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Abstract We study biased random walk on subcritical and supercritical Galton—
Watson trees conditioned to survive in the transient, sub-ballistic regime. By
considering offspring laws with infinite variance, we extend previously known results
for the walk on the supercritical tree and observe new trapping phenomena for the
walk on the subcritical tree which, in this case, always yield sub-ballisticity. This is
contrary to the walk on the supercritical tree which always has some ballistic phase.
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1 Introduction

In this paper, we investigate biased random walks on subcritical and supercritical
Galton—Watson trees. These are a natural setting for studying trapping phenomena as
dead-ends, caused by leaves in the trees, slow the walk. These models can be used
to approach more difficult problems concerning biased random walks on percolation
clusters (as studied in [11,13,24]) and random walk in random environment (see for
example [18,25]). For a recent review of trapping phenomena and random walk in
random environment we direct the reader to [3] which covers recent developments in
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arange of models of directionally transient and reversible random walks on underlying
graphs such as supercritical GW-trees and supercritical percolation clusters.

For supercritical GW-trees with leaves, it has been shown in [21] that, for a suitably
large bias away from the root, the dead-ends in the environment create a sub-ballistic
regime. In this case, it has further been observed in [4], that if the offspring distribution
has finite variance then the walker follows a polynomial escape regime but cannot
be rescaled properly due to a certain lattice effect. (In [5,15] it is shown that, in a
related model where the conductance along each is chosen randomly according to a
distribution satisfying a certain non-lattice assumption, the tail of the trapping time
obeys a pure power law and the rescaled walk converges in distribution.) Here we
show that, when the offspring law has finite variance, the walk on the subcritical GW-
tree conditioned to survive experiences similar trapping behaviour to the walk on the
supercritical GW-tree shown in [4]. However, the main focus of the article concerns
offspring laws belonging to the domain of attraction of some stable law with index
a € (1, 2). In this setting, although the distribution of time spent in individual traps
has polynomial tail decay in both cases, the exponent varies with « in the subcritical
case and not in the supercritical case. This results in a polynomial escape of the walk
which is always sub-ballistic in the subcritical case unlike the supercritical case which
always has some ballistic phase.

We now describe the model of a biased random walk on a subcritical GW-tree con-
ditioned to survive which will be the main focus of the article. Let £ (s) := Y _po prs*
denote the probability generating function of the offspring law of a GW-process with
mean ;1 > 0 and variance o> > 0 (possibly infinite) and let Z,, denote the nth genera-
tion size of a process with this law started from a single individual, i.e. Zy = 1. Such
a process gives rise to a random tree where individuals in the process are represented
by vertices and undirected edges connect individuals with their offspring.

For a fixed tree T let p denote its root, ZnT the size of the nth generation, ¥ the
parentof x € T, c(x) the set of children of x, d, := |c(x)]| the out-degree of x, d(x, y)
the graph distance between vertices x, y, |x| := d(p, x) the graph distance between x
and the root and T, to be the descendent tree of x. A 8-biased random walk on a fixed,
rooted tree T is a random walk (X,),>0 on T which is S-times more likely to make
a transition to a given child of the current vertex than the parent (which are the only
options). That is, the random walk is the Markov chain started from Xo = z defined
by the transition probabilities

1 B
Fpa, Y= X,

%ﬂdx’ ifyec(x)’ x#ﬂ?

Pl (Xnp1 = y1Xny =) 1= |
7 ify € c(x), x = p,

0, otherwise.

We use Py(-) := f PpT (-)P(dT) for the annealed law obtained by averaging the

quenched law Pg over a law P on random trees with a fixed root p. In general we will
drop the superscript 7' and subscript p when it is clear to which tree we are referring
and we start the walk at the root.
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We will mainly be interested in GW-trees 7 which survive, thatis H(7) := sup{n >
0: Z, > 0} = oo. Itis classical (e.g. [2]) that when u > 1 there is some strictly
positive probability 1 — g that H(7) = oo whereas when u < 1 we have that H(7)
is almost surely finite. However, it has been shown in [17] that there is some well
defined probability measure P over f-GW trees conditioned to survive for infinitely
many generations which arises as a limit of probability measures over f-GW trees
conditioned to survive at least n generations. Henceforth, we assume P is this law and
X, is arandom walk on an f-GW-tree conditioned to survive.

The main object of interest is | X, |, that is, how the distance from the root changes
over time. Due to the typical size of finite branches in the tree being small and the
walk not backtracking too far we shall see that | X, | has a strong inverse relationship
with the first hitting times A, := inf{m > 0 : X,, € )V, |X;n| = n} of levels along
the backbone ) := {x € 7 : H(7,) = oo} so for much of the paper we will consider
this instead. It will be convenient to consider the walk as a trapping model. To this
end we define the underlying walk (Yy)r>o defined by Y} := X, where ng := 0 and
ne = inf{m > nr—1 : Xy, Xpp—1 € YV} fork > 1.

When X, is a walk on an f-GW tree conditioned to survive for f supercritical
(u > 1), it has been shown in [21] that v(B) := lim,_, « | X, |/n exists P-a.s. and is
positive if and only if u~! < B < f’(¢)~! in which case we call the walk ballistic.
Furthermore, although no explicit expression for the speed v is known, a description
of the invariant distribution of the environment seen from the particle is used in [1] to
give an expression of the speed in terms of the annealed expectation. This expression
coincides with the speed of the walk on a certain regular tree where each vertex has
some number of children mg; in particular, it can be seen that mg < u therefore the
randomness of the tree slows the walk. If 8 < ! then the walk is recurrent because
the average drift of ¥ acts towards the root. When 8 > f’(¢)~! the walker expects
to spend an infinite amount of time in the finite trees which hang off Y (see Fig. 5 in
Sect. 10) thus causing a slowing effect which results in the walk being sub-ballistic. In
this case, the correct scaling for some non-trivial limit is n” where y will be defined
later in (1.1). In particular, it has been shown in [4] that, when 02 < oo, the laws of
| X, |n~Y are tight and, although | X, |n~" doesn’t converge in distribution, we have
that A,n~ /¥ converges in distribution under P along certain subsequences to some
infinitely divisible law. In Sect. 10 we extend this result by relaxing the condition that
the offspring law has finite variance and instead requiring only that it belongs to the
domain of attraction of some stable law of index o > 1.

Recall that the offspring law of the process is given by P(§ = k) := py, then
we define the size-biased distribution by the probabilities P(§* = k) := kpy w It
can be seen (e.g. [16]) that the subcritical (u < 1) GW-tree conditioned to survive
coincides with the following construction: Starting with a single special vertex, at
each generation let every normal vertex give birth onto normal vertices according to
independent copies of the original offspring distribution and every special vertex give
birth onto vertices according to independent copies of the size-biased distribution,
one of which is chosen uniformly at random to be special. Unlike the supercritical
tree which has infinitely many infinite paths, the backbone of the subcritical tree
conditioned to survive consists of a unique semi-infinite path from the initial vertex p.
We call the vertices not on ) which are children of vertices on ) buds and the finite
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688 A. Bowditch

trees rooted at the buds traps (see Fig. 2 in Sect. 3). In this paper we consider walks
with positive bias therefore the walk is transient and only returns to the starting vertex
p finitely often. Moreover, we are interested in the case where the trapping times are
heavy tailed and therefore since the traps are i.i.d. the walk closely resembles a one
dimensional directed trap model as studied in [26].

Briefly, the phenomena that can occur in the subcritical case are as follows. When
E[£logT(£)] < oo and . < 1 there exists a limiting speed v(B) such that | X,|/n
converges almost surely to v(8) under IP; moreover, the walk is ballistic (v(8) > 0)
ifand only if 1 < 8 < ! and 62 < oo. This essentially follows from the argument
used in [21] (to show the corresponding result on the supercritical tree) with the fact
that, by (2.1) and (5.2), the conditions given are precisely the assumptions needed so
that the expected time spent in a branch is finite (see [8] or [9] for further detail). The
sub-ballistic regime has four distinct phases. When 8 < 1 the walk is recurrent and we
are not concerned with this case here. When 1 < 8 < u~! and 02 = oo the expected
time spent in a trap is finite and the slowing of the walk is due to the large number of
buds. When B > 1 and 62 < oo, the expected time spent in a subcritical GW-tree
forming a trap is infinite because the strong bias forces the walk deep into traps and
long sequences of movements against the bias are required to escape. In the final case
for the subcritical tree (Bi > 1, 02 = oo) slowing effects are caused by both strong
bias and the large number of buds.

Figure 1 is the phase diagram for the almost sure limit of log(| X, |)/ log(n) (which
is the leading order polynomial exponent in the scaling of | X, | relative to g and w)
where the offspring law has stability index @ (which is 2 when 0> < 00) and we
define

B
(o —1) v
B=f(q)"
a—1 1
1 Y~
0 | f=p"
0 1 ' ' Iz

Fig. 1 Phase diagram for the leading order polynomial exponent in the scaling of the walk relative to the
mean of the offspring law and bias of the walk
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Escape regimes of biased random walks on Galton—Watson trees 689

log(f'()~1)

1
logB) M= h

7= gt (1.1)
e 0 H<L

where we note that f’(g) and u are the mean number of offspring from vertices in traps
of the supercritical and subcritical trees respectively. Strictly, f'(¢) isn’t a function of
w therefore the line B = f'(g)~! is not well defined; Fig. 1 shows the particular case
when the offspring distribution belongs to the geometric family. It is always the case
that f'(g) < 1 therefore some such region always exists however the parametrisation
depends on the family of distributions.

When the offspring law has finite variance, the limiting behaviour of | X, | on the
supercritical and subcritical trees is very similar. Both have aregime with linear scaling
(which is, in fact, almost sure convergence of | X,|/n) and a regime with polynomial
scaling caused by the same phenomenon of deep traps (which results in | X, |n~" not
converging). When the offspring law has infinite variance, the bud distribution of the
subcritical tree has infinite mean which causes an extra slowing effect which isn’t seen
with the supercritical tree. This equates for the different exponents observed in the
two models as shown in Fig. 1. The walk on the critical (u = 1) tree experiences
a similar trapping mechanism to the subcritical tree; however, the slowing is more
extreme and belongs to a different universality class which had been shown in [10] to
yield a logarithmic escape rate.

2 Statement of main theorems and proof outline

In this section we introduce the three sub-ballistic regimes in the subcritical case and
the one further regime for the infinite variance supercritical case that we consider here.
We then state the main theorems of the paper.

The subcritical tree has bud distribution £* — 1 where P(§* = k) = kpgpu~!
which yields the following important property relating the size biased and offspring
distributions

E[p¢E")] = Zw(k)——E[w(S)E]u g @2.1)

Choosing ¢ to be the identity we have finite mean of the size-biased distribution if and
only if the variance of the offspring distribution is finite. This causes a phase transition
for the walk that isn’t seen in the supercritical tree. The reason for this is that in the
corresponding decomposition for the supercritical tree we have subcritical GW-trees as
leaves but the number of buds is exponentially tilted and therefore maintains moment
properties.

If the offspring law belongs to the domain of attraction of some stable law of index
a € (1, 2) then taking ¢ (x) = x1{y<;) shows that the size biased distribution belongs
to the domain of attraction of some stable law with index o — 1 and allows us to attain
properties of the scaling sequences (see for example [12, IX.8]).
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690 A. Bowditch

The first case we consider is when B < 1 but 02 = oo; we refer to this as the
infinite variance, finite excursion case:

Definition 1 (IVFE) The offspring distribution has mean y satisfying 1 < 8 < u~!

and belongs to the domain of attraction of a stable law of index « € (1, 2).

Under this assumption we let L vary slowly at oo such that as x — oo
E [gzl{gg}] ~ X2 L () 2.2)

and choose (a,),>1 to be some scaling sequence for the size-biased law such that for
any x > 0, as n — oo we have P(§* > xa,) ~ x~ @ Dn~1 Moreover for some
slowly varying function L we have that a, = na1 L(n).

In this case we have that the slowing is caused by the number of excursions in traps.
Since B is small (i.e. less than ;2 ~') we have that the expected time spent in a trap
is finite. The number of excursions the walk takes into a branch is of the same order
as the number of buds; since the size-biased law has infinite mean there are a large
number of buds and therefore a large number of excursions. The main result for IVFE
is Theorem 1 which reflects that A, scales similarly to the sum of independent copies
of &*.

Theorem 1 For IVFE, the laws of the process

(%)
n />0

converge weakly as n — oo under P with respect to the Skorohod Jy topology on
D([0, o0), R) to the law of an o — 1 stable subordinator R, with Laplace transform

1

@i(s) ==K [e“YRf] — ¢~ Caputs®”

where Cq g, is a constant which we shall determine during the proof (see 9.1).

We refer to the second (62 < oo, Bu > 1) and third (62 = oo, Bu > 1) cases
as the finite variance, infinite excursion and infinite variance, infinite excursion cases
respectively.

Definition 2 (FVIE) The offspring distribution has mean u satisfying 1 < ,u_l < B

and variance o2 < o00.

Definition 3 (IVIE) The offspring distribution has mean s satisfying 1 < u~! < g
and belongs to the domain of attraction of a stable law of index « € (1, 2).

As for IVFE, in IVIE we let L vary slowly at oo such that (2.2) holds and (a,),>1
be some scaling sequence for the size-biased law such that for any x > 0, asn — oo

we have P(§* > xa,) -x_(°‘_l)n_l. It then follows that a,, = nﬁi(n) for some
slowly varying function L. In FVIE, a, = n will suffice.
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Escape regimes of biased random walks on Galton—Watson trees 691

In FVIE and IVIE the slowing is caused by excursions in deep traps because the
walk is required to make long sequences of movements against the bias in order to
escape. We shall see that only the depth H (and not the foliage) is important to the
scaling. By comparison with the model in which we strip all of the branch except the
unique self-avoiding path to the deepest point; we see that, by transience, the walk
reaches the deepest point with positive probability and then takes a geometric number
of short excursions with escape probability of the order 8~ . In particular, this means
that the expected time spent in a branch of height H will cluster around 8.

Intuitively, the main reason we observe different scalings in these two cases is
due to the way the number of buds affects the height of the branch. The height of a
GW-tree is approximately geometric; in particular, the tallest of n independent trees
will typically be close to log(n)/log(x~!). In FVIE the number of buds has finite
mean therefore we see order n buds by level n hence tallest will have height close to
log(n)/log(x~"). In IVIE the number of buds has infinite mean but belongs to the
domain of attraction of some stable law. In particular, the number of buds seen by
level n is equal in distribution to the sum of n independent copies of £* — 1 (which
scales with a,,). It therefore follows that, in IVIE, the tallest tree up to level n will
have height close to log(a,)/log(x"'). Since only the deepest trees are significant
and the time spent in a large branch clusters around 8 we see that the natural scaling
is plog/log(u™") — y1/7 jn FVIE and glog@)/loe™) — 41/¥ i TVIE,

Since H is approximately geometric we have that 87 won’t belong to the domain
of attraction of any stable law. For this reason, as in [4], we only see convergence along
specific increasing subsequences n;(t) = Ltu”] fort+ > 0 in FVIE and n;(¢) such
that a,,(;) ~ ti~" for IVIE. Such a sequence exists for any ¢ > 0 since by choosing
n(t) :=sup{m >0:a, < t,u_l} we have that a,, < t,u_l < ap,+1 and therefore

1> Any >ﬂ

> — — 1.
T an;+1

Recalling (1.1), the main results for FVIE and IVIE are Theorems 2 and 3, which
reflect slowing due to deep excursions.

Theorem 2 In FVIE, for any t > O we have that as | — 00

An)
1

ny(t)”

—)R[

in distribution under P, where R; is a random variable with an infinitely divisible law.

Theorem 3 In IVIE, for any t > 0 we have that as | — oo

A
Vltl ) — R,

Y
0

in distribution under P, where R; is a random variable with an infinitely divisible law.
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692 A. Bowditch

We write 7, to be a, in IVFE, n'/” in FVIE and a./” in IVIE; then, letting
7n = max{m > 0 : r, < n} we will also prove Theorem 4. This shows that,
although the laws of X, /7, don’t converge in general (for FVIE and IVIE), the suit-
ably scaled sequence is tight and we can determine the leading order polynomial
exponent explicitly.

Theorem 4 In IVFE, FVIE or IVIE we have that

1. The laws of (A, /rn)n>0 under P are tight on (0, 00);
2. The laws of (|X,|/Tn)n>0 under P are tight on (0, 00).

Moreover, in IVFE, FVIE and IVIE respectively, we have that P-a.s.

log | X, | )
=a—1;

n—oo log(n)

log | X
o log1Xal
n—00 ]()g(n)

log | X

oslXul oy

1m
n— 00 log(n)

The final case we consider is an extension of a result of [4] for the walk on the
supercritical tree. The argument used for the infinite variance case is generally the
same as in the finite variance case but needs some technical input. This is provided by
three lemmas which we put aside until Sect. 10. For the same reason as in FVIE, we
only see convergence along specific subsequences n;(t) := |tf'(q) ™" for t > 0.

Theorem 5 (Infinite variance supercritical case) Suppose the offspring law belongs

to the domain of attraction of some stable law of index o € (1, 2), has mean u > 1
and the bias satisfies the bound B > f'(q)~". Then,

Ao

1

n(t)”

—)R[

in distribution as | — 00 under P, where R; is a random variable with an infinitely

divisible law whose parameters are given in [4]. Moreover, the laws of (Ayn™ ¥ )p>0
and (| X, |n7Y)p>0 under P are tight on (0, oo) and P-a.s.

log | Xu|

1m
n—oo log(n)

The proofs of Theorems 1, 2 and 3 follow a similar structure to the corresponding
proof of [4] which, for the walk on the supercritical tree, only considers the case in
which the variance of the offspring distribution is finite. However, for the latter reason,
the proofs of Theorems 1 and 3 become more technical in some places, specifically
with regards to the number of traps in a large branch. The proof can be broken down
into a sequence of stages which investigate different aspects of the walk and the tree.
This is ideal for extending the result onto the supercritical tree because many of these
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Escape regimes of biased random walks on Galton—Watson trees 693

behavioural properties will be very similar for the walk on the subcritical tree due to
the similarity of the traps.

In all cases it will be important to decompose large branches. In Sect. 3 we show a
decomposition of the number of deep traps in any deep branch. This is only important
for FVIE and IVIE since the depth of the branch plays a key role in decomposing
the time spent in large branches. In Sect. 4 we determine conditions for labelling a
branch as large in each of the regimes so that large branches are sufficiently far apart
so that, with high probability, the underlying walk won’t backtrack from one large
branch to the previous one. In Sect. 5 we justify the choice of label by showing that
time spent outside these large branches is negligible. From this we then have that A,
can be approximated by a sum of i.i.d. random variables whose distribution depends
on n. In Sect. 6 we only consider IVFE and show that, under a suitable scaling, these
variables converge in distribution which allows us to show the convergence of their
sum. Similarly, in Sect. 7 we show that the random variables, suitably scaled, converge
in distribution for FVIE and IVIE. We then show convergence of their sum in Sect. 8. In
Sect. 9 we prove Theorem 4 which is standard following Theorems 1, 2 and 3. Finally,
in Sect. 10, we prove three short lemmas which extend the main result of [4] to prove
Theorem 5. We require a lot of notation much of which is very similar; a glossary
follows Sect. 10 which includes most of the notation used repeatedly throughout.

