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Abstract We study biased random walk on subcritical and supercritical Galton–
Watson trees conditioned to survive in the transient, sub-ballistic regime. By
considering offspring laws with infinite variance, we extend previously known results
for the walk on the supercritical tree and observe new trapping phenomena for the
walk on the subcritical tree which, in this case, always yield sub-ballisticity. This is
contrary to the walk on the supercritical tree which always has some ballistic phase.

Keywords Random walk in random environment · Galton–Watson tree · Infinite
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1 Introduction

In this paper, we investigate biased random walks on subcritical and supercritical
Galton–Watson trees. These are a natural setting for studying trapping phenomena as
dead-ends, caused by leaves in the trees, slow the walk. These models can be used
to approach more difficult problems concerning biased random walks on percolation
clusters (as studied in [11,13,24]) and random walk in random environment (see for
example [18,25]). For a recent review of trapping phenomena and random walk in
random environment we direct the reader to [3] which covers recent developments in
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686 A. Bowditch

a range ofmodels of directionally transient and reversible randomwalks on underlying
graphs such as supercritical GW-trees and supercritical percolation clusters.

For supercritical GW-trees with leaves, it has been shown in [21] that, for a suitably
large bias away from the root, the dead-ends in the environment create a sub-ballistic
regime. In this case, it has further been observed in [4], that if the offspring distribution
has finite variance then the walker follows a polynomial escape regime but cannot
be rescaled properly due to a certain lattice effect. (In [5,15] it is shown that, in a
related model where the conductance along each is chosen randomly according to a
distribution satisfying a certain non-lattice assumption, the tail of the trapping time
obeys a pure power law and the rescaled walk converges in distribution.) Here we
show that, when the offspring law has finite variance, the walk on the subcritical GW-
tree conditioned to survive experiences similar trapping behaviour to the walk on the
supercritical GW-tree shown in [4]. However, the main focus of the article concerns
offspring laws belonging to the domain of attraction of some stable law with index
α ∈ (1, 2). In this setting, although the distribution of time spent in individual traps
has polynomial tail decay in both cases, the exponent varies with α in the subcritical
case and not in the supercritical case. This results in a polynomial escape of the walk
which is always sub-ballistic in the subcritical case unlike the supercritical case which
always has some ballistic phase.

We now describe the model of a biased random walk on a subcritical GW-tree con-
ditioned to survive which will be the main focus of the article. Let f (s) := ∑∞

k=0 pks
k

denote the probability generating function of the offspring law of a GW-process with
mean μ > 0 and variance σ 2 > 0 (possibly infinite) and let Zn denote the nth genera-
tion size of a process with this law started from a single individual, i.e. Z0 = 1. Such
a process gives rise to a random tree where individuals in the process are represented
by vertices and undirected edges connect individuals with their offspring.

For a fixed tree T let ρ denote its root, ZT
n the size of the nth generation, ←−x the

parent of x ∈ T , c(x) the set of children of x , dx := |c(x)| the out-degree of x , d(x, y)
the graph distance between vertices x, y, |x | := d(ρ, x) the graph distance between x
and the root and Tx to be the descendent tree of x . A β-biased random walk on a fixed,
rooted tree T is a random walk (Xn)n≥0 on T which is β-times more likely to make
a transition to a given child of the current vertex than the parent (which are the only
options). That is, the random walk is the Markov chain started from X0 = z defined
by the transition probabilities

PT
z (Xn+1 = y|Xn = x) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
1+βdx

if y = ←−x ,

β
1+βdx

, if y ∈ c(x), x �= ρ,

1
dρ

, if y ∈ c(x), x = ρ,

0, otherwise.

We use Pρ(·) := ∫
PT

ρ (·)P(dT ) for the annealed law obtained by averaging the
quenched law PT

ρ over a law P on random trees with a fixed root ρ. In general we will
drop the superscript T and subscript ρ when it is clear to which tree we are referring
and we start the walk at the root.
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Escape regimes of biased random walks on Galton–Watson trees 687

Wewillmainly be interested inGW-treesT which survive, that isH(T ) := sup{n ≥
0 : Zn > 0} = ∞. It is classical (e.g. [2]) that when μ > 1 there is some strictly
positive probability 1 − q that H(T ) = ∞ whereas when μ ≤ 1 we have that H(T )

is almost surely finite. However, it has been shown in [17] that there is some well
defined probability measure P over f -GW trees conditioned to survive for infinitely
many generations which arises as a limit of probability measures over f -GW trees
conditioned to survive at least n generations. Henceforth, we assume P is this law and
Xn is a random walk on an f -GW-tree conditioned to survive.

The main object of interest is |Xn|, that is, how the distance from the root changes
over time. Due to the typical size of finite branches in the tree being small and the
walk not backtracking too far we shall see that |Xn| has a strong inverse relationship
with the first hitting times �n := inf{m ≥ 0 : Xm ∈ Y, |Xm | = n} of levels along
the backbone Y := {x ∈ T : H(Tx ) = ∞} so for much of the paper we will consider
this instead. It will be convenient to consider the walk as a trapping model. To this
end we define the underlying walk (Yk)k≥0 defined by Yk := Xηk where η0 := 0 and
ηk := inf{m > ηk−1 : Xm, Xm−1 ∈ Y} for k ≥ 1.

When Xn is a walk on an f -GW tree conditioned to survive for f supercritical
(μ > 1), it has been shown in [21] that ν(β) := limn→∞ |Xn|/n exists P-a.s. and is
positive if and only if μ−1 < β < f ′(q)−1 in which case we call the walk ballistic.
Furthermore, although no explicit expression for the speed ν is known, a description
of the invariant distribution of the environment seen from the particle is used in [1] to
give an expression of the speed in terms of the annealed expectation. This expression
coincides with the speed of the walk on a certain regular tree where each vertex has
some number of children mβ ; in particular, it can be seen that mβ ≤ μ therefore the
randomness of the tree slows the walk. If β ≤ μ−1 then the walk is recurrent because
the average drift of Y acts towards the root. When β ≥ f ′(q)−1 the walker expects
to spend an infinite amount of time in the finite trees which hang off Y (see Fig. 5 in
Sect. 10) thus causing a slowing effect which results in the walk being sub-ballistic. In
this case, the correct scaling for some non-trivial limit is nγ where γ will be defined
later in (1.1). In particular, it has been shown in [4] that, when σ 2 < ∞, the laws of
|Xn|n−γ are tight and, although |Xn|n−γ doesn’t converge in distribution, we have
that �nn−1/γ converges in distribution under P along certain subsequences to some
infinitely divisible law. In Sect. 10 we extend this result by relaxing the condition that
the offspring law has finite variance and instead requiring only that it belongs to the
domain of attraction of some stable law of index α > 1.

Recall that the offspring law of the process is given by P(ξ = k) := pk , then
we define the size-biased distribution by the probabilities P(ξ∗ = k) := kpkμ−1. It
can be seen (e.g. [16]) that the subcritical (μ < 1) GW-tree conditioned to survive
coincides with the following construction: Starting with a single special vertex, at
each generation let every normal vertex give birth onto normal vertices according to
independent copies of the original offspring distribution and every special vertex give
birth onto vertices according to independent copies of the size-biased distribution,
one of which is chosen uniformly at random to be special. Unlike the supercritical
tree which has infinitely many infinite paths, the backbone of the subcritical tree
conditioned to survive consists of a unique semi-infinite path from the initial vertex ρ.
We call the vertices not on Y which are children of vertices on Y buds and the finite
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688 A. Bowditch

trees rooted at the buds traps (see Fig. 2 in Sect. 3). In this paper we consider walks
with positive bias therefore the walk is transient and only returns to the starting vertex
ρ finitely often. Moreover, we are interested in the case where the trapping times are
heavy tailed and therefore since the traps are i.i.d. the walk closely resembles a one
dimensional directed trap model as studied in [26].

Briefly, the phenomena that can occur in the subcritical case are as follows. When
E[ξ log+(ξ)] < ∞ and μ < 1 there exists a limiting speed ν(β) such that |Xn|/n
converges almost surely to ν(β) under P; moreover, the walk is ballistic (ν(β) > 0)
if and only if 1 < β < μ−1 and σ 2 < ∞. This essentially follows from the argument
used in [21] (to show the corresponding result on the supercritical tree) with the fact
that, by (2.1) and (5.2), the conditions given are precisely the assumptions needed so
that the expected time spent in a branch is finite (see [8] or [9] for further detail). The
sub-ballistic regime has four distinct phases. When β ≤ 1 the walk is recurrent and we
are not concerned with this case here. When 1 < β < μ−1 and σ 2 = ∞ the expected
time spent in a trap is finite and the slowing of the walk is due to the large number of
buds. When βμ > 1 and σ 2 < ∞, the expected time spent in a subcritical GW-tree
forming a trap is infinite because the strong bias forces the walk deep into traps and
long sequences of movements against the bias are required to escape. In the final case
for the subcritical tree (βμ > 1, σ 2 = ∞) slowing effects are caused by both strong
bias and the large number of buds.

Figure 1 is the phase diagram for the almost sure limit of log(|Xn|)/ log(n) (which
is the leading order polynomial exponent in the scaling of |Xn| relative to β and μ)
where the offspring law has stability index α (which is 2 when σ 2 < ∞) and we
define

Fig. 1 Phase diagram for the leading order polynomial exponent in the scaling of the walk relative to the
mean of the offspring law and bias of the walk
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Escape regimes of biased random walks on Galton–Watson trees 689

γ :=

⎧
⎪⎨

⎪⎩

log
(
f ′(q)−1

)

log(β)
, μ > 1,

log
(
μ−1

)

log(β)
, μ < 1,

(1.1)

wherewe note that f ′(q) andμ are themean number of offspring from vertices in traps
of the supercritical and subcritical trees respectively. Strictly, f ′(q) isn’t a function of
μ therefore the line β = f ′(q)−1 is not well defined; Fig. 1 shows the particular case
when the offspring distribution belongs to the geometric family. It is always the case
that f ′(q) < 1 therefore some such region always exists however the parametrisation
depends on the family of distributions.

When the offspring law has finite variance, the limiting behaviour of |Xn| on the
supercritical and subcritical trees is very similar. Both have a regimewith linear scaling
(which is, in fact, almost sure convergence of |Xn|/n) and a regime with polynomial
scaling caused by the same phenomenon of deep traps (which results in |Xn|n−γ not
converging). When the offspring law has infinite variance, the bud distribution of the
subcritical tree has infinite mean which causes an extra slowing effect which isn’t seen
with the supercritical tree. This equates for the different exponents observed in the
two models as shown in Fig. 1. The walk on the critical (μ = 1) tree experiences
a similar trapping mechanism to the subcritical tree; however, the slowing is more
extreme and belongs to a different universality class which had been shown in [10] to
yield a logarithmic escape rate.

2 Statement of main theorems and proof outline

In this section we introduce the three sub-ballistic regimes in the subcritical case and
the one further regime for the infinite variance supercritical case that we consider here.
We then state the main theorems of the paper.

The subcritical tree has bud distribution ξ∗ − 1 where P(ξ∗ = k) = kpkμ−1

which yields the following important property relating the size biased and offspring
distributions

E
[
ϕ(ξ∗)

] =
∞∑

k=1

ϕ(k)
kpk
μ

= E [ϕ(ξ)ξ ]μ−1. (2.1)

Choosing ϕ to be the identity we have finite mean of the size-biased distribution if and
only if the variance of the offspring distribution is finite. This causes a phase transition
for the walk that isn’t seen in the supercritical tree. The reason for this is that in the
corresponding decomposition for the supercritical treewe have subcriticalGW-trees as
leaves but the number of buds is exponentially tilted and therefore maintains moment
properties.

If the offspring law belongs to the domain of attraction of some stable law of index
α ∈ (1, 2) then taking ϕ(x) = x1{x≤t} shows that the size biased distribution belongs
to the domain of attraction of some stable law with index α − 1 and allows us to attain
properties of the scaling sequences (see for example [12, IX.8]).
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690 A. Bowditch

The first case we consider is when βμ < 1 but σ 2 = ∞; we refer to this as the
infinite variance, finite excursion case:

Definition 1 (IVFE) The offspring distribution has mean μ satisfying 1 < β < μ−1

and belongs to the domain of attraction of a stable law of index α ∈ (1, 2).

Under this assumption we let L vary slowly at ∞ such that as x → ∞

E

[
ξ21{ξ≤x}

]
∼ x2−αL(x) (2.2)

and choose (an)n≥1 to be some scaling sequence for the size-biased law such that for
any x > 0, as n → ∞ we have P(ξ∗ ≥ xan) ∼ x−(α−1)n−1. Moreover for some

slowly varying function L̃ we have that an = n
1

α−1 L̃(n).
In this case we have that the slowing is caused by the number of excursions in traps.

Since β is small (i.e. less than μ−1) we have that the expected time spent in a trap
is finite. The number of excursions the walk takes into a branch is of the same order
as the number of buds; since the size-biased law has infinite mean there are a large
number of buds and therefore a large number of excursions. The main result for IVFE
is Theorem 1 which reflects that �n scales similarly to the sum of independent copies
of ξ∗.

Theorem 1 For IVFE, the laws of the process

(
�nt

an

)

t≥0

converge weakly as n → ∞ under P with respect to the Skorohod J1 topology on
D([0,∞),R) to the law of an α − 1 stable subordinator Rt with Laplace transform

ϕt (s) := E

[
e−sRt

]
= e−Cα,β,μtsα−1

where Cα,β,μ is a constant which we shall determine during the proof (see 9.1).

We refer to the second (σ 2 < ∞, βμ > 1) and third (σ 2 = ∞, βμ > 1) cases
as the finite variance, infinite excursion and infinite variance, infinite excursion cases
respectively.

Definition 2 (FVIE) The offspring distribution has mean μ satisfying 1 < μ−1 < β

and variance σ 2 < ∞.

Definition 3 (IVIE) The offspring distribution has mean μ satisfying 1 < μ−1 < β

and belongs to the domain of attraction of a stable law of index α ∈ (1, 2).

As for IVFE, in IVIE we let L vary slowly at ∞ such that (2.2) holds and (an)n≥1
be some scaling sequence for the size-biased law such that for any x > 0, as n → ∞
we have P(ξ∗ ≥ xan) ∼ x−(α−1)n−1. It then follows that an = n

1
α−1 L̃(n) for some

slowly varying function L̃ . In FVIE, an = n will suffice.
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Escape regimes of biased random walks on Galton–Watson trees 691

In FVIE and IVIE the slowing is caused by excursions in deep traps because the
walk is required to make long sequences of movements against the bias in order to
escape. We shall see that only the depth H (and not the foliage) is important to the
scaling. By comparison with the model in which we strip all of the branch except the
unique self-avoiding path to the deepest point; we see that, by transience, the walk
reaches the deepest point with positive probability and then takes a geometric number
of short excursions with escape probability of the order β−H . In particular, this means
that the expected time spent in a branch of height H will cluster around βH .

Intuitively, the main reason we observe different scalings in these two cases is
due to the way the number of buds affects the height of the branch. The height of a
GW-tree is approximately geometric; in particular, the tallest of n independent trees
will typically be close to log(n)/ log(μ−1). In FVIE the number of buds has finite
mean therefore we see order n buds by level n hence tallest will have height close to
log(n)/ log(μ−1). In IVIE the number of buds has infinite mean but belongs to the
domain of attraction of some stable law. In particular, the number of buds seen by
level n is equal in distribution to the sum of n independent copies of ξ∗ − 1 (which
scales with an). It therefore follows that, in IVIE, the tallest tree up to level n will
have height close to log(an)/ log(μ−1). Since only the deepest trees are significant
and the time spent in a large branch clusters around βH we see that the natural scaling
is β log(n)/ log(μ−1) = n1/γ in FVIE and β log(an)/ log(μ−1) = a1/γn in IVIE.

Since H is approximately geometric we have that βH won’t belong to the domain
of attraction of any stable law. For this reason, as in [4], we only see convergence along
specific increasing subsequences nl(t) := �tμ−l for t > 0 in FVIE and nl(t) such
that anl (t) ∼ tμ−l for IVIE. Such a sequence exists for any t > 0 since by choosing
nl(t) := sup{m ≥ 0 : am < tμ−l} we have that anl < tμ−l ≤ anl+1 and therefore

1 ≥ anl
tμ−l

≥ anl
anl+1

→ 1.

Recalling (1.1), the main results for FVIE and IVIE are Theorems 2 and 3, which
reflect slowing due to deep excursions.

Theorem 2 In FVIE, for any t > 0 we have that as l → ∞
�nl (t)

nl(t)
1
γ

→ Rt

in distribution under P, where Rt is a random variable with an infinitely divisible law.

Theorem 3 In IVIE, for any t > 0 we have that as l → ∞
�nl (t)

a
1
γ

nl (t)

→ Rt

in distribution under P, where Rt is a random variable with an infinitely divisible law.
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692 A. Bowditch

We write rn to be an in IVFE, n1/γ in FVIE and a1/γn in IVIE; then, letting
rn := max{m ≥ 0 : rm ≤ n} we will also prove Theorem 4. This shows that,
although the laws of Xn/rn don’t converge in general (for FVIE and IVIE), the suit-
ably scaled sequence is tight and we can determine the leading order polynomial
exponent explicitly.

Theorem 4 In IVFE, FVIE or IVIE we have that

1. The laws of (�n/rn)n≥0 under P are tight on (0,∞);
2. The laws of (|Xn|/rn)n≥0 under P are tight on (0,∞).

Moreover, in IVFE, FVIE and IVIE respectively, we have that P-a.s.

lim
n→∞

log |Xn|
log(n)

= α − 1;

lim
n→∞

log |Xn|
log(n)

= γ ;

lim
n→∞

log |Xn|
log(n)

= γ (α − 1).

The final case we consider is an extension of a result of [4] for the walk on the
supercritical tree. The argument used for the infinite variance case is generally the
same as in the finite variance case but needs some technical input. This is provided by
three lemmas which we put aside until Sect. 10. For the same reason as in FVIE, we
only see convergence along specific subsequences nl(t) := �t f ′(q)−l for t > 0.

Theorem 5 (Infinite variance supercritical case) Suppose the offspring law belongs
to the domain of attraction of some stable law of index α ∈ (1, 2), has mean μ > 1
and the bias satisfies the bound β > f ′(q)−1. Then,

�nl (t)

nl(t)
1
γ

→ Rt

in distribution as l → ∞ under P, where Rt is a random variable with an infinitely

divisible law whose parameters are given in [4]. Moreover, the laws of (�nn
− 1

γ )n≥0
and (|Xn|n−γ )n≥0 under P are tight on (0,∞) and P-a.s.

lim
n→∞

log |Xn|
log(n)

= γ.

The proofs of Theorems 1, 2 and 3 follow a similar structure to the corresponding
proof of [4] which, for the walk on the supercritical tree, only considers the case in
which the variance of the offspring distribution is finite. However, for the latter reason,
the proofs of Theorems 1 and 3 become more technical in some places, specifically
with regards to the number of traps in a large branch. The proof can be broken down
into a sequence of stages which investigate different aspects of the walk and the tree.
This is ideal for extending the result onto the supercritical tree because many of these
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Escape regimes of biased random walks on Galton–Watson trees 693

behavioural properties will be very similar for the walk on the subcritical tree due to
the similarity of the traps.

In all cases it will be important to decompose large branches. In Sect. 3 we show a
decomposition of the number of deep traps in any deep branch. This is only important
for FVIE and IVIE since the depth of the branch plays a key role in decomposing
the time spent in large branches. In Sect. 4 we determine conditions for labelling a
branch as large in each of the regimes so that large branches are sufficiently far apart
so that, with high probability, the underlying walk won’t backtrack from one large
branch to the previous one. In Sect. 5 we justify the choice of label by showing that
time spent outside these large branches is negligible. From this we then have that �n

can be approximated by a sum of i.i.d. random variables whose distribution depends
on n. In Sect. 6 we only consider IVFE and show that, under a suitable scaling, these
variables converge in distribution which allows us to show the convergence of their
sum. Similarly, in Sect. 7 we show that the random variables, suitably scaled, converge
in distribution for FVIE and IVIE.We then show convergence of their sum in Sect. 8. In
Sect. 9 we prove Theorem 4 which is standard following Theorems 1, 2 and 3. Finally,
in Sect. 10, we prove three short lemmas which extend the main result of [4] to prove
Theorem 5. We require a lot of notation much of which is very similar; a glossary
follows Sect. 10 which includes most of the notation used repeatedly throughout.

3 Number of traps

In this section we show asymptotics for the probability that the height of a branch is
large and use it to determine the distribution over the number of large traps in a large
branch. Unless stated otherwise we assume μ < 1.

In the construction of the subcritical GW-tree conditioned to survive T described
in the introduction, the special vertices form the infinite backbone Y = {ρ0, ρ1, . . .}
consisting of all vertices with an infinite line of descent where ρi is the vertex in
generation i . Each vertex ρi on the backbone is connected to buds ρi, j for j =
1, . . . , dρi − 1 (which are the normal vertices that are offspring of special vertices
in the construction). Each of these is then the root of an f -GW tree Tρi, j . We call
each Tρi, j a trap and the collection from a single backbone vertex (combined with the
backbone vertex) T ∗−

ρi
a branch. Figure 2 shows an example of the first five generations

of a tree T . The solid line represents the backbone and the two dotted ellipses identify
a sample branch and trap. The dashed ellipse indicates the children of ρ1 which, since
ρ1 is on the backbone, have quantity distributed according to the size-biased law. It
will be helpful throughout to work on a dummy branch which is equal in distribution
to T ∗−

ρi
for any i thus we define the following random tree.

Definition 4 (Dummy branch) Define T ∗− to be a random tree rooted at ρ with first
generation verticesρ1, . . . , ρξ∗−1 which are roots of independent f -GW-trees (T ◦

i )ki=1
where ξ∗ is a size biased random variable independent of the rest of the tree. Define
T ◦ to be a dummy f -GW-tree.

The structure of the large traps will have an important role in determining the
convergence of the scaled process. In this section we determine the distribution over

123



694 A. Bowditch

Fig. 2 A sample section of a subcritical tree conditioned to survive with solid lines representing the
backbone Y and dashed lines representing the dangling ends

the number of deep traps rooted at backbone verticeswith at least one deep trap.Wewill
show that there is only a single deep trap at any backbone vertex when the offspring
law has finite variance whereas, when the offspring law belongs to the domain of
attraction of a stable law with index α < 2 we have that the number of deep traps
converges in distribution to a certain heavy tailed law.

A fundamental result for branching processes (see, for example [20]), is that for
μ < 1 and Zn an f -GWprocess, the sequenceP(Zn > 0)/μn is decreasing;moreover,
E[ξ log(ξ)] < ∞ if and only if the limit of P(Zn > 0)μ−n as n → ∞ exists and
is strictly positive. This assumption holds under any of the hypotheses thus for this
paper we will always make this assumption and let cμ be the constant such that

P(Zn > 0) ∼ cμμn . (3.1)

Recall that H(T ) denotes the height of a tree T rooted at ρ. Denote

sm := P
(
H(T ◦) < m

) = 1 − cμμm(1 + o(1)) (3.2)

to be the probability that a given trap is of height at mostm−1 (although in general we
shall write s for convenience). Write N (m) := ∑ξ∗−1

j=1 1{H(T ◦
i )≥m} to be the number

of traps of height at least m in the dummy branch then we are interested in the limit
as m → ∞ of
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Escape regimes of biased random walks on Galton–Watson trees 695

P
(
N (m) = l

∣
∣N (m) ≥ 1

) = P (N (m) = l)

P (N (m) ≥ 1)
(3.3)

for l ≥ 1. Recall that f is the p.g.f. of the offspring distribution, write f (k) for its kth
derivative then we have that

P (N (m) = l) =
∞∑

k=1

P
(
ξ∗ = k

)
P
(
N (m) = l|ξ∗ = k

)

=
∞∑

k=l+1

kpk
μ

sk−1−l(1 − s)l
(
k − 1

l

)

= (1 − s)l

l!μ f (l+1)(s). (3.4)

In particular, we have that

P
(
H(T ∗−) > m

) = P (N (m) ≥ 1) = 1 − f ′(s)/μ. (3.5)

Lemma 3.1 shows that, when σ 2 < ∞, with high probability there will only be a
single deep trap in any deep branch.

Lemma 3.1 When σ 2 < ∞

lim
m→∞ P

(
N (m) = 1

∣
∣N (m) ≥ 1

) = 1.

