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Abstract We study the small-time fluctuations for diffusion processes which are con-
ditioned by their initial and final positions, under the assumptions that the diffusivity
has a sub-Riemannian structure and that the drift vector field lies in the span of the sub-
Riemannian structure. In the case where the endpoints agree and the generator of the
diffusion process is non-elliptic at that point, the deterministic Malliavin covariance
matrix is always degenerate. We identify, after a suitable rescaling, another limiting
Malliavin covariancematrix which is non-degenerate, andwe show that, with the same
scaling, the diffusionMalliavin covariancematrices are uniformly non-degenerate.We
further show that the suitably rescaled fluctuations of the diffusion loop converge to
a limiting diffusion loop, which is equal in law to the loop we obtain by taking the
limiting process of the unconditioned rescaled diffusion processes and condition it
to return to its starting point. The generator of the unconditioned limiting rescaled
diffusion process can be described in terms of the original generator.

Mathematics Subject Classification 58J65 · 60H07 · 35H10

1 Introduction

The small-time asymptotics of heat kernels have been extensively studied over the
years, from an analytic, a geometric as well as a probabilistic point of view. Bismut [9]
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618 K. Habermann

usedMalliavin calculus to perform the analysis of the heat kernel in the elliptic case and
he developed a deterministic Malliavin calculus to study Hörmander-type hypoelliptic
heat kernels. Following this approach, Ben Arous [4] found the corresponding small-
time asymptotics outside the sub-Riemannian cut locus andBenArous [5] andLéandre
[11] studied the behaviour on the diagonal. In joint work [6,7], they also discussed
the exponential decay of hypoelliptic heat kernels on the diagonal.

In recent years, there has been further progress in the study of heat kernels on
sub-Riemannian manifolds. Barilari et al. [3] found estimates of the heat kernel on the
cut locus by using an analytic approach, and Inahama and Taniguchi [10] combined
Malliavin calculus and rough path theory to determine small-time full asymptotic
expansions on the off-diagonal cut locus. Moreover, Bailleul et al. [2] studied the
asymptotics of sub-Riemannian diffusion bridges outside the cut locus. We extend
their analysis to the diagonal anddescribe the asymptotics of sub-Riemannian diffusion
loops. In a suitable chart, and after a suitable rescaling, we show that the small-time
diffusion loop measures have a non-degenerate limit, which we identify explicitly in
terms of a certain local limiting operator. Our analysis also allows us to determine the
loop asymptotics under the scaling used to obtain a small-time Gaussian limit of the
sub-Riemannian diffusion bridge measures in [2]. In general, these asymptotics are
now degenerate and need no longer be Gaussian.

Let M be a connected smooth manifold of dimension d and let a be a smooth
non-negative quadratic form on the cotangent bundle T ∗M . Let L be a second order
differential operator on M with smooth coefficients, such that L1 = 0 and such that L
has principal symbol a/2. One refers to a as the diffusivity of the operator L. We say
that a has a sub-Riemannian structure if there exist m ∈ N and smooth vector fields
X1, . . . , Xm on M satisfying the strong Hörmander condition, i.e. the vector fields
together with their commutator brackets of all orders span TyM for all y ∈ M , such
that

a(ξ, ξ) =
m∑

i=1

〈ξ, Xi (y)〉2 for ξ ∈ T ∗
y M.

Thus, we can write

L = 1

2

m∑

i=1

X2
i + X0

for a vector field X0 on M , which we also assume to be smooth. Note that the vector
fields X0, X1, . . . , Xm are allowed to vanish and hence, the sub-Riemannian structure
(X1, . . . , Xm) need not be of constant rank. To begin with, we impose the global
condition

M = R
d and X0, X1, . . . , Xm ∈ C∞

b (Rd ,Rd), (1.1)

subject to the additional constraint X0(y) ∈ span{X1(y), . . . , Xm(y)} for all y ∈ R
d .

Subsequently, we followBailleul et al. [2] and insist that there exist a smooth one-form
β on M with ‖a(β, β)‖∞ < ∞, and a locally invariant positive smooth measure ν̃ on
M such that, for all f ∈ C∞(M),

L f = 1

2
div(a∇ f ) + a(β,∇ f ).
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Small-time fluctuations for sub-Riemannian diffusion loops 619

Here the divergence is understood with respect to ν̃. Note that if the operator L is
of this form then X0 = ∑m

i=1 αi Xi with αi = 1
2div Xi + β(Xi ) and in particular,

X0(y) ∈ span{X1(y), . . . , Xm(y)} for all y ∈ M .
We are interested in the associated diffusion bridge measures. Fix x ∈ M and let

ε > 0. If we do not assume the global condition then the diffusion process (xε
t )t<ζ

defined up to the explosion time ζ starting from x and having generator εL may
explode with positive probability before time 1. Though, on the event {ζ > 1}, the
process (xε

t )t∈[0,1] has a unique sub-probability law μx
ε on the set of continuous paths

� = C([0, 1], M). Choose a positive smooth measure ν on M , which can differ from
the locally invariant positivemeasure ν̃ onM , and let p denote theDirichlet heat kernel
for L with respect to ν. We can disintegrate μx

ε to give a unique family of probability
measures (μ

x,y
ε : y ∈ M) on � such that

μx
ε (dω) =

∫

M
μx,y

ε (dω)p(ε, x, y)ν(dy),

with μ
x,y
ε supported on �x,y = {ω ∈ � : ω0 = x, ω1 = y} for all y ∈ M and

where the map y 	→ μ
x,y
ε is weakly continuous. Bailleul et al. [2] studied the small-

time fluctuations of the diffusion bridge measures μ
x,y
ε in the limit ε → 0 under the

assumption that (x, y) lies outside the sub-Riemannian cut locus. Due to the latter
condition, their results do not cover the diagonal case unless L is elliptic at x . We
show how to extend their analysis in order to understand the small-time fluctuations
of the diffusion loop measures μx,x

ε .
As a by-product, we recover the small-time heat kernel asymptotics on the diagonal

shown by Ben Arous [5] and Léandre [11]. Even though our approach for obtaining
the small-time asymptotics on the diagonal is similar to [5], it does not rely on the
Rothschild and Stein lifting theorem, cf. [15]. Instead, we use the notion of an adapted
chart at x , introduced byBianchini and Stefani [8], which provides suitable coordinates
around x . We discuss adapted charts in detail in Sect. 2. The chart Ben Arous [5] per-
formed his analysis in is in fact one specific example of an adapted chart, whereas we
allow for any adapted chart. In the case where the diffusivity a has a sub-Riemannian
structure which is one-step bracket-generating at x , any chart around x is adapted.
However, in general these charts are more complex and for instance, even if M = R

d

there is no reason to assume that the identity map is adapted. Paoli [14] success-
fully used adapted charts to describe the small-time asymptotics of Hörmander-type
hypoelliptic operators with non-vanishing drift at a stationary point of the drift field.

To a sub-Riemannian structure (X1, . . . , Xm) on M , we associate a linear scaling
map δε : R

d → R
d in a suitable set of coordinates, which depends on the number

of brackets needed to achieve each direction, and the so-called nilpotent approxima-
tions X̃1, . . . , X̃m , which are homogeneous vector fields on R

d . For the details see
Sect. 2. The map δε allows us to rescale the fluctuations of the diffusion loop to high
enough orders so as to obtain a non-degenerate limiting measure, and the nilpotent
approximations are used to describe this limiting measure. Let (U, θ) be an adapted
chart around x ∈ M . Smoothly extending this chart to all of M yields a smooth map
θ : M → R

d whose derivative dθx : TxM → R
d at x is invertible. Write T�0,0

for the set of continuous paths v = (vt )t∈[0,1] in TxM with v0 = v1 = 0. Define a
rescaling map σε : �x,x → T�0,0 by
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620 K. Habermann

σε(ω)t = (dθx )
−1
(
δ−1
ε (θ(ωt ) − θ(x))

)

and let μ̃x,x
ε be the pushforward measure of μx,x

ε by σε, i.e. μ̃x,x
ε is the unique proba-

bility measure on T�0,0 given by

μ̃x,x
ε = μx,x

ε ◦ σ−1
ε .

Our main result concerns the weak convergence of these rescaled diffusion loop mea-
sures μ̃x,x

ε . To describe the limit, assuming that θ(x) = 0, we consider the diffusion
process (x̃t )t≥0 in Rd starting from 0 and having generator

L̃ = 1

2

m∑

i=1

X̃2
i .

A nice cascade structure of the nilpotent approximations X̃1, . . . , X̃m ensures that this
process exists for all time. Let μ̃0,Rd

denote the law of the diffusion process (x̃t )t∈[0,1]
on the set of continuous paths �(Rd) = C([0, 1],Rd). By disintegrating μ̃0,Rd

, we
obtain the loopmeasure μ̃0,0,Rd

supported on the set�(Rd)0,0 = {ω ∈ �(Rd) : ω0 =
ω1 = 0}. Define a map ρ : �(Rd)0,0 → T�0,0 by

ρ(ω)t = (dθx )
−1ωt

and set μ̃x,x = μ̃0,0,Rd ◦ ρ−1. This is the desired limiting probability measure on
T�0,0.

Theorem 1.1 (Convergence of the rescaled diffusion bridge measures) Let M be a
connected smooth manifold and fix x ∈ M. LetL be a second order partial differential
operator on M such that, for all f ∈ C∞(M),

L f = 1

2
div(a∇ f ) + a(β,∇ f ),

with respect to a locally invariant positive smooth measure, and where the smooth
non-negative quadratic form a on T ∗M has a sub-Riemannian structure and the
smooth one-form β on M satisfies ‖a(β, β)‖∞ < ∞. Then the rescaled diffusion loop
measures μ̃x,x

ε converge weakly to the probability measure μ̃x,x on T�0,0 as ε → 0.

We prove this result by localising Theorem 1.2. As a consequence of the localisation
argument, Theorem 1.1 remains true under the weaker assumption that the smooth
vector fields giving the sub-Riemannian structure are only locally defined. The theorem
below imposes an additional constraint on the map θ which ensures that we can rely
on the tools of Malliavin calculus to prove it. As we see later, the existence of such a
diffeomorphism θ is always guaranteed.

Theorem 1.2 Fix x ∈ R
d . Let X0, X1, . . . , Xm be smooth bounded vector fields

on R
d , with bounded derivatives of all orders, which satisfy the strong Hörmander
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Small-time fluctuations for sub-Riemannian diffusion loops 621

condition everywhere and suppose that X0(y) ∈ span{X1(y), . . . , Xm(y)} for all
y ∈ R

d . Set

L = 1

2

m∑

i=1

X2
i + X0.

Assume that the smooth map θ : R
d → R

d is a global diffeomorphism with bounded
derivatives of all positive orders and an adapted chart at x. Then the rescaled diffusion
loop measures μ̃x,x

ε converge weakly to the probability measure μ̃x,x on T�0,0 as
ε → 0.

Note that the limiting measures with respect to two different choices of admissible
diffeomorphisms θ1 and θ2 are related by the Jacobian matrix of the transition map
θ2 ◦ θ−1

1 .
The proof of Theorem 1.2 follows [2]. The additional technical result needed in

our analysis is the uniform non-degeneracy of the δε-rescaled Malliavin covariance
matrices. Throughout the paper, we consider Malliavin covariance matrices in the
sense of Bismut and refer to what is also called the reduced Malliavin covariance
matrix simply as the Malliavin covariance matrix. Under the global assumption, there
exists a unique diffusion process (xε

t )t∈[0,1] starting at x and having generator εL.
Choose θ : R

d → R
d as in Theorem 1.2 and define (x̃ε

t )t∈[0,1] to be the rescaled
diffusion process given by

x̃ε
t = δ−1

ε

(
θ(xε

t ) − θ(x)
)
.

Denote the Malliavin covariance matrix of x̃ε
1 by c̃

ε
1. We know that, for each ε > 0, the

matrix c̃ε
1 is non-degenerate because the vector fields X1, . . . , Xm satisfy the strong

Hörmander condition everywhere. We prove that these Malliavin covariance matrices
are in fact uniformly non-degenerate.

Theorem 1.3 (Uniform non-degeneracy of the δε-rescaled Malliavin covariance
matrices) Let X0, X1, . . . , Xm be smooth bounded vector fields on Rd , with bounded
derivatives of all orders, which satisfy the strong Hörmander condition everywhere
and such that X0(y) ∈ span{X1(y), . . . , Xm(y)} for all y ∈ R

d . Fix x ∈ R
d and

consider the diffusion operator

L = 1

2

m∑

i=1

X2
i + X0.