3 Number of traps

In this section we show asymptotics for the probability that the height of a branch is
large and use it to determine the distribution over the number of large traps in a large
branch. Unless stated otherwise we assume u < 1.

In the construction of the subcritical GW-tree conditioned to survive 7 described
in the introduction, the special vertices form the infinite backbone Y = {pog, p1, ...}
consisting of all vertices with an infinite line of descent where p; is the vertex in
generation i. Each vertex p; on the backbone is connected to buds p; ; for j =
1,...,d, — 1 (which are the normal vertices that are offspring of special vertices
in the constructlon) Each of these is then the root of an f-GW tree 7, ;. We call
each 7, ; a trap and the collection from a single backbone vertex (combmed with the
backbone vertex) 7~ a branch. Figure 2 shows an example of the first five generations
of a tree 7. The solid line represents the backbone and the two dotted ellipses identify
a sample branch and trap. The dashed ellipse indicates the children of p; which, since
p1 is on the backbone, have quantity distributed according to the size-biased law. It
will be helpful throughout to work on a dummy branch which is equal in distribution
to 7y~ for any i thus we define the following random tree.

Definition 4 (Dummy branch) Define 7*~ to be a random tree rooted at p with first
generation vertices p1, . . ., pg=—1 whichareroots of independent f-GW-trees (’];O)f:]
where £* is a size biased random variable independent of the rest of the tree. Define
7T° to be a dummy f-GW-tree.

The structure of the large traps will have an important role in determining the
convergence of the scaled process. In this section we determine the distribution over
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Fig. 2 A sample section of a subcritical tree conditioned to survive with solid lines representing the
backbone ) and dashed lines representing the dangling ends

the number of deep traps rooted at backbone vertices with at least one deep trap. We will
show that there is only a single deep trap at any backbone vertex when the offspring
law has finite variance whereas, when the offspring law belongs to the domain of
attraction of a stable law with index ¢ < 2 we have that the number of deep traps
converges in distribution to a certain heavy tailed law.

A fundamental result for branching processes (see, for example [20]), is that for
u < land Z, an f-GW process, the sequence P(Z,, > 0)/u" is decreasing; moreover,
E[£ log(§)] < oo if and only if the limit of P(Z, > 0)u™ as n — oo exists and
is strictly positive. This assumption holds under any of the hypotheses thus for this
paper we will always make this assumption and let ¢,, be the constant such that

P(Z, > 0) ~c pu". 3.1

Recall that H(T') denotes the height of a tree T rooted at p. Denote
smo=P(H(T°) <m)=1—=c,u(1+0(1)) (3.2)
to be the probability that a given trap is of height at most m — 1 (although in general we
shall write s for convenience). Write N (m) := Zf:l 1(34(7;°)>m) to be the number

of traps of height at least m in the dummy branch then we are interested in the limit
asm — oo of
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Escape regimes of biased random walks on Galton—Watson trees 695

_P(Nm)=1)

(3.3)

for [ > 1. Recall that f is the p.g.f. of the offspring distribution, write f® for its kth
derivative then we have that

P(N(m)=1)=» P(*=k)P(N(m) =1|§" =k)

k=1
_ Z ]ﬂskflfl(l _ s)l<k - 1)
k=Il+1 !

_ ol

— (ll'—S)f(l'H)(s). (3.4)
i

In particular, we have that
P(H(T*_) > m) =P(Nm)>1)=1— f'(s)/1. (3.5)

Lemma 3.1 shows that, when o> < oo, with high probability there will only be a

single deep trap in any deep branch.

Lemma 3.1 When 0% < 0o

lim P(N(m)=1|N(m) > 1) = 1.

m—> 00

Proof Using (3.3) and (3.4) we have that

(1= 5)f"(s) o k(k = 1pes' >
P (N(m) = 1’N(m) = 1) = 1 _Sf{‘(s)s/liu = Zk 200 lfsf_1
> ke kP75~

(3.6)

By monotonicity in s we have that

oo oo
lim Zk(k — Dprs* 2 = Zk(k — Dpk
k=2 k=2

s—1°

which is finite since 02 < co. Each summand in the denominator is increasing in s

for s € (0, 1) and by L’Hopital’s rule 1 — s¥~! ~ (k — 1)(1 —s) as s — 1° therefore,
by monotone convergence, the denominator in the final term of (3.6) converges to the
same limit. O

In order to determine the correct threshold for labelling a branch as large we will

need to know the asymptotic form of P(N (m) > 1). Corollary 3.2 gives this for the
finite variance case.
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696 A. Bowditch

2

Corollary 3.2 Suppose o~ < oo then

2 2
P(Nm)=1) ~ c,E[£* —1]u" = c, (%—1) "

Proof Let f, denote the p.g.f. of £* then P(N(m) > 1) = 1 — s~ ! f,(s). Since
02 < oo we have that f1(s) exists and is continuous for s < 1 thus as s — 1° we

have that £, (1) — fi(s) ~ (1 —s) fi(1) = (1 — s)E[£*]. Tt tﬁerefore follows that

~ (1-s5)(E[]-1).

* 1-—
= S_lf*(s) = fu(1) = fuls) — M

The result then follows by the definitions of ¢, (3.1) and s (3.2). m]

We now consider the case when o> = oo but £ belongs to the domain of attraction
of a stable law of index « € (1, 2). The following lemma concerning the form of the
probability generating function of the offspring distribution will be fundamental in
determining the distribution over the number of large traps rooted at a given backbone
vertex. The case u = 1 appears in [7]; the proof of Lemma 3.3 is a simple extension
of this hence the proof is omitted.

Lemma 3.3 Suppose the offspring distribution belongs to the domain of attraction of
a stable law with index o € (1, 2) and mean E[&] = .

1. If u < 1thenass — 1°

'G—a _
E1 _ Mo 2N T o 1
E[s ] s ) (I=8)"L((—=9)"")

where I'(t) = fooo x'~le™*dx is the usual gamma function.
2. If u > 1 then

1—E[s§]=,u(1—s)+£(3_a)

e 9T ((1 - s)_l)

where L varies slowly at co.

When p < 1 it follows that there exists a function L (which varies slowly as
s — 1°) such that E[s6] — s* = (1 — $)*L;((1 —s)~ 1) and

Li(1-9"") TrG-w

= L((1—9))  al@—1) S

Write g(x) = x*L(x~") so that f(s) = s* + g(1 — s) then it follows that
FO) ="y + (=D'gP 1 =)
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when this exists where (u); = ]_[lj;lo(,u — j) is the Pochhammer symbol. Write

L>(x) := L1(x~") which is slowly varying at 0. Using Theorem 2 of [19], we see that
xg' (x) ~ ag(x) as x — 0. Moreover, using an inductive argument in the proof of
this result, it is straightforward to show that for all / € N we have that xgD(x) ~
(@ —1)g¥(x) as x — 0. Therefore, for any integer [ > 0

= (o). (3.8)

Proposition 3.4 is the main result of this section and determines the limiting distri-
bution of the number of traps of height at least m in a branch of height greater than
m.

Proposition 3.4 In IVIE, forl > 1 asm — oo

1 _
P(Nm) =UINGm) = 1) = - [ Tl = jl.
j=1
Proof Recall that by (3.3) and (3.4) we want to determine the asymptotics of 1 —
f/(s)/mand (1 — )l FUHD(5) /(') as s — 1°. We have that 1 — f/(s)/u = 1 —

sty g/ (1 —s)/pwand g'(1 —s) ~ (1 —5)* 'Ly(1 —s)ass — 1. Since a < 2,
we have that limy_, 1o (1 — s*#~1)(1 — 5)!=® = 0 hence

f'(s)
uw

1 —

o -1
~ 2 (1= (1 — ). (3.9)
%

For derivatives [ > 1 we have that

(1—5)fHD) (1 —s)
N R

(S;k(lﬂ)(u)l + (—l)l“g(’“)(l _ s)) .

By (3.8) we have that (1 — )/ g™V (1 —s5) ~ (@);41(1 —$)* 'Ly(1 —s). Forl > 1
we have that / + 1 — o > 0 hence

(=90 @l

T i (1= — ). (3.10)

Combining (3.3) with (3.9) and (3.10) gives the desired result. O

Proposition 3.4 will be useful for determining the number of large traps in a large
branch but equally important is the asymptotic relation (3.9) which gives the tail
behaviour of the height of a branch 7*~. By the assumption on & that (2.2) holds we
have that

P(e* >t 270 @y 3.11)

=0~ @D
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as t — oo. Using (3.2), (3.5), (3.7), (3.9) and (3.11), we then have that

r@3—a)cs!

P(H(T*")>m) ~ @ D)

WL ~ TR =) TP (EF = ).
(3.12)

4 Large branches are far apart

In this section we introduce the conditions for a branch to be large. This will differ in
each of the cases however, since many of the proofs will generalise to all three cases,
we will use the same notation for some aspects.

In IVFE we will have that the slowing is caused by the large number of traps. In
particular, we will be able to show that the time spent outside branches with a large
number of buds is negligible.

Definition 5 (IVFE large branch) For ¢ € (0, 1) write
Ine =api-; and [ = apie

then we have that P(§* > [, ;) ~ n~1=8)_ We will call a branch large if the number
of buds is at least /,,  and write DWW .= {x € YV :d, > l,,} to be the collection of
backbone vertices which are the roots of large branches.

In FVIE we will have that the slowing is caused by excursions into deep traps.
Definition 6 (FVIE large branch) For ¢ € (0, 1) write Cp := ¢, E[§* — 1],
1—¢)l 1 1
b e | A= 2loe® |, [ e)logtn
log (1) ’ log (171)
then by Corollary 3.2 we have that

P(H(T*) > hye) ~ Cppne ~ Cpn=(1-9),

We will call a branch large if there exists a trap within it of height at least 4, . and
write D := {x € Y : H(Z}") > hy.e} to be the collection of backbone vertices
which are the roots of large branches. By a large trap we mean any trap of height at
least Ay, ¢.

In IVIE we will have that the slowing is caused by a combination of the slowing
effects of the other two cases. The height and number of buds in branches have a
strong link which we show more precisely later; this allows us to label branches as
large based on height which will be necessary when decomposing the time spent in
large branches.
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Definition 7 (IVIE large branch) For ¢ € (0, 1) write

1 —e 1 e
hpe = ’7%—‘ and h;ts - IVM—‘

log (1~ 1) log (1=1)

then by (3.12), for Cp :=T'(2 — a)c/"i_l, we have that

P(H(T*) > ) ~ CoP (8% =) ~ cpn™(79. @)

We will call a branch large if there exists a trap of height at least &, and write
DWW = {x € Y : H(T}") > hy.} to be the collection of backbone vertices which
are the roots of large branches. By a large trap we mean any trap of height at least
hn.e.

We want to show that, asymptotically, the large branches are sufficiently far apart
to ignore any correlation and therefore approximate A, by the sum of i.i.d. random
variables representing the time spent in a large branch. Much of this is very similar to
[4] so we only give brief details.

Write D,(,;' ) = {x € D™ : |x| < m} to be the large roots before level m then let
qn := P(p € D™) be the probability that a branch is large and write

Al(n,T) = { sup HDE%
tel0,7T]

— Ltnqnj‘ < n23/3} 4.2)

to be the event that the number of large branches by level T'n doesn’t differ too much
from its expected value. Notice that in all three cases we have that g, is of the order
n~U8) thus we expect to see ng, ~ Cn® large branches by level 1.

Lemma4.1 Forany T > 0
lim P(A(n, T)°) = 0.
n—oo

Proof For each n € N write

m
— mgn = Z(Bk —qn)

k=1

M), = )D,(,:‘)

where By are independent Bernoulli random variables with success probability g;,.
ThenE[M],] = Oand Varp(M,,) = mq,(1—q,) therefore by Kolmogorov’s maximal
inequality

cVarp (M’fn“) enT
P M > 23 1) < < n _ crp=e3,
(15;?5;1[)5@ ‘ m| =" - n4e/3 - ple/3 = CTn
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Since ||nt|g, — [ntq,]| < 1 we have that

(n) n
su HD —lngy)| < max M|+ sup |tng, — ntlqn]
te[O,pT] Len] n ISmSLnTJ’ al o§z£T an an
< max ’Mm+1
1<m<|nT]
which proves the statement. O

We want to show that all of the large branches are sufficiently far apart such that
the walk doesn’t backtrack from one to another. For z > 0 and « € (0, 1 — 2¢&) write

D)= min  dx,y)>ntn {,0 ¢ D<">}

X"VGDL:IHJ TxFEY

to be the event that all large branches up to level |nf] are of distance at least n* apart
and the root of the tree is not the root of a large branch. A union bound shows that
P(D(n, 1)) — 0as n — oo uniformly over 7 in compact sets.

We want to show that, with high probability, once the walk reaches a large branch
it never backtracks to the previous one. For t > 0 write

L]
AP0 i= ) [ {I¥ul >i—Clogm)}

i=0 m>AY
e

to be the event that the walk never backtracks distance C log(n) (where A}: =
min{m > 0 : Y,, = p,}). For x € 7 write t;7 = inf{n > 0 : X,, = x} to be
the first return time of x. Comparison with a simple random walk on Z shows that for
k > 1 we have that the escape probability is P, (r/j,; < oo) = B! hence, using

the Strong Markov property,

P,, (‘C;) <o0)=p""
Using a union bound we see that
P (Ag”(n, r)“) < Cntp=Clozm _, g 4.3)

for C sufficiently large. Combining this with D (1, 1) we have that with high probability
the walk never backtracks from one large branch to a previous one.

5 Time is spent in large branches

In this section we show that the time spent up to time A, outside large branches is
negligible. Combined with Sect. 4 this allows us to approximate A, by the sum of
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Escape regimes of biased random walks on Galton—Watson trees 701

i.i.d. random variables. We begin with some general results concerning the number of
excursions into traps and the expected time spent in a trap of height at most m.

Recall that p; ; are the buds connected to the backbone vertex p;, that c(p;) =
{pi,j}j U{pit1} is the collection of all offspring of p; and d,, = |c(p;)| is the number
of offspring. We write W'/ := [{m > 0 : X,,_1 = pi, X = pi,;}| to be the number
of excursions into the jth trap of the ith branch where we set Wi/ := 0if p;, j doesn’t
exist in the tree. Lemma 5.1 shows that, conditional on the number of buds, the number
of excursions follows a geometric law.

Lemma 5.1 Foranyi,k e Nand A C {1,...,d,, — 1}, when g > 1

Z Wil ~ Geo (—'B -1 )
(IAl+ DB -1

jeA

with respect to PT. In particular for any j < k we have that W'/ ~ Geo(p) where

p=(B—1/2B—1). N
Moreover, under this law, (W"/) jc o have a negative multinomial distribution with
one failure until termination and probabilities

p—1 -
a1 J =90
8 :
Tarnp—1 J €4
that from p; the next excursion will be into the jthtrap (where j = 0 denotes escaping).

Proof From p;, j the walk must return to p; before escaping therefore since Py, ; (‘L';i <
00) = 1, any traps not in the set we consider can be ignored and it suffices to assume
that A = {1, ..., k}. By comparison with a biased random walk on Z we have that
Py (th =00) = 1-p7 1 Ifdy, = k+1then Py, (t; = minyec(p) ;) = (k+1)7!
for any x € c(p;). The probability of never entering a trap in the branch ’Tp’t_ is,
therefore,

k 00 [ —1
_ (g () 2 A
o Q{T’;f_w} _Z(k+lﬂ )<k+1 >_(k+1>ﬂ—1'

=0

Each excursion ends with the walker at p; thus the walk takes a geometric number
of excursions into traps with escape probability (8 — 1)/((k + 1) — 1). The second
statement then follows from the fact that the walker has equal probability of going
into any of the traps. O

For a fixed tree T with nth generation size Z] where Z IT > 0 it is classical (e.g.
[22]) that

n—1
El'[zf] =2Z%. (5.1)
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Let 7< be an f-GW tree rooted at % conditioned to have a single first generation
vertex which we label p. Notice that this has the same distribution as an f-GW-tree
T° to which we append a single ancestor of the root. From (5.1) it follows that

T _ T B g
E’ [uﬁ] = L [re] 1=2)27p
n>0

For any m > 1 we have that P(H(7 <) < m) > po therefore, for some constant C,

m-l 7T gn _ Cup)™ Bu>1

B[] M) =m] < [ZPX(:H(Tf)Sm) | =y Ae=l
C Bu < 1.

(5.2)

Recall that A} is the first hitting time of p,, for the underlying walk ¥ and write
As(n) = [A,’; < Cln]

to be the event that level n is reached by time C1n by the walk on the backbone. Standard
large deviation estimates yield that lim,,—, oo P(A3(n)¢) = 0for C; > (B+1)/(B—1).

For the remainder of this section we mainly consider the case in which & belongs to
the domain of attraction of a stable law of index « € (1, 2). The case in which the off-
spring law has finite variance will proceed similarly however since the corresponding
estimates are much simpler in this case we omit the proofs.

In IVIE and IVFE, for ¢ > 0, let the event that there are at most log(n)a, buds by
level |nt| be

Lnt]

As(n, 1) =1 "y — 1) < log(n)ay
k=0

The variables d, arei.i.d. with the law of £* therefore the laws of aW [ D i Lt 1EE=D)

converge to some stable law G* where lim,,_, o G (Ct*~ llog(n)) = 0 uniformly
over t < T therefore we have that lim,,_, oo P(A4(n, 1)) = 0.
In FVIE write

Lnt ]
Aa(n, t) := Z(dpk —1) < log(m)n

k=0

then Markov’s inequality gives that lim,,_, oo P(A4(n, 1)¢) = 0.
Write

As(n) := {rr;a}x k< Aty - Xim1 = pis X =pij}| = G2 log(n>} (5.3)
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to be the event that any trap is entered at most C; log(n) times. By Lemma 5.1 the
number of entrances into p;, ; has the law of a geometric random variable of parameter
p=(B—1)/(2B — 1) hence using a union bound we have that

P (As(n.)° N As(n. 1)) <log(n)a,P (Geo(p) > Calog(n)) < L(myna—1*C21oe=)

where L varies slowly hence the final term converges to 0 for C, large and
lim,,_, o0 P(A5(n, 1)€) = 0.

Propositions 5.2, 5.3 and 5.4 show that any time spent outside large traps is neg-
ligible. In FVIE and IVIE we only consider the large traps in large branches. Recall
that D™ is the set of roots of large branches and write

Km = |J {Ty:y eco\{pum}. HT) = hu)
xeDm

to be the vertices in large traps. In IVFE we require the entire large branch and write

Kmy:= |J tyez:)

xeDm

to be the vertices in large branches. In either case we write x; , = [{1 <i < Ay :
Xi_1, X; € K(n)}] to be the time spent up to A|,; in large traps.

