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Abstract We study ridge-regularized generalized robust regression estimators, i.e.

̂β = argminβ∈Rp
1

n

n
∑

i=1

ρi (Yi − X ′
iβ) + τ

2
‖β‖2, where Yi = εi + X ′

iβ0,

in the situation where p/n tends to a finite non-zero limit. Our study here focuses on
the situation where the errors εi ’s are heavy-tailed and Xi ’s have an “elliptical-like”
distribution.Our assumptions are quite general andwedonot require homoskedasticity
of εi ’s for instance. We obtain a characterization of the limit of ‖̂β − β0‖, as well as
several other results, including central limit theorems for the entries of ̂β.
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96 N. El Karoui

1 Introduction

Robust regression estimators are a standard and important tool in the toolbox ofmodern
statisticians. They were introduced in the late sixties [36] and important early results
appeared shortly thereafter [22,23]. We recall that these estimators are defined as

̂βρ = argminβ∈Rp
1

n

n
∑

i=1

ρ
(

Yi − X ′
iβ
)

, (1)

for ρ a function chosen by the user. Here Yi is a scalar response and Xi is a vector
of predictors in R

p. In the context we consider here, ρ will be a convex function.
Naturally, one of the main reasons to use these estimators instead of the standard
least-squares estimator is to increase the robustness of ̂βρ to outliers in e.g. Yi ’s.
Formally, this robustness result can be seen through results of Huber (see [24]), in the
low-dimensional case where p is fixed. Huber showed that when Yi = X ′

iβ0 + εi ,
and when εi ’s are i.i.d, under some mild regularity conditions, ̂βρ is asymptotically
normal with mean β0 and (asymptotic) covariance

(X ′X)−1 E
(

ψ2(ε)
)

[E (ψ ′(ε))]2 , where ψ = ρ′. (2)

The question of understanding the behavior of these estimators in the high-
dimensional setting where p is allowed to grow with n was raised very early on in
[23, p. 802, questions b–f]. These questions started being answered in the mid to late
eighties in work of Portnoy and Mammen (e.g. [28,31–34]). However, these papers
covered the case where p/n → 0 while p → ∞.

In the papers [16,17], we explained (mixing, as in [23], rigorous arguments, simula-
tions and heuristic arguments) that the case p/n → κ ∈ (0, 1) yielded a qualitatively
completely different picture for this class of problems. For instance, under various
technical assumptions, we explained that the risk ‖̂βρ − β0‖2 could be characterized
through a system of two non-linear equations (sharing some characteristics with the
one below), the distribution of the residuals could be found and was completely dif-
ferent of that of the εi ’s, by contrast with the low dimensional case. Furthermore,
we showed in [4] that maximum likelihood estimators were in general inefficient in
high-dimension and found dimension-adaptive loss functions ρ that yielded better
estimators than the ones we would have gotten by using the standard maximum likeli-
hood estimator, i.e. using ρ = − log fε , where fε is the density of the i.i.d errors εi ’s.
(We subsequently showed in [15]—which is an initial version of the current paper—
that the techniques we had proposed in [16] could be made mathematically rigorous
under various assumptions. See also the paper [9] that handles only the case of i.i.d
Gaussian predictors, whereas El Karoui [15] can deal with more general assumptions
on the predictors. Donoho and Montanari [9] also make interesting connection with
the Scherbina–Tirrozi model in statistical physics—see [38,40]. For other interesting
results using rigorous approximate message passing techniques, see also e.g. [2].)
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In the current paper, we study a generic extension of the robust regression problem
involving ridge regularization. In other words, we study the statistical properties of

̂β = argminβ∈Rp
1

n

n
∑

i=1

ρi (Yi − X ′
iβ) + τ

2
‖β‖2, where Yi = εi + X ′

iβ0.

We will focus in particular on the case where there is no moment restriction on
εi ’s. Furthermore, a key element of the study will be to show that the performance
of ̂β is driven by the Euclidean geometry of the set of predictors {Xi }ni=1. To do so,
we will study “elliptical” models for Xi ’s, i.e. Xi = λiXi , where Xi has for instance
independent entries. We note that when λi is independent of Xi and E

(

λ2i

) = 1,
cov (Xi ) = cov (Xi ). Hence these families of distributions for Xi ’s have the same
covariance, but as we will see they yield estimators whose performance vary quite
substantially with the distribution of λi ’s. As we explain below, the role of λi ’s is
to induce a “non-spherical geometry” on the predictors; understanding the impact of
λi ’s on the performance of ̂β is hence a way to understand how the geometry of the
predictors affects the performance of the estimator.Wenote that in the low-dimensional
case, when Xi ’s are i.i.d, X ′X/n → cov (X1) in probability under mild assumptions,
and hence the result of Huber mentioned in Eq. (2) shows that the limiting behavior
of ̂βρ defined in Eq. (1) is the same under “elliptical” and non-elliptical models.

Our interest in elliptical distributions stems from the fact that, as we intuited for
a related problem in [16], the behavior of quantities of the type X ′

i QXi for Q deter-
ministic is at the heart of the performance of ̂β. Hence, studying elliptical distribution
settings both shed light on the impact of the geometry of predictors on the performance
of the estimator and allow us to put to rest potential claims of “universality” of results
obtained in the Gaussian (or geometrically similar) case. We note that in statistics
there is a growing body of work showing the importance of predictor geometry on
various high-dimensional problems (see e.g. [8,13,14,18,20]).

One main motivation for allowing ρi to change with i is that it might be natural
to use different loss functions for different observations if we happen to have infor-
mation about distributional inhomogeneities in {Xi ,Yi }ni=1. For instance, one group
of observations could have errors coming from one distribution and a second group
might have errors with a different distribution. Another reason is to gain information
on the case of weighted regression, in which case ρi = wiρ. Also, this analysis can
be used to justify rigorously some of the claims made in [16]. Finally, it may prove
useful in some bootstrap studies (see e.g. [19] for example).

In the current paper, we consider the situation where β0 is “diffuse”, i.e. all of its
coordinates are small and it cannot be well approximated by a sparse vector. In this
situation, use of ridge/	2 penalization is natural. The paper also answers the question,
raised by other researchers in statistics, of knowing whether the techniques of the
initial version [15] could be used in the situation we are considering here. Finally, the
paper shows that some of the heuristics of [3] can be rigorously justified.

When ρi = ρ for all i , a natural question is to knowwhether we can find an optimal
ρ, in terms of prediction error for instance, as a function of the law of εi ’s—in effect
asking similar questions to the ones answered by Huber [24] in low-dimension and
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98 N. El Karoui

in [4] in high-dimension. However, the constraints we impose in the current paper on
both the errors (i.e. we do not want them to have moments) and the functions ρi ’s
make part of the argument in [4] not usable and might require new ideas. So we will
consider this “optimization over ρi ’s and τ” in future work, given that the current
proof is already long.

The problem and setup considered in this paper are more natural in the context of
robust regression than the ones studied in the initial version [15], where the chosen
setup was targeted towards problems related to suboptimality of maximum likelihood
methods. However, the strategy for the proof of the results here is similar to the strategy
we devised in the initial [15]. There are three main conceptual novelties, that create
important new problems: handling ellipticity and the fact that β0 �= 0 requires new
ideas in the second part of the proof (i.e. “Appendix 4”). Dealing with heavy tails
and appropriate loss functions impacts the whole proof and requires many changes
compared to the proof of [15]. Conceptually, this latter part is also the most important,
as it shows that all the approximations made in earlier heuristic papers are valid, even
in the presence of heavy-tailed errors. This situation is of course the one where these
approximations, while having clearly shown their usefulness in giving conceptual
and heuristic understanding of the statistical problem, were the most mathematically
“suspicious”. So it is interesting to see that they can be made to work rigorously,
especially since the probabilistic heuristics developed in these earlier papers allow
researchers to shed light quickly on non-trivial statistical problems.

We now state our results. We believe our notations are standard but refer the reader
to section Notations (immediately before Eq. 9 below) in case clarification is needed.

2 Results

The main focus of the paper is in understanding the properties of

̂β = argminβ∈Rp
1

n

n
∑

i=1

ρi (Yi − X ′
iβ) + τ

2
‖β‖2, where Yi = X ′

iβ0 + εi , (3)

and τ > 0. For all 1 ≤ i ≤ n, we have εi ∈ R and Xi ∈ R
p.

We prove four main results in the paper:

1. we characterize the 	2-risk of our estimator, i.e. ‖̂β − β0‖2;
2. we describe the behavior of the residuals Ri = Yi − X ′

i
̂β and relate them to the

leave-one-out prediction error r̃i,(i) = Yi − X ′
i
̂β(i);

3. we obtain an approximate update formula for ̂β when adding an observation (and
show it is very accurate);

4. we provide central limit theorems for the individual coordinates of ̂β.

For the sake of clarity, we provide in the main text a series of assumptions that
guarantee that our results hold. However, a more detailed and less restrictive statement
of our assumptions is provided in the “Appendix”.
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2.1 Preliminaries and overview of technical assumptions

We use the notation prox(ρ) to denote the proximal mapping of the function ρ, which
is assumed to be convex throughout the paper. This notion was introduced in [29]. We
recall that

prox(cρ)(x) = argminy∈R
(

cρ(y) + 1

2
(x − y)2

)

, or equivalently,

prox(cρ)(x) = (Id + cψ)−1(x), where ψ = ρ′.

We refer the reader to [5,29], or [37, Sect. 7.3], for more details on this operation.
Note that the previous definitions imply that

∀x, prox(cρ)(x) + cψ(prox(cρ)(x)) = x .

We give examples of proximal mappings in the “Appendix 6”.
We now state some sufficient assumptions that guarantee that all the results stated

below are correct. The main proofs are in the “Appendix”. The proofs done in the
“Appendix” are done at a much greater level of generality than we are about to state
and various aspects of those proofs require much weaker assumptions than those we
present here. We start by giving an example where all of our conditions are met.

Example Our conditions are met when

• p/n → κ ∈ (0,∞).
• εi ’s are i.i.d Cauchy (with median at 0).
• Xi = λiXi , where λi ∈ R and Xi ∈ R

p are independent. λi ’s are i.i.d with
bounded support; Xi ’s are i.i.d with i.i.d N (0, 1) entries, or i.i.d entries with
bounded support and mean 0 as well as variance 1. {Xi }ni=1, {λi }ni=1 and {εi }ni=1
are independent.

• β0 is a “diffuse” vectorwithβ0(i) = ui,p/
√
p, 0 ≤ |ui,p| ≤ C and

∑p
i=1 u

2
i,p = p,

i.e. ‖β0‖2 = 1.
• ρi = ρ for all i’s and ρ is convex. ψ = ρ′ is bounded and ψ ′ is Lipschitz and
bounded. sign(ψ(x)) = sign(x) and ρ(x) ≥ ρ(0) = 0.

We note that this last condition is satisfied for smoothed approximation of the Huber
function, where the discontinuity inψ ′ at say 1 is replaced by a linear interpolation; see
below for more details. Note however that the Huber function has a priori no statistical
optimality properties in the context we consider.

Sufficient conditions for our results to hold

• p/n has a finite non-zero limit.
• ρi ’s are chosen from finitely many possible convex functions. If ψi = ρ′

i ,
supi‖ψi‖∞ ≤ K , supi‖ψ ′

i‖∞ ≤ K , for some K . ψ ′
i is also assumed to be

Lipschitz-continuous. Also, for all x ∈ R, sign(ψi (x)) = sign(x) and ρi (x) ≥
ρi (0) = 0.
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100 N. El Karoui

• Xi = λiXi , where Xi ’s are i.i.d with independent entries. λi ’s are independent
and independent of Xi ’s. The entries of Xi ’s satisfy concentration property in the
sense that if G is a convex 1-Lipschitz function (with respect to Euclidean norm),
P(|G(Xi ) − mG | > t) ≤ C exp(−ct2), for any t > 0, mG being a median of
G(Xi ). We require the same assumption to hold when considering the columns of
the n× p design matrixX .Xi ’s have mean 0 and cov (Xi ) = Idp. We also assume
that the coordinates of Xi have moments of all order. Furthermore, for any given
k, the kth moment of the entries of Xi is assumed to be bounded independently of
n and p.

• E
(

λ2i

) = 1, E
(

λ4i

)

is bounded and sup1≤i≤n |λi | grows a most like C(log n)k

for some k. λi ’s may have different distributions, but the number of such possible
distributions is finite.

• εi ’s are independent. Theymay have different distributions, but the number of such
possible distributions is finite. Those distributions are assumed to have densities
that are differentiable, symmetric and unimodal. Furthermore, we assume that if
fi is the density of one such distribution, limx→∞ x fi (x) = 0. {Xi }ni=1, {λi }ni=1
and {εi }ni=1 are independent.• ‖β0‖2 remains bounded. Furthermore, ‖β0‖∞ = O(n−e), where 1/4 < e.

• The fraction of time each possible combination of functions and distributions for
(ρi ,L(εi ),L(λi )) appears in our problem has a limit as n → ∞. (L(εi ) andL(λi )

are the laws of εi and λi .)

We now state our most important results (several others are in the “Appendix”, where
we give the proof) and our proof strategy; naturally, the two go together to provide a
sketch of proof. We postpone our discussion of both the assumptions and our results
to Sect. 2.3.

2.2 Results and proof strategy

2.2.1 Characterization of the risk of ̂β

Consider ̂β defined in Eq. (3) and assume that τ > 0 is given, i.e. does not change
with p and n. Under the technical assumptions detailed in Sect. 2.1, we have:

Theorem 2.1 As p, n tend to infinity while p/n → κ ∈ (0,∞), var
(‖̂β − β0‖2

)→
0. Furthermore, ‖̂β − β0‖ → rρ(κ) in probability, for rρ(κ) a deterministic scalar.
Call Wi = εi + rρ(κ)λi Zi , where Zi is aN (0, 1) random variable independent of εi
and λi . Then there exists a constant cρ(κ) ≥ 0 such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

limn→∞ 1
n

∑n
i=1 E

([prox(cρ(κ)λ2i ρi )]′(Wi )
)] = 1 − κ + τcρ(κ),

κ

[

limn→∞ 1
n

∑n
i=1 E

(

(Wi−prox(cρ (κ)λ2i ρi )[Wi ])2
λ2i

)]

+ τ 2‖β0‖2c2ρ(κ) = κ2r2ρ(κ).

(4)
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On the impact of predictor geometry on the performance on... 101

We note that

(x − prox(cρ(κ)λ2i ρi )[x])2
λ2i

= c2ρ(κ)λ2i ψ
2
i (prox(cρ(κ)λ2i ρi )[x]),

so in case λi takes the value 0, we can replace the expression on the left hand side
by that on the right hand side, which does not involve dividing by λ2i . This alternative
expression also shows that there is no problem taking expectations in our equations.

The previous system can be reformulated in terms of prox((cρ(κ)λ2i ρi )
∗), where

f ∗ represents the Fenchel–Legendre dual of f . Indeed, Moreau’s prox identity [29]
gives

prox((cρ)∗)(x) = x − prox(cρ)(x).

This is partly why we chose to write the system as we did, since it can be rephrased
purely in terms of prox([cρ(κ)λ2i ρi ]∗), a formulation that has proven useful in previous
related problems (see [4]).

We note that rρ(κ) and cρ(κ)will in general depend on τ , but we do not index those
quantities by τ to avoid cumbersome notations.

2.2.2 Organization of the proof and strategy

The proof is quite long so we now explain the main ideas and organization of the
argument. Recall that if

F(β) = 1

n

n
∑

i=1

ρi
(

Yi − X ′
iβ
)+ τ

2
‖β‖2,

we have

̂β = argminβ∈Rp F(β).

The proof is broadly divided into three steps.

First step. The first idea is to relate ̂β and ̂β(i), the solution of our optimization
problem when the pair (Xi ,Yi ) is excluded from the problem. It is reasonable to
expect that adding (Xi ,Yi ) will not change too much r̃ j,(i) = Y j − X ′

j
̂β(i) when

j �= i , and hence that r̃ j,(i)  R j = Y j − X ′
j
̂β when j �= i . Armed with this intuition,

we can try to use a first-order Taylor expansion of ̂β around ̂β(i) in the equation
∇F(̂β) = 0 to relate the two vectors. This is what the first part of the proof does,
by surmising an approximation ηi for ̂β − ̂β(i) – following along the intuitive lines
above but non-trivial to come up with at the level of precision we need. Much work
is devoted to proving that this very informed guess is sufficiently accurate for our
purposes. Since “the only thing we know” about ̂β is that ∇F(̂β) = 0, we work on
∇F(̂β) − ∇F(̂β(i) + ηi ) to do so, and show in our preliminaries (see “Appendix 2”)

123



102 N. El Karoui

that controlling this latter quantity is enough to control ‖̂β−̂β(i)−ηi‖. Once our bound
for ‖̂β −̂β(i) −ηi‖ is established, we use it to boundE

(|‖̂β − β0‖2 − ‖̂β(i) − β0‖2|2
)

and use amartingale inequality to deduce a bound on var
(‖̂β − β0‖2

)

, which we show
goes to zero. The corresponding results are presented in Sect. 2.2.3 and the detailed
mathematical analysis is in “Appendix 3”.

Second step. The second step of the proof is to relate ̂β to another quantity γ̂ , which
is the solution of our optimization problem when the last column of the matrix X
is excluded from the problem—see Sect. 2.2.4 below and “Appendix 4” for detailed
mathematical analysis. Call V the corresponding design matrix. In our setting, it is
reasonable to expect that ri,[p] = Yi − Xi (p)β0(p) − V ′

i γ̂  Yi − X ′
i
̂β. A first order

Taylor expansion of ∇F(̂β) around (γ̂ ′ β0(p))′ and further manipulations yields an
informed “guess”, denoted b̃ below, for ̂β, and in particular for ̂βp, the last coordinate
of ̂β. A large amount of work is devoted to proving that the quantity we surmised—
denoted bp below—approximates ̂βp sufficiently well for our purposes—once again
by doing delicate computations on the corresponding gradients. Since bp has a rea-

sonably nice probabilistic representation, it is possible to write E
(

b2p

)

is terms of

other quantities appearing in the problem, such as ψi (ri,[p]) (where ψi = ρ′
i ) and

a quantity cτ,p that is the trace of the inverse of a certain random matrix. Because

bp approximates ̂βp sufficiently well, our approximation of E
(

b2p

)

can be used to

yield a good approximation of E
(‖̂β − β0‖2

)

. However, we want the approximation
of E

(‖̂β − β0‖2
)

to not depend on quantities that depend on p, such as ri,[p] and
cτ,p. Further work is needed to show that the approximation of E

(‖̂β − β0‖2
)

can
be made in terms of r̃i,(i)’s—which we used in the first part of the proof—and a new
quantity cτ , which is the trace of the inverse of a certain random matrix, as was cτ,p.
The resulting approximation for E

(‖̂β − β0‖2
)

is essentially the second equation of
our system—see Proposition (2.4) for instance.

Third step. The last part of the proof—see Sect. 2.2.5 and “Appendix 5” for detailed
mathematical analysis - is devoted to first showing that r̃i,(i) = Yi − X ′

i
̂β(i) behaves

asymptotically like εi + λi

√

E
(‖̂β − β0‖2

)

Zi , where Zi ∼ N (0, 1). The work done
previously in the proof is extremely useful for that. Finally, we show that cτ is asymp-
totically deterministic. The characterization of cτ is essentially the first equation of our
system—see Theorem 2.6 below. After all this is established, we can state for instance
central limit theorems for ̂βp and interesting quantities that appear in our proof.

The following few subsubsections make all our intermediate results precise. Armed
with the above explanation for our approach, they provide the reader with a clear
overview of the arc of our proof. The detailed mathematical analysis is given in the
“Appendix”.

2.2.3 Leave-one-observation out approximations

We call the residuals

Ri = Yi − X ′
i
̂β = εi − X ′

i (
̂β − β0).
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On the impact of predictor geometry on the performance on... 103

We consider the situation where we leave the i th observation, (Xi ,Yi ), out. We call

̂β(i) = argminβ∈Rp Fi (β), where Fi (β) = 1

n

∑

j �=i

ρ j

(

ε j + X ′
jβ0 − X ′

jβ
)

+ τ

2
‖β‖2.

We use the notations

r̃ j,(i) = ε j − X ′
j (
̂β(i) − β0) and Si = 1

n

∑

j �=i

ψ ′
j (r̃ j,(i))X j X

′
j .

Note that r̃ j,(i)’s are simply the leave-one-out residuals (for j �= i) and the leave-one-
out prediction error (for j = i).

Let us consider

˜βi = ̂β(i) + 1

n
(Si + τ Id)−1Xiψi (prox(ciρi )(r̃i,(i))) � ̂β(i) + ηi ,

where

ci = 1

n
X ′
i (Si + τ Id)−1Xi , and ηi = 1

n
(Si + τ Id)−1Xiψi (prox(ciρi )(r̃i,(i))).

We have the following theorem.

Theorem 2.2 Under our technical assumptions, we have, for any fixed k, when τ is
held fixed,

sup
1≤i≤n

‖̂β − ˜βi‖ = OLk

(

polyLog(n)

n

)

.

Also,

sup
1≤i≤n

sup
j �=i

|r̃ j,(i) − R j | = OLk

(

polyLog(n)

n1/2

)

,

sup
1≤i≤n

|Ri − prox(ciρi )(r̃i,(i))| = OLk

(

polyLog(n)

n1/2

)

.

Finally,

var
(

‖̂β − β0‖22
)

= O

(

polyLog(n)

n

)

.

A stronger version of this theorem is available in the “Appendix”. (We say that a
sequence of random variables Wn = OLk (1) if (E

(|Wn|k
)

)1/k = O(1).)
There are two main reasons this theorem is interesting: it provides online-update

formulas for̂β through˜βi , with guaranteed approximation errors. Second, it relates the
full residuals, whose statistical and probabilistic properties are quite complicated to the
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104 N. El Karoui

much-simpler-to-understand “leave-one-out” prediction error, r̃i,(i). Indeed, because
Xi is independent of ̂β(i) under our assumptions, the statistical properties of ̂β ′

(i)Xi

are much simpler to understand than those of ̂β ′Xi .

2.2.4 Leave-one-predictor out approximations

Let V be the n × (p − 1) matrix corresponding to the first (p − 1) columns of the
design matrix X . We call Vi inRp−1 the vector corresponding to the first p−1 entries
of Xi , i.e. V ′

i = (Xi (1), . . . , Xi (p−1)). We call X (p) the vector inRn with j th entry
X j (p), i.e. the p−th entry of the vector X j . When this does not create problems, we
also use the standard notation X j,p for X j (p).

We use the notation β0 = (γ ′
0 β0(p))′, i.e. γ0 is the vector corresponding to the

first p − 1 coordinates of β0.
Let us call γ̂ the solution of our optimization problem when we use the design

matrix V instead of X . In other words,

γ̂ = argminγ∈Rp−1
1

n

n
∑

i=1

ρi (εi − V ′
i (γ − γ0)) + τ

2
‖γ ‖2. (5)

For stating the following results, we will rely heavily on the following definitions:

Definition We call the corresponding residuals {ri,[p]}ni=1, i.e. ri,[p] = εi + V ′
i γ0 −

V ′
i γ̂ . Let

u p = 1

n

n
∑

i=1

ψ ′
i (ri,[p])Vi Xi (p), Sp = 1

n

n
∑

i=1

ψ ′
i (ri,[p])ViV ′

i .