Proof Using (3.3) and (3.4) we have that

P
(
N (m) = 1

∣
∣N (m) ≥ 1

) = (1 − s) f ′′(s)/μ
1 − f ′(s)/μ

=
∑∞

k=2 k(k − 1)pksk−2

∑∞
k=2 kpk

1−sk−1

1−s

. (3.6)

By monotonicity in s we have that

lim
s→1◦

∞∑

k=2

k(k − 1)pks
k−2 =

∞∑

k=2

k(k − 1)pk

which is finite since σ 2 < ∞. Each summand in the denominator is increasing in s
for s ∈ (0, 1) and by L’Hopital’s rule 1− sk−1 ∼ (k − 1)(1− s) as s → 1◦ therefore,
by monotone convergence, the denominator in the final term of (3.6) converges to the
same limit. ��

In order to determine the correct threshold for labelling a branch as large we will
need to know the asymptotic form of P(N (m) ≥ 1). Corollary 3.2 gives this for the
finite variance case.
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Corollary 3.2 Suppose σ 2 < ∞ then

P (N (m) ≥ 1) ∼ cμE
[
ξ∗ − 1

]
μm = cμ

(
σ 2 + μ2

μ
− 1

)

μm .

Proof Let f∗ denote the p.g.f. of ξ∗ then P(N (m) ≥ 1) = 1 − s−1 f∗(s). Since
σ 2 < ∞ we have that f ′∗(s) exists and is continuous for s ≤ 1 thus as s → 1◦ we
have that f∗(1) − f∗(s) ∼ (1 − s) f ′∗(1) = (1 − s)E[ξ∗]. It therefore follows that

1 − s−1 f∗(s) = f∗(1) − f∗(s) − f∗(s)(1 − s)

s
∼ (1 − s)

(
E
[
ξ∗] − 1

)
.

The result then follows by the definitions of cμ (3.1) and s (3.2). ��
We now consider the case when σ 2 = ∞ but ξ belongs to the domain of attraction

of a stable law of index α ∈ (1, 2). The following lemma concerning the form of the
probability generating function of the offspring distribution will be fundamental in
determining the distribution over the number of large traps rooted at a given backbone
vertex. The case μ = 1 appears in [7]; the proof of Lemma 3.3 is a simple extension
of this hence the proof is omitted.

Lemma 3.3 Suppose the offspring distribution belongs to the domain of attraction of
a stable law with index α ∈ (1, 2) and mean E[ξ ] = μ.

1. If μ ≤ 1 then as s → 1◦

E
[
sξ
] − sμ ∼ �(3 − α)

α(α − 1)
(1 − s)αL((1 − s)−1)

where �(t) = ∫ ∞
0 xt−1e−xdx is the usual gamma function.

2. If μ > 1 then

1 − E
[
sξ
] = μ(1 − s) + �(3 − α)

α(α − 1)
(1 − s)αL

(
(1 − s)−1

)

where L varies slowly at ∞.

When μ < 1 it follows that there exists a function L1 (which varies slowly as
s → 1◦) such that E[sξ ] − sμ = (1 − s)αL1((1 − s)−1) and

lim
s→1◦

L1
(
(1 − s)−1

)

L
(
(1 − s)−1

) = �(3 − α)

α(α − 1)
. (3.7)

Write g(x) = xαL1(x−1) so that f (s) = sμ + g(1 − s) then it follows that

f (l)(s) = sμ−l(μ)l + (−1)l g(l)(1 − s)
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when this exists where (μ)l := ∏l−1
j=0(μ − j) is the Pochhammer symbol. Write

L2(x) := L1(x−1) which is slowly varying at 0. Using Theorem 2 of [19], we see that
xg′(x) ∼ αg(x) as x → 0. Moreover, using an inductive argument in the proof of
this result, it is straightforward to show that for all l ∈ N we have that xg(l+1)(x) ∼
(α − l)g(l)(x) as x → 0. Therefore, for any integer l ≥ 0

lim
x→0+

xl g(l)(x)

g(x)
= (α)l . (3.8)

Proposition 3.4 is the main result of this section and determines the limiting distri-
bution of the number of traps of height at least m in a branch of height greater than
m.

Proposition 3.4 In IVIE, for l ≥ 1 as m → ∞

P (N (m) = l|N (m) ≥ 1) → 1

l!
l∏

j=1

|α − j | .

Proof Recall that by (3.3) and (3.4) we want to determine the asymptotics of 1 −
f ′(s)/μ and (1 − s)l f (l+1)(s)/(l!μ) as s → 1◦. We have that 1 − f ′(s)/μ = 1 −
sμ−1 + g′(1 − s)/μ and g′(1 − s) ∼ α(1 − s)α−1L2(1 − s) as s → 1. Since α < 2,
we have that lims→1◦(1 − sμ−1)(1 − s)1−α = 0 hence

1 − f ′(s)
μ

∼ α

μ
(1 − s)α−1L2(1 − s). (3.9)

For derivatives l ≥ 1 we have that

(1 − s)l f (l+1)(s)

l!μ = (1 − s)l

l!μ
(
sμ−(l+1)(μ)l + (−1)l+1g(l+1)(1 − s)

)
.

By (3.8) we have that (1− s)l g(l+1)(1− s) ∼ (α)l+1(1− s)α−1L2(1− s). For l ≥ 1
we have that l + 1 − α > 0 hence

(1 − s)l f (l+1)(s)

l!μ ∼ |(α)l+1|
l!μ (1 − s)α−1L2(1 − s). (3.10)

Combining (3.3) with (3.9) and (3.10) gives the desired result. ��
Proposition 3.4 will be useful for determining the number of large traps in a large

branch but equally important is the asymptotic relation (3.9) which gives the tail
behaviour of the height of a branch T ∗−. By the assumption on ξ that (2.2) holds we
have that

P
(
ξ∗ ≥ t

) ∼ 2 − α

μ(α − 1)
t−(α−1)L(t) (3.11)
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as t → ∞. Using (3.2), (3.5), (3.7), (3.9) and (3.11), we then have that

P
(
H(T ∗−) > m

) ∼ �(3 − α)cα−1
μ

μ(α − 1)
μm(α−1)L(μ−m) ∼ �(2 − α)cα−1

μ P
(
ξ∗ ≥ μ−m)

.

(3.12)

4 Large branches are far apart

In this section we introduce the conditions for a branch to be large. This will differ in
each of the cases however, since many of the proofs will generalise to all three cases,
we will use the same notation for some aspects.

In IVFE we will have that the slowing is caused by the large number of traps. In
particular, we will be able to show that the time spent outside branches with a large
number of buds is negligible.

Definition 5 (IVFE large branch) For ε ∈ (0, 1) write

ln,ε := a�n1−ε and l+n,ε := a�n1+ε

then we have that P(ξ∗ ≥ ln,ε) ∼ n−(1−ε). We will call a branch large if the number
of buds is at least ln,ε and write D(n) := {x ∈ Y : dx > ln,ε} to be the collection of
backbone vertices which are the roots of large branches.

In FVIE we will have that the slowing is caused by excursions into deep traps.

Definition 6 (FVIE large branch) For ε ∈ (0, 1) write CD := cμE[ξ∗ − 1],

hn,ε :=
⌈

(1 − ε) log(n)

log
(
μ−1

)

⌉

and h+
n,ε :=

⌈
(1 + ε) log(n)

log
(
μ−1

)

⌉

then by Corollary 3.2 we have that

P
(
H

(
T ∗−) > hn,ε

) ∼ CDμhn,ε ≈ CDn−(1−ε).

We will call a branch large if there exists a trap within it of height at least hn,ε and
write D(n) := {x ∈ Y : H(T ∗−

x ) > hn,ε} to be the collection of backbone vertices
which are the roots of large branches. By a large trap we mean any trap of height at
least hn,ε.

In IVIE we will have that the slowing is caused by a combination of the slowing
effects of the other two cases. The height and number of buds in branches have a
strong link which we show more precisely later; this allows us to label branches as
large based on height which will be necessary when decomposing the time spent in
large branches.
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Definition 7 (IVIE large branch) For ε ∈ (0, 1) write

hn,ε :=
⌈
log

(
an1−ε

)

log
(
μ−1

)

⌉

and h+
n,ε :=

⌈
log

(
an1+ε

)

log
(
μ−1

)

⌉

then by (3.12), for CD := �(2 − α)cα−1
μ , we have that

P
(
H

(
T ∗−) > hn,ε

) ∼ CDP
(
ξ∗ ≥ μ−hn,ε

)
≈ CDn−(1−ε). (4.1)

We will call a branch large if there exists a trap of height at least hn,ε and write
D(n) := {x ∈ Y : H(T ∗−

x ) > hn,ε} to be the collection of backbone vertices which
are the roots of large branches. By a large trap we mean any trap of height at least
hn,ε.

We want to show that, asymptotically, the large branches are sufficiently far apart
to ignore any correlation and therefore approximate �n by the sum of i.i.d. random
variables representing the time spent in a large branch. Much of this is very similar to
[4] so we only give brief details.

Write D(n)
m := {x ∈ D(n) : |x | ≤ m} to be the large roots before level m then let

qn := P(ρ ∈ D(n)) be the probability that a branch is large and write

A1(n, T ) :=
{

sup
t∈[0,T ]

∣
∣
∣
∣
∣
∣D(n)

�tn
∣
∣
∣ − �tnqn

∣
∣
∣ < n2ε/3

}

(4.2)

to be the event that the number of large branches by level Tn doesn’t differ too much
from its expected value. Notice that in all three cases we have that qn is of the order
n−(1−ε) thus we expect to see nqn ≈ Cnε large branches by level n.

Lemma 4.1 For any T > 0

lim
n→∞ P

(
A1(n, T )c

) = 0.

Proof For each n ∈ N write

Mn
m :=

∣
∣
∣D(n)

m

∣
∣
∣ − mqn

d=
m∑

k=1

(Bk − qn)

where Bk are independent Bernoulli random variables with success probability qn .
ThenE[Mn

m] = 0 and VarP(Mn
m) = mqn(1−qn) therefore byKolmogorov’smaximal

inequality

P
(

max
1≤m≤�nT 

∣
∣Mn

m

∣
∣ ≥ n2ε/3 − 1

)

≤
cVarP

(
Mn

�nT 
)

n4ε/3
≤ cnTqn

n4ε/3
≤ CTn−ε/3.
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Since |�ntqn − �ntqn| ≤ 1 we have that

sup
t∈[0,T ]

∣
∣
∣
∣
∣
∣D(n)

�tn
∣
∣
∣ − �tnqn

∣
∣
∣ ≤ max

1≤m≤�nT 
∣
∣Mn

m

∣
∣ + sup

0≤t≤T
|tnqn − �ntqn|

≤ max
1≤m≤�nT 

∣
∣Mn

m

∣
∣ + 1

which proves the statement. ��
We want to show that all of the large branches are sufficiently far apart such that

the walk doesn’t backtrack from one to another. For t > 0 and κ ∈ (0, 1 − 2ε) write

D(n, t) :=
⎧
⎨

⎩
min

x,y∈D(n)
�nt: x �=y

d(x, y) > nκ

⎫
⎬

⎭
∩
{
ρ /∈ D(n)

}

to be the event that all large branches up to level �nt are of distance at least nκ apart
and the root of the tree is not the root of a large branch. A union bound shows that
P(D(n, t)c) → 0 as n → ∞ uniformly over t in compact sets.

We want to show that, with high probability, once the walk reaches a large branch
it never backtracks to the previous one. For t > 0 write

A(0)
2 (n, t) :=

�nt⋂

i=0

⋂

m≥�Y
ρi

{|Ym | > i − C log(n)
}

to be the event that the walk never backtracks distance C log(n) (where �Y
n :=

min{m ≥ 0 : Ym = ρn}). For x ∈ T write τ+
x = inf{n > 0 : Xn = x} to be

the first return time of x . Comparison with a simple random walk on Z shows that for

k ≥ 1 we have that the escape probability is Pρk

(
τ+
ρk−1

< ∞
)

= β−1 hence, using

the Strong Markov property,

Pρm

(
τ+
ρ0

< ∞) = β−m .

Using a union bound we see that

P

(
A(0)
2 (n, t)c

)
≤ Cntβ−C log(n) → 0 (4.3)

forC sufficiently large. Combining thiswithD(n, t)wehave thatwith high probability
the walk never backtracks from one large branch to a previous one.

5 Time is spent in large branches

In this section we show that the time spent up to time �n outside large branches is
negligible. Combined with Sect. 4 this allows us to approximate �n by the sum of
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i.i.d. random variables. We begin with some general results concerning the number of
excursions into traps and the expected time spent in a trap of height at most m.

Recall that ρi, j are the buds connected to the backbone vertex ρi , that c(ρi ) :=
{ρi, j } j ∪ {ρi+1} is the collection of all offspring of ρi and dρi = |c(ρi )| is the number
of offspring. We write Wi, j := |{m ≥ 0 : Xm−1 = ρi , Xm = ρi, j }| to be the number
of excursions into the j th trap of the i th branch where we setWi, j := 0 if ρi, j doesn’t
exist in the tree. Lemma 5.1 shows that, conditional on the number of buds, the number
of excursions follows a geometric law.

Lemma 5.1 For any i, k ∈ N and A ⊂ {1, . . . , dρi − 1}, when β > 1

∑

j∈A

Wi, j ∼ Geo

(
β − 1

(|A| + 1)β − 1

)

with respect to PT . In particular for any j ≤ k we have that Wi, j ∼ Geo(p) where
p = (β − 1)/(2β − 1).

Moreover, under this law, (Wi, j ) j∈A have a negative multinomial distribution with
one failure until termination and probabilities

q j :=
⎧
⎨

⎩

β−1
(|A|+1)β−1 j = 0

β
(|A|+1)β−1 j ∈ A

that fromρi the next excursionwill be into the j th trap (where j = 0 denotes escaping).

Proof From ρi, j the walkmust return to ρi before escaping therefore sincePρi, j (τ
+
ρi

<

∞) = 1, any traps not in the set we consider can be ignored and it suffices to assume
that A = {1, . . . , k}. By comparison with a biased random walk on Z we have that
Pρi+1(τ

+
ρi

= ∞) = 1−β−1. If dρi = k+1 thenPρi (τ
+
x = miny∈c(ρi ) τ+

y ) = (k+1)−1

for any x ∈ c(ρi ). The probability of never entering a trap in the branch T ∗−
ρi

is,
therefore,

Pρi

⎛

⎝
k⋂

j=1

{
τ+
ρi, j

= ∞
}
⎞

⎠ =
∞∑

l=0

(
1

k + 1
β−1

)l (1 − β−1

k + 1

)

= β − 1

(k + 1)β − 1
.

Each excursion ends with the walker at ρi thus the walk takes a geometric number
of excursions into traps with escape probability (β − 1)/((k + 1)β − 1). The second
statement then follows from the fact that the walker has equal probability of going
into any of the traps. ��

For a fixed tree T with nth generation size ZT
n where ZT

1 > 0 it is classical (e.g.
[22]) that

ET
ρ

[
τ+
ρ

] = 2
∑

n≥1

ZT
n βn−1

ZT
1

. (5.1)
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Let T ← be an f -GW tree rooted at ←−ρ conditioned to have a single first generation
vertex which we label ρ. Notice that this has the same distribution as an f -GW-tree
T ◦ to which we append a single ancestor of the root. From (5.1) it follows that

ET ←
ρ

[
τ+←−ρ

]
= ET ←

←−ρ
[
τ+←−ρ

]
− 1 = 2

∑

n≥0

ZT ◦
n βn − 1.

For any m ≥ 1 we have that P(H(T ←) ≤ m) ≥ p0 therefore, for some constant C ,

E
[
ET ←

ρ

[
τ+←−ρ

] ∣
∣H(T ←)≤m

]
≤

E
[
2
∑m−1

n=0 ZT ◦
n βn − 1

]

P (H(T ←) ≤ m)
≤

⎧
⎪⎨

⎪⎩

C(μβ)m βμ > 1

Cm βμ = 1

C βμ < 1.
(5.2)

Recall that �Y
n is the first hitting time of ρn for the underlying walk Y and write

A3(n) :=
{
�Y

n ≤ C1n
}

to be the event that leveln is reachedby timeC1n by thewalk on the backbone. Standard
large deviation estimates yield that limn→∞ P(A3(n)c) = 0 forC1 > (β+1)/(β−1).

For the remainder of this section we mainly consider the case in which ξ belongs to
the domain of attraction of a stable law of index α ∈ (1, 2). The case in which the off-
spring law has finite variance will proceed similarly however since the corresponding
estimates are much simpler in this case we omit the proofs.

In IVIE and IVFE, for t > 0, let the event that there are at most log(n)an buds by
level �nt be

A4(n, t) :=
⎧
⎨

⎩

�nt∑

k=0

(dρk − 1) ≤ log(n)an

⎫
⎬

⎭
.

The variables dρk are i.i.d. with the law of ξ∗ therefore the laws of a−1
�nt

∑�nt
k=1(ξ

∗
k −1)

converge to some stable law G∗ where limn→∞ G
∗
(Ctα−1 log(n)) = 0 uniformly

over t ≤ T therefore we have that limn→∞ P(A4(n, t)c) = 0.
In FVIE write

A4(n, t) :=
⎧
⎨

⎩

�nt∑

k=0

(dρk − 1) ≤ log(n)n

⎫
⎬

⎭

then Markov’s inequality gives that limn→∞ P(A4(n, t)c) = 0.
Write

A5(n) :=
{

max
i, j

∣
∣
{
k ≤ ��nt : Xk−1 = ρi , Xk = ρi, j

}∣
∣ ≤ C2 log(n)

}

(5.3)
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to be the event that any trap is entered at most C2 log(n) times. By Lemma 5.1 the
number of entrances into ρi, j has the law of a geometric random variable of parameter
p = (β − 1)/(2β − 1) hence using a union bound we have that

P
(
A5(n, t)c ∩ A4(n, t)

)≤ log(n)anP (Geo(p) > C2 log(n))≤ L(n)n
1

α−1+C2 log(1−p)

where L varies slowly hence the final term converges to 0 for C2 large and
limn→∞ P(A5(n, t)c) = 0.

Propositions 5.2, 5.3 and 5.4 show that any time spent outside large traps is neg-
ligible. In FVIE and IVIE we only consider the large traps in large branches. Recall
that D(n) is the set of roots of large branches and write

K (n) :=
⋃

x∈D(n)

{
Ty : y ∈ c(x)\ {ρ|x |+1

}
, H(Ty) ≥ hn,ε

}

to be the vertices in large traps. In IVFE we require the entire large branch and write

K (n) :=
⋃

x∈D(n)

{y ∈ T ∗−
x }

to be the vertices in large branches. In either case we write χt,n := |{1 ≤ i ≤ ��nt :
Xi−1, Xi ∈ K (n)}| to be the time spent up to ��nt in large traps.

Proposition 5.2 In IVIE, for any t, ε > 0 we have that as n → ∞

P

(∣
∣
∣
∣
∣

��nt − χt,n

a1/γn

∣
∣
∣
∣
∣
≥ ε

)

→ 0.

Proof On A4(n, t) there are at most an log(n) traps by level �nt. We can order these
traps so write T (l,k) to be the duration of the kth excursion into the lth trap and ρ(l)
to be the root of this trap (that is, the unique bud in the trap). Here we consider an
excursion to start from the bud and end at the last hitting time of the bud before
returning to the backbone. Recall that on A3(n) the walk Y reaches level n by time
C1n and on A5(n) no trap up to level n is entered more than C2 log(n) times. Using
the estimates on A3, A4 and A5 we have that

P

(∣
∣
∣
∣
∣

��nt − χt,n

a1/γn

∣
∣
∣
∣
∣
≥ ε

)

≤ o(1)

+P

⎛

⎝C1nt +
an log(n)∑

l=0

C2 log(nt)∑

k=1

(
2 + T (l,k)1{H(Tρ(l))<hn,ε}

)
≥ εa

1
γ
n

⎞

⎠ .
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Since a
1
γ
n � an log(n)2 � n, for n sufficiently large we have that, using Markov’s

inequality and (5.2) with m = hn,ε, the second term can be bounded above by

2ε−1a
− 1

γ
n E

⎡

⎣
an log(n)∑

l=0

C2 log(nt)∑

k=1

T (l,k)1{H(Tρ(l))<hn,ε}
⎤

⎦ ≤ Ct,ε log(n)2a
1− 1

γ
n a

1
γ

−1

n1−ε .

Combining constants and slowly varying functions into a single function Lt,ε such
that for any ε̃ > 0 we have that Lt,ε(n) ≤ nε̃ for n sufficiently large we then have that

P

(∣
∣
∣
∣
∣

��nt − χt,n

a1/γn

∣
∣
∣
∣
∣
≥ ε

)

≤ o(1) + Lt,ε(n)n−ε
1
γ −1

α−1

which converges to 0 since α, 1
γ

> 1. ��
Using A3, A5 and the form of A4 for FVIE, the technique used to prove Propo-

sition 5.2 extends straightforwardly to prove Proposition 5.3 therefore we omit the
proof.

Proposition 5.3 In FVIE, for any t, ε > 0 we have that as n → ∞

P

(∣
∣
∣
∣
��nt − χt,n

n1/γ

∣
∣
∣
∣ ≥ ε

)

→ 0.

Similarly, we can show a corresponding result for IVFE.

Proposition 5.4 In IVFE, for any t, ε > 0, as n → ∞

P

(∣
∣
∣
∣
��nt − χt,n

an

∣
∣
∣
∣ ≥ ε

)

→ 0.

Proof We begin by bounding the total number of traps in small branches. Recall from
Definition 5 that ln,ε ≤ an1−ε . Let c ∈ (0, 2−α) then, by Markov’s inequality and the
truncated first moment asymptotic:

E
[
ξ∗1{ξ∗≤x}

] ∼ Cx2−αL(x) (5.4)

as x → ∞ for some constant C (see for example [12], IX.8), for n large

P

⎛

⎝
�nt∑

k=0

(dρk − 1)1{dρk−1≤ln,ε

} ≥ n
1−cε
α−1

⎞

⎠ ≤
E
[∑�nt

k=0(dρk − 1)1{dρk−1≤ln,ε

}
]

n
1−cε
α−1

≤ n− ε(2−α+c)
α−1 Lt (n)

where Lt (n) varies slowly at ∞. This converges to 0 as n → ∞. We can order the
traps in small branches and write T (l,k) to be the duration of the kth excursion in the
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lth trap not in a large branch where we consider an excursion to start and end at the
backbone. Using A3 and A5 to bound the time taken by Y to reach level nt and the
number of entrances into traps up to level nt we have that for n suitably large

P

(∣
∣
∣
∣
��nt − χt,n

an

∣
∣
∣
∣ ≥ ε

)

≤ o(1) + P

⎛

⎜
⎝

n
1−cε
α−1∑

l=0

C2 log(nt)∑

k=0

T (l,k) ≥ ε

2
an

⎞

⎟
⎠ .

Using Markov’s inequality on the final term yields

P

⎛

⎜
⎝

n
1−cε
α−1∑

l=0

C2 log(nt)∑

k=0

T (l,k) ≥ ε

2
an

⎞

⎟
⎠ ≤ 2ε−1a−1

n E

⎡

⎢
⎣

n
1−cε
α−1∑

k=0

C2 log(nt)∑

j=0

T (l,k)

⎤

⎥
⎦

≤ n
−cε
α−1 Lt,ε(n)

for some Lt,ε varying slowly at ∞. This converges to 0 as n → ∞ hence the result
holds. ��

Recall that we write rn to be an in IVFE, n1/γ in FVIE and a1/γn in IVIE. Since
��nt − χt,n is non-negative and non-decreasing in t we have that sup0≤t≤T |��nt −
χt,n| = |��nT  − χT,n| therefore Corollary 5.5 follows from Propositions 5.2, 5.3
and 5.4.

Corollary 5.5 In each of IVFE, FVIE and IVIE, for any T > 0

sup
0≤t≤T

∣
∣��nt − χt,n

∣
∣

rn

converges in P-probability to 0.

Let � be the set of strictly increasing continuous functions mapping [0, T ] onto
itself and I the identity map on [0, T ] then we consider the Skorohod J1 metric

dJ1( f, g) := inf
λ∈�

sup
t∈[0,T ]

(| f (t) − g(λ(t))| + |t − λ(t)|) .

Write χ i
n to be the total time spent in large traps of the i th large branch; that is

χ i
n :=

∣
∣
∣
∣

{

m ≥ 0 : Xm−1, Xm ∈
(

T ∗−
ρ+
i

∩ K (n)

)}∣
∣
∣
∣

whereρ+
i is the element ofD(n) which is i th closest toρ. Notice that, whereasχn,t only

accumulates time up to reaching ρ�nt, each χ i
n may have contributions at arbitrarily

large times. Recall that A(0)
2 (n, t) is the event that the walk never backtracks distance
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706 A. Bowditch

C log(n) along the backbone from a backbone vertex up to level �nt. On A(0)
2 (n, T )

we therefore have that for all t ≤ T

∣
∣
∣D(n)

�nt−C log(n)
∣
∣
∣

∑

i=1

χ i
n ≤ χn,t ≤

∣
∣
∣D(n)

�nt
∣
∣
∣

∑

i=1

χ i
n

where, on D(n, t), the J1 distance between the two sums in the above expression can
be bounded above by C log(n). In particular, using that A(0)

2 (n, T ) and D(n, t) occur
with high probability with the tightness result we prove in Sect. 9, in order to prove
Theorems 1, 2 and 3 it will suffice to consider the time spent in large traps up to level
�nt under the appropriate scaling.