Then the rescaled Malliavin covariance matrices c̃ε
1 are uniformly non-degenerate,

i.e. for all p < ∞, we have

sup
ε∈(0,1]

E

[∣∣∣det
(
c̃ε
1

)−1
∣∣∣
p]

< ∞.

We see that the uniform non-degeneracy of the rescaledMalliavin covariance matrices
c̃ε
1 is a consequence of the non-degeneracy of the limiting diffusion process (x̃t )t∈[0,1]
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622 K. Habermann

with generator L̃. The latter is implied by the nilpotent approximations X̃1, . . . , X̃m

satisfying the strong Hörmander condition everywhere on R
d , as proven in Sect. 2.

Organisation of the paper The paper is organised as follows. In Sect. 2, we define
the scaling operator δε with which we rescale the fluctuations of the diffusion loop
to obtain a non-degenerate limit. It also sets up notations for subsequent sections and
proves preliminary results from which we deduce properties of the limiting measure.
In Sect. 3, we characterise the leading-order terms of the rescaledMalliavin covariance
matrices c̃ε

1 as ε → 0 and use this to prove Theorem 1.3. Equipped with the uniform
non-degeneracy result, in Sect. 4, we adapt the analysis from [2] to prove Theorem 1.2.
The approach presented is based on ideas from Azencott, Bismut and Ben Arous and
relies on tools from Malliavin calculus. Finally, in Sect. 5, we employ a localisation
argument to prove Theorem 1.1 and give an example to illustrate the result. Moreover,
we discuss the occurrence of non-Gaussian behaviour in the

√
ε-rescaled fluctuations

of diffusion loops.

2 Graded structure and nilpotent approximation

We introduce the notion of an adapted chart and of an associated dilation δε : R
d → R

d

which allows us to rescale the fluctuations of a diffusion loop in a way which gives rise
to a non-degenerate limit as ε → 0. To be able to characterise this limiting measure
later, we define the nilpotent approximation of a vector field on M and show that
the nilpotent approximations of a sub-Riemannian structure form a sub-Riemannian
structure themselves. This section is based on Bianchini and Stefani [8] and Paoli [14],
but we made some adjustments because the drift term X0 plays a different role in our
setting. At the end, we present an example to illustrate the various constructions.

2.1 Graded structure induced by a sub-Riemannian structure

Let (X1, . . . , Xm) be a sub-Riemannian structure on M and fix x ∈ M . For k ≥ 1, set

Ak = {[Xi1 , [Xi2 , . . . , [Xik−1 , Xik ] . . . ]] : 1 ≤ i1, . . . , ik ≤ m
}

and, for n ≥ 0, define a subspace of the space of smooth vector fields on M by

Cn = span
n⋃

k=1

Ak,

where the linear combinations are taken over R. Note that C0 = {0}. Let C =
Lie{X1, . . . , Xm} be the Lie algebra overR generated by the vector fields X1, . . . , Xm .
We observe that Cn ⊂ Cn+1 as well as [Cn1,Cn2 ] ⊂ Cn1+n2 for n1, n2 ≥ 0 and that⋃

n≥0 Cn = C . Hence, C = {Cn}n≥0 is an increasing filtration of the subalgebra C
of the Lie algebra of smooth vector fields on M . Consider the subspace Cn(x) of the
tangent space TxM given by
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Small-time fluctuations for sub-Riemannian diffusion loops 623

Cn(x) = {X (x) : X ∈ Cn}.

Define dn = dim Cn(x). Since X1, . . . , Xm are assumed to satisfy the strong Hör-
mander condition, we have

⋃
n≥0 Cn(x) = TxM , and it follows that

N = min{n ≥ 1 : dn = d}

is well-defined. We call N the step of the filtration C at x .

Definition 2.1 A chart (U, θ) around x ∈ M is called an adapted chart to the filtration
C at x if θ(x) = 0 and, for all n ∈ {1, . . . , N },
(i) Cn(x) = span

{
∂

∂θ1
(x), . . . ,

∂

∂θdn
(x)

}
, and

(ii)
(
D θk

)
(x) = 0 for every differential operator D of the form

D = Y1 . . . Yn with Y1, . . . ,Yn ∈ {X1, . . . , Xm}

and all k > dn .

Note that condition (ii) is equivalent to requiring that (D θk)(x) = 0 for every differ-
ential operator D ∈ span{Y1 · · · Y j : Yl ∈ Cil and i1 + · · · + i j ≤ n} and all k > dn .
The existence of an adapted chart to the filtration C at x is ensured by [8, Corollary 3.1],
which explicitly constructs such a chart by considering the integral curves of the vector
fields X1, . . . , Xm . However, we should keep in mind that even though being adapted
at x is a local property, the germs of adapted charts at x need not coincide.

Unlike Bianchini and Stefani [8], we choose to construct our graded structure onRd

instead of on the domainU of an adapted chart, as this works better with our analysis.
Define weights w1, . . . , wd by setting wk = min{l ≥ 1 : dl ≥ k}. This definition
immediately implies 1 ≤ w1 ≤ · · · ≤ wd = N . Let δε : R

d → R
d be the anisotropic

dilation given by

δε(y) = δε

(
y1, . . . , yk, . . . , yd

)
=
(
εw1/2y1, . . . , εwk/2yk, . . . , εwd/2yd

)
,

where (y1, . . . , yd) are Cartesian coordinates on R
d . For a non-negative integer w, a

polynomial g on Rd is called homogeneous of weight w if it satisfies g ◦ δε = εw/2g.
For instance, the monomial yα1

1 . . . yαd
d is homogeneous of weight

∑d
k=1 αkwk . We

denote the set of polynomials which are homogeneous of weightw byP(w). Note that
the zero polynomial is contained in P(w) for all non-negative integers w. Following
[8], the graded order O(g) of a polynomial g is defined by the property

O(g) ≥ i if and only if g ∈
⊕

w≥i

P(w).

Thus, the graded order of a non-zero polynomial g is themaximal non-negative integer
i such that g ∈ ⊕w≥iP(w) whereas the graded order of the zero polynomial is set
to be ∞. Similarly, for a smooth function f ∈ C∞(V ), where V ⊂ R

d is an open
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624 K. Habermann

neighbourhood of 0, we define its graded order O( f ) by requiring that O( f ) ≥ i
if and only if each Taylor approximation of f at 0 has graded order at least i . We
see that the graded order of a smooth function is either a non-negative integer or ∞.
Furthermore, for an integer a, a polynomial vector fieldY onRd is called homogeneous
of weight a if, for all g ∈ P(w), we have Yg ∈ P(w − a). Here we set P(b) = {0}
for negative integers b. The weight of a general polynomial vector field is defined to
be the smallest weight of its homogeneous components. Moreover, the graded order
O(D) of a differential operator D on V is given by saying that

O(D) ≤ i if and only if O(D g) ≥ O(g) − i for all polynomials g.

For example, the polynomial vector field y1 ∂
∂y1

+ (y1)2 ∂
∂y1

on R
d has weight −w1

but considered as a differential operator it has graded order 0. It also follows that
the graded order of a differential operator takes values in Z∪ {±∞} and that the zero
differential operator has graded order−∞. In the remainder, we need the notions of the
weight of a polynomial vector field and the graded order of a vector field understood
as a differential operator. For smooth vector fields X1 and X2 on V , it holds true that

O([X1, X2]) ≤ O(X1) + O(X2). (2.1)

We further observe that for any smooth vector field X on V and every integer n, there
exists a unique polynomial vector field X (n) of weight at least n such that O(X −
X (n)) ≤ n − 1, namely the sum of the homogeneous vector fields of weight greater
than or equal to n in the formal Taylor series of X at 0.

Definition 2.2 Let X be a smooth vector field on V . We call X (n) the graded approx-
imation of weight n of X .

Note that X (n) is a polynomial vector field and hence, it can be considered as a vector
field defined on all of Rd .

2.2 Nilpotent approximation

Let (U, θ) be an adapted chart to the filtration induced by a sub-Riemannian structure
(X1, . . . , Xm) on M at x and set V = θ(U ). Note that, for i ∈ {1, . . . ,m}, the
pushforward vector field θ∗Xi is a vector field on V and write X̃i for the graded
approximation (θ∗Xi )

(1) of weight 1 of θ∗Xi .

Definition 2.3 The polynomial vector fields X̃1, . . . , X̃m on R
d are called the nilpo-

tent approximations of the vector fields X1, . . . , Xm on M .

By [8, Theorem 3.1], we know that O(θ∗Xi ) ≤ 1. Thus, the formal Taylor series of
θ∗Xi at 0 cannot contain any homogeneous components of weight greater than or equal
to two. This implies that X̃i is a homogeneous vector field of weight 1 and therefore,

(
δ−1
ε

)

∗ X̃i = ε−1/2 X̃i for all i ∈ {1, . . . ,m}.
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Small-time fluctuations for sub-Riemannian diffusion loops 625

Moreover, from O(θ∗Xi − X̃i ) ≤ 0, we deduce that

√
ε
(
δ−1
ε

)

∗ (θ∗Xi ) → X̃i as ε → 0 for all i ∈ {1, . . . ,m}.

This convergence holds on all of Rd because for y ∈ R
d fixed, we have δε(y) ∈ V for

ε > 0 sufficiently small.

Remark 2.4 The vector fields X̃1, . . . , X̃m onRd have a nice cascade structure. Since
X̃i , for i ∈ {1, . . . ,m}, contains the terms of weight 1 the component X̃ k

i , for k ∈
{1, . . . , d}, does not depend on the coordinates with weight greater than or equal to
wk and depends only linearly on the coordinates with weight wk − 1. ��
We show that the nilpotent approximations X̃1, . . . , X̃m inherit the strong Hörmander
property from the sub-Riemannian structure (X1, . . . , Xm). This result plays a crucial
role in the subsequent sections as it allows us to describe the limiting measure of the
rescaled fluctuations by a stochastic process whose associated Malliavin covariance
matrix is non-degenerate.

Lemma 2.5 Let

Ãk(0) =
{
[X̃i1 , [X̃i2 , . . . , [X̃ik−1 , X̃ik ] . . . ]](0) : 1 ≤ i1, . . . , ik ≤ m

}
.

Then

span
n⋃

k=1

Ãk(0) = span

{
∂

∂y1
(0), . . . ,

∂

∂ydn
(0)

}
. (2.2)

Proof We prove this lemma by induction. For the base case, we note that O(θ∗Xi −
X̃i ) ≤ 0 implies X̃i (0) = (θ∗Xi )(0). Hence, by property (i) of an adapted chart θ , we
obtain

span Ã1(0) = span
{
X̃1(0), . . . , X̃m(0)

}
= (θ∗C1)(0)

= span

{
∂

∂y1
(0), . . . ,

∂

∂yd1
(0)

}
,

which proves (2.2) for n = 1. Let us now assume the result for n−1. Due toO(θ∗Xi −
X̃i ) ≤ 0 and using (2.1) as well as the bilinearity of the Lie bracket, it follows that

O
(
θ∗[Xi1 , [Xi2 , . . . , [Xin−1 , Xin ] . . . ]]−[X̃i1 , [X̃i2 , . . . , [X̃in−1 , X̃in ] . . . ]]

)
≤ n−1.

Applying the induction hypothesis, we deduce that

(
θ∗[Xi1 , [Xi2 , . . . , [Xin−1 , Xin ] . . . ]] − [X̃i1 , [X̃i2 , . . . , [X̃in−1 , X̃in ] . . . ]]

)
(0)

∈ span

{
∂

∂y1
(0), . . . ,

∂

∂ydn−1
(0)

}
= span

n−1⋃

k=1

Ãk(0).
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626 K. Habermann

This gives

span

{
∂

∂y1
(0), . . . ,

∂

∂ydn
(0)

}
= (θ∗Cn)(0) ⊂ span

n⋃

k=1

Ãk(0)

and since O
(
[X̃i1, [X̃i2 , . . . , [X̃in−1 , X̃in ] . . . ]]

)
≤ n, the other inclusion holds as

well. Thus, we have established equality, which concludes the induction step. ��
The lemma allows us to prove the following proposition.

Proposition 2.6 The nilpotent approximations X̃1, . . . , X̃m satisfy the strong Hör-
mander condition everywhere on R

d .