Proposition 5.2 In IVIE, for any t, € > 0 we have that as n — 00

p( ze)ﬁo,

Proof On A4(n, t) there are at most a, log(n) traps by level |nt |. We can order these
traps so write 7/-%) to be the duration of the kth excursion into the /th trap and p(l)
to be the root of this trap (that is, the unique bud in the trap). Here we consider an
excursion to start from the bud and end at the last hitting time of the bud before
returning to the backbone. Recall that on Az (n) the walk Y reaches level n by time
Cin and on As(n) no trap up to level n is entered more than C; log(n) times. Using
the estimates on A3, A4 and A5 we have that

]ID(
a, log(n) C2 log(ni)
L,k
P Cine+ >0 > (2+T( )1{H(Tﬂ<l>)<hn,s})36a
=0 k=l

A lnt] — Xt,n
a}i/y

A lnt] — Xt,n

1
an/y

> 6) <o(l)

Se—
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1
Since a, > a,log(n)? > n, for n sufficiently large we have that, using Markov’s
inequality and (5.2) with m = h,, , the second term can be bounded above by

I ay log(n) Co log(nt) 1

_1 -1 1_
2l BSOS T | = Coclogm?an Tali
[=0 k=1

Combining constants and slowly varying functions into a single function L, ¢ such
that for any € > 0 we have that L, (n) < n® for n sufficiently large we then have that

|

which converges to 0 since «, % > 1. O

1

A —
Dnt) — Ko\ e) < o0(1) + Ly.c(myn &1

1
an/y

Using A3, As and the form of A4 for FVIE, the technique used to prove Propo-
sition 5.2 extends straightforwardly to prove Proposition 5.3 therefore we omit the
proof.

Proposition 5.3 In FVIE, for any t, € > 0 we have that as n — o0

ALntJ — Xt.n
([P

Ze>—>0.

Similarly, we can show a corresponding result for IVFE.

Proposition 5.4 In IVFE, foranyt,e > 0, asn — oo

P (‘ ALntJ — Xt.n
(7]

ze)—>0.

Proof We begin by bounding the total number of traps in small branches. Recall from
Definition 5 that/,, , < a,1--. Let ¢ € (0, 2 — «) then, by Markov’s inequality and the
truncated first moment asymptotic:

E[6" 1 gr<q] ~ Cx*“L(x) (5.4)

as x — oo for some constant C (see for example [12], IX.8), for n large

Lt E[ZL””(d — 1 ]
1-ce k=0"%px {dop —1=<ln.e}
i DY (dp = Dy, _y,,) Znet | < ok
k=0

|
T
.
s

_eQ2—a+tc)

< n ol Lin)

where L, (n) varies slowly at co. This converges to 0 as n — oo. We can order the
traps in small branches and write 7?-¥) to be the duration of the kth excursion in the
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Ith trap not in a large branch where we consider an excursion to start and end at the
backbone. Using A3 and As to bound the time taken by Y to reach level nt and the
number of entrances into traps up to level nt we have that for n suitably large

1—ce
na—T Cylog(nt)

> 6) <o +P[ > Y 1¢h> %an

A
P (‘ |nt] Xt,n
[=0 k=0

an

Using Markov’s inequality on the final term yields

nﬁ C; log(nt) ¢ n% C2 log(nt)
D EE T DD S
=0 k=0 k=0 j=0

—ce
< ne-l Lt,e (n)

for some L; . varying slowly at oo. This converges to 0 as n — oo hence the result
holds. O

Recall that we write r,, to be a, in IVFE, n!/7 in FVIE and a,’” in IVIE. Since
A\nt) — Xr,n 18 nON-negative and non-decreasing in ¢ we have that Supg<s<7 |Anr) —
Xt.nl = |Aar) — X7.n| therefore Corollary 5.5 follows from Propositions 5.2, 5.3
and 5.4.

Corollary 5.5 In each of IVFE, FVIE and IVIE, for any T > 0

A —
sup | |nt | Xt,n|
0<t<T 'n

converges in P-probability to 0.

Let A be the set of strictly increasing continuous functions mapping [0, 7] onto
itself and [ the identity map on [0, T'] then we consider the Skorohod J; metric

dy(f, 8 = Ainf sup (If(@) —gA@)|+ [t =A@ .
€A 1€[0,T]

Write x,i to be the total time spent in large traps of the ith large branch; that is
X,i = Hm >0: X1, X € <']:+ N K(n))”

where ,0i+ is the element of D which is ith closest to p. Notice that, whereas Xn.: only
accumulates time up to reaching p|,; |, each X,’; may have contributions at arbitrarily
large times. Recall that Aéo) (n, 1) is the event that the walk never backtracks distance
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C log(n) along the backbone from a backbone vertex up to level [n7]. On A;O) (n,T)
we therefore have that forallt < T

‘ ()
[nt—C log(n)]

()
o0,

Xh < e <) X
i=1

i=1

where, on D(n, t), the J; distance between the two sums in the above expression can
be bounded above by C log(n). In particular, using that A;O) (n, T) and D(n, t) occur
with high probability with the tightness result we prove in Sect. 9, in order to prove
Theorems 1, 2 and 3 it will suffice to consider the time spent in large traps up to level
|nt] under the appropriate scaling.

Let (X ,Si))izl be independent walks on 7 with the law of X, and (Y,fi))izl the
corresponding backbone walks. Fori > 1 let )21’1 be the time spent in the ith large trap

by X,(,i) and

[ntgn

]
)Zt,n = Z szl
i=1

The random variables )Z,’l are independent copies (under P) of times spent in large
branches; moreover, on D(n, 1), p ¢ D™ therefore they are identically distributed.
Let E extend to the enlarged space.

Lemma 5.6 In each of IVFE, FVIE and IVIE,

1. asn — o0

(n)
‘DLMJ

— I'n
=1 1€[0,T]
tel0,T]

converges to 0 in probability;
2. for any bounded H : D([0, T], R) — R continuous with respect to the Skorohod
J1 topology, as n — oo

ltngnl _; ltngal ~;

E|H Zf— _E|H Z’:— 0.

i=1 i=1 "
t€[0,T] t€[0,T]

Proof By definition of d,, the distance in statement 1 is equal to

(n)
\Dwu AOngal ;

inf sup L5 Ll ey — o
MM || i ™ = ™
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For m € Nlet A,(m/n) := |D,(,;1)|(nqn)_1 then define A, (¢) by the usual linear

interpolation. It follows that |D(L2 J| = |A,(¢#)ng,] and the above expression can be
bounded above by
()
o,
sup |t — ——
te[0,T] ngn

2¢/3

which converges to 0 by Lemma 4.1 since n%¢/3(ng,)~! — 0.

Fori > 1 let

Lnt]

A= N {r

J=0 e AY®
ZAL

> j —Elog(n)}

be the analogue of A;O) (n, t) for the ith copy and

B [ntqn] )
Arn,1) =D, yn () AY (. 1)
i=0

be the event that p is not the root of a large branch, on each of the first [ntg, 1 copies
the walk never backtracks distance C log(n) and that large branches are of distance at
least n* apart.

[tngn] Xl‘ ltngnl ~;
n _ — Xn N
B\ H Z o Vior | =E|H Z . L om
i=1 1€[0.7] i=1 1€[0.7]
therefore
L1ngn | X,‘ Ltngn ] )Ei
n n
a((552) )] efu((52
=l 1€[0,T] =l 1€[0,T]

< |lH|ls (ran,mP (Ag)) (n, T)C) +P(D(n, T)C))

which converges to 0 as n — oo for C large by the same argument as (4.3) and that
P(Dn, T)°) — 0. O

Using Corollary 5.5 and Lemma 5.6, in order to show the convergence of A ;| /7y,
it suffices to show the convergence of the scaled sum of independent random variables

)Zt,n/rm
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6 Excursion times in dense branches

In this section we only consider IVFE. The main tool will be Theorem 6, which is
Theorem 10.2 in [4], and is itself a consequence of Theorem IV.6 in [23].

Theorem 6 Let n(t) : [0, 00) — N and for each t let {Ry (t)}"(t) be a sequence of
i.i.d. random variables. Assume that for every € > Q it is true that

lim P(R;(t) > €) =0.
—00

Now let L(x) : R\{0} — R be a real, non-decreasing function satisfying
limy o0 £(x) = 0 and foa x2dL(x) < oo forall a > 0. Suppose d € R and o > 0,
then the following statements are equivalent:

1. Ast — o0
n(t)
d
Y Ri(t) > Raor

k=1

where Ry » ¢ has the law 1(d, o, L), that is,

. .
E [e"”"M] = exp (idt +/ <e”* —1- ix 2) dL’(x)) TR
0 X

2. Fort > 0let R (1) := R} ()1{|R, (1) <z} then for every continuity point x of L

x3
— X
=1 E[R —
d = lim n()E[ r(r)1+/m>r T 29600 - /0<x|<r 1+x2d£(x)

= hm lim supn(t)Var(R (1)),
=0 15000
{hmHoon(t)P(Rl(t) <x) x<0
L(x) = .
—lim; oo n(HOP(R () >x) x>0

In our case, n(¢) will be the number of large branches up to level |nt ] and { Ry }"(t)

independent copies of the time spent in a large branch.
Since we are now working with i.i.d. random variables we will simplify notation
by considering the dummy branch 7*~ defined in Definition 4 which has root p

and first generation vertices p1, ..., pg+—1 which are roots of f-GW-trees (’T")S !

(Fig. 3). We then let (W/ );;*:—11 have the multinomial distribution determined in

Lemma 5.1; that is, W/ represents the number of excursions into the jth trap of
T*~ . For the biased random walk X,, on 7*~ started from p, let 7/-* denote the dura-
tion of the kth excursion in the jth trap where we recall that in IVFE the excursion
starts and ends at the root p. We then have that
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p

Fig. 3 A dummy tree 7*~ with five buds, each of which is the root of an independent, unconditioned
subcritical GW-tree

£ —1 wi

Jn =y Y THK (6.2)

j=1 k=1

is equal in distribution under P(-|§ *> 1) to )Z,’l under P for any i. _
For K > Iy s — Iy, write L := I, 0+ K then denote P () := P (-|* — 1 = L)
and PX(-) := P (-|§* — 1 = Lg). We now proceed to show that under PX

£ —1 wi

=g DT ©3)

j=1 k=1

converges in distribution to some random variable Z,, whose distribution doesn’t
depend on K.

We start by showing that the excursion times T/ don’t differ greatly from
ET™ [T/+*]. In order to do this we require moment bounds on T/-* however since
E[Sz] = oo we don’t have finite variance of the excursion times and thus we require
a more subtle treatment. Recall that for a tree T we denote Z! to be the size of the
nth generation. Excursion times are first return times t/;" conditioned on the first step
therefore pruning buds and using (5.1) we have that the expected excursion time in a

trap Tj" is
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710 A. Bowditch

. . X 7o Te
ET [ =Bl [ X = 0] =Y 2 8" < H(T7) supZy 7. (64)
n=0 "

Using that P(Z,TO > 0) ~ c,u" (from (3.1)) we see that for n large there are no
traps of height greater than C log(n) for some constant C thus for our purposes it will
suffice to study sup, Z7* B".

Lemma 6.1 Let Z,, be a subcritical Galton—Watson process withmean jv and offspring
& satisfying E[£'7¢] < oo for some & > 0. Suppose | < B < ™', then there exists
k > 0 such that for all € € (0, k) we have that (Zn,B")H'E is a supermartingale.

Proof Let F,, := o(Zy; k < n) denote the natural filtration of Z,, and (& )x>1 be
independent copies of &.

B Zo 1+4€
1 1\ te — &
E[(Znﬂn) e |~7:n—l] = (Zn—l/gn 1) :31+€E Z 7 | Zn—1
k=1 "7
_anl 14+€
I+e &
<z, _ l’l—]) 1+€E k A
_( n 1/3 ,3 l; Zo 1 n—1
— (Zn—lﬂnil)l-‘re ,31+€E _§1+E:|

where the inequality follows by convexity of f(x) = x!¢. From this it follows that
fore € (0, —1)

E[zp)'] < E[zp'|E[en)' ] < E[ep'] < .

Fix A = (u/B)"/? then u < X and for € > 0 sufficiently small A8'*¢ < 1. By
dominated convergence E[£!7¢] < A for all € small. In particular, B! TE[£11€] < 1
for € suitably small and therefore (Znﬂ”)“re is a supermartingale. O

Lemma 6.2 In IVFE, we can choose ¢ > 0 such that for any t > 0 there exists a
constant C; such that

ZK wi

1 . o
sup  PX[|= S ik - ET [Tf’l]) 1| <cn .
K>—(an—lne) LK j=1k=1

Proof Write E,,, := ﬂ’;’zl {H(’Tjo) <C log(m)} to be the event that none of the first
m trees have height greater than C log(m). From (3.1) P(H(Tj") > m) ~ c, 1" hence

we can choose C > ¢y, such that

P(ES) < mP (H(T;) > Clog(m)) < CmpClogtm
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Thus choosing C > 1/log(x™") and ¢ = Clog(u™!) — 1 > 0 we have that
P(ES) < Cm~¢ for m sufficiently large. By Lemma 6.1 we have that (Z;g*)!+¢
is a supermartingale for € > 0 sufficiently small where Z,, is the process associated
to 7°° therefore by Doob’s supermartingale inequality

P (sup Zi Bk > x) =P (Sup(zkﬂk)l—l-e > x1+e> <E [ch)+e] w1+

k<m k<m

Using the expression (6.4) for the expected excursion time it follows that
P (ET/ [Tj’l] > x|H (T]) < Clog(m)) < Clog(m)!*ex=0+9 (6.5)

In particular, for some slowly varying function L
o .72 —
E|E7 [T/’l] 1 o H (TF’) < Clogim) | < CLomm'~¢.  (6.6)
{E j [TJvl]fm} J

Letk = €/(2(1 4 ¢€)) then write E,,, := E,, N ﬂ;-"zl{ETfo[Tf’l] < m!'=*} to be the
event that no trap is of height greater than C log(m) and the expected excursion time

in any trap is at most m' =%, For m sufficiently large by (6.5) we have that

C

m
P(E,) =P ([T [17] > m! =} 1) = Clogom) V) = m | +P (ES)
j=1
S mClog(m)1+€m7(17K)(1+E) + émic.

Write Eyy := Epp N m’;’:l{wf < C'log(m)} for C' > (28 — 1)/(B — 1) to be
the event that no trap is of height greater than C log(m), entered more than C’log(m)
times or has expected excursion time greater than m'~*. Then, by a union bound and

the geometric distribution of W/ from Lemma 5.1

m

P (fc ) < P(ES) + mB(W' > C'log(m))

<C <1og(m)1+€m‘—<‘—”“+€> +m—0+mlc’szsll) 6.7)
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formlarge Since (1 — «)(1 + €) > 1 wecanchoosee < %min{(l —k)(1+e€)—1,
¢, C'ap— ’3 1] then we have that P (E;) < Cm~2%¢ and

m Wi

P ZZ(T"‘ ETIT )| > ¢

jlkl

il _ET (i) 1=
. ZTzlcmg(m)VarPTjo(gl(t)T;l E7V 19 1]) 1Em) +}P>(ff,,)

- Clog(m)

mt?

m "~ 9L(m) + Cm™%

for some slowly varying function L. Here the first inequality comes from Chebyshev
and the second holds due to (6.6). Since € > 0 we can choose ¢ € (0, €/2) then

m Wi

ZZ(]k—Ef [1j4])| > 1] = com™.

/lkl

In particular, this holds for m = Le> a,1-- thus since o < 2

sup
K>—(an _ln s)

Lx Wi

ZZ(T”‘ ) >

K j=1k=1

) <C sup Z;ze

K>—(an—ln.e)
< Ca X
—a - -2,
— Ctn728 (ngjst(nlfs)) €
which is bounded above by C;n~% forn large whenever ¢ < (2 — ) /(o — 1). O

Using this we can now show that the average time spent in a trap indeed converges
to its expectation.

Lemma 6.3 In IVFE, we can find ¢ > O such that for sufficiently large n we have that

Lk
1 . o . C
sup P | |— Z w/ (ETJ [Tf’l] —-E [Tl’l]) >t]| <rn) <n6 + —)

K>— (an _ln.s)

uniformly overt > 0 where r(n) = o(1).

Proof We continue using the notation defined in Lemma 6.2 and also define the event
El = {H (TJ) <¢ log(m)} N {Wf <cC log(m)} N {ETf [Tj’l] < mH}
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that the jth trap isn’t tall, entered many times and that the expected excursion time in

itisn’t large.

1 & . o
EZ;W-/ (7 [ ]1,, —E[T"]1,,)
p

! (|,l > (e [r] e

Since E[E”/ [T7:11 ;1] = E[T/'1 ;] # E[E[T"']1 ;]
in the right hand side doesn’t have zero mean thus we perform the splitting:

> t‘(W~i)T:l):|+o(m_8).

we have that the summand

1 & . o . . .
E|P ZZWJ(ETJ‘ [T/, — EIT/11,) >t‘(W/);f’=1
j=1

e~ i qo . ,
<E ]P’(;ZW’(Ef[Tf"]lE’]';—]E[Tf"lEgl]) >t/3‘(WJ);(l=1
J=1

1 & . . . .
+E|P EZWJ(]E[TJ’HE/’-!]—1E[Tf’11m]1%) >t/3‘(W’)’}1:1
j=1

1 & . . . .
+E|P ZZWJ(IE[T“]IE)L—]E[T/’llE',’-l]lEi,'-l) >t/3‘(W’)’}1:1
j=1

By Chebyshev’s inequality and the tail bound E[EZ/ [T/1121
from (6.6) we have that the first term is bounded above by

()] = Cm'=Lm)

CIL(m)Z i Var (ET/O [ijl] 1E;L> < C;m€L(m)

for some slowly varying function L. The second term is equal to

m

1 J 11 Jjym
|| WEIT 1,00, | > /3| W)
=1

J

<P [ JE) | =om™)
j=1
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by (6.7). The final term can be written as

3 m ) )
- ZE[W/]IE[TJ’II
mt =

IA

(Edye]

SI»—‘

m
Z (E’)‘]l j >1/3
C
- ?E[TI’II(E}n)c]
which converges to 0 as m — oo by dominated convergence since, by (5.2), E[T"1] <
oo. We therefore have that the statement holds by setting m = L. O

Recall from (6.3) that, under PX, £ ™ is the average time spent in a trap of a branch

with &* — 1 = Lg buds. From Lemmas 6.2 and 6.3 we have that as n — oo

Lk WJ
sup PX | |c™ —E[Th E —I|>t]—0.
Kzf(an*ln,e) . LK

Using (5.1) we have that E[T11] = 2/(1 — Bu). Write 0 = (B — 1)(1 — Bu)/(2B)
and let Z*° ~ exp(0).