We have u p ∈ R
p−1 and Sp is (p − 1) × (p − 1). We call

ξn � 1

n

n
∑

i=1

X2
i (p)ψ

′
i (ri,[p]) − u′

p(Sp + τ Id)−1u p,

Np � 1√
n

n
∑

i=1

Xi (p)ψi (ri,[p]).

We call

bp � β0(p)
ξn

τ + ξn
+ 1√

n

Np

τ + ξn
, (6)

and

˜b =
[

γ̂

β0(p)

]

+ [bp − β0(p)]
[−(Sp + τ Id)−1u p

1

]

. (7)
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Theorem 2.3 Under our Assumptions, we have, for any fixed τ > 0,

‖̂β −˜b‖ ≤ OLk

(

polyLog(n)

[n1/2 ∧ ne]2
)

.

In particular,

√
n(̂βp − bp) = OLk

(

polyLog(n)n1/2

[n1/2 ∧ ne]2
)

,

sup
i

|X ′
i (
̂β −˜b)| = OLk

(

polyLog(n)n1/2

[n1/2 ∧ ne]2
)

,

sup
i

|Ri − ri,[p]| = OLk

([

polyLog(n)√
n ∧ ne

]

∨
[

polyLog(n)n1/2

[n1/2 ∧ ne]2
])

.

Let us call

cτ = 1

n
trace

(

(S + τ Id)−1
)

, where S = 1

n

n
∑

i=1

ψ ′
i (Ri )Xi X

′
i .

We also have:

Proposition 2.4 Under our assumptions,

( p

n

)2
E
(

‖̂β − β0‖22
)

= p

n

1

n

n
∑

i=1

E
(

[cτ λiψi (prox(cτ λ
2
i ρi )(r̃i,(i)))]2

)

+ τ 2‖β0‖2E
(

c2τ
)

+ o(1).

Furthermore,

sup
i

|ci − λ2i cτ | = OLk (n
−1/2polyLog(n)).

2.2.5 Final steps and related results

Lemma 2.5 Under our assumptions , as n and p tend to infinity, r̃i,(i) behaves like

εi + λi

√

E
(‖̂β − β0‖2

)

Zi , where Zi ∼ N (0, 1) is independent of εi and λi , in the

sense of weak convergence.
Furthermore, if i �= j , r̃i,(i) and r̃ j,( j) are asymptotically (pairwise) independent.

The same is true for the pairs (r̃i,(i), λi ) and (r̃ j,( j), λ j ).

Theorem 2.6 Under our assumptions, when p/n → κ ∈ (0,∞), ‖̂β − β0‖ →
rρ(κ), where rρ(κ) is deterministic. Call Wi = εi + λi rρ(κ)Zi , where Zi ∼ N (0, 1)
independent of εi and λi . Call

Gn(x) = 1

n

n
∑

i=1

E

(

1

1 + xλ2i ψ
′
i (prox(xλ

2
i ρi )(Wi ))

)

and G(x) = lim
n→∞Gn(x) ,
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Hn(x) = 1

n

n
∑

i=1

E
(

[xλiψi (prox(xλ
2
i ρi )(Wi ))]2

)

and H(x) = lim
n→∞Hn(x).

Under our assumptions, cτ → cρ(κ) in probability, where cρ(κ) is the unique solution
of the equation G(x) = 1 − κ + τ x. Furthermore, rρ(κ) solves

κ2r2ρ(κ) = κH(cρ(κ)) + τ 2‖β0‖2c2ρ(κ).

We note that the equation G(x) = 1 − κ + τ x translates into the first equation
of our system (4). This is a simple consequence of the properties of the derivative of
Moreau’s proximal mapping—see Lemma 3.33.

The last equation of Theorem 2.6 is the second equation of our system (4). (The fact
that the limits ofGn andHn exist simply come fromour assumptions that the proportion
of times each possible triplet (ρi ,L(εi ),L(λi )) appears has a limit as n → ∞.)

From this main theorem follows the following propositions.

Proposition 2.7 ξn → ξ in probability, where ξ = κ/cρ(κ) − τ > 0.
Np �⇒ N (0, v2) where

v2 = lim
n→∞

1

n

n
∑

i=1

E
(

λ2i ψ
2
i [prox(cρ(κ)λ2i ρi )(Wi )]

)

.

Finally, when β0(k) = O(n−1/2),

√
n[(τ + ξ)̂βk − β0(k)ξ ] �⇒ N (0, v2).

The previous result can be used with v2 replaced by v̂2n = 1
n

∑n
i=1 λ2i ψ

2
i [prox

(cτ λ
2
i ρi )(r̃i,(i))] and ξ replaced by ωn = p/(ncτ ) − τ in testing applications—

see the discussion after Proposition 3.30 for justifications. Naturally, since for all
x , λ2i ψ

2
i [prox(cτ λ

2
i ρi )(x)] = [x − prox(cτ λ

2
i ρi )(x)]/cτ when cτ > 0, v̂2n could also

be written and computed using this alternative formulation.
We note that ωn is computable from the data. In our setup, λi ’s are estimable using

the scheme proposed in [14] and v̂2n can therefore also be estimated from the data.
Hence, the previous proposition allows for testing the null hypothesis that β0(k) = 0,
for any 1 ≤ k ≤ p.

We are also now in position to explain the behavior of the residuals.

Proposition 2.8 When our assumptions are satisfied and we further assume that λi ’s
are uniformly bounded, we have

sup
1≤i≤n

|Ri − prox(λ2i cρ(κ)ρi )(r̃i,(i))| = oLk (1).

The behavior of the residuals is therefore qualitatively very different in this high-
dimensional setting than its counterpart in the low-dimensional setting.
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2.3 Discussion of assumptions and results

2.3.1 Why consider elliptical-like predictors?

The study of elliptical distributions is quite classical in multivariate statistics (see
[1]). As pointed out by various authors (see, in the context of statistics and random
matrix theory [8,13,20]), the Gaussian distribution has a very peculiar geometry in
high-dimension. It is therefore important to be able to study models that break away
from these geometric restrictions, which are not particularly natural from the point of
view of data analysts.

Under our assumptions, in light of Lemma 3.37, it is clear that

sup
1≤i≤n

∣

∣

∣

∣

‖Xi‖2
p

− λ2i

∣

∣

∣

∣

= oP (1), and sup
i �= j

∣

∣

∣

∣

X ′
i X j

p

∣

∣

∣

∣

= oP (1).

In the Gaussian (or Gaussian-like case of i.i.d entries for Xi , with e.g. bounded entries
which satisfy the assumptions we stated above), λi = 1. Hence, Gaussian or Gaussian-
like assumptions imply that predictor vectors are situated near a sphere and are nearly
orthogonal. (This simple geometry is of course closely tied to—or a manifestation
of the—concentration of measure for convex 1-Lipschitz functions of those random
variables.)

This is clearly not the case for elliptical predictors, though under our assumptions,
cov (Xi ) = Idp, even in the “elliptical” case we consider in the paper. So all the
models we consider have the same covariance but the corresponding datasets may
have different geometric properties.

We show in the paper that the role of the distribution of λi ’s in the performance
of the estimator depends on much more than its second moment, as Theorem 2.1
makes very clear. This is a situation that is similar to corresponding results in random
matrix theory—see e.g. [13,18]. It is therefore clear here again that predictor geometry
(as measured by λi ) plays a key role in the performance of our estimators in high-
dimension. This is in sharp contrast with the low-dimensional setting—see [24]—
which shows that in low-dimensional robust regression, what matters is only cov (Xi ).

These types of studies are also interesting and we think important as they clearly
show that there is little hope of statistically meaningful “universality” results derived
from Gaussian design results : moving from independent Gaussian assumptions for
the entries of Xi to i.i.d assumptions does not change the geometry of the predictors,
which appears to be key here as our proof’s reliance on concentration of quadratic
forms in Xi makes clear. As such, while interesting on many counts, for instance to
allow discrete predictors, moving from Gaussian to i.i.d assumptions is not a very
significant perturbation of the model for statistical purposes. This is why we chose to
work under elliptical assumptions. See also [8] for similar observations in a different
statistical context.

In conclusion, the generalized elliptical models we study in this paper prove also
that many models may be such that the predictors have the same covariance cov (Xi )

but yield very different performance when it comes to lim‖̂β − β0‖. They therefore
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provide a meaningful perturbation of the Gaussian assumption, give us insights into
the impact of predictor geometry on the behavior of our estimators, and give us a
rough idea of the subclass of models for which we can expect similar (or “universal”)
performance for ̂β.

Examples of distribution for Xi satisfying our concentration assumptions Corollary
4.10 in [27] shows that our assumptions are satisfied if Xi has independent entries
bounded by 1/(2

√
c). Theorem 2.7 in [27] shows that our assumptions are satisfied if

Xi has independent entrieswith density fk , 1 ≤ k ≤ p such that fk(x) = exp(−uk(x))
and u′′

k (x) ≥ √
c for some c > 0. Then c = c/2. This is in particular the case for

the case where Xi has i.i.d N (0, 1) entries: then c = 1 and c = 1/2. We discuss
briefly after Lemma 3.35 in the “Appendix” the impact of choosing other types of
concentration assumptions.

2.3.2 Non-sparse β0: why consider 	2/ridge-regularization?

In this paper, we consider the case where β0 cannot—in general—be approximated in
	2-norm by a sparse vector. This is a situation that is thought to not be uncommon in
biology (see, in a slightly different context [12], and many similar references), where
sparsity assumptions are often/sometimes in doubt.

In other words, if s is a sparse vector (e.g. with support of size o(p)), we necessarily
have when β0 is diffuse (i.e. all of its entries are roughly of size p−1/2) ‖β0−s‖ →/ 0.
In the situationwe consider, it is in fact unclearwhether any estimator can be consistent
in 	2 for β0. One interesting aspect of our study is that the System (4) might allow us to
optimize (at least in certain circumstances) over the functionsρi ’sweconsider to get the
best performing estimator in the class of ridge-regularized robust regression estimators
for β0 and hence potentially beat sparse estimators (in the same line of thought, there
are of course numerous applied examples where ridge regression outperforms Lasso
in terms of prediction error).

Finally, one benefit of our analysis is that we have a central limit theorem for the
coordinates of ̂β (see Proposition 2.7), which makes testing possible. In the situation
where β0 has some large entries (of size up to n−1/4−η, η > 0) andmany small ones [of
size o(n−1/2)], this central limit theorem and its more refined version in Proposition
3.30 could help in designing better performing estimators by using scaled versions
of {̂βk}pk=1, which we would threshold according to the result of our test. In other
words, these central limit theorems for the coordinates of ̂β are the gateway to the
construction of Hodges-type estimators in the setup we consider.

2.3.3 A remark on the fixed design case

We have worked in this paper with a certain class of random designs. It is not unusual
to do so in robust regression studies—see the classic papers by Portnoy [31,32,34]. In
many areas of applications, it is also unclear why statisticians should limit themselves
to the study of fixed designs, in particular when they do not have control over the
choice of the values of the predictors, i.e. they cannot design their experiments.
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However, it is also interesting to understand what remains valid of our analysis in
the case of fixed design. We note that our analysis gives already a few results in this
direction.

In fact, since we have shown that var
(‖̂β − β0‖2

)→ 0, we have shown that

E
(

var
(

‖̂β − β0‖2|X
))

→ 0 and var
(

E
(

‖̂β − β0‖2|X
))

→ 0,

because

var
(

‖̂β − β0‖2
)

= E
(

var
(

‖̂β − β0‖2|X
))

+ var
(

E
(

‖̂β − β0‖2|X
))

.

Therefore, with probability (over the design X ) going to 1,

‖̂β − β0‖2 − rρ(κ) → 0 in P{εi }ni=1
-probability.

(P{εi }ni=1
-probability simply refers to probability statements with respect to the random

εi ’s, the only source of randomness if the design matrix X is assumed to be fixed.) In
other words, if the design is fixed, but results from one random draw of a n× p matrix
satisfying our distributional assumptions, Theorem 2.1 applies with probability (over
the choice of design matrix) going to 1.

We note that ‖̂β − β0‖ is an especially important quantity in terms of prediction
error in our context, which is why our short discussion above focused on this quantity:
if we are given a new predictor vector Xnew, we would naturally predict an unobserved
response Ynew by X ′

new
̂β and hence, if Ynew = εnew + X ′

newβ0, our prediction error
will be PEnew = εnew + X ′

new(β0 − ̂β). Of course, if Xnew has mean 0 and satisfies
cov (Xnew) = Idp, EXnew

[

(X ′
new(β0 − ̂β))2

] = ‖β0 − ̂β‖22. Hence the expected
squared prediction error will be var (εnew)+‖β0 −̂β‖22, provided εnew is independent
of Xnew.

2.3.4 Optimization with respect to τ and ρ

Just as the classic work of Huber on robust regression started by establishing central
limit theorems for the estimator of interest (as a function of ρ) and proceeded to find
optimal methods in various contexts (see [24]), one objective of our work is to pave
the way for answering optimality questions in the setting we consider. An important
first step to do so is therefore to obtain results such as Theorem 2.1.

A natural question is therefore to ask what are the optimal ρi ’s in the context we
consider, where optimality might be defined in terms of minimizing rρ(κ) in Theorem
2.1 or v2 in Proposition 2.7. For an example of such a study for rρ(κ) in a slightly
different context, see [4]. Similarly, optimization over τ should be possible. We leave
however these questions for future work, since they are of a more analytic nature. (We
have had success in [4] in the situation where λi = 1 and the errors are log-concave
and hence not heavy-tailed, but the technique we employed in that paper does not
apply readily here.)
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We also note that in our context the optimal τ – say for prediction – is in general
not going to be close to 0, so the fact that our current study requires τ > 0 is not a
problem (see also [3]).

As can intuitively be seen from Proposition 2.7, the fact that ‖̂β − β0‖ goes to a
non-zero constant has two sources: bias induced by the ridge-regularization and the
fact that each of the p coordinates has fluctuations of size n−1/2. Its asymptotically
deterministic character comes on the other hand from our analysis in “Appendix 3”.
This is in contrast with the low-dimensional case where p is fixed, where ‖̂β − β0‖
goes to a non-zero constant simply because of bias issues and the law of large numbers.

In light of Proposition 2.7, it is clear that τ plays in this problem a fairly similar role
to the one it plays in low-dimension: it trades bias for variability in each individual
coordinate. By contrastwith the low-dimensional case however, even ifwe consider the
case p < n, the fact that the number of coordinates is of the same order of magnitude
as n means that even for small τ (and hence low-bias), ‖̂β − β0‖ has a non-zero limit.
The fact that this limit can be somewhat large is what suggests using values of τ that
are not close to 0. Interestingly, this is of course the situation encountered in practice
in many real-world problems where p and n are large. A case in point is the situation
where β0 = 0, in which case the optimal value of τ is clearly ∞; using τ = 0 would
put us back in the situation of [17], which would result in much worse performance
for ‖̂β − β0‖.

2.3.5 Possible extensions

Less smooth ρ’s and ψ’sWhile our approach is quite general and allows us to handle
designs that are far from being Gaussian, the proof presented in this paper still requires
some smoothness concerning ρi ’s and ψi ’s. On the one hand, results such as the ones
obtained in [4] suggest that it is often the case that optimal loss functions in high-
dimension are smoother than in low dimension. So the fact that we require ψi ’s to be
smooth is a source of less concern that it would be in low dimension. (Note also that
the classic papers [28,32] also require smoothness properties on ψ .)

Though it is unclear whether the Huber function is optimal in any sense for the
problems we are looking at, and hence whether it warrants a special focus, let us
discuss this function in some detail. For the sake of simplicity let us focus on the
situation where the transition from quadratic to linear happens at x = ±1. Then

ψ(x) =
{

x if |x | ≤ 1

sign(x) if |x | ≥ 1
.

So ψ is not differentiable at 1. However, it is easy to approximate this function by a
function whose derivative is Lipschitz. As a matter of fact, if 0 < η < 1, ψ ′

η such that

ψ ′
η(x) =

⎧

⎪

⎨

⎪

⎩

1 if |x | ≤ 1 − η
1−|x |

η
if |x | ∈ (1 − η, 1)

0 if |x | ≥ 1

,
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is 1/η-Lipschitz. Furthermore, ψη, the corresponding antisymmetric function with,
when x ≥ 0,

ψη(x) =

⎧

⎪

⎨

⎪

⎩

x if 0 ≤ x ≤ 1 − η,

1 − η
2 − (1−x)2

2η if x ∈ (1 − η, 1),

1 − η
2 if x ≥ 1,

can be made to be arbitrarily close toψ and similarly for the corresponding ρη, picked
such that ρη(0) = 0.

Our results apply to ρη, for any η > 0. It seems quite likely that with a bit (and
possibly quite a bit) of further approximation theoretic work, it should be possible to
establish results similar to Theorem 2.1 for the Huber function by taking the limit of
corresponding results for ρη with η arbitrarily small.

We note that most of our proof (in particular “Appendices 3 and 4”) is actually
valid with functions ρi ’s that can change with n. In particular, many results hold when
ψ ′
i are Li (n)-Lipschitz with Li (n) ≤ Cnα . So one strategy to handle the case of the

Huber function could be to use ψηn with ηn = 1/ log(n) for instance and strengthen
the arguments of “Appendix 5” in the Appendix—in this very specific case where ψηn

has a limit—to get the Huber case as a limiting result. Because our proof is already
long, we leave the details to the interested reader and might consider this problem in
detail in future work.

Weighted robust regression One motivation for working on the problem at the level
of generality we dealt with is that our results should allow us to tackle among other
thingsweighted robust regression. For instance if εi ’s or λi ’s in ourmodel had different
distributions, it would be natural to pick the corresponding ρi ’s either as completely
different functions, or maybe as ρi = wiρ, withwi deterministic but possibly depend-
ing on the distribution of εi ’s or λi ’s. In the case where εi ’s and λi ’s come from finitely
many possible distributions, our results handle this situation.

Most of our results—i.e. those of “Appendices 3 and 4”—are true even when wi ’s
are allowed to take a possibly infinite set of different values. If εi ’s are i.i.d, λi ’s are i.i.d
and wi ’s are i.i.d and these three groups of random variables are independent of each
other, our arguments can be made to go through without much extra difficulties. The
main potential problem is in “Appendix 5”, but then distributional symmetry between
the Ri ’s on one hand and the r̃i,(i) on the other hand becomes helpful, as it had in [15].
So it is very likely that our results could be extended to cover this case at relatively
little technical cost.

3 Conclusion

Wehave studied ridge-regularized robust regression estimators in thehigh-dimensional
context where p/n has a finite non-zero limit. Our study has highlighted the impor-
tance of the geometry of the predictors in this problem: two models with similar
covariance but different predictor geometry will in general yield estimators with very
different performance. We have shown this result by studying the random design case
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in the context of elliptical predictors and looking at the influence of the “ellipticity
parameter” λi on our results. Importantly, this shows that no statistically meaningful
“universality” results can be derived from the study of Gaussian or i.i.d-designs, since
their geometry is so peculiar (i.e. they are limited to the case λi = 1 for all i’s).
The technique used in the paper seems versatile enough to be useful for several other
high-dimensional M-estimation problems.

We have also obtained central limit theorems for the coordinates of ̂β that can be
used for testing whether β0(k) = 0 for any 1 ≤ k ≤ p. However, our focus was
mostly on the case where β0 is diffuse, with all coordinates small but contributing
to Yi = εi + X ′

iβ0. Our results also provide a very detailed understanding of the
properties of the residuals Ri .

All these results were obtained without moment requirements on the errors εi ’s.
Finally, our characterization of the risk of these estimators raises interesting analytic

questions related to finding optimal loss functions ρi ’s in the context we consider. We
plan to study these questions in the future.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Assumptions and technical elements

Recall that the focus of the paper is on understanding the properties of

̂β = argminβ∈Rp
1

n

n
∑

i=1

ρi
(

εi − X ′
i (β − β0)

)+ τ

2
‖β‖2 (8)

where τ > 0. For all 1 ≤ i ≤ n, we have εi ∈ R and Xi ∈ R
p.

Different parts of the proof require different assumptions. So we label them accord-
ingly.

Most of our proof (“Appendices 3 and 4”) is carried out for functions ρi,n that may
vary with n, so our assumptions reflect this and we carry out most of our work at this
level of generality. However, we do not make the dependence of ρi,n on n explicit to
avoid cumbersome notations. Having these results available should make future work
onweighted regression or work of amore approximation-theoretic nature (for instance
using a sequence ρi,n to approximate a function ρi that is not smooth) easier. This is
one of the prime motivations for working at this level of generality.

Naturally, our assumptions are more and more restrictive as the proof progresses,
so the summary of assumptions we provided in the main text is obtained by going
through the assumptions and simply tallying the more restrictive ones. A sketch of
proof is provided in Sect. 2.2.2, which should be helpful in navigating the detailed
proof we provide in this “Appendix”.

Before we delve into the details of the assumptions needed for each part of the
proof to work, we summarize for the convenience of the reader the assumptions we
need for the whole proof to go through.
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Assumptions under which the whole proof goes through

• A1 p/n has a finite non-zero limit
• A2 ‖β0‖ remains bounded. Furthermore, ‖β0‖∞ = O(n−e), for e > 1/4
• A3 ρi ’s are twice differentiable, and convex. If ψi = ρ′

i , we assume that
sign(ψi (x)) = sign(x) and ρi ≥ 0 = ρi (0). Furthermore, there exists C such
that ‖ψi‖∞ ≤ C , ‖ψ ′

i‖∞ ≤ C and ψ ′
i is assumed to be Lipschitz. The functions

ρi ’s can be chosen among finitely many possible functions (over all n).
• A4 Xi = λiXi . λi ’s are random variables with λi ∈ R. Xi ∈ R

p are independent
and identically distributed. Their distribution is allowed to change with p and n.
The entries of Xi are independent. Furthermore, for any 1-Lipschitz (with respect
to Euclidean norm) convex function G, if mG(Xi ) is a median of G(Xi ), for any
t > 0, P(|G(Xi ) − mG(Xi )| > t) ≤ Cn exp(−cnt2), Cn and cn can vary with
n. For simplicity, we assume that 1/cn = O(polyLog(n)) and Cn is bounded in
n. Xi ’s have mean 0 and cov (Xi ) = Idp. We also assume that the coordinates
of Xi have moments of all order. Furthermore, for any given k, the kth moment
of the entries of Xi is assumed to be bounded independently of n and p. Also,
for any 1 ≤ k ≤ p, the vectors �k = (X1(k), . . . ,Xn(k)) in R

n satisfy: for any
1-Lipschitz (with respect to Euclidean norm) convex function G, if mG(�k) is a
median of G(�k), for any t > 0, P(|G(�k) − mG(�k)| > t) ≤ Cn exp(−cnt2),
Cn and cn can vary with n. As above, we assume that 1/cn = O(polyLog(n)).

• A5 λi ’s are independent of each other and {Xi }ni=1. E
(

λ2i

) = 1 and E
(

λ4i

) ≤ C
and sup1≤i≤n |λi | = OLk (polyLog(n)).