Proof By definition, we have dN = d, and Lemma 2.5 implies that

span
N⋃

k=1

Ãk(0) = span

{
∂

∂y1
(0), . . . ,

∂

∂yd
(0)

}
= R

d ,

i.e. X̃1, . . . , X̃m satisfy the strong Hörmander condition at 0. In particular, there are
vector fields

Y1, . . . ,Yd ∈
N⋃

k=1

{
[X̃i1 , [X̃i2 , . . . , [X̃ik−1 , X̃ik ] . . . ]] : 1 ≤ i1, . . . , ik ≤ m

}

such that Y1(0), . . . ,Yd(0) are linearly independent, i.e. det(Y1(0), . . . ,Yd(0)) �= 0.
By continuity of the map y 	→ det(Y1(y), . . . ,Yd(y)), it follows that there exists
a neighbourhood V0 of 0 on which the vector fields X̃1, . . . , X̃m satisfy the strong
Hörmander condition. Since the Lie bracket commutes with pushforward, the homo-
geneity property

(
δ−1
ε

)
∗ X̃i = ε−1/2 X̃i of the nilpotent approximations shows that the

strong Hörmander condition is in fact satisfied on all of Rd . ��
We conclude with an example.

Example 2.7 Let M = R
2 and fix x = 0. Let X1 and X2 be the vector fields on R

2

defined by

X1 = ∂

∂x1
+ x1

∂

∂x2
and X2 = x1

∂

∂x1
,

with respect to Cartesian coordinates (x1, x2) on R
2. We compute

[X1, X2] = ∂

∂x1
− x1

∂

∂x2
and [X1, [X1, X2]] = −2

∂

∂x2
.

It follows that

C1(0) = C2(0) = span

{
∂

∂x1
(0)

}
, C3(0) = R

2 and d1 = d2 = 1 , d3 = 2.
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We note that the Cartesian coordinates are not adapted to the filtration induced by
(X1, X2) at 0 because, for instance,

(
(X1)

2 x2
)
(0) = 1. Following the constructive

proof of [8, Corollary 3.1], we find a global adapted chart θ : R
2 → R

2 at 0 given by

θ1 = x1 and θ2 = −1

2
(x1)2 + x2.

The correspondingweights arew1 = 1,w2 = 3 and the associated anisotropic dilation
is

δε(y
1, y2) =

(
ε1/2y1, ε3/2y2

)
,

where (y1, y2) are Cartesian coordinates on our new copy ofR2. For the pushforward
vector fields of X1 and X2 by θ , we obtain

θ∗X1 = ∂

∂y1
and θ∗X2 = y1

(
∂

∂y1
− y1

∂

∂y2

)
.

From this we can read off that

X̃1 = ∂

∂y1
and X̃2 = −

(
y1
)2 ∂

∂y2

because y1 ∂
∂y1

is a vector field of weight 0. We observe that X̃1 and X̃2 are indeed

homogeneous vector fields of weight 1 on R
2 which satisfy the strong Hörmander

condition everywhere.

3 Uniform non-degeneracy of the rescaled Malliavin covariance matrices

Weprove the uniform non-degeneracy of suitably rescaledMalliavin covariancematri-
ces under the global condition

M = R
d and X0, X1, . . . , Xm ∈ C∞

b (Rd ,Rd),

and the additional assumption that X0(y) ∈ span{X1(y), . . . , Xm(y)} for all y ∈ R
d .

We further assume that θ : R
d → R

d is a global diffeomorphism with bounded
derivatives of all positive orders and an adapted chart to the filtration induced by
the sub-Riemannian structure (X1, . . . , Xm) at x ∈ R

d fixed. Such a diffeomor-
phism always exists as [8, Corollary 3.1] guarantees the existence of an adapted chart
θ̃ : U → R

d and due to [13, Lemma 5.2], we can construct a global diffeomorphism
θ : R

d → R
d with bounded derivatives of all positive orders which agrees with θ̃ on

a small enough neighbourhood of x in U . We note that θ∗X0, θ∗X1, . . . , θ∗Xm are
also smooth bounded vector fields on R

d with bounded derivatives of all orders. In
particular, to simplify the notation in the subsequent analysis, we may assume x = 0
and that θ is the identity map. By Sect. 2, this means that, for Cartesian coordinates
(y1, . . . , yd) on R

d and for all n ∈ {1, . . . , N }, we have
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(i) Cn(0) = span

{
∂

∂y1
(0), . . . ,

∂

∂ydn
(0)

}
, and

(ii)
(
D yk

)
(x) = 0 for every differential operator

D ∈ {Y1 · · · Y j : Yl ∈ Cil and i1 + · · · + i j ≤ n
}

and all k > dn .

Write 〈·, ·〉 for the standard inner product on R
d and, for n ∈ {0, 1, . . . , N }, denote

the orthogonal complement of Cn(0) with respect to this inner product by Cn(0)⊥.
As defined in the previous section, we further let δε : R

d → R
d be the anisotropic

dilation induced by the filtration at 0 and we consider the nilpotent approximations
X̃1, . . . , X̃m of the vector fields X1, . . . , Xm .

Let (Bt )t∈[0,1] be a Brownian motion in R
m , which is assumed to be realised as

the coordinate process on the path space {w ∈ C([0, 1],Rm) : w0 = 0} under Wiener
measure P. Define X0 to be the vector field on Rd given by

X0 = X0 + 1

2

m∑

i=1

∇Xi Xi ,

where ∇ is the Levi-Civita connection with respect to the Euclidean metric. Under
our global assumption, the Itô stochastic differential equation in Rd

dxε
t =

m∑

i=1

√
εXi (x

ε
t ) dB

i
t + εX0(x

ε
t ) dt, xε

0 = 0

has a unique strong solution (xε
t )t∈[0,1]. Its law on � = C([0, 1],Rd) is μ0

ε . We
consider the rescaled diffusion process (x̃ε

t )t∈[0,1] which is defined by x̃ε
t = δ−1

ε (xε
t ).

It is the unique strong solution of the Itô stochastic differential equation

dx̃ε
t =

m∑

i=1

√
ε
((

δ−1
ε

)

∗ Xi

)
(x̃ε

t ) dB
i
t + ε

((
δ−1
ε

)

∗ X0

)
(x̃ε

t ) dt, x̃ε
0 = 0.

Let us further look at

dx̃t =
m∑

i=1

X̃i (x̃t ) dB
i
t + X̃0(x̃t ) dt, x̃0 = 0,

where X̃0 is the vector field on R
d defined by

X̃0 = 1

2

m∑

i=1

∇X̃i
X̃i .

Due to the nice cascade structure discussed in Remark 2.4 and by [12, Proposition 1.3],
there exists a unique strong solution (x̃t )t∈[0,1] to this Itô stochastic differential equa-
tion in R

d . We recall that
√

ε
(
δ−1
ε

)
∗ Xi → X̃i as ε → 0 for all i ∈ {1, . . . ,m}
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and because X0(y) ∈ span{X1(y), . . . , Xm(y)} for all y ∈ R
d , we further have

ε
(
δ−1
ε

)
∗ X0 → 0 as ε → 0. It follows that, for all t ∈ [0, 1],

x̃ε
t → x̃t as ε → 0 almost surely and in L p for all p < ∞. (3.1)

For the Malliavin covariance matrices c̃ε
1 of x̃

ε
1 and c̃1 of x̃1, we also obtain that

c̃ε
1 → c̃1 as ε → 0 almost surely and in L p for all p < ∞. (3.2)

Proposition 2.6 shows that the nilpotent approximations X̃1, . . . , X̃m satisfy the strong
Hörmander condition everywhere, which implies the following non-degeneracy result.

Corollary 3.1 The Malliavin covariance matrix c̃1 is non-degenerate, i.e. for all p <

∞, we have

E

[∣∣∣det (c̃1)−1
∣∣∣
p]

< ∞.

Hence, the rescaled diffusion processes (x̃ε
t )t∈[0,1] have a non-degenerate limiting

diffusion process as ε → 0. This observation is important in establishing the uniform
non-degeneracy of the rescaledMalliavin covariance matrices c̃ε

1. In the following, we
first gain control over the leading-order terms of c̃ε

1 as ε → 0, which then allows us to
show that the minimal eigenvalue of c̃ε

1 can be uniformly bounded below on a set of
high probability. Using this property, we prove Theorem 1.3 at the end of the section.

3.1 Properties of the rescaled Malliavin covariance matrix

Let (ṽε
t )t∈[0,1] be the unique stochastic process inRd ⊗ (Rd)∗ such that (x̃ε

t , ṽ
ε
t )t∈[0,1]

is the strong solution of the following system of Itô stochastic differential equations
starting from (x̃ε

0, ṽ
ε
0) = (0, I ).

dx̃ε
t =

m∑

i=1

√
ε
((

δ−1
ε

)

∗ Xi

)
(x̃ε

t ) dB
i
t + ε

((
δ−1
ε

)

∗ X0

)
(x̃ε

t ) dt

dṽε
t = −

m∑

i=1

√
εṽε

t ∇
((

δ−1
ε

)

∗ Xi

)
(x̃ε

t ) dB
i
t

− εṽε
t

(
∇
((

δ−1
ε

)

∗ X0

)
−

m∑

i=1

(
∇
((

δ−1
ε

)

∗ Xi

))2
)

(x̃ε
t ) dt

The Malliavin covariance matrix c̃ε
t of the rescaled random variable x̃ε

t can then be
expressed as

c̃ε
t =

m∑

i=1

∫ t

0

(
ṽε
s

(√
ε
(
δ−1
ε

)

∗ Xi

)
(x̃ε

s )
)

⊗
(
ṽε
s

(√
ε
(
δ−1
ε

)

∗ Xi

)
(x̃ε

s )
)
ds.
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It turns out that we obtain a more tractable expression for c̃ε
t if we write it in terms

of (xε
t , v

ε
t )t∈[0,1], which is the unique strong solution of the following system of Itô

stochastic differential equations.

dxε
t =

m∑

i=1

√
εXi (x

ε
t ) dB

i
t + εX0(x

ε
t ) dt, xε

0 = 0

dvε
t = −

m∑

i=1

√
εvε

t ∇Xi (x
ε
t ) dB

i
t − εvε

t

(
∇X0 −

m∑

i=1

(∇Xi )
2

)
(xε

t ) dt, vε
0 = I

One can check that the stochastic processes (vε
t )t∈[0,1] and (ṽε

t )t∈[0,1] are related by
ṽε
t = δ−1

ε vε
t δε, where the map δε is understood as an element in R

d ⊗ (Rd)∗. This
implies that

c̃ε
t =

m∑

i=1

∫ t

0

(√
εδ−1

ε

(
vε
s Xi (x

ε
s )
))⊗

(√
εδ−1

ε

(
vε
s Xi (x

ε
s )
))

ds. (3.3)

We are interested in gaining control over the leading-order terms of c̃ε
1 as ε → 0. In

the corresponding analysis, we frequently use the lemma stated below.

Lemma 3.2 Let Y be a smooth vector field on Rd . Then

d(vε
t Y (xε

t )) =
m∑

i=1

√
εvε

t [Xi ,Y ](xε
t ) dB

i
t

+εvε
t

(
[X0,Y ] + 1

2

m∑

i=1

[Xi , [Xi ,Y ]]

)
(xε

t ) dt.

Proof To prove this identity, we switch to the Stratonovich setting. The system of
Stratonovich stochastic differential equations satisfied by the processes (xε

t )t∈[0,1]
and (vε

t )t∈[0,1] is

∂xε
t =

m∑

i=1

√
εXi (x

ε
t ) ∂Bi

t + εX0(x
ε
t ) dt, xε

0 = 0

∂vε
t = −

m∑

i=1

√
εvε

t ∇Xi (x
ε
t ) ∂Bi

t − εvε
t ∇X0(x

ε
t ) dt, vε

0 = I.

By the product rule, we have

∂(vε
t Y (xε

t )) = (∂vε
t )Y (xε

t ) + vε
t ∇Y (xε

t ) ∂xε
t .
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Using

(∂vε
t )Y (xε

t ) = −
m∑

i=1

√
εvε

t ∇Xi (x
ε
t )Y (xε

t ) ∂Bi
t − εvε

t ∇X0(x
ε
t )Y (xε

t ) dt

as well as

vε
t ∇Y (xε

t ) ∂xε
t =

m∑

i=1

√
εvε

t ∇Y (xε
t )Xi (x

ε
t ) ∂Bi

t + εvε
t ∇Y (xε

t )X0(x
ε
t ) dt

yields the identity

∂(vε
t Y (xε

t )) =
m∑

i=1

√
εvε

t [Xi ,Y ](xε
t ) ∂Bi

t + εvε
t [X0,Y ](xε

t ) dt.