Let (X (i)
n )i≥1 be independent walks on T with the law of Xn and (Y (i)

n )i≥1 the
corresponding backbone walks. For i ≥ 1 let χ̃ i

n be the time spent in the i th large trap

by X (i)
n and

χ̃t,n :=
�ntqn∑

i=1

χ̃ i
n .

The random variables χ̃ i
n are independent copies (under P) of times spent in large

branches; moreover, on D(n, t), ρ /∈ D(n) therefore they are identically distributed.
Let E extend to the enlarged space.

Lemma 5.6 In each of IVFE, FVIE and IVIE,

1. as n → ∞

dJ1

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

∣
∣
∣D(n)

�nt
∣
∣
∣

∑

i=1

χ i
n

rn

⎞

⎟
⎟
⎠

t∈[0,T ]

,

⎛

⎝
�tnqn∑

i=1

χ i
n

rn

⎞

⎠

t∈[0,T ]

⎞

⎟
⎟
⎠

converges to 0 in probability;
2. for any bounded H : D([0, T ],R) → R continuous with respect to the Skorohod

J1 topology, as n → ∞
∣
∣
∣
∣
∣
∣
E

⎡

⎣H

⎛

⎝

⎛

⎝
�tnqn∑

i=1

χ i
n

rn

⎞

⎠

t∈[0,T ]

⎞

⎠

⎤

⎦ − E

⎡

⎣H

⎛

⎝

⎛

⎝
�tnqn∑

i=1

χ̃ i
n

rn

⎞

⎠

t∈[0,T ]

⎞

⎠

⎤

⎦

∣
∣
∣
∣
∣
∣
→ 0.

Proof By definition of dJ1 , the distance in statement 1 is equal to

inf
λ∈�

sup
t∈[0,T ]

⎛

⎜
⎜
⎝

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣D(n)

�nt
∣
∣
∣

∑

i=1

χ i
n

rn
−

�λ(t)nqn∑

i=1

χ i
n

rn

∣
∣
∣
∣
∣
∣
∣
∣

+ |λ(t) − t |

⎞

⎟
⎟
⎠ .
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For m ∈ N let λn(m/n) := |D(n)
m |(nqn)−1 then define λn(t) by the usual linear

interpolation. It follows that |D(n)
�nt| = �λn(t)nqn and the above expression can be

bounded above by

sup
t∈[0,T ]

∣
∣
∣
∣
∣
∣
t −

∣
∣
∣D(n)

�nt
∣
∣
∣

nqn

∣
∣
∣
∣
∣
∣

which converges to 0 by Lemma 4.1 since n2ε/3(nqn)−1 → 0.
For i ≥ 1 let

A(i)
2 (n, t) :=

�nt⋂

j=0

⋂

m≥�Y (i)
ρ j

{∣
∣
∣Y (i)

m

∣
∣
∣ > j − C log(n)

}

be the analogue of A(0)
2 (n, t) for the i th copy and

Ã2(n, t) := D(n, t) ∩
�ntqn⋂

i=0

A(i)
2 (n, t)

be the event that ρ is not the root of a large branch, on each of the first �ntqn� copies
the walk never backtracks distance C log(n) and that large branches are of distance at
least nκ apart.

E

⎡

⎣H

⎛

⎝

⎛

⎝
�tnqn∑

i=1

χ i
n

rn

⎞

⎠

t∈[0,T ]

⎞

⎠ 1 Ã2(n,T )

⎤

⎦ = E

⎡

⎣H

⎛

⎝

⎛

⎝
�tnqn∑

i=1

χ̃ i
n

rn

⎞

⎠

t∈[0,T ]

⎞

⎠ 1 Ã2(n,T )

⎤

⎦

therefore

∣
∣
∣
∣
∣
∣
E

⎡

⎣H

⎛

⎝

⎛

⎝
�tnqn∑

i=1

χ i
n

rn

⎞

⎠

t∈[0,T ]

⎞

⎠

⎤

⎦ − E

⎡

⎣H

⎛

⎝

⎛

⎝
�tnqn∑

i=1

χ̃ i
n

rn

⎞

⎠

t∈[0,T ]

⎞

⎠

⎤

⎦

∣
∣
∣
∣
∣
∣

≤ ||H ||∞
(
�nTqn�P

(
A(0)
2 (n, T )c

)
+ P

(
D(n, T )c

))

which converges to 0 as n → ∞ for C large by the same argument as (4.3) and that
P(D(n, T )c) → 0. ��

Using Corollary 5.5 and Lemma 5.6, in order to show the convergence of��nt/rn ,
it suffices to show the convergence of the scaled sum of independent random variables
χ̃t,n/rn .
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6 Excursion times in dense branches

In this section we only consider IVFE. The main tool will be Theorem 6, which is
Theorem 10.2 in [4], and is itself a consequence of Theorem IV.6 in [23].

Theorem 6 Let n(t) : [0,∞) → N and for each t let {Rk(t)}n(t)
k=1 be a sequence of

i.i.d. random variables. Assume that for every ε > 0 it is true that

lim
t→∞P(R1(t) > ε) = 0.

Now let L(x) : R\{0} → R be a real, non-decreasing function satisfying
limx→∞ L(x) = 0 and

∫ a
0 x2dL(x) < ∞ for all a > 0. Suppose d ∈ R and σ ≥ 0,

then the following statements are equivalent:

1. As t → ∞
n(t)∑

k=1

Rk(t)
d→ Rd,σ,L

where Rd,σ,L has the law I(d, σ,L), that is,

E

[
eit Rd,σ,L

]
:= exp

(

idt +
∫ ∞

0

(

eitx − 1 − i t x

1 + x2

)

dL(x)

)

. (6.1)

2. For τ > 0 let Rτ (t) := R1(t)1{|R1(t)|≤τ } then for every continuity point x of L

d = lim
t→∞ n(t)E[Rτ (t)] +

∫

|x |>τ

x

1 + x2
dL(x) −

∫

0<|x |≤τ

x3

1 + x2
dL(x),

σ 2 = lim
τ→0

lim sup
t→∞

n(t)Var(Rτ (t)),

L(x) =
{
limt→∞ n(t)P(R1(t) ≤ x) x < 0

− limt→∞ n(t)P(R1(t) > x) x > 0

In our case, n(t) will be the number of large branches up to level �nt and {Rk}n(t)
k=1

independent copies of the time spent in a large branch.
Since we are now working with i.i.d. random variables we will simplify notation

by considering the dummy branch T ∗− defined in Definition 4 which has root ρ

and first generation vertices ρ1, . . . , ρξ∗−1 which are roots of f -GW-trees (T ◦
j )

ξ∗−1
j=1

(Fig. 3). We then let (W j )
ξ∗−1
j=1 have the multinomial distribution determined in

Lemma 5.1; that is, W j represents the number of excursions into the j th trap of
T ∗−. For the biased random walk Xn on T ∗− started from ρ, let T j,k denote the dura-
tion of the kth excursion in the j th trap where we recall that in IVFE the excursion
starts and ends at the root ρ. We then have that
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Fig. 3 A dummy tree T ∗− with five buds, each of which is the root of an independent, unconditioned
subcritical GW-tree

χ̃n :=
ξ∗−1∑

j=1

W j
∑

k=1

T j,k . (6.2)

is equal in distribution under P(·|ξ∗ > ln,ε) to χ̃ i
n under P for any i .

For K ≥ ln,ε − ln,0 write LK := ln,0 + K then denote PK (·) := P
(·|ξ∗ − 1 = LK

)

and PK (·) := P
(·|ξ∗ − 1 = LK

)
. We now proceed to show that under PK

ζ (n) := 1

ξ∗ − 1

ξ∗−1∑

j=1

W j
∑

k=1

T j,k (6.3)

converges in distribution to some random variable Z∞ whose distribution doesn’t
depend on K .

We start by showing that the excursion times T j,k don’t differ greatly from
ET ∗−[T j,k]. In order to do this we require moment bounds on T j,k however since
E[ξ2] = ∞ we don’t have finite variance of the excursion times and thus we require
a more subtle treatment. Recall that for a tree T we denote ZT

n to be the size of the
nth generation. Excursion times are first return times τ+

ρ conditioned on the first step
therefore pruning buds and using (5.1) we have that the expected excursion time in a
trap T ◦

j is
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710 A. Bowditch

ET ∗−
ρ

[
T j,k

]
= ET ∗−

ρ

[
τ+
ρ

∣
∣X1 = ρ j

] =
∞∑

n=0

Z
T ◦
j

n βn ≤ H
(
T ◦
j

)
sup
n

Z
T ◦
j

n βn . (6.4)

Using that P(ZT ◦
n > 0) ∼ cμμn (from (3.1)) we see that for n large there are no

traps of height greater than C log(n) for some constant C thus for our purposes it will
suffice to study supn Z

T ◦
n βn .

Lemma 6.1 Let Zn bea subcriticalGalton–Watsonprocesswithmeanμandoffspring
ξ satisfying E[ξ1+ε̃] < ∞ for some ε̃ > 0. Suppose 1 < β < μ−1, then there exists
κ > 0 such that for all ε ∈ (0, κ) we have that (Znβ

n)1+ε is a supermartingale.

Proof Let Fn := σ(Zk; k ≤ n) denote the natural filtration of Zn and (ξk)k≥1 be
independent copies of ξ .

E
[(
Znβ

n)1+ε ∣∣Fn−1

]
=

(
Zn−1β

n−1
)1+ε

β1+εE

⎡

⎢
⎣

⎛

⎝
Zn−1∑

k=1

ξk

Zn−1

⎞

⎠

1+ε
∣
∣
∣Zn−1

⎤

⎥
⎦

≤
(
Zn−1β

n−1
)1+ε

β1+εE

⎡

⎣
Zn−1∑

k=1

ξ1+ε
k

Zn−1

∣
∣
∣Zn−1

⎤

⎦

=
(
Zn−1β

n−1
)1+ε

β1+εE
[
ξ1+ε

]

where the inequality follows by convexity of f (x) = x1+ε . From this it follows that
for ε ∈ (0, α − 1)

E
[
(Znβ)1+ε

]
≤ E

[
(Zn−1β)1+ε

]
E
[
(ξβ)1+ε

]
≤ E

[
(ξβ)1+ε

]n
< ∞.

Fix λ = (μ/β)1/2 then μ < λ and for ε > 0 sufficiently small λβ1+ε < 1. By
dominated convergence E[ξ1+ε] < λ for all ε small. In particular, β1+εE[ξ1+ε] < 1
for ε suitably small and therefore (Znβ

n)1+ε is a supermartingale. ��
Lemma 6.2 In IVFE, we can choose ε > 0 such that for any t > 0 there exists a
constant Ct such that

sup
K≥−(an−ln,ε)

P
K

⎛

⎝

∣
∣
∣
∣
∣
∣

1

LK

LK∑

j=1

W j
∑

k=1

(T j,k − ET ∗− [
T j,1

]
)

∣
∣
∣
∣
∣
∣
> t

⎞

⎠ ≤ Ctn
−2ε.

Proof Write Em := ⋂m
j=1

{
H(T ◦

j ) ≤ C log(m)
}
to be the event that none of the first

m trees have height greater thanC log(m). From (3.1) P(H(T ◦
j ) ≥ m) ∼ cμμm hence

we can choose C̃ > cμ such that

P(Ec
m) ≤ mP

(
H(T ◦

j ) > C log(m)
)

≤ C̃mμC log(m).
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Thus choosing C > 1/ log(μ−1) and c = C log(μ−1) − 1 > 0 we have that
P(Ec

m) ≤ C̃m−c for m sufficiently large. By Lemma 6.1 we have that (Zkβ
k)1+ε

is a supermartingale for ε > 0 sufficiently small where Zn is the process associated
to T ◦ therefore by Doob’s supermartingale inequality

P

(

sup
k≤m

Zkβ
k ≥ x

)

= P

(

sup
k≤m

(Zkβ
k)1+ε ≥ x1+ε

)

≤ E
[
Z1+ε
0

]
x−(1+ε).

Using the expression (6.4) for the expected excursion time it follows that

P
(
ET ◦

j

[
T j,1

]
> x

∣
∣H

(
T ◦
j

)
≤ C log(m)

)
≤ C log(m)1+εx−(1+ε). (6.5)

In particular, for some slowly varying function L

E

⎡

⎣ET ◦
j

[
T j,1

]2
1{

E
T ◦
j [T j,1]≤m

}
∣
∣H

(
T ◦
j

)
≤ C log(m)

⎤

⎦ ≤ CL(m)m1−ε. (6.6)

Let κ = ε/(2(1+ ε)) then write Em := Em ∩⋂m
j=1{ET ◦

j [T j,1] ≤ m1−κ} to be the
event that no trap is of height greater than C log(m) and the expected excursion time
in any trap is at most m1−κ . For m sufficiently large by (6.5) we have that

P
(
E
c
m

)
≤ P

⎛

⎝
m⋃

j=1

{
ET ◦

j

[
T j,1

]
> m1−κ

} ∣
∣
∣H(T ◦

j ) ≤ C log(m) ∀ j ≤ m

⎞

⎠ + P
(
Ec
m

)

≤ mC log(m)1+εm−(1−κ)(1+ε) + C̃m−c.

Write Em := Em ∩ ⋂m
j=1{W j ≤ C ′ log(m)} for C ′ > (2β − 1)/(β − 1) to be

the event that no trap is of height greater than C log(m), entered more than C ′ log(m)

times or has expected excursion time greater than m1−κ . Then, by a union bound and
the geometric distribution of W j from Lemma 5.1

P

(
E
c

m

)
≤ P(E

c
m) + mP(W 1 > C ′ log(m))

≤ C̃

(

log(m)1+εm1−(1−κ)(1+ε) + m−c + m1−C ′ β−1
2β−1

)

(6.7)
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form large. Since (1 − κ)(1+ ε) > 1we can choose ε < 1
2 min {(1 − κ)(1 + ε) − 1,

c,C ′ β−1
2β−1 − 1

}
then we have that P

(
E
c

m

)
≤ C̃m−2ε and

P

⎛

⎝

∣
∣
∣
∣
∣
∣

1

m

m∑

j=1

W j
∑

k=1

(T j,k − ET ◦
j [Tj,k])

∣
∣
∣
∣
∣
∣
> t

⎞

⎠

≤ E

⎡

⎣

∑m
j=1 C log(m)Var

P
T ◦
j

((
T j,1 − ET ◦

j
[
T j,1

])
1
Em

)

(mt)2

⎤

⎦ + P

(
E
c

m

)

≤ C log(m)

mt2
m(1−ε)L(m) + C̃m−2ε

for some slowly varying function L . Here the first inequality comes from Chebyshev
and the second holds due to (6.6). Since ε > 0 we can choose ε ∈ (0, ε/2) then

P

⎛

⎝

∣
∣
∣
∣
∣
∣

1

m

m∑

j=1

W j
∑

k=1

(
Tj,k − ET ◦

j
[
Tj,k

])
∣
∣
∣
∣
∣
∣
> t

⎞

⎠ ≤ Ctm
−2ε.

In particular, this holds for m = LK ≥ an1−ε thus since α < 2

sup
K≥−(an−ln,ε)

P
K

⎛

⎝

∣
∣
∣
∣
∣
∣

1

LK

LK∑

j=1

W j
∑

k=1

(T j,k − ET ◦
j [T j,1])

∣
∣
∣
∣
∣
∣
> t

⎞

⎠ ≤ Ct sup
K≥−(an−ln,ε)

L
−2ε
K

≤ Cta
−2ε
n1−ε

= Ctn
−2ε

(
n

2−α
α−1 −ε L̃(n1−ε)

)−2ε

which is bounded above by Ctn−2ε for n large whenever ε < (2 − α)/(α − 1). ��
Using this we can now show that the average time spent in a trap indeed converges

to its expectation.

Lemma 6.3 In IVFE, we can find ε > 0 such that for sufficiently large n we have that

sup
K≥−(an−ln,ε)

P
K

⎛

⎝

∣
∣
∣
∣
∣
∣

1

LK

LK∑

j=1

W j
(
ET ◦

j

[
T j,1

]
− E

[
T 1,1

])
∣
∣
∣
∣
∣
∣
> t

⎞

⎠ ≤ r(n)

(

n−ε + C

t

)

uniformly over t ≥ 0 where r(n) = o(1).

Proof We continue using the notation defined in Lemma 6.2 and also define the event

E j
m :=

{
H

(
T ◦
j

)
≤ C̃ log(m)

}
∩
{
W j ≤ C log(m)

}
∩
{
ET ◦

j

[
T j,1

]
≤ m1−κ

}
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that the j th trap isn’t tall, entered many times and that the expected excursion time in
it isn’t large.

P

⎛

⎝

∣
∣
∣
∣
∣
∣

1

m

m∑

j=1

W j
(
ET ◦

j

[
T j,1

]
− E

[
T 1,1]

)
∣
∣
∣
∣
∣
∣
> t

⎞

⎠

≤ E

⎡

⎣P

⎛

⎝

∣
∣
∣
∣
∣
∣

1

m

m∑

j=1

W j
(
ET ◦

j

[
T j,1

]
1
E j
m

− E
[
T 1,1] 1

E j
m

)
∣
∣
∣
∣
∣
∣
> t

∣
∣
∣(W j )mj=1

⎞

⎠

⎤

⎦+o(m−ε).

Since E[ET ◦
j [T j,11

E j
m
]] = E[T j,11

E j
m
] �= E[E[T 1,1]1

E j
m
] we have that the summand

in the right hand side doesn’t have zero mean thus we perform the splitting:

E

⎡

⎣P

⎛

⎝

∣
∣
∣
∣
∣
∣

1

m

m∑

j=1

W j (ET ◦
j [T j,1]1

E j
m

− E[T j,1]1
E j
m
)

∣
∣
∣
∣
∣
∣
> t

∣
∣
∣(W j )mj=1

⎞

⎠

⎤

⎦

≤ E

⎡

⎣P

⎛

⎝

∣
∣
∣
∣
∣
∣

1

m

m∑

j=1

W j (ET ◦
j [T j,1]1

E j
m

− E[T j,11
E j
m
])
∣
∣
∣
∣
∣
∣
> t/3

∣
∣
∣(W j )mj=1

⎞

⎠

⎤

⎦

+ E

⎡

⎣P

⎛

⎝

∣
∣
∣
∣
∣
∣

1

m

m∑

j=1

W j (E[T j,11
E j
m
] − E[T j,11

E j
m
]1

E j
m
)

∣
∣
∣
∣
∣
∣
> t/3

∣
∣
∣(W j )mj=1

⎞

⎠

⎤

⎦

+ E

⎡

⎣P

⎛

⎝

∣
∣
∣
∣
∣
∣

1

m

m∑

j=1

W j (E[T j,1]1
E j
m

− E[T j,11
E j
m
]1

E j
m
)

∣
∣
∣
∣
∣
∣
> t/3

∣
∣
∣(W j )mj=1

⎞

⎠

⎤

⎦ .

By Chebyshev’s inequality and the tail bound E[ET ◦
j [T j,1]21{E j

m }] ≤ Cm1−εL(m)

from (6.6) we have that the first term is bounded above by

E

⎡

⎣C log(m)2

(mt/3)2

m∑

j=1

Var
(
ET ◦

j

[
T j,1

]
1
E j
m

)
⎤

⎦ ≤ Ctm
−εL(m)

for some slowly varying function L . The second term is equal to

E

⎡

⎣P

⎛

⎝

∣
∣
∣
∣
∣
∣

1

m

m∑

j=1

W j
E[T 1,11

E j
m
]1

(E j
m)c

∣
∣
∣
∣
∣
∣
> t/3

∣
∣
∣(W j )mj=1

⎞

⎠

⎤

⎦

≤ P

⎛

⎝
m⋃

j=1

(E j
m)c

⎞

⎠ = o(m−ε)
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by (6.7). The final term can be written as

P

⎛

⎝ 1

m

m∑

j=1

W j
E[T j,11

(E j
m )c

]1
E j
m

> t/3

⎞

⎠ ≤ 3

mt

m∑

j=1

E[W j ]E[T j,11
(E j

m )c
]

= C

t
E[T 1,11(E1

m )c ]

which converges to 0 asm → ∞ by dominated convergence since, by (5.2),E[T 1,1] <

∞. We therefore have that the statement holds by setting m = LK . ��
Recall from (6.3) that, under PK , ζ (n) is the average time spent in a trap of a branch

with ξ∗ − 1 = LK buds. From Lemmas 6.2 and 6.3 we have that as n → ∞

sup
K≥−(an−ln,ε)

P
K

⎛

⎝

∣
∣
∣
∣
∣
∣
ζ (n) − E[T 1,1]

LK∑

j=1

W j

LK

∣
∣
∣
∣
∣
∣
> t

⎞

⎠ → 0.

Using (5.1) we have that E[T 1,1] = 2/(1 − βμ). Write θ = (β − 1)(1 − βμ)/(2β)

and let Z∞ ∼ exp(θ).

Corollary 6.4 In IVFE, we can find ε > 0 such that for sufficiently large n we have
that

sup
K≥−(an−ln,ε)

∣
∣
∣PK

(
ζ (n) > t

)
− P

(
Z∞ > t

)∣∣
∣ ≤ r̃(n)

(

n−ε + C

t

)

uniformly over t ≥ 0 where r̃(n) = o(1).

Proof By Lemma 5.1 the sum of W j have a geometric law. In particular,

∣
∣
∣
∣
∣
∣
P(Z∞ > t) − P

K

⎛

⎝E[T 1,1]
LK∑

j=1

W j

LK

> t

⎞

⎠

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
e−θ t − P

K

(

Geo

(
β − 1

(LK + 1)β − 1

)

>
LK t

E[T 1,1]

)∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

e−θ t −
(

1 − β − 1

(LK + 1)β − 1

)
⌈

LK t

E[T 1,1]

⌉∣∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
e−θ t − e

−θ t
LK β

LK β+β−1

∣
∣
∣
∣
∣
+ o

(
L

−1
K

)

≤ Ce−θ t L
−1
K + o

(
L

−1
K

)
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for some constant C independent of K . It therefore follows that the laws of ζ (n)

converge under PK to an exponential law. In particular, using Lemmas 6.2 and 6.3
with the bound

∣
∣
∣
∣
∣
∣
P

K
(
ζ (n) > t

)
− P

⎛

⎝E[T 1,1]
LK∑

j=1

W j

LK

> t

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ P
K

⎛

⎝

∣
∣
∣
∣
∣
∣

1

LK

LK∑

j=1

W j
(
ET ◦

j

[
T j,1

]
− E

[
T 1,1

])
∣
∣
∣
∣
∣
∣
> ε

⎞

⎠

+ P
(
Z∞ ∈ [t − ε, t + ε]

) + O
(
L

−1
K

)

with ε = r(n)1/2t , we have the result since LK ≥ ln,ε � nε. ��
Corollary 6.5 In IVFE, for any τ > 0 fixed

lim
n→∞ sup

C≥0
sup

K≥−(an−ln,ε)

(C ∨ 1)
∣
∣
∣E

[
Z∞1{CZ∞≤τ }

] − E
K
[
ζ (n)1{Cζ (n)≤τ }

]∣
∣
∣ = 0.

Lemma 6.6 shows that the product of an exponential random variable with a heavy
tailed random variable has a similar tail to the heavy tailed variable.

Lemma 6.6 Let X ∼ exp(θ) and ξ be an independent variable which belongs to
the domain of attraction of a stable law of index α ∈ (0, 2). Then P(Xξ > x) ∼
θ−α�(α + 1)P(ξ > x) as x → ∞.

Proof For some slowly varying function L we have that P(ξ ≥ t) ∼ x−αL(x) as
x → ∞.

Fix 0 < u < 1 < v < ∞ then ∀y ≤ u we have that x/y > x thus P(ξ ≥ x/y) ≤
P(ξ ≥ x) it therefore follows that

0 ≤
∫ u

0
θe−θy P(ξ ≥ x/y)

P(ξ ≥ x)
dy ≤

∫ u

0
θe−θydy = 1 − eθu .

For y ∈ [u, v] we have that P(ξ ≥ x/y)/P(ξ ≥ x) → yα uniformly over y therefore

lim
x→∞

∫ v

u
θe−θy P(ξ ≥ x/y)

P(ξ ≥ x)
dy =

∫ v

u
θe−θy yαdy.