• A6 εi ’s are independent of {Xi }ni=1 and {λi }ni=1 and of each other. Furthermore,
for any r ∈ R, if Z ∼ N (0, 1), independent of εi , εi + r Z has a (differentiable)
density fi,r which is increasing on (−∞, 0) and decreasing on (0,∞). Finally,
lim|t |→∞ t fi,r (t) = 0.

• A7 λi ’s can have different distributions. Similarly, εi ’s can have different distri-
butions. However, the number of choices for the triplet (ρi ,L(λi ),L(εi )) is finite
(over all n). Furthermore, the fraction of times each such triplet appears in our
problem—see Eq. (8) has a limit. (L(εi ) just means the law of εi .)

We note that the entries ofXi do not need to have the same distribution. Our condition
A4 is satisfied when Xi have i.i.d N (0, 1) entries, or independent entries that are
bounded by a constant and have mean 0 and variance 1. (See [27, Corollary 4.10].)

Condition A7 just means that if for instance ρi = ρ and λi ’s are i.i.d but εi ’s can
come from 3 distributions, the fraction of εi ’s coming from each of these three distri-
butions has a limit as n → ∞. This last condition mostly plays a role in guaranteeing
that we can take limits in various expressions. The simplest case is of course when
ρi = ρ, λi ’s are i.i.d and εi ’s are i.i.d, in which case there is only one possible choice
for the triplet (ρi ,L(λi ),L(εi )).

We now state the conditions under which we carry out the proof. We state them in
one place for the convenience of the reader. A discussion follows immediately after
the statement of all the conditions.
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First part of the proof (“Appendix 3”)

For the first part of the proof (i.e. “leave-one-Observation-out”), we work under the
following assumptions:

• O1: p/n has a finite non-zero limit.
• O2: ρi ’s are twice differentiable, convex and non-linear.ψi = ρ′

i . Note thatψ
′
i ≥ 0

since ρi is convex. We assume that sign(ψi (x)) = sign(x) and ρi ≥ 0 = ρi (0).
• O3: supx,i |ψi (x)| ≤ CpolyLog(n) where C is constant. This is natural in the
context of robust statistics, since it means that we allow ρi ’s to grow at most
linearly at infinity. This assumption is for instance verified for Huber functions.
Furthermore, ψ ′

i is assumed to be Li (n)-Lipschitz with Li (n) ≤ Cnα , α ≥ 0. (We
here have in mind smoothed Huber functions.) We also assume that supi‖ψ ′

i‖∞ ≤
CpolyLog(n). Finally, we assume that 1

n

∑n
i=1‖ψ2

i ‖∞ ≤ C , whereC is a constant
independent of n.

• O4: Xi = λiXi . λi ’s are random variables with λi ∈ R. Xi ∈ R
p are independent

and identically distributed. Their distribution is allowed to change with p and n.
Furthermore, for any 1-Lipschitz (with respect to Euclidean norm) convex function
G, if mG(Xi ) is a median of G(Xi ), for any t > 0, P(|G(Xi ) − mG(Xi )| >

t) ≤ Cn exp(−cnt2), Cn and cn can vary with n. For simplicity, we assume
that, 1/cn = O(polyLog(n)) and Cn is bounded in n. Xi ’s have mean 0 and
cov (Xi ) = Idp. We also assume that the coordinates of Xi have moments of all
order. Furthermore, for any given k, the kth moment of the entries ofXi is assumed
to be bounded independently of n and p. {Xi }ni=1 and {λi }ni=1 are independent.• O5: {Xi }ni=1 and {λi }ni=1 are independent of {εi }ni=1. εi ’s are independent of each
other.

• O6: sup1≤i≤n |λi | � Ln = OLk (polyLog(n)) and λi ’s are independent. Further-
more, E

(

λ2i

) = 1. (Note that this implies that cov (Xi ) = cov (Xi ).)
• O7: 1 − 2α > 0 and ‖β0‖ = O(polyLog(n)).

Note that we do not assume that εi ’s have identical distributions. Assumption
O4 is satisfied for instance when Xi are N (0, Idp) or have i.i.d entries bounded by
polyLog(n)—see [27] (this reference guarantees the concentration result we require
is satisfied; the moment conditions need to be checked by other methods, but this
is generally much simpler, as the case of Gaussian random variables clearly shows).
Importantly, note thatO4 does not require the entries ofXi to be independent; see [27]
or [13] for examples of Xi satisfyingO4 with dependent entries. In other respects, the
assumptionE

(

λ2i

) = 1 plays a veryminor rolemathematically and could be relaxed to
E
(

λ2i

)

is uniformly bounded without problems. Statistically, it is however important
as it guarantees that cov (Xi ) = Idp in all the models we consider.

Second part of the proof (“Appendix 4”)

For the second part of the proof (i.e. “leave-one-Predictor-out”), we need all the
previous assumptions and
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• P1: Xi ’s have independent entries. Furthermore, for 1 ≤ k ≤ p, the vectors
�k = (X1(k), . . . ,Xn(k)) in R

n satisfy: for any 1-Lipschitz (with respect to
Euclidean norm) convex function G, if mG(�k ) is a median of G(�k), for any
t > 0, P(|G(�k) − mG(�k )| > t) ≤ Cn exp(−cnt2), Cn and cn can vary with n.
As above, we assume that 1/cn = O(polyLog(n)).

• P2: 1
n

∑n
i=1‖ψ ′

i‖∞ = O(1).
• P3: ‖β0‖∞ = O(n−e), where e > 0. Furthermore, ‖β0‖2 ≤ C , where C is a
constant independent of p and n. e satisfies α + 1/4 − e < 0.

• P4: 1/2 − 2α > 0 and min(1/2,e) − α − 1/4 > 0. The latter implies that
min(1/2,e) − α > 0

We note that according to Corollary 4.10 and the discussion that follows in [27],
Assumptions O4 and P1 are compatible. O4 and P1 are for instance satisfied if the
entries of Xi ’s are independent and bounded by polyLog(n). Another example is the
case of Xi ∼ N (0, Idp), in which case cn is a constant independent of the dimension.

Note that we do not assume that the entries of Xi have the same distribution.
We note that if for instance α = 1/12 and e = 5/12, all the conditions in P3–P4

are satisfied. When α = 0, they simply become e > 1/4.

Last part of the proof (“Appendix 5”)

For the last part of the proof, when we combine everything together, we will need the
following assumptions on top of all the others:
• F1: the εi ’s may have different distributions; however, they may only come from
finitely many distributions. Furthermore, for any r ∈ R, if Z ∼ N (0, 1), indepen-
dent of εi , εi +r Z has a differentiable density fi,r which is increasing on (−∞, 0)
and decreasing on (0,∞). Finally, lim|t |→∞ t fi,r (t) = 0.

• F2: 1
n

∑n
i=1‖ψi‖∞ = O(1). ψ ′

i has Lipschitz constant Li (n). Furthermore,
1
n

∑n
i=1 Li (n)‖ψi‖∞ = O(1).

• F3: α < 1/6 and α + 1/3 < 2min(1/2,e)

• F4: there exists C independent of n and p such that E
(

λ4i

) ≤ C .
• F5: λi ’s may have different distributions, but the set of possible distributions for λi
is finite. Similarly, ρi may be different functions, but the set of possible functions
ρi may be is finite. Also, the number of distinct triplets (ρi ,L(εi ),L(λi )) is finite
(over all n). Furthermore, the proportion of each such distinct triplet has a limit as
n → ∞.
Condition F3 is clearly satisfied in the case α = 1/12 and e = 5/12 we mentioned

above. On the other hand, condition F5 requires that α = 0, since it prevents ρi from
changing with n. (We note that since F5 is required only at the very end of the proof,
one could probably weaken its requirements considerably if another situation that the
one we investigate really called for it.)

We refer the reader to Lemma 3.39 and the discussion immediately following it for
examples of densities for εi ’s satisfying F1. We note that smooth symmetric (around
0) log-concave densities will for instance satisfy all the assumptions we made about
the εi ’s. See [25,26] for instance. This is also the case for the Cauchy distribution (see
Theorem 1.6 in [7]). The latter is the most relevant reference here since we care about
heavy-tailed εi ’s.
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Discussion of the assumptions

Assumptions concerning the loss functions We wanted to investigate in this paper the
situation where εi ’s have no moment restrictions, as befits “classical” robust statistics
studies. As such, it is natural to assume that ψi ’s remain bounded, which is part
of assumption A3. We think that interesting results can be found in “Appendices 3
and 4”: in particular for dealing with ψi functions that are not smooth and require
approximations by ψi,n functions that are smooth, but also for bootstrap studies for
instance. This is why the paper handles those cases, even though we do not use fully
these results in the main statements of the paper. We note that in specific cases, one
would simply need to modify various arguments in “Appendix 5” to handle limits of
those ψi,n .

Assumptions concerning the predictors Assumption O4 is a bit stronger than we
will need. For instance, “Appendices 3 and 4” do not actually require the Xi ’s to have
identical distributions; “Appendix 5”wouldwork if we assumed thatXi ’s were coming
from finitely many distributions, with the proportion of Xi ’s picked from a particular
distribution having a limit as n → ∞. The functionsG we are working with will either
be linear or square-root of quadratic forms, so we could limit our assumptions to those
functions. However, as documented in [27] and discussed briefly in the introduction, a
large number of natural or “reasonable” distributions satisfy theO4 assumptions. Our
choice of having a potentially varying cn is motivated by the idea that we could, for
instance, relax an assumption of boundedness of the entries of Xi ’s—that guarantees
thatO4 is satisfied whenXi has independent entries—and replace it by an assumption
concerning the moments of the entries of Xi ’s and a truncation of triangular arrays
argument (see for instance [42]). We also refer the interested reader to [13] for a
short list of distributions satisfying O4, compiled from various parts of [27]. Finally,
we could replace the exp(−cnt2) upper bound in O4 by exp(−cntβ) for some fixed
β > 0 and it seems that all our arguments would go through. We chose not to work
under these more general assumptions because it would involve extra book-keeping
and does not enlarge the set of distributions we can consider enough to justify this
extra technical cost. Importantly, O4 allows the entries of Xi ’s to be dependent.

To give a concrete example, let us consider the situation where the entries of Xi

are independent and symmetric with an exponential density chosen to have variance
1. Then it is clear that supi, j |Xi ( j)| ≤ K [log(n)]2 almost surely as n, p → ∞. Our
analysis and assumptions then apply to the predictors Xi = λi sn�i,n , with �i,n =
Xi1‖Xi‖∞≤K [log(n)]2 where sn is chosen so that 1/s2n = var

(

�i,n
)

(the variance of
the entries of �i,n is not 1, since it is a truncation of Xi but it is easy to see that
var
(

�i,n
)→ 1). Note thatXi = Xi almost surely, and therefore our statistical problem

is not affected. Very minor modifications to the arguments of “Appendix 5” are then
needed to handle sn and show that our results go through. Naturally the same argument
could be made for other (non-exponential) distributions as long as supi, j |Xi ( j)| ≤
K [log(n)]2. We note that our method should also be able to handle cn such that 1/cn
grows faster that polyLog(n) and hence deal with an even broader class of predictor
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distributions, but we chose not to do this in full details to limit the book-keeping burden
in an already long proof.

Notations Wewill repeatedly use the following notations:Yi = X ′
iβ0+εi ; polyLog(n)

is used to replace a power of log(n); λmax(M) denotes the largest eigenvalue of the
matrixM ; |||M |||2 denotes the largest singular value ofM .We call̂� = 1

n

∑n
i=1 Xi X ′

i
the usual sample covariance matrix of the Xi ’s when Xi ’s are known to have mean 0.

We say that X ≤ Y in Lk if E
(|X |k) ≤ E

(|Y |k). We write X
L= Y to say that the

random variables X and Y are equal in law. We use the usual notation ̂β(i) to denote
the regression vector we obtain when we do not use the pair (Xi ,Yi ) or (Xi , εi ) in our
optimization problem, a.k.a the leave-one-out estimate. We will also use the notation
X(i) to denote {X1, . . . , Xi−1, Xi+1, . . . , Xn}. We use the notation (a, b) for either
the interval (a, b) or the interval (b, a): in several situations, we will have to localize
quantities in intervals using two values a and b but we will not know whether a < b
or b > a. We denote by X the n × p design matrix whose i th row is X ′

i . We write
a ∧ b for min(a, b) and a ∨ b for max(a, b). If A and B are two symmetric matrices,
A � B means that A − B is positive semi-definite, i.e. A is greater than B in the
positive-definite/Loewner order. The notations oP , OP are used with their standard
meanings, see e.g. [41, p. 12] for definitions. For the random variable W , we use the

definition ‖W‖Lk = [

E
(|W |k)]1/k . For sequences of random variables Wn, Zn , we

use the notation Wn = OLk (Zn) (resp Wn = oLk (Zn)) when ‖Wn‖Lk = O(‖Zn‖Lk )

(resp ‖Wn‖Lk = o(‖Zn‖Lk )). For a vector v inRp, ‖v‖ is its Euclidean norm, whereas
‖v‖∞ = max1≤k≤p |v(k)|. For a function f from R to R, ‖ f ‖∞ = supx∈R | f (x)|.
Remarks We call

F(β) = 1

n

n
∑

i=1

ρi (εi + X ′
iβ0 − X ′

iβ) + τ

2
‖β‖2. (9)

Note that under our assumptions on ρ, ̂β is defined as the solution of

f (̂β) = 0 with (10)

∇F = f (β) = 1

n

n
∑

i=1

−Xiψi (εi + X ′
iβ0 − X ′

iβ) + τβ. (11)

Recall the following important definitions.

Definition We call

Ri = εi + X ′
iβ0 − X ′

i
̂β (i.e. the residuals), (12)

S = 1

n

n
∑

i=1

ψ ′
i (Ri )Xi X

′
i , (13)

cτ = 1

n
trace (S + τ Id)−1 . (14)
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Appendix 2: Preliminaries

General remarks

Proposition 3.1 Let β1 and β2 be two vectors in Rp. Then, when ρi ’s are convex and
twice-differentiable,

‖β1 − β2‖ ≤ 1

τ
‖ f (β1) − f (β2)‖. (15)

Proof Let β1 and β2 be two vectors in Rp. We have by definition

f (β1) − f (β2)

= τ(β1 − β2) + 1

n

n
∑

i=1

Xi
[

ψi
(

εi + X ′
iβ0 − X ′

iβ2
)− ψi

(

εi + X ′
iβ0 − X ′

iβ1
)]

.

We can use the mean value theorem to write

ψi (εi + X ′
iβ0 − X ′

iβ2) − ψi (εi + X ′
iβ0 − X ′

iβ1) = ψ ′
i (γ

∗
εi+X ′

iβ0,X
′
iβ1,X

′
iβ2

)X ′
i (β1 − β2),

where γ ∗
εi+X ′

iβ0,X
′
iβ1,X

′
iβ2

is in the interval (εi+X ′
iβ0−X ′

iβ1, εi+X ′
iβ0−X ′

iβ2)—recall

that we do not care about the order of the endpoints in our notation.
Hence,

f (β1) − f (β2) = τ(β1 − β2) + 1

n

n
∑

i=1

ψ ′
i

(

γ ∗
εi+X ′

iβ0,X
′
iβ1,X

′
iβ2

)

Xi X
′
i (β1 − β2),

which we write

f (β1) − f (β2) = (Sβ1,β2 + τ Idp)(β1 − β2), (16)

where

Sβ1,β2 = 1

n

n
∑

i=1

ψ ′
i

(

γ ∗
εi+X ′

iβ0,X
′
iβ1,X

′
iβ2

)

Xi X
′
i . (17)

This shows that

β1 − β2 = (Sβ1,β2 + τ Idp)
−1 ( f (β1) − f (β2)) .

Since ρi ’s are convex,ψ ′
i = ρ′′

i is non-negative andSβ1,β2 is positive semi-definite.
In the semi-definite order, we have Sβ1,β2 + τ Idp � τ Idp. In particular,

‖β1 − β2‖ ≤ 1

τ
‖ f (β1) − f (β2)‖.

��
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Proposition 3.1 yields the following lemma.

Lemma 3.2 For any β1,

‖̂β − β1‖ ≤ 1

τ
‖ f (β1)‖.

The lemma is a simple consequence of Eq. (15) since by definition f (̂β) = 0.
Our strategy in what follows is to come up with “good candidates” for β1, for which

we can control f (β1) and transfer the information we will glean about the statistical
properties of β1 to ̂β through Lemma 3.2.

On ‖̂β‖ and ‖̂β − β0‖

We show in the following lemma that ‖̂β‖ and ‖̂β − β0‖ cannot be too large.

Lemma 3.3 Let us call Wn(b) = 1
n

∑n
i=1 Xiψi (εi + X ′

i b), Wn ∈ R
p.

We have, if D{ψi (Yi )}ni=1
is the n × n diagonal matrix with (i, i)-entry ψi (Yi ) =

ψi (εi + X ′
iβ0),

‖̂β‖ ≤ 1

τ
‖Wn(β0)‖ = 1

τ

√

1

n2
1′
nD{ψi (Yi )}ni=1

XX ′D{ψi (Yi )}ni=1
1n,

and if D{ψi (εi )}ni=1
is the n × n diagonal matrix with (i, i)-entry ψi (εi ),

‖̂β − β0‖ ≤ ‖β0‖ + 1

τ
‖Wn(0)‖ = ‖β0‖ + 1

τ

√

1

n2
1′
nD{ψi (εi )}ni=1

XX ′D{ψi (εi )}ni=1
1n .

Also,

‖Wn(β0)‖2 ≤ 1′
nD

2
ψi (Yi )

1n

n
|||X ′X/n|||2.

Therefore, under our assumptions O1–O6,

E
(

‖̂β‖2
)

≤ 1

τ 2

p

n
C2polyLog(n), and (18)

E
(

‖̂β‖4
)

≤ 1

τ 4
CpolyLog(n). (19)

Similarly, for any finite k,

E
(

‖̂β − β0‖k2
)

≤ Ck

[

‖β0‖k + polyLog(n)/τ k
]

.
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In the case k = 2, we have the more precise bound

E
(

‖̂β − β0‖22
)

≤ 2

[

‖β0‖2 + p/n

τ 2

1

n

n
∑

i=1

E
(

ψ2
i (εi )

)

]

.

Proof The first and key inequality simply comes from applying Lemma 3.2 with
β1 = 0, after noticing that f (0) = −Wn(β0).

The secondone comes fromusingβ1 = β0 andnoticing that f (β0)=−Wn(0)+τβ0.
We note that under our assumptions, according to Lemma 3.38,

|||X ′X/n|||2 = OLk (polyLog(n)), and
1

n

n
∑

i=1

ψ2
i (Yi ) ≤ 1

n

n
∑

i=1

‖ψ2
i ‖∞ = O(1),

which gives all the results about Lk bounds.
The last result about k = 2 follows from computing E

(‖Wn(0)‖2
) =

p
n
1
n

∑n
i=1 E

(

ψ2
i (εi )

)

and using the bound

‖̂β − β0‖2 ≤ 2‖β0‖2 + 2

τ 2
‖Wn(0)‖2.

• About E
(‖Wn(0)‖2

)

For the sake of clarity, we now explain in detail why E
(‖Wn(0)‖2

) = p
n
1
n

∑n
i=1

E
(

ψ2
i (εi )

)

.
Recall that

Wn(0) = 1

n

n
∑

i=1

Xiψi (εi ).

Hence,

‖Wn(0)‖2 = Wn(0)
′Wn(0) = 1

n2
∑

i, j

X ′
i X jψi (εi )ψ j (ε j ).

Since εi ’s and Xi ’s are independent, using the fact that E (Xi ) = 0 and that ψi ’s are
bounded, we have

E
(

‖Wn(0)‖2
)

= 1

n2

n
∑

i=1

E
(

‖Xi‖2
)

E
(

ψ2
i (εi )

)

.

Now, E
(‖Xi‖2

) = E
(

trace
(

X ′
i Xi
)) = E

(

trace
(

Xi X ′
i

))

. Since E (Xi ) = 0,
E
(

Xi X ′
i

) = cov (Xi ) = Idp. Hence, E
(‖Xi‖2

) = p. And we conclude that

E
(

‖Wn(0)‖2
)

= 1

n2

n
∑

i=1

pE
(

ψ2
i (εi )

)

.

This gives the announced result. ��
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Appendix 3: Approximating ̂β by ̂β(i): leave-one-observation-out

We consider the situation where we leave the i th observation, (Xi ,Yi ), out. By defi-
nition,

̂β(i) = argminβ∈Rp Fi (β), where Fi (β) = 1

n

∑

j �=i

ρ j

(

ε j + X ′
jβ0 − X ′

jβ
)

+ τ

2
‖β‖2.

We call

r̃ j,(i) = ε j − X ′
j (
̂β(i) − β0) and Si = 1

n

∑

j �=i

ψ ′
j (r̃ j,(i))X j X

′
j .

We also call

fi (β) = −1

n

∑

j �=i

X jψ j

(

ε j + X ′
jβ0 − X ′

jβ
)

+ τβ = f (β) + 1

n
Xiψi

(

εi − X ′
i (β − β0)

)

.

We have of course

fi (̂β(i)) = 0.

Let us consider

˜βi = ̂β(i) + 1

n
(Si + τ Id)−1Xiψi (prox(ciρi )(r̃i,(i))) � ̂β(i) + ηi , (20)

where

ci = 1

n
X ′
i (Si + τ Id)−1Xi , and (21)

ηi = 1

n
(Si + τ Id)−1Xiψi (prox(ciρi )(r̃i,(i))). (22)

These definitions and the approximations they will imply can be understood in
light of the probabilistic heuristics we derived for a related problem in [16,17]. The
interested reader is referred to those papers—where we made a large effort to explain
our intuitive ideas—formore information and intuition; given page limit requirements,
we do not give a complete heuristic derivation of our results and refer the reader to Sect.
2.2.2 for a detailed explanation of our strategy.We note however that the rigorous proof
requires refinements over the intuitive ideas. Those aspects are of a more technical
nature and become apparent only through the analysis that we present here.

One of our aims is to show Theorem 3.9 below, which shows that we can very
accurately approximate ̂β by ˜βi . Note that the statistical properties of ˜βi are easier to
understand that those of ̂β; our high-quality approximations will allow us to transfer
our understanding of ˜βi to ̂β.
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Deterministic bounds

Proposition 3.4 We have, with ˜βi defined in Eq. (20),

‖̂β − ˜βi‖ ≤ 1

τ
‖Ri‖, (23)

where

Ri = 1

n

∑

j �=i

[

ψ ′
j

(

γ ∗(X j ,̂β(i), ηi )
)− ψ ′

j (r̃ j,(i))
]

X j X
′
jηi , (24)

and γ ∗(X j ,̂β(i), ηi ) is in the (“unordered”) interval (r̃ j,(i), r̃ j,(i) − X ′
jηi )=(ε j +

X ′
jβ0 − X ′

j
̂β(i), ε j + X ′

jβ0 − X ′
j
˜βi ).

Proof The proof and strategy are similar to the corresponding ones in [15]. However,
since there are delicate cancellations in the argument, we give all the details.

We recall that Yi = εi + X ′
iβ0.

