1, 1)\{x j }kj=1. (4.24)

3. As z → ∞,
P(∞)(z) = I + O(|z|−1). (4.25)

See “Appendix C” for a proof. Later on, we will need some estimates on the regu-
larity of the Cauchy transform appearing in (4.21) near the interval [−1, 1]. The fact
we need is the following one.

Lemma 4.15 The function

z �→ r(z)
∫ 1

−1

Tt (λ)√
1 − λ2

1

z − λ
dλ

is bounded uniformly in t ∈ [0, 1] and z in a small enough neighborhood of [−1, 1].
Moreover, if in a neighborhood of [−1, 1], T is a real polynomial of fixed degree,
and if we restrict its coefficients to be in some bounded set, then we have uniform
boundedness of the above function in the coefficients of T as well.
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Proof Let us fix a neighborhood of [−1, 1] such that for all t ∈ [0, 1], Tt is analytic in
the closure of this neighborhood (this exists by similar reasoning as in the beginning
of Sect. 4.1.2). Now write

∫ 1

−1

Tt (λ)√
1 − λ2

1

z − λ
dλ =

∫ 1

−1

Tt (λ) − Tt (z)
z − λ

1√
1 − λ2

dλ

+ Tt (z)
∫ 1

−1

1√
1 − λ2

1

z − λ
dλ.

As Tt is analytic, the first term is of orderO(supt∈[0,1] ||T ′
t ||∞) (the prime referring

to the z-variable and the sup-norm is over z in the neighborhood we are considering)
which is a finite constant depending on our neighborhood of [−1, 1] and the function
T . In the polynomial case, one can easily check that it is bounded uniformly in the
coefficients when they are restricted to a compact set. The second integral can be
calculated exactly:

∫ 1

−1

1√
1 − λ2

1

z − λ
dλ = π

r(z)
.

This can be seen for example by expanding the Cauchy kernel for large |z| as a
geometric series. The integrals resulting from this are simple to calculate and one
can then also calculate the remaining sum exactly. The resulting quantity agrees with
π/r(z) on (1,∞) so by analyticity, the statement holds. The claim now follows from
the uniform boundedness of Tt (for which the uniform boundedness in the polynomial
case is again easy to check). 
�

4.3 Local parametrices near the singularities

Wenowwish to find functions approximating S(z)well near the points x j .Wewill thus
look for functions that satisfy the same jump conditions as S(z) in some fixed neigh-
borhoods of the points x j for j = 1, . . ., k, but we will also want these approximations
to be consistent with the global approximation, so we will replace a normalization at
infinity with a matching condition, where we demand that the two approximations are
close to each other on the boundary of the neighborhood we are looking at at. Our
argument is built on [42, Section 4.3], which in turn relies on [65, Section 4]. Again,
we state the relevant facts here and give some further details in “Appendix D”.

In this case, we will have to introduce a bit more notation before defining our actual
object. We first introduce a change of coordinates that will blow up in a neighborhood
of a singularity in a good way.

Definition 4.16 Fix some δ > 0 (independent of N , s, and t). Let us write Ux j for
the open δ-disk surrounding x j . We assume that δ is small enough that the following
conditions are satisfied:

(i) |xi − x j | > 3δ for i �= j .
(ii) |x j ± 1| > 3δ for all j ∈ {1, . . ., k}.
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(iii) For all j,U ′
x j—the open 3δ/2-disk around x j—is contained inU , which is some

neighborhood of R into which d has an analytic continuation (see e.g. Defini-
tion 4.3).

For z ∈ U ′
x j , let

ζs(z) = πN
∫ z

x j

[
2

π
(1 − s) + sd(w)

]√
1 − w2dw, (4.26)

where the root is according to the principal branch, and the integration contour does
not leave U ′

x j .

Remark 4.17 The reason for introducing the two neighborhoods Ux j and U
′
x j , is that

we will want the local parametrices to be analytic functions approximately agreeing
with P(∞) on the boundary of Ux j , but to ensure that they behave nicely near the
boundary, we will construct them such that they are analytic in U ′

x j .
We also point out that by taking δ smaller if needed, ζs can be seen to be injective

as d is positive on [−1, 1]. More precisely, we see that ζ ′
s(x j ) > cN for some constant

c which is independent of s (but not necessarily of δ) and |ζ ′′
s (z)| ≤ CN uniformly in

z ∈ U ′
x j for some C > 0 independent of s (but not necessarily of δ). From this one

sees that ζs is injective in a small enough (N - and s-independent) neighborhood of x j .

In addition to this change of coordinates, we will need to add further jumps to make
our jump contour more symmetric, in order to obtain an approximate problem with a
known solution.

Definition 4.18 For z ∈ U ′
x j , let

Wj (z) = Wj (z, t)

= eTt (z)/2
j−1∏

l=1

(z − xl)
βl/2

k∏

l= j+1

(xl − z)βl/2

×
{

(z − x j )β j /2, |arg ζs(z)| ∈ (π/2, π)

(x j − z)β j /2, |arg ζs(z)| ∈ (0, π/2)
, (4.27)

where the roots are principal branch roots. Moreover, let

φs(z) =
{

hs (z)
2 , Im(z) > 0

− hs (z)
2 , Im(z) < 0

. (4.28)

The precise form of ζs will be important for us to be able to see that the local
parametrices indeed approximately agree with P(∞) on the boundary ofUx j . We also
point out that for small enough δ, ζs is one-to-one, and it preserves the real axis (along
with the orientation of the plane as it’s conformal).
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Re z = xj

Σ+
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ζs(Σ+
j−1 Uxj

)
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)
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)
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)
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∩
∩
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Fig. 2 Choice of the jump contours near the singularities

We also point out that Wj is almost identical to f 1/2t , apart from the fact that it
introduces some further branch cuts to it: along the imaginary axis in the ζs-plane, as
well as on the real axis (recall that ft has no branch cut along the real axis). These
further branch cuts are useful in transforming the Riemann–Hilbert problem for the
parametrix into one with certain constant jump matrices along a very special contour.
This problem has been studied in [65].

We are now able to clarify our choice of the contours �±
j apart from the behavior

near the end points ± 1.

Definition 4.19 Let (�±
l )l be such that

ζs

(
�±

j−1 ∩U ′
x j

)
=
[
e±3π i/4 × [0,∞)

]
∩ ζs

(
U ′
x j

)
(4.29)

and
ζs

(
�±

j ∩U ′
x j

)
=
[
e±π i/4 × [0,∞)

]
∩ ζs

(
U ′
x j

)
. (4.30)

Outside ofU ′
x j (apart from close to±1), we take (�±

l )l to be smooth, without self-
intersections and the distance between them and the real axis to be bounded away from
zero and of order δ, and such that the contours are contained inU—the neighborhood
of R into which d has an analytic continuation. For an illustration, see Fig. 2.

Using the injectivity of ζs we argued inRemark 4.17 and theKoebe quarter theorem,
it is immediate that�±

j and�±
j−1 arewell defined for large enough N and small enough

δ (large and small enough being independent of s).
We still need one further ingredient before defining our local parametrix. This is a

solution to a model Riemann–Hilbert problem—a problem where the jump contours
and matrices are particularly simple and a solution can be given explicitly in terms of
suitable special functions. We will give a rather compact definition here with a more
detailed description in “Appendix D”.

Definition 4.20 Let us denote by Roman numerals the octants of the complex plane—
so we write I = {reiθ : r > 0, θ ∈ (0, π/4)} and so on. Denote by �l the boundary
rays of these octants: for 1 ≤ l ≤ 8, �l = {rei π

4 (l−1), r > 0}, oriented as in Fig. 3.
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Fig. 3 Jump contour of the
model RHP
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�(ζ) = 1

2

√
πζ

⎛

⎜
⎝
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β j+1
2
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2
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⎞

⎟
⎠ e

−
(

β j
2 + 1

4

)
π iσ3

, (4.31)

where H (i)
ν are Hankel functions and the root is according to the principal branch. In

other octants, � satisfies the following Riemann–Hilbert problem:

1. � : C\ ∪8
l=1 �l → C

2×2 is analytic.
2. � has continuous boundary values on each �l and satisfies the following jump

condition (again for the orientation, see Fig. 3) �+(ζ ) = �−(ζ )K (ζ ) for ζ ∈
∪8
l=1�l , where

K (ζ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 1

−1 0

)

, ζ ∈ �1 ∪ �5

(
1 0

e−π iβ j 1

)

, ζ ∈ �2 ∪ �6

eπ i
β j
2 σ3 , ζ ∈ �3 ∪ �7(
1 0

eπ iβ j 1

)

, ζ ∈ �4 ∪ �8

(4.32)

Uniqueness of such a� can be argued in a similar manner as usual. First of all, one
can check that for ζ ∈ I, det�(ζ) = 1. As the jumpmatrices all have unit determinant,
det� is analytic in C\{0}, so det�(ζ) = 1 for ζ ∈ C (one can check that ζ = 0 is a
removable singularity). Consider then some other solution to the problem, say �̃. As
det� = det �̃ = 1, �(ζ)�̃(ζ )−1 is analytic in C\ ∪l=1 �l and equals I for ζ ∈ I.
Again it follows from the jump structure that �(ζ)�̃(ζ )−1 continues analytically to
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C\{0} so it must equal I everywhere. For an explicit description of the solution, see
“Appendix D”.

The local parametrices will then be formulated in terms of this function�, a coordi-
nate change given by ζs , the functionWj , and an analytic (C2×2-valued) “compatibility
matrix” E , which is needed for the matching condition to be satisfied. We now make
the relevant definitions.

Definition 4.21 For z ∈ U ′
x j ∩ {Im(z) > 0}, write

E(z) = E(z, t, s) = P(∞)(z, t)Wj (z, t)
σ3eNφs,+(x j )σ3e−(1∓β j )π iσ3/4 1√

2

(
1 i
i 1

)

(4.33)
where the − sign is in the domain {z ∈ C : arg(ζs(z)) ∈ (0, π/2)} and the + sign is
in the domain {z ∈ C : arg(ζs(z)) ∈ (π/2, π)}. For z ∈ U ′

x j ∩ {Im(z) < 0}, write

E(z) = P(∞)(z)Wj (z)
σ3

(
0 1

−1 0

)

eNφs,+(x j )σ3e−(1∓β j )π iσ3/4 1√
2

(
1 i
i 1

)

(4.34)

where − sign is in the domain {z ∈ C : arg(ζs(z)) ∈ (−π/2, 0)} and the + sign is in
the domain {z ∈ C : arg(ζs(z)) ∈ (−π,−π/2)}.

Finally, for z ∈ U ′
x j \�, let

P(x j )(z) = P(x j )(z, s, t) = E(z, s, t)�(ζs(z))Wj (z, t)
−σ3e−Nφs (z)σ3 . (4.35)

Remark 4.22 Using (4.27)—the definition ofWj—aswell as (4.24)—the jump condi-
tions of P(∞), one can check that E has no jumps inU ′

x j . Moreover, using the behavior
of both functions near x j , one can check that E does not have an isolated singularity
at x j , so E is analytic in U ′

x j .
We also point out that it follows directly from the definitions, i.e. (4.27), (4.33),

(4.34), and (4.35), that for z ∈ U ′
x j \�

P(x j )(z, t, s) = P(∞)(z, t)e
1
2Tt (z)σ3

[
P(∞)(z, 0)

]−1
P(x j )(z, 0, s)e− 1

2Tt (z)σ3 .
(4.36)

The main claim about P(x j ) is the following, whose proof we sketch in
“Appendix D”.

Lemma 4.23 The function P(x j ) satisfies the following Riemann–Hilbert problem.

1. P(x j ) : U ′
x j \� → C

2×2 is analytic.

2. P(x j ) has continuous boundary values on � ∩ U ′
x j \{x j } and these satisfy the

following jump conditions (with the same orientation as for S and same convention
for the sign in e∓Nhs (λ)): for λ ∈ (U ′

x j \{x j }) ∩ (�+
j−1 ∪ �−

j−1 ∪ �+
j ∪ �−1

j )

P
(x j )
+ (λ) = P

(x j )
− (λ)

(
1 0

ft (λ)−1e∓Nhs (λ) 1

)

, (4.37)
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and for λ ∈ R ∩U ′
x j \{x j }

P
(x j )
+ (λ) = P

(x j )
− (λ)

(
0 ft (λ)

− ft (λ)−1 0

)

. (4.38)

3. P(x j )(z) is bounded as z → x j from outside of the lenses, but when z → x j from
inside of the lenses

P(x j )(z) =
(
O(|z − x j |−β j ) O(1)
O(|z − x j |−β j ) O(1)

)

. (4.39)

4. For z ∈ ∂Ux j

P(x j )(z)
[
P(∞)(z)

]−1 = I + O(N−1), (4.40)

where the O(N−1)-term is a 2 × 2 matrix whose entries are O(N−1) uniformly
in z, s, t, {|xi − x j | ≥ 3δ for i �= j}, and {|1 ± x j | ≥ 3δ forall j ∈ {1, . . ., k}}. If
in a neighborhood of [−1, 1], T is a real polynomial of fixed degree, the error is
also uniform in the coefficients once they are restricted to some bounded set.

For our second differential identity, we will actually need more precise information
about P(x j ) on ∂Ux j . While we will only use it in the T = 0 case, it is not more
difficult to formulate the result in the general case.

Lemma 4.24 For z ∈ ∂Ux j

P(x j )(z)
[
P(∞)(z)

]−1 = I + β j

4ζs(z)
E(z)

(
0 1 + β j

2

1 − β j
2 0

)

E(z)−1 + O
(
N−2

)
,

(4.41)
where the O(N−2)-term is a 2 × 2 matrix whose entries are O(N−2) uniformly in
z, s, and {|xi − x j | ≥ 3δ for i �= j} and {|1 ± x j | ≥ 3δ for all j ∈ {1, . . ., k}}.

The t = 0, s = 0 case of these results has been proven in [42, Section 4.3], though
without focus on the uniformity relevant to us. Due to this, we will again sketch a
proof in “Appendix D”.

4.4 Local parametrices at the edge of the spectrum

The reasoning here is similar to the previous section—we wish to find a function
approximating S near the points ± 1. We will do this by approximating the Riemann–
Hilbert problem and imposing a matching condition. Our argument will follow [42,
Section 4.4], which in turn relies on [22]. We will focus on the approximation at 1,
as the one at −1 is analogous. Again we will provide a sketch of the relevant proofs
in “Appendix E”. We will begin by introducing the relevant coordinate change in this
case (analogous to ζs in the previous section).
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1

Σ+
k+1 Uxj

Σ−
k+1 Uxj

O(δ)

U1 U1

ξs

ξs(Σ+
k+1 U1)

ξs(Σ−
k+1 U1)

Re z = 0 = ξs(1)

2π/3

2π/3

ξs(U1) ξs(U1)

∩

∩

∩

∩

Fig. 4 Choice of the jump contours near the edge of the spectrum

Definition 4.25 Let δ > 0 satisfy the conditions of Definition 4.16. Denote by U1 a
δ-disk around 1 andU ′

1 denote a 3δ/2-disk around 1.We assume that δ is small enough
that d has an analytic extension toU ′

1.Moreover,we assume δ is small enough—though
independent of s—so that with a suitable choice of the branch, the function

ξs(z) =
[

−3

2
Nφs(z)

]2/3
(4.42)

is analytic and injective in U ′
1, for all s ∈ [0, 1].

We will justify that this is indeed possible in “Appendix E”. This conformal coor-
dinate change allows us to define what �±

k+1 looks like near 1. Let δ > 0 be small
enough to satisfy the conditions of Definition 4.25 and so that Tt is analytic in U ′

1
for all t ∈ [0, 1]. We will define the local parametrix in U ′

1 and impose the matching
condition on ∂U1. Let us thus define �±

k+1 in U
′
1 (Fig. 4).

Definition 4.26 Inside U ′
1, let �

±
k+1 be such that

ξs(�
±
k+1 ∩U ′

1) =
[
e±2π i/3 × [0,∞)

]
∩ ξs(U

′
1). (4.43)

Remark 4.27 The angle 2π/3 is slightly arbitrary here. In [22] the model Riemann–
Hilbert problem relevant to us is constructed for a family of angle parameters σ ∈
(π/3, π), and any angle here would work just as well for us, but we choose this for
concreteness.

Also we point out that the above definition is fine as we know that ξs is injective
and we can apply the Koebe quarter theorem to ensure that the preimage of the rays
is non-empty.

We are now also in a position to define our local parametrix. As in the previous
section, we need for this a solution to a certain model RHP considered in [22] as well
as a function which is analytic in U ′

x j which is required for the matching condition to
hold.
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Fig. 5 Jump contour of Q(ξ)

+
−

+
−

+−

+ −

III

IVIII

Definition 4.28 Let us write I = {reiθ : r > 0, θ ∈ (0, 2π/3)}, II = {reiθ : r >

0, θ ∈ (2π/3, π)}, III = {reiθ : r > 0, θ ∈ (−π,−2π/3)}, and IV = {reiθ : r >

0, θ ∈ (−2π/3, 0)}. Then define

Q(ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ai(ξ) Ai(e4π i/3ξ)

Ai′(ξ) e4π i/3Ai′(e4π i/3ξ)

)

e−π iσ3/6, ξ ∈ I

(
Ai(ξ) Ai(e4π i/3ξ)

Ai′(ξ) e4π i/3Ai′(e4π i/3ξ)

)

e−π iσ3/6

(
1 0

−1 1

)

, ξ ∈ II

(
Ai(ξ) −e4π i/3Ai(e4π i/3ξ)

Ai′(ξ) −Ai′(e4π i/3ξ)

)

e−π iσ3/6

(
1 0

1 1

)

, ξ ∈ III

(
Ai(ξ) −e4π i/3Ai(e4π i/3ξ)

Ai′(ξ) −Ai′(e4π i/3ξ)

)

e−π iσ3/6, ξ ∈ IV

, (4.44)

where Ai is the Airy function (see Fig. 5)
Morover, define another “compatibility matrix”

F(z) = F(z, t, s) = P(∞)(z, t) ft (z)
σ3/2eiπσ3/4

√
π

(
1 −1
1 1

)

ξs(z)
σ3/4e−π i/12,

(4.45)
where the roots are principal branch roots, and

P(1)(z) = P(1)(z, t, s) = F(z)Q(ξs(z))e
−Nφs (z)σ3 ft (z)

−σ3/2. (4.46)

Remark 4.29 Note that we can write

P(1)(z, t, s) = P(∞)(z, t)eTt (z)σ3/2
[
P(∞)(z, 0)

]−1
P(1)(z, 0, s)e−Tt (z)σ3/2. (4.47)

Again the relevant fact about this function is that it satisfies a suitable Riemann–
Hilbert problem. Part of this is the fact that F in (4.45) is an analytic function in U ′

1.
As before, we sketch the proof in “Appendix E”.
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Lemma 4.30 The function F from (4.45) is analytic in U ′
1 and the function P(1)(z)

satisfies the following Riemann–Hilbert problem.