Corollary 6.4 In IVFE, we can find ¢ > 0 such that for sufficiently large n we have
that

sup
K>—(an—In¢)

PX (;“(") > t) -P(z™ > t)‘ < F(n) <n_8 + g)

uniformly over t > 0 where r(n) = o(1).
Proof By Lemma 5.1 the sum of W/ have a geometric law. In particular,

PZ® > ) —PK BT =— >¢
@ > > 7

j=1 7K

[ PR B—1 Lt
= le P <Geo<(z,(+1),3—1)>E[TU])‘
— eet_<1_ p—1 )LE[LTI?I']—‘

(Ly+DB—1

Lg#
—Qr——KFP
= e*@l — e Lk p+p-1

+o(Z;1)

<C‘9‘L +o (L_1>
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for some constant C independent of K. It therefore follows that the laws of ¢
converge under PX to an exponential law. In particular, using Lemmas 6.2 and 6.3
with the bound

X (;W > t) —p(ETY W,

ot (| S 6 [r] 2] -
+P(Z¥€elt—et+el)+0 (Zf)

with € = r(n)l/zt, we have the result since Ly > In.e > nt. O

Corollary 6.5 In IVFE, for any t > 0 fixed

lim sup  sup (C\/l)‘E[Zool{CZooir}]—EK [;@)1{&@)5,}]‘ —0.

n—00 C>0 K>—(an—In,e)

Lemma 6.6 shows that the product of an exponential random variable with a heavy
tailed random variable has a similar tail to the heavy tailed variable.

Lemma 6.6 Let X ~ exp(0) and & be an independent variable which belongs to
the domain of attraction of a stable law of index o € (0,2). Then P(X§ > x) ~
0T (o + DHPE > x) as x — oo.

Proof For some slowly varying function L we have that P(§ > ) ~ x7“L(x) as
X — 00.

Fix0<u <1 < v <oothenVy <u we have that x/y > x thus P(§ > x/y) <
P(& > x) it therefore follows that

u P > u
0< / 9e79y—(§ =1/) dy < / Oe dy =1 — .
0 P& > x) 0

For y € [u, v] we have that P(§ > x/y)/P(§ > x) — y® uniformly over y therefore

v P > v
lim ee—QYMdy — / Qe_eyyady,
X=>00 Ju P& >x) u

Moreover, since this holds for all # > 0 and 1 — ¢’ — 0 as u — 0 we have that

. v g PE = x/y) v
Oy \s = A _ Oy .«
th A Oe PG = x) dy —[) e 77 y*dy. (6.8)

Since 0 < P(§ > x) < 1 for all x < oo we have that L is bounded away from
0, oo on any compact interval thus satisfies the requirements of Potter’s theorem (see
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for example [6], 1.5.4) that if L is slowly varying and bounded away from 0, co on
any compact subset of [0, co) then for any € > 0 there exists Ac > 1 such that for

x,y>0
19 < ama{(5)(2) ]
L(x) X z

Moreover, dc1, ¢p > O such that c;t™“L(t) < P(§ > t) < cot~*L(t) hence we have
that for all y > v P(§ > x/y)/P(§ > x) < Cy**¢. By dominated convergence we
therefore have that

lim / Qefey—(é z x/Y) dy = / Oe 0 y*dy.
x—>00 J,, PE > x) v

Combining this with (6.8) we have that

P(X§ = x) /OO gty PEZX/Y) |
0

lim ——=—— = lim
x—oo P(§=x)  xooo P(§ = x)

e.¢]
= / Be P y¥dy = 67T (a + 1).
0

O

We write P~ (-) = P(-|&* > [,,) and P7(-) := P(-|§* > [, ) to be the laws
conditioned on the branch 7*~ being large. From (6.2) we have that (under IP) )Z,’?
are independent copies of the time spent in a branch x, with respect to P~. Define
X0 = (§* — 1) Z° where Z*° is the exponential random variable used in Corollaries
6.4 and 6.5. Recall that R, , » has the infinitely divisible given by (6.1). Fix the
sequence (A,),>1 converging to some A > 0 and denote M,% = | A,nf].

Proposition 6.7 In IVFE, for any A > 0, asn — o0

M

no~i

X d
Z =% = Ra, 0.2,
an

i=1

where

d, = / Y 4L,
0

1+ x2
x <0

[0
MO =0 @Dy x> 0.
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Proof Let € > 0 then by Markov’s inequality

~ a,1—e/2 Wi

P> (ﬁ > e) SPE -1z au-0)+P| DY Y T > eay
n j=1 k=1

PE* — 1> a,i-—¢p2)  aji-ep

1 1,1
T PEF—1>=a,-) €ay EIWRIRLT,

which converges to 0 as n — oo. Thus, by Theorem 6, it suffices to show that

1. =
. . " ﬁ ) _
rl_l)IBlJr hr?lsol;p M Varp> (Cln 1{x§1}> =0,

2. s

lim oo MJP~ (2 <x)  x <0,

.C,\(x) = . 2 " -

—limy,—, 00 M}P> (ff_,'i > x) x>0,

3.

1 A > X~_” . X
4= nll)n;OMnE |: 1{><n<r}:| +/x|>r 1+x2dLA(X)

an an —

3
_f x—dﬁx(x)
0

<|x|<t 14 x2

where d; and L, are as stated above.
We start with the first condition and since A,, — A there exists a constant C such
that

- -\ 2
s Xn . > ﬁ -
M, Varp> (51{535’9 < Cn°E |:<an> 1[5,357}]

<Cn® <r2P>($* —1>ay) +tE” [ﬁl{s*—kan}D :
an
(6.9)

By the definition of a,, we have that

PE* > ay)

P (" —1>a,) = PE S a.)

nE. (6.10)

Conditional on the number of buds £* we have that the number of excursions W/ into
the jth trap are independent from the excursion times 7/ and both the number of
excursions and the excursion times have finite mean hence

@ Springer



718 A. Bowditch

~ a,—1 ro Wi ik
= | Xn _ PE*—1=r) T/% _
E I:a_l{f*—l<an}i| - Z PE*—1> anlig)E ;]; an & —1=r

n _
r=a,i—e

E(WIE[T" g% — 1
TPE*—1>a,-) [

~Cn~¢

1{5*1514,,}}

n

where the asymptotic holds as n — oo by (5.4). In particular, by combining this with
(6.10) in (6.9) we have that M,),‘ Varp>()a(—:1{;l<r}) < C (% + 1) for some constant

C depending on A hence, as T — 07, we indeed have convergence to 0 and therefore
the first condition holds.

We now move on to the Lévy spectral function L. Clearly for x < 0 we have that
L, (x) = 0 since x, is a positive random variable. It therefore suffices to consider
x > 0. By Corollary 6.4 we have that the scaled time spent in a large trap ¢ ™ [from
(6.3)] converges in distribution to an exponential random variable Z°° with parameter
6 (which is independent of K) therefore, since M,i‘ ~ xn®and x° = (§* —1)Z*° we
have that

dan

500
M,)l‘]P’> (XL > x) ~ anfP” ((E* = DZ™ > xay)

- 51 T \B(TF. 500
PE*—1>ap) K>lz—l P(g I_LK)P(LKZ >xa”)
Ztn,e—n,0

L P(E = DZ% = xa) e 1

AP(E* —1=j)P(jZ%° > xan)
PEiza) &

, PE*—1=an)
j=0
~ 2@ D@ =@,
Where the final asymptotic holds by Lemma 6.6 and because
l”il AWPE —1=)HPGZ® > xa,) - P(Z% > xan/a,i-:) _ O
PE*—12>ay) N PE*—12>ay) B PE*—1>ay)

Jj=0

which converges to 0 as n — oo since [, = apyi-e (and therefore a,, /1, . >> n®).

o0 3
It now suffices to show that n® (]P’> (% > x) - P~ (g—" > x)) converges to 0 as
n n

n — 00. To do this we condition on the number of buds:
P> Ko >x | —P> X > X
ay a

— LyZ>® Lgc™
- Z P> (5" —1=Ly) (P >x|-PF Ll ).
K1 I dn an
Zln,e—tn,0
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We consider positive and negative K separately. For K > 0 we have that

o _ _

— LyZ® Lgc®™
Zn8P>($*—1=LK)]P’( K >x>—]P’K( k¢ >x>'
K—0 dn an

<nfP” (" — 1 > a,) sup [P (2% > cx) —PK(c™ > cx)‘ . 6.11)
c<l
K=0

By (6.10) n°P~ (§* — 1 > a,) converges as n — oo hence, using Corollary 6.4, (6.11)
converges to 0. For K < 0, by Corollary 6.4 we have that
Loz L™
D kst 1P (EF = 1=1Lx) P( = x) — PX ( s M, x)
K=o An dn

I3 0 > * T ~ —& CXZK
=n Z 1{Kzln,s_ln,O}P (g —-1= LK) r(n) (n + )

a,
K=—o00 n

0

Coimn® & P(e*—1=1Lg
<o(l)+ ——— Z 1{K>zng—zno}w

a
n K=—00

Ly.

For some constant C we have that P(§* — 1 > [, ;) ~ Cn~179 thus by (5.4)

P(E*—1=1Lg)—
Cr(n)n Z 1K>l”—l,,o (f K)L

K=—o00
sk

1
< CXF(n)nIE |:E 1{5*_1<an}i| ~ fo(n).

n

In particular, since 7(n) = o(1), we indeed have that this converges to zero and
thus we have the required convergence for L.
Finally, we consider the drift term d,, . Since fo —r<g XdL; (x) < 0o we have that

n—oo

[o,0] X T
d, = lim M}E> 1, —— dr - AL, (x).
=t [ [ e~ [

We want to show that d; = fo T2 —X-d.L; (x) thus we need to show that the other terms
cancel. By definition of P~ we have that

= XS _ 1 (E*—1)Z>® ]
= |5 ot <f}}_P(€*—lzln‘s)E[ P L 1 |

By Lemma 6.6, (§* — 1) Z*° belongs to the domain of attraction of a stable law of index
a — 1 and satisfies the scaling properties of £* (up to a constant factor). Therefore,
using that a, > [, ., we have that
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A X;?O ) - ant I:(E* —1)Z>® i|
e [“" I{Xffnf’d P(E*—1>1,,) an I{Wﬁ]

~ 272—‘1)@—(“—1)1"(0[)'
2—-—«o

Using the form of the Lévy spectral function we have that
oo
-1
xTETdy = 22~ Dp(g)
—(a—1) 2 -«

frxdﬁl(x) = w—“’—”r(a)/
0 T

thus it remains to show that

(2 g | gy ]) o

Similarly to the previous parts we condition on £* — 1 = L and consider the sums
over K positive and negative separately. For K <0

LxZ>® « | Lxe®
T e
]E|:Z°°1 —EX | ¢™1 .
e I T
Lk Lk

By definition of I, ; and properties of stable laws n°E [(§* — 1) /a,1ig+<q,} | /P(E* =
1, ¢) converges to some constant as n — 0o. By Corollary 6.5 we therefore have that
this converges to 0. Similarly for K > 0 we have that

n® Y PTE -~ 1=1Lg)
K=<0

<" [E* —1y ]
* Su;
— P(E* > ln,g) an {E*<an} KSPO

_ ZKZOO Zkf(n)
€ P (E*—1=Ly) |E 1(- —Ef | ==——1(- .
" KXZE) 5 «) apn {—L’(af gr} an {L’Zi”g}
€ * T
" P(E* > 1,0) wo 25 B | 21 _EF | ™1
PG = lne) K0 [z=sen] femzese]

We have that n®P(&* > 1,0)/P(&* > [, ) converges to some constant as n — 00.
The result then follows by Corollary 6.5. O

This shows the convergence result of Theorem 1 in the sense of finite dimensional
distributions. In Sect. 9 we prove a tightness result which concludes the proof.

7 Excursion times in deep branches
In this section we decompose the time spent in large branches. In FVIE this will be

very similar to the decomposition used in [4] and we won’t consider the argument in
great detail. However, the decomposition required in IVIE requires greater delicacy.
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In Lemmas 7.1, 7.2 and Proposition 7.3 we consider a construction of a GW-tree
conditioned on its height from [14] to show that the time spent in deep traps essentially
consists of some geometric number of excursions from the deepest point in the trap to
itself. That is, as in [4], excursions which don’t reach the deepest point are negligible
as is the time taken for the walk to reach the deepest point from the root of the trap and
the time taken to return to the root from the deepest point when this happens before
returning to the deepest point.

In the remainder of the section we show that, conditional on the exact height of the
branch H, the time spent in the branch scaled by ¥ converges in distribution along
the given subsequences. In Lemma 7.5 we determine an important asymptotic relation
for the distribution over the number of buds conditional on the height of the branch.
In Lemmas 7.6-7.9 we provide various bounds which allow us, in Proposition 7.10,
to show that the excursion time in a large branch is close to the random variable Z7
(defined in (7.23)) which removes some of the dependency on .

The main result of the section is Proposition 7.14 which shows that the scaled time
spent in a large branch converges in distribution along the given subsequences. As a
prelude to this we prove Lemmas 7.11-7.13 which show that we can reintroduce small
traps into the branch and that the height of a trap is sufficiently close to a geometric
random variable. We then conclude the section by showing that the scaled excursion
times can be dominated by some random variable with a certain moment property
which will be important in Sect. 8.

Recall that 7° is an f-GW-tree and H (7 °) is its height then, following notation
of [4], we denote (¢,+1, Yn+1)n>0 to be a sequence of i.i.d. pairs with joint law

P (¢n+l = j, 1/fnJrl = k)
_PE=OPH(T®) <n—1)""PHT) =n)PHT°) <n)/
o P(H(T°) =n+1)

(7.1)

fork =1,2,...and j = 1, ..., k. Under this law ¥, 1 has the law of the degree of
the root of a GW-tree conditioned to be of height n 4 1 and ¢,,41 has the law over the
first bud to give rise onto a tree of height exactly n. We then construct a sequence of
trees recursively as follows: Set 7,* = {§} then

1. Let the first generation of 7,3 | be of size ¥, 11.

2. Attach 7, to the ¢+ th first generation vertex of 7,7 ;.

3. Attach f-GW-trees conditioned to have height at most n — 1 to the first ¢, -1 — 1
vertices of the first generation of 7,7 ;.

4. Attach f-GW-trees conditioned to have height at most n to the remaining ¥, 41 —

. . 3
$n+1 first generation vertices of 7,7 ;.

Under this construction 7,7 | has the distribution of an f-GW-tree conditioned to
have height exactly n + 1. Write 9 = § to be the deepest point of the tree and for
n =1,2,... write §, to be the ancestor of § of distance n. The sequence Jy, d1, . ..
form a ‘spine’ from the deepest point to the root of the tree. We denote 7 = to be the
tree asymptotically attained. By a subtrap of 7 = we mean some vertex x on the spine
together with a descendant y off the spine and all of the descendants of y. This is itself
atree with root x and we write Sy to be the collection of subtraps rooted at x. Figure 4
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Fig.4 A GW-tree conditioned to be of height 4 with the solid line representing the spine and dashed lines
representing the subtraps which reach at most level 3 to the left of the spine and at most level 4 to the right

of the spine
shows a construction of 7,~ where the solid line represents the spine and the dashed
lines represent subtraps.

We denote S™/! to be the jth subtrap conditioned to have height at most n — 1

attached to 8, and S™/-? to be the jth subtrap conditioned to have height at most n
attached to §,. Recall that d(x, y) denotes the graph distance between vertices x, y

ik .— o Z pg0xbn)

xesrn,_/,k\{an}

then fork =1, 2 let

denote the weight of S™ /% under the invariant measure associated to the conductance
model with conductances ,8”rl between levels i, i + 1 and the roots of S/+k (spinal

vertices) denoting level 0. We then write

¢n_1 1;/fn_¢n
A, = Z A + Z Hn’j’2
j=1 j=1

to denote the total weight of the subtraps of §,, then,

ET [Rocl =2) B "1+ Ay)

n=0

(7.2)

is the expected time R, taken for a walk on 7~ started from § to return to §
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Lemma 7.1 Suppose that & belongs to the domain of attraction of a stable law of
index o € (1,2] and B > 1 then

E[Rs] < 00.

Proof Since B > 1 we have that2) 22 7" =2/(1 — B~1) thus by (7.2) it suffices
to find an appropriate bound on E[A,,].

E[I1"/:1] < E[IT"/-?] since conditioning the height of the trap to be small only
reduces the weight; therefore, by independence of v, and I1"/-2

(pn*l ¢n*¢n
E(A = E[ Y ot 3 w2 | < B[02] By, (73)
j=1 j=1

Using that conditioning the height of a GW-tree 7° to be small only decreases the
expected generation sizes and that u8 > 1, by (5.1)

E[n"»”] = zgﬁkE [Ze|H(T°) <n] < c(Bw)" (7.4)

for some constant ¢ where Z; are the generation sizes of 7°. Summing over j in
(7.1) shows that P(y,,+1 = k) = P(Z1 = k|H(7°) = n + 1). Recalling that s, =
P(H(T®) <n),

E[Vnr1] = E[Z1|H(T°) =n+ kak( — s )

Sp+2 — Sn+1
By (3.1) 1 — 5,41 ~ cu” for some positive constant c. Let € > 0 be such that

l—e—pu(l4€) > 0, then forn large we have that (1 —€)cu” < 1—s,41 < (14€)cu”.
Therefore,

Sn2 = Sntl = (L= 1) = (L = sn42) = (1 —e —u(l +€))en” = C(1 = s5p)

for some positive constant C. In particular, when 02 < o0, there exists some constant
¢ such that

sfl‘ 1 — sk 2
kak <czkpk<1 S”)<ca
— On

Sp+2 — Sn+1 =1

where the final inequality comes from that (1 — A =9 is increasing in s and
converges to k for any k > 1. It therefore follows that E[A,] < C(Bu)" so indeed

E[Recl < C) B"(B)" < oo,

n=0
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When & has infinite variance but belongs to the domain of attraction of a stable law

> ki (k= 55) =M((1 - L) _ (l _ #))
k=1

w w

hence by (3.9) as n — oo we have that E[v/,,41] ~ ¢t @2 L, (1”*). Combining this
with (7.3) and (7.4) we have

E[A,] < CBW" 1" DLy = CBr* "Y' La(u™) (7.5)

therefore using (7.2) for C chosen sufficiently large we have that

o8]
E[Ro] < C (1 + Zu”(“—“Lz(u")) < 00,

n=1
O

We therefore have that the expected time taken for a walk started from the deepest
point in a trap (of height H) to return to the deepest point is bounded above by
E[Rx] < oo independently of its height. Recall that 7" is the first return time to
x. The following lemma gives the probabilities of reaching the deepest point in a
trap, escaping the trap from the deepest point and the transition probabilities for the
walk in the trap conditional on reaching the deepest point before escaping. The proof
is straightforward by comparison with the biased walk on Z with nearest neighbour
edges so we omit it.