Since fi (̂β(i)) = 0, and ˜βi = ̂β(i) + ηi ,

f (˜βi ) = f (˜βi ) − fi (̂β(i)) = −1

n
Xiψi (Yi − X ′

i
˜βi )

+1

n

∑

j �=i

X j

[

ψ j

(

Y j − X ′
j
̂β(i)

)

− ψ j

(

Y j − X ′
j (
̂β(i) + ηi )

)]

+ τηi .

By the mean-value theorem, we also have

ψ j

(

Y j − X ′
j
̂β(i)

)

− ψ j

(

Y j − X ′
j

(

̂β(i) + ηi
)

)

= ψ ′
j (r̃ j,(i))X

′
jηi

+
[

ψ ′
j

(

γ ∗(X j ,̂β(i), ηi )
)− ψ ′

j (r̃ j,(i))
]

X ′
jηi ,

where γ ∗(X j ,̂β(i), ηi ) is in the (“unordered”) interval (Y j − X ′
j
̂β(i),Y j − X ′

j (
̂β(i) +

ηi )), i.e. (r̃ j,(i), r̃ j,(i) − X ′
jηi ).

Hence, ifRi is the quantity defined in Eq. (24),

1

n

∑

j �=i

X j

[

ψ j (Y j − X ′
j
̂β(i)) − ψ j (Y j − X ′

j (
̂β(i) + ηi ))

]

= 1

n

∑

j �=i

ψ ′
j (r̃ j,(i))X j X

′
jηi + Ri ,

= Siηi + Ri .

In light of the previous simplifications, we have, using

f (β) = fi (β) − 1

n
Xiψi (Yi − X ′

iβ) and fi (̂β(i)) = 0,

123



On the impact of predictor geometry on the performance on... 123

the equality

f (˜βi ) = −1

n
Xiψi (Yi − X ′

i
˜βi ) + (Si + τ Id)ηi + Ri .

Since by definition, ηi = 1
n (Si + τ Id)−1Xiψi (prox(ciρi )(r̃i,(i))),

(Si + τ Id)ηi = 1

n
Xiψi (prox(ciρi )(r̃i,(i))).

In other respects,

Yi − X ′
i
˜βi = r̃i,(i) − ciψi (prox(ciρi )(r̃i,(i))).

When ρ is differentiable, x−cψ(prox(cρ)(x)) = prox(cρ)(x) almost by definition of
the proximal mapping (see Lemma 3.31). Therefore, Yi − X ′

i
˜βi = prox(ciρi )(r̃i,(i))

and

−1

n
Xiψi (Yi − X ′

i
˜βi ) + (Si + τ Id)ηi

= 1

n
Xi
[−ψi (prox(ciρi )(r̃i,(i))) + ψi (prox(ciρi )(r̃i,(i)))

] = 0.

We conclude that

f (˜βi ) = Ri .

Applying Lemma 3.2, we see that

‖̂β − ˜βi‖ ≤ 1

τ
‖Ri‖.

��

OnRi

Clearly, controlling Ri is the key to controlling ‖̂β − ˜βi‖, so we need to develop
insights into Ri .

Lemma 3.5 We have

‖ηi‖ ≤ 1√
nτ

‖Xi‖√
n

|ψi (r̃i,(i))|, (25)

and

‖Ri‖ ≤ |||̂�|||2 sup
j �=i

∣

∣

∣ψ
′
j

(

γ ∗(X j ,̂β(i), ηi )
)− ψ ′

j (r̃ j,(i))
∣

∣

∣

1√
nτ

‖Xi‖√
n

|ψi (r̃i,(i))|.
(26)
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We note that under our assumptions, we have
∣

∣ψi (r̃i,(i))
∣

∣ ≤ ‖ψi‖∞ ≤ CpolyLog(n)

and, using Lemma 3.35

sup
i

‖Xi‖√
n

= OLk (sup
i

|λi |).

Proof This proof is essentially obvious. We refer the reader to a corresponding one
given in [15] in case details are needed. ��

On γ ∗(X j ,̂β(i), ηi ) and related quantities

We now show how to control 1√
n
sup j �=i

∣

∣

∣ψ ′
j (γ

∗(X j ,̂β(i), ηi )) − ψ ′
j (r̃ j,(i))

∣

∣

∣, which is

essential for turning Eq. (23) into a useful bound. We proceed by first getting a better
understanding of Eq. (26).

Lemma 3.6 Suppose, as in our assumption O3, that ψ ′
i is Li (n)-Lipschitz. Then,

sup
j �=i

∣

∣

∣ψ
′
j (γ

∗(X j ,̂β(i), ηi )) − ψ ′
j (r̃ j,(i))

∣

∣

∣ ≤
[

sup
1≤i≤n

Li (n)

]

sup
j �=i

|X ′
jηi |.

Proof By definition, we have

|γ ∗(X j ,̂β(i), ηi ) − r̃ j,(i)| ≤ |X ′
jηi |.

The bound follows immediately, using the fact that ψ ′
i is Li (n)-Lipschitz.

��

Stochastic aspects

Recall that we have by definition

X ′
jηi = ψi (prox(ciρi )(r̃i,(i)))

1

n
X ′

j (Si + τ Idp)
−1Xi .

We can therefore bound ‖Ri‖ by

‖Ri‖ ≤
[

sup
j �=i

|X ′
j (Si + τ Idp)

−1Xi |
n

]

sup1≤i≤n Li (n)√
nτ

‖Xi‖√
n

|||̂�|||2
(|ψi (r̃i,(i))||ψi (prox(ciρi )(r̃i,(i))|

)

.

Therefore, we also have

‖Ri‖ ≤
[

sup
j �=i

|X ′
j (Si + τ Idp)

−1Xi |
n

]

sup1≤i≤n Li (n)√
nτ

‖Xi‖√
n

|||̂�|||2‖ψi‖2∞.
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This bound on ‖Ri‖ shows that we can control ‖̂β − ˜βi‖ in Lk provided we can
control each terms in the above product in L3k , by appealing to Holder’s inequality
and Proposition 3.4.

We now turn our attention to the various elements of the bound on ‖Ri‖ and show
that we can control them under our assumptions.

On sup j �=i |X ′
j (Si + τ Id)−1Xi/n|

We will control X ′
j (Si + τ Id)−1Xi/n by appealing to Lemma 3.36.

Lemma 3.7 Suppose Xi ’s are independent and satisfy Assumption O4; suppose λi ’s
satisfy O6. Then

sup
j �=i

|X ′
j (Si + τ Id)−1Xi/n| ≤ 1√

n
sup
j �=i

‖X j‖
τ
√
n
polyLog(n)

in Lk, for any finite k. Note also that under our Assumption O4, for any finite k,

sup
j �=i

∣

∣‖X j‖/√n
∣

∣ = OLk (1).

Proof The proof follows from that of Lemma 2.3 in [15]. Indeed,

|X ′
j (Si + τ Id)−1Xi/n| = |λiλ j ||X ′

j (Si + τ Id)−1Xi/n|.

The proof of Lemma 2.3 in [15] shows that

sup
j �=i

|X ′
j (Si + τ Id)−1Xi/n| ≤ 1√

n
sup
j �=i

‖X j‖
τ
√
n
polyLog(n)/c1/2n

in Lk , when sup j �=i
‖X j‖
τ
√
n

= OLk (1); this latter result is shown in [15] (see the

discussion after Lemma 2.3 or Lemma 3.35 in the current “Appendix” applied to
Fi (Xi ) = ‖Xi‖ and noting that E (‖Xi‖) ≤

√

E (‖Xi‖)2 = √
p).

Now our assumptions O6 concerning supi |λi | = OLk (polyLog(n)) guarantee that
the bounds we announced are valid. ��

Consequences

We have the following result. Recall that ψ ′
i is assumed to be Lipschitz with Lipschitz

constant Li (n).

Proposition 3.8 Under Assumptions O1–O6, we have

‖Ri‖ = OLk

(

[sup1≤i≤n Li (n)]‖ψi‖2∞
nτ

polyLog(n)

)

.
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Furthermore, the same bound holds for sup1≤i≤n‖Ri‖ with sup1≤i≤n‖ψi‖2∞ (instead
of ‖ψi‖2∞) in the right-hand side.

Proof The proof follows by aggregating all the intermediate results we had,
using Holder’s inequality and noticing that under our assumptions, |||̂�|||2 =
OLk (supi λ

2
i c

−1
n ) = OLk (polyLog(n)). This latter result is shown in Lemma 3.38.

The statement concerning sup1≤i≤n‖Ri‖ follows by the same arguments. ��
We can now prove and state the following result, which relates residuals to leave-

one-out-prediction errors and give a way to do online update from ̂β(i) to ̂β.
We recall that ˜βi is defined in Eq. (20).

Theorem 3.9 Under Assumptions O1–O7, we have, for any fixed k, when τ is held
fixed and Li (n) ≤ Cnα ,

sup
1≤i≤n

‖̂β − ˜βi‖ = OLk

(

polyLog(n)

n1−α

)

.

In particular, we have

∀1 ≤ i ≤ n,E
(

‖̂β − ˜βi‖2
)

= O(polyLog(n)/n2−2α).

Also,

sup
1≤i≤n

sup
j �=i

|r̃ j,(i) − R j | = OLk

(

polyLog(n)

n1/2−α

)

.

Finally,

sup
1≤i≤n

|Ri − prox(ciρi )(r̃i,(i))| = OLk

(

polyLog(n)

n1/2−α

)

. (27)

We note that we could state a slightly finer result involvingLi (n) and various powers
of ‖ψi‖∞. However, we will not need such fine results in what follows, so we opt for
slightly coarser but easier-to-state statements.

Proof The first two results simply follow from our work on ‖Ri‖.
The third result follows from the coarse bound

sup
j �=i

|r̃ j,(i) − R j | = sup
j �=i

∣

∣

∣X ′
j

(

̂β − ̂β(i)
)

∣

∣

∣ ≤ sup
j �=i

∣

∣

∣X ′
j

(

̂β − ˜βi
)

∣

∣

∣+ sup
j �=i

|X ′
j

(

˜βi − ̂β(i)
) |,

≤
(

sup
1≤ j≤n

‖X j‖√
n

)√
n‖̂β − ˜βi‖ + sup

j �=i
|X ′

jηi |,

and the fact that
(

sup1≤ j≤n
‖X j‖√

n

)

= OLk (polyLog(n)) under our assumptions. Our

results on ‖̂β − ˜βi‖ give control of the first term. Control of the second term follows
from Lemma 3.7 and the assumption that ψi is bounded by CpolyLog(n).
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Let us now turn to the final result, i.e. the approximation of the residual Ri by a
non-linear function of the leave-one-out prediction error r̃i,(i). Recall that

Ri = εi + X ′
iβ0 − X ′

i
̂β = εi + X ′

iβ0 − X ′
i
˜βi − X ′

i (
̂β − ˜βi ).

Now, given the definition of ˜βi , we have

X ′
i
˜βi = X ′

i
̂β(i) + ciψi [prox(ciρi )(r̃i,(i))].

Hence, since almost by definition, if y = prox(cρ)(x), y + cψ(y) = x , we get

εi + X ′
iβ0 − X ′

i
˜βi = r̃i,(i) − ciψi [prox(ciρi )(r̃i,(i))] = prox(ciρi )(r̃i,(i)).

So we have established that

sup
i

∣

∣Ri − prox(ciρi )(r̃i,(i))
∣

∣ = sup
i

∣

∣X ′
i (
˜βi − ̂β)

∣

∣

and the result follows from our previous bounds. ��

On the limiting variance of ‖̂β‖2 and ‖̂β − β0‖2

An interesting consequence of our leave-one-observation-out work is that we can use
the ideas and approximations developed above to show that ‖̂β − β0‖ and ‖̂β‖ are
asymptotically deterministic (in otherwords, they can be approximated asymptotically
by deterministic sequences).

Proposition 3.10 Under our assumptions O1–O7,

var
(

‖̂β‖2
)

→ 0 as n → ∞.

Therefore ‖̂β‖2 has a deterministic equivalent in probability and in L2.
More precisely, we have

var
(

‖̂β‖2
)

= O(
polyLog(n)

n1−2α ).

The same results are true for var
(‖̂β − β0‖22

)

provided ‖β0‖ = O(polyLog(n)), as in
Assumption O7.

Proof We use the Burkholder/Efron–Stein inequality to show that var
(‖̂β‖2) goes to

0 as n → ∞. In what follows, we rely on our approximations and our assumptions
to have enough moments for all the expectations of the type E

(‖̂β‖2k) to be bounded
like polyLog(n)/τ 2k . Note that this the content of our Lemma 3.3.
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Recall the Efron–Stein inequality [11]: ifW is a function of n independent random
variables, and W(i) is any function of all those random variables except the i th,

var (W ) ≤
n
∑

i=1

var
(

W − W(i)
) ≤

n
∑

i=1

E
(

(W − W(i))
2
)

.

In our arguments below, ‖̂β‖2 plays the role of W and ‖̂β(i)‖2 plays the role of
W(i).

We first observe that

E
(

|‖̂β‖2 − ‖̂β(i)‖2|2
)

≤ 2
[

E
(

|‖̂β‖2 − ‖˜βi‖2|2
)

+ E
(

|‖˜βi‖2 − ‖̂β(i)‖2|2
)]

.

Of course, using the fact that ̂β = ̂β −˜βi +˜βi and |‖̂β‖2 −‖˜βi‖2|2 = [(̂β −˜βi )
′(̂β +

˜βi )]2, and hence (̂β − ˜βi )
′(̂β + ˜βi ) = 2(̂β − ˜βi )

′
̂β − ‖̂β − ˜βi‖2, we have

|‖̂β‖2 − ‖˜βi‖2|2 = OL1(‖̂β − ˜βi‖4) +
√

OL1(polyLog(n)‖̂β − ˜βi‖4),

by the Cauchy–Schwarz inequality, since E
(‖̂β‖k) exists and is bounded by

KpolyLog(n)/τ k .
Using the results of Theorem 3.9, we see that

E
(

|‖̂β‖2 − ‖˜βi‖2|2
)

= O

(

polyLog(n)

n2−2α

)

= o(n−1),

provided α < 1/2.
On the other hand, given the definition in Eq. (20),

‖˜βi‖2 − ‖̂β(i)‖2 = 2
1

n
̂β ′

(i)(Si + τ Id)−1Xiψi (prox(ciρi )(r̃i,(i)))

+ 1

n2
X ′
i (Si + τ Id)−2Xiψ

2
i (prox(ciρi )(r̃i,(i))).

Since ̂β(i) and Si are independent of Xi , and |||(Si + τ Id)−1|||2 ≤ 1/τ , ̂β ′
(i)(Si +

τ Id)−1Xi = OL2(|λi |‖̂β(i)‖/c1/2n ), using our assumptions O4 on Xi applied to linear
forms. Recall also that supi‖ψi‖∞ = O(polyLog(n)). Therefore, we see that both
terms are OL2(polyLog(n)/nc1/2n ).

We conclude that then

E
(

∣

∣

∣‖˜βi‖2 − ‖̂β(i)‖2
∣

∣

∣

2
)

= O

(

polyLog(n)

n2

)

.
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TakingW = ‖̂β‖2 andW(i) = ‖̂β(i)‖2 in the Efron-Stein inequality, we clearly see
that

var
(

‖̂β‖2
)

= O

(

polyLog(n)

n1−2α

)

= o(1).

This shows that ‖̂β‖2 has a deterministic equivalent in probability and in L2.
• About ‖̂β − β0‖.
The results are obtained in a similar fashion using our bound on ‖̂β − β0‖ and

replacing everywhere in the arguments ‖̂β‖ by ‖̂β − β0‖, and ‖˜βi‖ by ‖˜βi − β0‖.
The condition ‖β0‖ = O(polyLog(n)) plays a role to guarantee in Lemma 3.3 that
‖̂β − β0‖ = OLk (polyLog(n)).

Let us now provide some more details. As above, we write

E
(

|‖̂β − β0‖2 − ‖̂β(i) − β0‖2|2
)

≤ 2
[

E
(

|‖̂β − β0‖2 − ‖˜βi − β0‖2|2
)

+ E
(

|‖˜βi − β0‖2 − ‖̂β(i) − β0‖2|2
)]

.

Of course, using the fact that ̂β = ̂β −˜βi +˜βi and |‖̂β −β0‖2 −‖˜βi −β0‖2|2 = [(̂β −
˜βi )

′(̂β+˜βi−2β0)]2, andhence (̂β−˜βi )
′(̂β+˜βi−2β0) = 2(̂β−˜βi )

′(̂β−β0)−‖̂β−˜βi‖2,
we have

|‖̂β − β0‖2 − ‖˜βi − β0‖2|2 = OL1(‖̂β − ˜βi‖4) +
√

OL1(polyLog(n)‖̂β − ˜βi‖4),

by the Cauchy–Schwarz inequality, since E
(‖̂β − β0‖k

)

exists and is bounded by
KpolyLog(n)/τ k . This latter fact follows from Assumption O7 and Lemma 3.3.

Using the results of Theorem 3.9, we see that

E
(

|‖̂β − β0‖2 − ‖˜βi − β0‖2|2
)

= O

(

polyLog(n)

n2−2α

)

= o(n−1),

provided α < 1/2.
As above, given the definition in Eq. (20),

‖˜βi − β0‖2 − ‖̂β(i) − β0‖2 = 2
1

n
(̂β(i) − β0)

′(Si + τ Id)−1Xiψi (prox(ciρi )(r̃i,(i)))

+ 1

n2
X ′
i (Si + τ Id)−2Xiψ

2
i (prox(ciρi )(r̃i,(i))).

Since ̂β(i) − β0 and Si are independent of Xi , and |||(Si + τ Id)−1|||2 ≤ 1/τ , (̂β(i) −
β0)

′(Si + τ Id)−1Xi = OL2(|λi |‖̂β(i) − β0‖/c1/2n ), using our assumptions O4 on Xi

applied to linear forms. Recall also that supi‖ψi‖∞ = O(polyLog(n)). Therefore, we
see that both terms are OL2(polyLog(n)/nc1/2n ).
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We conclude that then

E
(

∣

∣

∣‖˜βi − β0‖2 − ‖̂β(i) − β0‖2
∣

∣

∣

2
)

= O

(

polyLog(n)

n2

)

.

Taking nowW = ‖̂β −β0‖2 andW(i) = ‖̂β(i) −β0‖2 in the Efron-Stein inequality,
we clearly see that

var
(

‖̂β − β0‖2
)

= O

(

polyLog(n)

n1−2α

)

= o(1).

This shows that ‖̂β − β0‖2 has a deterministic equivalent in probability and in L2. ��

Appendix 4: Leaving out a predictor

In this second step of the proof, we do need at various points that the entries of the
vector Xi be independent, whereas as we showed before, it is not important when
studying what happens when we leave out an observation.

Let V be the n × (p − 1) matrix corresponding to the first (p − 1) columns of the
design matrix X . We call Vi inRp−1 the vector corresponding to the first p−1 entries
of Xi , i.e. V ′

i = (Xi (1), . . . , Xi (p−1)). We call X (p) the vector inRn with j th entry
X j (p), i.e. the p−th entry of the vector X j . When this does not create problems, we
also use the standard notation X j,p for X j (p).

We use the notation β0 = (γ ′
0 β0(p))′, i.e. γ0 is the vector corresponding to the

first p − 1 coordinates of β0.
Let us call γ̂ the solution of

γ̂ = argminγ∈Rp−1
1

n

n
∑

i=1

ρi (εi − V ′
i (γ − γ0)) + τ

2
‖γ ‖2. (28)

Note that

(

γ̂

0

)

is the solution of the original optimization problem (3) when Xi (p) is

replaced by 0.
In this part of the paper, we will rely heavily on the following definitions:

Definition Wecall the residuals corresponding to this optimizationproblem {ri,[p]}ni=1,
in other words

ri,[p] = εi + V ′
i γ0 − V ′

i γ̂ .

We call

u p = 1

n

n
∑

i=1

ψ ′
i (ri,[p])Vi Xi (p), and Sp = 1

n

n
∑

i=1

ψ ′
i (ri,[p])ViV ′

i .
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Note that u p ∈ R
p−1 and Sp is (p − 1) × (p − 1). We call

ξn � 1

n

n
∑

i=1

X2
i (p)ψ

′
i (ri,[p]) − u′

p(Sp + τ Id)−1u p, (29)

and

Np � 1√
n

n
∑

i=1

Xi (p)ψi (ri,[p]). (30)

Wewill show later, in “On ξn” of Appendix 4 that ξn ≥ 0. However, we will use this
information from the beginning and there are no circular arguments. We note that ξn
depends on the coordinate we are considering, here p. So it should be written ξn(p).
However, to avoid cumbersome notations, we keep the notation ξn unless there are
ambiguities or we need to stress what coordinate we are referring to. This happens
only in parts of “About ci ’s, ξn , Np, and the limiting distribution of ̂β(p)” of Appendix
5 below.

We consider

bp � β0(p)
ξn

τ + ξn
+ 1√

n

Np

τ + ξn
. (31)

Note that when ξn > 0, we have

bp − β0(p) = n−1/2Np − τbp

ξn
=

1
n

∑n
i=1 Xi (p)ψi (ri,[p]) − τbp

1
n

∑n
i=1 X

2
i (p)ψ

′
i (ri,[p]) − u′

p(Sp + τ Id)−1u p
.

Indeed, essentially by definition, β0(p) = [(τ + ξn)bp − n−1/2Np]/ξn ; hence bp −
β0(p) = [n−1/2Np − τbp]/ξn . We call

˜b =
[

γ̂

β0(p)

]

+ [bp − β0(p)]
[−(Sp + τ Id)−1u p

1

]

. (32)

The aim of our work in the second part of this proof is to establish Theorem 3.20 on
p.39,which shows that ‖˜b−̂β‖ = O(polyLog(n)/n) in Lk . Because the last coordinate
of ˜b, bp, has a reasonably simple probabilistic structure and our approximations are
sufficiently good, we will be able to transfer our insights about this coordinate to ̂βp,
the last coordinate of ̂β. This is also true when considering

√
n(bp − ̂βp), so our

approximations will be interesting at that scale, too.
The approach and approximating quantities we choose—as well as the intuition

behind those choices—can be understood by using variants of the ideas discussed in
our work in [3,16] and [17].
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Deterministic aspects

Proposition 3.11 We have

‖̂β −˜b‖ ≤ 1

τ
|bp − β0(p)| sup

1≤i≤n
|di,p| |||̂�|||2

√

‖(Sp + τ Id)−1u p‖2 + 1. (33)

where di,p = [ψ ′
i (γ

∗
i,p)−ψ ′

i (ri,[p])] and γ ∗
i,p is in the interval (εi +V ′

i γ0 −V ′
i γ̂ , εi +

X ′
iβ0 − X ′

i
˜b).

Furthermore,

‖(Sp + τ Id)−1u p‖2 ≤ 1

nτ

n
∑

i=1

X2
i (p)ψ

′
i (ri,[p]) = 1

nτ

n
∑

i=1

λ2i ψ
′
i (ri,[p])X 2

i (p).(34)

As we saw in Eq. (15) and Lemma 3.2, we have

‖̂β −˜b‖ ≤ 1

τ
‖ f (˜b)‖,

where

f (˜b) = −1

n

n
∑

i=1

Xiψi
(

εi + X ′
iβ0 − X ′

i
˜b
)+ τ˜b.