It remains to change back to the Itô setting. We compute that, for i ∈ {1, . . . ,m},

d
[√

εvε[Xi ,Y ](xε), Bi
]

t

=
m∑

j=1

εvε
t ∇[Xi ,Y ](xε

t )X j (x
ε
t ) d[B j , Bi ]t

−
m∑

j=1

εvε
t ∇X j (x

ε
t )[Xi ,Y ](xε

t ) d[B j , Bi ]t

= εvε
t ∇[Xi ,Y ](xε

t )Xi (x
ε
t ) dt − εvε

t ∇Xi (x
ε
t )[Xi ,Y ](xε

t ) dt

= εvε
t [Xi , [Xi ,Y ]](xε

t ) dt

and the claimed result follows. ��

The next lemma, which is enough for our purposes, does not provide an explicit
expression for the leading-order terms of c̃ε

1. However, its proof shows how one could
recursively obtain these expressions if one wishes to do so. To simplify notations, we
introduce (B0

t )t∈[0,1] with B0
t = t .

Lemma 3.3 For every n ∈ {1, . . . , N }, there are finite collections of vector fields

Bn =
{
Y (n,i)
j1,..., jk

: 1 ≤ k ≤ n, 0 ≤ j1, . . . , jk ≤ m, 1 ≤ i ≤ m
}

⊂ Cn+1 and

B̃n =
{
Ỹ (n,i)
j1,..., jk

: 1 ≤ k ≤ n, 0 ≤ j1, . . . , jk ≤ m, 1 ≤ i ≤ m
}

⊂ Cn+2

such that, for all u ∈ Cn(0)⊥ and all i ∈ {1, . . . ,m}, we have that, for all ε > 0,
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〈
u, ε−n/2vε

t Xi (x
ε
t )
〉

=
〈
u,

n∑

k=1

m∑

j1,..., jk=0

∫ t

0

∫ t2

0
. . .

∫ tk

0
vε
s

(
Y (n,i)
j1,..., jk

+ √
ε Ỹ (n,i)

j1,..., jk

) (
xε
s

)
dB jk

s dB jk−1
tk . . . dB j1

t2

〉
.

Proof Weprove this result iteratively overn. For allu ∈ C1(0)⊥, we have 〈u, Xi (0)〉 =
0 because C1(0) = span{X1(0), . . . , Xm(0)}. From Lemma 3.2, it then follows that

〈
u, ε−1/2vε

t Xi (x
ε
t )
〉

=
〈
u,

m∑

j=1

∫ t

0
vε
s [X j , Xi ](xε

s ) dB
j
s

+
∫ t

0

√
εvε

s

⎛

⎝[X0, Xi ] + 1

2

m∑

j=1

[X j , [X j , Xi ]]
⎞

⎠ (xε
s ) ds

〉
.

This gives us the claimed result for n = 1 with

Y (1,i)
j =

{
0 if j = 0

[X j , Xi ] if 1 ≤ j ≤ m
and

Ỹ (1,i)
j =

{
[X0, Xi ] + 1

2

∑m
l=1[Xl , [Xl , Xi ]] if j = 0

0 otherwise
.

Let us now assume the result to be true for n − 1. Due to Cn(0)⊥ ⊂ Cn−1(0)⊥, the
corresponding identity also holds for all u ∈ Cn(0)⊥. Using Lemma 3.2, we obtain
that

vε
s Y

(n−1,i)
j1,..., jk

(xε
s ) = Y (n−1,i)

j1,..., jk
(0) +

m∑

j=1

∫ s

0

√
εvε

r

[
X j ,Y

(n−1,i)
j1,..., jk

]
(xε

r ) dB
j
r

+
∫ s

0
εvε

r

([
X0,Y

(n−1,i)
j1,..., jk

]
+ 1

2

m∑

j=1

[
X j ,

[
X j ,Y

(n−1,i)
j1,..., jk

]])
(xε

r ) dr.

Note that Y (n−1,i)
j1,..., jk

∈ Cn implies 〈u,Y (n−1,i)
j1,..., jk

(0)〉 = 0 for all u ∈ Cn(0)⊥. We further
observe that

[
X j ,Y

(n−1,i)
j1,..., jk

]
, Ỹ (n−1,i)

j1,..., jk
∈ Cn+1 as well as

[
X0,Y

(n−1,i)
j1,..., jk

]
+ 1

2

m∑

j=1

[
X j ,

[
X j ,Y

(n−1,i)
j1,..., jk

]]
∈ Cn+2

and collecting terms shows that the claimed result is also true for n. ��
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These expressions allow us to characterise the rescaled Malliavin covariance matrix
c̃ε
1 because, for all n ∈ {0, 1, . . . , N − 1} and all u ∈ Cn+1(0) ∩ Cn(0)⊥, we have

〈
u, c̃ε

1u
〉 =

m∑

i=1

∫ 1

0

〈
u, ε−n/2vε

t Xi (x
ε
t )
〉2

dt. (3.4)

By the convergence result (3.2), it follows that, for u ∈ C1(0),

〈u, c̃1u〉 = lim
ε→0

〈
u, c̃ε

1u
〉 =

m∑

i=1

∫ 1

0
〈u, Xi (0)〉2 dt

and fromLemma 3.3, we deduce that, for all n ∈ {1, . . . , N−1} and all u ∈ Cn+1(0)∩
Cn(0)⊥,

〈u, c̃1u〉

=
m∑

i=1

∫ 1

0

〈
u,

n∑

k=1

m∑

j1,..., jk=0

∫ t

0

∫ t2

0
. . .

∫ tk

0
Y (n,i)
j1,..., jk

(0) dB jk
s dB jk−1

tk . . . dB j1
t2

〉2
dt,

(3.5)

which describes the limiting Malliavin covariance matrix c̃1 uniquely.

3.2 Uniform non-degeneracy of the rescaled Malliavin covariance matrices

By definition, the Malliavin covariance matrices c̃ε
1 and c̃1 are symmetric tensors.

Therefore, their matrix representations are symmetric in any basis and we can think
of them as symmetric matrices. Let λε

min and λmin denote the minimal eigenvalues
of c̃ε

1 and c̃1, respectively. As we frequently use the integrals from Lemma 3.3, it is

convenient to consider the stochastic processes (I (n,i),+
t )t∈[0,1], (I (n,i),−

t )t∈[0,1] and
( Ĩ (n,i)

t )t∈[0,1] given by

I (n,i),+
t =

n∑

k=1

m∑

j1,..., jk=0

∫ t

0

∫ t2

0
. . .

∫ tk

0

(
vε
s Y

(n,i)
j1,..., jk

(xε
s ) + Y (n,i)

j1,..., jk
(0)
)
dB jk

s dB jk−1
tk . . . dB j1

t2 ,

I (n,i),−
t =

n∑

k=1

m∑

j1,..., jk=0

∫ t

0

∫ t2

0
. . .

∫ tk

0

(
vε
s Y

(n,i)
j1,..., jk

(xε
s ) − Y (n,i)

j1,..., jk
(0)
)
dB jk

s dB jk−1
tk . . . dB j1

t2 , and

Ĩ (n,i)
t =

n∑

k=1

m∑

j1,..., jk=0

∫ t

0

∫ t2

0
. . .

∫ tk

0
vε
s Ỹ

(n,i)
j1,..., jk

(xε
s ) dB

jk
s dB jk−1

tk . . . dB j1
t2 .

For α, β, γ, δ > 0, define subspaces of the path space {w ∈ C([0, 1],Rm) : w0 = 0}
by
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�1(α) = {λmin ≥ 2α},

�2
ε(β, γ ) =

{
sup

0≤t≤1

∣∣∣I (n,i),+
t

∣∣∣ ≤ β−1 ,

sup
0≤t≤1

∣∣∣ Ĩ (n,i)
t

∣∣∣ ≤ γ −1 : 1 ≤ i ≤ m, 1 ≤ n ≤ N

}
, and

�3
ε(δ) =

{
sup

0≤t≤1
|xε

t | ≤ δ, sup
0≤t≤1

|vε
t − I | ≤ δ

}

∪
{

sup
0≤t≤1

∣∣∣I (n,i),−
t

∣∣∣ ≤ δ : 1 ≤ i ≤ m, 1 ≤ n ≤ N

}
.

Note that the events�2
ε(β, γ ) and�3

ε(δ) depend on ε as the processes (I (n,i),+
t )t∈[0,1],

(I (n,i),−
t )t∈[0,1] and ( Ĩ (n,i)

t )t∈[0,1] depend on ε. We show that, for suitable choices of
α, β, γ and δ, the rescaled Malliavin covariance matrices c̃ε

1 behave nicely on the set

�(α, β, γ, δ, ε) = �1(α) ∩ �2
ε(β, γ ) ∩ �3

ε(δ)

and that its complement is a set of small probability in the limit ε → 0. As we are
only interested in small values of α, β, γ, δ and ε, we may make the non-restrictive
assumption that α, β, γ, δ, ε < 1.

Lemma 3.4 There exist positive constants χ and κ , which do not depend on ε, such
that if

χε1/6 ≤ α , β = γ = α and δ = κα2

then, on �(α, β, γ, δ, ε), it holds true that

λε
min ≥ 1

2
λmin.

Proof Throughout, we shall assume that we are on the event �(α, β, γ, δ, ε). Let

Rε(u) =
〈
u, c̃ε

1u
〉

〈u, u〉 and R(u) = 〈u, c̃1u〉
〈u, u〉

be the Rayleigh–Ritz quotients of the rescaled Malliavin covariance matrix c̃ε
1 and

of the limiting Malliavin covariance matrix c̃1, respectively. As a consequence of the
Min-Max Theorem, we have

λε
min = min{Rε(u) : u �= 0} as well as λmin = min{R(u) : u �= 0}.

Since λmin ≥ 2α, it suffices to establish that |Rε(u) − R(u)| ≤ α for all u �= 0. Set
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K = max
1≤i≤m

sup
y∈Rd

|Xi (y)|, L = max
1≤i≤m

sup
y∈Rd

|∇Xi (y)|

and note that the global condition ensures K , L < ∞. Using the Cauchy–Schwarz
inequality, we deduce that, for u ∈ C1(0)\{0},

|Rε(u) − R(u)| ≤

m∑

i=1

∫ 1

0

∣∣∣
〈
u, vε

t Xi (x
ε
t )
〉2 − 〈u, Xi (0)〉2

∣∣∣ dt

〈u, u〉
≤

m∑

i=1

∫ 1

0
|vε

t Xi (x
ε
t ) + Xi (0)||vε

t Xi (x
ε
t ) − Xi (0)| dt

≤ m((1 + δ)K + K )(δK + δL).

Applying Lemma 3.3 as well as the expressions (3.4) and (3.5), we obtain in a similar
way that, for all n ∈ {1, . . . , N − 1} and all non-zero u ∈ Cn+1(0) ∩ Cn(0)⊥,

|Rε(u) − R(u)| ≤
m∑

i=1

∫ 1

0

∣∣∣I (n,i),+
t + √

ε Ĩ (n,i)
t

∣∣∣
∣∣∣I (n,i),−
t + √

ε Ĩ (n,i)
t

∣∣∣ dt

≤ m
(
β−1 + √

εγ −1
) (

δ + √
εγ −1

)
.

It remains to consider the cross-terms. For n1, n2 ∈ {1, . . . , N − 1} and u1 ∈
Cn1+1(0)∩Cn1(0)

⊥ as well as u2 ∈ Cn2+1(0)∩Cn2(0)
⊥, we polarise (3.4) to conclude

that
〈
u1, c̃ε

1u
2
〉− 〈u1, c̃1u2

〉

|u1||u2|

≤
m∑

i=1

∫ 1

0

∣∣∣∣∣
I (n1,i),+
t + I (n1,i),−

t

2
+ √

ε Ĩ (n1,i)
t

∣∣∣∣∣

∣∣∣I (n2,i),−
t + √

ε Ĩ (n2,i)
t

∣∣∣ dt

+
m∑

i=1

∫ 1

0

∣∣∣I (n1,i),−
t + √

ε Ĩ (n1,i)
t

∣∣∣

∣∣∣∣∣
I (n2,i),+
t − I (n2,i),−

t

2

∣∣∣∣∣ dt

≤ m
(
β−1 + δ + √

εγ −1
) (

δ + √
εγ −1

)
.