Lemma 7.2 For any tree T of height H + 1 (with H > 1), root p and deepest vertex
8 we have that

_ a1
P <o) = T

W< T) = T gaE

is the probability of reaching the deepest point without escaping and

_al

4 ,BH _ /371

is the probability of escaping from the deepest point before returning. Moreover,

T (. + e\ _ =g
Ps, (Tﬁk—l < Tt |T5 < rp) R p—(H+1-h) ‘ B+1

is the probability that the walk restricted to the spine conditioned on reaching § before
returning to p moves towards §.
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Since the first two probabilities are independent of the structure of the tree except
for the height we write

1—p7!

pi(H) == m (7.6)

to be the probability that the walk reaches the deepest vertex in the tree before returning
to the root starting from the bud and

1—p7!
pH — g1

to be the probability of escaping from the tree.

For the remainder of the section we will consider only the case that the offspring
distribution belongs to the domain of attraction of some stable law of index « € (1, 2).
The first aim is to prove Proposition 7.3 which shows that the time on excursions in deep
traps essentially consists of some geometric number of excursions from the deepest
point to itself. We will then conclude with Corollary 7.4 which is an adaptation for
FVIE and of which we omit the proof.

Recall that ,ol.Jr is the root of the ith large branch and ¥/ is the time spent in this

p2(H) = (1.7)

branch by the ith walk X, ,(,i). This branch has some number N ! buds which are roots
of large traps where, by Proposition 3.4, N' converges to a heavy tailed distribution.
Let ,oi+ ; be the bud of the jth large trap Tl'; in this branch then W"/ := [{m > 0 :

X f,’ll =0 X O _ o ;31 is the number of times that the jth large trap in the ith
large branch is visited by the ith copy of the walk. Let w(/*9) := 0 then for k < W%/
write @70 .= min{m > @@k . X(’) =p;, X = pl+ } to be the start time

of the kth excursion into T+ and TG 70 = |{m € [w®IHR) | @@kt X(l) S ’T+}|
its duration. We can then erte the time spent in large traps of the ith large branch as

NT wihi
=33 b,

j=1 k=1

For0 < k < H(’Z;J;) write 5,?"’ ) to be the spinal vertex of distance k from the
deepest point in T+ Let 7*®7:0) := 0 if there does not exist m € [w®/K) | @ ik+1D]
such that X, 80 A —. §G0) and

i, j.k) . i, j.k i, j.k+1) | . i) _ s@,j
TR Sup{m c [w(z IR gyl )] LX) = g0 J)]

— inf {m € [w(i‘j’k), w(i’j’k+l)] : X,(,l;) = S(i’j)} (7.8)

otherwise to be the duration of the kth excursion into Tfj without the first passage to
the deepest point and the final passage from the deepest point to the exit. We can then
define
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NI Wi

Xr=y Y TrEih (7.9)

j=1 k=1

to be the time spent in the ith large trap without the first passage to and last passage
from §/) on each excursion. We want to show that the difference between this and
)Z,’l is negligible. In particular, recalling that D,(,”) is the collection of large branches by
level n, we will show that for all t > 0 asn — oo

Dl(l’1>

P Z(X—X) >ta) | = 0.

i=1

For € > 0 denote

n

Aoy = (N {H(T) < i) .10
i=0

to be the event that there are no h;ﬁ" .-branches by level n. Using a union bound and
(3.12) we have that P(Ag(n)°) < nP(H(’Z;j(‘)_) > h;l“_f) — 0asn — oo.
Write

Dy’

Arny == ) {Nf gnazfl} (7.11)

i=0

to be the event that all large branches up to level n of the backbone have fewer than

n = large traps. Conditional on the number of buds, the number of large traps in the
branch follows a binomial distribution therefore

P (S* > nﬁ)

(H(T*7) > hye)

P (Bin (n% P(H(T%) = hy)) = niT)
P(H(T*) > hns)

pi

P(N" znm) <
P

+

By (4.1) P(H(T*7) > hy.¢) = Cn~1= for n large and some constant C hence by
(3.11) the first term decays faster than n—¢. Using a Chernoff bound the second term
has a stretched exponential decay. Therefore, by Lemma 4.1 and a union bound, as
n — 0o

P(A7(n)°) < o(1) + Cn°P (Ni > n%) o
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Recall that d, := |c(x)] is the number of children of x in the tree and define
D\ i [HTH i
Ag(n) := ﬂ ﬂ Z d‘s/(f’j) < ni¥/@=D
i=1 j=1]| k=0

to be the event that there are fewer than n3¢/@—1? subtraps on the spine in any large
trap. For Z, the generation sizes associated to GW-tree 7° we have that P(Z; >
n|H(7°) > m) is non-decreasing in m; therefore, the number of offspring from
a vertex on the spine of a trap can be stochastically dominated by the size biased
distribution. Using this and Lemma 4.1 with the bounds on Ag and A7 we then have
that for some slowly varying function L
hy e
P (As(n)) < o(1) + CnfnaTP [ S gr = p¥e/@ 1’
k=0
< o(1) + Cr*na i P (£ = /@Dt )
<o(l)+ ngnfﬁZ(n)

where (S,j‘) k>1 are independent variables with the size biased law; thus P(Ag (n)€) — 0
asn — oo.

Proposition 7.3 In IVIE, foranyt > 0 asn — o0

D 1

P Z (Xn — )Z,’f) > ta] | — 0.

i=1

Proof Let A'(n) = ﬂ?:l A;(n) then using the bounds on A; fori = 1,...,8 it
follows that P(A’(n)¢) — 0 as n — oo. In particular, on A{(n) (from (4.2)) we have

that [D| < Cn and on A7(n) (from (7.11)) we have that N' < na=T for all i
therefore by Markov’s inequality

1Dy 1

P> ()Z,’;—X,i*) > ta;

i=1

1 D) N wisi
<BA@O) + —E | Lo 3 33 (T - 100)
[arf L i=1 j=1k=1
a+tl B )
Cns("‘*l) "
<o)+ ———E [ 1y Y (K0 - 17019) (7.12)
ta) L k=1

where we recall that Tn*(i’j’k) < Tn(i’j’k) for all i, j, k.
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Since the number of excursions W’/ are independent of the excursion times
and have marginal distributions of geometric random variables with parameter

B—=D/2p—-1)

w.D
E | 1um Z (Tn(l,l,k) _ Tn*(l,l,k)) ) [W(l,l)] E [IA’(n) (Tn(l,l,]) _ Tn*(],],]))] .
k=1

For a given excursion either the walk reaches the deepest point §(I-1) before returning

to the root pfrl or it doesn’t. In the first case the difference Tn(l’l’l) — Tn*(l’l’l) is the

time taken to reach (11 conditional on the walker reaching §(!-1) before pr] added to
the time taken to reach ,0?' | from 8D conditional on reaching p1+ | before returning

to (' In the second case the difference is the time taken to return to the root given
that the walker returns to the root without reaching 81 In particular, recalling that

75 . +
1.1 is the trap rooted at p;"; we have that

T+
E[ gy (T1D — 7LDy < E [IA,(H)EP}.: [IA/<n)T§1,1>|f§1,n < r;}lﬂ
7' + o+ +
+E 1A’(n)E8(1,1) 1A’(n)":l01+l |T'01+1 < T(;(l.l)

7 + |t +
+E[1A/(")Epﬁ1 [IA/(")Tpﬁhpﬁ = Tan ]|
(7.13)

We want to show that each of the terms in (7.13) can be bounded appropriately.
This follows similarly to Lemmas 8.2 and 8.3 of [4] so we only sketch the details.
Conditional on the event that the walk returns to the root of the trap before reaching
the deepest point we have that:

1. the transition probabilities of the walk in subtraps are unchanged,

2. from any vertex on the spine, the walk is more likely to move towards the root
than to any vertex in the subtrap,

3. from any vertex on the spine, excluding the root and deepest point, the probability
of moving towards the root is at least 8 times that of moving towards the deepest
point.

Property 3 above shows that the probability of escaping the trap from any vertex on
the spine is at least the probability p, of a regeneration for the S-biased random
walk on Z. From this we have that the number of visits to any spinal vertex can
be stochastically dominated by a geometric random variable with parameter po.
Similarly, using property 2 above, we see that the number of visits to any subtrap can
be stochastically dominated by a geometric random variable with parameter p /2.

Using a union bound with A, A7, Ag and (3.1) we have that with high probability
there are no subtraps of height greater than £,, .. In particular, by (5.2), the expected
time in any subtrap can be bounded above by C(Bu)"*¢ for some constant C using
property 1. From this it follows that

@ Springer



Escape regimes of biased random walks on Galton—Watson trees 729

T+
E|llymE Y 1yt |25 <1
[ Al (n) Ptl A'(n) Pt1| Ptl FYER))

7’+
: + |+ +
=t [IWE“II']” [1“")%; 1%, < fswﬂ
3e
< o(1) + hy} LE[Geo(poo)] + Cn @17 (Bu)ime

(1—¢) log(Bu) 3e

<o(1) + CL(n)n * " oz H " @12

for some constant C and slowly varying function L.
A symmetric argument shows that the same bound can be achieved for the first
term in (7.13). It then follows that the second term in (7.12) can be bounded above

by C;Li(n)n~ a1+ where € can be made arbitrarily small by choosing ¢ sufficiently
small. O

A straightforward adaptation of Proposition 8.1 of [4] (similar to the previous
calculation) shows Corollary 7.4 which is the corresponding result for FVIE.

Corollary 7.4 In FVIE, foranyt > 0asn — 00

DY

. s 1
Pl (z—ar)| zmr | —o.

i=1

By Proposition 7.3 and Corollary 7.4, in FVIE and IVIE, almost all time up to the
walk reaching level n is spent on excursions from the deepest point in deep traps. The
aim of the remainder of the section is to prove Proposition 7.14 which shows that the
time spent on the excursions from the deepest point in a single large branch (suitably
scaled) converges in distribution along the given subsequences. To ease notation, for
the remainder of the section we work on a dummy branch 7* so that the time %, * has
the distribution of a sum of excursion times from the deepest points of 7 *.

Recall from Definition 4 that 7*~ is a dummy branch with root p, buds
Pl - - ., pex—1 each of whichis theroot of an f-GW-tree Tj" withheight H; := H(Tj").
We now define a pruned version of this branch which only contains traps of height at
least 1y ¢.

Definition 8 (Pruned dummy branch) Let

£
Ni=3 Yo, (7.14)
j=1

denote the number of traps in 7 *~ of at least critical height. Denote (T;“) j= to be
those large traps, (p;.r)ﬁ.v:l their roots and H;r = H(T;“) the height of the jth large
trap in the branch. Similarly, let (’Z}‘)i:llfN denote the small traps, (,oj_)i:llfN

their roots and H ;o= H(Tj_) the height of the jth small trap in the branch.
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Let 7* be 7* pruned to consist precisely of the root p, buds (pj.*)ﬁ.v: | and traps
(THY,.

We write H := H(7T*) — 1 to be the height of the largest trap and for K € Z let
—K
H, = h, o+ K then denote

Py =P ([H=H,) and P*¢):=P([H=H,).

Write W/ to be the total number of excursions into TjJr and B/ the number of

excursions which reach the deepest point 8.

For each k < B/ we define G/¥ to be the number of return times to 8/ on the kth
excursion which reaches /.

Forl = 1,..., G/ let R/-*! denote the duration of the /th excursion from 8/ to
itself on the kth excursion into ’]}"" which reaches /.

The height of the branch and the total number of traps in the branch have a strong
relationship. Lemma 7.5 shows the exact form of this relationship in the limit as n —
oo. Recall from (3.1) that ¢, is the positive constant such that P(H(7) > n) ~ ¢, "
as n — oo then write

(7.15)
C

Lemma 7.5 In IVIE, under PX we have that the sequence of random variables (§ *—
1)/bX converge in distribution to some random variable & satisfying

— oa—1 o
_ — (,—KY _ =Y
PE=z1) F2-—a)(l—pt) /t e 7).

Proof We prove this by showing the convergence of

x K
P(g*_1Z;bgﬁ:ﬁf):P(ﬁ:ﬁf}g*—lzzbf)M

(ﬁ - ﬁ,’j)
(7.16)
for all > 0. To begin we consider P H= ﬁ::ls* —-1> tb,’f).

The heights of individual traps are independent under this conditioning hence
T7 - K |ex K o =K\ 1 * K
P(H<H, | ~12z0f) =E|P(HT) <H,) | ~1=mf|.

We know the asymptotic form of P(H(7°) < ﬁf) from (3.1) thus we need to consider
the distribution of £* — 1 conditioned on §* — 1 > #bX. By the tail formula for £* — 1
following Definition 3 we have that forr > 1 asn — oo
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ES

—1
P(é >r

tbf¥

We therefore have that, conditional on £&* — 1 > tb,’f , the sequence (§* — 1)/ tb,’f
converges in distribution to a variable ¥ with tail P(Y > r) = r~@~D A 1. Using the
form of b} we then have that

P (£* — 1= rib¥)

~ @D,
P (&% — 1 > 1bf)

g*—lzrb,’f) =

g\ tbK
P (H(T°) < H”) — ¢~tn(+o())
It therefore follows that

lim P(H < Hyle* — 12 b)) = B[],

n—oo

Repeating with ﬁ,’f replaced by ﬁf — 1 we have that P(H = ﬁflé* — 1>t —
Ele "] —E[e™""] as n — oo. For 6 > 0

oo
E [e—etY] — (a _ l)tol—l/ e—@yy—oldy
t

therefore

o0
lim P (ﬁ = ﬁ,ﬂg* —1> tb,’;) = (a — %! / y %M — e V)dy.
t

n— o0
(7.17)
By (3.12) we have thatas n — oo

K

P(H=H,)=P(H(T")>H,)-P(H(T") > H, +1)
~T Q)] (1 B ’uot—l) p <%.* . M—Hf)
—TQ-a)! (1 — ,ﬂ—l) P (" — 1> c,bf)

therefore
P (" — 1 > 1bF) P(e* — 1> 1b¥)
p(H—m)  Te—w (=) P —1=auf)
(1)
rQ2-—o)(l—pet)

Combining this with (7.17) in (7.16) we have that

~

a—1

o
. * K7 _ k) _ o (,THY _ Y
lim P(E 1 >1tb,|H = Hn) “Te—o (1 _Ma—l) /; y (e e )dy.

n— 00

O
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Notice that under P the pruned dummy branch 7* is the single vertex o with high
probability however under PX there is at least one trap. By Lemma 5.1, conditional
on N, (W/ )?’:] have a joint negative multinomial distribution. Moreover, W;, B; are

coupled so that B/ is binomially distributed with W/ trials and success probability
pl(HjJr). The number G/ of return times to 8/ is geometrically distributed with

failure probability pz(HjJr). It follows that each )?,’1* is equal in distribution to

N BJ Gk
S35
j=lk=1I1=1

Define the scaled excursion time in large traps of a large branch as

. N B/ Gi*
¢™ = pH = Z Rkl (7.18)
j=1k=1I=1

~

then we will show that ¢ converges in distribution under PX along subsequences
n;(t). Lemma 7.6 gives an upper bound on the number of large traps in a branch
conditioned on its height.

Lemma 7.6 Foranye > 0and K € Z

lim PX (N > n%l) —0.

n—oo

Proof Conditioned on the height of the branch and number of buds we have that at
least one trap attains the maximum height, all others have the distribution of heights
of GW-tree conditioned on their maximum height therefore

PX (N > n%) < PX (£ — 1 > log(n)bf)
+P(N > pat —1[E* 1 =1og(n)b,f). (7.19)
By Lemma 7.5 P¥ (E* —1> log(n)b,’f) converges to 0 as n — oo. Conditioned on
having §*—1 = log(n)bX buds we have that N is binomially distributed with log(n)bX

trails and success probability P(H(T®) > hye) < C phne by (3.1). Since for some
slowly varying function L we have that

< Lmu*naT,

E [Bin <log(n)b,’f, C/Lh”ws)] < cu* log(n)aan

nl—¢

a Chernoff bound shows that the final term in (7.19) converges to 0. m|
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For &€ > 0 write

N gl -1
Ag(m) =) !1 < l_lé_lE[Gj*l] <1 +5}.

j=1

Recall from (7.7) that po(H) is the probability that a walk started from the deepest
point of a tree of height H reaches the root before returning to the deepest point. Since
G/** are independent geometric random variables there exist independent exponential
random variables e;  such that

Gk = Crk ~ Geo(p2(HT)).
—log (1= pa(H})) (r217)
By (7.7) we then have that
-1 + H;r
E[GI1=(1- —ﬂ 1— _<H/' +1) —'3 : (7.20)
HY p 1-p-!t
B —p!

therefore, since H;r > hy.¢,forany & > O there exists n large such that PX (Ag(n)) = 1
for any K € Z.

Recall from (7.7) and Definition 8 that G/¥ is geometrically distributed with failure
probability pz(HjJr) > pa(hye). Write

A ) = {(1 —-85G* <E [va"] ejk < (1+8) Gf”‘}.
Then, using convergence of scaled geometric variables to exponential variables (see

the proof of part (3) of Proposition 9.1 in [4]), we have that there exists a constant C
such that for any & > 0 there exists n large such that

P (AP0 < Cpathne) = Call?.

By Definition 8 we have that B; < W;. Moreover N < n% with high probability
for any € > 0 by Lemma 7.6 and W/ < C log(n) for all j by the bound on the event
As(n)¢ (from (5.3)). Therefore, writing

N BJ
A = (A%

j=lk=1

a union bound gives us that P(A19(n)) — 0 asn — oo.
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By comparison with the biased random walk on Z we have that p (H;r) > Poo =
1-— ,3_1 therefore we can define a random variable Bgo ~ Bin(B/, Poo/ P1 (H]T")). It
then follows that B/ > Bgo ~ Bin(W/, pso) and

- __1_'3_1 _(1_ g1 —H}
PLH) = poo = TR (1—pH=p . (7.21)
Write
N . .
Anm) =) {Bf :Béo}.
j=1

Since the marginal distribution of W' doesn’t depend on n, using (7.21), the bound
on N from Lemma 7.6 and the coupling between B! and B;o we have that

PX (A1 (n)6) < o(1) + niT Z]P’(Wl =k)P(B' # BLIW! =k)
k=0

<o() +nit Y PW' = bk (p1(H) — poc)
k=0

<o(1) +n%ﬂ—hn»aﬂz[wl] (7.22)

which decays to 0 as n — oo.
By choosing ¢ > 0 sufficiently small we can choose « in the range (1/y 4+ 1/(a —
1)) < k <min{2(e — 1), 1/y} then write

{ [(R/“ ]<nyallk}

to be the event that there are no large traps with expected squared excursion time too
large.

App(n) :

nDz

Lemma 7.7 In IVIE, for any K € Z, as n — oo we have that P (A13(n)¢) — 0.