We note furthermore that, by definition of γ̂ ,

g(γ̂ ) � −1

n

n
∑

i=1

Viψi
(

εi + V ′
i γ0 − V ′

i γ̂
)+ τ γ̂ = 0p−1.

The strategy of the proof is to control f (˜b) by using g(γ̂ ) to create good approxi-
mations and then recalling that g(γ̂ ) = 0p−1.

Proof The proof strategy and ideas are tied to the technique developed in [15]; how-
ever, because there are a number of delicate cancellations in the argument, we give
it in full details. (Naturally, coming up with good approximating quantities required
much work.)

a. Work on the first (p − 1) coordinates of f (˜b)
We call fp−1(β) the first p−1 coordinates of f (β). We call γ̂ext the p-dimensional

vector whose first p − 1 coordinates are γ̂ and last coordinate is β0(p), i.e.

γ̂ext =
[

γ̂

β0(p)

]

.

For a vector v, we use the notation vcomp,k to denote the p − 1 dimensional vector
consisting of all the coordinates of v except the kth.
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Clearly,

fp−1(˜b) = fp−1(˜b) − g(γ̂ )

= −1

n

n
∑

i=1

Vi
[

ψi (εi + X ′
iβ0 − X ′

i
˜b) − ψi (εi + V ′

i γ0 − V ′
i γ̂ )
]+ τ(˜bcomp,p − γ̂ ).

We can write by using the mean value theorem, for γ ∗
i,p in the interval (εi − V ′

i (γ̂ −
γ0), εi − X ′

i (
˜b − β0)),

ψi (εi + X ′
iβ0 − X ′

i
˜b) − ψi (εi + V ′

i γ0 − V ′
i γ̂ )

= ψ ′
i (γ

∗
i,p)X

′
i (γ̂ext −˜b),

= ψ ′
i (ri,[p])X ′

i (γ̂ext −˜b) + [ψ ′
i (γ

∗
i,p) − ψ ′

i (ri,[p])]X ′
i (γ̂ext −˜b).

Let us call

di,p = [ψ ′
i (γ

∗
i,p) − ψ ′

i (ri,[p])],
δi,p = [ψ ′

i (γ
∗
i,p) − ψ ′

i (ri,[p])]X ′
i (γ̂ext −˜b),

Rp = −1

n

n
∑

i=1

di,pVi X ′
i (γ̂ext −˜b).

We have with this notation

fp−1(˜b) = −1

n

n
∑

i=1

ψ ′
i (ri,[p])Vi X ′

i (γ̂ext −˜b) + τ(˜bcomp,p − γ̂ ) + Rp � Ap + Rp.

We note that by definition,

γ̂ext −˜b = [bp − β0(p)]
[

(Sp + τ Id)−1u p

−1

]

,

˜bcomp,p − γ̂ = −[bp − β0(p)](Sp + τ Id)−1u p.

Therefore, X ′
i (γ̂ext −˜b) = [bp − β0(p)]

[

V ′
i (Sp + τ Id)−1u p − Xi (p)

]

, and

Ap = −(bp − β0(p))

(

1

n

n
∑

i=1

ψ ′
i (ri,[p])Vi

[

V ′
i (Sp + τ Id)−1u p − Xi (p)

]

+τ(Sp + τ Id)−1u p

)

.

Recalling the definition of Sp and u p, we see that

Ap = −(bp − β0(p))
(

Sp(Sp + τ Id)−1u p − u p + τ(Sp + τ Id)−1u p

)

= 0p−1,

since Sp(Sp + τ Id)−1 + τ(Sp + τ Id)−1 = Id.
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We conclude that

fp−1(˜b) = Rp.

b. Work on the last coordinate of f (˜b)
We call [ f (˜b)]p the last coordinate of f (˜b). We have shown above that

ψi (εi + X ′
iβ0 − X ′

i
˜b) − ψi (εi + V ′

i γ0 − V ′
i γ̂ )

= ψ ′
i (ri,[p])X ′

i (γ̂ext −˜b) + [ψ ′
i (γ

∗
i,p) − ψ ′

i (ri,[p])]X ′
i (γ̂ext −˜b).

Recall the notation

δi,p = [ψ ′
i (γ

∗
i,p) − ψ ′

i (ri,[p])]X ′
i (γ̂ext −˜b).

Clearly,

ψi (εi + X ′
iβ0 − X ′

i
˜b) = ψi (ri,[p]) + ψ ′

i (ri,[p])X ′
i (γ̂ext −˜b) + δi,p,

= ψi (ri,[p]) + ψ ′
i (ri,[p])[bp − β0(p)]

[

V ′
i (Sp + τ Id)−1u p

−Xi (p)] + δi,p.

We therefore see that

[ f (˜b)]p + 1

n

n
∑

i=1

Xi (p)δi,p

= −1

n

n
∑

i=1

Xi (p)
(

ψi (ri,[p])

+ψ ′
i (ri,[p])(bp − β0(p))

[

V ′
i (Sp + τ Id)−1u p − Xi (p)

])

+ τ˜bp,

= −1

n

n
∑

i=1

Xi (p)ψi (ri,[p]) − (bp − β0(p))u
′
p(Sp + τ Id)−1u p

+ (bp − β0(p))
1

n

n
∑

i=1

ψ ′
i (ri,[p])X2

i (p) + τbp,

= −
[

1

n

n
∑

i=1

Xi (p)ψi (ri,[p]) − τbp

]

+ (bp − β0(p))

(

1

n

n
∑

i=1

ψ ′
i (ri,[p])X2

i (p) − u′
p(Sp + τ Id)−1u p

)

,

= −
[

1√
n
Np − τbp

]

+ (bp − β0(p))ξn,

= 0.
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We conclude that

[ f (˜b)]p = −1

n

n
∑

i=1

Xi (p)δi,p = −1

n

n
∑

i=1

di,p Xi (p)X
′
i (γ̂ext −˜b).

Representation of f (˜b)
Aggregating all the results we have obtained so far, we see that

f (˜b) =
(

−1

n

n
∑

i=1

di,p Xi X
′
i

)

(γ̂ext −˜b),

= −(bp − β0(p))

(

1

n

n
∑

i=1

di,p Xi X
′
i

)

[

(Sp + τ Id)−1u p

−1

]

.

We conclude immediately that

‖ f (˜b)‖ ≤ |bp − β0(p)| sup
1≤i≤n

|di,p| |||̂�|||2
√

‖(Sp + τ Id)−1u p‖2 + 1. (35)

This gives Eq. (33). The rest of the proof follows easily with mild modifications
from [15] and we do not repeat it here. ��

Stochastic aspects

From now on, we assume that X (p), is independent of {Vi , εi }ni=1. This is consistent
with Assumption P1. (Recall that Xi = λiXi and therefore Vi = λiVi .) Note that
Assumption O4 is satisfied for Vi if it is satisfied for Xi : convex 1-Lipschitz function
of Vi can be trivially made to be convex 1-Lipschitz function of Xi by simply not
acting on the last coordinate of Xi .

Naturally, a large amount of the rest of the proof consists in showing that we can
bound ‖ f (˜b)‖ sufficiently finely for our results to hold true. So we will work on
bounding each term in the product appearing in Eq. (33) in the rest of this section.

The last term is very easy to bound. In fact, using Eq. (34), we have

‖(Sp + τ Id)−1u p‖2 ≤ 1

τ

1

n

n
∑

i=1

‖ψ ′
i‖∞λ2i X 2

i (p),

and

‖(Sp + τ Id)−1u p‖2 ≤ supi‖ψ ′
i‖∞

τ

1

n

n
∑

i=1

λ2i X 2
i (p).
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Hence, under assumptionsO3–O4 andO6, we see that, for any fixed k and at τ fixed,

‖(Sp + τ Id)−1u p‖2 = OLk (polyLog(n)).

As an aside, we note that p does not play any particular role here. If we considered
the same quantity when we remove the kth predictor, and took the sup over 1 ≤ k ≤ p
of the corresponding random variables, the same inequality would hold, in light of our
work in e.g. Lemma 3.37.

The previous equation guarantees that
∥

∥

∥

∥

(Sp + τ Id)−1u p

−1

∥

∥

∥

∥

2

≤ (1 + ‖(Sp + τ Id)−1u p‖2) = OLk (polyLog(n)).

We conclude, using Eq. (33), that

‖̂β −˜b‖ = OLk

(

1

τ
polyLog(n)|bp − β0(p)| sup

1≤i≤n
|di,p| |||̂�|||2

)

,

provided the terms appearing inside the OLk have enough moments to enable us to
use Holder’s inequality.

Recall that Lemma 3.38 gives |||̂�|||2 = OLk (polyLog(n)) under our assumptions
O1–O7. At a high level, we expect sup1≤i≤n |di,p| and [bp−β0(p)] to be small, which
“should give us” that

‖̂β −˜b‖ = OLk (polyLog(n) sup
1≤i≤n

|di,p||bp − β0(p)|).

In fact,wewill show inProposition3.12 thatbp−β0(p) = OLk (polyLog(n)[n−1/2∨
n−e]) and in Proposition 3.19 that sup1≤i≤n |di,p| = OLk (polyLog(n)[nα−1/2 ∨
nα−e]).

These are the key bounds we will need in showing that ‖̂β −˜b‖ is small.
We now turn our attention to showing these two results.

On bp − β0(p)

We recall the notations

Np = 1√
n

n
∑

i=1

ψi (ri,[p])Xi (p) = 1√
n

n
∑

i=1

λiψi (ri,[p])Xi (p),

ξn = 1

n

n
∑

i=1

ψ ′
i (ri,[p])X2

i (p) − u′
p(Sp + τ Id)−1u p.

Under our assumptions, we have E (Xi ) = 0 and cov (Xi ) = Idp and hence
E
(X 2

i (p)
) = 1. Recall that since we assume that X (p) is independent of {Vi , εi }ni=1,

X (p) is independent of {ri,[p]}ni=1.
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Proposition 3.12 We have

|bp − β0(p)| ≤ 1√
nτ

|Np| + |β0(p)| ≤ 1√
nτ

|Np| + ‖β0‖∞.

Furthermore, under assumptions O1–O7 and P1, Np = OLk (polyLog(n)) and there-
fore, when τ is held fixed,

|bp − β0(p)| = OLk (polyLog(n)n−1/2 + ‖β0‖∞).

Proof From the definition of bp, we see that, when ξn �= 0

bp − β0(p) = 1√
n

Np

τ + ξn
− τβ0(p)

τ + ξn
.

Wewill see later, in “On ξn” of Appendix 4 that ξn ≥ 0 (there is no circular arguments,
it is simply more convenient to postpone the investigation of the properties of ξn). It
immediately then follows that

∣

∣bp
∣

∣ ≤ 1√
nτ

|Np| + |β0(p)|.

Using independence of X (p) and {Vi , εi }ni=1, and E (Xi (p)) = 0 for all i , we have
for instance,

E
(

N 2
p

)

= 1

n

n
∑

i=1

E
(

X 2
i (p)

)

E
(

λ2i ψ
2
i (ri,[p])

)

,

whether the right-hand side is finite or not. Using our bounds on max λ2i and
supi‖ψi‖∞, we therefore have

E
(

N 2
p

)

≤ 1

n

n
∑

i=1

E
(

X 2
i (p)

)

‖ψi‖2∞E
(

λ2i

)

= O(1) = O(polyLog(n)).

Simple computations also show that Np has as many moments as we need and that
for any finite k, under our assumptions,

Np = OLk (polyLog(n)).

We therefore have

|bp − β0(p)| ≤ 1√
nτ

OLk (polyLog(n)) + sup
1≤k≤p

|β0(k)|.

��
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On ξn

Let us write ξn using matrix notations. Let Dψ ′
i (r·,[p]) be the n×n diagonal matrix such

that

Dψ ′
i (r·,[p])(i, i) = ψ ′

i (ri,[p]).

The notation D[ψ ′
i (ri,[p])]ni=1

might make it clearer that we are referring to a unique
matrix and not a sequence of matrices indexed by i but we use Dψ ′

i (r·,[p]) because it is
a less cumbersome notation.

We also denote by X (p) is the last column of the design matrix X . Then we have

ξn = 1

n
X (p)′D1/2

ψ ′
i (r·,[p])

MD1/2
ψ ′
i (r·,[p])

X (p), (36)

where

M = Idn −
D1/2

ψ ′
i (r·,[p])

V
√
n

(

1

n
V ′Dψ ′

i (r·,[p])V + τ Id

)−1 V ′D1/2
ψ ′
i (r·,[p])√
n

. (37)

This simply comes from elementary linear algebra and representing u p and Sp in
matrix form. For example, nu′

p = X (p)′Dψ ′
i (r·,[p])V .

We are now ready to investigate in more detail the properties of ξn .

Lemma 3.13 We have

ξn ≥ 0.

Furthermore, under AssumptionsO1–O7 and P1, if Dλi is the diagonal matrix with
i th entry λi ,

∣

∣

∣

∣

ξn − 1

n
trace

(

Dλi D
1/2
ψ ′
i (r·,[p])

MD1/2
ψ ′
i (r·,[p])

Dλi

)

∣

∣

∣

∣

= OLk

(

sup
1≤i≤n

λ2i ψ
′
i (ri,[p])/(

√
ncn)

)

.

(38)

Proof Let us first focus on

M = Idn − 1

n
D1/2

ψ ′
i (r·,[p])

V

(

V ′Dψ ′
i (r·,[p])V

n
+ τ Id

)−1

V ′D1/2
ψ ′
i (r·,[p])

.

The first part of the proof is very similar to the corresponding arguments in [15].
When τ > 0, it is clear that all the eigenvalues of M are strictly positive, i.e. M is
positive definite. Indeed, if the singular values of n−1/2D1/2

ψ ′
i (r·,[p])

V are denoted by σi ,

the eigenvalues of M are τ/(σ 2
i + τ).

Therefore, since ξn = 1
n v′Mv with v = D1/2

ψ ′
i (r·,[p])

X (p), ξn ≥ 0.

Since M is symmetric and has eigenvalues between 0 and 1, we also have, using
e.g. Lemma V.1.5 in [6],
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0 � D1/2
ψ ′
i (r·,[p])

MD1/2
ψ ′
i (r·,[p])

� Dψ ′
i (r·,[p]).

The matrix M is independent of X (p) under Assumption P1. Dψ ′
i (r·,[p]) is also

independent ofX (p). Of course,we have X (p) = DλiX (p), where Dλi is the diagonal
matrix with (i, i) entry λi .

Since Xp satisfy the necessary concentration assumptions under Assumption P1,
we can now appeal to Lemma 3.37 to obtain

∣

∣

∣

∣

1

n
X (p)′D1/2

ψ ′
i (r·,[p])

MD1/2
ψ ′
i (r·,[p])

X (p) − 1

n
trace

(

Dλi D
1/2
ψ ′
i (r·,[p])

MD1/2
ψ ′
i (r·,[p])

Dλi

)

∣

∣

∣

∣

= OLk

(

1√
ncn

sup
1≤i≤n

λ2i ψ
′
i (ri,[p])

)

.

��
We now take a slight detour from the aim of showing that we have a very good
approximation of ̂β through ˜b by working on finer properties of ξn and bp. These
properties will be essential in establishing the validity of the system (4).

To get a finer understanding of ξn , we now focus on the properties of

1

n
trace

(

Dλi D
1/2
ψ ′
i (r·,[p])

MD1/2
ψ ′
i (r·,[p])

Dλi

)

.

The previous lemma shows clearly why this is natural.

About 1
n trace

(

Dλi D
1/2
ψ ′
i (r·,[p])

MD1/2
ψ ′
i (r·,[p])

Dλi

)

Lemma 3.14 Let us call Sp = 1
n

∑n
i=1 ψ ′

i (ri,[p])ViV ′
i and Sp(i) = Sp −

1
nψ ′

i (ri,[p])ViV ′
i . Let us also call

cτ,p = 1

n
trace

(

(Sp + τ Id)−1
)

,

ζi = 1

n
V ′
i (Sp(i) + τ Id)−1Vi − λ2i cτ,p.

Then we have under Assumptions O1–O7 and P1, if M is the matrix defined in Eq.
(37),

∣

∣

∣

∣

1

n
trace (Idn − M) −

(

1

n
trace

(

Dλi D
1/2
ψ ′
i (r·,[p])

MD1/2
ψ ′
i (r·,[p])

Dλi

)

)

cτ,p

∣

∣

∣

∣

≤
[

sup
i

|ζi |
]

1

n

n
∑

i=1

ψ ′
i (ri,[p]). (39)

We also have

1

n
trace (Idn − M) = p − 1

n
− τcτ,p.
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Proof We call di,i = ψ ′
i (ri,[p])/n. Of course, by using the Sherman-Morrison-

Woodbury formula (see e.g. [21], p.19),

Mi,i = 1 − di,i V
′
i (V

′Dψ ′
i (r·,[p])V/n + τ Id)−1Vi ,

= 1 − di,i
V ′
i (Sp(i) + τ Id)−1Vi

1 + di,i V ′
i (Sp(i) + τ Id)−1Vi

,

= 1

1 + di,i V ′
i (Sp(i) + τ Id)−1Vi

.

Recall that we are interested in 1
n

∑

i λ
2
i ψ

′
i (ri,[p])Mi,i = 1

n

(

Dλi D
1/2
ψ ′
i (r·,[p])

MD1/2
ψ ′
i (r·,[p])

Dλi

)

. Note that, since trace (AB) = trace (BA),

trace (Idn − M) = trace
(

(Sp + τ Id)−1Sp

)

= p − 1 − τ trace
(

(Sp + τ Id)−1
)

= p − 1 − nτcτ,p.

This shows the second result of the lemma.
On the other hand,

trace (Idn − M) =
∑

i

(1 − Mi,i )

=
∑

i

di,i
V ′
i (Sp(i) + τ Id)−1Vi

1 + di,i V ′
i (Sp(i) + τ Id)−1Vi

. (40)

With our definitions, we have, since λ2i cτ,p + ζi = 1
n V

′
i (Sp(i) + τ Id)−1Vi ,

1

n
trace (Idn − M) =

(

1

n

∑

i

λ2i ψ
′
i (ri,[p])Mi,i

)

cτ,p

+1

n

∑

i

ψ ′
i (ri,[p])

ζi

1 + di,i V ′
i (Sp(i) + τ Id)−1Vi

.

It immediately follows that
∣

∣

∣

∣

∣

1

n
trace (Idn − M) −

(

1

n

∑

i

λ2i ψ
′
i (ri,[p])Mi,i

)

cτ,p

∣

∣

∣

∣

∣

≤
[

sup
i

|ζi |
]

1

n

∑

i

ψ ′
i (ri,[p]),

as announced. ��

The previous result will be especially useful as an approximation result if we can
show that ζi ’s are small, since assumption P2—which we will use later—implies that
1
n

∑n
i=1‖ψ ′

i‖∞ cannot be too large. This is what we do in the next few pages.
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Controlling ζi
Themain problem that ariseswhen trying to control ζi is the fact that r j,[p] appearing

inSp(i) depend on Vi . This prevents us from using concentration of quadratic forms
results such as those shown in Lemma 3.37. So further approximations arguments
are needed. Of course, the idea of using a leave-two-out residuals to approximate
{r j,[p]} j �=i immediately comes to mind. Hence our work in “Appendix 3” will later
play a key role in showing that ζi ’s are small.

Lemma 3.15 Suppose we can find {r(i)j,[p]} j �=i independent of (λi ,Vi ) and Kn such
that

sup
i

sup
j �=i

|ψ ′
j (r

(i)
j,[p]) − ψ ′

j (r j,[p])| ≤ Kn .

Then

sup
i

|ζi | = OLk

([

1

τ 2
Kn|||̂�|||2 + polyLog(n)

τ
√
ncn

+ 1

nτ

]

polyLog(n)

)

, (41)

provided Kn has 3k uniformly bounded moments.

Proof We call

AMi,p = 1

n

∑

j �=i

ψ ′
j (r

(i)
j,[p])VjV

′
j .

Then, using for instance the first resolvent identity, i.e. A−1 − B−1 = A−1(B −
A)B−1, we see that

|||(Sp(i) + τ Id)−1 − (AMi,p + τ Id)−1|||2 ≤ 1

τ 2
Kn|||̂�|||2,

since ||| 1n
∑

i Vi V
′
i |||2 ≤ |||̂�|||2. In particular,

∣

∣

∣

∣

1

n
V ′
i (Sp(i) + τ Id)−1Vi − 1

n
V ′
i (AMi,p + τ Id)−1Vi

∣

∣

∣

∣

≤ ‖Vi‖2
n

1

τ 2
Kn|||̂�|||2.

However, since AMi,p is independent of (λi ,Vi ), we can use Lemma 3.37 and see
that, since Vi = λiVi ,

sup
1≤i≤n

∣

∣

∣

∣

∣

1

n
V ′
i (AMi,p + τ Id)−1Vi − λ2i

n
trace

(

(AMi,p + τ Id)−1
)

∣

∣

∣

∣

∣

= OLk

(

polyLog(n)

τ
√
ncn

sup
1≤i≤n

λ2i

)

,

by using the fact that λmax((AMi,p + τ Id)−1) ≤ 1
τ
.

123



142 N. El Karoui

Using the operator norm bound we gave above, we also have

∣

∣

∣

∣

1

n
trace

(

(AMi,p + τ Id)−1
)

− 1

n
trace

(

(Sp(i) + τ Id)−1
)

∣

∣

∣

∣

≤ 1

τ 2
Kn|||̂�|||2 p

n
.

We conclude that

sup
1≤i≤n

∣

∣

∣

∣

∣

1

n
V ′
i (Sp(i) + τ Id)−1Vi − λ2i

n
trace

(

(Sp(i) + τ Id)−1
)

∣

∣

∣

∣

∣

(42)

= OLk

([

1

τ 2
Kn|||̂�|||2 sup

1≤i≤n

[

p

n
+ ‖Vi‖2

n

]

+ polyLog(n)

τ
√
ncn

][

sup
1≤i≤n

λ2i ∨ 1

])

.

(43)

Now, it is clear that under O1 and O4, sup1≤i≤n‖Vi‖2/n = OLk (1) and finally

sup
1≤i≤n

∣

∣

∣

∣

∣

1

n
V ′
i (Sp(i) + τ Id)−1Vi − λ2i

n
trace

(

(Sp(i) + τ Id)−1
)

∣

∣

∣

∣

∣

= OLk

(

[

1

τ 2
Kn|||̂�|||2 + polyLog(n)

τ
√
ncn

]

[

sup
1≤i≤n

λ2i ∨ 1

])

.

Control of 1
n trace

(

(Sp(i) + τ Id)−1
)− 1

n trace
(

(Sp + τ Id)−1
)

Using the Sherman-Woodbury-Morrison formula, we have

(Sp(i) + τ Id)−1 − (Sp + τ Id)−1

= ψ ′
i (ri,[p])
n

(Sp(i) + τ Id)−1ViV ′
i (Sp(i) + τ Id)−1

1 + ψ ′
i (ri,[p])
n V ′

i (Sp(i) + τ Id)−1Vi
.

After taking traces, we see that

0 ≤ trace
(

(Sp(i) + τ Id)−1
)

− trace
(

(Sp + τ Id)−1
)

≤ 1

τ
,

since V ′
i (Sp(i) + τ Id)−2Vi ≤ 1

τ
V ′
i (Sp(i) + τ Id)−1Vi .