1. P(1)(z) is analytic in U ′
1\(�+

k+1 ∪ �−
k+1 ∪ R).

2. For λ ∈ (−1, 1) ∩U ′
1, P

(1) satisfies

P(1)
+ (λ) = P(1)

− (λ)

(
0 ft (λ)

− ft (λ)−1 0

)

. (4.48)

For λ ∈ (1,∞) ∩U ′
1, P

(1) satisfies

P(1)
+ (λ) = P(1)

− (λ)

(
1 ft (λ)eN (g+,s (λ)+gs,−(λ)−Vs (λ)−�s )

0 1

)

. (4.49)

For λ ∈ �±
k+1, P

(1) satisfies

P(1)
+ (λ) = P(1)

− (λ)

(
1 0

ft (λ)−1e∓Nhs (λ) 1

)

. (4.50)

3. For z ∈ ∂U1, P(1) satisfies the following matching condition,

P(1)(z)
[
P(∞)(z)

]−1 = I + O(N−1), (4.51)

where the entries of the O(N−1) matrix are O(N−1) uniformly in z ∈ ∂U1,
uniformly in {xi } for |xi − x j | ≥ 3δ for i �= j and |xi ±1| ≥ 3δ for j ∈ {1, . . ., k},
uniformly in t ∈ [0, 1], and uniformly in s ∈ [0, 1]. If in a neighborhood of
[−1, 1], T is a real polynomial with fixed degree, the error is also uniform in the
coefficients once they are restricted to some bounded set.

Again we will need finer asymptotics for our second differential identity and we
will formulate them in the T = 0 case.

Lemma 4.31 For z ∈ ∂U1

P(1)(z)
[
P(∞)(z)

]−1

= I + P(∞)(z) f (z)σ3/2eiπσ3/4 1

8

( 1
6 1

−1 − 1
6

)

e−iπσ3/4

× f (z)−σ3/2
[
P(∞)(z)

]−1
ξs(z)

−3/2 + O(N−2)

where the O(N−2)-term is a 2 × 2 matrix whose entries are O(N−2) uniformly in
z, s, and {|xi − x j | ≥ 3δ for i �= j} and {|1 ± x j | ≥ 3δ for all j ∈ {1, . . ., k}}.
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Remark 4.32 Using the definition of F , one can check that this can be written also as

P(1)(z)
[
P(∞)(z)

]−1 = I + F(z)

(
0 5

48ξs(z)
−2

− 7
48ξs(z)

−1 0

)

F(z)−1 + O(N−2).

From the previous representation of the matching condition matrix, one can easily
see that the subleading term is indeed of order N . The benefit of this representation
is that as F and F−1 are analytic inU1, the subleading term is analytic in U1\{1} and
has (at most) a second order pole at z = 1.

4.5 The final transformation and asymptotic analysis of the problem

We now perform the final transformation of the problem, and solve it asymptotically.
The proofs of these statements are essentially standard in the RHP literature, but we
don’t know of a reference where the exact calculations we need exist and also issues
such as uniformity in our relevant parameters are essential for us, but not usually
stressed in the literature. Thus we provide proofs in “Appendix F”.

Definition 4.33 Let us fix some small δ > 0 (“small” being independent of t and s
and detailed in Sects. 4.3 and 4.4), and write U±1 for a δ-disk around ± 1 and Ux j
for a δ-disk around x j . We also assume that for i �= j, |xi − x j | ≥ 3δ and for all
i �= 0, k + 1, |xi ± 1| ≥ 3δ. We then define

R(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S(z)
[
P(−1)(z)

]−1
, z ∈ U−1\�

S(z)
[
P(x j )(z)

]−1
, z ∈ Ux j \� for some j

S(z)
[
P(1)(z)

]−1
, z ∈ U1\�

S(z)
[
P(∞)(z)

]−1
, z ∈ C\U−1

⋃∪k
j=1Ux j

⋃
U1
⋃

�

. (4.52)

We now state what is the Riemann–Hilbert solved by R—for details, see
“Appendix F”.

Lemma 4.34 For the δ in Definition 4.33, define

�δ = (R\[−1 − δ, 1 + δ])
⋃(

∪k+1
j=1(�

+
j ∪ �−

j )\U−1 ∪ ∪k
j=1Ux j ∪U1

)
(4.53)

⋃(
∂U−1 ∪ ∪k

j=1∂Ux j ∪ ∂U1

)
,

where R and the lenses are oriented as before. ∂Ux j and ∂U±1 are oriented in a
clockwisemanner—seeFig. 6. Then R is the unique solution to the followingRiemann–
Hilbert problem:

1. R : C\�δ → C
2×2 is analytic.

2. R satisfies the jump conditions R+(λ) = R−(λ)JR(λ) (with lenses andR oriented
as before, and the circles are oriented clockwise), where the jump matrix JR take
the following form:
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−1 x1 1

Σ+
1 \( jUxj )

Σ−
1 \( jUxj )

Σ+
2 \( jUxj )

Σ−
2 \( jUxj )

∂U−1 ∂Ux1 ∂U1

∪

∪

∪

∪

Fig. 6 The jump contour of the Riemann–Hilbert problem for R, in the case k = 1

(i) For λ ∈ R\[−1 − δ, 1 + δ],

JR(λ) = P(∞)(λ)

(
1 ft (λ)eN (gs,+(λ)+gs,−(λ)−Vs (λ)−�s )

0 1

)[
P(∞)(λ)

]−1
.

(4.54)

(ii) For λ ∈ ∪k+1
j=1�

±
j \U−1 ∪ ∪k

j=1Ux j ∪U1,

JR(λ) = P(∞)(λ)

(
1 0

ft (λ)−1e∓Nhs (λ) 1

)[
P(∞)(λ)

]−1
. (4.55)

(iii) For λ ∈ ∂Ux j \ ∪k+1
j=1 (�+

j ∪ �−
j ),

JR(λ) = P(x j )(λ)
[
P(∞)(λ)

]−1
. (4.56)

(iv) For λ ∈ ∂U±1\(R ∪ ∪k+1
j=1(�

+
j ∪ �−

j ),

JR(λ) = P(±1)(λ)
[
P(∞)(λ)

]−1
. (4.57)

3. As z → ∞,
R(z) = I + O(|z|−1). (4.58)

The first ingredient to solving this Riemann–Hilbert problem is to show that the
jump matrix of R(z) is close to the identity matrix in a suitable sense.

Lemma 4.35 For z ∈ �δ , write JR(z) = I + �R(z) = I + � for the jump matrix
of R as described in Lemma 4.34. Then for any p ≥ 1, and large enough N (“large
enough” depending only on V )

||�||L p(�δ) = O(N−1)
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where the norm is any matrix norm, the L p-spaces are with respect to the Lebesgue
measure on the jump contour, and theO(N−1) term is uniform in everything relevant
(i.e., (xi ) for |xi − x j | ≥ 3δ, for i �= 0, k + 1: |xi ± 1| ≥ 3δ, in s, t ∈ [0, 1], and
if T is a real polynomial in a neighborhood of [−1, 1], then in its coefficients when
restricted to a bounded set; but may depend on δ).

See “Appendix F” for a proof. We will want to show that R is close to the identity,
and the tool which allows us to do this is the following representation of R as a solution
to a suitable integral equation involving its jump matrix.

Proposition 4.36 Let δ > 0 be small enough (“small enough” being independent of
s and t). For N sufficiently large (again independent of s and t), the unique solution
of the Riemann–Hilbert problem for R (see Lemma 4.34) is given by

R = I + C[� + (I − C�)−1(C�(I ))�] (4.59)

where

C( f ) := 1

2π i

∫

�δ

f (s)
ds

s − z

is the Cauchy operator on �δ , and C�( f ) = C−( f �) where C−( f ) = limz→s C( f )
as z approaches a point s ∈ �δ\{intersection points} from the −side of �δ (for the
orientation, see Lemma 4.34).

Finally, what we want to show is that R(z) = I +O(N−1) uniformly in everything
relevant and use this as well as the explicit form of our parametrices to analyze our
differential identities. The precise statement we need is the following one.

Theorem 4.37 For small enough δ > 0 (again small enough being independent of rel-
evant quantities) and large enough N (large enough being independent of everything
relevant) with respect to any matrix norm | · |, there exists a c > 0 such that

|R(z) − I | ≤ c

N
and |R′(z)| ≤ c

N

uniformly in (xi ) for |xi − x j | ≥ 3δ, |xi ± 1| ≥ 3δ for i �= 0, k + 1, t, s ∈ [0, 1], z ∈
C\�δ , and if T is a real polynomial in a neighborhood of [−1, 1], then the error is
uniform in its coefficients when these are restricted to a bounded set.

Moreover, for T = 0, we have

R(z) = I + R1(z) + o(1/N ), R′(z) = R′
1(z) + o(1/N )
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uniformly in (xi ) for |xi − x j | ≥ 3δ, |xi ± 1| ≥ 3δ for i �= 0, k + 1, s ∈ [0, 1], and
z ∈ C\(�δ ∪ ∪k+1

j=0Ux j ). Here R1(z) =∑k+1
j=0 R

(x j )
1 (z) with

R
(x j )
1 (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
x j−z

β j

4πNds (x j )
√
1−x2j

E (x j )(x j )

(
0 1 + β j

2

1 − β j
2 0

)
[
E (x j )(x j )

]−1
, j ∈ {1, . . ., k}

− Res
w=−1

1
w−z F

(−1)(w)

⎛

⎝
0 − 5

48ξ (−1)
s (w)2

− 7
48ξ (−1)

s (w)
0

⎞

⎠
[
F (−1)(w)

]−1
, j = 0

−Res
w=1

1
w−z F

(1)(w)

⎛

⎝
0 5

48ξ (1)
s (w)2

− 7
48ξ (1)

s (w)
0

⎞

⎠
[
F (1)(w)

]−1
, j = k + 1

.

where E and F are the “compatibility matrices” from Definitions 4.21 and 4.28. In
particular, we have

J (x j )(z) :=
(

[P(∞)(z)]−1
[
R

(x j )
1

]′
(z)P(∞)(z)

)

22

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

1
(z−x j )2

iβ j

4πNds (x j )
√
1−x2j

[
a(z)2

a+(x j )2
(c2x j ,s + c−2

x j ,s − β j )

− a+(x j )2

a(z)2
(c2x j ,s + c−2

x j ,s + β j )

]

, j ∈ {1, . . . , k}

− 1
(z+1)2

√
2i

8N

{

a(z)−2

[

5+96A2

48G(−1)
s (−1)

− 5
[
G(−1)
s

]′
(−1)

12G(−1)
s (1)2

]

− a(z)2 7
24G(−1)

s (−1)

}

+ 1
(z+1)3

5
√
2i

48NG(−1)
s (1)

a(z)−2, j = 0

− 1
(z−1)2

√
2

8N

{

a(z)2
[

5+96A2

48G(1)
s (1)

− 5
[
G(1)
s

]′
(1)

12G(1)
s (1)2

]

− a(z)−2 7
24G(1)

s (1)

}

− 1
(z−1)3

5
√
2

48NG(1)
s (1)

a(z)2, j = k + 1

where

cx j ,s =
(
x j + i

√
1 − x2j

)A
exp

⎛

⎝−i
∑

k> j

βkπ/2 + Nφs,+(x j ) − (1 + β j )π i/4

⎞

⎠ ,

G(−1)
s (−1) = −iπ

√
2ds(−1),

[
G(−1)
s

]′
(−1) = − 3π i

10
√
2
[4d ′

s(−1) − ds(−1)],

G(1)
s (1) = π

√
2ds(1),

[
G(1)
s

]′
(1) = 3π

10
√
2
[4d ′

s(1) + ds(1)].

Remark 4.38 As discussed in [42], using the asymptotic expansions of the Airy func-
tion and Bessel functions, the matching conditions of the local parametrices can be
extended into asymptotic expansions in inverse powers of N . These then can be used
to prove a full asymptotic expansion for R and R′. We don’t have use for this, so we
won’t discuss it further.
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5 Integrating the differential identities

In this sectionwewill use our asymptotic solution and precise form of the parametrices
to analyze the asymptotics of the differential identities (3.11) and (3.13), and finally
integrate them. We will start with (3.11).

5.1 The differential identity (3.11)

Here we will give a (slightly simplified) variant of the argument in [20, Section 5.3]
to integrate the differential identity (3.11). As there are minor modifications due to
the differences in the models and the argument being relevant for (3.13), we present
a full proof here. The main goal we wish to prove is the following.

Proposition 5.1 Let V be one-cut regular, T as in Proposition 2.10, and δ > 0 small
enough, but independent of N . Then as N → ∞,

log
DN−1( f1; V )

DN−1( f0; V )
= N

∫ 1

−1
T (x)d(x)

√
1 − x2dx

+ A
π

∫ 1

−1

T (x)√
1 − x2

dx −
k∑

j=1

β j

2
T (x j )

+ 1

4π2

∫ 1

−1
dy

T (y)
√
1 − y2

P.V .

∫ 1

−1

T ′(x)
√
1 − x2

y − x
dx + o(1)

(5.1)

where o(1) is uniform in {(x j )kj=1 : |xi − x j | ≥ 3δ, i �= j and |xi ± 1| ≥ 3δ ∀i}, and
if in a neighborhood of [−1, 1], T is a real polynomial of fixed degree, then the error
is also uniform in the coefficients of T when these are restricted to a bounded set.

Thewaywewill do this is we’ll express the integrand in (3.11) in a slightly different
way which will allow deforming our integration contour in such a way that we can
express Y in terms of R and the global parametrix P(∞). The expression will be such
that to leading order, we can treat R as the identity, and using the global parametrix,
we can perform the relevant integrals explicitly.

Let us begin with expressing our integral in terms of the global parametrix. We
first remind the reader that we denoted by U[−1,1] a fixed (independent of N and t)
complex neighborhood of [−1, 1] into which Tt had an analytic continuation for all
t ∈ [0, 1]. We also assumed that the lenses and neighborhoods (Ux j )

k+1
j=0 were inside

U[−1,1].

Lemma 5.2 Let τ+ : [0, 1] → {z ∈ C : Im(z) ≥ 0} ∩ U[−1,1] be a smooth simple
curve independent of N . We also assume that τ+(0) < −1, τ+(1) > 1, and that τ(s)
is outside of the lenses and neighborhoods (Ux j )

k+1
j=0 for all s. We also define τ− in a

similar way but in the lower half plane and with the assumption that τ−(0) = τ+(0)
as well as τ−(1) = τ+(1). See Fig. 7 for an illustration.
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x0 = −1 x2 = 1

U[−1,1]

τ±(0) τ±(1)

τ+

τ−

x1

Σ+
1

Σ−
1

Σ+
2

Σ−
2

Ux0 = U−1 Ux1 Ux2 = U1

Fig. 7 Deforming the integration contour, k = 1

Then for t ∈ [0, 1]

1

2π i

∫

R

[Y11(x, t)∂xY21(x, t) − Y21(x, t)∂xY11(x, t)] ∂t ft (x)e
−NV (x)dx

= N
∫ 1

−1
d(x)

√
1 − x2

∂t ft (x)

ft (x)
dx + 1

2π i

[∫

τ+
−
∫

τ−

] D′
t (z)

Dt (z)

∂t ft (z)

ft (z)
dz + o(1),

where o(1) is uniform in t ∈ [0, 1], {(x j )kj=1 : |xi − x j | ≥ 3δ, i �= j and |xi ± 1| ≥
3δ ∀i}, and if in a neighborhood of [−1, 1], T is a real polynomial of fixed degree,
then the error is also uniform in the coefficients of T when these are restricted to a
bounded set.

Proof Let us write Y ′ = ∂xY . We first note that an elementary calculation using (3.8)
and the fact that the first column of Y consists of polynomials which have no jump
across R, show that for λ ∈ R,

ft e
−NV (Y11Y

′
21 − Y21Y

′
11) = (Y22,−Y ′

11 − Y12,−Y ′
21

)− (Y22,+Y ′
11 − Y12,+Y ′

21

)
.

(5.2)
Now recall that Y12,± and Y22,± have continuous boundary values on R so we

see that the terms Y22Y ′
11 − Y12Y ′

21 are analytic in C\R and are continuous up to the
boundary. Moreover, by our construction, ft (z)−1∂t ft (z) is analytic in U[−1,1]. We
can thus argue by Cauchy’s integral theorem to deform the integration contour. In
particular, plugging (5.2) into (3.11), we find

1

2π i

∫

R

[Y11(x, t)∂xY21(x, t) − Y21(x, t)∂xY11(x, t)] ∂t ft (x)e
−NV (x)dx

= 1

2π i

∫

(−∞,τ+(0)]∪[τ+(1),∞)

[
Y11(x, t)Y

′
21(x, t) − Y21(x, t)Y

′
11(x, t)

]
∂t ft (x)e

−NV (x)dx

− 1

2π i

[∫

τ+
−
∫

τ−

]
(
Y22(z, t)Y

′
11(z, t) − Y12(z, t)Y

′
21(z, t)

) ∂t ft (z)

ft (z)
dz.
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Notice that

Y11Y
′
21 − Y21Y

′
11 = [Y−1Y ′]21, Y22Y

′
11 − Y12Y

′
21 = [Y−1Y ′]11.

Unravelling our transformations, we note as we are not inside the lenses or the neigh-
borhoods, we have on R\[τ+(0), τ+(1)] and on τ±

Y−1Y ′ =
[
eN�1σ3/2SeN (g1−�1/2)σ3

]−1 [
eN�1σ3/2SeN (g1−�1/2)σ3

]′

= Ng′
1σ3 + e−N (g1−�1/2)σ3 S−1S′eN (g1−�1/2)σ3

= Ng′
1σ3 + e−N (g1−�1/2)σ3

[(
P(∞)

)−1
R−1

(
RP(∞)

)′]
eN (g1−�1/2)σ3

(5.3)

where we have used the global parametrix in the last equality. Since the P(∞)-RHP
implies that P(∞)(z) is complex analytic when z /∈ [−1, 1], I +O(|z|−1) as z → ∞,

and det P(∞) ≡ 1, we see that both
(
P(∞)

)−1
and

(
P(∞)

)′
are bounded when we are

away from a (complex) neighbourhood of [−1, 1]. One can easily check that they are
in fact uniformly bounded in all our relevant parameters. Combined with the estimates

R(z, t) = I + O(N−1), R′(z, t) = O(N−1)

in Theorem 4.37, we have S−1S′ = (P(∞)
)−1 (

P(∞)
)′ + O(N−1).