Moreover, since this holds for all u ≥ 0 and 1 − eθu → 0 as u → 0 we have that

lim
x→∞

∫ v

0
θe−θy P(ξ ≥ x/y)

P(ξ ≥ x)
dy =

∫ v

0
θe−θy yαdy. (6.8)

Since 0 < P(ξ ≥ x) ≤ 1 for all x < ∞ we have that L is bounded away from
0,∞ on any compact interval thus satisfies the requirements of Potter’s theorem (see

123



716 A. Bowditch

for example [6], 1.5.4) that if L is slowly varying and bounded away from 0,∞ on
any compact subset of [0,∞) then for any ε > 0 there exists Aε > 1 such that for
x, y > 0

L(z)

L(x)
≤ Aε max

{( z

x

)ε

,

(
x

z

)ε}

.

Moreover, ∃c1, c2 > 0 such that c1t−αL(t) ≤ P(ξ ≥ t) ≤ c2t−αL(t) hence we have
that for all y > v P(ξ ≥ x/y)/P(ξ ≥ x) ≤ Cyα+ε . By dominated convergence we
therefore have that

lim
x→∞

∫ ∞

v

θe−θy P(ξ ≥ x/y)

P(ξ ≥ x)
dy =

∫ ∞

v

θe−θy yαdy.

Combining this with (6.8) we have that

lim
x→∞

P(Xξ ≥ x)

P(ξ ≥ x)
= lim

x→∞

∫ ∞

0
θe−θy P(ξ ≥ x/y)

P(ξ ≥ x)
dy

=
∫ ∞

0
θe−θy yαdy = θ−α�(α + 1).

��

We write P
>(·) := P(·|ξ∗ > ln,ε) and P>(·) := P(·|ξ∗ > ln,ε) to be the laws

conditioned on the branch T ∗− being large. From (6.2) we have that (under P) χ̃ i
n

are independent copies of the time spent in a branch χ̃n with respect to P
>. Define

χ̃∞
n := (ξ∗ −1)Z∞ where Z∞ is the exponential random variable used in Corollaries

6.4 and 6.5. Recall that Rd,σ,L has the infinitely divisible given by (6.1). Fix the
sequence (λn)n≥1 converging to some λ > 0 and denote Mλ

n := �λnnε.

Proposition 6.7 In IVFE, for any λ > 0, as n → ∞

Mλ
n∑

i=1

χ̃ i
n

an

d→ Rdλ,0,Lλ

where

dλ =
∫ ∞

0

x

1 + x2
dLλ(x)

Lλ(x) =
{
0 x < 0

−λx−(α−1)θ−(α−1)�(α) x > 0.
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Proof Let ε > 0 then by Markov’s inequality

P
>

(
χ̃n

an
> ε

)

≤ P
>(ξ∗ − 1 ≥ an1−ε/2) + P

⎛

⎝

an1−ε/2∑

j=1

W j
∑

k=1

T j,k ≥ εan

⎞

⎠

≤ P(ξ∗ − 1 ≥ an1−ε/2)

P(ξ∗ − 1 ≥ an1−ε )
+ an1−ε/2

εan
E[W 1]E[T 1,1],

which converges to 0 as n → ∞. Thus, by Theorem 6, it suffices to show that

1.
lim

τ→0+ lim sup
n→∞

Mλ
n VarP>

(
χ̃n

an
1{ χ̃n

an
≤τ }

)

= 0,

2.

Lλ(x) =
⎧
⎨

⎩

limn→∞ Mλ
nP

>
(

χ̃n
an

≤ x
)

x < 0,

− limn→∞ Mλ
nP

>
(

χ̃n
an

> x
)

x > 0,

3.
dλ = lim

n→∞ Mλ
nE

>

[
χ̃n

an
1{ χ̃n

an
≤τ }

]

+
∫

|x |>τ

x

1 + x2
dLλ(x)

−
∫

0<|x |≤τ

x3

1 + x2
dLλ(x)

where dλ and Lλ are as stated above.
We start with the first condition and since λn → λ there exists a constant C such

that

Mλ
n V arP>

(
χ̃n

an
1{ χ̃n

an
≤τ }

)

≤ Cnε
E

>

[(
χ̃n

an

)2

1{ χ̃n
an

≤τ
}

]

≤ Cnε

(

τ 2P>(ξ∗ − 1 ≥ an) + τE>

[
χ̃n

an
1{ξ∗−1<an}

])

.

(6.9)

By the definition of an we have that

P>(ξ∗ − 1 ≥ an) = P(ξ∗ ≥ an)

P(ξ∗ ≥ an1−ε )
∼ n−ε. (6.10)

Conditional on the number of buds ξ∗ we have that the number of excursionsW j into
the j th trap are independent from the excursion times T j,k and both the number of
excursions and the excursion times have finite mean hence
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E
>

[
χ̃n

an
1{ξ∗−1<an}

]

=
an−1∑

r=an1−ε

P(ξ∗ − 1 = r)

P(ξ∗ − 1 ≥ an1−ε )
E

⎡

⎣
r∑

j=1

W j
∑

k=1

T j,k

an

∣
∣
∣ξ∗ − 1 = r

⎤

⎦

≤ E[W 1]E[T 1,1]
P(ξ∗ − 1 ≥ an1−ε )

E
[
ξ∗ − 1

an
1{ξ∗−1≤an}

]

∼ Cn−ε

where the asymptotic holds as n → ∞ by (5.4). In particular, by combining this with
(6.10) in (6.9) we have that Mλ

n VarP>(
χ̃n
an

1{ χ̃n
an

≤τ }) ≤ C(τ 2 + τ) for some constant

C depending on λ hence, as τ → 0+, we indeed have convergence to 0 and therefore
the first condition holds.

We now move on to the Lévy spectral function Lλ. Clearly for x < 0 we have that
Lλ(x) = 0 since χ̃n is a positive random variable. It therefore suffices to consider
x > 0. By Corollary 6.4 we have that the scaled time spent in a large trap ζ (n) [from
(6.3)] converges in distribution to an exponential random variable Z∞ with parameter
θ (which is independent of K ) therefore, since Mλ

n ∼ λnε and χ̃∞
n = (ξ∗ − 1)Z∞ we

have that

Mλ
nP

>

(
χ̃∞
n
an

> x

)

∼ λnε
P

>
(
(ξ∗ − 1)Z∞ > xan

)

∼ λ

P (ξ∗ − 1 ≥ an)

∑

K≥ln,ε−ln,0

P
(
ξ∗ − 1 = LK

)
P
(
LK Z

∞ > xan
)

= λ
P
(
(ξ∗ − 1)Z∞ ≥ xan

)

P (ξ∗ − 1 ≥ an)
−

ln,ε−1∑

j=0

λP
(
ξ∗ − 1 = j

)
P
(
j Z∞ > xan

)

P (ξ∗ − 1 ≥ an)

∼ λθ−(α−1)�(α)x−(α−1).

Where the final asymptotic holds by Lemma 6.6 and because

ln,ε−1∑

j=0

λP (ξ∗ − 1 = j)P ( j Z∞ > xan)

P (ξ∗ − 1 ≥ an)
≤ λ

P
(
Z∞ > xan/an1−ε

)

P (ξ∗ − 1 ≥ an)
= λ

e
−θx an

ln,ε

P (ξ∗ − 1 ≥ an)

which converges to 0 as n → ∞ since ln,ε = a�n1−ε (and therefore an/ ln,ε >> nε).

It now suffices to show that nε
(
P

>
(

χ̃∞
n
an

> x
)

− P
>
(

χ̃n
an

> x
))

converges to 0 as

n → ∞. To do this we condition on the number of buds:

P
>

(
χ̃∞
n

an
> x

)

− P
>

(
χ̃n

an
> x

)

=
∑

K≥ln,ε−ln,0

P>
(
ξ∗ − 1 = LK

)
(

P

(
LK Z∞

an
> x

)

− P
K

(
LK ζ (n)

an
> x

))

.
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We consider positive and negative K separately. For K ≥ 0 we have that

∞∑

K=0

nεP>
(
ξ∗ − 1 = LK

)
∣
∣
∣
∣
∣
P

(
LK Z∞

an
> x

)

− P
K

(
LK ζ (n)

an
> x

)∣
∣
∣
∣
∣

≤ nεP>
(
ξ∗ − 1 ≥ an

)
sup
c≤1
K≥0

∣
∣
∣PK (Z∞ > cx) − P

K (ζ (n) > cx)
∣
∣
∣ . (6.11)

By (6.10) nεP>(ξ∗ −1 ≥ an) converges as n → ∞ hence, using Corollary 6.4, (6.11)
converges to 0. For K ≤ 0, by Corollary 6.4 we have that

0∑

K=−∞
1{K≥ln,ε−ln,0}nεP>

(
ξ∗ − 1 = LK

)
∣
∣
∣
∣
∣
P

(
LK Z∞

an
> x

)

− P
K

(
LK ζ (n)

an
> x

)∣
∣
∣
∣
∣

≤ nε
0∑

K=−∞
1{K≥ln,ε−ln,0}P>

(
ξ∗ − 1 = LK

)
r̃(n)

(

n−ε + Cx LK

an

)

≤ o(1) + Cxr̃(n)nε

an

0∑

K=−∞
1{K≥ln,ε−ln,0}

P
(
ξ∗ − 1 = LK

)

P
(
ξ∗ − 1 ≥ ln,ε

) LK .

For some constant C we have that P(ξ∗ − 1 ≥ ln,ε) ∼ Cn−(1−ε) thus by (5.4)

Cxr̃(n)nε

an

0∑

K=−∞
1{K≥ln,ε−ln,0}

P
(
ξ∗ − 1 = LK

)

P
(
ξ∗ − 1 ≥ ln,ε

) LK

≤ Cxr̃(n)nE

[
ξ∗ − 1

an
1{ξ∗−1≤an}

]

∼ Cxr̃(n).

In particular, since r̃(n) = o(1), we indeed have that this converges to zero and
thus we have the required convergence for Lλ.

Finally, we consider the drift term dλ. Since
∫
0<x≤τ

xdLλ(x) < ∞ we have that

dλ = lim
n→∞ Mλ

nE
>

[
χ̃n

an
1{ χ̃n

an
≤τ

}

]

+
∫ ∞

0

x

1 + x2
dLλ(x) −

∫ τ

0
xdLλ(x).

Wewant to show that dλ = ∫ ∞
0

x
1+x2

dLλ(x) thus we need to show that the other terms
cancel. By definition of P> we have that

E
>

[
χ̃∞
n

an
1{ χ̃∞

n
an

≤τ
}

]

= 1

P
(
ξ∗ − 1 ≥ ln,ε

)E

[
(ξ∗ − 1)Z∞

an
1{ (ξ∗−1)Z∞

an
≤τ

}
∩{ξ∗>ln,ε}

]

.

ByLemma 6.6, (ξ∗−1)Z∞ belongs to the domain of attraction of a stable law of index
α − 1 and satisfies the scaling properties of ξ∗ (up to a constant factor). Therefore,
using that an � ln,ε, we have that
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Mλ
nE

>

[
χ̃∞
n

an
1{ χ̃∞

n
an

≤τ
}

]

∼ λnε

P
(
ξ∗ − 1 ≥ ln,ε

)E

[
(ξ∗ − 1)Z∞

an
1{ (ξ∗−1)Z∞

an
≤τ

}

]

∼ α − 1

2 − α
τ 2−αλθ−(α−1)�(α).

Using the form of the Lévy spectral function we have that

∫ τ

0
xdLλ(x) = λθ−(α−1)�(α)

∫ ∞

τ−(α−1)
x− 1

α−1 dx = α − 1

2 − α
τ 2−αλθ−(α−1)�(α)

thus it remains to show that

nε

(

E
>

[
χ̃∞
n

an
1{ χ̃∞

n
an

≤τ
}

]

− E
>

[
χ̃n

an
1{ χ̃n

an
≤τ

}

])

→ 0.

Similarly to the previous parts we condition on ξ∗ − 1 = LK and consider the sums
over K positive and negative separately. For K ≤ 0

nε
∑

K≤0

P>(ξ∗ − 1 = LK )

∣
∣
∣
∣
∣
∣
E

⎡

⎣ LK Z∞
an

1{ LK Z∞
an

≤τ

}

⎤

⎦ − E
K

⎡

⎣ LK ζ (n)

an
1{ LK ζ (n)

an
≤τ

}

⎤

⎦

∣
∣
∣
∣
∣
∣

≤ nε

P(ξ∗ ≥ ln,ε)
E

[
ξ∗ − 1

an
1{ξ∗≤an }

]

sup
K≤0

∣
∣
∣
∣
∣
∣
E

⎡

⎣Z∞1{
Z∞≤τ

an
LK

}

⎤

⎦ − E
K

⎡

⎣ζ (n)1{
ζ (n)≤τ

an
LK

}

⎤

⎦

∣
∣
∣
∣
∣
∣
.

By definition of ln,ε and properties of stable laws nε
E
[
(ξ∗ − 1)/an1{ξ∗≤an}

]
/P(ξ∗ ≥

ln,ε) converges to some constant as n → ∞. By Corollary 6.5 we therefore have that
this converges to 0. Similarly for K ≥ 0 we have that

nε
∑

K≥0

P>(ξ∗ − 1 = LK )

∣
∣
∣
∣
∣
∣
E

⎡

⎣ LK Z∞

an
1{ LK Z∞

an
≤τ

}

⎤

⎦ − E
K

⎡

⎣ LK ζ (n)

an
1{ LK ζ (n)

an
≤τ

}

⎤

⎦

∣
∣
∣
∣
∣
∣

≤ nεP(ξ∗ ≥ ln,0)

P(ξ∗ ≥ ln,ε)
sup
K≥0

LK

an

∣
∣
∣
∣
∣
∣
E

⎡

⎣Z∞1{
Z∞≤τ

an
LK

}

⎤

⎦ − E
K

⎡

⎣ζ (n)1{
ζ (n)≤τ

an
LK

}

⎤

⎦

∣
∣
∣
∣
∣
∣
.

We have that nεP(ξ∗ ≥ ln,0)/P(ξ∗ ≥ ln,ε) converges to some constant as n → ∞.
The result then follows by Corollary 6.5. ��

This shows the convergence result of Theorem 1 in the sense of finite dimensional
distributions. In Sect. 9 we prove a tightness result which concludes the proof.

7 Excursion times in deep branches

In this section we decompose the time spent in large branches. In FVIE this will be
very similar to the decomposition used in [4] and we won’t consider the argument in
great detail. However, the decomposition required in IVIE requires greater delicacy.
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In Lemmas 7.1, 7.2 and Proposition 7.3 we consider a construction of a GW-tree
conditioned on its height from [14] to show that the time spent in deep traps essentially
consists of some geometric number of excursions from the deepest point in the trap to
itself. That is, as in [4], excursions which don’t reach the deepest point are negligible
as is the time taken for the walk to reach the deepest point from the root of the trap and
the time taken to return to the root from the deepest point when this happens before
returning to the deepest point.

In the remainder of the section we show that, conditional on the exact height of the
branch H , the time spent in the branch scaled by βH converges in distribution along
the given subsequences. In Lemma 7.5 we determine an important asymptotic relation
for the distribution over the number of buds conditional on the height of the branch.
In Lemmas 7.6–7.9 we provide various bounds which allow us, in Proposition 7.10,
to show that the excursion time in a large branch is close to the random variable Zn∞
(defined in (7.23)) which removes some of the dependency on n.

The main result of the section is Proposition 7.14 which shows that the scaled time
spent in a large branch converges in distribution along the given subsequences. As a
prelude to this we prove Lemmas 7.11–7.13 which show that we can reintroduce small
traps into the branch and that the height of a trap is sufficiently close to a geometric
random variable. We then conclude the section by showing that the scaled excursion
times can be dominated by some random variable with a certain moment property
which will be important in Sect. 8.

Recall that T ◦ is an f -GW-tree and H(T ◦) is its height then, following notation
of [4], we denote (φn+1, ψn+1)n≥0 to be a sequence of i.i.d. pairs with joint law

P (φn+1 = j, ψn+1 = k)

:= P(ξ = k)P (H (T ◦) ≤ n − 1) j−1 P (H(T ◦) = n) P (H(T ◦) ≤ n)k− j

P (H(T ◦) = n + 1)
(7.1)

for k = 1, 2, . . . and j = 1, . . . , k. Under this law ψn+1 has the law of the degree of
the root of a GW-tree conditioned to be of height n + 1 and φn+1 has the law over the
first bud to give rise onto a tree of height exactly n. We then construct a sequence of
trees recursively as follows: Set T ≺

0 = {δ} then
1. Let the first generation of T ≺

n+1 be of size ψn+1.
2. Attach T ≺

n to the φn+1th first generation vertex of T ≺
n+1.

3. Attach f -GW-trees conditioned to have height at most n − 1 to the first φn+1 − 1
vertices of the first generation of T ≺

n+1.
4. Attach f -GW-trees conditioned to have height at most n to the remaining ψn+1 −

φn+1 first generation vertices of T ≺
n+1.

Under this construction T ≺
n+1 has the distribution of an f -GW-tree conditioned to

have height exactly n + 1. Write δ0 = δ to be the deepest point of the tree and for
n = 1, 2, . . . write δn to be the ancestor of δ of distance n. The sequence δ0, δ1, . . .

form a ‘spine’ from the deepest point to the root of the tree. We denote T ≺ to be the
tree asymptotically attained. By a subtrap of T ≺ we mean some vertex x on the spine
together with a descendant y off the spine and all of the descendants of y. This is itself
a tree with root x and we write Sx to be the collection of subtraps rooted at x . Figure 4
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722 A. Bowditch

Fig. 4 A GW-tree conditioned to be of height 4 with the solid line representing the spine and dashed lines
representing the subtraps which reach at most level 3 to the left of the spine and at most level 4 to the right
of the spine

shows a construction of T ≺
4 where the solid line represents the spine and the dashed

lines represent subtraps.
We denote Sn, j,1 to be the j th subtrap conditioned to have height at most n − 1

attached to δn and Sn, j,2 to be the j th subtrap conditioned to have height at most n
attached to δn . Recall that d(x, y) denotes the graph distance between vertices x, y
then for k = 1, 2 let

�n, j,k := 2
∑

x∈Sn, j,k\{δn}
βd(x,δn)

denote the weight of Sn, j,k under the invariant measure associated to the conductance
model with conductances β i+1 between levels i, i + 1 and the roots of Sn, j,k (spinal
vertices) denoting level 0. We then write

�n :=
φn−1∑

j=1

�n, j,1 +
ψn−φn∑

j=1

�n, j,2

to denote the total weight of the subtraps of δn then,

ET ≺[R∞] = 2
∞∑

n=0

β−n(1 + �n) (7.2)

is the expected timeR∞ taken for a walk on T ≺ started from δ to return to δ.
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Lemma 7.1 Suppose that ξ belongs to the domain of attraction of a stable law of
index α ∈ (1, 2] and βμ > 1 then

E[R∞] < ∞.

Proof Since β > 1 we have that 2
∑∞

n=0 β−n = 2/(1− β−1) thus by (7.2) it suffices
to find an appropriate bound on E[�n].

E[�n, j,1] ≤ E[�n, j,2] since conditioning the height of the trap to be small only
reduces the weight; therefore, by independence of ψn and �n, j,2

E [�n] = E

⎡

⎣
φn−1∑

j=1

�n, j,1 +
ψn−φn∑

j=1

�n, j,2

⎤

⎦ ≤ E
[
�n,1,2

]
E [ψn] . (7.3)

Using that conditioning the height of a GW-tree T ◦ to be small only decreases the
expected generation sizes and that μβ > 1, by (5.1)

E
[
�n,1,2

]
= 2

n∑

k=1

βkE
[
Zk

∣
∣H

(
T ◦) ≤ n

] ≤ c(βμ)n (7.4)

for some constant c where Zk are the generation sizes of T ◦. Summing over j in
(7.1) shows that P(ψn+1 = k) = P(Z1 = k|H(T ◦) = n + 1). Recalling that sn =
P(H(T ◦) < n),

E
[
ψn+1

] = E
[
Z1

∣
∣H

(
T ◦) = n + 1

] =
∞∑

k=1

kpk

(
skn+1 − skn
sn+2 − sn+1

)

.

By (3.1) 1 − sn+1 ∼ cμn for some positive constant c. Let ε > 0 be such that
1−ε−μ(1+ε) > 0, then for n largewe have that (1−ε)cμn ≤ 1−sn+1 ≤ (1+ε)cμn .
Therefore,

sn+2 − sn+1 = (1 − sn+1) − (1 − sn+2) ≥ (1 − ε − μ(1 + ε)) cμn ≥ C(1 − sn)

for some positive constant C . In particular, when σ 2 < ∞, there exists some constant
c such that

∞∑

k=1

kpk

(
skn+1 − skn
sn+2 − sn+1

)

≤ c
∞∑

k=1

kpk

(
1 − skn
1 − sn

)

≤ cσ 2

where the final inequality comes from that (1 − sk)(1 − s)−1 is increasing in s and
converges to k for any k ≥ 1. It therefore follows that E[�n] ≤ C(βμ)n so indeed

E [R∞] ≤ C
∞∑

n=0

β−n(βμ)n < ∞.
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When ξ has infinite variance but belongs to the domain of attraction of a stable law

∞∑

k=1

kpk
(
skn+1 − skn

)
= μ

((

1 − sn f ′(sn)
μ

)

−
(

1 − sn+1 f ′(sn+1)

μ

))

hence by (3.9) as n → ∞ we have that E[ψn+1] ∼ cμn(α−2)L2(μ
n). Combining this

with (7.3) and (7.4) we have

E [�n] ≤ C(βμ)nμn(α−2)L2(μ
n) = C(βμα−1)nL2(μ

n) (7.5)

therefore using (7.2) for C chosen sufficiently large we have that

E [R∞] ≤ C

(

1 +
∞∑

n=1

μn(α−1)L2(μ
n)

)

< ∞.

��
We therefore have that the expected time taken for a walk started from the deepest

point in a trap (of height H ) to return to the deepest point is bounded above by
E[R∞] < ∞ independently of its height. Recall that τ+

x is the first return time to
x . The following lemma gives the probabilities of reaching the deepest point in a
trap, escaping the trap from the deepest point and the transition probabilities for the
walk in the trap conditional on reaching the deepest point before escaping. The proof
is straightforward by comparison with the biased walk on Z with nearest neighbour
edges so we omit it.

Lemma 7.2 For any tree T of height H + 1 (with H ≥ 1), root ρ and deepest vertex
δ we have that

PT
δH

(
τ+
δ < τ+

ρ

) = 1 − β−1

1 − β−(H+1)

is the probability of reaching the deepest point without escaping and

PT
δ

(
τ+
ρ < τ+

δ

) = 1 − β−1

βH − β−1

is the probability of escaping from the deepest point before returning. Moreover,

PT
δk

(
τ+
δk−1

< τ+
δk+1

∣
∣τ+

δ < τ+
ρ

)
= 1 − β−(H+2−k)

1 − β−(H+1−k)
· β

β + 1

is the probability that the walk restricted to the spine conditioned on reaching δ before
returning to ρ moves towards δ.
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Since the first two probabilities are independent of the structure of the tree except
for the height we write

p1(H) := 1 − β−1

1 − β−(H+1)
(7.6)

to be the probability that thewalk reaches the deepest vertex in the tree before returning
to the root starting from the bud and

p2(H) := 1 − β−1

βH − β−1 (7.7)

to be the probability of escaping from the tree.
For the remainder of the section we will consider only the case that the offspring

distribution belongs to the domain of attraction of some stable law of index α ∈ (1, 2).
Thefirst aim is to proveProposition 7.3which shows that the timeon excursions in deep
traps essentially consists of some geometric number of excursions from the deepest
point to itself. We will then conclude with Corollary 7.4 which is an adaptation for
FVIE and of which we omit the proof.

Recall that ρ+
i is the root of the i th large branch and χ̃ i

n is the time spent in this

branch by the i th walk X (i)
n . This branch has some number Ni buds which are roots

of large traps where, by Proposition 3.4, Ni converges to a heavy tailed distribution.
Let ρ+

i, j be the bud of the j th large trap T +
i, j in this branch then Wi, j := |{m ≥ 0 :

X (i)
m−1 = ρ+

i , X (i)
m = ρ+

i, j }| is the number of times that the j th large trap in the i th

large branch is visited by the i th copy of the walk. Let ω(i, j,0) := 0 then for k ≤ Wi, j

write ω(i, j,k) := min{m > ω(i, j,k−1) : X (i)
m−1 = ρ+

i , X (i)
m = ρ+

i, j } to be the start time

of the kth excursion into T +
i, j and T

(i, j,k) := |{m ∈ [ω(i, j,k), ω(i, j,k+1)) : X (i)
m ∈ T +

i, j }|
its duration. We can then write the time spent in large traps of the i th large branch as

χ̃ i
n =

Ni
∑

j=1

Wi, j
∑

k=1

T (i, j,k).