Similarly, if n1 = 0 and n2 ∈ {1, . . . , N − 1}, we see that
〈
u1, c̃ε

1u
2
〉− 〈u1, c̃1u2

〉

|u1||u2| ≤ m

(
(1 + δ)K

(
δ + √

εγ −1
)

+ (δK + δL)

(
β−1 + δ

2

))
.

Writing a general non-zero u ∈ R
d in its orthogonal sum decomposition and combin-

ing all the above estimates gives

|Rε(u) − R(u)| ≤ κ1δ + κ2β
−1δ + κ3

√
εβ−1γ −1 + κ4εγ

−2
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for some constants κ1, κ2, κ3 and κ4, which depend on K , L and m but which are
independent of α, β, γ, δ and ε. If we now choose κ and χ in such a way that both
κ ≤ 1/(4max{κ1, κ2}) and χ3 ≥ 4max{κ3, κ1/2

4 }, and provided that χε1/6 ≤ α,
β = γ = α as well as δ = κα2, then

κ1δ+κ2β
−1δ+κ3

√
εβ−1γ −1+κ4εγ

−2 ≤ κ1κα2+κ2κα+κ3χ
−3α+κ4χ

−6α4 ≤ α.

Since κ and χ can always be chosen to be positive, the desired result follows. ��
As a consequence of this lemma, we are able to control det

(
c̃ε
1

)−1 on the good set
�(α, β, γ, δ, ε). This allows us to prove Theorem 1.3.

Proof of Theorem 1.3 We recall that by Proposition 2.6, the nilpotent approximations
X̃1, . . . , X̃m satisfy the strong Hörmander condition everywhere on Rd . The proof of
[12, Theorem 4.2] then shows that

λ−1
min ∈ L p(P), for all p < ∞. (3.6)

By the Markov inequality, this integrability result implies that, for all p < ∞, there
exist constants D(p) < ∞ such that

P

(
�1(α)c

)
≤ D(p)α p. (3.7)

Using the Burkholder–Davis–Gundy inequality and Jensen’s inequality, we further
show that, for all p < ∞, there are constants E1(p), E2(p) < ∞ such that

E

[
sup

0≤t≤1
|xε

t |p
]

≤ E1(p)ε
p/2 and E

[
sup

0≤t≤1
|vε

t − I |p
]

≤ E2(p)ε
p/2.

Similarly, by repeatedly applying the Burkholder–Davis–Gundy inequality and
Jensen’s inequality, we also see that, for all p < ∞ and for all n ∈ {1, . . . , N } and
i ∈ {1, . . . ,m}, there exist constants E (n,i)(p) < ∞ and D(n,i)(p), D̃(n,i)(p) < ∞
such that

E

[
sup

0≤t≤1

∣∣∣I (n,i),−
t

∣∣∣
p
]

≤ E (n,i)(p)ε p/2

as well as

E

[
sup

0≤t≤1

∣∣∣I (n,i),+
t

∣∣∣
p
]

≤ D(n,i)(p) and E

[
sup

0≤t≤1

∣∣∣ Ĩ (n,i)
t

∣∣∣
p
]

≤ D̃(n,i)(p).

As the sets �2
ε(β, γ ) and �3

ε(δ) are defined by only finitely many constraints, the
bounds established above and the Markov inequality imply that, for all p < ∞, there
are constants D(p) < ∞ and E(p) < ∞ such that

P

(
�2

ε(β, γ )c
)

≤ D(p)
(
β p + γ p) and (3.8)

P

(
�3

ε(δ)
c
)

≤ E(p)δ−pε p/2. (3.9)
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Moreover, from the Kusuoka–Stroock estimate, cf. [1], as stated by Watanabe [16,
Theorem 3.2], we know that there exist a positive integer S and, for all p < ∞,
constants C(p) < ∞ such that, for all ε ∈ (0, 1],

‖ det(c̃ε
1)

−1‖p =
(
E

[∣∣∣det
(
c̃ε
1

)−1
∣∣∣
p])1/p ≤ C(p)ε−S/2.

Let us now choose α = χ3/4ε1/8, β = γ = α and δ = κα2. We note that χε1/6 =
α4/3 ≤ α and hence, from Lemma 3.4 it follows that

λε
min ≥ 1

2
λmin

on �(α, β, γ, δ, ε). Thus, we have

det(c̃ε
1)

−11�(α,β,γ,δ,ε) ≤ (λε
min)

−d1�(α,β,γ,δ,ε) ≤ 2dλ−d
min1�(α,β,γ,δ,ε)

and therefore,

det(c̃ε
1)

−1 ≤ 2dλ−d
min + det(c̃ε

1)
−1
(
1�1(α)c + 1�2

ε(β,γ )c + 1�3
ε(δ)

c

)
.

Using the Hölder inequality, the Kusuoka–Stroock estimate as well as the estimates
(3.7), (3.8) and (3.9), we further deduce that, for all q, r < ∞,

‖ det(c̃ε
1)

−1‖p ≤ 2d‖λ−1
min‖dp + C(2p)ε−S/2

(
P

(
�1(α)c

)1/2p + P

(
�2

ε(β, γ )c
)1/2p

+P

(
�3

ε(δ)
c
)1/2p)

≤ 2d‖λ−1
min‖dp + C(2p)ε−S/2

(
(D(q)αq)1/2p +

(
E(r)δ−rεr/2

)1/2p)
.

Hence, we would like to choose q and r in such a way that we can control both
ε−S/2αq/2p and ε−S/2δ−r/2pεr/4p. Since δ = κα2 and α = χ3/4ε1/8, we have

ε−S/2αq/2p = χ3q/8pε−S/2+q/16p as well as

ε−S/2δ−r/2pεr/4p =
(
κχ3/2

)−r/2p
ε−S/2+r/8p.

Thus, picking q = 8pS and r = 4pS ensures both terms remain bounded as ε → 0
and we obtain

‖ det(c̃ε
1)

−1‖p ≤ 2d‖λ−1
min‖dp + C(2p)

(
D(8pS, χ)1/2p + E(4pS, κ, χ)1/2p

)
.

This together with the integrability (3.6) of λ−1
min implies the uniform non-degeneracy

of the rescaled Malliavin covariance matrices c̃ε
1. ��
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4 Convergence of the diffusion bridge measures

We prove Theorem 1.2 in this section with the extension to Theorem 1.1 left to Sect. 5.
For our analysis, we adapt the Fourier transform argument presented in [2] to allow
for the higher-order scaling δε. As in Sect. 3, we may assume that the sub-Riemannian
structure (X1, . . . , Xm)has alreadybeenpushed forwardby theglobal diffeomorphism
θ : R

d → R
d which is an adapted chart at x = 0 and which has bounded derivatives

of all positive orders.
Define T�0 to be the set of continuous paths v = (vt )t∈[0,1] in T0Rd ∼= R

d with
v0 = 0 and set

T�0,y = {v ∈ T�0 : v1 = y}.
Let μ̃0

ε denote the law of the rescaled process (x̃ε
t )t∈[0,1] on T�0 andwrite q(ε, 0, ·) for

the law of v1 under the measure μ̃0
ε . To obtain the rescaled diffusion bridge measures,

we disintegrate μ̃0
ε uniquely, with respect to the Lebesgue measure on Rd , as

μ̃0
ε(dv) =

∫

Rd
μ̃0,y

ε (dv)q(ε, 0, y) dy, (4.1)

where μ̃
0,y
ε is a probability measure on T�0 which is supported on T�0,y , and the

map y 	→ μ̃
0,y
ε is weakly continuous. We can think of μ̃

0,y
ε as the law of the pro-

cess (x̃ε
t )t∈[0,1] conditioned by x̃ε

1 = y. In particular, this construction is consistent
with our previous definition of μ̃0,0

ε . Similarly, write μ̃0 for the law of the limiting
rescaled diffusion process (x̃t )t∈[0,1] on T�0, denote the law of v1 under μ̃0 by q̄(·)
and let (μ̃0,y : y ∈ R

d) be the unique family of probability measures we obtain by
disintegrating the measure μ̃0 as

μ̃0(dv) =
∫

Rd
μ̃0,y(dv)q̄(y) dy. (4.2)

To keep track of the paths of the diffusion bridges, we fix t1, . . . , tk ∈ (0, 1) with
t1 < · · · < tk as well as a smooth function g on (Rd)k of polynomial growth and
consider the smooth cylindrical functionG on T�0 defined byG(v) = g(vt1, . . . , vtk ).
For y ∈ R

d and ε > 0, set

Gε(y) = q(ε, 0, y)
∫

T�0,y
G(v)μ̃0,y

ε (dv) and

G0(y) = q̄(y)
∫

T�0,y
G(v)μ̃0,y(dv).

Both functions are continuous integrable functions on R
d and in particular, we can

consider their Fourier transforms Ĝε(ξ) and Ĝ0(ξ) given by

Ĝε(ξ) =
∫

Rd
Gε(y)e

i〈ξ,y〉 dy and Ĝ0(ξ) =
∫

Rd
G0(y)e

i〈ξ,y〉 dy.
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Using the disintegration of measure property (4.1), we deduce that

Ĝε(ξ) =
∫

Rd

∫

T�0,y
q(ε, 0, y)G(v)μ̃0,y

ε (dv)ei〈ξ,y〉 dy

=
∫

T�0,y
G(v)ei〈ξ,v1〉μ̃0

ε(dv)

= E
[
G(x̃ε) exp

{
i〈ξ, x̃ε

1〉
}]

.

Similarly, by using (4.2), we show that

Ĝ0(ξ) = E
[
G(x̃) exp {i〈ξ, x̃1〉}

]
.

We recall that x̃ε
t → x̃t as ε → 0 almost surely and in L p for all p < ∞. Hence,

Ĝε(ξ) → Ĝ0(ξ) as ε → 0 for all ξ ∈ R
d . To be able to use this convergence result to

make deductions about the behaviour of the functions Gε and G0 we need Ĝε to be
integrable uniformly in ε ∈ (0, 1]. This is provided by the following lemma, which is
proven at the end of the section.

Lemma 4.1 For all smooth cylindrical functions G on T�0 there are constants
C(G) < ∞ such that, for all ε ∈ (0, 1] and all ξ ∈ R

d , we have

|Ĝε(ξ)| ≤ C(G)

1 + |ξ |d+1 . (4.3)

Moreover, in the case where G(v) = |vt1 − vt2 |4, there exists a constant C < ∞
such that, uniformly in t1, t2 ∈ (0, 1), we can choose C(G) = C |t1 − t2|2, i.e. for all
ε ∈ (0, 1] and all ξ ∈ R

d ,

|Ĝε(ξ)| ≤ C |t1 − t2|2
1 + |ξ |d+1 . (4.4)

With this setup, we can prove Theorem 1.2.

Proof of Theorem 1.2 Applying the Fourier inversion formula and using (4.3) from
Lemma 4.1 as well as the dominated convergence theorem, we deduce that

Gε(0) = 1

(2π)d

∫

Rd
Ĝε(ξ) dξ → 1

(2π)d

∫

Rd
Ĝ0(ξ) dξ = G0(0) as ε → 0.

(4.5)
Let Q =∑N

n=1 ndn be the homogeneous dimension of the sub-Riemannian structure
(X1, . . . , Xm). Due to the change of variables formula, we have

q(ε, 0, y) = εQ/2 p(ε, 0, δε(y)),

where p and q are the Dirichlet heat kernels, with respect to the Lebesgue measure on
R
d , associated to the processes (x1t )t∈[0,1] and (x̃1t )t∈[0,1], respectively. From (4.5), it

follows that
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εQ/2 p(ε, 0, 0)
∫

T�0,0
G(v)μ̃0,0

ε (dv) → q̄(0)
∫

T�0,0
G(v)μ̃0,0(dv) as ε → 0.

(4.6)
Choosing g ≡ 1 shows that

εQ/2 p(ε, 0, 0) → q̄(0) as ε → 0, (4.7)

which agrees with the small-time heat kernel asymptotics established in [5] and [11].
We recall that q̄ : R

d → [0,∞) is the density of the random variable x̃1, where
(x̃t )t∈[0,1] is the limiting rescaled process with generator

L̃ = 1

2

m∑

i=1

X̃2
i .