Proof Recall from (7.10) that, for € > 0, Ag(n) is the event that all large branches are
shorter than h,‘f . and since N < ne1 with high probability we have that

¢ =t L1212 Py
P(A12(0°) = o() + 1 TP (LagonE [(RyD?] T > ket ).
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A straightforward argument using conductances (see the proof of Lemma 9.1 in [4])
gives

E [(RL’“)Z]W =c Yy gl ()

"
yeT,

where 7 is the invariant measure scaled so that 7(8') = 1 and d denotes the graph
distance. We then have that

7172 1
E [1{A6<n>}E [(Rff’l’”) } } < CE | Lagny 3 B0 2n(y)
yeT"

< CE | L{a4(n)} Zﬂi/zﬁﬂ.(l +A))

i>1

hms

e Z (ﬂl/zuaflfe)i

+
i=0

where the final inequality follows by (7.5). If 81/2u%~1=¢ < 1 then by Markov’s
inequality we have that PX (A12(n)¢) — 0 as n — oo since k < y L. Otherwise by
Markov’s inequality

K—y_l

e4€ hié iy
P (A12(0) < o(1) + CniT (812176 ) " e

—14 g5 (F+2-ate )+ 55

< L™

for some slowly varying function L. In particular, since x < 2(a — 1) we can choose
€, €, € sufficiently small such that this converges to 0 as n — oo. O

Write

Gk
> R < (14+8)GHE [R{,’l’l] }
=1

N BJ
Apz(n) = ﬂ ﬂ {(1 — g)Gj’kE I:Rflll:l <
j=1k=1

to be the event that on each excursion that reaches the deepest point of a large trap,
the total excursion time before leaving the trap is approximately the product of the
number of excursions and the expected excursion time.

Lemma 7.8 In IVIE, for any K € Z, as n — oo we have that PX(A13(n)¢) — 0.

Proof With high probability we have that no trap is visited more than C log(n) by

(6.3)and also N < -t by Lemma 7.6. Any excursion is of length at least 2 hence
E [R,ljl’l] > 2. Therefore, by Lemma 7.7 and Chebyshev’s inequality
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736 A. Bowditch

PX(A13(0) < o(1)

Gl RLLI

> g !
= E[Ry"] 61

et
+ Clog(n)n@TP

2 Yy __—K
>3 Gl >0,E|:(R,11’1’]) ]<n =T )

V_]+£+§—K 1
Clog(n)n — a-T |: {Gl-]>0}i|
E .
g2

<o() + o

It then follows that since G1:! ~ Geo(pz(H]J“)) (where from (7.7) p2(H) is the
probability that a walk reaches the deepest point in the trap of height H) and p> (H 1+ ) <
1

v

—&

cphne = can_l

1{G<1~‘~1)>0} P2 (H1+) — e
E{W = Bl =y e ()| = Loon7ve

for some slowly varying function L. In particular, PX(A;3(n)°) < o(1) +

s(l#»ﬁ)#%f/(
Lz(n)n — which converges to zero by the choice of k > e(1/y+1/(a—1)).
O

Lemma 7.9 illustrates that the expected time spent on an excursion from the deepest
point of a trap of height at least %, . doesn’t differ too greatly from the expected

excursion time in an infinite version of the trap. Let RZ, be an excursion time from &/
to itself in an extension of Tj+ to an infinite trap constructed according to the algorithm

at the beginning of the section where 7 Hﬁ is replaced by Tj+. Write
j

aatn = () [E[RL] - £ [R] <),

j=1
Lemma 7.9 In IVIE, for any K € Z as n — 00 we have that PX (A14(n)¢) — 0.

Proof A straightforward computation similar to that in Proposition 9.1 of [4] yields
that for some constant ¢ and n sufficiently large

hl‘l.E/z o0

0= E[RL|-E[RI!| < g 3 g+ ap+2 Y B0+ A
k=0 k=hy ¢ /2+1

forall j = 1,..., N where Ay are the weights of the extension of ’Z}*. Recall that

N < n% with high probability by Lemma 7.6, therefore by (7.5) and Markov’s
inequality
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B [ra] - [mit]

o0
eté hllf‘ .
< Czne=T | B~ 2 (ﬂ + plle=i= s>)+ Z pla=1-9

k=0 k=hy /241

£+ fn ¢ @10)
e )

e+é

P(AL(m)©) < S

Since we can choose &, ¢ and € arbitrarily small we indeed have the desired result. O

Define

N _ BL
S B [Rgo] > e (7.23)
j=1 k=1

whose distribution depends on n only through N and (HjJr — ﬁ)?’z - Recalling the
definition of ¢ in (7.18), since e j.k are the exponential random variables defining
G, BL, ~ Bin(B/, Poc/P1(H;")) and the random variable N is the same in both
equations, we have that ¢ ™ and 77 are defined on the same probability space.

Proposition 7.10 In IVIE, for any K € Z and € > 0

lim P¥ (’g(") —zn

n—oo

>€>:0.

Proof Using the bounds on A1, A13 and A4 from (7.22) and Lemmas 7.8 and 7.9
respectively there exists some function g : R — R such that lim;_, o+ g(¢) = 0 and
for sufficiently large n (independently of K)

P (‘§<n> s g) < o(1) + 2P (g(®) 22, > &).

It therefore suffices to show that (Z%),>¢ are tight under PK. Write

S; = 1—,31 [R’]Zejk (7.24)

The variables E [Réo], Béo and ¢ ; are independent, donft depend on K and have finite
mean (by Lemma 7.1, the geometric distribution of W/ and exponential distribution
of /%) therefore

EX[S;]<C <o (7.25)

@ Springer



738 A. Bowditch

uniformly over K. We can then write

N
—K
Z HI —H
= ﬂ J n S]
Jj=1

The distribution of S; is independent of the height of the trap. The number of
large traps N is dominated by the total number of traps £* — 1 in the branch thus
reintroducing small traps

bK log(r)
PX (24, > 1t) <P¥ Z B s > 1| + P (65 — 1 > bf log(r) (7.26)

where we recall that, under P*, (H; )§*=_11 are distributed as the heights of independent

f-GW-trees conditioned so that the largest is of height ﬁ,’; and (S j)f.*:_ll are i.i.d.
with the law of S;. By Lemma 7.5 we have that lim;_, o lim sup,,_, ., PX(§* — 1 >
bXlog(t)) = 0 therefore it remains to bound the first term in (7.26).

Write ® = inf{r > 1: H, = ﬁ,’f} to be the index of the first trap with height the
same as the maximum in the branch. Conditional on trap j being the first in the branch
which attains the maximum height we have that the heights of the remaining traps are
independent and either at most the height of the largest (for higher indices than j) or
strictly shorter (for lower indices than j). In particular, this means that

bK log(t) bK log(t)

PX Zﬂ s> 1| <P* Zﬂ "S>t’<l>—1

X log(t)
<P(S; > log(1)) + P Z g~ S, >t—10g(t)’H <H'vj>2

The distribution of S is independent of n therefore lim;_, o, P(S; > log(z)) = O.
Conditional on ® = 1, (H;) j>> are independent therefore by Markov’s inequality we
have that

bK 10g(t)
Pl > B HnS >t—10g(t)’ﬂH <H,
j=2 j=2

b 1ogOE[SIIE | B |Hy < H, |

B (1 — log(1))
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For large enough n we have that P(H; < ﬁ,’f ) > 1/2 therefore we have that
_ — 1
P (M =1 =H) <P (Hi = 1| <Hy) < 5P (=) = Cu

for some constant C therefore the result follows from

—K
H n

E[ﬁH]|H1 Sﬁf] = Zﬁ’IF’(Hl =I|H, sﬁf) < cBwih. (127
=0

]

We now prove three technical lemmas which will be important in the proof of
Proposition 7.14 which is the main result of the section. The first shows that we can
reintroduce the small traps into Z[_. The reason for doing this is that we no longer
need to condition on the heights of the traps being at least the critical level which will
simplify later calculations. In particular, we can replace N with &* — 1 (i.e. the total
number of traps in the branch) which we understand under P¥ by Lemma 7.5.

Lemma 7.11 For all &€ > 0 we have that for any K € Z as n — oo,

E*—1-N  _x
pEl Y piTes s8] 0.
Jj=1

Proof First, notice that each term in the sum is nonnegative therefore introducing
extra terms only increases the probability. By Lemma 7.5, for any € > 0, we have that
P¥(E* — 1 > a,1+¢) — 0as n — oo. We therefore have that

E*—1—N ok a,1+é _x
PEy Y g TS s <P YD g S > B Hy <y V=1
j=1 j=1
+o(D).

—K
By Definitions 7 and 8 we have that 8 < g¥ a,ll/ ¥ therefore by Markov’s inequality
and (7.27) we have that

a 1+é
X 7k a 1+ E[SITE[BH|H) <h
Bl S TSy o E|Hy < hyoviz 1| < O ~[*‘;K| 1< hne]
j=1 g n
- CK,éanHE(ﬂ,LL)h”'s
- al/y
n
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Recall from Definition 7 that 4, . < log(a,1-¢)/ log(1~") therefore

1
1
B <al,_,.

Using the form of a, following Definition 3 we then have that there exists a slowly
varying function L such that

ayiee (B)ne

ap

< Zan 1 (47)

which converges to 0 by choosing € < ¢(1/y — 1). O

The second Lemma leading to Proposition 7.14 shows that the height of an f-
GW-tree is sufficiently close to a geometric random variable. To ease notation let
S = 8 (see (7.24)), H = H; ~ H(7°) be distributed as the height of a GW-tree and
G ~ Geo(n) independently of each other.

Lemma 7.12 In IVIE,

[e'e) bl/y 00 bl/V
/ e P S/3H > a dx — CM/ e P S,BG > X dx
0 0 0 0

converges to zero as b — oo.

b (7.28)

Proof From (1.1)and (7.25)wehavethaty < 1andE[S] < oo therefore E[S?] < oo.
By independence of S and G

P (SﬁG > xb;/y> —E |:IP> (G Lo (b7 (50)7) )Sﬂ

log(B)
xb/v N\ Co
V] —
5( 5 ) ]E[S]_bxy.

Similarly, since there exist a constant ¢ such that P(H > t) < ¢cP(G > t) uniformly
over t we have that

1y
IP’(S,BH > *b )< Ce

Let £ > O then choose € > 0 such that

€ g
/ e FxVdx < —
0 Co
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then, since the integrals are positive and ¢, < 1, we have that

€ pl/v € pl/y
/ e P(SBC =2 dx —/ P (spH > 2L dx| < &b!
0 0 0 6
(7.29)
By (3.1) we have that
P (B = z)
mb) = sup |———~ —¢ (7.30)
e |P(0=2) "

1 1
converges to 0 as b — oo. Now define M (b) := m(b)l_? A b7 then M(b) — oo
as b — oo but M(b) << b'/7.
For x > €, by independence of S and H we have that

pl/v xbl/v logw)
P(S,BH > )S > M(b)) < CE < - ) ‘s > M(b)

< Ceob 'E[SY]S = M®b)].

In particular,

u _ xb'v
P(Sﬂ z 5 S > M(b)> < CeoE[S"1(s=pmy)]

which converges to 0 as b — oo by dominated convergence. Similarly, the same holds
replacing H with G therefore combining this with (7.29) we have that the quantity
(7.28) is bounded above by

1/y 1/y
P <SﬂH > Xbe S < M(b)) —c,P (SﬁG >z

&+ o(1)+ Cbsup

X>€

, S<M(b))‘.

Since § is independent of G and H we have that the supremum in the above
expression can be bounded above by

" B G log (eb'” (@M (b))™1)
>81111>/y (/3 > z) culP (/3 > z)‘ =m(b)P (G > o2 8)
oM (D)

by (7.30) since bYY /M(b) > b. Since G ~ Geo(u) we have that

1 b @oMp)) 1 plly log<ﬁ) C b)Y
- (G _ log(eb!/7 @M b)) )) _ gm(b)( ) _ Ceam®)
log(B) M (b) b
which completes the proof. O

@ Springer



742 A. Bowditch

In the final Lemma preceding Proposition 7.14 we show that the Laplace transform
S
px(1) :=EX |:e)" Xij=1 B s,:|

can be written in terms of the distributions of S, H and &*.

Lemma 7.13 In IVIE,

Proof Recall that ® := inf{r > 1 : H, = H} is the index of the first random variable
in the sequence (H j)§=_11 which attains the maximum value H := max j<ex—1 Hj.
Forh e ZT,» > 0andi = 1, 2 write

Wilh,A) = E[e*xSﬁHﬂH <h+1- i],

bi(h,A) = E[e—*sﬂ”‘h1{,,§h+l_,-}] — Ui WP(H <h+1—1i). (131)

Conditional on @, the random variables (H;) j>1 are independent with

1{z=ﬁx}’ if j =,
PX (H; = z|®) = P(H:Z}Hgﬁf—l), if j < ®,
P(H=:H<H,). ifj>o

By conditioning on §*, we then have that

_E*_l e H-—ﬁ,lf
pxO) =B | 3 PH(@ = kIgE L—xz“ gl
k=1

<I>=k,§*}

—EK | E I:ef)tsil g*z_l PX(d = KIE¥) U (ﬁ:, )\)k—l " (ﬁ:, A)E*_l—k

k=1

(7.32)
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and by Bayes’ rule we also have that
P (H T )

—x k—1 —\EF—1—k
S P(H<H —1) P(HSH) .
(i =1le)

n

PX(® = k|§%) =
(7.33)

Combining (7.31), (7.32) and (7.33) we can then write gx (1) as

E[e )P (H =H,) o (@) e (mL) ] as

v P<ﬁ=ﬁ,ﬂ$*> k=1

ForO<p<gq<landl € Z*,

!

l
=[P\ 1‘(5) q' —p'
Sl = g1y (_) — 4! | =
k=0 q q

k=1 q—Pp

Since 0 < ¢a(H, . M*~! < ¢1(H, . MF~1 < 1, by (7.34) it follows that @ (%) is
equal to

EleS|p(H=H)) (01 (AL2)  —go(HL2)

T o) e () e (50)

however, from (7.31),
o1 (Fyo2) = (Hyo2) =E[e S|P (1 =TH)).
therefore this is equal to

_ £*—1 _ E*—1
o (Fy.0) =2 (H,.0)

g P(H =T,

The result then follows from

P(A=T,)=P(F <H,[e") P (A <7} —1]¢")
- —P(H <H - 1)5*71

—k\§
_p (H <H )
which is a consequence of H being the maximum of £* — 1 i.i.d. random variables. O
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The next proposition shows that, under PX, we have that the scaled time spent in a
large branch ¢ ™ (from (7.18)) converges in distribution along subsequences r; where
-l
Any(r) ~ TR

Proposition 7.14 In IVIE, under PX we have that Zs, converges in distribution (as
| — 00) to some random variable Z ~.

Proof By Lemmas 7.11 and 7.13, it now suffices to show convergence of

_x £*—1 £*—1
7)\SﬂH7H” *)\SﬂH Hn
“‘3[6 S ] [ Yt

px(A) =

*

o G
P(H<H ) H 1)

(7.35)

— —K
By (3.2) we have that P(H < H:) =1- cM,u”Hn (1+o(1)) therefore, using the
relationship (7.15) between b¥ and H: we have that

- 1+ o(1)\* ! * 1
P<H§H5> - (I_M(b—;())) = exp(—sb’( ,u(1+0(1)))

n

and similarly,

m_yy +o<1>>).

n

By Lemma 7.5 we know that (§* — 1)/bX converges in distribution to a random
variable with exponential moments therefore we want to show a similar expression
for the numerator in (7.35). Notice that

_ £ 1
|
&5 -1

—xspH=Hn
(e E [e 1{H>H,’f}:|
_ ]E[ p } 1 (7.36)

E |:e)‘5/3HH"’< :|
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H—ﬁff R . .
where E |:e_’\5’3 i| converges to 1 deterministically. In particular, this means that

K £*—1
E |:€_AS’3H_H" 1 —K ]
o [i |
E I:e—ASﬁHH” i|
= exp <—(5* —DE [e—”ﬂ”‘f’f 1{H>HK]] 1+ 0(1))> . (7.37)

By summing over the possible values of H and using independence of S and H we
have that

_aSpH-Hx - j _aSpi-Hx
E|e 1[H>ﬁ1(} = (14 0(1)) Z (1= wu'E|e
j=H, +1

= (1 o(pfr 1Y (1 = B[ 59
j=0

Recalling G ~ Geo(u) independently of S then writing ¢3¢ (1) to be the Laplace
transform of SBY and using the relationship (7.15) between bX and ﬁ,’f we therefore
have that (7.37) can be written as

£ —1
exp (— s ket OB +o(1) ). (7.38)
n
=K
It remains to deal with ]E[e_kSﬁHfH" ]h'lf . To ease notation, let us write b := bjf =

K -
e\ i and 6 = a7 then

=
1
A
=
T
T
=
| I
>
Il
=
—
ml
2
=
s
>
|
=
<
[E—
>

b

( b
([ (=)

<

<

00 ply b
1 —/ e P (s,eH - )dx)
0 0

00 1/y b
1—/ e_xcMP<Sﬂszb9 )dx) fo(l) (739
0
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where the final equality holds by Lemma 7.12. Since S and G are independent we
have that

F(59% 2 <) = B[r (0 = SEs)] = e[u[%F].

— log(B)

Writing

J(2) =

" log(z) —‘ _ log(z)
log(B) log(B)

log($) log(S)
and I(z):=E I:Syp,Llog(ﬂ)+J(Z)J+1o§(ﬁ>+1(2)j|

we then have that

log(2) | tosts) log(s)
P(SBC >2) = MIOLEWE [S”;L Llog(ﬂ)Jrj(Z)Jﬂog(m”(Z)] = 7771(2)

where, from (7.25), we also have that I(z) < E[S”] < oo since y < 1 by (L.1).
Moreover, J (z) = J(zm'¢®)) and 1 (z) = I (zm'°¢®)) forallz € R, m € Z.
Substituting this back into (7.39) we have that

b

- b 00 pl/v
E [e—GSﬂGb '/V] _ (1 —grp! / e “x7V] (x 7 )dx) + o(1).
0

For t > 0, along sequences n;(¢) such that a,, ) ~ tu_l we have that (b;f)l/y ~
Cllog(B) therefore, since 7 is bounded, we have that along subsequences n;(¢)

oo bl/y
/ e *x7VI <x )dx
0 %

converges to some positive function of 6. In particular, we have that

B [ ASﬁHH;Iz(:|bf
e

converges to some constant in the interval (0, 1). Combining this with (7.36) and (7.38)
we have that

*

_gk g*_l —1
E |:e_’\SﬂH . 1{H<Hf]i| = &Xp (‘é bk wCp(l+ 0(1))>

n

for some constant C;, g depending on the distribution of S. Furthermore, the same
arguments gives us that

*

_gk E*_l - 1
E [e"\SﬁH . 1{H<Hf—1}] = exp (—E Crpl+ 0(1))> '

bk

n
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By boundedness, continuity and Lemma 7.5 we therefore have that ¢k (A) converges
along the given subsequences which proves the result. O

In order to prove the convergence result for sums of i.i.d. variables we shall require
that £ can be dominated (independently of K > hn.e — hy0) by some random
variable Z,, such that E[Z§Z; Dr+e) ~ o0 for e sufficiently small. Lemma 7.15
shows that we indeed have the domination required for the sums of i.i.d. variables
result.