For 0 ≤ k ≤ H(T +
i, j ) write δ

(i, j)
k to be the spinal vertex of distance k from the

deepest point in T +
i, j . Let T

∗(i, j,k) := 0 if there does not existm ∈ [ω(i, j,k), ω(i, j,k+1)]
such that Xm = δ

(i, j)
0 =: δ(i, j) and

T ∗(i, j,k) := sup
{
m ∈

[
ω(i, j,k), ω(i, j,k+1)

]
: X (i)

m = δ(i, j)
}

− inf
{
m ∈

[
ω(i, j,k), ω(i, j,k+1)

]
: X (i)

m = δ(i, j)
}

(7.8)

otherwise to be the duration of the kth excursion into T +
i, j without the first passage to

the deepest point and the final passage from the deepest point to the exit. We can then
define
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χ̃ i∗
n :=

Ni
∑

j=1

Wi, j
∑

k=1

T ∗(i, j,k) (7.9)

to be the time spent in the i th large trap without the first passage to and last passage
from δ(i, j) on each excursion. We want to show that the difference between this and
χ̃ i
n is negligible. In particular, recalling thatD

(n)
n is the collection of large branches by

level n, we will show that for all t > 0 as n → ∞

P

⎛

⎜
⎜
⎝

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣D(n)

n

∣
∣
∣

∑

i=1

(
χ̃ i
n − χ̃ i∗

n

)

∣
∣
∣
∣
∣
∣
∣
∣

≥ ta
1
γ
n

⎞

⎟
⎟
⎠ → 0.

For ε > 0 denote

A6(n) :=
n⋂

i=0

{
H

(
T ∗−

ρi

) ≤ h+
n,ε

}
(7.10)

to be the event that there are no h+
n,ε-branches by level n. Using a union bound and

(3.12) we have that P(A6(n)c) ≤ nP(H(T ∗−
ρ0

) > h+
n,ε) → 0 as n → ∞.

Write

A7(n) :=

∣
∣
∣D(n)

n

∣
∣
∣

⋂

i=0

{
Ni ≤ n

2ε
α−1

}
(7.11)

to be the event that all large branches up to level n of the backbone have fewer than

n
2ε

α−1 large traps. Conditional on the number of buds, the number of large traps in the
branch follows a binomial distribution therefore

P
(
Ni ≥ n

2ε
α−1

)
≤

P
(
ξ∗ ≥ n

1+ε/2
α−1

)

P
(
H(T ∗−) > hn,ε

)

+
P
(
Bin

(
n

1+ε/2
α−1 , P

(
H (T ◦) ≥ hn,ε

)) ≥ n
2ε

α−1

)

P
(
H

(
T ∗−) > hn,ε

) .

By (4.1) P(H(T ∗−) ≥ hn,ε) ≥ Cn−(1−ε) for n large and some constant C hence by
(3.11) the first term decays faster than n−ε. Using a Chernoff bound the second term
has a stretched exponential decay. Therefore, by Lemma 4.1 and a union bound, as
n → ∞

P(A7(n)c) ≤ o(1) + CnεP
(
Ni ≥ n

2ε
α−1

)
→ 0.
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Recall that dx := |c(x)| is the number of children of x in the tree and define

A8(n) :=

∣
∣
∣D(n)

n

∣
∣
∣

⋂

i=1

Ni
⋂

j=1

⎧
⎪⎨

⎪⎩

H(T +
i, j )∑

k=0

d
δ
(i, j)
k

≤ n3ε/(α−1)2

⎫
⎪⎬

⎪⎭

to be the event that there are fewer than n3ε/(α−1)2 subtraps on the spine in any large
trap. For Zn the generation sizes associated to GW-tree T ◦ we have that P(Z1 ≥
n|H(T ◦) ≥ m) is non-decreasing in m; therefore, the number of offspring from
a vertex on the spine of a trap can be stochastically dominated by the size biased
distribution. Using this and Lemma 4.1 with the bounds on A6 and A7 we then have
that for some slowly varying function L

P
(
A8(n)c

) ≤ o(1) + Cnεn
2ε

α−1 P

⎛

⎝

h+
n,ε∑

k=0

ξ∗
k ≥ n3ε/(α−1)2

⎞

⎠

≤ o(1) + Cnεn
2ε

α−1 h+
n,εP

(
ξ∗ ≥ n3ε/(α−1)2/h+

n,ε

)

≤ o(1) + nεn− ε
α−1 L(n)

where (ξ∗
k )k≥1 are independent variableswith the size biased law; thusP(A8(n)c) → 0

as n → ∞.

Proposition 7.3 In IVIE, for any t > 0 as n → ∞

P

⎛

⎜
⎜
⎝

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣D(n)

n

∣
∣
∣

∑

i=1

(
χ̃ i
n − χ̃ i∗

n

)

∣
∣
∣
∣
∣
∣
∣
∣

≥ ta
1
γ
n

⎞

⎟
⎟
⎠ → 0.

Proof Let A′(n) := ⋂8
i=1 Ai (n) then using the bounds on Ai for i = 1, . . . , 8 it

follows that P(A′(n)c) → 0 as n → ∞. In particular, on A1(n) (from (4.2)) we have

that |D(n)
n | ≤ Cnε and on A7(n) (from (7.11)) we have that Ni ≤ n

2ε
α−1 for all i

therefore by Markov’s inequality

P

⎛

⎝

∣
∣
∣
∣
∣
∣

|D(n)
n |∑

i=1

(
χ̃ i
n − χ̃ i∗

n

)
∣
∣
∣
∣
∣
∣
≥ ta

1
γ
n

⎞

⎠

≤ P(A′(n)c) + 1

ta
1
γ
n

E

⎡

⎣1A′(n)

|D(n)
n |∑

i=1

Ni
∑

j=1

Wi, j
∑

k=1

(
T (i, j,k)
n − T ∗(i, j,k)

n

)
⎤

⎦

≤ o(1) + Cn
ε
(

α+1
α−1

)

ta
1
γ
n

E

⎡

⎣1A′(n)

W (1,1)
∑

k=1

(
T (1,1,k)
n − T ∗(1,1,k)

n

)
⎤

⎦ (7.12)

where we recall that T ∗(i, j,k)
n ≤ T (i, j,k)

n for all i, j, k.
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Since the number of excursions Wi, j are independent of the excursion times
and have marginal distributions of geometric random variables with parameter
(β − 1)/(2β − 1)

E

⎡

⎣1A′(n)

W (1,1)
∑

k=1

(
T (1,1,k)
n − T ∗(1,1,k)

n

)
⎤

⎦ = E

[
W (1,1)

]
E

[
1A′(n)

(
T (1,1,1)
n − T ∗(1,1,1)

n

)]
.

For a given excursion either the walk reaches the deepest point δ(1,1) before returning
to the root ρ+

1,1 or it doesn’t. In the first case the difference T (1,1,1)
n − T ∗(1,1,1)

n is the

time taken to reach δ(1,1) conditional on the walker reaching δ(1,1) before ρ+
1,1 added to

the time taken to reach ρ+
1,1 from δ(1,1) conditional on reaching ρ+

1,1 before returning

to δ(1,1). In the second case the difference is the time taken to return to the root given
that the walker returns to the root without reaching δ(1,1). In particular, recalling that
T +
1,1 is the trap rooted at ρ+

1,1 we have that

E[1A′(n)(T
(1,1,1)
n − T ∗(1,1,1)

n )] ≤ E
[

1A′(n)E
T +
1,1

ρ+
1,1

[

1A′(n)τ
+
δ(1,1)

∣
∣τ+

δ(1,1) < τ+
ρ+
1,1

]]

+ E
[

1A′(n)E
T +
1,1

δ(1,1)

[

1A′(n)τ
+
ρ+
1,1

∣
∣τ+

ρ+
1,1

< τ+
δ(1,1)

]]

+ E
[

1A′(n)E
T +
1,1

ρ+
1,1

[

1A′(n)τ
+
ρ+
1,1

∣
∣τ+

ρ+
1,1

< τ+
δ(1,1)

]]

.

(7.13)

We want to show that each of the terms in (7.13) can be bounded appropriately.
This follows similarly to Lemmas 8.2 and 8.3 of [4] so we only sketch the details.
Conditional on the event that the walk returns to the root of the trap before reaching
the deepest point we have that:

1. the transition probabilities of the walk in subtraps are unchanged,
2. from any vertex on the spine, the walk is more likely to move towards the root

than to any vertex in the subtrap,
3. from any vertex on the spine, excluding the root and deepest point, the probability

of moving towards the root is at least β times that of moving towards the deepest
point.

Property 3 above shows that the probability of escaping the trap from any vertex on
the spine is at least the probability p∞ of a regeneration for the β-biased random
walk on Z. From this we have that the number of visits to any spinal vertex can
be stochastically dominated by a geometric random variable with parameter p∞.
Similarly, using property 2 above, we see that the number of visits to any subtrap can
be stochastically dominated by a geometric random variable with parameter p∞/2.

Using a union bound with A1, A7, A8 and (3.1) we have that with high probability
there are no subtraps of height greater than hn,ε. In particular, by (5.2), the expected
time in any subtrap can be bounded above by C(βμ)hn,ε for some constant C using
property 1. From this it follows that
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E
[

1A′(n)E
T +
1,1

ρ+
1,1

[

1A′(n)τ
+
ρ+
1,1

∣
∣τ+

ρ+
1,1

< τ+
δ(1,1)

]]

≤ E
[

1A′(n)E
T +
1,1

δ(1,1)

[

1A′(n)τ
+
ρ+
1,1

∣
∣τ+

ρ+
1,1

< τ+
δ(1,1)

]]

≤ o(1) + h+
n,εE [Geo(p∞)] + Cn

3ε
(α−1)2 (βμ)hn,ε

≤ o(1) + CL(n)n
(1−ε)
α−1

log(βμ)

log(μ−1)
+ 3ε

(α−1)2

for some constant C and slowly varying function L .
A symmetric argument shows that the same bound can be achieved for the first

term in (7.13). It then follows that the second term in (7.12) can be bounded above

by Ct L1(n)n− 1
α−1+ε̃ where ε̃ can be made arbitrarily small by choosing ε sufficiently

small. ��
A straightforward adaptation of Proposition 8.1 of [4] (similar to the previous

calculation) shows Corollary 7.4 which is the corresponding result for FVIE.

Corollary 7.4 In FVIE, for any t > 0 as n → ∞

P

⎛

⎜
⎜
⎝

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣D(n)

n

∣
∣
∣

∑

i=1

(
χ̃ i
n − χ̃ i∗

n

)

∣
∣
∣
∣
∣
∣
∣
∣

≥ tn
1
γ

⎞

⎟
⎟
⎠ → 0.

By Proposition 7.3 and Corollary 7.4, in FVIE and IVIE, almost all time up to the
walk reaching level n is spent on excursions from the deepest point in deep traps. The
aim of the remainder of the section is to prove Proposition 7.14 which shows that the
time spent on the excursions from the deepest point in a single large branch (suitably
scaled) converges in distribution along the given subsequences. To ease notation, for
the remainder of the section we work on a dummy branch T ∗ so that the time χ̃ i∗

n has
the distribution of a sum of excursion times from the deepest points of T ∗.

Recall from Definition 4 that T ∗− is a dummy branch with root ρ, buds
ρ1, . . . , ρξ∗−1 each ofwhich is the root of an f -GW-treeT ◦

j with height Hj := H(T ◦
j ).

We now define a pruned version of this branch which only contains traps of height at
least hn,ε.

Definition 8 (Pruned dummy branch) Let

N :=
ξ∗−1∑

j=1

1{Hj≥hn,ε} (7.14)

denote the number of traps in T ∗− of at least critical height. Denote (T +
j )Nj=1 to be

those large traps, (ρ+
j )Nj=1 their roots and H+

j := H(T +
j ) the height of the j th large

trap in the branch. Similarly, let (T −
j )

ξ∗−1−N
j=1 denote the small traps, (ρ−

j )
ξ∗−1−N
j=1

their roots and H−
j := H(T −

j ) the height of the j th small trap in the branch.
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Let T ∗ be T ∗− pruned to consist precisely of the root ρ, buds (ρ+
j )Nj=1 and traps

(T +
j )Nj=1.

We write H := H(T ∗) − 1 to be the height of the largest trap and for K ∈ Z let
H

K

n := hn,0 + K then denote

P
K (·) := P

(
·∣∣H = H

K

n

)
and PK (·) := P

(
·∣∣H = H

K

n

)
.

Write W j to be the total number of excursions into T +
j and B j the number of

excursions which reach the deepest point δ j .
For each k ≤ B j we define G j,k to be the number of return times to δ j on the kth

excursion which reaches δ j .
For l = 1, . . . ,G j,k let R j,k,l denote the duration of the lth excursion from δ j to

itself on the kth excursion into T +
j which reaches δ j .

The height of the branch and the total number of traps in the branch have a strong
relationship. Lemma 7.5 shows the exact form of this relationship in the limit as n →
∞. Recall from (3.1) that cμ is the positive constant such that P(H(T ) ≥ n) ∼ cμμn

as n → ∞ then write

bK
n := μ−H

K
n

cμ

. (7.15)

Lemma 7.5 In IVIE, under PK we have that the sequence of random variables (ξ∗ −
1)/bK

n converge in distribution to some random variable ξ satisfying

P
(
ξ ≥ t

) = α − 1

�(2 − α)
(
1 − μα−1

)

∫ ∞

t
y−α

(
e−μy − e−y) dy.

Proof We prove this by showing the convergence of

P
(
ξ∗ − 1 ≥ tbK

n

∣
∣H = H

K

n

)
= P

(
H = H

K

n

∣
∣ξ∗ − 1 ≥ tbK

n

) P
(
ξ∗ − 1 ≥ tbK

n

)

P
(
H = H

K

n

)

(7.16)

for all t > 0. To begin we consider P
(
H = H

K

n |ξ∗ − 1 ≥ tbK
n

)
.

The heights of individual traps are independent under this conditioning hence

P
(
H ≤ H

K

n

∣
∣ξ∗ − 1 ≥ tbK

n

)
= E

[

P
(
H(T ◦) ≤ H

K

n

)ξ∗−1 ∣
∣ξ∗ − 1 ≥ tbK

n

]

.

Weknow the asymptotic form ofP(H(T ◦) ≤ H
K

n ) from (3.1) thus we need to consider
the distribution of ξ∗ − 1 conditioned on ξ∗ − 1 ≥ tbK

n . By the tail formula for ξ∗ − 1
following Definition 3 we have that for r ≥ 1 as n → ∞

123



Escape regimes of biased random walks on Galton–Watson trees 731

P
(

ξ∗ − 1

tbK
n

≥ r
∣
∣
∣ξ∗ − 1 ≥ tbK

n

)

= P
(
ξ∗ − 1 ≥ r tbK

n

)

P
(
ξ∗ − 1 ≥ tbK

n

) ∼ r−(α−1).

We therefore have that, conditional on ξ∗ − 1 ≥ tbK
n , the sequence (ξ∗ − 1)/tbK

n
converges in distribution to a variable Y with tail P(Y ≥ r) = r−(α−1) ∧ 1. Using the
form of bK

n we then have that

P
(
H(T ◦) ≤ H

K

n

)tbKn = e−tμ(1+o(1)).

It therefore follows that

lim
n→∞ P

(
H ≤ H

K

n |ξ∗ − 1 ≥ tbK
n

)
= E

[
e−tμY

]
.

Repeating with H
K

n replaced by H
K

n − 1 we have that P(H = H
K

n |ξ∗ − 1 ≥ tbK
n ) →

E[e−tμY ] − E[e−tY ] as n → ∞. For θ > 0

E
[
e−θ tY

]
= (α − 1)tα−1

∫ ∞

t
e−θy y−αdy

therefore

lim
n→∞ P

(
H = H

K

n

∣
∣ξ∗ − 1 ≥ tbK

n

)
= (α − 1)tα−1

∫ ∞

t
y−α(e−μy − e−y)dy.

(7.17)
By (3.12) we have that as n → ∞

P
(
H = H

K

n

)
= P

(
H

(
T ∗−) > H

K

n

)
− P

(
H

(
T ∗−) > H

K

n + 1
)

∼ � (2 − α) cα−1
μ

(
1 − μα−1

)
P
(

ξ∗ − 1 ≥ μ−H
K
n

)

= � (2 − α) cα−1
μ

(
1 − μα−1

)
P
(
ξ∗ − 1 ≥ cμb

K
n

)

therefore

P
(
ξ∗ − 1 ≥ tbK

n

)

P
(
H = H

K

n

) ∼ P
(
ξ∗ − 1 ≥ tbK

n

)

�(2 − α)
(
1 − μα−1

)
cα−1
μ P

(
ξ∗ − 1 ≥ cμbK

n

)

∼ t−(α−1)

�(2 − α)
(
1 − μα−1

) .

Combining this with (7.17) in (7.16) we have that

lim
n→∞ P

(
ξ∗ − 1 ≥ tbK

n |H = H
K
n

)
= α − 1

�(2 − α)
(
1 − μα−1

)

∫ ∞
t

y−α
(
e−μy − e−y) dy.

��
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Notice that under P the pruned dummy branch T ∗ is the single vertex ρ with high
probability however under PK there is at least one trap. By Lemma 5.1, conditional
on N , (W j )Nj=1 have a joint negative multinomial distribution. Moreover, Wj , Bj are

coupled so that B j is binomially distributed with W j trials and success probability
p1(H

+
j ). The number G j,k of return times to δ j is geometrically distributed with

failure probability p2(H
+
j ). It follows that each χ̃ i∗

n is equal in distribution to

χ∗
n :=

N∑

j=1

B j
∑

k=1

G j,k
∑

l=1

R j,k,l .

Define the scaled excursion time in large traps of a large branch as

ζ (n) = χ∗
nβ−H = β−H

N∑

j=1

B j
∑

k=1

G j,k
∑

l=1

R j,k,l (7.18)

then we will show that ζ (n) converges in distribution under PK along subsequences
nl(t). Lemma 7.6 gives an upper bound on the number of large traps in a branch
conditioned on its height.

Lemma 7.6 For any ε > 0 and K ∈ Z

lim
n→∞ PK

(
N ≥ n

ε+ε
α−1

)
= 0.

Proof Conditioned on the height of the branch and number of buds we have that at
least one trap attains the maximum height, all others have the distribution of heights
of GW-tree conditioned on their maximum height therefore

PK
(
N ≥ n

ε+ε
α−1

)
≤ PK

(
ξ∗ − 1 ≥ log(n)bK

n

)

+ P
(
N ≥ n

ε+ε
α−1 − 1

∣
∣ξ∗ − 1 = log(n)bK

n

)
. (7.19)

By Lemma 7.5 PK
(
ξ∗ − 1 ≥ log(n)bK

n

)
converges to 0 as n → ∞. Conditioned on

having ξ∗−1 = log(n)bK
n budswe have that N is binomially distributedwith log(n)bK

n
trails and success probability P(H(T ◦) ≥ hn,ε) ≤ Cμhn,ε by (3.1). Since for some
slowly varying function L we have that

E
[
Bin

(
log(n)bK

n , Cμhn,ε

)]
≤ CμK log(n)

an
an1−ε

≤ L(n)μKn
ε

α−1 ,

a Chernoff bound shows that the final term in (7.19) converges to 0. ��
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For ε̃ > 0 write

A9(n) =
N⋂

j=1

{

1 ≤ β
H+

j

1 − β−1E
[
G j,1

]−1 ≤ 1 + ε̃

}

.

Recall from (7.7) that p2(H) is the probability that a walk started from the deepest
point of a tree of height H reaches the root before returning to the deepest point. Since
G j,k are independent geometric random variables there exist independent exponential
random variables e j,k such that

G j,k =
⎢
⎢
⎢
⎣

e j,k

− log
(
1 − p2(H

+
j )

)

⎥
⎥
⎥
⎦ ∼ Geo

(
p2(H

+
j )

)
.

By (7.7) we then have that

E[G j,1] =
(

1 − 1 − β−1

β
H+

j − β−1

)(

1 − β
−
(
H+

j +1
))

β
H+

j

1 − β−1 (7.20)

therefore, since H+
j ≥ hn,ε, for any ε̃ > 0 there exists n large such thatPK (A9(n)) = 1

for any K ∈ Z.
Recall from (7.7) andDefinition 8 thatG j,k is geometrically distributed with failure

probability p2(H
+
j ) ≥ p2(hn,ε). Write

A( j,k)
10 (n) :=

{
(1 − ε̃)G j,k ≤ E

[
G j,k

]
e j,k ≤ (1 + ε̃)G j,k

}
.

Then, using convergence of scaled geometric variables to exponential variables (see
the proof of part (3) of Proposition 9.1 in [4]), we have that there exists a constant C̃
such that for any ε̃ > 0 there exists n large such that

P
(
A( j,k)
10 (n)c

)
≤ C̃ p2(hn,ε) ≤ C̃a−1/γ

n1−ε .

By Definition 8 we have that Bj ≤ Wj . Moreover N ≤ n
ε+ε̃
α−1 with high probability

for any ε̃ > 0 by Lemma 7.6 and W j ≤ C log(n) for all j by the bound on the event
A5(n)c (from (5.3)). Therefore, writing

A10(n) :=
N⋂

j=1

B j
⋂

k=1

A( j,k)
10 (n)

a union bound gives us that P(A10(n)c) → 0 as n → ∞.
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734 A. Bowditch

By comparison with the biased random walk on Z we have that p1(H
+
j ) ≥ p∞ =

1− β−1 therefore we can define a random variable B j∞ ∼ Bin(B j , p∞/p1(H
+
j )). It

then follows that B j ≥ B j∞ ∼ Bin(W j , p∞) and

p1(H
+
j ) − p∞ = 1 − β−1

1 − β
−(H+

j +1)
− (1 − β−1) ≤ β

−H+
j . (7.21)

Write

A11(n) :=
N⋂

j=1

{
B j = B j∞

}
.

Since the marginal distribution of W 1 doesn’t depend on n, using (7.21), the bound
on N from Lemma 7.6 and the coupling between B1 and B1∞ we have that

P
K (A11(n)c) ≤ o(1) + n

ε+ε̃
α−1

∞∑

k=0

P(W 1 = k)P(B1 �= B1∞|W 1 = k)

≤ o(1) + n
ε+ε̃
α−1

∞∑

k=0

P(W 1 = k)k
(
p1(H

+
1 ) − p∞

)

≤ o(1) + n
ε+ε̃
α−1 β−hn,εE

[
W 1

]
(7.22)

which decays to 0 as n → ∞.
By choosing ε > 0 sufficiently small we can choose κ in the range ε(1/γ +1/(α −

1)) < κ < min{2(α − 1), 1/γ } then write

A12(n) :=
N⋂

j=1

{

E
[
(R j,1,1

n )2
]

< n
γ−1−κ

α−1

}

to be the event that there are no large traps with expected squared excursion time too
large.

Lemma 7.7 In IVIE, for any K ∈ Z, as n → ∞ we have that PK (A12(n)c) → 0.

Proof Recall from (7.10) that, for ε > 0, A6(n) is the event that all large branches are

shorter than h+
n,ε and since N ≤ n

ε+ε̃
α−1 with high probability we have that

P(A12(n)c) ≤ o(1) + n
ε+ε̃
α−1P

(

1{A6(n)}E
[
(R1,1,1

n )2
]1/2

> n
γ−1−κ
2(α−1)

)

.
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A straightforward argument using conductances (see the proof of Lemma 9.1 in [4])
gives

E

[(
R1,1,1

n

)2
]1/2

≤ C
∑

y∈T +
1

βd(y,δ1)/2π(y)

where π is the invariant measure scaled so that π(δ1) = 1 and d denotes the graph
distance. We then have that

E

[

1{A6(n)}E
[(

R(1,1,1)
n

)2
]1/2

]

≤ CE

⎡

⎢
⎣1{A6(n)}

∑

y∈T +
1

βd
(
y,δ1

)
/2π(y)

⎤

⎥
⎦

≤ CE

⎡

⎣1{A6(n)}
∑

i≥1

β i/2β−i (1 + �i )

⎤

⎦

≤ C

h+
n,ε∑

i=0

(
β1/2μα−1−ε

)i

where the final inequality follows by (7.5). If β1/2μα−1−ε ≤ 1 then by Markov’s
inequality we have that PK (A12(n)c) → 0 as n → ∞ since κ < γ −1. Otherwise by
Markov’s inequality

P
K (A12(n)c) ≤ o(1) + Cn

ε+ε̃
α−1

(
β1/2μα−1−ε

)h+
n,ε

n
κ−γ−1

2(α−1)

≤ L(n)n
κ

2(α−1) −1+ ε
α−1

(
1
2γ +2−α+ε

)
+ ε+ε̃

α−1

for some slowly varying function L . In particular, since κ < 2(α − 1) we can choose
ε, ε, ε̃ sufficiently small such that this converges to 0 as n → ∞. ��

Write

A13(n) =
N⋂

j=1

B j
⋂

k=1

{

(1 − ε̃)G j,kE
[
R j,1,1

n

]
≤

G j,k
∑

l=1

R j,k,l ≤ (1 + ε̃)G j,kE
[
R j,1,1

n

] }

to be the event that on each excursion that reaches the deepest point of a large trap,
the total excursion time before leaving the trap is approximately the product of the
number of excursions and the expected excursion time.