Consider first the integral along R\[τ+(0), τ+(1)]. Using the specific form (4.22)
of P(∞), (5.3), and the fact that terms containing R give something o(1), a direct
calculation shows that

[Y (z, t)−1Y ′(z, t)]21 = eN (2g1(z)−�1)
[
P(∞)
11 (z, t)∂z P

(∞)
21 (z, t)

− P(∞)
21 (z, t)∂z P

(∞)
11 (z, t) + o(1)

]

= ieN (2g1(z)−�1)

4D2
t (z)

[
((a(z)2 + a(z)−2)(a(z)2 − a(z)−2)′

− (a(z)2 − a(z)−2)(a(z)2 + a(z)−2)′ + o(1)
]

= ieN (2g1(z)−�1)

Dt (z)2

[
1

z2 − 1
+ o(1)

]

.

Thus

[Y11(x, t)∂xY21(x, t) − Y21(x, t)∂xY11(x, t)] ∂t ft (x)e
−NV (x)

=
⎡

⎣ eT (x) − 1

Dt (x)2(x2 − 1)

k∏

j=1

|x − x j |β j + o(1)

⎤

⎦ eN (g1,+(x)+g1,−(x)−�1−V (x))
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and one finds from (4.7) that as N → ∞, the integral along R\[τ+(0), τ+(1)] is o(1)
uniformly in everything relevant.

Consider then the integrals along τ±. A similar direct calculation shows that

[Y (z, t)−1Y ′(z, t)]11 = Ng′
1(z) + P(∞)

22 (z, t)∂z P
(∞)
11 (z, t)

− P(∞)
12 (z, t)∂z P

(∞)
21 (z, t) + o(1)

= Ng′
1(z) + 1

4

[
∂zDt (z)−1

Dt (z)−1

(
(a(z)2 + a(z)−2)2 − (a(z)2 − a(z)−2)2

)]

+ o(1)

= Ng′
1(z) − D′

t (z)

Dt (z)
+ o(1)

and hence

(
Y22(z, t)Y

′
11(z, t) − Y12(z, t)Y

′
21(z, t)

) ∂t ft (z)

ft (z)
= Ng′

1(z)
∂t ft (z)

ft (z)

− D′
t (z)

Dt (z)

∂t ft (z)

ft (z)
+ o(1),

where again o(1) is uniform in everything relevant. This yields the claim once we
notice that by contour deformation and (4.8)

− 1

2π i

[∫

τ+
−
∫

τ−

]

g′
1(z)

∂t f (z)

ft (z)
dz =

∫ 1

−1
d(x)

√
1 − x2

∂t ft (x)

ft (x)
dx .


�
Our next task is to calculate the τ± integrals. To do this, we introduce some notation.

Definition 5.3 For z ∈ C\(−∞, 1], let

qFH (z) = log

⎡

⎣(z + r(z))−A
k∏

j=1

(z − x j )
β j /2

⎤

⎦ , (5.4)

where the logarithm is with the principal branch, A =∑k
j=1 β j/2, and FH refers to

Fisher–Hartwig. We also define for z ∈ C\[−1, 1]

qSz(z) = qSz(z, t) = r(z)

2π

∫ 1

−1

Tt (λ)√
1 − λ2

1

z − λ
dλ, (5.5)

where r(z) is as in (4.19) and Sz refers to Szegő.

Note that we have D′
t/Dt = q ′

FH + q ′
Sz . We will need the following fact before

proving Proposition 5.1. The following is an analogue of a result in [17] in the case
of the circle.
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Lemma 5.4 Write τ± be as in Lemma 5.2. We have

∫ 1

0

1

2π i

[∫

τ+
−
∫

τ−

]

q ′
Sz(z, t)

∂t ft (z)

ft (z)
dzdt

= − 1

4π2

∫ 1

−1
dy

T (y)
√
1 − y2

P.V .

∫ 1

−1

T ′(x)
√
1 − x2

x − y
dx . (5.6)

Proof Let us recall that we saw in the proof of Lemma 4.15 that off of [−1, 1] we can
write

qSz(z, t) = r(z)

2π

∫ 1

−1

Tt (λ) − Tt (z)
z − λ

dλ√
1 − λ2

+ Tt (z)
2

which implies that qSz is bounded in a neighborhood of [−1, 1] and qSz(±1, t) =
1
2Tt (±1). Moreover, we see from this that

q ′
Sz(z, t) = r ′(z)

2π

∫ 1

−1

Tt (λ) − Tt (z)
z − λ

dλ√
1 − λ2

+ r(z)

2π

∫ 1

−1

Tt (z) − Tt (λ) − T ′
t (z)(z − λ)

(z − λ)2

dλ√
1 − λ2

+ T ′
t (z)

2
.

This in turn implies that q ′
Sz is bounded except at z = ±1 where it has singularities

of order |z ∓ 1|−1/2; in particular these are integrable ones. Due to the singularities
being integrable, we can perform contour deformation and integrate by parts in the
z-integral in the left hand side of (5.6). Noting that f −1

t ∂t ft = ∂tTt =: Ṫt (we will
use a dot here and below to indicate time derivatives below when there is no risk of
confusion), we see that

I :=
∫ 1

0
dt

[∫

τ+
−
∫

τ−

]
dz

2π i
Ṫt (z)q ′

Sz(z, t)

= −
∫ 1

0
dt
∫ 1

−1

dx

2π i
Ṫ ′
t (x)

[
qSz,+(x, t) − qSz,−(x, t)

]
. (5.7)

Let us write for x ∈ (−1, 1), s(x) = √
1 − x2. As for x ∈ (−1, 1), r±(x) =

±is(x), we see by Sokhotski–Plemelj that

qSz,+(x, t) − qSz,−(x, t) = is(x)
1

π
P.V .

∫ 1

−1

Tt (y)
x − y

dy

s(y)
=: is(x)[H(1(−1,1)Tt/s)](x),

where 1(−1,1) is the indicator function of the interval (−1, 1), andH denotes theHilbert
transform (note that the Hilbert transform is well defined as 1(−1,1)Tt/s ∈ L p(R) for
p ∈ [1, 2)).
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To simplify notation slightly, let us write 〈 f, g〉 := ∫
R
f (x)g(x)dx . Integrating by

parts in the t integral in (5.7) we see that

I = −
∫ 1

0

1

2π

〈
Ṫ ′
t , 1(−1,1)sH

(
1(−1,1)Tt/s

)〉
dt

= − 1

2π

〈
T ′, 1(−1,1)sH

(
1(−1,1)T /s

)〉+
∫ 1

0

1

2π

〈
T ′
t , 1(−1,1)sH

(
1(−1,1)Ṫt/s

)〉
dt.

(5.8)

Our aim is now to show that actually 1
2π

∫ 1
0 〈T ′

t , 1(−1,1)sH(1(−1,1)Ṫt/s)〉dt = −I
so we would have I = −〈T ′, 1(−1,1)sH(1(−1,1)T /s)〉/4π , which we will see to be

equivalent to our claim. To see that indeed 1
2π

∫ 1
0 〈T ′

t , 1(−1,1)sH(1(−1,1)Ṫt/s)〉dt =
−I , we note first that

s(x)

s(y)

1

x − y
= s(y)

s(x)

1

x − y
− x + y

s(x)s(y)

implying that for say a continuous f : [−1, 1] → R and x ∈ (−1, 1)

s(x)
[
H
(
1(−1,1) f/s

)]
(x) = 1

s(x)

[
H
(
1(−1,1) f s

)]
(x) − 1

π

∫ 1

−1

x + y

s(x)s(y)
f (y)dy.

(5.9)
Using the definition of the Cauchy principal value integral, one can also check

easily that for a smooth f : [−1, 1] → R and x ∈ (−1, 1)

[
H(1(−1,1) f s)

]′
(x) = [H(1(−1,1)( f s)

′)
]
(x). (5.10)

Thus integrating by parts in the x integral, using the fact that q+(±1, t) =
q−(±1, t), and (5.10), we see that

〈
T ′
t , 1(−1,1)sH

(
1(−1,1)Ṫt/s

)〉

=
∫ 1

−1
dxTt (x)

s′(x)
s(x)2

(
[
H
(
1(−1,1)Ṫt s

)]
(x) −

∫ 1

−1

x + y

πs(y)
Ṫt (y)dy

)

−
∫ 1

−1
dxTt (x)

1

s(x)

(
[
H
(
1(−1,1)(Ṫt s)′

)]
(x) −

∫ 1

−1

Ṫt (y)
πs(y)

dy

)

. (5.11)

We then note that

[H(1(−1,1)Ṫt s′)](x) − 1

π

∫ 1

−1

Ṫt (y)
s(y)

dy = 1

π
P.V .

∫ 1

−1

Ṫt (y)
s(y)

( −y

x − y
− 1

)

dy

= −x[H(1(−1,1)Ṫt/s)](x)
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and

[
H
(
1(−1,1)Ṫt s

)]
(x) − 1

π

∫ 1

−1

x + y

s(y)
Ṫt (y)dy

= 1

π
P.V .

∫ 1

−1

Ṫt (y)
s(y)

[
s(y)2 − (x2 − y2)

]

x − y
dy

= s(x)2[H(1(−1,1)Ṫt/s)](x).

Plugging these into (5.11), using the fact that s′(x) = −x/s(x) along with the
anti-self adjointness of H we see that

1

2π

∫ 1

0

〈
T ′
t , 1(−1,1)sH

(
1(−1,1)Ṫt/s

)〉
dt = − 1

2π

∫ 1

0

〈
Tt , 1(−1,1)s

−1H
(
1(−1,1)Ṫ ′

t s
)〉
dt

= 1

2π

∫ 1

0

〈
Ṫ ′
t , 1(−1,1)sH(1(−1,1)Tt/s)

〉
dt

= −I. (5.12)

Note that 1/s /∈ L2(−1, 1) so we can’t use the anti-self adjointness of the Hilbert
transform on the space L2, but we use the fact that if f ∈ L p(R) and g ∈ L p′

(R),
where p′ is the Hölder conjugate of p, then

∫
gH f = − ∫ fHg—see e.g. [64,

Theorem 102].
Plugging (5.12) into (5.8), we find our previous claim that

I = − 1

4π
〈T ′, 1(−1,1)sH(1(−1,1)T /s)〉

Making use of the anti-self adjointness of H again, this translates into

I = 1

4π2

∫ 1

−1
dy

T (y)
√
1 − y2

P.V .

∫ 1

−1

T ′(x)
√
1 − x2

y − x
dx

which is our claim. 
�
We are now in a position to finish the proof.

Proof of Proposition 5.1 We start with the result of Lemma 5.2. Consider first the inte-
gral along [−1, 1]. Here we note that by the definition of ft ,

∫ 1
0 ft (x)−1∂t ft (x)dt =

log f1(x) − log f0(x) = T (x). This yields the O(N )-term in (5.1).
Let us now consider the D′

t/Dt -terms. The contribution from qSz is calculated in
Lemma 5.4, so we need to understand the contribution of qFH . As qFH is independent
of t , we find that

∫ 1

0
dt

[∫

τ+
−
∫

τ−

]
dz

2π i
q ′
FH (z)

ḟt (z)

ft (z)
=
[∫

τ+
−
∫

τ−

]
dz

2π i
T (z)q ′

FH (z). (5.13)
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Now as

q ′
FH (z) = − A

r(z)
+

k∑

j=1

β j

2

1

z − x j

we see by Cauchy’s integral theorem, the fact that r±(x) = ±i
√
1 − x2 for x ∈

(−1, 1), and Sokhotski-Plemelj that

∫ 1

0
dt

[∫

τ+
−
∫

τ−

]
dz

2π i
q ′
FH (z)

ḟt (z)

ft (z)
= A

π

∫ 1

−1

T (x)√
1 − x2

dx −
k∑

j=1

β j

2
T (x j ).

(5.14)
Thus combining (5.14), (5.6), our reasoning about theO(N ) term, and Lemma 5.2,

yields

log DN−1( f1) − log DN−1( f0) = N
∫ 1

−1
T (x)d(x)

√
1 − x2dx

+ A
π

∫ 1

−1

T (x)√
1 − x2

dx −
k∑

j=1

β j

2
T (x j )

+ 1

4π2

∫ 1

−1
dy

T (y)
√
1 − y2

P.V .

∫ 1

−1

T ′(x)
√
1 − x2

y − x
dx + o(1),

where o(1) is uniform in everything relevant. This is precisely the claim. 
�

5.2 The differential identity (3.13)

The main goal of this section is to prove the following identity.

Proposition 5.5 Let V be one-cut regular, T as in Proposition 2.10, δ > 0 small
enough but independent of N . Then as N → ∞,

log DN−1( f0; V1) − log DN−1( f0; V0)

= −N 2

2

∫ 1

−1

(
2

π
+ d(x)

)

(V (x) − 2x2)
√
1 − x2dx

− AN

π

∫ 1

−1

V (x) − 2x2√
1 − x2

dx + N
k∑

j=1

β j

2
(V (x j ) − 2x2j )

+
k∑

j=1

β2
j

4
log
(π

2
d(x j )

)
− 1

24
log

(
π2

4
d(1)d(−1)

)

+ o(1),

where o(1) is uniform in {(x j )kj=1 : |xi − x j | ≥ 3δ, i �= j and |xi ± 1| ≥ 3δ ∀i}.
The arguments are largely similar to those related to the differential identity (3.11)

so we will be less detailed here. The arguments in the proof of Lemma 5.2 can be
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repeated in this case with the only difference being that we replace ∂t ft by −N f ∂sVs
and d with ds etc, apart from approximating R by the identity—we’ll need theO(N−1)

contribution from R here aswell.Wewill also need to assume that our lenses and neigh-
borhoods of the singularities are chosen so that V is analytic in some neighborhood
of them, but as we assumed V to be real analytic, we can of course do this. We will
also assume that τ± are inside this domain where V can be analytically continued
to. Repeating the arguments from the previous section in such a setting leads to the
following lemma.

Lemma 5.6 Let τ± be as in Lemma 5.2 with the difference that we assume that the
contours are within the domain where V is analytic in.

Then for s ∈ [0, 1]

− N

2π i

∫

R

[Y11(x; Vs)∂xY21(x; Vs)−Y21(x; Vs)∂xY11(x; Vs)] f (x)e−NVs (x)∂sVs(x)dx

= −N 2
∫ 1

−1
ds(x)

√
1 − x2∂sVs(x)dx

− N

2π i

[∫

τ+
−
∫

τ−

]

Js(z)∂sVs(z)dz + o(1),

where o(1) is uniform in s ∈ [0, 1], {(x j )kj=1 : |xi − x j | ≥ 3δ, i �= j and |xi ± 1| ≥
3δ ∀i} and

Js(z) = −Y22(z; Vs)Y ′
11(z; Vs) + Y12(z; Vs)Y ′

21(z; Vs).
The proof is essentially identical to that of Lemma 5.2 and we omit it. We now

consider the asymptotics of the integral of this from s = 0 to s = 1. Let us first
consider the order N 2 term.

Lemma 5.7 We have

∫ 1

0
ds(−N 2)

∫ 1

−1
ds(x)∂sVs(x)

√
1 − x2dx

= −N 2

2

∫ 1

−1

(
2

π
+ d(x)

)

(V (x) − 2x2)
√
1 − x2dx .

Proof This follows immediately from the definitions: ∂sVs(x) = V (x) − 2x2 and
ds(x) = (1 − s) 2

π
+ sd(x). 
�

For J -terms, we note that we now need to take into account O(N−1) terms in the
expansion of R—these will result in O(1) terms in the differential identity. We first
focus on theO(N ) terms which come from theO(1) terms in the expansion of R. For
this, repeating our argument from the previous section results in theO(N ) term being

N

2π i

∫ 1

0
ds
∮

γ

D′(x)
D(x)

∂sVs(x)dx = N

2π i

∮

γ

D′(x)
D(x)

(V (x) − 2x2)dx,
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where γ is a nice curve enclosing [−1, 1] inside which everything relevant is analytic.
We again have D′(z)/D(z) = q ′

Sz(z, 0) + q ′
FH (z, 0) = q ′

FH (z, 0) (as qSz(z, 0) = 0).
Recalling that

q ′
FH (z) = − A

r(z)
+

k∑

j=1

β j

2

1

z − x j
,

an application of Sokhotski-Plemelj shows that the order N terms combine into the
following quantity

N

2π i

∮

γ

D′(x)
D(x)

(V (x) −2x2)dx = − N

2π i

∫ 1

−1
(q ′

FH,+(x)−q ′
FH,−(x))(V (x)−2x2)dx

= −AN

π

∫ 1

−1

V (x) − 2x2√
1 − x2

dx + N
k∑

j=1

β j

2
(V (x j ) − 2x2j ). (5.15)

Finally, let us consider the O(1) terms. We will make use of the following lemma
(whose variants are surely well known in the literature, but as we don’t know of a
reference exactly in our setting we will sketch a proof of it).

Lemma 5.8 For x ∈ (−1, 1) and one-cut regular potential V ,

P.V .

∫ 1

−1
V ′(λ)

√
1 − λ2

λ − x
dλ = −2π + 2π2d(x)(1 − x2) (5.16)

and

∫ 1

x
d(λ)

√
1 − λ2dλ =

√
1 − x2

2π2 P.V .

∫ 1

−1

V (λ)

x − λ

dλ√
1 − λ2

+ 1

π
arccos(x). (5.17)

Proof For (5.16), define the function H : (C\[−1, 1]) → C

H(z) = 2π(z − 1)1/2(z + 1)1/2
∫ 1

−1

d(λ)
√
1 − λ2

λ − z
dλ +

∫ 1

−1

V ′(λ)
√
1 − λ2

λ − z
dλ.

Using Sokhotksi-Plemelj and (2.3), one can check that this function is continuous
across (−1, 1). One also sees easily that H is bounded at ± 1 so we conclude that it is
entire. Finally as H(∞) = −2π , Liouville implies that H(z) = −2π . An application
of Sokhotski-Plemelj then implies (5.16).

We note that as a consequence of (5.16), one can check that what’s required for
(5.17) is to prove the identity

p(x) :=
∫ 1

x

1
√
1 − y2

P.V .

∫ 1

−1

V ′(λ)

λ − y

√
1 − λ2dλdy

=
√
1 − x2P.V .

∫ 1

−1

V (λ)

x − λ

dλ√
1 − λ2

=: q(x). (5.18)
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One can easily check that these are both smooth functions of x and satisfy p(1) =
q(1) = 0, so it’s enough for us to check that p′(x) = q ′(x). For this, let us first write

q(x) = 1√
1 − x2

P.V .

∫ 1

−1

V (λ)

x − λ

√
1 − λ2dλ − 1√

1 − x2

∫ 1

−1

(x + λ)V (λ)√
1 − λ2

dλ.