Lemma 7.15 In IVIE, there exists a random variable Zg,, such that under PX for
any K € Z we have that Zy,, > ¢™ for all n sufficiently large and E[Zslu;f] < 00
forany e > 0.

Proof The number of large traps N is dominated by the number of traps in the branch.
Similarly to Lemma 7.5 we consider

P(S*—lztbf|ﬁ=ﬁ:>=P(ﬁ=ﬁ,’f|§*—lztbf)%
H=H"

Using the tail of H from (3.1), for large n (independently of # > 0) and some constant
¢, we can bound P(H = H), |£* — 1 > tbX) above by

e _ s*—1>
E[P(HSHK> g*—lztb{;]gE e“(bf £ —1>1b5 | < .

Foreacht > 0 we have that P(£* — 1 > 1b¥) ~ Ct— @ DP(H = H),) asn — oo.
Since P(H = H,,) doesn’t depend on ¢ we can choose a constant ¢ such that for n
sufficiently large we have that P(H = H,,) < cP(¢* — 1 > bY) thus for t > 1

P(*—1>1bf) P —1=1bF) )
< <c
p(ﬁzﬁg) cP (&% — 1> bf)

In particular, for ¢ > 1 we have that P(§* — 1 > tb,’f |ﬁ = ﬁ:) < cre ! for
some constants c1, ¢3. It follows that there exists some random variable &, which is
independent of H, has an exponential tail and satisfies &, pby = &* — 1 on the event
{H = H,, } for n suitably large (independently of K).

Recall that the total number of excursions W/ in a trap exceeds the number which
reach the deepest point B/ and we write G/** to denote the number of excursions from
the deepest point. The length of these excursions can be dominated by excursions Ré’f’l
from the deepest points of the infinite traps 7;~. We then have that for n suitably large,
under P¥
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EupbX Wi Gk Rk

PP 3

/1k111,3H"

By (7.20) E[G/F] < BHi+1 /(B + 1) therefore there is some constant ¢ such that,
writing

wi GIk R
(n) ._ 00

(which are identically distributed under ) we have that under P¥,

évupbn

Z ﬂHJ @(”)

(n) <

n

Form > 1 write 27" (m) = n% P B @j(")l{j?g@} (where we recall that & is the
first index j such that H; = Ef ) then by Markov’s inequality

1 & EX [ﬁngj(n)l{j#q)}]

m t
j=1

(2™ (m) = 1)

IA

EX [ﬁHj l{j;ﬁd?'}] EX [@j(n)]

1m
=n7j§ ,

since E[@j(n)|H j» @] is independent of H; and . Since W!hasa geometric distribu-
tion (independently of 1) we have that E[W'] < 0o and by Lemma 7.1 we have that
E[R~] < o0 therefore ]EK[@j(")] < E[WHE[R] < C < oo for all . Using geo-

metric bounds on the tail of H from (3.1) and that P(H > j|H < ﬁ:) <P(H > j)
we have that

E* 7] < iﬁjP(sz\Hfﬁf) < Cpmn.

j=0

—K
We therefore have that PX(27"(m) > t) < C(Bw)H» /t thus there exists some
sequence of random variables 2" > 2 (m) for any m such that PX (%2

sup sup =
—K
1) =1ACBwH =1 In particular, 2y = X" Esupby). Therefore,
1 el : Sup 2,
LY g = Bl g by g < s g
/3H" j=1 IBH” Cu(ﬂﬂ)H
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under PX. We then have that

—=K
PK <$MAP—%< > t) — EK IP)K (/(g}//'n - tCM(%-ﬂM)Hn 1A CEK [f_yup]
sup

— sup = sup
Cu (IBM)H”

where &g, has finite first moment since P(§5,, > 1) = cre~ " A 1. It follows that
there exists Zy,p > %”s',;p for any n such that P(Z5,, > 1) =1 A cr L.

Since EX[#]] is bounded independently of K and n, by Markov’s inequality we
have that there exists %, > % for all n such that P(%;,, > t) = 1 A Cr . 1t
therefore follows that ¢ ) ynder PX is stochastically dominated by 2, + %5, under
P where

P(Zsup + Doup = 1) < P(Ziup > 1/2) + P (Fup = 1/2) < Ct7!

hence Zup + %up has finite moments up to 1 — € for all € > 0. O

8 Convergence along subsequences

In this section we prove the main theorems concerning convergence to infinitely divis-
ible laws in FVIE and IVIE. Both cases follow the proof from [4]; in FVIE the result
follows directly whereas in IVIE adjustments need to be made to deal with slowly
varying functions.

Recall that we want to show convergence of A, /a, along sequences n; () however
by Corollary 5.5 and Lemma 5.6 it suffices to consider

[ntgn

]
Xt,n = Z irlz
i=1

where /. is the time spent in large traps of the ith large branch by walk X ,2"). Further-
more, by Proposition 7.3 and Corollary 7.4 we can replace x, with x,* which is the

time spent on excursions from the deepest point of the traps of the ith branch by X ,(,i).
Let H; denote the height of the largest trap in the ith large branch then for i,/ > 1

let ¢! == ;z,gfﬂ—ﬁf then (¢});> are i.i.d. with the law of ™). Let n; := n;(1) then
for K > —( — hy, ¢) let ;l.l K pe {il conditioned on the event {H; = [ + K} when this

makes sense and 0 otherwise. For K € Z and [ > 0 define fl,( (x) = IP’(@'Z.I’K > X).

8.1 Proof of Theorem 2 (FVIE)

Recall that in FVIE y = log(n~")/log(B) < 1, n;(t) = |t~ ] and by Corollary 3.2
we have that the height of a branch decays exponentially: P(H(7*7) > n) ~ Cpu" =
CppB~™"" where Cp = ¢, E[£* —1].

By a simple adaptation of Corollary 7.10 and Lemma 7.15
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1. EIZC(fo) random variables such that for all K € Z we have that {il’K = Zé’;} as
[ — oo;

2. 3Z,yp random variable such that for all/ > 0 and K > —(I — hy, ) we have that

I,K

&
More specifically, since there is precisely one large trap in a large branch with high
probability in FVIE the random variable in (7.23) can be written as

= Zsup and E[Z;/u';e] < oo for some € > 0.

1
Zoo =15 1E[Roo12ek
k=1

for some binomial variable By, and independent exponential variables e;. These are
independent of 7, hence an adaptation of Proposition 7.10 shows that ™ converge
in distribution under PX.

Set

M
. Z~l*

For (A;);>0 converging to A > 0 define Ml)‘ = kaﬂ”(l_h”lﬁ” and Kl)‘ := Ap" then
denote Foo(x) := P(Zs > x). Theorem 7 is Theorem 10.1 of [4].

Theorem 7 Suppose y < 1 and properties 1 and 2 hold then
d
Sﬁul)t/Kl)L —> Rd)\,o»»cx

where Ry, o.r, has an infinitely divisible law with drift

Z
_ 1+y (1+V)K 0
=2 R [(xﬂKﬂ - (zooﬂ} ’

KeZ

0 variance and Lévy spectral function L, satisfying L, (x) = XY L1(Ax) for all A >
0,x € Rwith L1(x) =0 for x <0 and

Lix)=—(1=B7) ) B Foolxp®)

KeZ

forx > 0.
Combining this with the remark at the beginning of the section with A =

(tCp)V/7 = (tc, E[£* — 1])!/7 and that eventually [ = h,, o we have that
Any(r) e

T Rq . 1,.0L
(Cpny (1))

(tCp) a«cp)'v

which proves Theorem 2.
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8.2 Proof of Theorem 3 (IVIE)

In IVIE write yy := (o — l)log(,u_l)/log(ﬂ) = (¢ — 1)y. By (3.12) we have that
P(H(T*) >n) ~ & 'TQ=a)P (E* = u™") ~ Cpaf7"L (B7")

for aknown constant C, . Due to the slowly varying term, we cannot apply Theorem 7

directly however Theorem 7 is proved using Theorem 6. It will therefore suffice to

show convergence of the drift, variance and Lévy spectral function in this case.
Recall that we consider subsequences n;(¢) such that a,, ) ~ t,u_l. From Propo-

sitions 7.10 and 7.14 we then have that for any K € Z the laws of g‘il’K converge to

the laws of Zoo as [ — oo. Let (ZC(Q )i>1 be an independent sequence of variables
with this law and denote Foo(x) := P(Zy > x). By Lemma 7.15, 3Z;,,,, such that

;il’K =X Zgypforalll e N, K > —( — hy, ) and E[Zf,‘j‘;e] < oo for some € > 0; we
denote fsup (x) :=P(Zyup > x). For (A;);>0 converging to A > 0 define Klk = Aﬂl
and for Coy = = '2 —a) /(@ — 1)

P (%* > M*hn],s>

M} = | A e =
Ca”uL(/,L ”l*(’)

Proposition 8.1 In IVIE, for any A > 0, as | — 00
MI)L ik

an d
Z K7 — Ry, 0.2,
i=1

where

Z
d = )\’I'H/a 1— —Ya (1+Va)KE|: T :| s
’ = gﬂ GBF + (Zoo)?

£, (x) = 0 x <0;
M (1 = ) Y gy BEY Fag GxBK7e) x> 0.

Proof By Theorem 6 it suffices to show the following:

1. foralle >0
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2. for all x continuity points

0 x <0,

L — e
»(%) —lim; o M P (X"’ x) x > 0;
Kj

3. for all T > O continuity points of £

Xn, x
d}L = llIIl MIE|: )»1{)(1*<1’K)‘}:| +/x|>‘[ mdﬁA(X)

3
— ——dL; (x);
/r>x|>0 127

vl 3
T Xn,
lim 1 M} = | —0.
lim lzriigp lVW(KI)‘ [X,,*“Kk]) 0

We prove each of these in turn but we start by introducing a relation which will
be fundamental to proving the final parts. For K € Z let ¢f = P(H(7*7) > | +
K|H(T*7) > hy,) denote the probability that a deep branch is of height at least
[ + K. Then by the asymptotic (3.12) we have that, for K such that! + K > hy, ¢, as

| — o0

P(HT)>14+K) o x PHT) =)

K

T PHT O Sk PHT) > hae)

In particular, using (3.12) and that g%« = y~©@=D

P =) (P = o)
P ('H (T*—) > hnl,g) P (s* . ,U«h'”’0>

B~ el (e—DK Ya g—vaK
(e T —e—ni* ~ATp

Mjcf ~ e

thus M} (cf — ¢f*') — A« p=7«K (1 — p=7) and for any € > 0 and large enough /

M}l < Coave pmrak gelkl, (8.1)
To prove (1), notice that
)Zl*
P (% > e) <SP(H(T* ) = hyepp|H(T* ) = hye) + P (ﬁhn,sfz—lz‘m,, > ke) )
1
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Both terms converge to 0 as [ — oo by the tail formula of a branch (3.12), the fact

e/2
that Zg,, has no atom at oo and that ,Bh"l ~!' 0 which follows from [ ~ huo-
For (2), recall that F.(x) = ]P’(;il'K > x) =P¥ (%%~ TX) > x), therefore

~ 1% Sk

X X

MiP( 2> x| =) :1{,(2_(,_,1" ‘6)}M,AP (H(T*) =1+ K)P* [ 2L > x
Kl KeZ : K

—l _
=Y 1{,(2_(,_,1”‘6)}1\4} (cf =) F o %x).
KeZ

If x > 0 is a continuity point of £; then Ax8~X is a continuity point of F, hence for
any K € Zasl — oo

—l _ _ —NTS _
1{,(27(,7,1,”,3)}1\4} (cf —cf"YF, B Kx) — arep=rek (1 — greyF (x5 x).

We need to exchange the sum and the limit; we do this using dominated convergence.
Since y, < 1 we can choose € > 0 such that y, + € < 1 and € < y,. By (8.1), for /
sufficiently large Mj'cK < Cc; B~7%K B21KI hence

> Mp(ef — ) Fy (/\/3”()6) <C> Fup (Axﬂ*’() gk gSIKI,
KZ*(l*hnl,s) KeZ
Since Zy,, has moments up to y, + € we have that for y = Ax

log(Zsup/y)
Tog(B)

J— _ _ € Dt+£
> Fapap ™ )p e Kpskl = | 3 pROerad | < oE (2], ]
K <0 K=0

which is finite. By choice of € it follows that

> FoupGucp ™)K 1K1 < 37 gk < o,

K>0 K>0

It therefore follows that for x > 0

At
1 A an — o —VYa i o K o K
_IILIBOMIP<K)‘>X)__)LV (1-p8 V)ZF‘X’()‘xﬂV )IB)’ _

1 KeZ

Moreover, for x < 0 we have that PP )Z,{l* /K] < x) = 0 which gives (2).
For (3) we have that for xdL; is well defined therefore

o0 X T x3 00 X T
/ 1 2d/:,)\ —/ 2CLC)L = / 2d£)L —/ xdE;L.
z +x o 1+x o l+x 0
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We therefore want to show that

M)» T
lim —LE | z*1 = | xdi;.
I—00 KI}‘ ™ {ir}l*STKl)‘} 0
Write Gl,((u) =E I:é‘f’Kl{;_l,K<u}i| and Goo () = E[Zso1{z, <u}]- Then we have that
l —

M; _ _
—F[Xl*lixg;smf}]:“ > M =) BRG @A),

l KZ—(l_hnl,s)

Foreach K € Z asl — oo
M (cf — £ BEGL (A=) — are(1 — pr) pUrIK G (rap ).

We want to exchange the limit and the sum which we do by dominated convergence. For
any « € [0, 1] and random variable ¥ we have that E[Y 1y <] < u’(E[Yl_"l{ySu}].
Using this with u = tAf~X where k = 1 — y, — 2¢/3 for K < 0 and ¥ = 1 for
K > 0, alongside (8.1) we have that

D Yz omy M (e =) B G @ip™™)

KeZ

< 3 M} (cf — ) BReap

K>0
+ Z M[ K+l)ﬁK <ﬂ23€K(T)\.)l_ya_23€E |:ZVH 3 ]ﬂ(ya—l)K>
K <0
€ 2e €
<Cr Yy plUemePE Gt TR [ng; ’ :| > Bk
K>0 K <0

which is finite since Y, > €/2 and Zy,,;, has moments up to y,, + €. We therefore have
that

A

M;
1 Ot_l —Ya a_l
lim K)‘E |:an 1{~JE‘STK{\}:| =\ (1 — g7 2 :ﬂK(y )Goo(l’?»ﬂk).

[—o00
! KeZ
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By definition we have that

| CrdLy = W (1 — g | o Y prKd(-Fa) e
0 0

KeZ
el (1= gy Y ﬂ(y‘”m{/ 2xBK d(=F o) x5
Kez rxBK <rrpk
=21 = g7y Y B IR G ().
KeZ

It therefore remains to calculate fooo l_f7d£ A-

*  x *® x —
d = 2\Ye(l = B Ve veK g —Foo) (A K
/0 L = - p )fo 1+x2,§z’3 (= Foo) 0BX)

Z
_1Yatl] . a—Ye Yut+DHK i
=i =g 3 B E[(kﬂK)M(zw)z]'

KeZ
The final sum is finite since for K < 0
K
’B(VaJrl)KE[ ZOO i| =k1,3y“KE|: )"13 ZOO :| <)\*1ﬂ)/al(
ABE)? + (Zo)? ABEY + (Zoo)? ] —

Which is summable and for K > 0

Zo Zo 1
- |:()\’3K)2 + (Zoo)2:| =E [(}J}K)Z I{ZooSKﬂK} +Zx I{Zocz)hﬁK}i|

< GE |25y | prK e

which, multiplied by =+ DX 'is summable.
It now remains to prove (4). It suffices to show that

A
lim lim —0_g ()”(1*)21 =0 (8.2)
10+ [—>00 ([{l)‘)2 i {Xr},*Sle }

Write H.(u) = E [(;f’K)Zl{d_KSM}] then

M M
l ~ 152 _ l K K+1\ p2(+K) 1l -K
E| (%, ]—— (e — cf B HL (3p7K)
(K})? [ st | (K})%é’ ’ ‘
<G Yy pEKgIKI gl (zap=K).
KeZ
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Using that for any random variable ¥ we have E[Y?1{y <,j] < u“E[Y> *1;y<,)] with

u = A8~ K and k = 2 it follows that

Z ﬁ(zfy“)K,BglKlH,l((t)»ﬂik) < Ccr? Z 13*(1/0:*6/2)1( < Cr?

K>0

K>0

where the constant C depends on X, 8, ¥, and €. Then, with u = rkﬁ’K , K =

2 — yq4 — 2¢/3 we have that

€ € 2i
Hi (a8 ) pe1K < pHK @i ¥R [Z.Zzzf 3 }

and therefore

Y prK gSIKI L (waK) <

K=<0

Since yy + 2{ < 1 we have that (8.2) holds.

Cr¥ %73,

2 +% €
C'L'2 Yo 3E|:Z;/gp 3i| ﬂGK
K<0

2e

Combining Proposition 8.1 with Corollary 5.5 and Lemma 5.6 with

1

1
A=T2 - a)VTxchﬂlog(M_])

proves Theorem 3.

9 Tightness

{ log() J
log(u=T)

We conclude the results for the walk on the subcritical tree with Theorem 4 which is a
tightness result for the process and a convergence result for the scaling exponent. We
only prove the result in IVIE since the proof is standard (similar to that of Theorem
1.1 of [4]) and the other cases follow by the same method; however, we state the

proof more generally. Recall that r, is a, in IVFE, n!/? in FVIE, a,l,/ ¥ in IVIE and

rpi=max{m >0:r, <n}.

Proof of Theorem 4 in IVIE For statement 1 we show that lim;_, . limsup,_,
P (An/r,, ¢ [t 1, t]) = 0. Let [ be such that a,;1) < a, < ap,, 1) then by mono-

tonicity of A,

Ap —1 A1)
IP)<a1/y # [t t]) =P\ =7

n nyi (1)
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The distribution of R; is continuous by Theorem III.2 of [23] since lim, .o L(x) =
—oo (where R; denotes the limiting distribution); therefore, since the sequence
(@n (1)/an1(1))1/7’ can be bounded above by some constant c,

lim hmsup]P’(A /tn & [ *l,t]) < lling()P(Rl ¢ [(tc)*l,tc]) =0.

[0 oo

For statement 2 we want to show that lim;_, o lim sup,,_, ., P (|Xn |/rn & [t7), t])
= 0. To do this we compare | X,,| with A,,. In order to deal with the depth X,, reaches
into the traps we use a bound for the height of a trap; for any € > 0 we have

X

IP’<|7”| > t) <P (Am_m < n) + (7 = TP (H(T) = 73) -
n

By (3.12) we have that (i7, — 7P (H(T*") = 75) — 0as n — oo. Using the

definition of 7,, we have that

17y
A Llfn _‘: J a7n +1

P(agrry =) <P =

al” _ R
1Fp—Ty 1Fp—Ty

1/y
ntl
of R; and statement 1 we have that lim;_, o lim sup,,_, .o P (|1 X, |/Fn > t) = 0.