Lemma 7.8 In IVIE, for any K ∈ Z, as n → ∞ we have that PK (A13(n)c) → 0.

Proof With high probability we have that no trap is visited more than C log(n) by

(5.3) and also N ≤ n
ε+ε̃
α−1 by Lemma 7.6. Any excursion is of length at least 2 hence

E[R1,1,1
n ] ≥ 2. Therefore, by Lemma 7.7 and Chebyshev’s inequality
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736 A. Bowditch

P
K (A13(n)c) ≤ o(1)

+ C log(n)n
ε+ε̃
α−1 P

⎛

⎝

∣
∣
∣
∣
∣
∣

G1,1
∑

l=1

R1,1,l
n

E
[
R1,1,1

n

]
G1,1

− 1

∣
∣
∣
∣
∣
∣
> ε̃,G1,1 > 0,E

[(
R1,1,1

n

)2
]

< n
γ−1−κ

α−1

⎞

⎠

≤ o(1) + C log(n)n
γ−1+ε+ε̃−κ

α−1

ε̃2
E

[
1{G1,1>0

}

G1,1

]

.

It then follows that since G1,1 ∼ Geo(p2(H
+
1 )) (where from (7.7) p2(H) is the

probability that awalk reaches the deepest point in the trap of height H ) and p2(H
+
1 ) ≤

cβ−hn,ε = ca
− 1

γ

n1−ε

E

[
1{G(1,1,1)>0}
G(1,1,1)

]

≤ E

[

− p2
(
H+
1

)

1 − p2
(
H+
1

) log
(
p2

(
H+
1

))
]

≤ L(n)n− 1−ε
γ (α−1)

for some slowly varying function L . In particular, P
K (A13(n)c) ≤ o(1) +

L ε̃(n)n
ε
(
1
γ + 1

α−1

)
+ε̃−κ

α−1 which converges to zero by the choice of κ > ε(1/γ +1/(α−1)).
��

Lemma 7.9 illustrates that the expected time spent on an excursion from the deepest
point of a trap of height at least hn,ε doesn’t differ too greatly from the expected
excursion time in an infinite version of the trap. LetR j∞ be an excursion time from δ j

to itself in an extension of T +
j to an infinite trap constructed according to the algorithm

at the beginning of the section where T ≺
H+

j
is replaced by T +

j . Write

A14(n) :=
N⋂

j=1

{
E
[
R j∞

]
− E

[
R j,k,l

]
< ε̃

}
.

Lemma 7.9 In IVIE, for any K ∈ Z as n → ∞ we have that PK (A14(n)c) → 0.

Proof A straightforward computation similar to that in Proposition 9.1 of [4] yields
that for some constant c and n sufficiently large

0 ≤ E
[
R j∞

]
−E

[
R j,k,l

]
≤ cβ−hn,ε/2

hn,ε/2∑

k=0

β−k(1 + �k)+2
∞∑

k=hn,ε/2+1

β−k(1 + �k)

for all j = 1, . . . , N where �k are the weights of the extension of T +
j . Recall that

N ≤ n
ε+ε̃
α−1 with high probability by Lemma 7.6, therefore by (7.5) and Markov’s

inequality
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P(A14(n)c) ≤ Cn
ε+ε̃
α−1

ε̃
E
[
E
[
R j∞

]
− E

[
R j,1,1

n

]]

≤ Cε̃n
ε+ε̃
α−1

⎛

⎝β− hn,ε
2

∞∑

k=0

(
β−k + μk(α−1−ε̃)

)
+

∞∑

k=hn,ε/2+1

μk(α−1−ε̃)

⎞

⎠

≤ Cε̃n
ε+ε̃
α−1

(
β− hn,ε

2 + μhn,ε
(α−1−ε̃)

2

)
.

Since we can choose ε̃, ε and ε̃ arbitrarily small we indeed have the desired result. ��
Define

Zn∞ := 1

1 − β−1

N∑

j=1

β
H+

j −HE
[
R j∞

] B j∞∑

k=1

e j,k (7.23)

whose distribution depends on n only through N and (H+
j − H)Nj=1. Recalling the

definition of ζ (n) in (7.18), since e j,k are the exponential random variables defining

G j,k , B j∞ ∼ Bin(B j , p∞/p1(H
+
1 )) and the random variable N is the same in both

equations, we have that ζ (n) and Zn∞ are defined on the same probability space.

Proposition 7.10 In IVIE, for any K ∈ Z and ε̃ > 0

lim
n→∞P

K
(∣
∣
∣ζ (n) − Zn∞

∣
∣
∣ > ε̃

)
= 0.

Proof Using the bounds on A11, A13 and A14 from (7.22) and Lemmas 7.8 and 7.9
respectively there exists some function g : R → R such that limε̃→0+ g(ε̃) = 0 and
for sufficiently large n (independently of K )

P
K
(∣
∣
∣ζ (n) − Zn∞

∣
∣
∣ > ε̃

)
≤ o(1) + 2PK

(
g(ε̃)Zn∞ > ε̃

)
.

It therefore suffices to show that (Zn∞)n≥0 are tight under PK . Write

S j := 1

1 − β−1E
[
R j∞

] B j∞∑

k=1

e j,k . (7.24)

The variablesE[R j∞], B j∞ and e j,k are independent, don’t depend on K and have finite
mean (by Lemma 7.1, the geometric distribution of W j and exponential distribution
of e j,k) therefore

E
K
[
S j
] ≤ C < ∞ (7.25)
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738 A. Bowditch

uniformly over K . We can then write

Zn∞ =
N∑

j=1

β
H+

j −H
K
n S j .

The distribution of S j is independent of the height of the trap. The number of
large traps N is dominated by the total number of traps ξ∗ − 1 in the branch thus
reintroducing small traps

P
K
(
Zn∞ ≥ t

) ≤ P
K

⎛

⎝
bKn log(t)∑

j=1

βHj−H
K
n S j ≥ t

⎞

⎠ + P
K
(
ξ∗ − 1 ≥ bK

n log(t)
)

(7.26)

where we recall that, under PK , (Hj )
ξ∗−1
j=1 are distributed as the heights of independent

f -GW-trees conditioned so that the largest is of height H
K

n and (S j )
ξ∗−1
j=1 are i.i.d.

with the law of S1. By Lemma 7.5 we have that limt→∞ lim supn→∞ P
K (ξ∗ − 1 ≥

bK
n log(t)) = 0 therefore it remains to bound the first term in (7.26).
Write � = inf{r ≥ 1 : Hr = H

K

n } to be the index of the first trap with height the
same as the maximum in the branch. Conditional on trap j being the first in the branch
which attains the maximum height we have that the heights of the remaining traps are
independent and either at most the height of the largest (for higher indices than j) or
strictly shorter (for lower indices than j). In particular, this means that

P
K

⎛

⎝
bKn log(t)∑

j=1

βHj−H
K
n S j ≥ t

⎞

⎠ ≤ P
K

⎛

⎝
bKn log(t)∑

j=1

βHj−H
K
n S j ≥ t

∣
∣
∣� = 1

⎞

⎠

≤ P (S1 ≥ log(t)) + P

⎛

⎝
bKn log(t)∑

j=2

βHj−H
K
n S j ≥ t − log(t)

∣
∣
∣Hj ≤ H

K

n ∀ j ≥ 2

⎞

⎠ .

The distribution of S1 is independent of n therefore limt→∞ P(S1 ≥ log(t)) = 0.
Conditional on � = 1, (Hj ) j≥2 are independent therefore by Markov’s inequality we
have that

P

⎛

⎝
bKn log(t)∑

j=2

βHj−H
K
n S j ≥ t − log(t)

∣
∣
∣
⋂

j≥2

Hj ≤ H
K

n

⎞

⎠

≤
bK
n log(t)E [S1]E

[
βH1 |H1 ≤ H

K

n

]

βH
K
n (t − log(t))

.
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For large enough n we have that P(H1 ≤ H
K

n ) ≥ 1/2 therefore we have that

P

(
H1 = l

∣
∣H1 ≤ H

K

n

)
≤ P

(
H1 ≥ l

∣
∣H1 ≤ H

K

n

)
≤ 1

2
P (H1 ≥ l) ≤ Cμl

for some constant C therefore the result follows from

E

[
βH1

∣
∣H1 ≤ H

K

n

]
=

H
K
n∑

l=0

βl
P

(
H1 = l

∣
∣H1 ≤ H

K

n

)
≤ C(βμ)H

K
n . (7.27)

��

We now prove three technical lemmas which will be important in the proof of
Proposition 7.14 which is the main result of the section. The first shows that we can
reintroduce the small traps into Zn∞. The reason for doing this is that we no longer
need to condition on the heights of the traps being at least the critical level which will
simplify later calculations. In particular, we can replace N with ξ∗ − 1 (i.e. the total
number of traps in the branch) which we understand under PK by Lemma 7.5.

Lemma 7.11 For all ε̃ > 0 we have that for any K ∈ Z as n → ∞,

P
K

⎛

⎝
ξ∗−1−N∑

j=1

β
H−

j −H
K
n S j > ε̃

⎞

⎠ → 0.

Proof First, notice that each term in the sum is nonnegative therefore introducing
extra terms only increases the probability. By Lemma 7.5, for any ε̃ > 0, we have that
P

K (ξ∗ − 1 ≥ an1+ε̃ ) → 0 as n → ∞. We therefore have that

P
K

⎛

⎝
ξ∗−1−N∑

j=1

β
H−

j −H
K
n S j > ε̃

⎞

⎠ ≤ P

⎛

⎝

an1+ε̃∑

j=1

βHj−H
K
n S j > ε̃

∣
∣
∣Hj < hn,ε ∀ j ≥ 1

⎞

⎠

+ o(1).

By Definitions 7 and 8 we have that βH
K
n ≤ βKa1/γn therefore by Markov’s inequality

and (7.27) we have that

P

⎛

⎝

an1+ε̃∑

j=1

βHj−H
K
n S j > ε̃

∣
∣
∣Hj < hn,ε ∀ j ≥ 1

⎞

⎠ ≤ an1+ε̃E [S1]E
[
βH1

∣
∣H1 < hn,ε

]

ε̃βH
K
n

≤ CK ,ε̃an1+ε̃ (βμ)hn,ε

a1/γn

.
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Recall from Definition 7 that hn,ε ≤ log(an1−ε )/ log(μ−1) therefore

(βμ)hn,ε ≤ a
1
γ

−1

n1−ε .

Using the form of an following Definition 3 we then have that there exists a slowly
varying function L such that

an1+ε̃ (βμ)hn,ε

a1/γn

≤ L(n)n
1

α−1

(
ε̃+ε− ε

γ

)

which converges to 0 by choosing ε̃ < ε(1/γ − 1). ��

The second Lemma leading to Proposition 7.14 shows that the height of an f -
GW-tree is sufficiently close to a geometric random variable. To ease notation let
S = S1 (see (7.24)), H = H1 ∼ H(T ◦) be distributed as the height of a GW-tree and
G ∼ Geo(μ) independently of each other.

Lemma 7.12 In IVIE,

b

∣
∣
∣
∣

∫ ∞

0
e−x

P

(

SβH ≥ xb1/γ

θ

)

dx − cμ

∫ ∞

0
e−x

P

(

SβG ≥ xb1/γ

θ

)

dx

∣
∣
∣
∣ (7.28)

converges to zero as b → ∞.

Proof From (1.1) and (7.25)we have that γ < 1 andE[S] < ∞ thereforeE[Sγ ] < ∞.
By independence of S and G

P

(

SβG ≥ xb1/γ

θ

)

= E

[

P

(

G ≥ log
(
xb1/γ (Sθ)−1

)

log(β)

∣
∣
∣S

)]

≤
(
xb1/γ

θ

)−γ

E
[
Sγ

] = Cθ

bxγ
.

Similarly, since there exist a constant c such that P(H ≥ t) ≤ cP(G ≥ t) uniformly
over t we have that

P

(

SβH ≥ xb1/γ

θ

)

≤ Cθ

bxγ
.

Let ε̃ > 0 then choose ε > 0 such that

∫ ε

0
e−x x−γ dx <

ε̃

Cθ
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then, since the integrals are positive and cμ ≤ 1, we have that

∣
∣
∣
∣

∫ ε

0
e−x cμP

(

SβG ≥ xb1/γ

θ

)

dx −
∫ ε

0
e−x

P

(

SβH ≥ xb1/γ

θ

)

dx

∣
∣
∣
∣ ≤ ε̃b−1.

(7.29)

By (3.1) we have that

m(b) := sup
z> εb

θ

∣
∣
∣
∣
∣

P
(
βH ≥ z

)

P
(
βG ≥ z

) − cμ

∣
∣
∣
∣
∣

(7.30)

converges to 0 as b → ∞. Now define M(b) := m(b)1−
1
γ ∧ b

1
γ

−1 then M(b) → ∞
as b → ∞ but M(b) << b1/γ .

For x > ε, by independence of S and H we have that

P

(

SβH ≥ xb1/γ

θ

∣
∣
∣S ≥ M(b)

)

≤ CE

⎡

⎣
(
xb1/γ

θ S

) log(μ)
log(β) ∣∣

∣S ≥ M(b)

⎤

⎦

≤ Cε,θb
−1

E
[
Sγ

∣
∣S ≥ M(b)

]
.

In particular,

bP

(

SβH ≥ xb1/γ

θ
, S ≥ M(b)

)

≤ Cε,θE
[
Sγ 1{S≥M(b)}

]

which converges to 0 as b → ∞ by dominated convergence. Similarly, the same holds
replacing H with G therefore combining this with (7.29) we have that the quantity
(7.28) is bounded above by

ε̃ + o(1) + Cb sup
x>ε

∣
∣
∣
∣
∣
P

(

SβH ≥ xb1/γ

θ
, S < M(b)

)

− cμP

(

SβG ≥ xb1/γ

θ
, S < M(b)

)∣
∣
∣
∣
∣
.

Since S is independent of G and H we have that the supremum in the above
expression can be bounded above by

sup
z> εb1/γ

θM(b)

∣
∣
∣P

(
βH ≥ z

)
− cμP

(
βG ≥ z

)∣
∣
∣ ≤ m(b)P

(

G ≥ log
(
εb1/γ (θM(b))−1

)

log(β)

)

by (7.30) since b1/γ /M(b) ≥ b. Since G ∼ Geo(μ) we have that

m(b)P

(

G ≥ log(εb1/γ (θM(b))−1)

log(β)

)

= Cε,θm(b)

(
b1/γ

M(b)

) log(μ)
log(β)

≤ Cε,θm(b)γ

b

which completes the proof. ��
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In the final Lemma preceding Proposition 7.14 we show that the Laplace transform

ϕK (λ) := E
K

[

e−λ
∑ξ∗−1

j=1 β
Hj−HK

n S j

]

can be written in terms of the distributions of S, H and ξ∗.

Lemma 7.13 In IVIE,

ϕK (λ) = E
K

⎡

⎢
⎢
⎢
⎣

E

[

e−λSβH−HK
n 1{

H≤H
K
n

}

]ξ∗−1

− E

[

e−λSβH−HK
n 1{H≤H

K
n −1}

]ξ∗−1

P
(
H ≤ H

K

n

)ξ∗−1 − P
(
H ≤ H

K

n − 1
)ξ∗−1

⎤

⎥
⎥
⎥
⎦

Proof Recall that � := inf{r ≥ 1 : Hr = H} is the index of the first random variable
in the sequence (Hj )

ξ∗−1
j=1 which attains the maximum value H := max j≤ξ∗−1 Hj .

For h ∈ Z
+, λ > 0 and i = 1, 2 write

ψi (h, λ) := E

[
e−λSβH−h ∣∣H ≤ h + 1 − i

]
,

φi (h, λ) := E

[
e−λSβH−h

1{H≤h+1−i}
]

= ψi (h, λ)P(H ≤ h + 1 − i). (7.31)

Conditional on �, the random variables (Hj ) j≥1 are independent with

P
K
(
Hj = z|�) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1{
z=H

K
n

}, if j = �,

P

(
H = z

∣
∣H ≤ H

K

n − 1
)

, if j < �,

P

(
H = z

∣
∣H ≤ H

K

n

)
, if j > �.

By conditioning on ξ∗, we then have that

ϕK (λ) = E
K

⎡

⎣
ξ∗−1∑

k=1

PK (� = k|ξ∗)EK

[

e−λ
∑ξ∗−1

j=1 β
Hj−HK

n S j
∣
∣
∣� = k, ξ∗

]⎤

⎦

= E
K

⎡

⎣E
[
e−λS

] ξ∗−1∑

k=1

PK (� = k|ξ∗)ψ2

(
H

K

n , λ
)k−1

ψ1

(
H

K

n , λ
)ξ∗−1−k

⎤

⎦

(7.32)
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and by Bayes’ rule we also have that

PK (� = k|ξ∗) =
P
(
H = H

K

n

)

P
(
H = H

K

n

∣
∣ξ∗

)P
(
H ≤ H

K

n − 1
)k−1

P
(
H ≤ H

K

n

)ξ∗−1−k
.

(7.33)

Combining (7.31), (7.32) and (7.33) we can then write ϕK (λ) as

E
K

⎡

⎣
E
[
e−λS

]
P
(
H = H

K

n

)

P
(
H = H

K

n

∣
∣ξ∗

)

ξ∗−1∑

k=1

φ2

(
H

K

n , λ
)k−1

φ1

(
H

K

n , λ
)ξ∗−1−k

⎤

⎦ . (7.34)

For 0 < p < q < 1 and l ∈ Z
+,

l∑

k=1

pk−1ql−k = ql−1
l−1∑

k=0

(
p

q

)k

= ql−1

⎛

⎜
⎝
1 −

(
p
q

)l

1 − p
q

⎞

⎟
⎠ = ql − pl

q − p
.

Since 0 < φ2(H
K

n , λ)k−1 < φ1(H
K

n , λ)k−1 < 1, by (7.34) it follows that ϕK (λ) is
equal to

E
K

⎡

⎢
⎣
E
[
e−λS

]
P
(
H = H

K

n

)

P
(
H = H

K

n

∣
∣ξ∗

)

⎛

⎜
⎝

φ1

(
H

K

n , λ
)ξ∗−1 − φ2

(
H

K

n , λ
)ξ∗−1

φ1

(
H

K

n , λ
)

− φ2

(
H

K

n , λ
)

⎞

⎟
⎠

⎤

⎥
⎦

however, from (7.31),

φ1

(
H

K

n , λ
)

− φ2

(
H

K

n , λ
)

= E

[
e−λS

]
P
(
H = H

K

n

)
.

therefore this is equal to

E
K

⎡

⎢
⎣

φ1

(
H

K

n , λ
)ξ∗−1 − φ2

(
H

K

n , λ
)ξ∗−1

P
(
H = H

K

n

∣
∣ξ∗

)

⎤

⎥
⎦

The result then follows from

P
(
H = H

K

n

∣
∣ξ∗) = P

(
H ≤ H

K

n

∣
∣ξ∗) − P

(
H ≤ H

K

n − 1
∣
∣ξ∗)

= P
(
H ≤ H

K

n

)ξ∗−1 − P
(
H ≤ H

K

n − 1
)ξ∗−1

which is a consequence of H being the maximum of ξ∗ − 1 i.i.d. random variables. ��
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The next proposition shows that, under PK , we have that the scaled time spent in a
large branch ζ (n) (from (7.18)) converges in distribution along subsequences nl where
anl (t) ∼ tμ−l .

Proposition 7.14 In IVIE, under PK we have that Znl∞ converges in distribution (as
l → ∞) to some random variable Z∞.

Proof By Lemmas 7.11 and 7.13, it now suffices to show convergence of

ϕK (λ) = E
K

⎡

⎢
⎢
⎢
⎣

E

[

e−λSβH−HK
n 1{

H≤H
K
n

}

]ξ∗−1

− E

[

e−λSβH−HK
n 1{

H≤H
K
n −1

}

]ξ∗−1

P
(
H ≤ H

K

n

)ξ∗−1 − P
(
H ≤ H

K

n − 1
)ξ∗−1

⎤

⎥
⎥
⎥
⎦

.

(7.35)

By (3.2) we have that P(H ≤ H
K

n ) = 1− cμμ1+H
K
n (1+ o(1)) therefore, using the

relationship (7.15) between bK
n and H

K

n we have that

P
(
H ≤ H

K

n

)ξ∗−1 =
(

1 − μ(1 + o(1))

bK
n

)ξ∗−1

= exp

(

−ξ∗ − 1

bK
n

μ (1 + o(1))

)

and similarly,

P
(
H ≤ H

K

n − 1
)ξ∗−1 = exp

(

−ξ∗ − 1

bK
n

(1 + o(1))

)

.

By Lemma 7.5 we know that (ξ∗ − 1)/bK
n converges in distribution to a random

variable with exponential moments therefore we want to show a similar expression
for the numerator in (7.35). Notice that

E

[

e−λSβH−HK
n 1{

H≤H
K
n

}

]ξ∗−1

= E

[

e−λSβH−HK
n

]ξ∗−1

⎛

⎜
⎜
⎝1 −

E

[

e−λSβH−HK
n 1{

H>H
K
n

}

]

E

[

e−λSβH−HK
n

]

⎞

⎟
⎟
⎠

ξ∗−1

(7.36)
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where E

[

e−λSβH−HK
n

]

converges to 1 deterministically. In particular, this means that

⎛

⎜
⎜
⎝1 −

E

[

e−λSβH−HK
n 1{

H>H
K
n

}

]

E

[

e−λSβH−HK
n

]

⎞

⎟
⎟
⎠

ξ∗−1

= exp

(

−(ξ∗ − 1)E

[

e−λSβH−HK
n 1{

H>H
K
n

}

]

(1 + o(1))

)

. (7.37)

By summing over the possible values of H and using independence of S and H we
have that

E

[

e−λSβH−HK
n 1{

H>H
K
n

}

]

= (1 + o(1))
∞∑

j=H
K
n +1

(1 − μ)μ j
E

[

e−λSβ j−HK
n

]

= (1 + o(1))μH
K
n +1

∞∑

j=0

(1 − μ)μ j
E

[
e−λSβ j+1

]
.

Recalling G ∼ Geo(μ) independently of S then writing ϕSG(λ) to be the Laplace
transform of SβG and using the relationship (7.15) between bK

n and H
K

n we therefore
have that (7.37) can be written as

exp

(

−ξ∗ − 1

bK
n

μϕSH (λβ)(1 + o(1))

)

. (7.38)

It remains to deal with E[e−λSβH−HK
n ]bKn . To ease notation, let us write b := bK

n =
c−1
μ μ−H

K
n and θ = λc−1/γ

μ then

E

[

e−λSβH−HK
n

]bKn
= E

[
e−θ SβHb−1/γ

]b

=
(∫ 1

0
P

(
e−θ SβHb−1/γ ≥ y

)
dy

)b

=
(

1 −
∫ 1

0
P

(

SβH ≥ − log(y)b1/γ

θ

)

dy

)b

=
(

1 −
∫ ∞

0
e−x

P

(

SβH ≥ xb1/γ

θ

)

dx

)b

=
(

1 −
∫ ∞

0
e−x cμP

(

SβG ≥ xb1/γ

θ

)

dx

)b

+ o(1) (7.39)
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where the final equality holds by Lemma 7.12. Since S and G are independent we
have that

P

(
SβG ≥ z

)
= E

[

P

(

G ≥ log(z/S)

log(β)

∣
∣
∣S

)]

= E

[

μ

⌈
log(z/S)
log(β)

⌉]

.

Writing

J (z) :=
⌈
log(z)

log(β)

⌉

− log(z)

log(β)
and I (z) := E

[

Sγ μ
−
⌊
log(S)
log(β)

+J (z)
⌋
+ log(S)

log(β)
+J (z)

]

we then have that

P(SβG ≥ z) = μ
log(z)
log(β)E

[

Sγ μ
−
⌊
log(S)
log(β)

+J (z)
⌋
+ log(S)

log(β)
+J (z)

]

= z−γ I (z)

where, from (7.25), we also have that I (z) ≤ E[Sγ ] < ∞ since γ < 1 by (1.1).
Moreover, J (z) = J (zmlog(β)) and I (z) = I (zmlog(β)) for all z ∈ R, m ∈ Z.

Substituting this back into (7.39) we have that

E

[
e−θ SβGb−1/γ

]b =
(

1 − θγ b−1
∫ ∞

0
e−x x−γ I

(
xb1/γ

θ

)

dx

)b

+ o(1).