We again make use of the fact that differentiation commutes with the Hilbert trans-
form so one can check that

q ′(x) = p′(x) − 1√
1 − x2

P.V .

∫ 1

−1

λV (λ)

x − λ

dλ√
1 − λ2

+ x

(1 − x2)3/2
P.V .

∫ 1

−1

V (λ)

x − λ

√
1 − λ2dλ

− x

(1 − x2)3/2

∫ 1

−1

(x + λ)V (λ)√
1 − λ2

dλ − 1√
1 − x2

∫ 1

−1

V (λ)√
1 − λ2

dλ

= p′(x) + x√
1 − x2

P.V .

∫ 1

−1

V (λ)

x − λ

[

− 1√
1 − λ2

+
√
1 − λ2

1 − x2

− x2 − λ2

(1 − x2)
√
1 − λ2

]

dλ = p′(x).

We conclude that p = q and (5.17) is true. 
�
Now to get a hold of the O(1)-terms we are interested in, we need the O(N−1)

term in the expansion of Js for the τ±-integrals. Again by Theorem 4.37, we know
that

R(z) = I + R1(z)︸ ︷︷ ︸
O(N−1)

+o(N−1), ⇒ R(z)−1 = I − R1(z) + o(N−1)

where the claim about R−1 follows by Neumann series expansion. Inspecting (5.3),
one realizes that the extra O(N−1) correction is indeed given by

−
([

P(∞)
]−1

R′
1P

(∞)

)

11
.

Let us consider first the contributions from the R
(x j )
1 terms with j ∈ {1, . . ., k} (recall

Theorem 4.37 for the definition of this and J (x j ) below).

Lemma 5.9 Let τ± be as in Lemma 5.4 and j ∈ {1, . . ., k}. Then

−
∫ 1

0
ds

N

2π i

[∫

τ+
−
∫

τ−

]

J (x j )(z)∂sVs(z)dz = β2
j

4
log
[π

2
d(x j )

]
+ O(N−1)

(5.19)
uniformly in x j ∈ (−1 + ε, 1 − ε).

123



152 N. Berestycki et al.

Proof Recall first of all from Theorem 4.37 that for j ∈ {1, . . .k}

NJ (x j )(z) = −1

4

1

(z − x j )2
iβ2

j

4πds(x j )
√
1 − x2j

[
a(z)2

a+(x j )2
+ a+(x j )2

a(z)2

]

+ 1

4

1

(z − x j )2
iβ j (c2x j ,s + c−2

x j ,s)

4πds(x j )
√
1 − x2j

[
a(z)2

a+(x j )2
− a+(x j )2

a(z)2

]

where

cx j ,s =
(
x j + i

√
1 − x2j

)A
exp

⎛

⎝−i
∑

k> j

βkπ/2 + Nφs,+(x j ) − (1 + β j )π i/4

⎞

⎠ .

Let us first focus on the z-integral in the statement of the lemma. Note first that

a(z)2

a+(x j )2
+ a+(x j )2

a(z)2
= 2i(1 − x j z)

(z − 1)1/2(z + 1)1/2
√
1 − x2j

(5.20)

and
a(z)2

a+(x j )2
− a+(x j )2

a(z)2
= 2i(x j − z)

(z − 1)1/2(z + 1)1/2
√
1 − x2j

. (5.21)

Using (5.20) and (5.21) one can check with direct calculations that

1

(x j − z)2

[
a(z)2

a+(x j )2
+ a+(x j )2

a(z)2

]

= 2i
√
1 − x2j

d

dz

(z − 1)1/2(z + 1)1/2

z − x j

and

1

(x j − z)2

[
a(z)2

a+(x j )2
− a+(x j )2

a(z)2

]

= 2i
√
1 − x2j

1

x j − z

1

(z − 1)1/2(z + 1)1/2
.

Recalling that ∂sVs(z) = V (z) − 2z2, we thus see by integration by parts, contour
deformation, and Sokhotski-Plemelj that

[∫

τ+
−
∫

τ−

]
1

(x j − z)2

[
a(z)2

a+(x j )2
+ a+(x j )2

a(z)2

]

∂sVs(z)
dz

2π i

= − 1

π

1
√
1 − x2j

[∫

τ+
−
∫

τ−

]
(z − 1)1/2(z + 1)1/2

z − x j
(V ′(z) − 4z)dz
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= − 2i

π
√
1 − x2j

P.V .

∫ 1

−1
(V ′(λ) − 4λ)

√
1 − λ2

λ − x j
dλ (5.22)

and simply by Sokhotski-Plemelj that

[∫

τ+
−
∫

τ−

]
1

(x j − z)2

[
a(z)2

a+(x j )2
− a+(x j )2

a(z)2

]

∂sVs(z)
dz

2π i

= 2

π i

1
√
1 − x2j

P.V .

∫ 1

−1

V (λ) − 2λ2

x j − λ

dλ√
1 − λ2

. (5.23)

Let us first focus on the integral of the first term. We have from (5.22) and (5.16)

−
∫ 1

0
ds

[∫

τ+
−
∫

τ−

]
⎛

⎝−1

4

1

(z − x j )2
iβ2

j

4πds(x j )
√
1 − x2j

[
a(z)2

a+(x j )2
+ a+(x j )2

a(z)2

]
⎞

⎠ ∂sVs(z)
dz

2π i

= β2
j

4

(

d(x j ) − 2

π

)∫ 1

0

ds

ds(x j )

= β2
j

4
log
[π

2
d(x j )

]
. (5.24)

Let us now turn to the second term. We have from (5.23) and (5.17) that

−
∫ 1

0
ds

[∫

τ+
−
∫

τ−

]
⎛

⎝1

4

1

(z − x j )2
iβ j (c2x j ,s + c−2

x j ,s)

4πds(x j )
√
1 − x2j

[
a(z)2

a+(x j )2
− a+(x j )2

a(z)2

]
⎞

⎠ ∂sVs(z)
dz

2π i

= −(1 − x j )
−3/2 β j

4

∫ 1

x j

(

d(λ) − 2

π

)√
1 − λ2dλ

∫ 1

0
ds

c2x j ,s + c−2
x j ,s

ds(x j )
.

Let us note that we can write c2x j ,s = eiθN (x j )e
2π i Ns

∫ 1
x j

(
d(λ)− 2

π

)√
1−λ2

dλ, where

eiθN (x j ) is a complex number of unit length and independent of s. Thus

∫ 1

x j

(

d(λ) − 2

π

)√
1 − λ2dλ

∫ 1

0
ds

c±2
x j ,s

ds(x j )

= ±e±iθN (x j ) 1

2π i N

∫ 1

0

1

ds(x j )

d

ds
e
±2π i Ns

∫ 1
x

(
d(λ)− 2

π

)√
1−λ2dλ

ds.

Integrating this by parts, noting that d
ds ds(x) = d(x)− 2

π
is bounded and 1/ds(x)2

is bounded in x and s, we see that

−
∫ 1

0
ds

[∫

τ+
−
∫

τ−

]
⎛

⎝ 1

(z − x j )2
iβ j (c2x j ,s+c−2

x j ,s)

ds(x j )
√
1 − x2j

[
a(z)2

a+(x j )2
− a+(x j )2

a(z)2

]
⎞

⎠ ∂sVs(z)dz = O(N−1)

(5.25)
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uniformly in x j ∈ (−1 + ε, 1 − ε). Combining (5.24) and (5.25), yields the claim
(5.19). 
�

Let us now treat the integrals associated to J (±1).

Lemma 5.10 We have

−
∫ 1

0
ds

N

2π i

[∫

τ+
−
∫

τ−

]

J (1)(z)∂sVs(z)dz = − 1

24
log
(π

2
d(1)

)
,

−
∫ 1

0
ds

N

2π i

[∫

τ+
−
∫

τ−

]

J (−1)(z)∂sVs(z)dz = − 1

24
log
(π

2
d(−1)

)
.

(5.26)

Proof We only prove the first equality. From Theorem 4.37 we have

J (1)(z) = − 1

(z − 1)2
21/2

8N

{

a(z)2
[
1

48

(
G(1)

s (1)
)−1

(5 + 96A2)

− 5

12

(
G(1)

s (1)
)−2

([
G(1)

s

]′
(1)

)]

− a(z)−2 7

24

(
G(1)

s (1)
)−1
}

− 1

(z − 1)3
5
√
2

48NG(1)
s (1)

a(z)2

where G(1)
s is defined in (E.2) and we have G(1)

s (1) = π
√
2ds(1). Note that

a(z)2

(z − 1)2
= − d

dz

(z + 1)1/2

(z − 1)1/2
and

a(z)2

(z − 1)3
= 1

3

d

dz

(z − 2)(z + 1)1/2(z − 1)1/2

(z − 1)2
.

Thus integrating by parts, contour deformation, and a simple application of
Lemma 5.8 imply that

[∫

τ+
−
∫

τ−

]
a(z)2

(z − 1)2
V (z)dz = −

[∫

τ+
−
∫

τ−

]

V (z)
d

dz

(
z + 1

z − 1

)1/2

dz

=
[∫

τ+
−
∫

τ−

]

V ′(z)
(
z + 1

z − 1

)1/2

dz

= 2i
∫ 1

−1

√
1 − x2

x − 1
V ′(x)dx = −4π i

and

[∫

τ+
−
∫

τ−

]
a(z)2

(z − 1)2
∂sVs(z)dz =

[∫

τ+
−
∫

τ−

]
a(z)2

(z − 1)2
(V (z) − 2z2)dz = 0.

(5.27)
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In a similar manner and with an application of Lemma 5.8,

[∫

τ+
−
∫

τ−

]
a(z)2

(z − 1)3
V (z)dz= −

[∫

τ+
−
∫

τ−

]

V ′(z)1
3

(z−2)(z+1)1/2(z−1)1/2

(z − 1)2
dz

= −1

3

[∫

τ+
−
∫

τ−

]

V ′(z) (z + 1)1/2(z − 1)1/2

z − 1
dz

+ 1

3

[∫

τ+
−
∫

τ−

]

V ′(z) (z + 1)1/2(z − 1)1/2

(z − 1)2
dz

= −1

3

[∫

τ+
−
∫

τ−

]

V ′(z) (z + 1)1/2(z − 1)1/2

z − 1
dz

+ 1

3

d

dx

∣
∣
∣
∣
x=1

[∫

τ+
−
∫

τ−

]

V ′(z) (z + 1)1/2(z − 1)1/2

z − x
dz

= 2i

3

∫ 1

−1
V ′(λ)

√
1 + λ

1 − λ
dλ + 2i

3

d

dx

∣
∣
∣
∣
x=1

P.V .

∫ 1

−1
V ′(λ)

√
1 − λ2

λ − x
dλ

= 4π i

3
− 8π2i

3
d(1),

which implies
[∫

τ+
−
∫

τ−

]
a(z)2

(z − 1)3
∂sVs(z)dz = −8π2i

3

(

d(1) − 2

π

)

. (5.28)

Consider finally the a(z)−2 term. One can easily check that

a(z)−2

(z − 1)2
= −2

3

∂

∂z

[
(z − 1)1/2(z + 1)1/2

(z − 1)2

]

+ 1

3

a(z)2

(z − 1)2
.

We can safely ignore the second term on the RHS, as we saw that it will integrate to
zero. Moreover, we essentially calculated the integral related to the first term already:

−2

3

[∫

τ+
−
∫

τ−

]

V (z)
∂

∂z

[
(z − 1)1/2(z + 1)1/2

(z − 1)2

]

dz = −16

3
π2id(1)

and we find

[∫

τ+
−
∫

τ−

]
a(z)−2

(z − 1)2
∂sVs(z)dz = −16π2i

3

(

d(1) − 2

π

)

. (5.29)

Putting together (5.27), (5.28), and (5.29) a direct calculation leads to

−
∫ 1

0
ds

N

2π i

[∫

τ+
−
∫

τ−

]

J (1)(z)∂sVs(z)dz = − 1

24
log
(π

2
d(1)

)
.


�
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Proof of Proposition 5.5 This is simply a combination of Lemmas 5.6, 5.7, (5.15),
Lemmas 5.9, and 5.10. 
�

We are now in a position to apply these results.

6 Proof of Theorem 1.1

As discussed earlier, we do this through Proposition 2.9. Before proving this, we will
need to recall Krasovsky’s result for the GUE from [42] and a result of Claeys and
Fahs [14] which we need to control the situation when the singularities are close to
each other. Let us begin with Krasovsky’s result [42, Theorem 1].

Theorem 6.1 (Krasovsky) Let (x j )kj=1 be distinct points in (−1, 1), let β j > −1, and

let HN be a GUE matrix (i.e. V (x) = 2x2). Then as N → ∞

E

k∏

j=1

| det(HN − x j )|β j

=
k∏

j=1

C(β j )(1 − x2j )
β2j
8

(
N

2

) β2j
4

e(2x2j−1−2 log 2)
β j
2 N

×
∏

i< j

|2(xi − x j )|−
βi β j
2 (1 + O(log N/N ))

uniformly in compact subsets of {(x1, . . ., xk) ∈ (−1, 1)k : xi �= x j for i �= j}. Here
C(β) = 2

β2

2
G(1+β/2)2

G(1+β)
, and G is the Barnes G function.

We mention that Krasovsky’s result is actually valid for complex β j with real part
greater than −1, and he used a slightly different normalization, but obtaining this
formulation follows after trivial scaling. Also his formulation of the result does not
stress the uniformity, but it can easily be checked through uniform bounds on the jump
matrices which are similar to the ones we have considered.

Combining this with Proposition 5.5 yields the following result.

Proposition 6.2 Let HN be drawn from a one-cut regular ensemble with potential V
and support of the equilibrium measure normalized to [−1, 1]. If (x j )kj=1 are distinct
points in (−1, 1) and β j ≥ 0 for all j , then

E

k∏

j=1

| det(HN − x j )|β j =
k∏

j=1

C(β j )
(
d(x j )

π

2

√
1 − x2j

) β2j
4
(
N

2

) β2j
4

e(V (x j )+�V )
β j
2 N

×
∏

i< j

|2(xi − x j )|−
βi β j
2 (1 + o(1)))

uniformly in compact subsets of {(x1, . . ., xk) ∈ (−1, 1)k : xi �= x j for i �= j}.
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Proof Let us write EV for the expectation with respect to an ensemble with potential
V . Note that from (3.1) setting f = 1, we have

ZN (V )

N ! = DN−1(1; V )

so we see from Proposition 5.5 that for f (λ) =∏k
j=1 |λ − x j |β j and V0(x) = 2x2

logEV

k∏

j=1

| det(HN − x j )|β j − logEV0

k∏

j=1

| det(HN − x j )|β j

= log DN−1( f ; V ) − log DN−1( f ; V0)− log DN−1(1; V )+ log DN−1(1; V0)

= −N
k∑

j=1

β j

2

[
1

π

∫ 1

−1

V (x) − 2x2√
1 − x2

dx − (V (x j ) − 2x2j )

]

+
k∑

j=1

β2
j

4
log
(π

2
d(x j )

)
+ o(1), (6.1)

where we have the desired uniformity.
Let us now recall the logarithmic potential of the arcsine law (see e.g. [61, Section

1.3: Example 3.5]): 1
π

∫ 1
−1 log |x − y|/√1 − x2dx = − log 2 for all y ∈ (−1, 1). This

along with (2.3) imply that

1

π

∫ 1

−1

V (x)√
1 − x2

dx + �V = −2 log 2.

This in turn implies that

(2x2j − 1 − 2 log 2) − 1

π

∫ 1

−1

V (x) − 2x2√
1 − x2

dx + (V (x j ) − 2x2j ) = V (x j ) + �V .

Combining this with Theorem 6.1 and (6.1) yields the claim. 
�
We now recall the result of Claeys and Fahs that wewill need, namely [14, Theorem

1.1].

Theorem 6.3 (Claeys and Fahs) Let V be one-cut regular and let the support of the
associated equilibrium measure be [a, b] with a < 0 < b. Let β > 0, u > 0, and
fu(x) = |x2 − u|β . Then

log DN−1( fu; V ) = log DN−1( f0; V ) +
∫ sN ,u

0

σβ(s) − β2

s
ds + β

2
sN ,u

+ N
β

2
(V (

√
u) + V (−√

u) − 2V (0)) + O(
√
u) + O(N−1)
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uniformly as u → 0 and N → ∞. Here

sN ,u = −2π i N
∫ √

u

−√
u
d(s)

√
(s − a)(b − s)ds

and σβ(s) is analytic on −iR+, independent of V, N, and u and satisfies:

σβ(s) =
{

β2 + o(1), s → −i0+
β2

2 − β
2 s + O(|s|−1), s → −i∞ (6.2)

Moreover, the integral involving σβ is taken along −iR+.

Muchmore is in fact known about σβ . For example, it is known to satisfy a Painlevé
V equation. A generalization of it was studied extensively in [15]. Theorem 6.3 and
Proposition 6.2 let us prove the convergence of E[μN ( f )2]—the argument is similar
to analogous ones in [14,15].

Proposition 6.4 Let ϕ : (−1, 1) → [0,∞) be continuous and have compact support.
Moreover, let β ∈ (0,

√
2). Then

lim
N→∞E[μN ,β(ϕ)2] =

∫ 1

−1

∫ 1

−1
ϕ(x)ϕ(y)(2|x − y|)− β2

2 dxdy

Proof This is very similar to the proof of [14, Corollary 1.11] where a more general
statement was proven for the GUE. Let us fix some small ε > 0, α ∈ (β2/2, 1), and
write the relevant moment in the following way:

E[μN (ϕ)2] =
[∫

|x−y|≥ε

+
∫

2N−α≤|x−y|<ε

+
∫

|x−y|≤2N−α

]

ϕ(x)ϕ(y)

× E
[| det(HN − x)|β | det(HN − y)|β]

E| det(HN − x)|βE| det(HN − y)|β dxdy

=: AN ,1(ε) + AN ,2(ε) + AN ,3.

It follows immediately from Proposition 6.2 that if there is some ε > 0 such that
|x − y| ≥ ε and x, y ∈ (−1 + ε, 1 − ε) then uniformly in such x, y

E
[| det(HN − x)|β | det(HN − y)|β]

E| det(HN − x)|βE| det(HN − y)|β = 1

(2|x − y|) β2
2

(1 + o(1)).