Therefore,

0 ≤ 1

n
trace

(

(Sp(i) + τ Id)−1
)

− 1

n
trace

(

(Sp + τ Id)−1
)

≤ 1

nτ
.

We conclude that

sup
1≤i≤n

|ζi | = OLk

(

[

1

τ 2
Kn|||̂�|||2 + polyLog(n)

τ
√
ncn

+ 1

nτ

]

[

sup
1≤i≤n

λ2i ∨ 1

])

,
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provided we can use Holder’s inequality. In effect, this requires Kn to have 3k
moments. ��

Control of Kn

A natural choice for r(i)j,[p] defined in Lemma 3.15 is to use a leave one out estimator
of γ̂ , where the i th observation (and hence Vi ) is ommitted. Hence, all the work done
in Theorem 3.9 becomes immediately relevant.

Lemma 3.16 Suppose we use for {r(i)j,[p]} j �=i the residuals we would get by using a
leave-one-out estimator of γ̂ , i.e. excluding (Vi , εi ) from problem (28).

With the notations of Lemma 3.15, we have under assumptions O1–O7 and P1

Kn = OLk

(

n2α−1/2polyLog(n)
)

.

In particular, for any fixed τ ,

sup
i

|ζi | = OLk

(

n2α−1/2polyLog(n)
)

.

Proof Let us call δn(i) random variables such that

sup
j �=i

|r(i)j,[p] − r j,[p]| ≤ δn(i).

Applying Theorem 3.9 with R j = r j,[p] and r̃ j,(i) = r(i)j,[p], we get

sup
i

(δn(i)) = OLk

(

polyLog(n)

n1/2−α

)

.

The control of Kn follows immediately by using our assumptions onψ ′
i , specifically

the fact that it is Cnα-Lipschitz. ��

Important remark: the previous remark has important consequences for ci defined
in Eq. (21). Indeed, we have the following corollary.

Corollary 3.17 Let ci be defined as in Eq. (21) and cτ be defined as in Eq. (14). Then,
under assumptions O1–O7 and P1, we have

sup
i

|ci − λ2i cτ | = OLk (n
2α−1/2polyLog(n)). (44)

The corollary follows from drawing analogy between these quantities and the situation
investigated in Lemmas 3.14, 3.15, and 3.16; we now give a detailed proof.
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Proof We have now established that

sup
i

|1
n
V ′
i (Sp(i) + τ Id)−1Vi − λ2i cτ,p| = OLk

(

polyLog(n)

n1/2−2α

)

.

Recalling the notation

cτ = 1

n
trace

⎛

⎝

[

1

n

n
∑

i=1

ψ ′
i (Ri )Xi X

′
i + τ Idp

]−1
⎞

⎠ ,

we see that this quantity is the analog of cτ,p when we use all the predictors and not
only (p − 1) of them.

Indeed, ci in Eq. (21) is defined, in the notation of the proof of Lemma 3.15 as
an analog of 1

n V
′
i (AMi,p + τ Id)−1Vi , with the role of {r(i)j,[p]} j �=i being played by the

residuals obtained from the leave-one-out estimate of ̂β, excluding (Xi ,Yi ) from the
problem.Lemma3.15 in connectionwithTheorem3.20 shows that supi | 1n V ′

i (AMi,p+
τ Id)−1Vi − λ2i cτ,p| = OLk (polyLog(n)/n1/2−2α) under our assumptions. Passing
from the p−1 dimensional version of this result, i.e. Lemma3.15, to the p-dimensional
version gives the approximation stated in the corollary.

We therefore see that

sup
i

|ci − λ2i cτ | = OLk (n
2α−1/2polyLog(n)).

��

Further results on ξn and bp

We can combine all the results we have obtained so far in the following proposition.

Proposition 3.18 We have, under Assumptions O1–O7 and P1,

∣

∣

∣

∣

cτ,p(ξn + τ) − p − 1

n

∣

∣

∣

∣

= OLk

(

polyLog(n)

n1/2−2α

)

. (45)

Furthermore, under Assumptions O1–O7 and P1–P3, since ‖β0‖∞ = O(n−e),

( p

n

)2
nE
(

[bp − β0(p)]2
)

= 1

n

n
∑

i=1

E
(

[cτ,pλiψi (ri,[p])]2
)

+ nτ 2β2
0 (p)E

(

c2τ,p
)

+ o(1). (46)

Both equations in this proposition are very important for this paper. The first one gives
us a very precise idea of the behavior of ξn in terms of cτ,p, which we will see in
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“Appendix 5” is relatively easy to understand. This first equation is also a stepping
stone towards the first equation of the System (4).

The second equation, on the other hand, is a stepping stone towards the second
equation of System (4) in our main theorem, Theorem 2.1.

Proof • First equation
Theproof ofEq. (45) consists just in aggregating all the previous results and noticing

that cτ,p ≤ (p − 1)/(nτ) and therefore remains bounded. Indeed, we have

p − 1

n
− τcτ,p = 1

n
trace (Id − M) ≥ 0.

This latter quantity was approximated in Lemma 3.14 by

(

1

n
trace

(

D1/2
ψ ′
i (r·,[p])

MD1/2
ψ ′
i (r·,[p])

)

)

cτ,p.

And in Lemma 3.13, we approximated ξn by
(

1
n trace

(

D1/2
ψ ′
i (r·,[p])

MD1/2
ψ ′
i (r·,[p])

))

. This

gives the result of Eq. (45), by simply keeping track of the approximation errors we
make at each step.

• Second equation
Recall that by definition (see Eqs. (31) and (30)),

√
n
[

(τ + ξn)bp − ξnβ0(p)
] = Np = 1√

n

n
∑

i=1

λiψi (ri,[p])Xi (p).

Therefore,

cτ,p
√
n
[

(τ + ξn)[bp − β0(p)] + τβ0(p)
] = 1√

n

n
∑

i=1

cτ,pλiψi (ri,[p])Xi (p),

or

cτ,p
√
n(τ + ξn)[bp − β0(p)] = 1√

n

n
∑

i=1

cτ,pλiψi (ri,[p])Xi (p) − cτ,p
√
nτβ0(p).

We note that cτ,pλiψi (ri,[p]), which depends only on {λi ,Vi , εi }ni=1, is independent
of {Xi (p)}ni=1. (If needed, see the definition of cτ,p in Lemma 3.14.)

Since Xi (p)’s are independent with mean 0 and variance 1, we conclude that

E
(

c2τ,pn(τ + ξn)
2 [bp − β0(p)

]2
)

= 1

n

n
∑

i=1

E
(

[

cτ,pλiψi (ri,[p])
]2
)

+ nτ 2β2
0 (p)E

(

c2τ,p
)

.
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Given the result in Eq. (45) and our bound on
√
n[bp −β0(p)] in Proposition 3.12,

this means that

( p

n

)2
nE
(

[bp − β0(p)]2
)

= 1

n

n
∑

i=1

E
(

[

cτ,pλiψi (ri,[p])
]2
)

+ nτ 2β2
0 (p)E

(

c2τ,p
)

+ o(1).

In this last equation, we make use of Proposition 3.12 and Assumption P3 since under
this assumption n‖β0‖2∞polyLog(n)n2α−1/2 → 0. This is what allows us to replace
cτ,p(τ + ξn) by p/n without loss of accuracy in going from the second-to-last to the
last equation. ��

Wenow need to control di,p to show that our approximation of̂β by˜b in Proposition
3.11 will yield sufficiently good results that they can be used to prove Theorem 2.1.

On di,p

Recall the definition

di,p = [ψ ′
i (γ

∗
i,p) − ψ ′

i (ri,[p])],

where γ ∗
i,p ∈ (ri,[p], ri,[p] + νi ), with

νi = [bp − β0(p)]X ′
i

[

(Sp + τ Id)−1u p

−1

]

� [bp − β0(p)]πi .

(The fact that γ ∗
i,p ∈ (ri,[p], ri,[p] + νi ) follows from writing the definition of

Yi − X ′
i
˜b.)

We have the following result.

Proposition 3.19 We have, under Assumptions O1–O7 and P1–P3, at fixed τ ,

sup
i

|di,p| = OLk

(

polyLog(n)nα

n1/2 ∧ ne

)

.

Proof Note that we can rewrite

πi = X ′
i

[

(Sp + τ Id)−1u p

−1

]

= V ′
i (Sp + τ Id)−1u p − Xi (p).

Recall that u p = 1
n V

′Dψ ′
i (r·,[p])X (p). We can also rewrite it as

u p = 1

n
V ′Dλ2i ψ

′
i (r·,[p])

X (p).
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Using independence ofX (p)with {(Vi , εi )}ni=1, and our concentration assumptions
on X (p) formulated in P1, we see that according to Lemma 3.36, we have

sup
i

|V ′
i (Sp + τ Id)−1u p|

= OLk

(

polyLog(n)

c1/2n

sup
i

‖1
n
Dλ2i ψ

′
i (r·,[p])

V(Sp + τ Id)−1Vi‖
)

,

where we look at V ′
i (Sp + τ Id)−1u p as a linear form in X (p). Note that we have

absorbed the supi |λi | in the polyLog(n) term.
Now,

‖1
n
Dλ2i ψ

′
i (r·,[p])

V(Sp + τ Id)−1Vi‖2

= 1

n
V ′
i (Sp + τ Id)−1

V ′D2
λ2i ψ

′
i (r·,[p])

V
n

(Sp + τ Id)−1Vi .

Notice that Sp =
V ′D

λ2i ψ ′
i (r·,[p])

V
n . Hence,

V ′D2
λ2i ψ ′

i (r·,[p])
V

n � |||Dλ2i ψ
′
i (r·,[p])

|||2Sp and
we conclude that

1

n
V ′
i (Sp + τ Id)−1

V ′D2
λ2i ψ

′
i (r·,[p])

V
n

(Sp + τ Id)−1Vi ≤ ‖Vi‖2
nτ

|||Dλ2i ψ
′
i (r·,[p])

|||2

= ‖Vi‖2
nτ

sup
i

λ2i ψ
′
i (ri,[p]).

We also note that supi |Xi (p)| = OLk (polyLog(n)/
√
cn) underO4,O6 and P1, using

the results of “Appendix 7”. So we conclude that

sup
i

|πi | = OLk

(

polyLog(n)

c1/2n

[

1 +
√

sup
i

λ2i ψ
′
i (ri,[p]) sup

i

‖Vi‖2
nτ

])

,

= OLk

(

polyLog(n)

c1/2n

[

1 +
√

sup
i

λ2i ψ
′
i (ri,[p])

])

,

= OLk (polyLog(n)) .

Recalling that |bp − β0(p)| = OLk (n
−1/2polyLog(n) + ‖β0‖∞), we finally see that

sup
i

|νi | = OLk

(

polyLog(n)√
n ∧ ne

)

.
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Under our assumption that ψ ′
i is Cnα-Lipschitz, we see that

sup
i

|di,p| = OLk

(

polyLog(n)nα

n1/2 ∧ ne

)

.

��

3.1 Final conclusions

We can now gather together our approximation results in the following Theorem.

Theorem 3.20 Under AssumptionsO1–O7 and P1–P3, we have, for any fixed τ > 0,

‖̂β −˜b‖ ≤ OLk

(

polyLog(n)nα

[n1/2 ∧ ne]2
)

.

In particular,

√
n(̂βp − bp) = OLk

(

polyLog(n)nα+1/2

[n1/2 ∧ ne]2
)

,

sup
i

|X ′
i (
̂β −˜b)| = OLk

(

polyLog(n)nα+1/2

[n1/2 ∧ ne]2
)

,

sup
i

|Ri − ri,[p]| = OLk

([

polyLog(n)√
n ∧ ne

]

∨
[

polyLog(n)nα+1/2

[n1/2 ∧ ne]2
])

.

We note that the index p in the previous theorem plays no particular role and similar
results holds when p is replaced by any k, 1 ≤ k ≤ p.

Proof The Theorem is just the aggregation of all of our results, using the key bound
on ‖̂β −˜b‖ in Proposition 3.11.

The last statement is the only one that might need an explanation.With the notations
of the proof of Proposition 3.19, we have Ri − ri,[p] = X ′

i (
˜b − ̂β) − νi . The results

on supi |νi | in the proof of Proposition 3.19 as well as the bound on supi |X ′
i (
˜b − ̂β)|

give us the announced result. ��
Combining the results of Eq. (46) and the previous theorem, we see that under

Assumptions O1–O7 and P1–P4,

( p

n

)2
nE
(

(̂βp − β0(p))
2
)

= 1

n

n
∑

i=1

E
(

[cτ,pλiψi (ri,[p])]2
)

+ nτ 2β2
0 (p)E

(

c2τ,p
)

+ o(1).

Since p did not play any particular role as compared to any other index in our analysis,
the same result holds when p is replaced by k, 1 ≤ k ≤ p.
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Dividing the previous expression by n on both sides and summing over all the
indices 1 ≤ k ≤ p, we finally get

( p

n

)2
E
(

‖̂β − β0‖22
)

= 1

n

p
∑

k=1

[

1

n

n
∑

i=1

E
(

[cτ,kλiψi (ri,[k])]2
)

]

+ τ 2
p
∑

k=1

β2
0 (k)E

(

c2τ,k
)

+ o(1). (47)

Our aim now is to further simplify the above expression to get the second equation
of our system.

3.1.1 On cτ,p and cτ

We now show that cτ,k’s are all close to the same quantity, which turns out to be cτ .

Proposition 3.21 We have, under Assumptions O1–O7 and P1–P3,

sup
1≤k≤p

|cτ − cτ,k | = OLk

([

polyLog(n)nα

√
n ∧ ne

]

∨
[

polyLog(n)n2α+1/2

[n1/2 ∧ ne]2
]

∨ polyLog(n)

n

)

.

Of course, we also have 0 ≤ cτ ≤ p/(nτ) and 0 ≤ cτ,k ≤ p/(nτ).

Proof Let us recall the notation

S = 1

n

n
∑

i=1

ψ ′
i (Ri )Xi X

′
i .

If we call � = 1
n

∑n
i=1 ψ ′

i (Ri )ViV ′
i and a = 1

n

∑n
i=1 ψ ′

i (Ri )X2
i (p), we see that

S =
(

� v
v a

)

.

According to Lemma 3.40, we see that, since cτ = 1
n trace

(

(S + τ Idp)
−1
)

,

|cτ − 1

n
trace

(

(� + τ Idp−1)
−1
)

| ≤ 1

n

1 + a/τ

τ
.

It is clear that under our assumptions, a = OLk (polyLog(n)), since

a = 1

n

n
∑

i=1

λ2i X 2
i (p)ψ ′

i (Ri ) ≤ polyLog(n)
1

n

n
∑

i=1

λ2i X 2
i (p) = OLk (polyLog(n)),

using e.g. our work in “Appendix 7”. Since ψ ′
i is Cnα-Lipschitz and

sup
i

|Ri − ri,[p]| = OLk

([

polyLog(n)√
n ∧ ne

]

∨
[

polyLog(n)nα+1/2

[n1/2 ∧ ne]2
])

,
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we have

sup
i

|ψ ′
i (Ri ) − ψ ′

i (ri,[p])| = OLk

([

polyLog(n)nα

√
n ∧ ne

]

∨
[

polyLog(n)n2α+1/2

[n1/2 ∧ ne]2
])

.

Hence, using arguments similar to the ones we have used in the proof of Lemma 3.15
(i.e. first resolvent identity, etc...), we see that

∣

∣

∣

∣

1

n
trace

(

(� + τ Id)−1
)

− 1

n
trace

(

(Sp + τ Id)−1
)

∣

∣

∣

∣

= OLk

([

polyLog(n)nα

√
n ∧ ne

]

∨
[

polyLog(n)n2α+1/2

[n1/2 ∧ ne]2
])

.

Since cτ,p = 1
n trace

(

(Sp + τ Id)−1
)

, the result we announced follows immediately.
We note that p did not play a particular role here and hence taking the sup over those

indices only adds a polyLog(n) term to the approximation. Hence our approximation
is valid also for sup1≤k≤n |cτ − cτ,k |. ��

We are now ready to prove the last proposition of this section, which will help us
get the second equation of our System (4).

Proposition 3.22 Under Assumptions O1–O7 and P1–P4,

( p

n

)2
E
(

‖̂β − β0‖22
)

= p

n

1

n

n
∑

i=1

E
(

[cτ λiψi (prox(cτ λ
2
i ρi )(r̃i,(i)))]2

)

+τ 2‖β0‖2E
(

c2τ
)

+ o(1). (48)

Furthermore, when all λi ’s are non-zero,

1

n

n
∑

i=1

E
([cτ λiψi (prox(cτ λ

2
i ρi )(r̃i,(i)))]2

) = 1

n

n
∑

i=1

E

(

[r̃i,(i) − prox(cτ λ
2
i ρi )(r̃i,(i))]2

λ2i

)

.

Proof In light of the result in Proposition 3.21 and Assumption P3 which guarantees
that ‖β0‖22 is uniformly bounded in p and n, we see that

p
∑

k=1

β2
0 (k)E

(

c2τ,k
)

=
p
∑

k=1

β2
0 (k)E

(

c2τ
)

+ o(1) = ‖β0‖22E
(

c2τ
)

+ o(1).

Therefore, Eq. (47) implies that

( p

n

)2
E
(

‖̂β − β0‖22
)

= p

n

1

p

p
∑

k=1

[

1

n

n
∑

i=1

E
(

[cτ,kλiψi (ri,[k])]2
)

]

+τ 2‖β0‖22E
(

c2τ
)

+ o(1).
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Using Theorem 3.20 and our bound on ‖ψ ′
i‖∞ from Assumption O3, we see that

1

p

p
∑

k=1

E
(

[cτ,kλiψi (ri,[k])]2
)

= 1

p

p
∑

k=1

E
(

[cτ,kλiψi (Ri )]2
)

+ o(1).

Thanks to Proposition 3.21 we also have

1

p

p
∑

k=1

E
(

[cτ,kλiψi (Ri )]2
)

= 1

p

p
∑

k=1

E
(

[cτ λiψi (Ri )]2
)

+ o(1)

= E
(

[cτ λiψi (Ri )]2
)

+ o(1).

In light of Eq. (27) and Assumption O3, we have

1

n

n
∑

i=1

E
(

[cτ λiψi (Ri )]2
)

= 1

n

n
∑

i=1

E
(

[cτ λiψi (prox(ciρi )(r̃i,(i)))]2
)

+ o(1).

Lemma 3.32 and specifically the computation of the derivative of prox(cρ)(x)with
respect to c, allows us to bound the error |ψi (prox(ciρi )(x)) − ψi (prox(cτ λ

2
i ρi )(x))|

for all x . In light of this, we see that, by using Corollary 3.17, we can re-express the
previous equation as

1

n

n
∑

i=1

E
(

[cτ λiψi (Ri )]2
)

= 1

n

n
∑

i=1

E
(

[cτ λiψi (prox(cτ λ
2
i ρi )(r̃i,(i)))]2

)

+ o(1),

since Eq. (44) in Corollary 3.17, gives supi |ci − λ2i cτ | = OLk (n
2α−1/2polyLog(n)).

When λi ’s are all different from 0, we can rewrite this equation as

1

n

n
∑

i=1

E
(

[cτ λiψi (Ri )]2
)

= 1

n

n
∑

i=1

E

(

[cτ λ
2
i ψi (prox(cτ λ

2
i ρi )(r̃i,(i)))]2

λ2i

)

+ o(1).

Finally, since almost by definition,

∀x ∈ R, x = prox(cρ)(x) + cψ(prox(cρ)(x)),

we have

1

n

n
∑

i=1

E

(

[cτ λ
2
i ψi (prox(cτ λ

2
i ρi )(r̃i,(i)))]2

λ2i

)

= 1

n

n
∑

i=1

E

(

[r̃i,(i) − prox(cτ λ
2
i ρi )(r̃i,(i))]2

λ2i

)

.

��
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Appendix 5: Last steps of the proof

We now reach the last steps of the proof and two important tasks remain to be com-
pleted. The first one is understanding the limiting behavior of r̃i,(i) and showing that
it behaves like εi + λi rρ(κ)Zi in the limit, where Zi ∼ N (0, 1). With a little bit of
further work, the corresponding results will give us in connection with Proposition
3.22 the second equation of our main system (4).

The second main task is then to show that cτ is asymptotically deterministic, i.e. it
converges towards a non-random number.

On the asymptotic distribution of r̃i,(i)

We have the following lemma.

Lemma 3.23 Under Assumptions O1–O7 and P1–P4, as n and p tend to infinity,

r̃i,(i) = Yi − X ′
i
̂β(i) behaves like εi + λi

√

E
(‖̂β − β0‖2

)

Zi , where Zi ∼ N (0, 1) is
independent of εi and λi , in the sense of weak convergence.

Furthermore, if i �= j , r̃i,(i) and r̃ j,( j) are asymptotically (pairwise) independent.
The same is true for the pairs (r̃i,(i), λi ) and (r̃ j,( j), λ j )

Proof We recall that Xi = λiXi and hence r̃i,(i) = Yi −X ′
i
̂β(i) = εi −λiX ′

i (
̂β(i)−β0).

• First part The only problem is of course showing that (̂β(i) − β0)
′Xi is approx-

imately N (0,E
(‖̂β − β0‖2

)

). Recall that ̂β(i) is independent of Xi and that Xi has
mean 0, cov (Xi ) = Idp and that, for any finite k, the first k absolute moments of its
entries are assumed to be bounded uniformly in n.

Recall that we showed in Proposition 3.10 that var
(‖̂β − β0‖2

) → 0. Thanks to
Lemma 3.3, we also know that E

(‖̂β − β0‖2
)

is uniformly bounded. Furthermore,
in the proof of Proposition 3.10, we showed that E

(‖̂β‖2 − ‖̂β(i)‖2
) → 0 and that

E
(‖̂β − β0‖2 − ‖̂β(i) − β0‖2

)→ 0.
Let us now show that (̂β(i) − β0)

′Xi behaves like N (0,E
(‖̂β(i) − β0‖2

)

). We
employ a similar strategy as was done in [15] but give the argument in details since it
requires some new work.

We need a simple generalization of the standard Lindeberg-Feller theorem (see e.g.

[39]). Indeed, if an,p(k) are random variables with
√

∑p
k=1 an,p(k)2 = An , E

(

A2
n

)

remains bounded in n, and an,p(k)′s are independent of Xi , we see that: a) if Z ∼
N (0, Idp), independent of an,p(k), then a′

n,pZ ∼ AnN where N ∼ N (0, 1) and
independent of An (conditionally and unconditionally on an,p); b) Theorem 2.1.5
and its proof in [39] hold provided

∑n
i=1 E

(|an,p(k)|3
) = o(1). The proof simply

needs to be started conditionally on an,p, and the final moment bounds are then taken
unconditionally. This verymild generalization gives, ifφ is aC3 function,with bounded
2nd and third derivatives,
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∀ε > 0,
∣

∣

∣E
(

φ(a′
n,pXi )

)

− E (φ(AnN))

∣

∣

∣

≤ K

(

ε‖φ(3)‖∞E

( p
∑

k=1

an,p(k)
2

)

+ ‖φ(2)‖∞
ε

p
∑

k=1

E
(

|an,p(k)|3
)

)

,

where K is a constant that depends on the second and third absolute moments of the
entries of Xi . It is therefore independent of n and p under our assumptions on Xi .