For t > 0, along sequences nl(t) such that anl (t) ∼ tμ−l we have that (bK
n )1/γ ∼

Cl log(β) therefore, since I is bounded, we have that along subsequences nl(t)

∫ ∞

0
e−x x−γ I

(
xb1/γ

θ

)

dx

converges to some positive function of θ . In particular, we have that

E

[

e−λSβH−HK
n

]bKn

converges to some constant in the interval (0, 1). Combining thiswith (7.36) and (7.38)
we have that

E

[

e−λSβH−HK
n 1{

H≤H
K
n

}

]ξ∗−1

= exp

(

−ξ∗ − 1

bK
n

μCλ,β(1 + o(1))

)

for some constant Cμ,β depending on the distribution of S. Furthermore, the same
arguments gives us that

E

[

e−λSβH−HK
n 1{

H≤H
K
n −1

}

]ξ∗−1

= exp

(

−ξ∗ − 1

bK
n

Cλ,β(1 + o(1))

)

.
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By boundedness, continuity and Lemma 7.5 we therefore have that ϕK (λ) converges
along the given subsequences which proves the result. ��

In order to prove the convergence result for sums of i.i.d. variables we shall require
that ζ (n) can be dominated (independently of K ≥ hn,ε − hn,0) by some random

variable Zsup such that E[Z (α−1)γ+ε
sup ] < ∞ for ε sufficiently small. Lemma 7.15

shows that we indeed have the domination required for the sums of i.i.d. variables
result.

Lemma 7.15 In IVIE, there exists a random variable Zsup such that under PK for
any K ∈ Z we have that Zsup � ζ (n) for all n sufficiently large and E[Z1−ε

sup ] < ∞
for any ε > 0.

Proof The number of large traps N is dominated by the number of traps in the branch.
Similarly to Lemma 7.5 we consider

P
(
ξ∗ − 1 ≥ tbK

n

∣
∣H = H

K

n

)
= P

(
H = H

K

n

∣
∣ξ∗ − 1 ≥ tbK

n

) P
(
ξ∗ − 1 ≥ tbK

n

)

P
(
H = H

K

n

) .

Using the tail of H from (3.1), for large n (independently of t ≥ 0) and some constant
c, we can bound P(H = H

K

n |ξ∗ − 1 ≥ tbK
n ) above by

E
[

P
(
H ≤ H

K

n

)ξ∗−1 ∣∣
∣ξ∗ − 1 ≥ tbK

n

]

≤ E

⎡

⎣e
−c

(
ξ∗−1

bKn

)
∣
∣
∣ξ∗ − 1 ≥ tbK

n

⎤

⎦ ≤ e−ct .

For each t ≥ 0 we have that P(ξ∗ −1 ≥ tbK
n ) ∼ Ct−(α−1)P(H = H

K

n ) as n → ∞.
Since P(H = H

K

n ) doesn’t depend on t we can choose a constant c such that for n
sufficiently large we have that P(H = H

K

n ) ≤ cP(ξ∗ − 1 ≥ bK
n ) thus for t ≥ 1

P
(
ξ∗ − 1 ≥ tbK

n

)

P
(
H = H

K

n

) ≤ P
(
ξ∗ − 1 ≥ tbK

n

)

cP
(
ξ∗ − 1 ≥ bK

n

) ≤ c−1.

In particular, for t ≥ 1 we have that P(ξ∗ − 1 ≥ tbK
n |H = H

K

n ) ≤ c1e−c2t for
some constants c1, c2. It follows that there exists some random variable ξsup which is
independent of H , has an exponential tail and satisfies ξsupbK

n ≥ ξ∗ − 1 on the event

{H = H
K

n } for n suitably large (independently of K ).
Recall that the total number of excursions W j in a trap exceeds the number which

reach the deepest point B j and we writeG j,k to denote the number of excursions from
the deepest point. The length of these excursions can be dominated by excursionsR j,k,l∞
from the deepest points of the infinite traps T ≺

i . We then have that for n suitably large,
under PK
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748 A. Bowditch

ζ (n) �
ξsupbKn∑

j=1

W j
∑

k=1

G j,k
∑

l=1

R j,k,l∞
βH

K
n

.

By (7.20) E[G j,k] ≤ βHj+1/(β + 1) therefore there is some constant c such that,
writing

Y (n)
j := c

W j
∑

k=1

G j,k
∑

l=1

R j,k,l∞
E[G j,k]

(which are identically distributed under P) we have that under PK ,

ζ (n) � 1

βH
K
n

ξsupbKn∑

j=1

βHjY (n)
j .

For m ≥ 1 write X n(m) := 1
m

∑m
j=1 βHjY (n)

j 1{ j �=�} (where we recall that � is the

first index j such that Hj = H
K

n ) then by Markov’s inequality

P
K
(
X n(m) ≥ t

) ≤ 1

m

m∑

j=1

E
K
[
βHjY (n)

j 1{ j �=�}
]

t

= 1

m

m∑

j=1

E
K
[
βHj 1{ j �=�}

]
E

K
[
Y (n)

j

]

t

since E[Y (n)
j |Hj ,�] is independent of Hj and �. SinceW 1 has a geometric distribu-

tion (independently of n) we have that E[W 1] < ∞ and by Lemma 7.1 we have that
E[R∞] < ∞ therefore EK [Y (n)

j ] ≤ E[W 1]E[R∞] ≤ C < ∞ for all n. Using geo-

metric bounds on the tail of H from (3.1) and that P(H ≥ j |H ≤ H
K

n ) ≤ P(H ≥ j)
we have that

E
K
[
βH

]
≤

∞∑

j=0

β j
P

(
H ≥ j

∣
∣H ≤ H

K

n

)
≤ C(βμ)H

K
n .

We therefore have that PK (X n(m) ≥ t) ≤ C(βμ)H
K
n /t thus there exists some

sequence of random variables X n
sup � X n(m) for any m such that PK (X n

sup ≥
t) = 1 ∧ C(βμ)H

K
n t−1. In particular, X n

sup � X n(ξsupbK
n ). Therefore,

1

βH
K
n

ξsupbKn∑

j=1

βHjY (n)
j = ξsupbK

n

βH
K
n

X n(ξsupb
K
n ) + Y (n)

� � ξsupX n
sup

cμ(βμ)H
K
n

+ Y (n)
�
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under PK . We then have that

P
K

(
ξsupX n

sup

cμ(βμ)H
K
n

≥ t

)

= E
K

⎡

⎣PK

⎛

⎝X n
sup ≥ tcμ(βμ)H

K
n

ξsup

∣
∣
∣ξsup

⎞

⎠

⎤

⎦=1 ∧ C
E

K
[
ξsup

]

t

where ξsup has finite first moment since P(ξsup ≥ t) = c1e−c2t ∧ 1. It follows that
there exists Xsup � X n

sup for any n such that P(Xsup ≥ t) = 1 ∧ Ct−1.
Since EK [Y n

� ] is bounded independently of K and n, by Markov’s inequality we
have that there exists Ysup � Y n

� for all n such that P(Ysup ≥ t) = 1 ∧ Ct−1. It
therefore follows that ζ (n) under PK is stochastically dominated byXsup+Ysup under
P where

P
(
Xsup + Ysup ≥ t

) ≤ P
(
Xsup ≥ t/2

) + P
(
Ysup ≥ t/2

) ≤ Ct−1

hence Xsup + Ysup has finite moments up to 1 − ε for all ε > 0. ��

8 Convergence along subsequences

In this section we prove the main theorems concerning convergence to infinitely divis-
ible laws in FVIE and IVIE. Both cases follow the proof from [4]; in FVIE the result
follows directly whereas in IVIE adjustments need to be made to deal with slowly
varying functions.

Recall that we want to show convergence of �n/an along sequences nl(t) however
by Corollary 5.5 and Lemma 5.6 it suffices to consider

χ̃t,n =
�ntqn∑

i=1

χ̃ i
n

where χ̃ i
n is the time spent in large traps of the i th large branch by walk X (i)

n . Further-
more, by Proposition 7.3 and Corollary 7.4 we can replace χ̃ i

n with χ̃ i∗
n which is the

time spent on excursions from the deepest point of the traps of the i th branch by X (i)
n .

Let Hi denote the height of the largest trap in the i th large branch then for i, l ≥ 1
let ζ li := χ̃ i∗

nl β
−Hi then (ζ li )i≥1 are i.i.d. with the law of ζ (nl ). Let nl := nl(1) then

for K ≥ −(l − hnl ,ε) let ζ
l,K
i be ζ li conditioned on the event {Hi = l + K } when this

makes sense and 0 otherwise. For K ∈ Z and l ≥ 0 define F
l
K (x) := P(ζ

l,K
i > x).

8.1 Proof of Theorem 2 (FVIE)

Recall that in FVIE γ = log(μ−1)/ log(β) < 1, nl(t) = �tμ−l and by Corollary 3.2
we have that the height of a branch decays exponentially:P(H(T ∗−) ≥ n) ∼ CDμn =
CDβ−nγ where CD = cμE[ξ∗ − 1].

By a simple adaptation of Corollary 7.10 and Lemma 7.15
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1. ∃Z (i)∞ random variables such that for all K ∈ Z we have that ζ
l,K
i

d→ Z (i)∞ as
l → ∞;

2. ∃Zsup random variable such that for all l ≥ 0 and K ≥ −(l − hnl ,ε) we have that
ζ
l,K
i � Zsup and E[Zγ+ε

sup ] < ∞ for some ε > 0.

More specifically, since there is precisely one large trap in a large branch with high
probability in FVIE the random variable in (7.23) can be written as

Zn∞ = 1

1 − β−1E [R∞]
B∞∑

k=1

ek

for some binomial variable B∞ and independent exponential variables ek . These are
independent of n, hence an adaptation of Proposition 7.10 shows that ζ (n) converge
in distribution under PK .

Set

SlM :=
M∑

i=1

χ̃ i∗
nl .

For (λl)l≥0 converging to λ > 0 define Mλ
l := �λγ

l βγ (l−hnl ,ε) and K λ
l := λβl then

denote F∞(x) := P(Z∞ > x). Theorem 7 is Theorem 10.1 of [4].

Theorem 7 Suppose γ < 1 and properties 1 and 2 hold then

Sl
Mλ

l
/K λ

l
d→ Rdλ,0,Lλ

where Rdλ,0,Lλ
has an infinitely divisible law with drift

dλ = λ1+γ
(
1 − β−γ

) ∑

K∈Z
β(1+γ )KE

[
Z∞

(λβK )2 + (Z∞)2

]

,

0 variance and Lévy spectral function Lλ satisfying Lλ(x) = λγL1(λx) for all λ >

0, x ∈ R with L1(x) = 0 for x < 0 and

L1(x) = − (
1 − β−γ

) ∑

K∈Z
βKγ F∞(xβK )

for x ≥ 0.

Combining this with the remark at the beginning of the section with λ =
(tCD)1/γ = (tcμE[ξ∗ − 1])1/γ and that eventually l = hnl ,0 we have that

�nl (t)

(CDnl(t))
1
γ

d→ Rd
(tCD )1/γ ,0,L

(tCD )1/γ

which proves Theorem 2.
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8.2 Proof of Theorem 3 (IVIE)

In IVIE write γα := (α − 1) log(μ−1)/ log(β) = (α − 1)γ . By (3.12) we have that

P
(
H(T ∗−) > n

) ∼ cα−1
μ �(2 − α)P

(
ξ∗ ≥ μ−n) ∼ Cμ,αβ−γαnL

(
βγαn

)

for a known constantCμ,α . Due to the slowly varying term,we cannot apply Theorem7
directly however Theorem 7 is proved using Theorem 6. It will therefore suffice to
show convergence of the drift, variance and Lévy spectral function in this case.

Recall that we consider subsequences nl(t) such that anl (t) ∼ tμ−l . From Propo-
sitions 7.10 and 7.14 we then have that for any K ∈ Z the laws of ζ

l,K
i converge to

the laws of Z∞ as l → ∞. Let (Z (i)∞ )i≥1 be an independent sequence of variables
with this law and denote F∞(x) := P(Z∞ > x). By Lemma 7.15, ∃Zsup such that
ζ
l,K
i � Zsup for all l ∈ N, K ≥ −(l − hnl ,ε) and E[Zγα+ε

sup ] < ∞ for some ε > 0; we
denote Fsup(x) := P(Zsup > x). For (λl)l≥0 converging to λ > 0 define K λ

l := λβl

and for Cα,μ = μ−1(2 − α)/(α − 1)

Mλ
l :=

⎢
⎢
⎢
⎣λ

γα

l βγαl
P
(
ξ∗ > μ−hnl ,ε

)

Cα,μL
(
μ−hnl ,0

)

⎥
⎥
⎥
⎦ .

Proposition 8.1 In IVIE, for any λ > 0, as l → ∞

Mλ
l∑

i=1

χ̃ i∗
nl

K λ
l

d→ Rdλ,0,Lλ

where

dλ = λ1+γα (1 − β−γα )
∑

K∈Z
β(1+γα)K

E

[
Z∞

(λβK )2 + (Z∞)2

]

,

Lλ(x) =
{
0 x ≤ 0;
−λγα (1 − β−γα )

∑
K∈Z βKγα F∞(λxβKγα ) x > 0.

Proof By Theorem 6 it suffices to show the following:

1. for all ε > 0

lim
l→∞ P

(
χ̃1∗
nl

K λ
l

> ε

)

= 0;
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2. for all x continuity points

Lλ(x) =
⎧
⎨

⎩

0 x ≤ 0,

− liml→∞ Mλ
l P

(
χ̃1∗
nl
K λ
l

> x

)

x > 0;

3. for all τ > 0 continuity points of L

dλ = lim
l→∞ Mλ

l E

[
χ̃1∗
nl

K λ
l

1{
χ̃1∗
nl

≤τK λ
l

}

]

+
∫

|x |≥τ

x

1 + x2
dLλ(x)

−
∫

τ≥|x |>0

x3

1 + x2
dLλ(x);

4.

lim
τ→0

lim sup
l→∞

Mλ
l V ar

(
χ̃1∗
nl

K λ
l

1{
χ̃1∗
nl

≤τK λ
l

}

)

= 0.

We prove each of these in turn but we start by introducing a relation which will
be fundamental to proving the final parts. For K ∈ Z let cK

l = P(H(T ∗−) > l +
K |H(T ∗−) > hnl ,ε) denote the probability that a deep branch is of height at least
l + K . Then by the asymptotic (3.12) we have that, for K such that l + K ≥ hnl ,ε, as
l → ∞

cK
l = P

(
H(T ∗−) > l + K

)

P
(
H(T ∗−) > hnl ,ε

) ∼ μ(α−1)K P
(
H(T ∗−) > l

)

P
(
H(T ∗−) > hnl ,ε

) .

In particular, using (3.12) and that βγα = μ−(α−1)

Mλ
l c

K
l ∼ λγα

⎛

⎝
P
(
ξ∗ > μhnl ,ε

)

P
(
H

(
T ∗−) > hnl ,ε

)

⎞

⎠

⎛

⎝
P
(
H

(
T ∗−) > hnl ,0

)

P
(
ξ∗ > μhnl ,0

)

⎞

⎠

β−γαl

μ−(α−1)l
μ(α−1)K ∼ λγαβ−γαK

thus Mλ
l (cK

l − cK+1
l ) → λγαβ−γαK (1 − β−γα ) and for any ε > 0 and large enough l

Mλ
l c

K
l ≤ Cελ

γαβ−γαKβε|K |. (8.1)

To prove (1), notice that

P

(
χ̃1∗
nl

K λ
l

> ε

)

≤ P
(
H(T ∗−) ≥ hn,ε/2

∣
∣H(T ∗−) ≥ hn,ε

) + P

(
βhn,ε/2−l Zsup > λε

)
.
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Both terms converge to 0 as l → ∞ by the tail formula of a branch (3.12), the fact

that Zsup has no atom at ∞ and that βhε/2
nl −l → 0 which follows from l ∼ hn,0.

For (2), recall that Fl
K (x) = P(ζ

l,K
i > x) = P

K
(
χ̃1∗
nl β−(l+K ) > x

)
, therefore

Mλ
l P

(
χ̃1∗
nl

K λ
l

> x

)

=
∑

K∈Z
1{K≥−(l−hnl ,ε)

}Mλ
l P

(
H(T ∗−) = l + K

)
P

K

(
χ̃1∗
nl

K λ
l

> x

)

=
∑

K∈Z
1{K≥−(l−hnl ,ε)

}Mλ
l

(
cK
l − cK+1

l

)
F
l
K (λβ−K x).

If x > 0 is a continuity point of Lλ then λxβ−K is a continuity point of F∞ hence for
any K ∈ Z as l → ∞

1{K≥−(l−hnl ,ε)
}Mλ

l

(
cK
l − cK+1

l

)
F
l
K (λβ−K x) → λγαβ−γαK (1 − β−γα )F∞(λβ−K x).

We need to exchange the sum and the limit; we do this using dominated convergence.
Since γα < 1 we can choose ε > 0 such that γα + ε < 1 and ε < γα . By (8.1), for l
sufficiently large Mλ

l c
K
l ≤ Cε,λβ

−γαKβ
ε
2 |K | hence

∑

K≥−(l−hnl ,ε)

Mλ
l

(
cK
l − cK+1

l

)
F
l
K

(
λβ−K x

)
≤ C

∑

K∈Z
Fsup

(
λxβ−K

)
β−γαKβ

ε
2 |K |.

Since Zsup has moments up to γα + ε we have that for y = λx

∑

K<0

Fsup(λxβ
−K )β−γαKβ

ε
2 |K | = E

⎡

⎢
⎢
⎣

⌊
log(Zsup/y)

log(β)

⌋

∑

K=0

βK (γα+ε/2)

⎤

⎥
⎥
⎦ ≤ CyE

[
Z

γα+ ε
2

sup

]

which is finite. By choice of ε it follows that

∑

K≥0

Fsup(λxβ
−K )β−γαKβ

ε
2 |K | ≤

∑

K≥0

β( ε
2−γα)K < ∞.

It therefore follows that for x > 0

− lim
l→∞ Mλ

l P

(
χ̃1∗
nl

K λ
l

> x

)

= −λγα
(
1 − β−γα

) ∑

K∈Z
F∞

(
λxβγαK

)
βγαK .

Moreover, for x < 0 we have that P
(
χ̃1∗
nl /K λ

l < x
) = 0 which gives (2).

For (3) we have that
∫ τ

0 xdLλ is well defined therefore

∫ ∞

τ

x

1 + x2
dLλ −

∫ τ

0

x3

1 + x2
dLλ =

∫ ∞

0

x

1 + x2
dLλ −

∫ τ

0
xdLλ.
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We therefore want to show that

lim
l→∞

Mλ
l

K λ
l

E

[

χ̃1∗
nl 1{

χ̃1∗
nl

≤τK λ
l

}

]

=
∫ τ

0
xdLλ.

Write Gl
K (u) = E

[
ζ
l,K
1 1{ζ l,K1 ≤u}

]
and G∞(u) = E[Z∞1{Z∞≤u}]. Then we have that

Mλ
l

K λ
l

E

[

χ̃1∗
nl 1{

χ̃1∗
nl

≤τK λ
l

}

]

= λ−1
∑

K≥−(l−hnl ,ε)

Mλ
l

(
cK
l − cK+1

l

)
βKGl

K (τλβ−K ).

For each K ∈ Z as l → ∞

Mλ
l

(
cK
l − cK+1

l

)
βKGl

K (τλβ−K ) → λγα (1 − β−γα )β(1−γα)KG∞(τλβ−K ).

Wewant to exchange the limit and the sumwhichwedobydominated convergence. For
any κ ∈ [0, 1] and random variable Y we have that E[Y1{Y≤u}] ≤ uκE[Y 1−κ1{Y≤u}].
Using this with u = τλβ−K where κ = 1 − γα − 2ε/3 for K < 0 and κ = 1 for
K ≥ 0, alongside (8.1) we have that

∑

K∈Z
1{K≥−(l−hnl ,ε)

}Mλ
l

(
cK
l − cK+1

l

)
βKGl

K (τλβ−K )

≤
∑

K≥0

Mλ
l

(
cK
l − cK+1

l

)
βK τλβ−K

+
∑

K<0

Mλ
l

(
cK
l − cK+1

l

)
βK

(

β
2ε
3 K (τλ)1−γα− 2ε

3 E
[

Z
γα+ 2ε

3
sup

]

β(γα−1)K
)

≤ Cλτ
∑

K≥0

β−(γα−ε/2)K + Cλτ
1−γα− 2ε

3 E
[

Z
γα+ 2ε

3
sup

] ∑

K<0

β
ε
6 K

which is finite since γα > ε/2 and Zsup has moments up to γα + ε. We therefore have
that

lim
l→∞

Mλ
l

K λ
l

E
[

χ̃1∗
nl 1{

χ̃1∗
nl

≤τK λ
l

}

]

= λγα−1(1 − β−γα )
∑

K∈Z
βK (γα−1)G∞(τλβK ).
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By definition we have that

∫ τ

0
xdLλ = λγα (1 − β−γα )

∫ τ

0
x
∑

K∈Z
βγαK d(−F∞)(λxβK )

= λγα−1(1 − β−γα )
∑

K∈Z
β(γα−1)K

∫

λxβK≤λτβK
λxβK d(−F∞)(λxβK )

= λγα−1(1 − β−γα )
∑

K∈Z
β(γα−1)KG∞(τλβK ).

It therefore remains to calculate
∫ ∞
0

x
1+x2

dLλ.

∫ ∞

0

x

1 + x2
dLλ = λγα (1 − β−γα )

∫ ∞

0

x

1 + x2
∑

K∈Z
βγαK d(−F∞)(λxβK )

= λγα+1(1 − β−γα )
∑

K∈Z
β(γα+1)K

E

[
Z∞

(λβK )2 + (Z∞)2

]

.

The final sum is finite since for K < 0

β(γα+1)K
E

[
Z∞

(λβK )2 + (Z∞)2

]

= λ−1βγαKE

[
λβK Z∞

(λβK )2 + (Z∞)2

]

≤ λ−1βγαK

Which is summable and for K ≥ 0

E

[
Z∞

(λβK )2 + (Z∞)2

]

≤ E

[
Z∞

(λβK )2
1{Z∞≤λβK } + Z−1∞ 1{Z∞≥λβK }

]

≤ CλE

[
Zγα+ε/2
sup

]
β−K (1+γα+ε/2)

which, multiplied by β(γα+1)K , is summable.
It now remains to prove (4). It suffices to show that

lim
τ→0+ lim

l→∞
Mλ

l

(K λ
l )2

E

[(
χ̃1∗
nl

)2
1{

χ̃1∗
nl

≤τK λ
l

}

]

= 0. (8.2)

Write Hl
K (u) = E

[
(ζ

l,K
1 )21{ζ l,K1 ≤u}

]
then

Mλ
l

(K λ
l )2

E

[

(χ̃1∗
nl )21{

χ̃1∗
nl

≤τK λ
l

}

]

= Mλ
l

(K λ
l )2

∑

K∈Z
(cK

l − cK+1
l )β2(l+K )Hl

K (τλβ−K )

≤ Cλ

∑

K∈Z
β(2−γα)Kβ

ε
2 |K |Hl

K (τλβ−K ).
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Using that for any random variable Y we have E[Y 21{Y≤u}] ≤ uκ
E[Y 2−κ1{Y≤u}]with

u = τλβ−K and κ = 2 it follows that

∑

K≥0

β(2−γα)Kβ
ε
2 |K |Hl

K (τλβ−K ) ≤ Cτ 2
∑

K≥0

β−(γα−ε/2)K ≤ Cτ 2

where the constant C depends on λ, β, γα and ε. Then, with u = τλβ−K , κ =
2 − γα − 2ε/3 we have that

Hl
K

(
τλβ−K

)
β(2−γα)K ≤ β

2ε
3 K (τλ)2−γα− 2ε

3 E
[

Z
γα+ 2ε

3
sup

]

and therefore

∑

K≤0

β(2−γα)Kβ
ε
2 |K |Hl

K

(
τλβ−K

)
≤ Cτ 2−γα− 2ε

3 E
[

Z
γα+ 2ε

3
sup

] ∑

K≤0

β
ε
6 K

≤ Cτ 2−γα− 2ε
3 .

Since γα + 2ε
3 < 1 we have that (8.2) holds. ��

Combining Proposition 8.1 with Corollary 5.5 and Lemma 5.6 with

λ = �(2 − α)
1

γα c
1
γ
μ β

log(t)
log(μ−1)

−
⌊

log(t)
log(μ−1)

⌋

proves Theorem 3.