As ϕ has compact support in (−1, 1), this is precisely the situation for the integral
in AN ,1(ε). We conclude that

lim
N→∞ AN ,1(ε) =

∫

|x−y|≥ε

ϕ(x)ϕ(y)
1

(2|x − y|) β2
2

dxdy
ε→0+−→

∫ 1

−1

∫ 1

−1
ϕ(x)ϕ(y)

× 1

(2|x − y|) β2
2

dxdy.
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Let us now consider AN ,3. Here we find by Cauchy–Schwarz and Proposition 6.2
that there exists some finite B(β) (uniform in the relevant x, y) such that

EV [| det(HN − x)|β | det(HN − y)|β ]
EV [| det(HN − x)|β ]EV [| det(HN − y)|β ]

≤
√
EV [| det(HN − x)|2β ]EV [| det(HN − y)|2β ]
EV [| det(HN − x)|β ]EV [| det(HN − y)|β ]

≤ B(β)Nβ2/2

so we see that as N → ∞

AN ,3 =
∫

|x−y|≤2N−α

ϕ(x)ϕ(y)
EV [| det(HN − x)|β | det(HN − y)|β ]

EV [| det(HN − x)|β ]EV [| det(HN − y)|β ]dxdy

� N−α+ β2

2 → 0

since we chose α > β2/2.
Thus to conclude the proof, it’s enough to show that

lim
ε→0+ lim sup

N→∞
AN ,2(ε) = 0.

Let us begin doing this by noting that if we write u = (x−y)2

4 and Vx,y(λ) =
V (λ + (x + y)/2), then in the notation of Theorem 6.3

EV
[| det(HN − x)|β | det(HN − y)|β] = DN−1( fu; Vx,y)

DN−1(1; V )
.

This follows from (2.2) through the change of variables λi = μi + x+y
2 . The goal

is to make use of Theorem 6.3 to estimate DN−1( fu; Vx,y). There are several issues
we need to check to justify this. First of all, we need Vx,y to be one-cut regular and the
interior of the support of its equilibrium measure to contain the point 0. This is simple
to justify as one can check from the Euler–Lagrange equations that the equilibrium

measure associated to Vx,y is simply d(u + x+y
2 )

√
1 − (u + x+y

2 )2du and its support

is [−1 − x+y
2 , 1 − x+y

2 ]. The remaining conditions for one-cut regularity are easy to
check with this representation.

It is less obvious that we can use Theorem 6.3 to study the asymptotics of
DN−1( fu; Vx,y) as now Vx,y depends on x and y and we would need the errors
in the theorem to be uniform in V as well. As mentioned in [14] for the GUE, for
x, y ∈ (−1 + ε, 1 − ε), this can be checked by going through the relevant estimates
in the proof. This is true also for general one-cut regular ensembles. As checking this
may be non-trivial for a reader with little background in Riemann–Hilbert problems,
we outline how to do this in “Appendix G”.
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We may therefore use Theorem 6.3, and so we have

log EV [| det(HN − x)|β | det(HN − y)|β ]

= log DN−1( f0; Vx,y) − log DN−1(1; V ) +
∫ sN ,u

0

σβ(s) − β2

s
ds + β

2
sN ,u

+ N
β

2
(Vx,y(

√
u) + Vx,y(−

√
u) − 2Vx,y(0)) + O(

√
u) + O(N−1),

where the error estimates are uniform in |x − y| < ε and x, y ∈ (−1+ ε, 1− ε). Note
that now

sN ,u = −2π i N
∫ √

u

−√
u
dx,y(s)

√

1 −
(

s + x + y

2

)2

ds

= −4π i N
√
ud

(
x + y

2

)
√

1 −
(
x + y

2

)2

+ O(Nu)

again uniformly in the relevant values of x and y.

Recall that we’re considering u such that
√
u < 2ε but

√
u > N−α with β2

2 < α <

1. We then have sN ,u → −i∞ uniformly in the relevant x, y and using [15, equation
(1.26)] one has

lim
N→∞

[∫ sN ,u

0

σβ(s)−β2

s
ds + β

2
sN ,u + β2

2
log |sN ,u |

]

= log
G(1 + β

2 )4G(1 + 2β)

G(1 + β)4

uniformly for x, y ∈ (−1 + ε, 1 − ε) and 2N−α < |x − y| < ε.
On the other hand, reversing our mapping from V to Vx,y , we see that

log DN−1( f0; Vx,y) − log DN−1(1; V ) = logEV

∣
∣
∣
∣det

(

HN − x + y

2

)∣
∣
∣
∣

2β

.

Thus we see that uniformly for x, y ∈ (−1 + ε, 1 − ε) and 2N−α < |x − y| < ε

log EV [| det(HN − x)|β | det(HN − y)|β ]

= logEV

∣
∣
∣
∣det

(

HN − x + y

2

)∣
∣
∣
∣

2β

+ log
G(1 + β

2 )4G(1 + 2β)

G(1 + β)4

− β2

2
log

⎡

⎣4πN
√
ud

(
x + y

2

)
√

1 −
(
x + y

2

)2
⎤

⎦

+ N
β

2
(Vx,y(

√
u) + Vx,y(−√

u) − 2Vx,y(0))

+ O(
√
u) + o(1),
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where o(1) means something that tends to zero as N → ∞. Using these estimates,
we can write for such x, y

EV [| det(HN − x)|β | det(HN − y)|β ]
EV [| det(HN − x)|β ]EV [| det(HN − y)|β ]

= G(1 + β
2 )4G(1 + 2β)

G(1 + β)4

EV
∣
∣det

(
HN − x+y

2

)∣
∣2β

EV [| det(HN − x)|β ]EV [| det(HN − y)|β ]

× N− β2

2 (2|x − y|)− β2

2

⎡

⎣πd

(
x + y

2

)
√

1 −
(
x + y

2

)2
⎤

⎦

− β2

2

× e
Nβ
2 (Vx,y(

√
u)+Vx,y(−√

u)−2Vx,y(0))eO(
√
u)(1 + o(1))

uniformly in x, y ∈ (−1 + ε, 1 − ε) and 2N−α < |x − y| < ε. Plugging in Proposi-
tion 6.2, we see that this becomes

EV [| det(HN − x)|β | det(HN − y)|β ]
EV [| det(HN − x)|β ]EV [| det(HN − y)|β ]

=

(

d
( x+y

2

)√

1 − ( x+y
2

)2
)β2/2

(
d(x)

√
1 − x2d(y)

√
1 − y2d(y)

) β2
4

(2|x − y|)− β2

2 (1 + o(1))(1 + O(
√
u))

= (2|x − y|)− β2

2 (1 + o(1))(1 + O(
√
u)).

We conclude that

lim
ε→0+ lim sup

N→∞

∫

2N−α<|x−y|<ε

ϕ(x)ϕ(y)
EV [| det(HN − x)|β | det(HN − y)|β ]

EV [| det(HN − x)|β ]EV [| det(HN − y)|β ]dxdy = 0,

which was the missing part of the proof. 
�

Next we need to study the cross term EμN ,β(ϕ)μ̃
(M)
N ,β(ϕ) along with the fully trun-

cated term E[μ̃(M)
N ,β(ϕ)2]. For this, we need Proposition 2.10, so let us finish the proof

of it.

Proof of Proposition 2.10 We have now

Ee
∑N

j=1 T (λ j )
k∏

j=1

| det(HN − x j )|β j = DN−1( f ; V )

DN−1(1; V )
,
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where f (λ) = f1(λ) = eT (λ)
∏k

j=1 |λ− x j |β j . Since we know the asymptotics of this
for T = 0, we can apply Proposition 5.1 to get the relevant asymptotics for T �= 0:

DN−1( f1; V )

DN−1(1; V )
= DN−1( f0; V )

DN−1(1; V )
e
N
∫ 1
−1 T (x)d(x)

√
1−x2dx+∑k

j=1
β j
2

[
∫ 1
−1

T (x)

π
√

1−x2
dx−T (x j )

]

× e
1

4π2

∫ 1
−1 dy

T (y)√
1−y2

P.V .
∫ 1
−1

T ′(x)
√

1−x2
y−x dx

(1 + o(1))

uniformly in everything relevant. Applying Proposition 6.2 to this yields the claim.

�

We now apply this to understanding the remaining terms.

Proposition 6.5 Let β ∈ (0,
√
2) and ϕ : (−1, 1) → [0,∞) be continuous with

compact support. Then for fixed M ∈ Z+

lim
N→∞E[μN ,β(ϕ)μ̃

(M)
N ,β(ϕ)] = lim

N→∞E[μ̃(M)
N ,β(ϕ)2]

=
∫ 1

−1

∫ 1

−1
ϕ(x)ϕ(y)eβ2∑M

k=1
1
k Tk (x)Tk (y)dxdy.

Proof Let us first consider the cross term. We write this as

E[μN ,β(ϕ)μ̃
(M)
N ,β(ϕ)] =

∫ 1

−1

∫ 1

−1
ϕ(x)ϕ(y)

E| det(HN − x)|βeβ X̃N ,M (y)

E| det(HN − x)|βEeβ X̃N ,M (y)
dxdy.

Let us begin by calculating the numerator. Note that as we have only one sin-
gularity, Proposition 2.10 gives us asymptotics which are uniform in x throughout
the whole integration region. To apply Proposition 2.10, we point out that we now
have T (λ) = T (λ; y) = −β

∑M
k=1

2
k T̃k(λ)Tk(y). We need uniformity in y, but

this is ensured by the fact that in a neighborhood of [−1, 1], T is a polynomial of
fixed degree and its coefficients are uniformly bounded for fixed M . Using the facts
that

∫ 1
−1 Tk(y)/

√
1 − y2dy = 0 for k ≥ 1, P.V . 1

π

∫ 1
−1 T

′
k(y)

√
1 − y2/(x − y)dy =

kTk(x), and the orthogonality of the Chebyshev polynomials: 2
∫ 1
−1 Tk(λ)Tl(λ)/

(π
√
1 − λ2)dλ = δk,l for k, l ≥ 1, we see that

E[| det(HN − x)|βeβ X̃N ,M (y)]
= E[| det(HN − x)|β ]e−βN

∑M
k=1

2
k Tk (y)

∫ 1
−1 Tk (λ)d(λ)

√
1−λ2dλ

× e
β2

2

∑M
k=1

1
k Tk (y)

2+β2∑M
k=1

1
k Tk (x)Tk (y)(1 + o(1))

uniformly in x, y ∈ (−1 + ε, 1 − ε). We see that the E[| det(HN − x)|β ]-term in the
denominator will cancel, but we still need to understand the Eeβ X̃N ,M (y)-term. This
now has no singularity, so we get the asymptotics from Proposition 2.10 by setting
β j = 0 for all j . Thus we find with a similar argument that
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Eeβ X̃N ,M (y) = e−βN
∑M

k=1
2
k Tk (y)

∫ 1
−1 Tk (λ)d(λ)

√
1−λ2dλ+ β2

2

∑M
k=1

1
k Tk (y)

2
(1 + o(1)),

uniformly in y, and we conclude that

lim
N→∞E[μN ,β(ϕ)μ̃

(M)
N ,β(ϕ)] =

∫ 1

−1

∫ 1

−1
f (x) f (y)eβ2∑M

k=1
1
k Tk (x)Tk (y)dxdy.

For the fully truncated term one argues in a similar way: in this case

T (λ) = T (λ; x, y) = −β

M∑

j=1

2

j
T̃ j (λ)(Tj (x) + Tj (y))

and only the part quadratic in T affects the leading order asymptotics. Going through
the calculations one finds

lim
N→∞E[μ̃(M)

N ,β(ϕ)2] =
∫ 1

−1

∫ 1

−1
ϕ(x)ϕ(y)eβ2∑M

k=1
1
k Tk (x)Tk (y)dxdy.


�
Before proving Proposition 2.9, we need to know that μβ exists, namely we need

to prove Lemma 2.5.

Proof of Lemma 2.5 As discussed earlier, this boils down to showing that (μ
(M)
β

(ϕ))∞M=1 is bounded in L2 for continuous ϕ : [−1, 1] → [0,∞). From the definition

of μ
(M)
β (see (2.11)), we see that

E[μ(M)
β (ϕ)2] =

∫ 1

−1

∫ 1

−1
ϕ(x)ϕ(y)eβ2∑M

j=1
1
j Tj (x)Tj (y)dxdy.

Now fromPropositions 6.4 and 6.5, we see that if ϕ had compact support in (−1, 1),
then

0 ≤ lim
N→∞E[(μN ,β(ϕ) − μ̃

(M)
N ,β(ϕ))2] =

∫ 1

−1

∫ 1

−1

ϕ(x)ϕ(y)

|2(x − y)|β2/2
dxdy

−
∫ 1

−1

∫ 1

−1
ϕ(x)ϕ(y)eβ2∑M

k=1
1
k Tk (x)Tk (y)dxdy,

so for fixed M ∈ Z+ and continuous, compactly supported in (−1, 1), non-negative ϕ

∫ 1

−1

∫ 1

−1
ϕ(x)ϕ(y)eβ2∑M

k=1
1
k Tk (x)Tk (y)dxdy ≤

∫ 1

−1

∫ 1

−1

ϕ(x)ϕ(y)

|2(x − y)|β2/2
dxdy < ∞

as β2/2 < 1. For continuous ϕ : [−1, 1] → [0,∞), we get the same inequality
simply by approximating ϕ by a compactly supported one. We conclude that μ(M)

β (ϕ)
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is indeed bounded in L2 and thus (as it is a martingale as a function of M), a limit
μβ(ϕ) exists in L2(P). 
�

We are now in a position to prove Proposition 2.9.

Proof of Proposition 2.9 As noted, Propositions 6.4 and 6.5 imply that

lim
N→∞E[(μN ,β(ϕ) − μ̃

(M)
N ,β(ϕ))2] =

∫ 1

−1

∫ 1

−1
ϕ(x)ϕ(y)

[
1

|2(x − y)|β2/2
− eβ2∑M

k=1
1
k Tk (x)Tk (y)

]

dxdy.

As this is a limit of a second moment, it is non-negative and we see that

lim sup
M→∞

∫ 1

−1

∫ 1

−1
ϕ(x)ϕ(y)eβ2∑M

k=1
1
k Tk (x)Tk (y)dxdy

≤
∫ 1

−1

∫ 1

−1
ϕ(x)ϕ(y)(2|x − y|)− β2

2 dxdy.

On the other hand, Lemma 2.3 and Fatou’s lemma imply that

∫ 1

−1

∫ 1

−1
ϕ(x)ϕ(y)(2|x − y|)− β2

2 dxdy

≤ lim inf
M→∞

∫ 1

−1

∫ 1

−1
ϕ(x)ϕ(y)eβ2∑M

k=1
1
k Tk (x)Tk (y)dxdy,

so we see actually that

lim
M→∞ lim

N→∞E[(μN ,β(ϕ) − μ̃
(M)
N ,β(ϕ))2] = 0.

We still need to prove that when we first let N → ∞ and then M → ∞, μ̃
(M)
N ,β(ϕ)

converges in law to μβ(ϕ). As μβ(ϕ) is constructed as a limit of μ
(M)
β (ϕ), this will

follow from showing that μ̃(M)
N ,β(ϕ) converges to μ

(M)
β (ϕ) in law if we let N → ∞ for

fixed M . For this, consider the function F : RM → [0,∞)

F(u1, . . ., uM ) =
∫ 1

−1
ϕ(λ)e

β
∑M

k=1
1√
k
ukTk (λ)− β2

2

∑M
k=1

1
k Tk (λ)2

dλ.

We now have

F

((

− 2√
k
TrT̃k(HN ) + 2√

k
N
∫ 1

−1
Tk(λ)μV (dλ)

)M

k=1

)

= μ̃
(M)
N ,β(ϕ)(1 + o(1)),

where o(1) is deterministic. Moreover, if (Ak)
M
k=1 are the i.i.d. standard Gaussians

used in the definition of μ
(M)
β , then F(A1, . . ., AM ) = μ

(M)
β (ϕ). It follows easily
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from the dominated convergence theorem that F is a continuous function, so if we
knew that

(

− 2√
k
TrT̃k(HN ) + 2√

k
N
∫ 1

−1
Tk(λ)μV (dλ)

)M

k=1

d→ (A1, . . ., AM )

as N → ∞, we would be done. This is of course well known and follows from more
general results such as [36] for polynomial potentials or [10] for more general ones.
Nevertheless, we point out that it also follows from our analysis. If one looks at the
function T (λ) = ∑M

j=1 α j
2√
j
(T̃ j (λ) − ∫ Tj (u)μV (du)), one can then check that it

follows from Proposition 2.10 (setting β j = 0 for all j) that

Ee
∑N

j=1 T (λ j ) = e
1
2

∑M
k=1 α2

j ,

which implies the claim. 
�
Theorem 1.1 is essentially a direct corollary of Proposition 2.9.

Proof of Theorem 1.1 It is a standard probabilistic argument that Proposition 2.9
implies that also μN ,β(ϕ) converges in law to μβ(ϕ) as N → ∞ (for compactly
supported continuous ϕ : (−1, 1) → [0,∞))—see e.g. [39, Theorem 4.28]. Upgrad-
ing to weak convergence is actually also very standard. One can simply approximate
general continuous ϕ : [−1, 1] → [0,∞) by ones with compact support in (−1, 1)
and argue by Markov’s inequality. For further details, we refer to e.g. [38, Section 4].


�
Acknowledgements First of all, we wish to thank the three anonymous reviewers of this article for their
careful reading, helpful comments, and pointing out errors in a previous version of this article. We also wish
to thank IgorKrasovsky for pointing out to us how to extend ourmain result from theGUE to general one-cut
regular ensembles, Benjamin Fahs for helpful discussions about [14], and Christophe Charlier for pointing
out some errors in a previous version of this article. Further, we wish to thank the Heilbronn Institute for
Mathematical Research for support during the workshop Extrema of Logarithmically Correlated Processes,
Characteristic Polynomials, and the Riemann Zeta Function, during which part of this work was carried out.
N. Berestycki’s work is supported by EPSRC Grants EP/L018896/1 and EP/I03372X/1. M. D. Wong is a
PhD student at the Cambridge Centre for Analysis, supported by EPSRCGrant EP/L016516/1. Some of this
work was carried out while the first and third authors visited the University of Helsinki, funded in part by
EPSRC Grant EP/L018896/1. They also wish to thank the University of Helsinki for its hospitality during
this visit. C. Webb wishes to thank the Isaac Newton Institute for Mathematical Sciences for its hospitality
during the Random Geometry program, during which this project was initiated. C. Webb was supported by
the Eemil Aaltonen Foundation grant Stochastic dynamics on large random graphs and Academy of Finland
Grants 288318 and 308123.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Proof of differential identities

In this appendix we prove Lemmas 3.6 and 3.7.
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Proof of Lemma 3.6 First of all, note that all of the appearing objects are differentiable
functions of t as can be seen from the determinantal representation of the polynomials
(3.5).

Recall from (3.4) that log Dj ( ft ) = −2
∑ j

k=0 logχk( ft ). Also from (3.3), we see
that all polynomials of degree less than j are orthogonal to p j , so

∫

R

χ j ( ft )x
j p j (x; ft ) ft (x)e

−NV (x)dx = 1

and

∫
[
∂t p j (x; ft )

]
p j (x; ft ) ft (x)e

−NV (x)dx

=
∫
[
∂tχ j ( ft )

]
x j p j (x; ft ) ft (x)e

−NV (x)dx

= ∂tχ j ( ft )

χ j ( ft )
.