To make matters clearer, we allow ourselves to use the notation vk or v(k) to refer
to the kth coordinate of the vector v.

In our setting, an,p(k) = ̂β(i)(k) − β0(k). Recall that we have shown that

̂β(p) − β0(p) = OLk

(

polyLog(n)nα

[n1/2 ∧ ne]2
)

.

The same arguments we used apply also to ̂β(i)(p), the pth coordinate of the leave-
one-out estimate ̂β(i). So it is clear that

E
(

|̂β(i)(p) − β0(p)|3
)

= O

(

polyLog(n)n3α

[n1/2 ∧ ne]6
)

.

We conclude that

E

( p
∑

k=1

|̂β(i)(k) − β0(k)|3
)

= O

(

polyLog(n)n3α+1

[n1/2 ∧ ne]6
)

= o(1).

This, in connection with Corollary 2.1.9 in [39], shows that (̂β(i) − β0)
′Xi behaves

asymptotically like ‖̂β(i) − β0‖N in the sense of weak convergence.
Since ‖̂β(i) − β0‖ − E

(‖̂β(i) − β0‖
) → 0 in probability and E

(‖̂β(i) − β0‖
)

remains bounded under our assumptions, Slutsky’s lemma guarantees that

(̂β(i) − β0)
′Xi behaves like E

(‖̂β(i) − β0‖
)

N

asymptotically, in the sense of weak convergence—by which we mean that the differ-
ence of their characteristic functions goes to 0. Using the fact, which can be shown
using results in the proof of Proposition 3.10, thatE

(‖̂β(i) − β0‖
)−E

(‖̂β − β0‖
)→

0 and Slutsky’s lemma, we see that

(̂β(i) − β0)
′Xi behaves like E

(‖̂β − β0‖
)

N,

in the sense of weak convergence.
We note that the same reasoning applies when replacing an,p(k) = ̂β(i)(k)−β0(k)

by ãn,p(k) = λi [̂β(i)(k) − β0(k)], provided λi has 3 moments. This shows that

λi (̂β(i) − β0)
′Xi = (̂β(i) − β0)

′Xi behaves like E
(‖̂β − β0‖

)

λiN.
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This shows the first part of the lemma, sinceE
(‖̂β − β0‖

) =
√

E
(‖̂β − β0‖2

)+o(1)
by Proposition 3.10.

• Second part For the second part, we use a leave-two-out approach, namely
we use the approximation r̃i,(i) = εi + X ′

iβ0 − ̂β ′
(i)Xi = εi + X ′

iβ0 − ̂β ′
(i j)Xi +

oLk (1) and similarly for r̃ j,( j) (this is clear from Theorem 2.2; ̂β(i j) is computed by
solving Problem (3) without (Xi ,Yi ) nor (X j ,Y j )). It is clear that r̃i,(i) and r̃ j,( j)
are asymptotically independent conditional on X(i j), i.e. all the predictors except Xi

and X j . But because their dependence on X(i j) is only through ‖̂β(i j) − β0‖, which
is asymptotically deterministic by arguments similar to those used in the proof of
Proposition 3.10, we see that r̃i,(i) and r̃ j,( j) are asymptotically independent.

After this high-level explanation, let us now give a detailed proof. The arguments
we gave above apply to ̂β(i j) as they did to ̂β(i). In particular, since

E

( p
∑

k=1

|̂β(i j)(k) − β0(k)|3
)

= O

(

polyLog(n)n3α+1

[n1/2 ∧ ne]6
)

= o(1),

we also have

p
∑

k=1

|̂β(i j)(k) − β0(k)|3 = oP (1).

Of course, ̂β(i j) depends only on {X(i j), ε(i j)}. We call P(i j) the joint probability
measure P(i j) = ∏

k �=(i, j) PXk ,εk , i.e. probability computed with respect to all our
random variables except (Xi , εi ) and (X j , ε j ) (we slightly abuse notation and do not
index this probability measure by n for the sake of clarity).

So we have found En
(i j), depending only on (X(i j), ε(i j)), such that P(i j)(En

(i j)) → 1

and
∑p

k=1 |̂β(i j)(k)−β0(k)|3 = o(1)when (X(i j), {εk}k �=(i, j)) ∈ En
(i j). The arguments

we gave above (treating an,p’s as deterministic quantities) then imply that, when
(X(i j), ε(i, j)) ∈ En

(i j),

(̂β(i j) − β0)
′Xi |(X(i j), ε(i j)) behaves like ‖̂β(i j) − β0‖N.

Let us now use characteristic function arguments. Let αi = (̂β(i j) − β0)
′Xi and

α j = (̂β(i j) − β0)
′X j

Let (wi , w j ) ∈ R
2 be fixed and

χ(wi , w j ) = E
(

eı(w1αi+w2α j )
)

= E
(

eı(w1αi+w2α j )
[

1En
(i j)

+ 1[En
(i j)]c

])

.

Since P([En
(i j)]c) = P(i j)([En

(i j)]c) → 0,wecan just focus onE
(

eı(w1αi+w2α j )1En
(i j)

)

,

since the modulus of the functions we are integrating is bounded by 1.
Now

E
(

eı(w1αi+w2α j )1En
(i j)

)

= E
(

1En
(i j)

E
(

eı(w1αi+w2α j )|X(i j), ε(i j)

))

,
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since 1En
(i j)

is a deterministic function of (X(i j), ε(i j)). Independence of Xi and X j

implies that

E
(

eı(w1αi+w2α j )|X(i j), ε(i j)

)

= E
(

eıw1αi |X(i j), ε(i j)
)

E
(

eıw2α j |X(i j), ε(i j)
)

.

Also, our conditional asymptotic normality arguments above imply that

1En
(i j)

[

E
(

eıw1αi |X(i j), ε(i j)
)− e−w2

1/2‖̂β(i j)−β0‖2
]

→ 0

in P(i j)-probability. We therefore have

1En
(i j)

[

E
(

eı(w1αi+w2α j )|X(i j), ε(i j)

)

− e−(w2
1/2+w2

2/2)‖̂β(i j)−β0‖2
]

→ 0

in P(i j)-probability.
So we conclude that

E
(

1En
(i j)

eı(w1αi+w2α j )
)

− E
(

1En
(i j)

e−(w2
1/2+w2

2/2)‖̂β(i j)−β0‖2
)

→ 0.

Since P(En
(i j)) → 1 and ‖̂β(i j)−β0‖2 is asymptotically deterministic by arguments

similar to those used in the proof of Proposition 3.10, we see that

E
(

1En
(i j)

e−(w2
1/2+w2

2/2)‖̂β(i j)−β0‖2
)

− e−[(w2
1/2+w2

2/2)E
(‖̂β(i j)−β0‖2

)]

→ 0.

Therefore,

E
(

eı(w1αi+w2α j )
)

− E
(

eıw1αi
)

E
(

eıw2α j
)→ 0.

This proves that αi and α j are asymptotically independent. It easily follows that the
same is true for r̃i,(i) and r̃ j,( j).

The same leave-two-out approach also shows asymptotic pairwise independence
of the pairs (λi , r̃i,(i)) and (λ j , r̃ j,( j)), since ̂β(i j) is independent of λi and λ j under
Assumption O6, which guarantees independence of the λi ’s.

The lemma is shown. ��

On the asymptotic behavior of cτ

We are now in position to show that cτ = 1
n trace

(

(S + τ Idp)
−1
)

is asymptotically
deterministic. This result will require several steps.

Lemma 3.24 We work under Assumptions O1–O7, P1–P4 and F2–F4.
Consider the random function

gn(x) = 1

n

n
∑

i=1

1

1 + xλ2i ψ
′
i (prox(xλ

2
i ρi )(r̃i,(i)))

, defined for x ≥ 0.
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Let B > 0 be in R+. We have, for any (x, y) ∈ R
2+, and 0 ≤ x ≤ B, 0 ≤ y ≤ B,

sup
(x,y):|x−y|≤η,0≤x≤B,0≤y≤B

|gn(x)) − gn(y)|

≤ η
1

n

n
∑

i=1

(

λ2i ‖ψ ′
i‖∞ + B Li (n)λ4i ‖ψi‖∞

)

.

In particular, under P2 and F3–F4 we have, for C a constant independent of n and
p,

P∗
(

sup
(x,y):|x−y|≤η,0≤x≤B,0≤y≤B

|gn(x) − gn(y)| > δ

)

≤ η

δ
C. (49)

Hence, gn is stochastically equicontinuous on [0, B] for any B > 0 given.

We used the notation P∗ above to denote outer probability and avoid a discussion
of potential measure theoretic issues associated with taking a supremum over a non-
countable collection of random variables (see e.g. [41, Sect. 18.2]).We refer the reader
to e.g. [30] for more details on stochastic equicontinuity. While we could probably
avoid appealing to abstract concepts like outer measures here, we use this approach
because it is a standard tool in empirical process theory and helps us avoid side
measurability discussions that would distract us from the main focus of our proof.

Proof Let us consider the function, defined for x ≥ 0,

h(i)
u (x) = 1

1 + xλ2i ψ
′
i (prox(xλ

2
i ρi )(u))

= ∂

∂u
prox(xλ2i ρ)(u).

The last equality comes from Lemma 3.33.
We have, since ψ ′

i is non-negative because ρi is convex,

∀u,

∣

∣

∣h(i)
u (x) − h(i)

u (y)
∣

∣

∣ ≤ |xλ2i ψ ′
i (prox(xλ

2
i ρi )(u)) − yλ2i ψ

′
i (prox(yλ

2
i ρi )(u))|∧1.

Therefore, since x, y ≥ 0, for all u,
∣

∣

∣h(i)
u (x) − h(i)

u (y)
∣

∣

∣ ≤ λ2i |x − y|ψ ′
i (prox(xλ

2
i ρi )(u)) + λ2i y|ψ ′

i (prox(xλ
2
i ρi )(u))

−ψ ′
i (prox(yλ

2
i ρi )(u))|.

In particular, if |x − y| ≤ η, and x ∨ y ≤ B, with x, y ≥ 0, for all u,

sup
y:|x−y|≤η;x∨y≤B

∣

∣

∣h(i)
u (x) − h(i)

u (y)
∣

∣

∣ ≤ λ2i ηψ ′
i (prox(xλ

2
i ρi )(u))

+ Bλ2i sup
y:|x−y|≤η,x∨y≤B

|ψ ′
i (prox(xλ

2
i ρi )(u))

− ψ ′
i (prox(yλ

2
i ρi )(u))|.
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Under assumptionO3,ψ ′
i is Li (n)-Lipschitz. Therefore, for xi = xλ2i , yi = yλ2i ≥

0,

∀u, |ψ ′
i (prox(xiρi )(u)) − ψ ′

i (prox(yiρi )(u))|
≤ Li (n)|prox(xiρi )(u) − prox(yiρi )(u)|.

We recall that, according to Lemma 3.32,

∂

∂x
prox(xρi )(u) = − ψi (prox(xρi )(u))

1 + xψ ′
i (prox(xρi )(u))

.

Hence,

sup
x

| ∂

∂x
prox(xρi )(u)| ≤ ‖ψi‖∞.

We finally conclude that

∀u, |ψ ′
i (prox(xiρ)(u)) − ψ ′

i (prox(yiρ)(u))| ≤ [Li (n)‖ψi‖∞|xi − yi |] ∧ 2‖ψ ′
i‖∞.

We therefore have, when x ∨ y ≤ B, and x, y ≥ 0,

∀u, sup
y:|x−y|≤η

∣

∣

∣h(i)
u (x) − h(i)

u (y)
∣

∣

∣ ≤ λ2i ηψ ′
i (prox(xλ

2
i ρi )(u)) + Bλ4i Li (n)‖ψi‖∞η.

Therefore, for x, y ≥ 0,

∀u, sup
(x,y):|x−y|≤η,x∨y≤B

∣

∣

∣h(i)
u (x) − h(i)

u (y)
∣

∣

∣ ≤ λ2i η‖ψ ′
i‖∞ + ηBLi (n)λ4i ‖ψi‖∞.

Since the right-hand side does not depend on u, we also have

sup
u

sup
(x,y):|x−y|≤η,x∨y≤B

∣

∣

∣h(i)
u (x) − h(i)

u (y)
∣

∣

∣ ≤ λ2i η‖ψ ′
i‖∞ + ηBLi (n)λ4i ‖ψi‖∞.

Naturally, gn(x) can be written as

gn(x) = 1

n

n
∑

i=1

h(i)
r̃i,(i)

(x).

Therefore, for any x, y ≥ 0, we have

|gn(x) − gn(y)| ≤ 1

n

n
∑

i=1

|h(i)
r̃i,(i)

(x) − h(i)
r̃i,(i)

(y)|.
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The bound we have obtained above on supu |h(i)
u (x) − h(i)

u (y)| when x and y are
sufficiently close to one another can now be used. This shows that for x given, if
x, y ≥ 0, |x − y| ≤ η and x ∨ y ≤ B, we have

sup
(x,y):|x−y|≤η,0≤x≤B,0≤y≤B

|gn(x)) − gn(y)|

≤ η
1

n

n
∑

i=1

(

λ2i ‖ψ ′
i‖∞ + BLi (n)λ4i ‖ψi‖∞

)

.

Under assumptions P2 and F3–F4, we can now take expectations and get the result in
L1, since all the terms on the right hand side are bounded in L1 under those assump-
tions.

We have established stochastic equicontinuity of gn(x) on [0, B]. ��
Lemma 3.25 Let us call Gn(x) = E (gn(x)). Let B > 0 be given. For any given
x0 ≤ B,

gn(x0) − Gn(x0) = oL2(1).

Under Assumptions O1–O7, P1–P4 and F1–F5, we also have

E∗
(

sup
0≤x≤B

|gn(x) − Gn(x)|
)

→ 0.

Proof Under assumptions F1 and F5, we can divide the index set {1, . . . , n} into K
subsets A1, . . . , AK , where K is finite (with n), inwhich (Xi , εi )i∈A j play a symmetric
role. Hence, var (gn(x0)) can be expressed as a sum of variances and covariances of
finitely many functions of finitely many random variables (λi , r̃i,(i)): for those random
variables, we just need to pick a representative in each subset {A j }Kj=1.

Wenote that sinceψ ′
i is Lipschitz and hence continuous, gn is an average of bounded

continuous functions of the random variables of interest to us.
Asymptotic pairwise independence of (λi , r̃i,(i))’s, and the fact that ψ ′

i can only be
one of finitely many functions imply that

var (gn(x0)) → 0

and therefore gives the first result.
Let us now pick ε > 0. By the stochastic equicontinuity of gn and our bound in

Eq. (49), we can find x1, . . . , xK , independent of n, such that for all x ∈ [0, B], there
exists l such that, when n is large enough,

E (|gn(x) − gn(xl)|) ≤ ε.

Note that

|gn(x) − Gn(x)| ≤ |gn(x) − gn(xl)| + |gn(xl) − Gn(xl)| + |Gn(xl) − Gn(x)|.
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We immediately get

E∗
(

sup
0≤x≤B

|gn(x) − Gn(x)|
)

≤ 2ε + E

(

sup
1≤l≤K

|gn(xl) − Gn(xl)|
)

.

Because K is finite, the fact that for all l, |gn(xl) − Gn(xl)| → 0 in L2 implies that
sup1≤l≤K |gn(xl) − Gn(xl)| → 0 in L2. In particular, if n is sufficiently large,

E

(

sup
1≤l≤K

|gn(xl) − Gn(xl)|
)

≤ ε.

The lemma is shown. ��
Lemma 3.26 AssumeO1–O7, P1–P4 andF1–F5. Call cτ = 1

n trace
(

(S + τ Idp)
−1
)

.
Call as before

gn(x) = 1

n

n
∑

i=1

1

1 + xλ2i ψ
′
i (prox(xλ

2
i ρi )(r̃i,(i)))

.

Then cτ is a near solution of

p

n
− τ x − 1 + gn(x) = 0,

i.e. p
n − τcτ − 1 + gn(cτ ) = oLk (1), when 3α − 1/2 < 0.
Asymptotically, near solutions of

δn(x) � p

n
− τ x − 1 + gn(x) = 0,

are close to solutions of

�n(x) = p

n
− τ x − 1 + E (gn(x)) = 0.

More precisely, call Tn,ε = {x : |�n(x)| ≤ ε}. Note that Tn,ε ⊆ (0, p/(nτ) + ε/τ).
For any given ε, as n → ∞, near solutions of δn(xn) = 0 belong to Tn,ε with high-
probability.

Our assumptions concerning the possible distributions of ε′
i s, specificallyF1, guar-

antee that as n → ∞, there is a unique solution to �n(x) = 0.
Hence cτ is asymptotically deterministic.

Proof Note that gn(x) ≤ 1.
Let δn be the function

δn(x) = p

n
− τ x − 1 + gn(x),
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and �n(x) = E (δn(x)). Call xn a solution δn(xn) = 0 and xn,0 a solution of
�n(xn,0) = 0. Since 0 ≤ gn ≤ 1, we see that xn ≤ p/(nτ), for otherwise, δn(x) < 0.
The same argument shows that if x > (p/n + ε)/τ , �n(x) < −ε and x /∈ Tn,ε .
Similarly, near solutions of δn(x) = 0 must be less or equal to (p/n + ε)/τ .

• Proof of the fact that cτ is such that δn(cτ ) = o(1)
An important remark is that cτ is a near solution of δn(x) = 0. This follows most

clearly fromargumentswehave developed for cτ,p sowe start by giving details through
arguments for this random variable. Recall that in the notation of Lemma 3.14, we
had

p − 1

n
− τcτ,p = 1

n
trace (Idn − M) .

Now, according to Eq. (40),

1

n
trace (Idn − M) = 1 − 1

n

n
∑

i=1

1

1 + ψ ′
i (ri,[p])

1
n V

′
i (Sp(i) + τ Id)−1Vi

.

According to Lemmas 3.14, 3.15 and 3.16, we have

sup
i

∣

∣

∣

∣

1

n
V ′
i (Sp(i) + τ Id)−1Vi − λ2i cτ,p

∣

∣

∣

∣

= OLk

(

polyLog(n)

n1/2−2α

)

.

Of course, when x ≥ 0 and y ≥ 0, |1/(1+ x) − 1/(1+ y)| ≤ |x − y| ∧ 1. Hence, we
see that

∣

∣

∣

∣

∣

1

n

n
∑

i=1

1

1 + ψ ′
i (ri,[p])

1
n V

′
i (Sp(i) + τ Id)−1Vi

− 1

n

n
∑

i=1

1

1 + ψ ′
i (ri,[p])λ2i cτ,p

∣

∣

∣

∣

∣

≤ sup
1≤i≤n

∣

∣

∣

∣

1

n
V ′
i (Sp(i) + τ Id)−1Vi − λ2i cτ,p

∣

∣

∣

∣

1

n

n
∑

i=1

‖ψ ′
i‖∞.

We conclude that

p/n − τcτ,p − 1 + 1

n

n
∑

i=1

1

1 + λ2i cτ,pψ
′
i (ri,[p])

= OLk (n
−1/2+2αpolyLog(n)).

Exactly the same computations can be made with cτ , so we have established that

p/n − τcτ − 1 + 1

n

n
∑

i=1

1

1 + cτ λ
2
i ψ

′
i (Ri )

= OLk (n
−1/2+2αpolyLog(n)). (50)

Now we have seen in Theorem 2.2 that

sup
i

|Ri − prox(ciρi )(r̃i,(i))| = OLk (n
−1/2+αpolyLog(n)).
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Through our assumptions on ψ ′
i , this of course implies that

sup
i

|ψ ′
i (Ri ) − ψ ′

i [prox(ciρi )(r̃i,(i))]| = OLk (n
−1/2+2αpolyLog(n)).

We have furthermore noted that supi |ci − λ2i cτ | = OLk (n
−1/2+2αpolyLog(n)) in

Corollary 3.17. Using Lemma 3.32, this implies that

∣

∣

∣prox(ciρi )(r̃i,(i)) − prox(λ2i cτ )(r̃i,(i))
∣

∣

∣ ≤ ‖ψi‖∞|ci − λ2i cτ |

and hence

∣

∣ψ ′
i [prox(ciρi )(r̃i,(i))] − ψ ′

i [prox(λ2i cτ ρi )(r̃i,(i))]
∣

∣ = OLk

(‖ψi‖∞n−1/2+3αpolyLog(n)
)

.

Gathering everything together, we get

∣

∣

∣ψ
′
i (Ri ) − ψ ′

i (prox(λ
2
i cτ ρi )(r̃i,(i)))

∣

∣

∣ = OLk ([‖ψi‖∞ + 1]n−1/2+3αpolyLog(n)).

So we have established that δn(cτ ) = OLk (n
−1/2+3αpolyLog(n)).

• Final details
Note that for any given x , δn(x) − �n(x) = oP (1) by using Lemma 3.25. In our

case, with the notation of this lemma, B = p/(nτ) + η/τ , for η > 0 given.
This implies that, for any given ε > 0

sup
x∈(0,p/(nτ)+η/τ ]

|δn(x) − �n(x)| < ε,

with high-probability when n is large. Therefore, for any ε > 0, if xn is a solution of
δn(xn) = 0,

|�n(xn)| ≤ ε with high-probability.

This exactlymeans that xn ∈ Tn,ε withhigh-probability. The sameargument applies for
near solutions of δn(x) = 0, which, for any ε > 0 must belong to Tn,ε as n → ∞with
high-probability.Of course, there is nothing randomabout Tn,ε which is a deterministic
set. Note that Tn,ε is compact because it is bounded and closed, using the fact that
Gn = E (gn) is continuous.

If Tn,0 were reduced to a single point, wewould have established the asymptotically
deterministic character of cτ .

Given our work concerning the limiting behavior of r̃i,(i) and our assumptions
about εi ’s, we see that Lemma 3.39 applies to limn→∞ �n(x) under assumption F1.
Therefore, as n → ∞, Tn,0 is reduced to a point and cτ is asymptotically non-random.
(Note that assumption F1 is stated in terms of the properties of densities of random
variables of the form εi +r Zi where Zi isN (0, 1), independent of εi and r is arbitrary;
Assumption F1 also gives us guarantees for εi + rλi Zi at λi given by a simple change
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of variable. The Wi ’s appearing in Lemma 3.39 are of the form εi + |λi |r Zi , so
assumption F1 is all we need for Lemma 3.39 to apply.) ��

Proof of Theorem 2.1

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1 As we had noted in [16],

∂

∂t
prox(cρ)(t) = prox(cρ)′(t) = 1

1 + cψ ′(prox(cρ)(t))
.

So �n can be interpreted as

�n(x) = p

n
− τ x − 1 + 1

n

n
∑

i=1

E
(

prox(xλ2i ρi )
′(r̃i,(i))

)

.

The fact that cτ is asymptotically arbitrarily close to the root of �n(x) = 0 gives us
the first equation in the system appearing in Theorem 2.1. The second equation of the
system comes from Eq. (48). Theorem 2.1 is shown, with cρ(κ) being the limit of cτ .
��

About ci ’s, ξn, Np, and the limiting distribution of ̂β( p)

Theorem 2.1 as well asmany of our intermediate results have interesting consequences
for various quantities we encountered. Let us now state them.

