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1 Introduction

1.1 Background

In this paper, we continue the program set up by the second author [70] and study the
transport property of Gaussian measures on Sobolev spaces under the dynamics of a
certain Hamiltonian partial differential equation (PDE).

In probability theory, there is an extensive literature on the transport property of
Gaussian measures under linear and nonlinear transformations. See, for example,
[3,6,19,24,25,45,62]. Classically, Cameron–Martin [19] studied the transport prop-
erty of Gaussian measures under a shift and established a dichotomy between absolute
continuity and singularity of the transportedmeasure. In the context of nonlinear trans-
formations, the work in [45,62] considers nonlinear transformations that are close to
the identity, while the work in [24,25] considers the transport property under the
flow generated by (non-smooth) vector fields. In particular, in [25], the existence of
quasi-invariant measures under the dynamics was established under an exponential
integrability assumption of the divergence of the corresponding vector field. We also
note a recent work [53] establishing absolute continuity of the Gaussian measure
associated to the complex Brownian bridge on the circle under certain gauge transfor-
mations.

In the field of Hamiltonian PDEs, Gaussian measures naturally appear in the
construction of invariant measures associated to conservation laws such as Gibbs
measures. These invariant measures associated to conservation laws are typically
constructed as weighted Gaussian measures. There has been a significant progress
over the recent years in this subject. See [8–12,14–16,18,27,28,30,31,48–50,52,55–
57,61,63,65,67–69,71,72,74,75]. On the one hand, in the presence of such an
invariant weightedGaussianmeasure, one can study the transport property of a specific
Gaussian measure, relying on the mutual absolute continuity of the invariant measure
and the Gaussian measure. On the other hand, the invariant measures constructed in
the forementioned work are mostly supported on rough functions with the exception
of completely integrable Hamiltonian PDEs such as the cubic nonlinear Schrödinger
equation (NLS), theKdVequation, and theBenjamin–Onoequation [29,71,72,74,75].
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Quasi-invariant Gaussian measures for the cubic fourth order… 1123

These completely integrable equations admit conservation laws at high regularities,
allowing us to construct weighted Gaussian measures supported on smooth functions.
In general, however, it is rare to have a conservation law at a high regularity and thus
one needs an alternative method to study the transport property of Gaussian measures
supported on smooth functions under the dynamics of non-integrable PDEs.

In the following, we consider the cubic fourth order NLS as a model equation and
study the transport property of Gaussian measures supported on smooth functions. In
particular, we prove that the transported Gaussian measures and the original Gaussian
measures are mutually absolutely continuous with respect to each other. Our approach
combines PDE techniques such as an energy estimate and normal form reductions and
probabilistic techniques in an intricate manner.

1.2 Cubic fourth order nonlinear Schrödinger equation

As a model dispersive equation, we consider the cubic fourth order nonlinear
Schrödinger equation on T:

{
i∂t u = ∂4x u ± |u|2u
u|t=0 = u0,

(x, t) ∈ T × R, (1.1)

where u is a complex-valued function on T × R with T = R/(2πZ). The Eq. (1.1) is
also called the biharmonic NLS and it was studied in [40,66] in the context of stability
of solitons in magnetic materials. The biharmonic NLS (1.1) is a special case of the
following more general class of fourth order NLS:

i∂t u = λ∂2x u + μ∂4x u ± |u|2u. (1.2)

The model (1.2) was introduced in [41,42] to include the effect of small fourth-order
dispersion terms in the propagation of intense laser beams in a bulk medium with Kerr
nonlinearity. See also [5,33,60] for the references therein.

The Eq. (1.1) is a Hamiltonian PDE with the following Hamiltonian:

H(u) = 1

2

ˆ
T

|∂2x u|2dx ± 1

4

ˆ
T

|u|4dx . (1.3)

Moreover, the mass M(u) defined by

M(u) =
ˆ
T

|u|2dx (1.4)

is conserved under the dynamics of (1.1). This mass conservation allows us to prove
the following global well-posedness of (1.1) in L2(T).

Proposition 1.1 The cubic fourth order NLS (1.1) is globally well-posed in Hs(T)

for s ≥ 0.

123



1124 T. Oh, N. Tzvetkov

See Appendix A for the proof. We point out that Proposition 1.1 is sharp in the sense
that (1.1) is ill-posed below L2(T). See the discussion in Sect. A.2. See also [38,59].

Our main goal is to study the transport property of Gaussian measures on Sobolev
spaces under the dynamics of (1.1).

1.3 Main result

Wefirst introduce a family of mean-zero Gaussian measures on Sobolev spaces. Given
s > 1

2 , let μs be the mean-zero Gaussian measure on L2(T) with the covariance
operator 2(Id − �)−s , written as

dμs = Z−1
s e− 1

2 ‖u‖2Hs du = Z−1
s

∏
n∈Z

e− 1
2 〈n〉2s |̂un |2dûn . (1.5)

While the expression dμs = Z−1
s exp(− 1

2‖u‖2Hs )dumay suggest thatμs is aGaussian
measure on Hs(T), we need to enlarge a space in order to make sense of μs .