By Proposition 2.6, the nilpotent approximations X̃1, . . . , X̃m satisfy the strong Hör-
mander condition everywhere on R

d and since L̃ has vanishing drift, the discussions
in [7] imply that q̄(0) > 0. Hence, we can divide (4.6) by (4.7) to obtain

∫

T�0,0
G(v)μ̃0,0

ε (dv) →
∫

T�0,0
G(v)μ̃0,0(dv) as ε → 0.

Thus, the finite-dimensional distributions of μ̃0,0
ε converge weakly to those of μ̃0,0

and it remains to establish tightness to deduce the desired convergence result. Taking
G(v) = |vt1 − vt2 |4, using the Fourier inversion formula and the estimate (4.4) from
Lemma 4.1, we conclude that

εQ/2 p(ε, 0, 0)
∫

T�0,0
|vt1 − vt2 |4 μ̃0,0

ε (dv) = Gε(0) ≤ C |t1 − t2|2.

From (4.7) and due to q̄(0) > 0, it further follows that there exists a constant D < ∞
such that, for all t1, t2 ∈ (0, 1),

sup
ε∈(0,1]

∫

T�0,0
|vt1 − vt2 |4 μ̃0,0

ε (dv) ≤ D|t1 − t2|2.

Standard arguments finally imply that the family of laws (μ̃0,0
ε : ε ∈ (0, 1]) is tight

on T�0,0 and hence, μ̃0,0
ε → μ̃0,0 weakly on T�0,0 as ε → 0. ��

It remains to establish Lemma 4.1. The proof closely follows [2, Proof of Lemma 4.1],
where the main adjustments needed arise due to the higher-order scaling map δε. In
addition to the uniform non-degeneracy of the rescaled Malliavin covariance matrices
c̃ε
1, which is provided by Theorem 1.3, we need the rescaled processes (x̃ε

t )t∈[0,1] and
(ṽε

t )t∈[0,1] defined in Sect. 3.1 to have moments of all orders bounded uniformly in
ε ∈ (0, 1]. The latter is ensured by the following lemma.
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Lemma 4.2 There are moment estimates of all orders for the stochastic processes
(x̃ε

t )t∈[0,1] and (ṽε
t )t∈[0,1] which are uniform in ε ∈ (0, 1], i.e. for all p < ∞, we have

sup
ε∈(0,1]

E

[
sup

0≤t≤1
|x̃ε

t |p
]

< ∞ and sup
ε∈(0,1]

E

[
sup

0≤t≤1
|ṽε

t |p
]

< ∞.

Proof We exploit the graded structure induced by the sub-Riemannian structure
(X1, . . . , Xm) and we make use of the properties of an adapted chart. For τ ∈ [0, 1],
consider the Itô stochastic differential equation in Rd

dxε
t (τ ) =

m∑

i=1

τ
√

εXi (x
ε
t (τ )) dBi

t + τ 2εX0(x
ε
t (τ )) dt, xε

0(τ ) = 0

and let {(xε
t (τ ))t∈[0,1] : τ ∈ [0, 1]} be the unique family of strong solutions which is

almost surely jointly continuous in τ and t . Observe that xε
t (0) = 0 and xε

t (1) = xε
t

for all t ∈ [0, 1], almost surely. Moreover, for n ≥ 1, the rescaled nth derivative in τ

xε,(n)
t (τ ) = ε−n/2

(
∂

∂τ

)n

xε
t (τ )

exists for all τ and t , almost surely. For instance, (xε,(1)
t (τ ))t∈[0,1] is the unique strong

solution of the Itô stochastic differential equation

dxε,(1)
t (τ ) =

m∑

i=1

Xi (x
ε
t (τ )) dBi

t + 2τ
√

εX0(x
ε
t (τ )) dt

+
m∑

i=1

τ
√

ε∇Xi (x
ε
t (τ ))xε,(1)

t (τ ) dBi
t

+ τ 2ε∇X0(x
ε
t (τ ))xε,(1)

t (τ ) dt, xε,(1)
0 (τ ) = 0.

In particular, we compute that xε,(1)
t (0) = ∑m

i=1 Xi (0)Bi
t . As 〈u, Xi (0)〉 = 0 for all

i ∈ {1, . . . ,m} and all u ∈ C1(0)⊥, we deduce

〈
u, xε,(1)

t (0)
〉
= 0 for all u ∈ C1(0)

⊥. (4.8)

By looking at the corresponding stochastic differential equation for (xε,(2)
t (τ ))t∈[0,1],

we further obtain that

xε,(2)
t (0) =

m∑

i=1

∫ t

0
2∇Xi (0)x

ε,(1)
s (0) dBi

s + 2X0(0)t.
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Due to (4.8), the only non-zero terms in ∇Xi (0)x
ε,(1)
s (0) are scalar multiples of

the first d1 columns of ∇Xi (0), i.e. where the derivative is taken along a direc-
tion lying in C1(0). Thus, by property (ii) of an adapted chart and since X0(0) ∈
span{X1(0), . . . , Xm(0)}, it follows that

〈
u, xε,(2)

t (0)
〉
= 0 for all u ∈ C2(0)

⊥.

In general, continuing in the same way and by appealing to the Faà di Bruno formula,
we prove iteratively that, for all n ∈ {1, . . . , N − 1},

〈
u, xε,(n)

t (0)
〉
= 0 for all u ∈ Cn(0)

⊥. (4.9)

Besides, the stochastic process (xε
t (τ ), xε,(1)

t (τ ), . . . , xε,(N )
t (τ ))t∈[0,1] is the solution

of a stochastic differential equation with graded Lipschitz coefficients in the sense
of Norris [12]. As the coefficient bounds of the graded structure are uniform in τ ∈
[0, 1] and ε ∈ (0, 1], we obtain, uniformly in τ and ε, moment bounds of all orders
for (xε

t (τ ), xε,(1)
t (τ ), . . . , xε,(N )

t (τ ))t∈[0,1]. Finally, due to (4.9) we have, for all n ∈
{1, . . . , N } and all u ∈ Cn(0) ∩ Cn−1(0)⊥,

〈
u, x̃ε

t

〉 =
〈
u, ε−n/2xε

t

〉
=
〈
u,

∫ 1

0

∫ τ1

0
. . .

∫ τn−1

0
xε,(n)
t (τn) dτn dτn−1 . . . dτ1

〉
.

This together with the uniform moment bounds implies the claimed result that, for all
p < ∞,

sup
ε∈(0,1]

E

[
sup

0≤t≤1
|x̃ε

t |p
]

< ∞.

We proceed similarly to establish the second estimate. Let {(vε
t (τ ))t∈[0,1] : τ ∈ [0, 1]}

be the unique family of strong solutions to the Itô stochastic differential equation in
R
d

dvε
t (τ ) = −

m∑

i=1

τ
√

εvε
t (τ )∇Xi (x

ε
t (τ )) dBi

t

−τ 2εvε
t (τ )

(
∇X0 −

m∑

i=1

(∇Xi )
2

)
(xε

t (τ )) dt, vε
0(τ ) = I

which is almost surely jointly continuous in τ and t . We note that vε
t (0) = I and

vε
t (1) = vε

t for all t ∈ [0, 1], almost surely. For n ≥ 1, set

v
ε,(n)
t (τ ) = ε−n/2

(
∂

∂τ

)n

vε
t (τ ),
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which exists for all τ and t , almost surely. For n1, n2 ∈ {1, . . . , N } and u1 ∈ Cn1(0)∩
Cn1−1(0)⊥ as well as u2 ∈ Cn2(0) ∩ Cn2−1(0)⊥, we have

〈
u1, ṽε

t u
2
〉
= ε−(n1−n2)/2

〈
u1, vε

t u
2
〉
.

Therefore, if n1 ≤ n2, we obtain the bound |〈u1, ṽε
t u

2〉| ≤ |〈u1, vε
t u

2〉|. On the other
hand, if n1 > n2 then 〈u1, u2〉 = 0 and in a similar way to proving (4.9), we show that

〈
u1, vε,(k)

t (0)u2
〉
= 0 for all k ∈ {1, . . . , n1 − n2 − 1}

by repeatedly using property (ii) of an adapted chart. This allows us to write

〈
u1, ṽε

t u
2
〉
=
〈
u1,

(∫ 1

0

∫ τ1

0
. . .

∫ τn1−n2−1

0
v
ε,(n1−n2)
t (τn1−n2 ) dτn1−n2 dτn1−n2−1 . . . dτ1

)
u2
〉

for n1 > n2. As the stochastic process (xε
t (τ ), vε

t (τ ), xε,(1)
t (τ ), v

ε,(1)
t (τ ), . . . ,

xε,(N )
t (τ ), v

ε,(N )
t (τ ))t∈[0,1] is the solution of a stochastic differential equation with

graded Lipschitz coefficients in the sense of Norris [12], with the coefficient bounds
of the graded structure being uniform in τ ∈ [0, 1] and ε ∈ (0, 1], the second result
claimed follows. ��
Wefinally present the proof of Lemma 4.1. For some of the technical arguments which
carry over unchanged, we simply refer the reader to [2].

Proof of Lemma 4.1 Let (xε
t )t∈[0,1] be the process in R

d and (uε
t )t∈[0,1] as well as

(vε
t )t∈[0,1] be the processes in R

d ⊗ (Rd)∗ which are defined as the unique strong
solutions of the following system of Itô stochastic differential equations.

dxε
t =

m∑

i=1

√
εXi (x

ε
t ) dB

i
t + εX0(x

ε
t ) dt, xε

0 = 0 (4.10)

duε
t =

m∑

i=1

√
ε∇Xi (x

ε
t )u

ε
t dB

i
t + ε∇X0(x

ε
t )u

ε
t dt, uε

0 = I

dvε
t = −

m∑

i=1

√
εvε

t ∇Xi (x
ε
t ) dB

i
t − εvε

t

(
∇X0 −

m∑

i=1

(∇Xi )
2

)
(xε

t ) dt, vε
0 = I

Fix k ∈ {1, . . . , d}. For η ∈ R
d , consider the perturbed process (Bη

t )t∈[0,1] in R
m

given by

dBη,i
t = dBi

t + η
(√

εδ−1
ε

(
vε
t Xi (x

ε
t )
))k

dt, Bη
0 = 0,

where (
√

εδ−1
ε (vε

t Xi (xε
t )))

k denotes the kth component of the vector
√

εδ−1
ε (vε

t Xi (xε
t ))

in R
d . Write (xε,η

t )t∈[0,1] for the strong solution of the stochastic differential equa-
tion (4.10) with the driving Brownian motion (Bt )t∈[0,1] replaced by (Bη

t )t∈[0,1]. We
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choose a version of the family of processes (xε,η
t )t∈[0,1] which is almost surely smooth

in η and set
(
(xε)′t

)k = ∂

∂η

∣∣∣∣
η=0

xε,η
t .

The derived process ((xε)′t )t∈[0,1] = (((xε)′t )1, . . . , ((xε)′t )d)t∈[0,1] in Rd ⊗ R
d asso-

ciated with the process (xε
t )t∈[0,1] then satisfies the Itô stochastic differential equation

d(xε)′t =
m∑

i=1

√
ε∇Xi (x

ε
t )(x

ε)′t dBi
t + ε∇X0(x

ε
t )(x

ε)′t dt

+
m∑

i=1

√
εXi (x

ε
t ) ⊗

(√
εδ−1

ε

(
vε
t Xi (x

ε
t )
))

dt

subject to (xε)′0 = 0. Using the expression (3.3) for the rescaled Malliavin covari-
ance matrix c̃ε

t , we show that (xε)′t = uε
t δε c̃ε

t . It follows that for the derived process
((x̃ε)′t )t∈[0,1] associatedwith the rescaled process (x̃ε

t )t∈[0,1] and the stochastic process
(ũε

t )t∈[0,1] given by ũε
t = δ−1

ε uε
t δε, we have

(x̃ε)′t = ũε
t c̃

ε
t .

Note that both ũε
1 and c̃

ε
1 are invertible for all ε > 0 with (ũε

1)
−1 = ṽε

1. Let (r
ε
t )t∈[0,1]

be the process defined by

drε
t =

m∑

i=1

√
εδ−1

ε

(
vε
t Xi (x

ε
t )
)
dBi

t , rε
0 = 0

and set yε,(0)
t = (xε

t∧t1 , . . . , x
ε
t∧tk , x

ε
t , v

ε
t , r

ε
t , (x

ε)′t ). The underlying graded Lipschitz
structure, in the sense of Norris [12], allows us, for n ≥ 0, to recursively define

zε,(n)
t =

(
yε,(0)
t , . . . , yε,(n)

t

)

by first solving for the derived process ((zε,(n))′t )t∈[0,1], then writing

(
zε,(n)

)′
t
=
((

yε,(0)
)′
t
, . . . ,

(
yε,(n)

)′
t

)

and finally setting yε,(n+1)
t = (yε,(n))′t .