Thus we see that

∂t log Dj ( ft ) = −
∫

∂t

⎡

⎣
j∑

l=0

pl(x; ft )
2

⎤

⎦ ft (x)e
−NV (x)dx . (A.1)

The Christoffel–Darboux identity (see e.g. [18, page 55]) states that

j∑

l=0

pl(x; ft )
2 = χ j ( ft )

χ j+1( ft )
[p′

j+1(x; ft )p j (x; ft ) − p′
j (x; ft )p j+1(x; ft )]. (A.2)

Here ′ denotes differentiation with respect to x . Plugging this into (A.1), we see
that

∂t log Dj ( ft ) = −
∫

∂t

[
χ j ( ft )

χ j+1( ft )
[p′

j+1(x; ft )p j (x; ft )

−p′
j (x; ft )p j+1(x; ft )]

]
ft (x)e

−NV (x)dx

= −∂t

∫
χ j ( ft )

χ j+1( ft )
[p′

j+1(x; ft )p j (x; ft )

− p′
j (x; ft )p j+1(x; ft )] ft (x)e−NV (x)dx

+
∫

χ j ( ft )

χ j+1( ft )
[p′

j+1(x; ft )p j (x; ft )

− p′
j (x; ft )p j+1(x; ft )]∂t ft (x)e−NV (x)dx .
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Using (3.3), one finds that the first integral equals j + 1 (note that the term corre-
sponding to p′

j p j+1 integrates to zero by orthogonality) so its derivative equals zero.
Recalling that for Y (z, t) = Y j+1(z, t), we have

Y (z, t) =
(

1
χ j+1( ft )

p j+1(z, ft ) ∗
−2π iχ j ( ft )p j (z, ft ) ∗

)

,

where we ignore the second column of the matrix as it’s not relevant right now. Thus
we see the claim by replacing p j and p j+1 by the entries of Y and setting j=N − 1.


�
We now prove our second differential identity.

Proof of Lemma 3.7 The beginning of the proof is identical to the proof of Lemma 3.6.
Indeed, we can repeat everything up to (A.1) to get

∂s log Dj ( f, Vs) = −
∫

R

∂s

⎡

⎣
j∑

l=0

pl(x; f, Vs)
2

⎤

⎦ f (x)e−NVs (x)dx .

Again making use of Christoffel–Darboux and orthogonality, we find

∂s log Dj ( f ; Vs)
=
∫

χ j ( f ; Vs)
χ j+1( f ; Vs) [p

′
j+1(x; f, Vs)p j (x; f, Vs)

− p′
j (x; f, Vs)p j+1(x; f, Vs)] f (x)∂se−NVs (x)dx,

which yields the claim when we set j = N − 1. 
�

Appendix B: Proofs for the first transformation

In this appendix we prove Lemmas 4.2, 4.4, and 4.5. Variants of Lemma 4.2 are
certainly well known in Riemann–Hilbert literature (see e.g. [22, Proposition 5.4]),
but to have it in precisely the form we need it, we sketch a proof.

Proof of Lemma 4.2 The first statement—(4.6)—is simply linearity and making use
of the fact that for the GUE, one has �GUE = −1− 2 log 2 in our normalization. This
amounts to simply calculating the logarithmic potential (or noncommutative entropy)
of the semi-circle law. This is a standard calculation and we omit the proof, see e.g.
Theorem 4.1 in [33] or alternatively one can integrate (2.3) against the arcsine law
and use the logarithmic potential of the arcsine law [61, Section 1.3: Example 3.5].

For (4.7) consider first the case where |λ| − 1 > M . Here we note that
gs,+(λ) + gs,−(λ) = 2 log |λ| + O(1) as |λ| → ∞ (uniformly in s), but we know
that V (λ)/ log |λ| → ∞ as |λ| → ∞, so we see that by choosing M large enough
(independent of s), gs,+(λ) + gs,−(λ) − Vs(λ) − �s ≤ − log |λ|.
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For the |λ| − 1 < M-case, note that the left side of (4.7) is a continuous function,
and if we takeM ′ < M , then our function is a continuous function which is (uniformly
in s) negative on [M ′, M]. Thus it’s enough to consider the situation where M is small.
In particular, we can assume it’s so small, that d is positive in |λ| − 1 ∈ (0, M). Let
us focus on the λ > 1 case. The λ < −1 case is similar.

Let us suppress the dependence on s and write F(λ) = g+(λ)+ g−(λ)−V (λ)−�.
As F(1) = 0, we have by using the Euler–Lagrange equation (2.3) at the point x = 1

F(λ) = F(λ) − F(1) = 2
∫ 1

−1
(log(λ − x) − log(1 − x))μV (dx)

− V ′(1)(λ − 1) + O((λ − 1)2)

= 2
∫ 1

−1

∫ λ

1

du

u − x
μV (dx)

− 2
∫ 1

−1

λ − 1

1 − x
μV (dx) + O((λ − 1)2)

= 2
∫ 1

−1

∫ λ

1

[
1

u − x
− 1

1 − x

]

duμV (dx) + O((λ − 1)2)

= −2
∫ λ

1
(u − 1)

∫ 1

−1

d(x)
√
1 − x2

(u − x)(1 − x)
dxdu + O((λ − 1)2).

In the x-integral, let us make the change of variables, 1 − x = (u − 1)y. We find

∫ 1

−1

d(x)
√
1 − x2

(u−x)(1−x)
dx = (u − 1)

∫ 2
u−1

0

d(1−(u−1)y)
√

(u − 1)y
√
2 − (u − 1)y

(u − 1)2y(1 + y)
dy

= √
2d(1)(u − 1)−1/2

∫ 2
u−1

0

dy√
y(1 + y)

+ O
(∫ 2

u−1

0

√
(u − 1)y

(1 + y)
dy

)

= O((u − 1)−1/2).

We conclude that F(λ) = − ∫ λ

1 O(
√
u − 1)du + O((λ − 1)2) which implies the

claim in (4.7).
For (4.8), we note that for λ ∈ R and x ∈ (−1, 1)

lim
ε→0+[log(λ + iε − x) − log(λ − iε − x)] =

{
2π i, λ < x

0, λ > x
.
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Thus for λ ∈ R

gs,+(λ) − gs,−(λ) =

⎧
⎪⎨

⎪⎩

2π i, λ < −1

2π i
∫ 1
λ

[
(1 − s) 2

π
+ sd(x)

]√
1 − x2dx, |λ| < 1

0, λ > 1

which is (4.8). 
�
We now move on to prove Lemma 4.4.

Proof of Lemma 4.4 Let λ ∈ (−1, 1) and ε > 0 be small. We have

hs(λ + iε) = −2π i
∫ λ

1

[

(1 − s)
2

π
+ sd(x)

]√
1 − x2dx

− 2π i
∫ ε

0

[

(1 − s)
2

π
+ sd(λ + iu)

]√
1 − (λ + iu)2idu.

The first term is purely imaginary. The second term is an analytic function of ε

(in a small enough λ-dependent neighborhood of the origin), it vanishes at ε = 0,
its derivative at ε = 0 is positive, and second derivative in a neighborhood of zero
is bounded. From this one can conclude that for small enough ε > 0, the real part
of hs(λ + iε) > 0. A similar argument works for the claim about the real part of
hs(λ − iε). Such an argument is easily extended into a uniform one in this case. 
�

Finally we prove Lemma 4.5.

Proof of Lemma 4.5 Uniqueness can be argued as for Y . The analyticity condition
comes from analyticity of Y and gs , so let us look at the jump conditions. Consider
first λ ∈ (−1, 1). Then from (4.5), (3.8), (4.8), (4.6), and some elementary matrix
calculations one finds

T+(λ) = e−N�sσ3/2Y−(z)

(
1 ft (λ)e−NVs (λ)

0 1

)

e
−N

(
gs,−(λ)+2π i

∫ 1
λ

[
(1−s) 2

π
+sd(x)

]√
1−x2dx−�s/2

)
σ3

= T−(λ)

(
1 e2Ngs,−(λ)−N�s ft (λ)e−NVs (λ)

0 1

)

e−Nhs (λ)σ3

= T−(λ)

(
e−Nhs (λ) ft (λ)

0 eNhs (λ).

)

For |λ| > 1, we note that by (4.8), gs,+(λ) − gs,−(λ) ∈ {0, 2π i}, and a similar
argument results in

T+(λ) = T−(λ)

(
1 eN (g+,s (λ)+gs,−(λ)−�s−Vs (λ)) ft (λ)

0 1

)

which is precisely (4.11).
For the behavior at infinity, we note that as z → ∞ (uniformly for z not on

the negative real axis) gs(z) = log z + O(|z|−1). Thus we see from (3.9) and (4.5)
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that indeed (4.12) is satisfied (with behavior on the negative real axis coming from
continuity up to the boundary). 
�

Appendix C: The RHP for the global parametrix

In this appendix we will sketch a proof of Lemma 4.14. We will make use of the fact
that the result is proven for t = 0, i.e. the case when T = 0, in [42, Section 4.2]
(which relies on a similar result in [44, Section 5], which again makes use of results
in e.g. [18]).

Sketch of a proof of Lemma 4.14 The analyticity condition was already argued in
Remark 4.13. The normalization at infinity is easy to see from the fact that the a-
matrix (in right hand side of (4.22)) is 2I +O(|z|−1) andDt (z) = Dt (∞)+O(|z|−1)

as z → ∞. Thus the jump condition is the main one to check.
This would be a fairly short calculation to check directly, but we make use of it

being known for t = 0 and the representation (4.23). We start by noting that by the
Sokhotski-Plemelj formula and (4.23), for λ ∈ (−1, 1)\{x j }kj=1

P(∞)
± (λ, t) = e

σ3
2π

∫ 1
−1

Tt (x)√
1−x2

dx
P(∞)

± (λ, 0)e
−σ3

r±(λ)

2π

[

±π i Tt (λ)√
1−λ2

+P.V .
∫ 1
−1

Tt (x)√
1−x2

dx
λ−x

]

,

where P.V . denotes the Cauchy principal value integral. Thus from the jump condition
of P(∞)(z, 0) (note that det P(∞)(z, t) = 1 so everything makes sense)

[
P(∞)

− (λ, t)
]−1

P(∞)
+ (λ, t)

= e
σ3

r−(λ)

2π

[

−π i Tt (λ)√
1−λ2

+P.V .
∫ 1
−1

Tt (x)√
1−x2

dx
λ−x

]
(

0 f0(λ)

− f0(λ)−1 0

)

× e
−σ3

r+(λ)

2π

[

π i Tt (λ)√
1−λ2

+P.V .
∫ 1
−1

Tt (x)√
1−x2

dx
λ−x

]

Noting that (from the definition of r ; see (4.19)) r+(λ) = i
√
1 − λ2 and r−(λ) =

−i
√
1 − λ2 so with a simple calculation

[
P(∞)

− (λ, t)
]−1

P(∞)
+ (λ, t) =

(
0 eTt (λ) f0(λ)

−e−Tt (λ) f0(λ)−1 0

)

,

which is precisely the claim as f0eTt = ft . 
�

Appendix D: The RHP for the local parametrix near a singularity

Here we give further details about the local parametrix near a singularity. First of all,
we give a full description of the solution to the model RHP—the function �.
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Definition D.1 Recall that we use Roman numerals for the octants of the plane: I =
{reiθ : r > 0, θ ∈ (0, π/4)} and so on. We also write Iν and Kν for the modified
Bessel functions of the first and second kind, as well as H (1)

ν and H (2)
ν for the Hankel

functions of the first and second kind. We then define (again roots are principal branch
roots)

�(ζ ) = 1

2

√
πζ

⎛

⎜
⎝

H (2)
β j+1
2

(ζ ) −i H (1)
β j+1
2

(ζ )

H (2)
β j−1
2

(ζ ) −i H (1)
β j−1
2

(ζ )

⎞

⎟
⎠ e

−
(

β j
2 + 1

4

)
π iσ3

ζ ∈ I, (D.1)

�(ζ) = √
ζ

⎛

⎝

√
π I β j+1

2

(−iζ ) − 1√
π
K β j+1

2

(−iζ )

−i
√

π I β j−1
2

(−iζ ) − i√
π
K β j−1

2

(−iζ )

⎞

⎠ e− β j
4 π iσ3 ζ ∈ II, (D.2)

�(ζ) = √
ζ

⎛

⎝

√
π I β j+1

2

(−iζ ) − 1√
π
K β j+1

2

(−iζ )

−i
√

π I β j−1
2

(−iζ ) − i√
π
K β j−1

2

(−iζ )

⎞

⎠ e
β j
4 π iσ3 ζ ∈ III, (D.3)

�(ζ) = 1

2

√−πζ

⎛

⎜
⎝

i H (1)
β j+1
2

(−ζ ) −H (2)
β j+1
2

(−ζ )

−i H (1)
β j−1
1

(−ζ ) H (2)
β j−1
2

(−ζ )

⎞

⎟
⎠ e

(
β j
2 + 1

4

)
π iσ3

ζ ∈ IV, (D.4)

�(ζ) = 1

2

√−πζ

⎛

⎜
⎝

−H (2)
β j+1
2

(−ζ ) −i H (1)
β j+1
2

(−ζ )

H (2)
β j−1
2

(−ζ ) i H (1)
β j−1
2

(−ζ )

⎞

⎟
⎠ e

−
(

β j
2 + 1

4

)
π iσ3

ζ ∈ V, (D.5)

�(ζ) = √
ζ

⎛

⎝
−i

√
π I β j+1

2

(iζ ) − i√
π
K β j+1

2

(iζ )
√

π I β j−1
2

(iζ ) − 1√
π
K β j−1

2

(iζ )

⎞

⎠ e− β j
4 π iσ3 ζ ∈ VI, (D.6)

�(ζ) = √
ζ

⎛

⎝
−i

√
π I β j+1

2

(iζ ) − i√
π
K β j+1

2

(iζ )
√

π I β j−1
2

(iζ ) − 1√
π
K β j−1

2

(iζ )

⎞

⎠ e
β j
4 π iσ3 ζ ∈ VII, (D.7)

�(ζ) = 1

2

√
πζ

⎛

⎜
⎝

−i H (1)
β j+1
2

(ζ ) −H (2)
β j+1
2

(ζ )

−i H (1)
β j−1
1

(ζ ) −H (2)
β j−1
2

(ζ )

⎞

⎟
⎠ e

(
β j
2 + 1

4

)
π iσ3

ζ ∈ VIII. (D.8)

In [65, Theorem 4.2] it is shown that this function indeed satisfies the problem we
used in Definition 4.20. An important fact about the function � is its behavior near
the origin. The following was also part of [65, Theorem 4.2]: as ζ → 0

�(ζ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
O(|ζ |β j /2) O(|ζ |−β j /2)

O(|ζ |β j /2) O(|ζ |−β j /2)

)

, ζ ∈ II, III,VI,VII
(
O(|ζ |−β j /2) O(|ζ |−β j /2)

O(|ζ |−β j /2) O(|ζ |−β j /2)

)

, ζ ∈ I, IV,V,VIII

. (D.9)

123



172 N. Berestycki et al.

We also mention that the function � could be expressed in terms of the confluent
hypergeometric function of the second kind as in [19,20]. Let us now sketch the proof
of Lemma 4.23.

Sketch of a proof of Lemma 4.23 Consider first the analyticity condition. As we men-
tioned in Remark 4.22, one can check that E is analytic in U ′

x j , so the jumps of P(x j )

come from those of �(ζs(z)),Wj (z)−σ3 and e−Nφs (z)σ3 .
As ζs preserves the real axis, and� was chosen so that under ζs, �∩U ′

x j is mapped
to the real axis and lines intersecting origin at angles±π/4. Thus fromDefinition 4.20,
�(ζs(z)) has jumps on � and {z : Re(ζs(z)) = 0}.

From (4.27)—the definition of Wj—we see that Wj has jumps only across R and
{z : Re(ζs(z)) = 0}. Also from (4.28) and (4.9) we see that φ only has a jump across
R.

Thus to see that P(x j )(z, t, s) is analytic inU ′
x j \�, we need to check that the jump

of Wj (z)−σ3 cancels that of �(ζs(z)) along {z : Re(ζs(z)) = 0}. Let us look at for
example the jump across {z : Re(ζs(z)) = 0, Im(ζs(z)) > 0} = ζ−1

s (�3). From (4.27)
we find that for λ ∈ ζ−1

s (�3) (where the orientation is as for �3)

Wj,+(λ)Wj,−(λ)−1 = (λ − x j )β j /2

(x j − λ)β j /2
= eiπ

β j
2 .

Combining this with (4.32)

�+(ζs(λ))Wj,+(λ)−σ3 = �−(ζs(λ))eiπ
β j
2 σ3e−iπ

β j
2 σ3Wj,−(λ) = �−(ζs(λ))Wj,−(λ),

so we see that P(x j )(z) is continuous across ζ−1
s (�3). The argument is similar for the

jump across ζ−1
s (�7). We conclude that P(x j ) is analytic in U ′

x j \�.
Consider now the jump structure. The existence of continuous boundary values is

inherited from the corresponding properties of �,Wj and φs . As Wj and φs have no
jumps across �±

j−1 or �±
j , the jumps here come from the jumps of �. Let us consider

for example λ ∈ ζ−1
s (�2). Here using the jump condition of �, an elementary matrix

calculation shows that

P
(x j )
+ (λ) = P

(x j )
− (λ)Wj (λ)σ3eNφs (λ)

(
1 0

e−iπβ j 1

)

Wj (λ)−σ3e−Nφs (λ)

= P
(x j )
− (λ)

(
1 0

ft (λ)−1e−Nhs (λ) 1

)

.

Calculating the jump matrix across �±
j−1 and �−

j is similar. For the jump across
R, we have for example for λ ∈ U ′

x j ∩ (x j ,∞), from (4.27), (4.28), the analyticity of
hs across U ′

x j ∩ R, along with Definition 4.20:
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P
(x j )
+ (λ) = P

(x j )
− (λ)

(

0 eNhs (λ)−iπ
β j
2 Wj,−(λ)2e2Nφs,−(λ)

−e−Nhs (λ)+iπβ j W j,−(λ)−2e−2Nφs,−(λ) 0

)

= P
(x j )
− (λ)

(
0 ft (λ)

− ft (λ)−1 0

)

.

The calculation for the jump across U ′
x j ∩ (−∞, x j ) is similar.