It remains to show that lim;_, o lim sup,,_, P (|X,, |/Th < t_l) = 0. We need to
bound how far the walker backtracks after reaching a new furthest point in order to
compare | X,| with A,,. Let vg := 0 and for j > 1 define the jth regeneration time as

Since a.’’ ,/ al/ 4 _pe converges to t~ /Y« as n — oo, by continuity of the distribution

vj :==min{m > v;_1 : {X, } ﬂ{X 102 . = ¢} then
max (1X;| — |X; ‘)<u1\/max(ul—vl 1)+maxH( 7).
i<j<n 2< <i<n

The regeneration times (v; — v;_1), v; and the heights of branches H(’];,’?_) have
exponential moments for all i therefore for any € > 0 by a union bound

11m]P<max (|X|—’X |) )-0
n—00 i<j<n

We then have that

P<|Xn|/7n <t—1) <P<max |X|—|X ‘ >7 )+P(A|_llrn+7ﬂ >n)

i<j<n
1/y
217, az
<o()+P H/y s
2[ 17, 2[ 17,
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: 1y, 1]y
Then, since az! /a2 17,

R) and statement | we indeed have that lim;_, o lim sup,,_, o P (IX,|/7n < t7!) = 0.
For the final statement notice that

. 10g|Xn| _ . 10g|Xn| ) log Tn) _
g <nli“o‘o logtny 7 V@~ ”) =F <n15‘30 log ) Togn) 7 7@ ”>

— (¢/2)"/7 as n — oo, by continuity of the distribution of

and since 7, = n? @ DL (n) for some slowly varying function L we have that as
n — oo log(r,)/log(n) — y(a — 1) thus it suffices to show that the following is
equal to O

log | X log |X X
]P(lim og|Xul 1) §P<limsup ogIXul 1) + lim ]P’(liminf | Xl gﬂ).
—> 00

n—ce log (ry) n—oo log (ry) =00 Iy

By Fatou we can bound the second term above by lim;, o liminf,_ o
P (|X,, |/Th < t_l) which is equal to 0 by tightness of (|X,,|/71)n>0.
For the first term we have

log | X log | X
]P’(limsup og Xl > 1) = lim P(limsup og |Xn| > 1+8>

n—oo log(ry) e—0T n—oo log(ry) —

su X
< lim ]P(lim —p"f"! d > 1).
n

Writing D'(n) = { nolax H(’Tpf_) < 410g(an)/10g(u_1)} we have that
i=0,..., n
P(D'(n)°) = o(n~2) by (3.12) thus P(D'(n)° i.0.) = 0. On D'(n)
4log(ay,)
sup | Xkl < | X, | + kns1 — kn + g—_"l
k<n log (1)

where k;, is the last regeneration time of ¥ before time n. Therefore, since «;,+1 — &,
have exponential moments we have that P(lim sup,,_, . (k,+1 —&») > ¥) = 0; hence,

. SUPgr<p [ Xl . |XI(,1

n

I—>00 n—>00 n

X
< lim 1iminf1P>(| d > t>
where the second inequality follows by Fatou’s lemma. The result follows by tightness
of (|Xn|/7n)n20~ O
Theorem 1 follows from Theorem 4, Proposition 6.7 and Corollary 5.6 with EA = ¢

since ng, ~ n®. More specifically, since Ry, .z, is the infinitely divisible law with
characteristic exponent
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© . itx ©
idit —i—/ et —1— dLi(x) = / e —1dL (x)
0 1+ x2 0

OO .
= t—<“—1>/ e —1dLy(x)
0

by a simple change of variables calculation we have that the laws of the process
(Apt/an);~o converge weakly as n — oo under P with respect to the Skorohod J;
topology on D(]0, 00), R) to the law of the stable subordinator with characteristic
function ¢(t) = e~ Cat”" Where Copu =— 000 e’* —1dL;(x). A straightforward
calculation then shows that the Laplace transform is of the form

0r(s) =B [ e R0 | = 7 Cun

where

©.1)

a—1
Copp = m(e—1) (ﬁ(l—ﬁu)) .

sin(m@—1) \ 2(8-1)

10 Supercritical tree

As discussed in the introduction, the structures of the supercritical and subcritical trees
are very similar in that they consist of some backbone structure )’ with subcritical GW-
trees as leaves. The main differences are as follows:

e On the subcritical tree the backbone was a single infinite line of descent, repre-
sented by the solid line in Fig. 2 of Sect. 3. On the supercritical tree the backbone
is itself a random tree, represented by the solid line in Fig. 5. In particular, it is
a GW-tree without deaths whose law is determined by the generating function
g@s) == (f((1—¢q)s+q)—q) /(1 —q) where f is the generating function of
the original offspring law and ¢ is the extinction probability.

e Each backbone vertex has additional children which we call buds. On the subcrit-
ical tree, the number of buds had a size-biased law independent of the position on
the backbone. On the supercritical tree, the distribution over the number of buds
is more complicated since it depends on the backbone. Importantly, the expected
number of buds can be bounded above by (1 — ¢)~! independently of higher
moments of the offspring law which isn’t the case for the subcritical tree.

o In the subcritical case, the GW-trees forming the traps have the law of the original
(unconditioned) offspring law. In the supercritical case, the law is defined by the
p.g.f. h(s) := f(gs)/q which has mean f'(g).

Let 7 denote the supercritical tree conditioned to survive, 7° the unconditioned
tree and 7~ the tree conditioned to die out. Write Z,,, Z;, Z, to be the size of their nth
generations respectively and V,,, V,” to be the number of vertices in the nth generation
of the backbone (for 7 and 7°). As in the subcritical case we denote 7*~ to be a
dummy branch formed by a backbone vertex, its buds and the associated traps. In Fig. 5,
the dashed lines represent the finite structures comprised of the buds and leaves. It will
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Fig. 5 A sample section of a supercritical tree with solid lines representing the backbone and dashed lines
representing the dangling ends

be convenient to refer to the traps at a site so for x € ) let L, denote the collection of
traps adjacent to x, for example in Fig. 5 L, consists of the two trees rooted at y, z.
We then write 7,*~ to be the branch at x.

Recall that Theorem 5 states that if offspring law belongs to the domain of attraction
of some stable law of index @ € (1, 2), has mean & > 1 and the derivative of the
generating function at the extinction probability satisfies 8 > f’(g)~!. Then,

An)
1

ny(t)?

—)R[

in distribution as [ — oo under P, where y is as given in (1.1), n; (t) = |_tf’(q)_lj for
t > 0 and R, is a random variable with an infinitely divisible law whose parameters

1
are given in [4]. Moreover, the laws of (Ayn~ 7 ),>0 and (|X,|n™7),>0 under PP are
tight on (0, co) and P-a.s.

log | Xyl
m ———— =
n— 00 log(n)

In [4] it is shown that this holds when & > 1, E[éz] <ooand 8 > f’(q)_l. In
order to extend this result to prove Theorem 5 it will suffice to prove Lemmas 10.1, 10.2
and 10.3 which we defer to the end of the section.

In Lemma 10.1 we show that P(H(7*7) > n) ~ C* f'(g)" for some constant C*.
This is the same as when E[£%] < oo for the supercritical tree unlike for the subcritical
tree where the exponent changes depending on the stability. This is because the first
moment of the bud distribution has a fundamental role and the change from finite to
infinite variance changes this for the subcritical tree but not for the supercritical tree.
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Lemma 10.1 is an extension of Lemma 6.1 of [4] which is proved using a Taylor
expansion of the f around 1 up to second moments. We cannot take this approach
because f”(1) = oo; instead we use the form of the generating function determined in
Lemma 3.3. The expression is important because, as in FVIE, the expected time spent
in a large branch of height H(7*~) is approximately ¢ for some constant c.

Lemma 10.2 shows that, with high probability, no large branch contains more than
one large trap. This is important because the number of large traps would affect the
escape probability. That is, if there are many large traps in a branch then it is likely
that the root has many offspring on the backbone since some geometric number of the
offspring lie on the backbone. The analogue of this in [4] is proved using the bound
f'(1)— f'(1—€) < Ce which follows because f”(1) < oo. Similarly to Lemma 10.1,
we use a more precise form of f in order to obtain a similar bound.

Lemma 10.3 shows that no branch visited by level n is too large. This is important for
the tightness result since we need to bound the deviation of the walk from the furthest
point reached along the backbone. The proof of this follows quite straightforwardly
from Lemma 10.1.

To explain why these are needed, we recall the argument which follows a similar
structure to the proof of Theorem 2. As was the case for the walk on the subcritical
tree, the first part of the argument involves showing that, asymptotically, the time spent
outside large branches is negligible. This follows by the same techniques as for the
subcritical tree.

One of the major difficulties with the walk on the supercritical tree is determining
the distribution over the number of entrances into a large branch. The height of the
branch from a backbone vertex x will be correlated with the number of children x
has on the backbone. This affects the escape probability and therefore the number of
excursions into the branch. It can be shown that the number of excursions into the
first large trap converges in distribution to some non-trivial random variable Wy,. In
particular, it is shown in [4] that W, can be stochastically dominated by a geometric
random variable and that there is some constant cyy > 0 such that P(Wo > 0) > cw.

Similarly to Sect. 4, it can be shown that asymptotically the large branches are inde-
pendent in the sense that with high probability the walk won’t reach one large branch
and then return to a previously visited large branch. Using Lemmas 10.1 and 10.2
(among other results) it can then be shown that A,, can be approximated by the sum
of i.i.d. random variables.

The remainder of the proof of the first part of Theorem 5 involves decomposing
the time spent in large branches, showing that the suitably scaled excursion times
converge in distribution, proving the convergence results for sums of i.i.d. variables
and concluding with standard tightness results similar to Sect. 9. Since P(Z| =
k) = prg*~!, the subcritical GW law over the traps has exponential moments. This
means that these final parts of the proof follow by the results proven in [4] since, by
Lemma 10.1, the scaling is the same as when E[éz] < Q.

Tightness of (Ann_l/V)nzo and (X,n”7),>0 and almost sure convergence of
log(|X,1)/ log(n) then follow by the proof of Theorem 1.1 of [4] (with one slight
adjustment) which is similar to the proof of Theorem 4. In order to bound the max-
imum distance between the walker’s current position and the last regeneration point
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we use a bound on the maximum height of a trap seen up to AZ . In [4] it is shown that
the probability a trap of height at least 4 log()/ log(f’(¢)~") is seen is at most order
n~2 by using finite variance of the offspring distribution to bound the variance of the
number of traps in a branch. In Lemma 10.3 we prove this using Lemma 10.1.

Lemma 10.1 Under the assumptions of Theorem 5

P(H(T*) > n) ~ C*f'(g)"
where C* = q(u— f'(q))c,/(1—q) and ¢, is such that P(H(T ) > n) ~ ¢, f'(g)".
Proof LetZ .= Z1,2° :=Z},V :=V,V°:= V7 and s, := P(H(77) < n), then

E [/ 1iyeno)]
1—gq ’

P(H(T*")>n)=1-E[P(H(T*)<n|Z,V)]=1-

Forany ¢,s > 0

E [sz°—V°tV°] E [sz"E[(t/s)V" |z]

z° 70
z° k Zo—ky _ Nk
E |:s ];(t/s) (k )q (1—-q) ]

ZO
[<> (1+10=2) }
qs

= f(sq +1(1—q)).

Furthermore,
E[s% Liyemg | = E[s* P(v° =0129)| =E [s0)*].
Therefore, writing t,, := s,q + 1 — g we have that 1 — 1, = g(1 — 5,,) and

JfGng+1—q) n fGng) _ (A= flt) = (g = f(anI))'

P(H(Tf)>n):l— =g g 4

By Taylor we have that 3z € [s,q, q] such that f(s,q) = q + qf ' (@)(sn — 1) +
f"(2)q*(s, — 1)?/2. Since g < 1 we have that f”(z) exists for all z < g and is
bounded above by f”(g) < oo.

By Lemma 3.3

'é—ow)
1_f(tn)=M(l_tn)+a

e WL (= 0)7")
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for a slowly varying function L. In particular,

P(H(T*)>n) ¢ <1 — f(t)

(1 —sp) T1-¢\ 11, —f@o+rs (z)q(s,,—])/z)

_ 49 Y o= 1T 1 oyl
= 12 (= @+ o (A= T - ™))
4= f@) (10.1)
1—¢q '
which is the desired result. O

Recall that A,’: is the first hitting time of level n of the backbone by Y,, and Ly is
the collection of traps adjacent to x then for ¢ > 0 let

Ay

. (1 — &) log(n) . )
e = ’Vlog(f_/(q)_f) 1 and B(n) := DO{HT € Ly, - H(T) = hne}| < 1)

denote the critical height of a trap and the event that any backbone vertex seen up to
A, has at most one h,, .-trap (which is C3(n) of [4]) respectively.

Lemma 10.2 Under the assumptions of Theorem 5
P(B(n)) = o(1).

Proof Using C(n) from [4] we have that the number of backbone vertices visited by
A, is at most Cn with high probability therefore

P(Bn)°) <o)+ Cn (P(H(T*) > hpe) —P({T € L, : H(T) = hye}| = 1)).
Recall s, , = P(H(7 ™) < hy ) and from (10.1) we have that

P (H(T*) > hy,) = (1 — shn,g)q(“%fq(q)) +0((1—s,, )T ((1 - shn,g)_l>

for some slowly varying function L.
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Similarly to the method used in Lemma 10.1 we have that

P({T e L, : H(T) = hye}| = 1)
oo k—1

=Y Y P(Zi=kVi=k

k=1 j=1

_ZP(ZI =k)
_Z(l— k)p

1—gq

T e L, H(T) = hue}| =1)

(Vl =k — j|Zl = k)] (1 - Shn,s) S}j;;sl

K\ g’ (1 —g)7 i
(j) i (=) s

l—g

EM» Ti M»

q (1 —=sn,.) = k-1 (qShn,g)j (1 —g)* =1
10 Sy

= Jik—1—= )

q(1=sn,,) — k-1 k—1
=T o4 > kpi ((qsm.g +1=q)" —(q5m,.) )
k=1

1
_ q(%sq’w) (f (tn) = £ (g5m..))

where t;,, = gsp, . + 1 —q. By Taylor f'(gs,) = f'(¢) + O(1 —s,,) asn — o0.
From Lemma 3.3 we have that 1 — f(#,,,) = u(1 —1,,) + 1A — th )"‘L((l —

n,e

thy o)™ 1 for some slowly varying fU.IlCtIOIl L. Applying Theorem 2 of [19] we have
that f'(th,,) = u+ O((1 — 1, )* " "L((1 — t,,,)~")). In particular,

n,e

P({T eL,:H(T) > hne}|=1)
=4 " el (]1__2“"5) (u ~fl@+0 ((1 — )" Z((l - thn_s)_l)))

since o < 2, thus
PB) <o) +0 (n(1-1,,) T((1-n,)")).

There exists some constant ¢ such that 1 —15,, , ~ gc, f’ (@) < en=(1=9) therefore
sincea > 1 wecanchoose e > 0small enough (depending on &) such that P(B(n)) =
o(l). O

Let D(n) := {maxng}{ H(’TYT) < 4log(n)/ log(f’(q)’l)] be the event that all
branches seen before reaching level n are of height at most 4 log(n)/log(f’(¢)™").

Lemma 10.3 Under the assumptions of Theorem 5

P (D)) = O(n™?).
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Proof By comparison with a biased random walk on Z, standard large deviations esti-
mates yield that for C sufficiently large ]P’(A,{ > Cn) = 0(n~?). Using Lemma 10.1
we have that for independent branches Tj*_

Cin
p(Un(r)- e
e log (f'(9)1)
4log(n
<CinP|H (’T*_) > M < Cnf’(q)log(f/%;)‘]) =Ccn 3.
log (f"(9)7")
O
Glossary
f(s) = Z,fio prs® p.g.f. of Galton—Watson process
£, &% Offspring and size-biased variables
B Bias of the walk
“w, o« Mean, variance and stability index of the offspring distribution
y Scaling exponent
T, p, ZnT , H(T) A fixed tree, its root, nth generation size and height
Ty, c(x), 57, dy The descendent tree, children, parent and out-degree of a vertex
X
T,y GW-tree conditioned to survive and its backbone
T* A dummy branch
T° A dummy f-GW-tree
T f-GW-tree with an artificial ancestor
> f-GW-tree conditioned to be height n
T= An infinite trap
T H Pruned dummy branch and its height
Tj+, ’27, p;.r, I Large/small traps in the pruned dummy branch and their roots
’Z;J; Jjth large trap in the ith large branch
Pi> (0ij)j Backbone vertex in generation i and its buds
80,01, ... Spine of 7~
8,8/ Deepest vertices in 7%, Tj+
N(m) Number of traps of height at least m in 7%~
N, Ni Number of large traps in a dummy branch and ith large branch
Sm Distribution of the height of an f-GW-tree
Cu Constant satisfying tail asymptotic for the height of an f-GW-
tree
RIKL Duration of the /th excursion from 8 to itself on the kth excursion
Xu, Yy Biased random walk on 7" and the underlying walk on the back-
bone
Nk Time change satisfying Y = X,
Ay, A,{ First hitting time of the nth level of the backbone by X,, and Y,
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Uk
xVy i =1
Reo

p1(H)
p2(H)
PT PP
PX, PX

K (n)

(PN)i=1

4n

Ly =l 0+ K
Hy = hn’() + K
bK ==tk /e,
Xt.n

Xn

d(x,y)
x| :=d(p, x)

+
TX

@ Springer

Regeneration times for the walk

Independent walks on 7 and corresponding backbone walks
Time taken for an excursion from the deepest point in a trap to
itself

Probability that the walk reaches § before p

Probability of escaping the tree started at §

Quenched, annealed and environment laws

Annealed and environment laws conditioned on the number of
buds or the height

Slowly varying function satisfying (2.2)

Scaling sequence for £* so that P(§* > xa,) ~n~x~@~D
Slowly varying function satisfying a, = n = L(n)
Subsequence for convergence

Appropriate scaling of A, in each case and its inverse
Critical number of buds in IVFE

Critical height of a branch in FVIE and IVIE

Roots of large branches

Roots of large branches up to level m

Vertices in large traps

Ordered roots of large branches

Probability that a backbone vertex is large

Number of traps in a large branch

Height of a large branch

Scaling for £* conditioned on the height of the branch
Time spent up to A, in large traps

Total time spent in large traps of the ith large branch

Time spent in the ith large branch by X

Dummy version of x: on 7%~

Sum of 3} up to i = |ntq,]

Approximation of x,

Excursions from § to § in /.

Dummy decomposition of x:* on 7*

Xn scaled by the number of buds or ,BH

Scaled excursion times

Limit of Z3}

The duration of the kth excursion in the jth trap of 7%~
Duration of the kth excursion in 7;4;

Duration of the excursions from § to § in the kth excursion in
+

Tij .

Graph distance between points x, y

Graph distance between x and the root of the tree

First return time to vertex x
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