Consider the random variable yε = ((x̃ε)′1)−1 in (Rd)∗ ⊗ (Rd)∗ and let φ =
φ(yε, zε,(n)

1 ) be a polynomial in yε, where the coefficients are continuously dif-

ferentiable in zε,(n)
1 and of polynomial growth, along with their derivatives. Going

through the deductions made from Bismut’s integration by parts formula in [2, Proof
of Lemma 4.1] with R ≡ 0 and F ≡ 0 shows that for any continuously differentiable,
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Small-time fluctuations for sub-Riemannian diffusion loops 645

bounded function f : R
d → Rwith bounded first derivatives and any k ∈ {1, . . . , d},

we have

E

[
∇k f (x̃

ε
1)φ

(
yε, zε,(n)

1

)]
= E

[
f (x̃ε

1)∇∗
k φ
(
yε, zε,(n+1)

1

)]
,

where

∇∗
k φ
(
yε, zε,(n+1)

1

)
= τk

(
yε ⊗ rε

1 + yε(x̃ε)′′1 yε
)
φ
(
yε, zε,(n)

1

)

+ τk

(
yε ⊗

(
∇yφ

(
yε, zε,(n)

1

)
yε(x̃ε)′′1 yε

))

− τk

(
yε ⊗

(
∇zφ

(
yε, zε,(n)

1

) (
zε,(n)

)′
1

))
,

and τk : (Rd)∗ ⊗ (Rd)∗ ⊗ R
d → R is the linear map given by τk(e∗

l ⊗ e∗
k′ ⊗ el ′) =

δkk′δll ′ . Starting from

φ
(
yε, zε,(0)1

)
= G(x̃ε) = g

(
x̃ε
t1 , . . . , x̃

ε
tk

)

we see inductively that, for any multi-index α = (k1, . . . , kn),

E
[∇α f (x̃ε

1)G(x̃ε)
] = E

[
f (x̃ε

1)(∇∗)αG
(
yε, zε,(n)

1

)]
.

Fixing ξ ∈ R
d and choosing f (·) = ei〈ξ,·〉 in this integration by parts formula yields

|ξα||Ĝε(ξ)| ≤ E

[∣∣∣(∇∗)αG
(
yε, zε,(n)

1

)∣∣∣
]
.

In order to deduce the bound (4.3), it remains to establish that Cε(α,G) =
E[|(∇∗)αG(yε, zε,(n)

1 )|] can be controlled uniformly in ε. Due to yε = (c̃ε
1)

−1ṽε
1,

Theorem 1.3 and the second estimate from Lemma 4.2 immediately imply that, for all
p < ∞,

sup
ε∈(0,1]

E
[∣∣yε

∣∣p] < ∞. (4.11)

Moreover, from the first moment estimate in Lemma 4.2, it follows that all processes
derived from the rescaled process (x̃ε

t )t∈[0,1] have moments of all orders bounded
uniformly in ε ∈ (0, 1]. Similarly, for n = d + 1 and all p < ∞, we obtain

sup
ε∈(0,1]

E

[∣∣∣zε,(n)
1

∣∣∣
p]

< ∞, (4.12)

where we observe that, for all n ∈ {0, 1, . . . , N − 1} and all u ∈ Cn+1(0) ∩ Cn(0)⊥,

〈
u, rε

t

〉 =
m∑

i=1

∫ t

0

〈
u, ε−n/2vε

s Xi (x
ε
s )
〉
dBi

s ,
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and use Lemma 3.3 to show that there is no singularity in the process (rε
t )t∈[0,1] as

ε → 0. Since (∇∗)αG is of polynomial growth in the argument (yε, zε,(n)
1 ), themoment

estimates (4.11) and (4.12) show that Cε(α,G) is bounded uniformly in ε ∈ (0, 1].
This establishes (4.3).

Finally, the same proof as presented in [2, Proof of Lemma 4.1] shows that we
have (4.4) in the special case where G(v) = |vt1 − vt2 |4 for some t1, t2 ∈ (0, 1). Let
the process (x̃ε,(0)

t )t∈[0,1] be given by x̃ε,(0)
t = x̃ε

t and, recursively for n ≥ 0, define

(x̃ε,(n+1)
t )t∈[0,1] by x̃ε,(n+1)

t = (x̃ε
t , (x̃

ε,(n))′t ). Then, for all p ∈ [1,∞), there exists a
constant D(p) < ∞ such that, uniformly in t1, t2 ∈ (0, 1) and in ε ∈ (0, 1],

E

[∣∣∣x̃ε,(n)
t1 − x̃ε,(n)

t2

∣∣∣
4p
]

≤ D(p)|t1 − t2|2p.

Furthermore, from the expression for the adjoint operator ∇∗
k we deduce that, for all

n ≥ 1 and any multi-index α = (k1, . . . , kn), there exists a random variable Mα , with
moments of all orders which are bounded uniformly in ε ∈ (0, 1], such that

(∇∗)α G
(
yε, zε,(n)

1

)
= Mα

∣∣∣x̃ε,(n)
t1 − x̃ε,(n)

t2

∣∣∣
4
.

By using Hölder’s inequality, we conclude that there exists a constantC(α) < ∞ such
that, uniformly in t1, t2 ∈ (0, 1) and ε ∈ (0, 1], we obtain

Cε(α,G) ≤ C(α)|t1 − t2|2,

which implies (4.4). ��

5 Localisation argument

In proving Theorem 1.1 by localising Theorem 1.2, we use the same localisation
argument as presented in [2, Section 5]. This is possible due to [2, Theorem 6.1],
which provides a control over the amount of heat diffusing between two fixed points
without leaving a fixed closed subset, also covering the diagonal case. After the proof,
we give an example to illustrate Theorem 1.1 and we remark on deductions made for
the

√
ε-rescaled fluctuations of diffusion loops.

Let L be a differential operator on M satisfying the conditions of Theorem 1.1 and
let (X1, . . . , Xm) be a sub-Riemannian structure for the diffusivity of L. Define X0 to
be the smooth vector field on M given by requiring

L = 1

2

m∑

i=1

X2
i + X0

and recall that X0(y) ∈ span{X1(y), . . . , Xm(y)} for all y ∈ M . Let (U0, θ) be an
adapted chart to the filtration induced by (X1, . . . , Xm) at x ∈ M and extend it to a
smooth map θ : M → R

d . By passing to a smaller set if necessary, we may assume
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Small-time fluctuations for sub-Riemannian diffusion loops 647

that the closure ofU0 is compact. LetU be a domain in M containing x and compactly
contained inU0.We start by constructing a differential operator L̄ onRd which satisfies
the assumptions of Theorem 1.2 with the identity map being an adapted chart at 0 and
such that L( f ) = L̄( f ◦ θ−1) ◦ θ for all f ∈ C∞(U ).

Set V = θ(U ) and V0 = θ(U0). Let χ be a smooth function on Rd which satisfies
1V ≤ χ ≤ 1 and where {χ > 0} is compactly contained in V0. The existence of such
a function is always guaranteed. Besides, we pick another smooth function ρ on R

d

with 1V ≤ 1 − ρ ≤ 1V0 and such that χ + ρ is everywhere positive. Define vector
fields X̄0, X̄1, . . . , X̄m, X̄m+1, . . . , X̄m+d on R

d by

X̄i (z)=
{

χ(z) dθθ−1(z)

(
Xi
(
θ−1(z)

))
if z∈V0

0 if z ∈ R
d \ V0

for i ∈ {0, 1, . . . ,m},

X̄m+k(z)=ρ(z)ek for k ∈ {1, . . . , d},

where e1, . . . , ed is the standard basis in Rd . We note that X0(y) ∈ span{X1(y), . . . ,
Xm(y)} for all y ∈ M implies that X̄0(z) ∈ span{X̄1(z), . . . , X̄m(z)} holds for all z ∈
R
d .Moreover, the vector fields X̄1, . . . , X̄m satisfy the strongHörmander condition on

{χ > 0}, while X̄m+1, . . . , X̄m+d themselves span Rd on {ρ > 0}. As U0 is assumed
to have compact closure, the vector fields constructed are all bounded with bounded
derivatives of all orders. Hence, the differential operator L̄ on R

d given by

L̄ = 1

2

m+d∑

i=1

X̄2
i + X̄0

satisfies the assumptions of Theorem 1.2. We further observe that, on V ,

X̄i = θ∗(Xi ) for all i ∈ {0, 1, . . . ,m},

which yields the the desired property that L̄ = θ∗L on V . Additionally, we see that
the nilpotent approximations of (X̄1, . . . , X̄m, X̄m+1, . . . , X̄m+d) are (X̃1, . . . , X̃m, 0,
. . . , 0) which shows that the limiting rescaled processes on R

d associated to the
processes with generator εL̄ and εL, respectively, have the same generator L̃. Since
(U0, θ), and in particular the restriction (U, θ) is an adapted chart at x , it also follows
that the identity map on R

d is an adapted chart to the filtration induced by the sub-
Riemannian structure (X̄1, . . . , X̄m, X̄m+1, . . . , X̄m+d) onRd at 0. Thus, Theorem1.2
holds with the identity map as the global diffeomorphism and we associate the same
anisotropic dilation δε : R

d → R
d with the adapted charts (U, θ) at x and (V, I ) at

0. We use this to finally prove our main result.

Proof of Theorem 1.1 Let p̄ be the Dirichlet heat kernel for L̄ with respect to the
Lebesgue measure λ onRd . Choose a positive smooth measure ν on M which satisfies
ν = (θ−1)∗λ on U and let p denote the Dirichlet heat kernel for L with respect to ν.
Writeμ0,0,Rd

ε for the diffusion loop measure on�0,0(Rd) associated with the operator

εL̄ and write μ̃0,0,Rd

ε for the rescaled loop measure on T�0,0(Rd), which is the image
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measure of μ0,0,Rd

ε under the scaling map σ̄ε : �0,0(Rd) → T�0,0(Rd) given by

σ̄ε(ω)t = δ−1
ε (ωt ) .

Moreover, let μ̃0,0,Rd
be the loopmeasure on T�0,0(Rd) associatedwith the stochastic

process (x̃t )t∈[0,1] on R
d starting from 0 and having generator L̃ and let q̄ denote the

probability density function of x̃1. FromTheorem 1.2, we know that μ̃0,0,Rd

ε converges

weakly to μ̃0,0,Rd
on T�0,0(Rd) as ε → 0, and its proof also shows that

p̄(ε, 0, 0) = ε−Q/2q̄(0)(1 + o(1)) as ε → 0. (5.1)

Let pU denote the Dirichlet heat kernel in U of the restriction of L to U and write
μx,x,U

ε for the diffusion bridge measure on �x,x (U ) associated with the restriction of
the operator εL to U . For any measurable set A ⊂ �x,x (M), we have

p(ε, x, x)μx,x
ε (A) = pU (ε, x, x)μx,x,U

ε (A∩�x,x (U ))+p(ε, x, x)μx,x
ε (A\�x,x (U )).

(5.2)
Additionally, by counting paths and since ν = (θ−1)∗λ on U , we obtain

p̄(ε, 0, 0)μ0,0,Rd

ε

(
θ(A ∩ �x,x (U ))

) = pU (ε, x, x)μx,x,U
ε

(
A ∩ �x,x (U )

)
, (5.3)

where θ(A ∩ �x,x (U )) denotes the subset {(θ(ωt ))t∈[0,1] : ω ∈ A ∩ �x,x (U )} of
�0,0(Rd). Let B be a bounded measurable subset of the set T�x,x (M) of continuous
paths v = (vt )t∈[0,1] in TxM with v0 = 0 and v1 = 0. For ε > 0 sufficiently small,
we have σ−1

ε (B) ⊂ �x,x (U ) and so (5.2) and (5.3) imply that

p(ε, x, x)μx,x
ε

(
σ−1

ε (B)
)

= p̄(ε, 0, 0)μ0,0,Rd

ε

(
θ
(
σ−1

ε (B)
))

.