To see (4.39), note first that as z → x j , ζs(x) = O(|z − x j |) (the implicit constant
depending on x j , N , and s, but this doesn’t matter now) andWj (z) = O(|z−x j |β j /2).
So we have from (D.9) that for z ∈ ζ−1

s (I) and z → x j

�(ζs(z))Wj (z)
−σ3 =

(
O(|z − x j |−β j ) O(1)
O(|z − x j |−β j ) O(1)

)

.

As E is analytic inU ′
x j , it is in particular bounded at x j , so as multiplying from the

left doesn’t mix the columns, we have the same behavior for E(z)�(ζs(z))Wj (z)−σ3 .
Now also φs is bounded at x j and again multiplying by a diagonal matrix doesn’t mix
the columns so we have the claimed asymptotics for P(x j )(z) as z → x j from ζ−1

s (I).
The other regions are similar.

Let us now focus on the matching condition (4.40). We note that as d is positive
on [−1, 1], we see that for z ∈ ∂Ux j (and for δ small enough), |ζs(z)| � N where the
implied constants are uniform in x j ∈ (−1 + 3δ, 1 − 3δ), s ∈ [0, 1], and z ∈ ∂Ux j .
Thus to study �(ζs(z)), we can make use of the large argument expansion of Bessel
functions. We won’t go into great detail here, but simply refer the reader to [65,
Section 4.3] and references therein.

For simplicity, we focus on the domain {z : arg ζs(z) ∈ (0, π/2)}. In the other
domains, one has different asymptotics for�, but the argument is similar. The relevant
asymptotics here are

�(ζ) = 1√
2

(
1 −i
−i 1

)[
I + O(|ζ |−1)

]
e

π i
4 σ3e−iζσ3e−π i

β j
4 σ3 , (D.10)

where the implied constant in O(|ζ |−1) is uniform in the first quadrant. Here and
below, the O-notation will refer to a 2 × 2 matrix whose entries satisfy the relevant
bound. Noting from (4.26), (4.9), and (4.28), that for z ∈ U ′

x j ∩ {Im(z) > 0}

ζs(z) = −Ni(φs,+(x j ) − φs(z)).

It then follows from this and (D.10) that for z ∈ ζ−1
s (I ∪ II) ∩ ∂Ux j

�(ζs(z))Wj (z)
−σ3e−Nφs (z)σ3

= 1√
2

(
1 −i
−i 1

)[
I + O(N−1)

]
e

π i
4 σ3e−N (φs,+(x j )−φs (z))σ3e−π i

β j
4 σ3
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× Wj (z)
−σ3e−Nφs (z)σ3

= 1√
2

(
1 −i
−i 1

)[
I + O(N−1)

]
ei

π
4 (1−β j )σ3e−Nφs,+(x j )σ3Wj (z)

−σ3 ,

where the O(N−1) term is uniform in everything relevant. Using (4.33) and (4.35),
we see that for z ∈ ζ−1

s (I ∪ II) ∩ ∂Ux j

P(x j )(z)
[
P(∞)(z)

]−1 = A(z)(I + O(N−1))A(z)−1 = I + A(z)O(N−1)A(z)−1,

where the O(N−1) term is uniform in everything relevant and

A(z) = P(∞)(z)Wj (z)
σ3eNφs,+(x j )σ3e−i π

4 (1−β j )σ3 = E(z)

[
1√
2

(
1 i
i 1

)]−1

The claim (in this sector of the boundary) will then follow if we show that A is
uniformly bounded in everything relevant. As φs,+(x j ) is purely imaginary (see (4.9)),
we see that the relevant question is the boundedness of P(∞)(z)Wj (z)σ3 and its inverse.
Looking at (4.22), we see that this is equivalent to Dt (z)−1Wj (z) being uniformly
bounded and uniformly bounded away from zero. Let us write this quantity out. From
(4.21) and (4.27) we have

∣
∣
∣Dt (z)

−1Wj (z)
∣
∣
∣ =

∣
∣
∣
∣(z + r(z))Ae

− r(z)
2π

∫ 1
−1

Tt (λ)√
1−λ2

dλ
z−λ e

1
2Tt (z)

∣
∣
∣
∣ .

z + r(z) is obviously bounded for z in a compact set, the integral term is uniformly
bounded in everything relevant by Lemma 4.15, and the last term is bounded as Tt
is uniformly bounded in everything relevant. Similarly we see uniform boundedness
away from zero. This concludes the proof for z ∈ ζ−1

s (I ∪ II) ∩ ∂Ux j . The proof in
the remaining parts of the boundary are similar. 
�

We now move on to considering the proof of Lemma 4.24.

Proof of Lemma 4.24 Here we simply need to take into account the next term in the
asymptotic expansion of�. The argument is otherwise as in the proof of Lemma 4.23.
For simplicity,wewill focus on the casewhere ζ is in thefirst quadrant.Other quadrants
are handled in a similar manner. We refer to the discussion around [65, equation (5.9)]
for the following asymptotics:

�(ζ) = 1√
2

(
1 −i
−i 1

)[

I − i
β j

4ζ

(
β j
2 i

i −β j
2

)

+ O
(
|ζ |−2

)
]

e
i
(

π
4 − β jπ

4 −ζ
)
σ3

,

(D.11)
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where the errorO(|ζ |−2) is uniform for ζ in the first quadrant. Then arguing as in the
previous proof, we see that

P(x j )(z)
[
P(∞)(z)

]−1 = I − i
β j

4ζs(z)
A(z)

(
β j
2 i

i −β j
2

)

A(z)−1 + O
(
|ζs(z)|−2

)
,

where we used the uniform boundedness of A and A−1. Noting that

1√
2

(
1 −i
−i 1

)(β j
2 i

i −β j
2

)
1√
2

(
1 i
i 1

)

=
⎛

⎝
0

(
1 + β j

2

)
i

(
1 − β j

2

)
i 0

⎞

⎠ ,

making use of ζs(z) � N uniformly in everything relevant for z ∈ ∂Ux j and the fact
that the asymptotic expansion of � is uniform, we see the claim. Again, the argument
in the other regions is similar. 
�

Appendix E: The RHP for the local parametrix near the edge of the spec-
trum

In this section we will give some further details about the parametrices near the edge
of the spectrum. First we will justify the definition of the function ξs from (4.42).

Justification of the definition of ξs . The argument is essentially as in [22, Section 7].
Let us first recall some properties of φs . From (4.28) and (4.9), we note that φs has
a jump across U ′

1 ∩ (−1, 1) but is continuous across U ′
1 ∩ (1,∞), so it is analytic in

U ′
1\[−1, 1]. Moreover, in U ′

1\[−1, 1] we can write

3π

2
ds(z)(z + 1)1/2(z − 1)1/2 = G̃(1)

s (z)(z − 1)1/2, (E.1)

where G̃(1)
s is analytic in U ′

1. Expanding G̃(1)
s as a series, integrating, and taking into

account the branch structure of φs , we can write

− 3

2
φs(z) = G(1)

s (z)(z − 1)3/2, (E.2)

where the power is according to the principal branch and G(1)
s is analytic in U ′

1. If we

expand G(1)
s (z) =∑∞

k=0 G
(1)
s,k(z − 1)k and G̃(1)

s (w) =∑∞
k=0 G̃

(1)
s,k(w − 1)k , then

G(1)
s,k = 2

3 + 2k
G̃(1)

s,k .

Now as G̃(1)
s,0 = 3π√

2
ds(1) is uniformly bounded away from zero, we see from

the above display that the same holds for G(1)
s,0. By Cauchy’s integral formula (for

derivatives),
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∣
∣
∣G̃

(1)
s,k

∣
∣
∣ ≤ (3δ/2)−k sup

|z−1|=δ

∣
∣
∣
∣
3

2

√
z + 1

[

sd(z) + (1 − s)
2

π

]∣
∣
∣
∣ ≤ Cδ(3δ/2)

−k,

for some constant Cδ independent of s, so we again get a similar bound for G(1)
s,k .

From this type of estimate, one can easily argue that by possibly decreasing δ by some
s-independent factor, G(1)

s is zero free in U ′
1. Thus with a suitable convention for the

branch of the power, the function

ξs(z) = N 2/3(z − 1)G(1)
s (z)2/3

is analytic in U ′
1.

For injectivity, note that the derivative of the function z �→ (z − 1)G(1)
s (z)2/3

at z = 1 is uniformly (in s) bounded away from zero and its second derivative is
uniformly bounded in s and in a small enough (s independent) neighborhood of 1.
Thus by decreasing δ if needed (in an s independent manner), we have univalence of
ξs . 
�

We now sketch the proof of Lemma 4.30.

Sketch of a proof of Lemma 4.30 Let us first of all consider the analyticity of F . P(∞)

is analytic in U ′
1\[−1, 1], f 1/2 is analytic in U ′

1, and as ζs(1) = 0, ζ 1/4
s has a branch

cut in U1. We note from (E.2) that as one can check (from (4.9)) that −φs(λ) > 0 for
λ > 1,Gs(λ) > 0 for λ > 1. Thus Gs is real on R ∩ U ′

1. As we argued above that
it’s zero free, it must be positive on R ∩ U ′

1, so we see that ξs(λ) < 0 for λ < 1. As

we are dealing with the principal branch, the cut of ξ
1/4
s is along U ′

1 ∩ (−1, 1). It’s
thus enough to check that F is continuous across (−1, 1) ∩ U ′

1 and does not have an
isolated singularity at z = 1.

For the continuity across (−1, 1), let λ ∈ (−1, 1) ∩ U ′
1. We have from (4.24) and

the jump for ξ
1/4
s : for λ ∈ (−1, 1) ∩U ′

1

[ξs]1/4+ (λ) = i[ξs]1/4− (λ),

so that

F−(λ)−1F+(λ) =
(
[ξs ]1/4− (λ)

)−σ3 1

2

(
1 1

−1 1

)

e−i π
4 σ3 ft (λ)−σ3/2

[
P(∞)
− (λ)

]−1
P(∞)
+ (λ)

× ft (λ)σ3/2ei
π
4 σ3

(
1 −1
1 1

)(
[ξs ]1/4+ (λ)

)σ3

=
(
[ξs ]1/4− (λ)

)−σ3 1

2

(
1 1

−1 1

)(
0 −i
−i 0

)(
1 −1
1 1

)(
[ξs ]1/4+ (λ)

)σ3

= I.

Thus F is continuous across (−1, 1) ∩U ′
1.

For the absence of an isolated singularity, we note that the entries of ξs(z)σ3/4

behave at worst like |z − 1|−1/4 as z → 1. From (4.22) and Lemma 4.15, we see that
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the entries of P(∞)(z) behave at worst like |z− 1|−1/4 as well. As f 1/2(z) is bounded
at z = 1, the entries of F(z) behave at worst like |z−1|−1/2. This is not strong enough
to be a pole, so there can be no isolated singularity at z = 1 and F is analytic.

Towards checking the analyticity of P(1) on U ′
1\�, we refer to [22, Section 7] on

the following matter (in their notation Q = �σ ): Q(ξs(z)) is analytic onU ′
1\� and it

satisfies the following jump conditions:

Q+(ξs(λ)) = Q−(ξs(λ))

(
1 0
1 1

)

, λ ∈ �±
k+1 ∩U ′

1, (E.3)

Q+(ξs(λ)) = Q−(ξs(λ))

(
0 1

−1 0

)

, λ ∈ (−1, 1)± ∩U ′
1, (E.4)

and

Q+(ξs(λ)) = Q−(ξs(λ))

(
1 1
0 1

)

, λ ∈ (1,∞)± ∩U ′
1. (E.5)

As f ±1/2
t is analytic in U ′

1 as if F , and φs has a jump along (−1, 1) ∩ U ′
1, we see

that P(1) indeed is analytic in U ′
1.

The jump conditions come from those of Q. Let us check for example the one
across (−1, 1) ∩U ′

1—(4.48). For λ ∈ (−1, 1) ∩U ′
1, we have

[
P(1)

− (λ)
]−1

P(1)
+ (λ) = ft (λ)σ3/2eNφs,−(λ)Q−(ξs(λ))Q+(ξs(λ)e−Nφs,+(λ) ft (λ)−σ3/2

= ft (λ)σ3/2e− 1
2 Nhs (λ)σ3

(
0 1

−1 0

)

e− 1
2 Nhs (λ)σ3 ft (λ)−σ3/2

=
(

0 ft (λ)

− ft (λ)−1 0

)

.

The other jump conditions are similar.
Let us then check the matching condition. Let z ∈ ∂U1. For small enough δ (inde-

pendent of s), it is clear from (4.9) and (4.28) that |φs(z)| is bounded away from zero
uniformly in s and uniformly in z ∈ ∂U1. Thus |ξs(z)| � N 2/3 where the implied
constants are uniform in z and s. We can thus make use of the large |ξ | asymptotics
of Ai(ξ) and Ai′(ξ) to obtain asymptotics for Q(ξs(z)). For this, we will again refer
to [22]—in particular [22, (7.30)]: for z ∈ ∂U1

Q(ξs(z))e
2
3 ξs (z)3/2σ3 = eπ i/12

2
√

π
ξs(z)

−σ3/4
[(

1 1
−1 1

)

e−i π
4 σ3 + O(N−1)

]

,

where the error is uniform in z and s. Recalling that the construction of ξs was precisely
so that 2

3ξs(z)
3/2 = −Nφs(z), we see that

Q(ξs(z))e
−Nφs (z)σ3 ft (z)

−σ3/2

= eπ i/12

2
√

π
ξs(z)

−σ3/4
[(

1 1
−1 1

)

e−i π
4 σ3 + O(N−1)

]

ft (z)
−σ3/2,
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with the O(N−1)-term being uniform in everything relevant. Thus

P(1)(z)
[
P(∞)(z)

]−1 = I + P(∞)(z) ft (z)
σ3/2O(N−1) ft (z)

−σ3/2
[
P(∞)(z)

]−1
.

As ft (z)±1 as well as the entries of [P(∞)]±1 are uniformly (in everything relevant)
bounded on ∂U1, the claim follows. 
�

We will also give a proof of Lemma 4.31.

Proof of Lemma 4.31 This is again proven as the matching condition, but using finer
asymptotics of the Airy function. In particular, one has (see [22, (7.30)])

Q(ξs(z))e
−Nφs (z)σ3

= eπ i/12

2
√

π
ξs(z)

−σ3/4

[(
1 1

−1 1

)

+
(

− 5
48

5
48

− 7
48 − 7

48

)

ξs(z)
−3/2 + O(|ξs(z)|−3)

]

e−i π
4 σ3 ,

where the constant implied by the O notation is uniform in everything relevant. Thus
arguing as in the previous proof, we see that for z ∈ ∂U1

P(1)(z)
[
P(∞)(z)

]−1

= I + P(∞)(z) f (z)σ3/2eiπσ3/4 1

8

( 1
6 1

−1 − 1
6

)

e−iπσ3/4

× f (z)−σ3/2
[
P(∞)(z)

]−1
ξs(z)

−3/2 + O(N−2)

uniformly in everything relevant. 
�

Appendix F: Proofs concerning the final transformation and solving the
R-RHP

In this section we sketch proofs concerning the final transformation and the solution
of the R-RHP. We start with checking that R indeed solves the RHP of Lemma 4.34.

Proof of Lemma 4.34 Uniqueness follows from S being the unique solution to its prob-
lem. The last condition is immediate to check as for large |z|, R(z) = S(z)[P(∞)(z)]−1

and both of these terms are asymptotically I +O(|z|−1). The jump conditions simply
make use of the definition of R and the jump conditions of S—these are direct to check
and we skip this.

For the analyticity condition we begin with the domainU±1. Here the construction
of P(±1) was such that it would have the same jumps as S so R has no branch cuts
inside ofU±1.We are left with the possibility that R would have an isolated singularity
at z = ±1. Recall that S(z) is bounded as z → ±1, while Lemma 4.15 implies that
the entries of [P(∞)(z)]−1 can blow up at most like |z ∓ 1|−1/4 as z → ±1. Thus the
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possible isolated singularity of R is not strong enough to be a pole (or essential), so it
is removable, and R is analytic in U±1.

Consider now a neighborhood Ux j . Again, by the construction of the parametrix,
there are no jumps here, and the only possible singularity is an isolated singularity
at x j . Recall now that as z → x j from outside of the lenses, S(z) = O(1), and as
z → x j from inside of the lenses,

S(z) =
(
O(|z − x j |−β j ) O(1)
O(|z − x j |−β j ) O(1)

)

.

P(x j )(z) has similar behavior near x j . To estimate it’s inverse, we note that
det P(x j )(z) = 1 for all z ∈ Ux j - which follows directly from the definitions once
one knows that det� = 1 (which we argued following Definition 4.20, or one could
check directly using the explicit representation of � from “Appendix D”).

We thus see that as z → x j from outside of the lenses, [P(x j )(z)]−1 remains
bounded, and as z → x j from inside the lenses, we have

[
P(x j )(z)

]−1 =
(

O(1) O(1)
O(|z − x j |−β j ) O(|z − x j |−β j )

)

so we conclude that from the inside of the lens, the entries of the matrix
S(z)[P(x j )(z)]−1 have singularities of order O(|z − x j |−β j ) at worst. Now we see
that as S(z)[P(x j )(z)]−1 remains bounded as z → x j from outside of the lenses, it
can’t have a pole at x j . But as the degree of the singularity is bounded (we can find an
integer k such that (z− x j )k S(z)[P(x j )(z)]−1 tends to zero as z → x j ), the singularity
can’t be essential either. Thus the only possibility is that the singularity is removable,
and R(z) is analytic in Ux j . Thus we see that R indeed solves the Riemann–Hilbert
problem. 
�

We next prove the relevant estimate for the jump matrix.

Proof of Lemma 4.35 Let us first consider the jumpmatrix onR\[−1−δ, 1+δ]. Here
we have

�(λ) = P(∞)(λ)

(
0 ft (λ)eN (gs,+(λ)+gs,−(λ)−Vs (λ)−�s )

0 0

)[
P(∞)(λ)

]−1
.

First of all, we note that the entries of P(∞)(λ) and [P(∞)(λ)]−1 are bounded

(uniformly in everything relevant) in this area, and ft (λ) grows like |λ|
∑k

j=1 β j as
|λ| → ∞. From (4.7), we see that there exist constants C, M > 0 depending only on
V such that for |λ| > 1 + M, eN (gs,+(λ)+gs,−(λ)−Vs (λ)−�s ) ≤ |λ|−N and for |λ| − 1 ∈
(0, M), eN (gs,+(λ)+gs,−(λ)−Vs (λ)−�s ) ≤ e−NC(|λ|−1)3/2 . From these estimates, it’s easy
to see that any L p norm on R\[−1 − δ, 1 + δ] is exponentially small in N .
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Consider next the part of the contour lying on the boundaries of the lenses. More

precisely, we have for λ ∈ ∪k+1
j=1�

±
j \U−1 ∪ ∪k

j=1Ux j ∪U1,

�(λ) = P(∞)(λ)

(
0 0

ft (λ)−1e∓Nhs (λ) 0

)[
P(∞)(λ)

]−1
.