9 Tightness

We conclude the results for the walk on the subcritical tree with Theorem 4 which is a
tightness result for the process and a convergence result for the scaling exponent. We
only prove the result in IVIE since the proof is standard (similar to that of Theorem
1.1 of [4]) and the other cases follow by the same method; however, we state the
proof more generally. Recall that rn is an in IVFE, n1/γ in FVIE, a1/γn in IVIE and
rn := max{m ≥ 0 : rm ≤ n}.
Proof of Theorem 4 in IVIE For statement 1 we show that limt→∞ lim supn→∞
P
(
�n/rn /∈ [t−1, t]) = 0. Let l be such that anl (1) ≤ an < anl+1(1) then by mono-

tonicity of �n

P

(
�n

a1/γn

/∈
[
t−1, t

]
)

≤ P

⎛

⎝ �nl (1)

a1/γnl+1(1)

< t−1

⎞

⎠ + P

(
�nl+1(1)

a1/γnl (1)

> t

)

.
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The distribution of R1 is continuous by Theorem III.2 of [23] since limx→0 L(x) =
−∞ (where Rt denotes the limiting distribution); therefore, since the sequence
(anl+1(1)/anl (1))

1/γ can be bounded above by some constant c,

lim
t→∞ lim sup

n→∞
P

(
�n/rn /∈

[
t−1, t

])
≤ lim

t→∞P

(
R1 /∈

[
(tc)−1, tc

])
= 0.

For statement 2 we want to show that limt→∞ lim supn→∞ P
(|Xn|/rn /∈ [t−1, t])

= 0. To do this we compare |Xn| with �n . In order to deal with the depth Xn reaches
into the traps we use a bound for the height of a trap; for any ε > 0 we have

P

( |Xn|
rn

≥ t

)

≤ P

(
��trn−rε

n ≤ n
)

+ (trn − r ε
n)P

(
H(T ∗−) ≥ r ε

n

)
.

By (3.12) we have that (trn − r ε
n)P

(
H(T ∗−) ≥ r ε

n

) → 0 as n → ∞. Using the
definition of rn we have that

P

(
��trn−rε

n ≤ n
)

≤ P

⎛

⎝
��trn−rε

n
a1/γtrn−rε

n

≤ a1/γrn+1

a1/γtrn−rε
n

⎞

⎠ .

Since a1/γrn+1/a
1/γ
trn−rε

n
converges to t−1/γα as n → ∞, by continuity of the distribution

of R1 and statement 1 we have that limt→∞ lim supn→∞ P (|Xn|/rn > t) = 0.
It remains to show that limt→∞ lim supn→∞ P

(|Xn|/rn < t−1
) = 0. We need to

bound how far the walker backtracks after reaching a new furthest point in order to
compare |Xn| with �n . Let υ0 := 0 and for j ≥ 1 define the j th regeneration time as
υ j := min{m > υ j−1 : {Xn}m−1

n=0 ∩ {Xn}∞n=m = φ} then

max
i< j≤n

(|Xi | − ∣
∣X j

∣
∣
) ≤ υ1 ∨ max

2≤i≤n
(υi − υi−1) + max

0≤i≤n
H

(
T ∗−

ρi

)
.

The regeneration times (υi − υi−1), υ1 and the heights of branches H(T ∗−
ρi

) have
exponential moments for all i therefore for any ε > 0 by a union bound

lim
n→∞P

(

max
i< j≤n

(|Xi | − ∣
∣X j

∣
∣
)

> r ε
n

)

= 0.

We then have that

P

(
|Xn| /rn < t−1

)
≤ P

(

max
i< j≤n

|Xi | − ∣
∣X j

∣
∣ > r ε

n

)

+ P

(
��t−1rn+rε

n > n
)

≤ o(1) + P

⎛

⎝
��2t−1rn
a1/γ
2t−1rn

>
a1/γrn

a1/γ
2t−1rn

⎞

⎠ .
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Then, since a1/γrn
/a1/γ

2t−1rn
→ (t/2)1/γα as n → ∞, by continuity of the distribution of

R1 and statement 1 we indeed have that limt→∞ lim supn→∞ P
(|Xn|/rn < t−1

) = 0.
For the final statement notice that

P

(

lim
n→∞

log |Xn|
log(n)

�= γ (α − 1)

)

= P

(

lim
n→∞

log |Xn|
log (rn)

· log (rn)

log(n)
�= γ (α − 1)

)

and since rn = nγ (α−1) L̃(n) for some slowly varying function L̃ we have that as
n → ∞ log(rn)/ log(n) → γ (α − 1) thus it suffices to show that the following is
equal to 0

P

(

lim
n→∞

log |Xn |
log (rn)

�= 1

)

≤ P

(

lim sup
n→∞

log |Xn |
log (rn)

> 1

)

+ lim
t→∞P

(

lim inf
n→∞

|Xn |
rn

≤ t−1
)

.

By Fatou we can bound the second term above by limt→∞ lim infn→∞
P
(|Xn|/rn ≤ t−1

)
which is equal to 0 by tightness of (|Xn|/rn)n≥0.

For the first term we have

P

(

lim sup
n→∞

log |Xn|
log (rn)

> 1

)

= lim
ε→0+ P

(

lim sup
n→∞

log |Xn|
log (rn)

≥ 1 + ε

)

≤ lim
ε→0+ P

(

lim
n→∞

supk≤n |Xn|
r1+ε
n

≥ 1

)

.

Writing D′(n) :=
{

max
i=0,...,n

H(T ∗−
ρi

) ≤ 4 log(an)/ log(μ−1)

}

we have that

P(D′(n)c) = o(n−2) by (3.12) thus P(D′(n)c i.o.) = 0. On D′(n)

sup
k≤n

|Xk | ≤ ∣
∣Xκn

∣
∣ + κn+1 − κn + 4 log(an)

log
(
μ−1

)

where κn is the last regeneration time of Y before time n. Therefore, since κn+1 − κn
have exponential moments we have thatP(lim supn→∞(κn+1−κn) ≥ rn) = 0; hence,

P

(

lim
n→∞

supk≤n |Xn|
r1+ε
n

≥ 1

)

≤ P

(

lim inf
n→∞

∣
∣Xκn

∣
∣

r1+ε
n

≥ 1 − o(1)

)

≤ lim
t→∞ lim inf

n→∞ P

( |Xn|
rn

≥ t

)

where the second inequality follows by Fatou’s lemma. The result follows by tightness
of (|Xn|/rn)n≥0. ��

Theorem 1 follows from Theorem 4, Proposition 6.7 and Corollary 5.6 with Êλ = t
since nqn ∼ nε. More specifically, since Rdt ,0,Lt is the infinitely divisible law with
characteristic exponent
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id1t +
∫ ∞

0
eitx − 1 − i t x

1 + x2
dL1(x) =

∫ ∞

0
eitx − 1dL1(x)

= t−(α−1)
∫ ∞

0
eix − 1dL1(x)

by a simple change of variables calculation we have that the laws of the process
(�nt/an)t≥0 converge weakly as n → ∞ under P with respect to the Skorohod J1
topology on D([0,∞),R) to the law of the stable subordinator with characteristic
function ϕ(t) = e−Cα tα−1

where Cα,β,μ = − ∫ ∞
0 eix − 1dL1(x). A straightforward

calculation then shows that the Laplace transform is of the form

ϕt (s) := E

[
e−sRFdt ,0,Lt

]
= e−tsα−1Cα,β,μ

where

Cα,β,μ = π(α − 1)

sin (π(α − 1))
·
(

β(1 − βμ)

2(β − 1)

)α−1

. (9.1)

10 Supercritical tree

As discussed in the introduction, the structures of the supercritical and subcritical trees
are very similar in that they consist of some backbone structureY with subcritical GW-
trees as leaves. The main differences are as follows:

• On the subcritical tree the backbone was a single infinite line of descent, repre-
sented by the solid line in Fig. 2 of Sect. 3. On the supercritical tree the backbone
is itself a random tree, represented by the solid line in Fig. 5. In particular, it is
a GW-tree without deaths whose law is determined by the generating function
g(s) := ( f ((1 − q)s + q) − q) /(1 − q) where f is the generating function of
the original offspring law and q is the extinction probability.

• Each backbone vertex has additional children which we call buds. On the subcrit-
ical tree, the number of buds had a size-biased law independent of the position on
the backbone. On the supercritical tree, the distribution over the number of buds
is more complicated since it depends on the backbone. Importantly, the expected
number of buds can be bounded above by μ(1 − q)−1 independently of higher
moments of the offspring law which isn’t the case for the subcritical tree.

• In the subcritical case, the GW-trees forming the traps have the law of the original
(unconditioned) offspring law. In the supercritical case, the law is defined by the
p.g.f. h(s) := f (qs)/q which has mean f ′(q).

Let T denote the supercritical tree conditioned to survive, T ◦ the unconditioned
tree and T − the tree conditioned to die out.Write Zn, Z◦

n, Z
−
n to be the size of their nth

generations respectively and Vn, V ◦
n to be the number of vertices in the nth generation

of the backbone (for T and T ◦). As in the subcritical case we denote T ∗− to be a
dummybranch formedby a backbone vertex, its buds and the associated traps. In Fig. 5,
the dashed lines represent the finite structures comprised of the buds and leaves. It will
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760 A. Bowditch

Fig. 5 A sample section of a supercritical tree with solid lines representing the backbone and dashed lines
representing the dangling ends

be convenient to refer to the traps at a site so for x ∈ Y let Lx denote the collection of
traps adjacent to x , for example in Fig. 5 Lρ consists of the two trees rooted at y, z.
We then write T ∗−

x to be the branch at x .
Recall that Theorem 5 states that if offspring law belongs to the domain of attraction

of some stable law of index α ∈ (1, 2), has mean μ > 1 and the derivative of the
generating function at the extinction probability satisfies β > f ′(q)−1. Then,

�nl (t)

nl(t)
1
γ

→ Rt

in distribution as l → ∞ under P, where γ is as given in (1.1), nl(t) = �t f ′(q)−l for
t > 0 and Rt is a random variable with an infinitely divisible law whose parameters

are given in [4]. Moreover, the laws of (�nn
− 1

γ )n≥0 and (|Xn|n−γ )n≥0 under P are
tight on (0,∞) and P-a.s.

lim
n→∞

log |Xn|
log(n)

= γ.

In [4] it is shown that this holds when μ > 1, E[ξ2] < ∞ and β > f ′(q)−1. In
order to extend this result to proveTheorem5 itwill suffice to proveLemmas 10.1, 10.2
and 10.3 which we defer to the end of the section.

In Lemma 10.1 we show that P(H(T ∗−) > n) ∼ C∗ f ′(q)n for some constant C∗.
This is the same as whenE[ξ2] < ∞ for the supercritical tree unlike for the subcritical
tree where the exponent changes depending on the stability. This is because the first
moment of the bud distribution has a fundamental role and the change from finite to
infinite variance changes this for the subcritical tree but not for the supercritical tree.
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Lemma 10.1 is an extension of Lemma 6.1 of [4] which is proved using a Taylor
expansion of the f around 1 up to second moments. We cannot take this approach
because f ′′(1) = ∞; instead we use the form of the generating function determined in
Lemma 3.3. The expression is important because, as in FVIE, the expected time spent
in a large branch of height H(T ∗−) is approximately cβH(T ∗−) for some constant c.

Lemma 10.2 shows that, with high probability, no large branch contains more than
one large trap. This is important because the number of large traps would affect the
escape probability. That is, if there are many large traps in a branch then it is likely
that the root has many offspring on the backbone since some geometric number of the
offspring lie on the backbone. The analogue of this in [4] is proved using the bound
f ′(1)− f ′(1−ε) ≤ Cε which follows because f ′′(1) < ∞. Similarly to Lemma 10.1,
we use a more precise form of f in order to obtain a similar bound.

Lemma10.3 shows that no branch visited by level n is too large. This is important for
the tightness result since we need to bound the deviation of the walk from the furthest
point reached along the backbone. The proof of this follows quite straightforwardly
from Lemma 10.1.

To explain why these are needed, we recall the argument which follows a similar
structure to the proof of Theorem 2. As was the case for the walk on the subcritical
tree, the first part of the argument involves showing that, asymptotically, the time spent
outside large branches is negligible. This follows by the same techniques as for the
subcritical tree.

One of the major difficulties with the walk on the supercritical tree is determining
the distribution over the number of entrances into a large branch. The height of the
branch from a backbone vertex x will be correlated with the number of children x
has on the backbone. This affects the escape probability and therefore the number of
excursions into the branch. It can be shown that the number of excursions into the
first large trap converges in distribution to some non-trivial random variable W∞. In
particular, it is shown in [4] that W∞ can be stochastically dominated by a geometric
random variable and that there is some constant cW > 0 such that P(W∞ > 0) ≥ cW .

Similarly to Sect. 4, it can be shown that asymptotically the large branches are inde-
pendent in the sense that with high probability the walk won’t reach one large branch
and then return to a previously visited large branch. Using Lemmas 10.1 and 10.2
(among other results) it can then be shown that �n can be approximated by the sum
of i.i.d. random variables.

The remainder of the proof of the first part of Theorem 5 involves decomposing
the time spent in large branches, showing that the suitably scaled excursion times
converge in distribution, proving the convergence results for sums of i.i.d. variables
and concluding with standard tightness results similar to Sect. 9. Since P(Z−

1 =
k) = pkqk−1, the subcritical GW law over the traps has exponential moments. This
means that these final parts of the proof follow by the results proven in [4] since, by
Lemma 10.1, the scaling is the same as when E[ξ2] < ∞.

Tightness of (�nn−1/γ )n≥0 and (Xnn−γ )n≥0 and almost sure convergence of
log(|Xn|)/ log(n) then follow by the proof of Theorem 1.1 of [4] (with one slight
adjustment) which is similar to the proof of Theorem 4. In order to bound the max-
imum distance between the walker’s current position and the last regeneration point
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762 A. Bowditch

we use a bound on the maximum height of a trap seen up to �Y
n . In [4] it is shown that

the probability a trap of height at least 4 log(n)/ log( f ′(q)−1) is seen is at most order
n−2 by using finite variance of the offspring distribution to bound the variance of the
number of traps in a branch. In Lemma 10.3 we prove this using Lemma 10.1.

Lemma 10.1 Under the assumptions of Theorem 5

P
(
H(T ∗−) > n

) ∼ C∗ f ′(q)n

where C∗ = q(μ− f ′(q))cμ/(1−q) and cμ is such thatP(H(T −) ≥ n) ∼ cμ f ′(q)n.

Proof Let Z := Z1, Z◦ := Z◦
1, V := V1, V ◦ := V ◦

1 and sn := P(H(T −) < n), then

P
(
H(T ∗−) > n

) = 1 − E
[
P
(
H(T ∗−) ≤ n|Z , V

)] = 1 − E
[
sZ

◦−V ◦
n 1{V ◦>0}

]

1 − q
.

For any t, s > 0

E
[
sZ

◦−V ◦
t V

◦] = E
[
sZ

◦
E[(t/s)V ◦ ∣∣Z

]

= E

[

sZ
◦

Z◦
∑

k=0

(t/s)k
(
Z◦

k

)

qZ◦−k(1 − q)k

]

= E

[

(qs)Z
◦
(

1 + t (1 − q)

qs

)Z◦]

= f (sq + t (1 − q)).

Furthermore,

E
[
sZ

◦
1{V ◦=0}

]
= E

[
sZ

◦
P(V ◦ = 0|Z◦)

]
= E

[
(sq)Z

◦]
.

Therefore, writing tn := snq + 1 − q we have that 1 − tn = q(1 − sn) and

P
(
H(T ∗−) > n

) = 1 − f (snq + 1 − q)

1 − q
+ f (snq)

1 − q
= (1 − f (tn)) − (q − f (snq))

1 − q
.

By Taylor we have that ∃z ∈ [snq, q] such that f (snq) = q + q f ′(q)(sn − 1) +
f ′′(z)q2(sn − 1)2/2. Since q < 1 we have that f ′′(z) exists for all z ≤ q and is
bounded above by f ′′(q) < ∞.

By Lemma 3.3

1 − f (tn) = μ(1 − tn) + �(3 − α)

α(α − 1)
(1 − tn)

αL
(
(1 − tn)

−1
)

123



Escape regimes of biased random walks on Galton–Watson trees 763

for a slowly varying function L . In particular,

P
(
H(T ∗−) > n

)

(1 − sn)
= q

1 − q

(
1 − f (tn)

1 − tn
− f ′(q) + f ′′(z)q(sn − 1)/2

)

= q

1 − q

(
μ − f ′(q) + O

(
(1 − sn)

α−1L((1 − sn)
−1)

))

∼ q(μ − f ′(q))

1 − q
(10.1)

which is the desired result. ��

Recall that �Y
n is the first hitting time of level n of the backbone by Yn and Lx is

the collection of traps adjacent to x then for ε > 0 let

hn,ε :=
⌈

(1 − ε) log(n)

log( f ′(q)−1)

⌉

and B(n) :=
�Y

n⋂

i=0

{∣
∣
{
T ∈ LYi : H(T ) ≥ hn,ε

}∣
∣ ≤ 1

}

denote the critical height of a trap and the event that any backbone vertex seen up to
�n has at most one hn,ε-trap (which is C3(n) of [4]) respectively.

Lemma 10.2 Under the assumptions of Theorem 5

P(B(n)c) = o(1).

Proof Using C1(n) from [4] we have that the number of backbone vertices visited by
�n is at most Cn with high probability therefore

P
(
B(n)c

) ≤ o(1) + Cn
(
P
(
H(T ∗−) > hn,ε

) − P(
∣
∣
{
T ∈ Lρ : H(T ) ≥ hn,ε

}∣
∣ = 1)

)
.

Recall shn,ε = P(H(T −) < hn,ε) and from (10.1) we have that

P
(
H(T ∗−) > hn,ε

) = (1 − shn,ε )
q
(
μ − f ′(q)

)

1 − q
+ O(

(
1 − shn,ε

)α
L
(
(1 − shn,ε )

−1
)

for some slowly varying function L .
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Similarly to the method used in Lemma 10.1 we have that

P
(∣
∣
{
T ∈ Lρ : H(T ) ≥ hn,ε

}∣
∣ = 1

)

=
∞∑

k=1

k−1∑

j=1

P
(
Z1 = k, V1 = k − j,

∣
∣
{
T ∈ Lρ : H(T ) ≥ hn,ε

}∣
∣ = 1

)

=
∞∑

k=1

P(Z1 = k)
k−1∑

j=1

P
(
V1 = k − j

∣
∣Z1 = k

)
j
(
1 − shn,ε

)
s j−1
hn,ε

=
∞∑

k=1

(1 − qk)pk
1 − q

k−1∑

j=1

(
k

j

)
q j (1 − q)k− j

1 − qk
j
(
1 − shn,ε

)
s j−1
hn,ε

= q
(
1 − shn,ε

)

1 − q

∞∑

k=1

kpk

k−2∑

j=0

(k − 1)! (qshn,ε

) j
(1 − q)k−1− j

j !(k − 1 − j)!

= q
(
1 − shn,ε

)

1 − q

∞∑

k=1

kpk
((
qshn,ε + 1 − q

)k−1 − (
qshn,ε

)k−1
)

= q
(
1 − shn,ε

)

1 − q

(
f ′ (thn,ε

) − f ′ (qshn,ε

))

where thn,ε = qshn,ε + 1− q. By Taylor f ′(qsn) = f ′(q) + O(1− shn,ε ) as n → ∞.
From Lemma 3.3 we have that 1 − f (thn,ε ) = μ(1 − thn,ε ) + (1 − thn,ε )

αL((1 −
thn,ε )

−1) for some slowly varying function L . Applying Theorem 2 of [19] we have
that f ′(thn,ε ) = μ + O((1 − thn,ε )

α−1L((1 − thn,ε )
−1)). In particular,

P
(∣
∣
{
T ∈ Lρ : H(T ) ≥ hn,ε

}∣
∣ = 1

)

= q
(
1 − shn,ε

)

1 − q

(
μ − f ′(q) + O

((
1 − thn,ε

)α−1
L
((
1 − thn,ε

)−1
)))

since α < 2, thus

P(B(n)c) ≤ o(1) + O
(
n
(
1 − thn,ε

)α
L
((
1 − thn,ε

)−1
))

.

There exists some constant c such that 1− thn,ε ∼ qcμ f ′(q)hn,ε ≤ cn−(1−ε) therefore
sinceα > 1we can choose ε > 0 small enough (depending onα) such thatP(B(n)c) =
o(1). ��

Let D(n) :=
{
max j≤�Y

n
H(T ∗−

Y j
) ≤ 4 log(n)/ log( f ′(q)−1)

}
be the event that all

branches seen before reaching level n are of height at most 4 log(n)/ log( f ′(q)−1).

Lemma 10.3 Under the assumptions of Theorem 5

P
(
D(n)c

) = O(n−2).
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Proof By comparison with a biased random walk on Z, standard large deviations esti-
mates yield that for C sufficiently large P(�Y

n > Cn) = O(n−2). Using Lemma 10.1
we have that for independent branches T ∗−

j

P

⎛

⎝
C1n⋃

j=1

H
(
T ∗−
j

)
>

4 log(n)

log
(
f ′(q)−1

)

⎞

⎠

≤ C1nP

(

H
(
T ∗−) >

4 log(n)

log
(
f ′(q)−1

)

)

≤ Cn f ′(q)
4 log(n)

log( f ′(q)−1) = Cn−3.

��

Glossary

f (s) := ∑∞
k=0 pks

k p.g.f. of Galton–Watson process
ξ, ξ∗ Offspring and size-biased variables
β Bias of the walk
μ, σ 2, α Mean, variance and stability index of the offspring distribution
γ Scaling exponent
T, ρ, ZT

n ,H(T ) A fixed tree, its root, nth generation size and height
Tx , c(x),

←−x , dx The descendent tree, children, parent and out-degree of a vertex
x

T ,Y GW-tree conditioned to survive and its backbone
T ∗− A dummy branch
T ◦ A dummy f -GW-tree
T ← f -GW-tree with an artificial ancestor
T ≺
n f -GW-tree conditioned to be height n

T ≺ An infinite trap
T ∗, H Pruned dummy branch and its height
T +
j , T −

j , ρ+
j , ρ−

j Large/small traps in the pruned dummy branch and their roots

T +
i, j j th large trap in the i th large branch

ρi , (ρi, j ) j Backbone vertex in generation i and its buds
δ0, δ1, . . . Spine of T ≺
δ, δ j Deepest vertices in T ∗, T +

j

N (m) Number of traps of height at least m in T ∗−
N , Ni Number of large traps in a dummy branch and i th large branch
sm Distribution of the height of an f -GW-tree
cμ Constant satisfying tail asymptotic for the height of an f -GW-

tree
R j,k,l Duration of the lth excursion from δ j to itself on the kth excursion
Xn,Yn Biased random walk on T and the underlying walk on the back-

bone
ηk Time change satisfying Yk = Xηk

�n,�
Y
n First hitting time of the nth level of the backbone by Xn and Yn
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766 A. Bowditch

υk Regeneration times for the walk
X (i)
n ,Y (i)

n ; i ≥ 1 Independent walks on T and corresponding backbone walks
R∞ Time taken for an excursion from the deepest point in a trap to

itself
p1(H) Probability that the walk reaches δ before ρ

p2(H) Probability of escaping the tree started at δ
PT , P, P Quenched, annealed and environment laws
P

K , PK Annealed and environment laws conditioned on the number of
buds or the height

L Slowly varying function satisfying (2.2)
an Scaling sequence for ξ∗ so that P(ξ∗ ≥ xan) ∼ n−1x−(α−1)

L̃ Slowly varying function satisfying an = n
1

α−1 L̃(n)

nl(t) Subsequence for convergence
rn , rn Appropriate scaling of �n in each case and its inverse
ln,ε, l+n,ε Critical number of buds in IVFE
hn,ε, h+

n,ε Critical height of a branch in FVIE and IVIE
D(n) Roots of large branches
D(n)

m Roots of large branches up to level m
K (n) Vertices in large traps
(ρ+

i )i≥1 Ordered roots of large branches
qn Probability that a backbone vertex is large
LK := ln,0 + K Number of traps in a large branch
HK := hn,0 + K Height of a large branch

bK
n := μ−HK /cμ Scaling for ξ∗ conditioned on the height of the branch

χt,n Time spent up to ��nt in large traps
χ i
n Total time spent in large traps of the i th large branch

χ̃ i
n Time spent in the i th large branch by X (i)

n
χ̃n Dummy version of χ̃ i

n on T ∗−
χ̃t,n Sum of χ̃ i

n up to i = �ntqn
χ̃∞
n Approximation of χ̃n

χ̃ i∗
n Excursions from δ to δ in χ̃ i

n
χ∗
n Dummy decomposition of χ̃ i∗

n on T ∗

ζ (n) χ̃n scaled by the number of buds or βH

Zn∞ Scaled excursion times
Z∞ Limit of Znl∞
T j,k The duration of the kth excursion in the j th trap of T ∗−
T (i, j,k) Duration of the kth excursion in T +

i, j

T ∗(i, j,k) Duration of the excursions from δ to δ in the kth excursion in
T +
i, j

d(x, y) Graph distance between points x, y
|x | := d(ρ, x) Graph distance between x and the root of the tree
τ+
x First return time to vertex x
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