Since μx,x
ε (σ−1

ε (B)) = μ̃x,x
ε (B) and

μ0,0,Rd

ε

(
θ
(
σ−1

ε (B)
))

= μ0,0,Rd

ε

(
σ̄−1

ε (dθx (B))
)

= μ̃0,0,Rd

ε (dθx (B)),

we established that

p(ε, x, x)μ̃x,x
ε (B) = p̄(ε, 0, 0)μ̃0,0,Rd

ε (dθx (B)). (5.4)

Moreover, it holds true that μ0,0,Rd

ε (θ(�x,x (U )) → 1 as ε → 0. Therefore, taking
A = �x,x (M) in (5.3) and using (5.1) gives

pU (ε, x, x) = ε−Q/2q̄(0)(1 + o(1)) as ε → 0.

By [2, Theorem 6.1], we know that

lim sup
ε→0

ε log p(ε, x, M \U, x) ≤ −d(x, M \U, x)2

2
,
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where p(ε, x, M \U, x) = p(ε, x, x) − pU (ε, x, x) and d(x, M \ U, x) is the sub-
Riemannian distance from x to x through M \ U . Since d(x, M \ U, x) is strictly
positive, it follows that

p(ε, x, x) = pU (ε, x, x) + p(ε, x, M \U, x) = ε−Q/2q̄(0)(1 + o(1)) as ε → 0.

Hence, due to (5.4), we have μ̃x,x
ε (B) = μ̃0,0,Rd

ε (dθx (B))(1+ o(1)) for any bounded

measurable set B ⊂ T�x,x (M). From the weak convergence of μ̃0,0,Rd

ε to μ̃0,0,Rd
on

T�0,0(Rd) as ε → 0 and since μ̃0,0,Rd
(dθx (B)) = μ̃x,x (B), we conclude that the

diffusion loopmeasures μ̃x,x
ε converge weakly to the loopmeasure μ̃x,x on T�0,0(M)

as ε → 0. ��
We close with an example and a remark.

Example 5.1 Consider the same setup as in Example 2.7, i.e. M = R
2 with x = 0

fixed and the vector fields X1, X2 on R
2 defined by

X1 = ∂

∂x1
+ x1

∂

∂x2
and X2 = x1

∂

∂x1

in Cartesian coordinates (x1, x2). We recall that these coordinates are not adapted to
the filtration induced by (X1, X2) at 0 and we start off by illustrating why this chart is
not suitable for our analysis. The unique strong solution (xε

t )t∈[0,1] = (xε,1
t , xε,2

t )t∈[0,1]
of the Stratonovich stochastic differential equation in R2

∂xε,1
t = √

ε ∂B1
t + √

εxε,1
t ∂B2

t

∂xε,2
t = √

εxε,1
t ∂B1

t

subject to xε
0 = 0 is given by

xε
t =

(√
ε

∫ t

0
e
√

ε
(
B2
t −B2

s
)
∂B1

s , ε

∫ t

0

(∫ s

0
e
√

ε
(
B2
s −B2

r
)
∂B1

r

)
∂B1

s

)
.

Even though the step of the filtration induced by (X1, X2) at 0 is N = 3, rescal-
ing the stochastic process (xε

t )t∈[0,1] by ε−3/2 in any direction leads to a blow-up
in the limit ε → 0. Instead, the highest-order rescaled process we can consider is
(ε−1/2xε,1

t , ε−1xε,2
t )t∈[0,1] whose limiting process, as ε → 0, is characterised by

lim
ε→0

(
ε−1/2xε,1

t , ε−1xε,2
t

)
→
(
B1
t ,

1

2

(
B1
t

)2)
.

Thus, these rescaled processes localise around a parabola in R
2. As the Malliavin

covariancematrix of (B1
1 ,

1
2 (B

1
1 )

2) is degenerate, the Fourier transform argument from
Sect. 4 cannot be used. Rather, we first need to apply an additional rescaling along
the parabola to recover a non-degenerate limiting process. This is the reason why we
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choose to work in an adapted chart because it allows us to express the overall rescaling
needed as an anisotropic dilation.

Let θ : R
2 → R

2 be the same global adapted chart as used in Example 2.7 and let
δε : R

2 → R
2 be the associated anisotropic dilation. We showed that the nilpotent

approximations X̃1, X̃2 of the vector fields X1, X2 are

X̃1 = ∂

∂y1
and X̃2 = −

(
y1
)2 ∂

∂y2
,

with respect to Cartesian coordinates (y1, y2) on the second copy of R2. From the
convergence result (3.1), it follows that, for all t ∈ [0, 1],

δ−1
ε

(
θ(xε

t )
)→

(
B1
t ,−

∫ t

0

(
B1
s

)2
∂B2

s

)
as ε → 0.

Since dθ0 : R
2 → R

2 is the identity, Theorem 1.1 says that the suitably rescaled
fluctuations of the diffusion loop at 0 associated to the stochastic process with gen-
erator L = 1

2 (X
2
1 + X2

2) converge weakly to the loop obtained by conditioning
(B1

t ,−
∫ t
0 (B1

s )
2 ∂B2

s )t∈[0,1] to return to 0 at time 1.

Remark 5.2 Weshow that Theorems 1.1 and 1.2 allow us tomake deductions about the√
ε-rescaled fluctuations of diffusion loops. For the rescalingmap τε : �x,x → T�0,0

given by

τε(ω)t = (dθx )
−1
(
ε−1/2θ(ωt )

)
,

we are interested in the behaviour of the measures μx,x
ε ◦ τ−1

ε in the limit ε → 0. Let
e1, . . . , ed be the standard basis in Rd and define ψ : T�0,0 → T�0,0 by

ψ(v)t =
d1∑

i=1

〈dθx (vt ), ei 〉 (dθx )
−1 ei .

The map ψ takes a path in T�0,0 and projects it onto the component living in the
subspace C1(x) of TxM . Since the maps τε and σε are related by

τε(ω)t = (dθx )
−1
(
ε−1/2δε (dθx (σε(ω)t ))

)

and because ε−1/2δε(y) tends to (y1, . . . , yd1 , 0, . . . , 0) as ε → 0, it follows that the√
ε-rescaled diffusion loop measures μx,x

ε ◦ τ−1
ε converge weakly to μ̃x,x ◦ ψ−1 on

T�0,0 as ε → 0. Provided L is non-elliptic at x , the latter is a degenerate measure
which is supported on the set of paths (vt )t∈[0,1] in T�0,0 which satisfy vt ∈ C1(x),
for all t ∈ [0, 1]. Hence, the rescaled diffusion process (ε−1/2θ(xε

t ))t∈[0,1] conditioned
by θ(xε

1) = 0 localises around the subspace (θ∗C1)(0).
Finally, by considering the limiting diffusion loop from Example 5.1, we demon-

strate that the degenerate limiting measure μ̃x,x ◦ ψ−1 need not be Gaussian. Going
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back to Example 5.1, we first observe that the map ψ is simply projection onto the
first component, i.e.

ψ(v)t =
(
1 0
0 0

)
vt .

Thus, to show that the measure μ̃x,x ◦ ψ−1 is not Gaussian, we have to analyse the
process (B1

t ,−
∫ t
0 (B1

s )
2 ∂B2

s )t∈[0,1] conditioned to return to 0 at time 1 and show that
its first component is not Gaussian. Using the tower property, we first condition on
B1
1 = 0 to see that this component is equal in law to the process (B1

t − t B1
1 )t∈[0,1]

conditioned by
∫ 1
0 (B1

s − sB1
1 )

2 ∂B2
s = 0, where the latter is in fact equivalent to

conditioning on
∫ 1
0 (B1

s −sB1
1 )

2 dB2
s = 0. LetμB denote the Brownian bridgemeasure

on �(R)0,0 = {ω ∈ C([0, 1],R) : ω0 = ω1 = 0} and let ν be the law of − ∫ 10 (B1
s −

sB1
1 )

2 dB2
s on R. Furthermore, denote the joint law of

(
B1
t − t B1

1

)

t∈[0,1] and −
∫ 1

0

(
B1
s − sB1

1

)2
dB2

s

on�(R)0,0 ×R by μ. Since− ∫ 10 ω2
s dB

2
s , for ω ∈ �(R)0,0 fixed, is a normal random

variable with mean zero and variance
∫ 1
0 ω4

s ds, we obtain that

μ(dω, dy) = 1√
2πσ(ω)

e
− y2

2σ2(ω) μB(dω) dy with σ(ω) =
(∫ 1

0
ω4
s ds

)1/2

.

(5.5)
On the other hand, we can disintegrate μ as

μ(dω, dy) = μ
y
B(dω)ν(dy),

where μ
y
B is the law of (B1

t − t B1
1 )t∈[0,1] conditioned by − ∫ 10 (B1

s − sB1
1 )

2 dB2
s = y,

i.e. we are interested in the measure μ0
B . From (5.5), it follows that

μ0
B(dω) ∝ σ−1(ω)μB(dω) =

(∫ 1

0
ω4
s ds

)−1/2

μB(dω).

This shows that μ0
B is not Gaussian, which implies that the

√
ε-rescaled fluctuations

indeed admit a non-Gaussian limiting diffusion loop. ��
Acknowledgements I would like to thank James Norris for suggesting this problem and for his guidance
and many helpful discussions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/


652 K. Habermann

References

1. Aida, S., Kusuoka, S., Stroock, D.: On the support of Wiener functionals. Asymptotic problems in
probability theory: Wiener functionals and asymptotics. In: Proceedings of the 26th Taniguchi Inter-
national Symposium, Sanda and Kyoto, 1990, pp. 3–34. Longman Scientific & Technical, Harlow
(1993)

2. Bailleul, I., Mesnager, L., Norris J.: Small-time fluctuations for the bridge of a sub-Riemannian diffu-
sion. arXiv:1505.03464, 13 May 2015

3. Barilari, D., Boscain, U., Neel, R.W.: Small-time heat kernel asymptotics at the sub-Riemannian cut
locus. J. Differ. Geom. 92(3), 373–416 (2012)

4. Ben Arous, G.: Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus.
Ann. Sci. de l’É.N.S. 21(3), 307–331 (1988)

5. Ben Arous, G.: Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale.
Ann. de l’inst. Fourier 39(1), 73–99 (1989)

6. Ben Arous, G., Léandre, R.: Décroissance exponentielle du noyau de la chaleur sur la diagonale (I).
Probab. Theory Relat. Fields 90(2), 175–202 (1991)

7. Ben Arous, G., Léandre, R.: Décroissance exponentielle du noyau de la chaleur sur la diagonale (II).
Probab. Theory Relat. Fields 90(3), 377–402 (1991)

8. Bianchini, R.M., Stefani, G.: Graded approximations and controllability along a trajectory. SIAM J.
Control Optim. 28(4), 903–924 (1990)

9. Bismut, J.-M.: Large Deviations and the Malliavin Calculus (Progress in Mathematics), vol. 45.
Birkhäuser, Boston (1984)

10. Inahama, Y., Taniguchi, S.: Short time full asymptotic expansion of hypoelliptic heat kernel at the cut
locus. arXiv:1603.01386, 4 Mar 2016

11. Léandre, R.: Développement asymptotique de la densité d’une diffusion dégénérée. Forum Math. 4,
45–75 (1992)

12. Norris, J.R.: Simplified Malliavin calculus. Séminaire de probabilités (Strasbourg), pp. 101–130.
Springer, Berlin (1986)

13. Palais, R.S.: Natural operations on differential forms. Trans. Am. Math. Soc. 92(1), 125–141 (1959)
14. Paoli, E.: Small time asymptotic on the diagonal for Hörmander’s type hypoelliptic operators.

arXiv:1502.06361, 27 June 2015
15. Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math.

137(1), 247–320 (1976)
16. Watanabe, S.: Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels.

Ann. Probab. 15(1), 1–39 (1987)

123

http://arxiv.org/abs/1505.03464
http://arxiv.org/abs/1603.01386
http://arxiv.org/abs/1502.06361

	Small-time fluctuations for sub-Riemannian diffusion loops
	Abstract
	1 Introduction
	2 Graded structure and nilpotent approximation
	2.1 Graded structure induced by a sub-Riemannian structure
	2.2 Nilpotent approximation

	3 Uniform non-degeneracy of the rescaled Malliavin covariance matrices
	3.1 Properties of the rescaled Malliavin covariance matrix
	3.2 Uniform non-degeneracy of the rescaled Malliavin covariance matrices

	4 Convergence of the diffusion bridge measures
	5 Localisation argument
	Acknowledgements
	References