When we use the expression “under our assumptions”, we mean assumptions O1–
O7, P1–P4 and F1–F5.

3.1.2 On ci ’s

Recall that in Corollary 3.17 we had shown that under our assumptions O1–O7 and
P1–P4

sup
i

|ci − λ2i cτ | = OLk (polyLog(n)n2α−1/2).

Sincewe have now shown that cτ has a deterministic limit cρ(κ), we have the following
lemma.

Lemma 3.27 We have under our assumptions O1–O7 and P1–P4

sup
i

|Ri − prox(λ2i cτ ρi )(r̃i,(i))| = OLk (n
2α−1/2polyLog(n)).
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Hence, under (all of) our assumptions we have asymptotically, for any given i

|Ri − prox(λ2i cρ(κ)ρi )(r̃i,(i))| = oL1(1).

If we furthermore assume that λi ’s are uniformly bounded, we have

sup
1≤i≤n

|Ri − prox(λ2i cρ(κ)ρi )(r̃i,(i))| = oLk (1).

Proof Lemma 3.32 implies that

sup
x∈R

|prox(c1ρ)[x] − prox(c2ρ)[x]| ≤ ‖ψ‖∞|c1 − c2|.

Therefore, Corollary 3.17 implies that

sup
1≤i≤n

|prox(λ2i cτ ρi )(r̃i,(i)) − prox(ciρi )(r̃i,(i))|

≤ sup
i

‖ψi‖∞ sup
i

|ci − λ2i cτ | = OLk (polyLog(n)n2α−1/2).

So in light of Theorem 3.9 we conclude that

sup
i

|Ri − prox(λ2i cτ ρi )(r̃i,(i))| = OLk (n
2α−1/2polyLog(n)).

Since cτ is bounded by p/(nτ) and therefore so is cρ(κ), we see that convergence
in probability of cτ to cρ(κ) implies convergence in Lk for any k. Using Holder’s
inequality, we therefore see that

E
(

sup
x∈R

|prox(λ2i cτ ρi )[x] − prox(λ2i cρ(κ)ρi )[x]|
)

≤
√

E
(

(cτ − cρ(κ))2
)

E
(

λ4i

)

.

This gives us the second result of the lemma.
The last result is shown by simply remarking that

sup
i

sup
x∈R

|prox(λ2i cτ ρi )[x] − prox(λ2i cρ(κ)ρi )[x]| ≤ (sup
i

λ2i )|cτ − cρ(κ)|.

��

On ξn

We have the following lemma.

Lemma 3.28 Under our assumptions, ξn → ξ in probability, where ξ is deterministic.
Furthermore, ξn is bounded in L1 and hence in probability.
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We also have

ξn = p − 1

ncτ,p
− τ + oP (1) = p − 1

ncτ

− τ + oP (1),

and cτ,p as well as cτ are bounded away from 0 in probability.

We note that using the last result and arguments in the proof below, we have, with the
notations of Theorem 2.1

ξ = p − 1

ncρ(κ)
− τ.

Proof The proof follows easily from the result of Proposition 3.18 which gives us that

cτ,p(ξn + τ) − p − 1

n
= OLk (n

−1/2+2αpolyLog(n)) = oP (1).

Since we have shown that cτ,p converges to a deterministic constant (recall that
cτ − cτ,p → 0), we see that it is also the case for ξn . Note also that ξn ≤
1
n

∑n
i=1 X

2
i (p)‖ψ ′

i‖∞, so E (ξn) remains bounded under our assumptions.
To get the last result of the lemma, we just need to show that we can divide in the

above display by cτ,p and still have something that converges to 0. We now show that
cτ,p is bounded below. Note that

cτ,p − p − 1

n(ξn + τ)
= oP (1).

Since ξn is bounded in probability, we see that p−1
n(ξn+τ)

is bounded away from 0 in
probability, which guarantees that cτ,p is bounded away from 0 in probability.

The results involving cτ immediately follow by appealing to Proposition 3.21. ��

On Np

Recall that by definition, we had

Np = 1√
n

n
∑

i=1

Xi (p)ψi (ri,[p]).

We have the following result.

Lemma 3.29 Under our assumptions, Np is asymptotically N (0, v2n), with

v2n = 1

n

n
∑

i=1

E
(

λ2i ψ
2
i (prox(cτ λ

2
i ρi )(r̃i,(i)))

)

.
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Furthermore, there exists v such that v2n → v2, so that

Np �⇒ N (0, v2).

The same result applies to Nk, for 1 ≤ k ≤ p.

As the proof makes clear, we can replace in the asymptotic statements above v2n by

v̂2n = 1

n

n
∑

i=1

λ2i ψ
2
i

(

prox(cτ λ
2
i ρi )(r̃i,(i))

)

.

Proof Note that we can write

Np = 1√
n

n
∑

i=1

Xi (p)λiψi (ri,[p]).

Under our assumptionsXi (p)’s are independent and independent of {λiψi (ri,[p])}ni=1.
Themild generalization of the Lindeberg-Feller argument given in the proof of Lemma
3.23 now applies, using in the notation of that lemma an,p(k) = n−1/2λiψi (ri,[p]) and
recalling that |ψi (ri,[p])| ≤ ‖ψi‖∞. Since λi ’s have 4 uniformly bounded moments
under our assumptions, the fact that

Np behaves like AnN (0, 1)

follows immediately, where A2
n = ∑n

k=1 a
2
n,p(k) = 1

n

∑n
i=1 λ2i ψ

2
i (ri,[p]). We note

that E
(

A2
n

) ≤ 1
n

∑n
i=1‖ψi‖2∞ = O(1) under our assumptions.

Work similar to the one done in the proof of Proposition 3.22 shows that under our
assumptions

A2
n − 1

n

n
∑

i=1

λ2i ψ
2
i

[

prox(cτ λ
2
i ρi )(r̃i,(i))

]

= oL2(1).

Asymptotic pairwise independence of (λi , r̃i,(i)) and (λ j , r̃ j,( j))—see Lemma 3.23—
in connection with Assumption F5 guarantees that

var

(

1

n

n
∑

i=1

λ2i ψ
2
i [prox(cτ λ

2
i ρi )(r̃i,(i))]

)

→ 0.

We conclude that A2
n is asymptotically deterministic and so is An . By Slutsky’s lemma

we have

Np behaves like N (0, v2n)
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where

v2n = 1

n

n
∑

i=1

E
(

λ2i ψ
2
i

[

prox(cτ λ
2
i ρi )(r̃i,(i))

])

,

since E
(

A2
n

)− v2n → 0.
We note that under our assumptions cτ has limit cρ(κ) and ψi is a bounded con-

tinuous function (one of only finitely many possible functions). Also, λi ’s have 4
moments. Therefore, since r̃i,(i) behaves asymptotically like εi + λi rρ(κ)Zi , where
Zi ∼ N (0, 1) independent of εi and rρ(κ) is deterministic, we see that v2n has a limit
v2. Of course,

v2 = lim
n→∞

1

n

n
∑

i=1

E
(

λ2i ψ
2
i

[

prox(cρ(κ)λ2i ρi )(r̃i,(i))
])

.

In the notation of Theorem 2.1, we can rewrite v2 as

v2 = lim
n→∞

1

n

n
∑

i=1

E
(

λ2i ψ
2
i

[

prox(cρ(κ)λ2i ρi )(Wi )
])

• Minor technical point: It is true that λ2i ψ
2
i [prox(cρ(κ)λ2i ρi )(r̃i,(i))]) is not a

bounded continuous function of (λi , r̃i,(i)). However, [λ2i ∧ M]ψ2
i [prox(cρ(κ)λ2i ρi )

(r̃i,(i))]) is, for any M . Since λi has 4 moments, it is easy to see that

E
(∣

∣

∣[λ2i ∧ M]ψ2
i

[

prox(cρ(κ)λ2i ρi )(r̃i,(i))
]

− λ2i ψ
2
i

[

prox(cρ(κ)λ2i ρi )(r̃i,(i))
]∣

∣

∣

)

≤ E
(

λ4i

)

M2 ‖ψi‖2∞.

This standard approximation/uniform integrability argument shows that

E
(

λ2i ψ
2
i [prox(cρ(κ)λ2i ρi )(r̃i,(i))]

)

− E
(

λ2i ψ
2
i [prox(cρ(κ)λ2i ρi )(Wi )]

)

→ 0,

since M can be chosen arbitrarily large.

• Going from Np to Nk

Our arguments apply also if p is replaced by k, with 1 ≤ k ≤ p, since p does not
play a particular role here. We note that as defined above A2

n depends on p but its
approximand v2n does not. So once again p does not play any role in the definition of
the limiting variance and hence Nk has the same limit as Np, for all 1 ≤ k ≤ p. ��

Asymptotic normality of ̂βp

One of the aims of the previous results was to lead to a fluctuation result for ̂βp.
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Proposition 3.30 We have, with the notation of the previous lemmas,

√
n[(τ + ξn)̂βp − β0(p)ξn] �⇒ N (0, v2).

Furthermore, provided β0(p) = O(n−1/2), we also have

√
n[(τ + ξ)̂βp − β0(p)ξ ] �⇒ N (0, v2).

Similarly, we have for all 1 ≤ k ≤ p: provided β0(k) = O(n−1/2),

√
n[(τ + ξ)̂βk − β0(k)ξ ] �⇒ N (0, v2).

The proof of the proposition we give below shows that ξ in the previous display can
be replaced by any quantity ωn such that ξn − ωn = oP (1). This in particular the case
if we choose ωn = p/(ncτ ) − τ , according to Lemma 3.28.

The main advantage of this ωn is that it is computable from the data. And we can
therefore test the null hypothesis that β0(p) = 0, since we can approximate v2 by
1
n

∑n
i=1 λ2i ψ

2
i [prox(cτ λ

2
i ρi )(r̃i,(i))] according to the proof of Lemma 3.29.

Proof Recall that we have shown in Theorem 3.20 that

√
n(̂βp − bp) = oP (1).

Recall that we showed that ξn = OLk (1) under our assumptions. It is easy to verify
that the same is true for ξ , its limit. We also see that

√
n(τ + ξn)(̂βp − bp) = oP (1).

Recall that by definition,

√
n[(τ + ξn)bp − ξnβ0(p)] = Np.

So we conclude, using Slutsky’s lemma that

√
n[(τ + ξn)̂βp − ξnβ0(p)] �⇒ N (0, v2).

When β0(p) = O(n−1/2), we see that

√
n(ξ − ξn)(β0(p)) = oP (1).

Furthermore, in this setting
√
nbp = OP (1) and hence

√
n̂βp = OP (1). We conclude

that then

√
n̂βp(ξn − ξ) = oP (1).
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Therefore,

√
n[(τ + ξn)̂βp − ξnβ0(p)] = √

n[(τ + ξ)̂βp − ξβ0(p)] + oP (1)

and we get the second result of the proposition through Slutsky’s lemma.

• Extending the result from ̂βp to ̂βk

Wenote that ξn in the above argument actually depends on p also—we avoidedwriting
out the dependence earlier to avoid cumbersome notations. We now make it explicit
for clarity. Our arguments above guarantee that

√
n[(τ + ξn(k))̂βk − ξn(k)β0(p)] �⇒ N (0, v2),

where as explained in Lemma 3.29 v does not depend on k. As explained above, if
β0(k) = O(n−1/2),

√
n(ξ − ξn(k))(β0(k)) = oP (1) for all k’s. Very importantly, ξ

does not depend on p, since it is by definition ξ = (p − 1)/(ncρ(κ)) − τ . So we
conclude that for all k, when β0(k) = O(n−1/2),

√
n[(τ + ξn(k))̂βk − ξn(k)β0(p)] = √

n[(τ + ξ)̂βk − ξβ0(k)] + oP (1).

Since the left hand side weakly converges to N (0, v2), we conclude by Slutsky’s
lemma that for all k,

√
n[(τ + ξ)̂βk − ξβ0(k)] �⇒ N (0, v2),

provided β0(k) = O(n−1/2). ��

Appendix 6: Notes on the proximal mapping

In this section of the Appendix we remind the reader of elementary properties of the
proximal mapping. The proofs, when needed, can be found in e.g. [15].

Lemma 3.31 Almost by definition, we have

prox(cρ)(x) + cψ(prox(cρ)(x)) = x .

Let ρ be differentiable and such thatψ changes sign at 0, i.e. sign(ψ(x)) = sign(x)
for x �= 0. Then,

prox(cρ)(0) = 0.

Furthermore,

|ψ(prox(cρ)(x))| ≤ |ψ(x)|.
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Also,

|ψ(prox(cρ)(x))| ≤ |x |/c.

We will also need the following simple result.

Lemma 3.32 Suppose x is a real and ρ is twice differentiable and convex. Then, for
c > 0, we have

∂

∂c
prox(cρ)(x) = − ψ(prox(cρ)(x))

1 + cψ ′(prox(cρ)(x))
,

and

∂

∂c
ρ(prox(cρ)(x)) = − ψ2(prox(cρ)(x))

1 + cψ ′(prox(cρ)(x))
.

In particular, at x given c → ρ(prox(cρ)(x)) is decreasing in c.

We also make the following observation, which is useful to obtain a compact repre-
sentation for the system of Eqs. (4).

Lemma 3.33 We have

∂

∂x
prox(cρ)(x) = 1

1 + cψ ′(prox(cρ)(x))
.

Moreover, at c fixed, when ψ ′ is continuous, x → 1
1+cψ ′(prox(cρ)(x)) is a bounded,

continuous function of x.

A proof of the first fact follows immediately from the well-known representation (see
[29])

prox(cρ)(x) = (Id + cψ)−1(x).

The second result is also immediate, since ψ ′ ≥ 0.
We finally make notice of the following simple fact.

Lemma 3.34 The function c → [cψ(prox(cρ)(x))]2 (defined on R+) is increasing,
for any x.

Examples for the sake of concreteness, we now give a couple examples of proximal
mappings.

1. if ρ(x) = x2/2, prox(cρ)[x] = x
1+c .

2. if ρ(x) = |x |, prox(cρ)[x] = sgn(x)(|x | − c)+, i.e. the “soft-thresholding” func-
tion.
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Appendix 7: On convex Lipschitz functions of random variables

In this section, we provide a brief reminder concerning convex Lipschitz functions of
random variables. The proofs can be found in [15].

Lemma 3.35 Suppose that {Xi }ni=1 ∈ R
p satisfy the following concentration prop-

erty: ∃Cn, cn such that for any Gi , a convex, 1-Lipschitz (with respect to Euclidean
norm) function of Xi ,

P(|Gi (Xi ) − mi | ≥ t) ≤ Cn exp(−cnt2),

where mi is deterministic.
Let us now fix {Fi }ni=1, n functions which are convex and 1-Lipschitz in Xi . Then if

Fn = supi |Fi (Xi ) − mi |, we have, even when the Xi ’s are dependent:

1. if un = √

log(n)/cn, E (Fn) ≤ un + Cn/(2
√
cn

√
log n) =

√
log n√
cn

(1 + Cn/

(2 log n)). Similar bounds hold in Lk for any finite given k.
2. when Cn ≤ C, where C is independent of n, there exists K , independent of n such

that Fn/un ≤ K with overwhelming probability, i.e. probability asymptotically
smaller than any power of 1/n.

3. mi can be chosen to be the mean or the median of Fi (Xi ).

In particular,

Fn = O(polyLog(n)/
√
cn)

in probability and any Lk, k fixed and given.

We note that similar techniques can be used to extend the result to situations where
we have P(|Gi (Xi ) − mi | ≥ t) ≤ Cn exp(−cntβ), with β �= 2. Of course, the order
of magnitudes of the bounds then change: in particular, wherever

√
cn appears, it

would have to be replaced by c1/βn . But since under our assumptions 1/c is at most
polyLog(n), this would effectively have no impact on our results.

We now turn our attention to a slightly more complicated setting.
We recall that we denote by X(i) = {X1, . . . , Xi−1, Xi+1, . . . , Xn}. If I is a subset

of {1, . . . , n} of size n − 1, we call XI the collection of the corresponding Xi random
variables. We call XIc the remaining random variable.

Lemma 3.36 Suppose Xi ’s are independent and satisfy the concentration inequal-
ities as above. Consider the situation where FIk (·) is a convex Lipschitz function
of 1 variable; FIk (ξ) depends on X through X Ik only and we call LIk the Lips-
chitz constant of FIk (·) (at X Ik given). LIk is assumed to be random, since X Ik
is. Call mFIk

= mFi (XIck
)|XIk , m being the mean or the median. As before, call

Fn = sup j=1,...,n |FI j (XIcj
)−mFI j

| ThenFn = O(
√
log n/cn sup1≤ j≤n LI j ) in prob-

ability and in
√
L2k , i.e. there exists K > 0, independent of n, such that
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E
(

Fn
k
)

≤ K (
√

log n/cn)k

√

√

√

√E

(

sup
1≤ j≤n

L2k
I j

)

.

Hence, Fn is polyLog(n)/c1/2n sup1≤ j≤n LI j in
√
L2k .

We repeatedly use the following lemma in the proof.

Lemma 3.37 Suppose the assumptions of the previous Lemma are satisfied. Consider
QI j = 1

n X
′
I cj
MI j X I cj

, where MI j is a random positive-semidefinite matrix depending

only on X I j whose largest eigenvalue is λmax,I j . Assume that E (Xi ) = 0, cov (Xi ) =
Idp and ncn → ∞. Then, we have in Lk,

sup
1≤ j≤n

∣

∣

∣

∣

QI j − 1

n
trace

(

MIj

)

∣

∣

∣

∣

= OLk

(

polyLog(n)√
ncn

sup
1≤ j≤n

λmax,I j

)

.

The same bound holds when considering a single QI j without the polyLog(n) term.

On the spectral norm of covariance matrices

Lemma 3.38 Suppose Xi ’s are independent random vectors in R
p, satisfying O4,

and having mean 0 and covariance Idp. Suppose that λi ’s satisfy O6. Let ̂� =
1
n

∑n
i=1 Xi X ′

i . Then,

|||̂�|||2 = OP (polyLog(n)c−1
n ).

The results hold also in Lk.

Proof The proof is exactly similar to that given in [15], which gives, following a
simple adaption of the well-known ε-net argument explained e.g. in [40], “Appendix
1” that

|||1
n

n
∑

i=1

XiX ′
i |||2 = OLk (c

−1
n ).

It is clear that

|||̂�|||2 ≤ ( sup
1≤i≤n

λ2i )|||
1

n

n
∑

i=1

XiX ′
i |||2,

and the result follows immediately. ��
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Appendix 8: Miscellaneous results

An analytic result

We now study the roots of F(x) = 0, where

F(x) = p

n
− τ x − 1 + 1

n

n
∑

i=1

E
(

(prox(xλ2i ρi ))
′(Wi )

)

where Wi ’s are random variables and (prox(xρ))′(t) = ∂
∂t prox(xρ)(t)

= 1
1+xψ ′(prox(xρ)(t)) .

Wenow show that undermild conditions onWi ’s this equation has a unique solution.
We allow Wi to depend on the random variables λi ’s.

Lemma 3.39 Suppose that Wi ’s have smooth densities fi (t, λi ) with sign( f ′
i (x, λi ))= −sign(x). Suppose further that lim|t |→∞ |t | fi (t, λi ) = 0 and that sign(ψi (x)) =

sign(x). Then, if

Fi (x) = p

n
− τ x − 1 + E

(

(prox(xλ2i ρ))′(Wi )
)

,

the function Fi is decreasing, with F ′
i (x) ≤ −τ . Hence, the same applies to F.

In particular, the equation F(x) = 0 has a unique solution.

Proof We call

Gi (x) � E
(

(prox(xλ2i ρi ))
′(Wi )

)

,

and

Gi (x, λi ) � E
(

(prox(xλ2i ρi ))
′(Wi )|λi

)

.

Of course,

E
(

(prox(xλ2i ρ))′(Wi )|λi
)

=
∫

(prox(xλ2i ρ))′(t) fi (t, λi )dt.

Using contractivity of the proximal mapping (see [29]) we see that lim|t |→∞ prox
(xλ2i ρi )(t) fi (t, λi ) = 0 under our assumptions.

Integrating the previous equation by parts, we see that

Gi (x, λi ) = −
∫

(prox(xλ2i ρi ))(t) f
′
i (t, λi )dt.
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To compute G ′
i (x, λi ), we differentiate under the integral sign (under our assumptions

the conditions of Theorem 9.1 in [10] are satisfied) to get

G ′
i (x, λi ) =

∫

ψi (prox(xλ2i ρi )(t)) f
′
i (t, λi )

1 + xλ2i ψ
′
i (prox(xλ

2
i ρi )(t))

dt.

Under our assumptions, sign(ψi (prox(xλ2i ρi )(t))) = sign(t) and sign( f ′
i (t, λi )) =

−sign(t), so that

∀t �= 0, sign(ψi (prox(xλ
2
i ρi )(t)) f

′
i (t, λi )) = −1.

Since the denominator of the function we integrate is positive, we conclude that

G ′
i (x, λi ) ≤ 0 and G ′

i (x) ≤ 0.

Since F ′
i (x) = −τ + G ′

i (x), we see that F ′
i (x) ≤ −τ < 0. Therefore Fi is a

decreasing function on R+. Of course, prox(0ρ)(t) = t , so that Fi (0) = p/n and
limx→∞ Fi (x) = −∞, since, for instance,

0 ≤ prox(xρ)′(t) = 1

1 + xψ ′[prox(xρ)(t)] ≤ 1.

So we conclude that the equation Fi (x) = 0 has a unique root. (Since Fi is differen-
tiable, Fi is of course continuous.)

We note that

F(x) = 1

n

n
∑

i=1

Fi (x).

Therefore, F(0) = p/n and F ′(x) ≤ −τ . So F is decreasing, differentiable and hence
has a unique root. ��
Remark the conditions on the density of W are satisfied in many situations. For
instance if Wi = ε + rλi Z , where ε is symmetric about 0 and log-concave, Z is
N (0, 1), independent of λi and ε, and r > 0, it is clear that the density of W satisfies
the conditions of our lemma. Similar results hold under weaker assumptions on ε of
course. For more details, we refer the reader to e.g. [7] and [25,26,35].

In particular, we recall Theorem 1.6 in [7] which says that the convolution of two
symmetric unimodal distributions on R is unimodal. Hence, when ε has a symmetric
and unimodal distribution, so does Wi = ε + λi r Z , for any r . This is for instance the
case when ε has a Cauchy distribution.

A linear algebraic remark

We need the following lemma at some point in the proof.
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174 N. El Karoui

Lemma 3.40 Suppose the p × p matrix A is positive semi-definite and

A =
(

� v

v′ a

)

.

Here a ∈ R. Let τ be a strictly positive real. Call �τ = � + τ Idp−1. Then we have

trace
(

(A + τ Idp)
−1
)

= trace
(

�−1
τ

)

+ 1 + v′�−2
τ v

a + τ − v′�−1
τ v

.

In particular,

∣

∣

∣trace
(

(A + τ Idp)
−1
)

− trace
(

�−1
τ

)∣

∣

∣ ≤ 1 + a/τ

τ
.

The proof is simple and we refer the reader to [15] for details if needed.
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