The Gaussian measure μs defined above is in fact the induced probability measure
under the map1

ω ∈ � �→ uω(x) = u(x;ω) =
∑
n∈Z

gn(ω)

〈n〉s einx , (1.6)

where 〈 · 〉 = (1+| · |2) 1
2 and {gn}n∈Z is a sequence of independent standard complex-

valuedGaussian randomvariables, i.e.Var(gn) = 2.Note thatuω in (1.6) lies in Hσ (T)

for σ < s − 1
2 but not in Hs− 1

2 (T) almost surely. Moreover, for the same range of σ ,
μs is a Gaussian probability measure on Hσ (T) and the triplet (Hs, Hσ , μs) forms
an abstract Wiener space. See [36,46].

Recall the following definition of quasi-invariant measures. Given a measure space
(X, μ), we say that μ is quasi-invariant under a transformation T : X → X if the
transported measure T∗μ = μ ◦ T−1 and μ are equivalent, i.e. mutually absolutely
continuous with respect to each other. We now state our main result.

Theorem 1.2 Let s > 3
4 . Then, the Gaussian measureμs is quasi-invariant under the

flow of the cubic fourth order NLS (1.1).

When s = 2, one may obtain Theorem 1.2 by establishing invariance of the Gibbs
measure “dρ = Z−1 exp(−H(u))du” and appealing to the mutual absolute continuity
of the Gibbs measure ρ and the Gaussian measure μ2, at least in the defocusing case.
Such invariance, however, is a very rigid statement and is not applicable to other values
of s > 3

4 .
Instead,we follow the approach introduced by the second author in the context of the

(generalized) BBM equation [70]. In particular, we combine both PDE techniques and
probabilistic techniques in an intricate manner. Moreover, we perform both local and

1 In the following, we drop the harmless factor of 2π .
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Quasi-invariant Gaussian measures for the cubic fourth order… 1125

global analysis on the phase space. An example of local analysis is an energy estimate
(see Proposition 6.1 below), where we study a property of a particular trajectory,
while examples of global analysis include the transport property of Gaussianmeasures
under global transformations discussed in Sect. 4 and a change-of-variable formula
(Proposition 6.6).

As in [70], it is essential to exhibit a smoothing on the nonlinear part of the dynamics
of (1.1). Furthermore, we crucially exploit the invariance property of the Gaussian
measure μs under some nonlinear (gauge) transformation. See Sect. 4. In the context
of the generalized BBM considered in [70], there was an obvious smoothing coming
from the smoothing operator applied to the nonlinearity. There is, however, no apparent
smoothing for our Eq. (1.1). In fact, a major novelty compared to [70] is that in
this work we exploit the dispersive nature of the equation in a fundamental manner.
Our main tool in this context is normal form reductions analogous to the approach
employed in [4,37,47]. In [4], Babin–Ilyin–Titi introduced a normal form approach for
constructing solutions to dispersive PDEs. It turned out that this approach has various
applications such as establishing unconditional uniqueness [37,47] and exhibiting
nonlinear smoothing [32]. The normal form approach is also effective in establishing
a good energy estimate, though such an application of the normal form reduction in
energy estimates is more classical and precedes the work of [4]. See Sect. 6.1.

In [62], Ramer proved a criterion on quasi-invariance of a Gaussian measure on an
abstractWiener space under a nonlinear transformation. In the context of our problem,
this result basically states that μs is quasi-invariant if the nonlinear part is (1 + ε)-
smoother than the linear part. See [45] for a related previous result. In Sect. 5, we
perform a normal form reduction on the renormalized Eq. (3.6) and exhibit (1 + ε)-
smoothing on the nonlinear part if s > 1. This argument provides the first proof of
Theorem 1.2 when s > 1. It seems that the regularity restriction s > 1 is optimal for
the application of Ramer’s result. See Remark 5.4.

When s ≤ 1, we need to go beyond Ramer’s argument. In this case, we follow
the basic methodology in [70], combining an energy estimate and global analysis of
truncated measures. Due to a lack of apparent smoothing, our energy estimate is more
intricate. Indeed,we need to perform a normal form reduction and introduce amodified
energy for this purpose. This introduces a further modification to the argument from
[70]. See Sect. 6. Lastly, let us point out the following. While the regularity restriction
s > 3

4 in Theorem 1.2 comes from the energy estimate (Proposition 6.1), we expect
that, by introducing some new ideas related to more refined normal form reductions
developed in [37], the result may be extended to the (optimal) regularity range s > 1

2 .
We plan to address this question in a future work.