We now refer to Lemma 4.4, which states that for example for λ ∈ �+
j \

U−1 ∪ ∪k
l=1Uxl ∪U1, there exists an ε > 0 independent of s and λ such that

Re(hs(λ)) > ε (we assume that the distance between this part of the contour and
the real axis is bounded away from zero uniformly in everything relevant). Moreover,
ft (λ)−1 is uniformly bounded here so we again get exponential smallness for any L p

norm uniformly in everything relevant for this part of the contour (as the contour has
finite length). The �−

j -case is identical.
For ∂Ux j and ∂U±1 the bounds come from thematching conditions in Lemmas 4.23

and 4.30. Combining the estimates from the different parts of the contour is elementary
and we find the claim. 
�

The next proofwe consider is the representation of R in terms of a certainNeumann-
series. The proof follows [22, Theorem 7.8], and while it is a standard fact, we record
it here for completeness.

Proof of Proposition 4.36 By the Sokhotski-Plemelj theorem, we see that the function
R̂ = I +C(R+ − R−) satisfies R̂+ − R̂− = R+ − R− across �δ\{intersectionpoints}
(note that from our proof of Lemma 4.35, we see that R+ − R− = R−� has nice
enough decay at infinity for R̂ to be well defined). Thus the function R̂ − R has no
jump across �δ\{intersectionpoints}. By construction, both functions are bounded at
the intersection points of the different parts of the contour, and behave like I+O(|z|−1)

as z → ∞, so by Liouville’s theorem

R = I + C(R+ − R−) = I + C(R−�).

In particular, taking the limit from the − side, we obtain

R− − I = C−(R−�) = C�(R−) ⇔ (I − C�)(R− − I ) = C�(I ).

It is well known that C− is a bounded operator from L2(�δ) to L2(�δ)—see e.g. the
discussion and references in [22, Appendix A]. Given the estimate in Lemma 4.35 the
operator norm of C� is of orderO(1/N ), I −C� is invertible (and the inverse can be
expanded as a Neumann series) for N sufficiently large and the result follows. 
�

Finally we prove the main result concerning R. Our proof is a minor modification
of that in [42].

Proof of Theorem 4.37 Note that since (I −C�)(R− − I ) = C�(I ) and since the L2-
boundedness of C− implies that ||C�(I )||L2(�δ)

= O(N−1) (uniformly in everything
relevant), we have
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+
− Γδ

z

R = R

R = R
R = RJ

Fig. 8 Deforming the R-RHP

||R− − I ||L2(�δ)
≤ ||(I − C�)−1||L2(�δ)→L2(�δ)

||C�(I )||L2(�δ)
≤ c1

N

for some c1 > 0 (independent of the relevant quantities).
Now fix some small ε > 0, and suppose z is at least ε away from the jump contour

�δ . Recall that in the proof of (4.59), we saw that (I − C�)−1C�(I ) = R− − I , so
we have (for c2, c3, c4 depending on ε but not on t, s, . . .)

|R − I | ≤ |C(�)| + |C((R− − I )�)|
≤ c2

N
+ c3||R− − I ||L2(�δ)

||�||L2(�δ)
≤ c4

N
,

where we used Cauchy–Schwarz in the second step and the facts that R− is bounded
on �δ and behaves like I + O(|λ|−1), as λ → ∞.

For z ∈ C\�δ that is within a distance of ε from �δ but not close to any intersection
points, we use the usual trick of contour deformation. First note thatwe can analytically
continue the jump matrix JR to, without loss of generality, a (2ε)-neighbourhood of
�δ , with the estimates in Lemma 4.35 remaining true (up to a change of constants).

We may assume that z lies on the + side of �δ . Let �̃δ be the contour in Fig. 8,
obtained from �δ with the dotted part replaced by a half circle of radius ε, and R̃ be
defined as shown, where J is the analytic continuation of JR . Then R̃(z) satisfies the
same Riemann–Hilbert problem as R(z) except on the new contour �̃δ . Repeating our
argument for the case where z is at distance at least ε from the contour, we see that

|R(z) − I | = |R̃(z) − I | ≤ c5
N

,

for a c5 which is uniform in the relevant quantities. Now note that all estimates estab-
lished so far are also uniform in δ ∈ K ⊂ (0, δ0] for some compact set K and δ0 > 0,
see [22, Section 7.2]. If z is close to any intersection points we may then deform our
contour by varying δ.

For the derivative, let us consider the case where the distance between z and the
jump contour is greater than ε. Then by Cauchy’s integral formula we have

R′(z) = 1

2π i

∫

|w−z|=ε

R(w)

(w − z)2
dw = 1

2π i

∫

|w−z|=ε

R(w) − I

(w − z)2
dw = O(N−1)

where the last equality follows from the uniform estimates for R(w) − I . For z close
to the contour we argue by contour deformation again.
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We now want to extract the second order asymptotics when T = 0. Since

R = I + C(�) + C((R− − I )�),

repeating our argument with minor modifications we see that

R − I − C(�) = O(N−2) and R′ − C(�)′ = O(N−2)

uniformly off of �δ and uniformly in everything relevant. Now by definition, we have

[C(�)](z) =
∫

�δ

�(w)

w − z

dw

2π i
.

With similar arguments as in the proof of Lemma 4.35, one can easily see (e.g.
using Cauchy–Schwarz and a L2-norm bound on the jump matrix on the unbounded
part of the contour and a L∞-norm bound on the part of the contour on the boundary of
the lenses) that the contribution from the part of the contour onR and on the boundary
of the lenses has uniformly (in everything relevant) exponentially small contribution
to C(�). Thus we have for z not on the jump contour

[C(�)](z) =
k+1∑

j=0

∮

∂Ux j

�(w)

w − z

dw

2π i
+ O(N−2) =:

k+1∑

j=0

R
(x j )
1 (z) + O(N−2),

where the orientation of the contours is in the clockwise direction and the O(N−2) is
uniform in everything relevant. From Lemmas 4.24, 4.31, and Remark 4.32, we can
then write (again for z off of the jump contour)

R
(x j )
1 (z) = 1

2π i

∮

∂Ux j

dw

w − z

β j

4ζ
(x j )
s (w)

E (x j )(w)

(
0 1 + β j

2

1 − β j
2 0

)
[
E (x j )(w)

]−1
,

1 ≤ j ≤ k

R(±1)
1 (z) = 1

2π i

∮

∂U±1

dw

w − z
F (±1)(w)

⎛

⎜
⎝

0 ± 5
48

[
ξ

(±1)
s (w)

]−2

− 7
48

[
ξ

(±1)
s (w)

]−1
0

⎞

⎟
⎠

[
F (±1)(w)

]−1

where the superscripts have been added to underline that the functions depend on the
singularity we are considering.

Consider now z /∈ Ux j with j ∈ {1, . . ., k}. Then as E, E−1 are analytic inUx j and

1/ζ
(x j )
s (w) has a simple pole at w = x j (and no other singularities in Ux j ), we see

that
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R
(x j )
1 (z) = 1

z − x j

β j

4πN
( 2

π
(1 − s) + sd(x j )

)√
1 − x2j

E (x j )(x j )

(
0 1 + β j

2

1 − β j
2 0

)

[
E (x j )(x j )

]−1
,

where, by writing bx j = a+(x j )2 + a+(x j )−2 and b̄x j = a+(x j )2 − a+(x j )−2, one
finds (after an elementary calculation)

E (x j )(x j )

(
0 1 + β j

2

1 − β j
2 0

)
[
E (x j )(x j )

]−1

= 1

8

(
−i[2(c2x j + c−2

x j )bx j b̄x j + β j (b2x j + b̄2x j )] 2D(∞)2[(c2x j b2x j + c−2
x j b̄

2
x j ) + β j bx j b̄x j ]

2D(∞)−2[(c−2
x j b

2
x j + c2x j b̄

2
x j ) + β j bx j b̄x j ] i[2(c2x j + c−2

x j )bx j b̄x j + β j (b2x j + b̄2x j )]

)

.

Here we made use of the fact that E (x j ) is analytic at x j so we can evaluate E (x j )(x j )
using the formula (4.33).

For R(±1)
1 (z) with z /∈ U±1 the residue calculations are more involved (but still

straightforward) because of the presence of a second order pole. We just summarize
here that

R(−1)
1 (z) = −21/2

2N

1

(−1 − z)2
5

48G(−1)
s (−1)

( −i D(∞)2

D(∞)−2 i

)

+ 21/2

8N

1

z + 1

⎛

⎜
⎜
⎜
⎜
⎝

i

[

9−96A2

48G(−1)
s (−1)

− 5
[
G(−1)
s

]′
(−1)

12G(−1)
s (−1)2

]

D(∞)2

[

19+96A(1+A)

48G(−1)
s (−1)

+ 5
[
G(−1)
s

]′
(−1)

12G(−1)
s (−1)2

]

i
D(∞)2

[

19−96A(1−A)

48G(−1)
s (−1)

+ 5
[
G(−1)
s

]′
(−1)

12G(−1)
s (−1)2

]

−i

[

9−96A2

48G(1)
s (1)

− 5
[
G(−1)
s

]′
(−1)

12G(−1)
s (−1)2

]

⎞

⎟
⎟
⎟
⎟
⎠

,

R(1)
1 (z) = −21/2

2N

1

(1 − z)2
5

48G(1)
s (1)

(
1 −iD(∞)2

−iD(∞)−2 −1

)

− 21/2

8N

1

1 − z

⎛

⎜
⎜
⎜
⎜
⎝

9−96A2

48G(1)
s (1)

+ 5
[
G(1)
s

]′
(1)

12G(1)
s (1)2

iD(∞)2

[

19+96A+96A2

48G(1)
s (1)

− 5
[
G(1)
s

]′
(1)

12G(1)
s (1)2

]

iD(∞)−2

[

19−96A+96A2

48G(1)
s (1)

− 5
[
G(1)
s

]′
(1)

12G(1)
s (1)2

]

− 9−96A2

48G(1)
s (1)

− 5
[
G(1)
s

]′
(1)

12G(1)
s (1)2

⎞

⎟
⎟
⎟
⎟
⎠

,

where the functions G(±1)
s (z) come from

ξ (−1)
s (z) = e−iπ N 2/3G(−1)

s (z)2/3(z + 1), ξ (1)
s (z) = N 2/3G(1)

s (z)2/3(z − 1),

(see “Appendix E”). J (x j )(z) may now be obtained by direct calculation. 
�

Appendix G: Uniformity of the asymptotics in Theorem 6.3

In this appendix we will give a brief outline of how to check that the asymptotics in
Theorem 6.3 are still uniformwhen we replace V by Vx,y when x, y ∈ (−1+ε, 1−ε)
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(in the notation of Sect. 6). We will not try to be self contained here and we will use
notations both from [14] and ones we’ve adopted earlier in this article. We won’t
provide all of the relevant definitions from [14]. We will simply try to provide a map
of how to go over the argument.

Let us write u = (x − y)2/4 ≥ 0 (which in the notation of [14] is t) and v =
(x+ y)/2 ∈ (−1+ε, 1−ε), where ε is determined by the support of our non-negative
test function. We also write Vv(z) = V (z + v). In the notation of Sect. 6, we are
interested in the asymptotics of DN−1( fu; Vv), which in the notation of [14] would
be ẐN (u, β, Vv)/N !. Note that in the notation of [14], β is replaced by α.

Let us write Y for the solution of the RHP related to DN−1( fu; Vv). Y depends on
u and v, but as usual, we suppress this dependence in our notation. Then as the “center
of mass” and “relative motion” coordinates decouple, or ∂uVv = 0 for all u and v, the
proof of [14, Proposition 4.1] carries through word to word and one finds

∂u log DN−1( fu; Vv) = − β

2
√
u

[
(Y (

√
u)−1Y ′(

√
u))22 − (Y (−√

u)−1Y ′(−√
u))22

]
.

(G.1)
The goal will be to integrate this from zero to some positive u. Even though ±√

u lie
on the jump contour of Y , this quantity in fact does not have a jump so the notation is
justified. Moreover one can calculate the relevant quantities at a point z and then let
z → ±√

u—in particular the point z can be taken to be outside of the relevant lenses
and for simplicity in the lower half plane (see [14, Figure 8]). In [14, Section 6], using
results of [15], it is argued that near the points ±√

u, but outside of the lenses, one
can write

Y (z) = e−N �v
2 σ3
(
Rv(z)Ev(z)�

(2)(λv(z); sN ,u)Wv(z)
)
eNgv(z)σ3e

N�v
2 σ3 , (G.2)

where �v and gv refer to the �- and g-quantities constructed from the potential Vv . If
we restrict to points z outside of the lenses and in the lower half plane, then one has

Wv(z) =
[
(z2 − u)−β/2e

−π iβ
2 eNφv(z)

]σ3
, (G.3)

where (see the discussion around [14, equation (4.13)] for details about the branch
and integration contour—note that in the notation of [14], d is h and the support of
the equilibrium measure is [a, b] instead of our [−1 − v, 1 − v])

φv(z) = π

∫ z

1−v

dv(ξ)((ξ + v) + 1)((ξ + v) − 1))1/2dξ. (G.4)

λv is a coordinate change which for z in the lower half plane is defined by (see [14,
equation (6.2)])

λv(z) = −i N

(

−φv(z) − φv,+(
√
u) + φv,+(−√

u)

2

)

. (G.5)
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The main reason the uniformity of the asymptotics holds is that varying v ∈ (−1+
ε, 1 − ε) does not change the qualitative behavior of the asymptotics of λv(z). If one
were to allow v = ±1, then the situation would be different.

For the definition of �(2)(λ, s), we refer to [14, Section 3], but point out here that
while it depends on β, it does not depend on x, y, or V . The function Ev is analytic
in a neighborhood of zero (containing the points ±√

u) and for the values of z we are
interested in, it can be written as (see [14, Section 6.4])

Ev(z) = Nv(z)Wv(z)
−1e−iλv(z)σ3 = Nv(z)

[
(z2 − u)β/2eπ iβ/2

]σ3

×e
N
2 (φv,+(

√
u)+φv,+(−√

u))σ3 , (G.6)

whereNv(z) is the global parametrix which is of similar form as the onewe consider in
Sect. 4.2 apart from the support of the equilibriummeasure now being [−1−v, 1−v]
which changes the formulas slightly. See also around [14, equations (5.5) and (6.1)] for

details. In particular, as z → ±√
u for a fixed N ,Nv(z) ∼ (z ∓ √

u)−
β
2 σ3 uniformly

in v. This combined with the fact that φv,+(±√
u) is purely imaginary implies that

in a neighborhood of the origin, Ev, E−1
v , and E ′

v are bounded uniformly in v ∈
(−1 + ε, 1 − ε).

Finally Rv is a solution to a small norm RHP. As pointed out in [14], the analysis
of Rv and its RHP is essentially carried out in [15]. While verifying in full detail the
asymptotic behavior of Rv is not something we will do, we will briefly sketch part
of the argument, namely uniform asymptotics for the jump matrix across part of the
boundary of a neighborhood of the origin. Analyzing the jump matrix of R in the
remaining part of the contour is similar and with a standard argument one finds that
R is uniformly close to the identity and its derivative is uniformly small.

From the definition of Rv in [14, Section 6.5] we see for z on the boundary of some
neighborhood of the origin containing the points ±√

u

Rv,+(z) = Rv,−(z)Ev(z)�
(2)(λv(z); sN ,u)Wv(z)Nv(z)

−1 (G.7)

Following the notation in [14, Section 3], we note that we can write

�(2)(λ, s) = �CK

(

−4λ

|s| i; s
)

χ(λ), (G.8)

where �CK is the solution to the RHP in [15, Section 3] and χ(λ) is defined in [14,
(3.12)]. We note that as u is always small for us, |λv(z)/|s|| ∼ u−1/2 is large if z
is at a fixed distance from ±√

u. We thus want to know the λ → ∞ asymptotics of
�CK (λ, s) for all values of s. This was studied in [15]. For the relevant asymptotics
for �CK (ζ ; s), we refer to the discussion relevant to [15, equations (3.6), (5.25), and
(6.32)]. For �(2)(λ; s) these asymptotics translate into the following: for large |λ|
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�(2)(λ; s) =

⎧
⎪⎨

⎪⎩

(I + O(|s||λ|−1))eiλσ3 , s → −i0+

(I + O(|λ|−1))eiλσ3 , s = O(1)

(I + O(|sλ|−1))eiλσ3 , s → −i∞
.

Using (G.6) and fact that Ev and E−1
v are uniformly bounded, we thus see that for

all u and uniformly in v, the jump matrix along this part of the jump contour is

I + Ev(z)O(min(|s|, |s|−1)|λv(z)|−1)Ev(z)
−1 = I + O(min(|s|, |s|−1)|λv(z)|−1).

Going over such an argument in full detail would then imply that Rv can be solved
through the general small-norm approach and one has uniform asymptotics for Rv , e.g.
Rv(z) = I +O(N−1) and R′

v(z) = O(N−1) uniformly in z and v ∈ (−1+ ε, 1− ε).
Let us now return to the differential identity (G.1). With a basic matrix algebra

argument, one finds from (G.2) as in [14, Section 5]

(
Y−1(z)Y ′(z)

)

22
= (B(z))22 − N

2
V ′

v(z) + β

2

[
1

z − √
u

+ 1

z + √
u

]

+
[

�(2)(λv(z); sN ,u)
d

dz
�(2)(λv(z); sN ,u)

]

22
,

where

B(z) = �(2)(λv(z); sN ,u)
−1(Rv(z)Ev(z))

−1(Rv(z)Ev(z))
′�(2)(λv(z); sN ,u).

For the asymptotics of the d
dz�

(2)-term, one can argue exactly like in [14, Section
6.4] (see also [14, equations (5.27) and (5.28); Lemma 5.3]) to find that as z → ±√

u,

(

�(2)(λv(z); s)−1 d

dz
�(2)(λv(z); s)

)

22
= ±2i

λ′
v(±

√
u)

sN ,u

(
σβ(sN ,u) − β2

2

β
+ sN ,u

2

)

− β

2

1

z ∓ √
u

+ O(1),

where O(1) is uniform in v.
Thus what remains is the B-term. For this, by what we’ve argued about R and E ,

we see that (RE)−1(RE)′ = O(1) uniformly in v in a neighborhood of zero. Thus
it is enough to show that as z → ±√

u, ((�(2))−1O(1)�(2))22 = O(1) uniformly in
v. Here again the asymptotics of �(2) come from [15], and in fact the uniformity in
v follows from the argument for a fixed v as in [14, Section 5.6 and Section 6.6] and
the uniform behavior of λv .
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