Remark 1.3 (i) In the higher regularity setting s > 1, we can reduce the proof of
Theorem 1.2 to Ramer’s result [62]. See Sect. 5. While there is an explicit represen-
tation for the Radon–Nikodym derivative in [62], we do not know how to gain useful
information from it at this point
(ii) In the low regularity case 3

4 < s ≤ 1, we employ the argument introduced in
[70]. See Sect. 6. This argument is more quantitative and in particular, it allows us to
obtain a polynomial upper bound on the growth of the Sobolev norm. However, such
a polynomial growth bound may also be obtained by purely deterministic methods.
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1126 T. Oh, N. Tzvetkov

See Remark 7.4 in [70]. A quasi-invariance result with better quantitative bounds may
lead to an improvement of the known deterministic bounds. At the present moment,
however, we do not know how to make such an idea work.
(iii) We point out that the existence of a quasi-invariant measure is a qualitative state-
ment, showing a delicate persistency property of the dynamics. In particular, this
persistence property due to the quasi-invariance is stronger than the (usual) persis-
tence of regularity. In a future work, we plan to construct Hamiltonian dynamics
possessing the persistence of regularity such that the Gaussian measure μs and the
transported measure under the dynamics are mutually singular.

Remark 1.4 Let us briefly discuss the situation for the related cubic (second order)
NLS:

i∂t u = ∂2x u ± |u|2u, (x, t) ∈ T × R. (1.7)

It is known to be completely integrable and possesses an infinite sequence of conser-
vation laws Hk , k ∈ N ∪ {0}, controlling the Hk-norm [1,2,35]. Associated to the
conservation laws Hk , k ≥ 1, there exists an infinite sequence of invariant weighted

Gaussian measures ρk supported on Hk− 1
2−ε(T), ε > 0 [8,74]. As mentioned above,

one may combine this invariance and the mutual absolute continuity of ρk and the
Gaussian measure μk to deduce quasi-invariance of μk under the dynamics of (1.7),
k ≥ 1. It may be of interest to investigate quasi-invariance ofμs for non-integer values
of s.

1.4 Organization of the paper

In Sect. 2, we introduce some notations. In Sect. 3, we apply several transformations
to (1.1) and derive a new renormalized equation. We also prove a key factorization
lemma (Lemma 3.1) which play a crucial role in the subsequent nonlinear analysis.
We then investigate invariance properties of Gaussian measures under several trans-
formations in Sect. 4. In Sect. 5, we prove Theorem 1.2 for s > 1 as a consequence of
Ramer’s result [62]. By establishing a crucial energy estimate and performing global
analysis of truncated measures, we finally present the proof of Theorem 1.2 for the
full range s > 3

4 in Sect. 6. In Appendix A, we discuss the well-posedness issue of
the Cauchy problem (1.1). Then, we use it to study the approximation property of
truncated dynamics in Appendix B, which is used in the proof of Theorem 1.2 in
Sect. 6.

2 Notations

Given N ∈ N, we use P≤N to denote the Dirichlet projection onto the frequencies
{|n| ≤ N } and set P>N := Id − P≤N . Define EN and E⊥

N by

EN = P≤N L
2(T) = span{einx : |n| ≤ N },

E⊥
N = P>N L

2(T) = span{einx : |n| > N }.
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Quasi-invariant Gaussian measures for the cubic fourth order… 1127

Given s > 1
2 , let μs be the Gaussian measure on L2(T) defined in (1.5). Then, we

can write μs as

μs = μs,N ⊗ μ⊥
s,N , (2.1)

where μs,N and μ⊥
s,N are the marginal distributions of μs restricted onto EN and E⊥

N ,

respectively. In other words, μs,N and μ⊥
s,N are induced probability measures under

the following maps:

uN : ω ∈ � �→ uN (x;ω) =
∑

|n|≤N

gn(ω)

〈n〉s einx , (2.2)

u⊥
N : ω ∈ � �→ u⊥

N (x;ω) =
∑

|n|>N

gn(ω)

〈n〉s einx , (2.3)

respectively. Formally, we can write μs,N and μ⊥
s,N as

dμs,N = Z−1
s,Ne

− 1
2 ‖P≤N uN ‖2Hs duN and dμ⊥

s,N = Ẑ−1
s,Ne

− 1
2 ‖P>N u⊥

N ‖2Hs du⊥
N . (2.4)

Given r > 0, we also define a probability measure μs,r by

dμs,r = Z−1
s,r 1{‖v‖L2≤r}dμs . (2.5)

The defocusing/focusing nature of the Eq. (1.1) does not play any role, and thus
we assume that it is defocusing, i.e. with the + sign in (1.1). Moreover, in view of the
time reversibility of the equation, we only consider positive times in the following.

3 Reformulation of the cubic fourth order NLS

In this section, we apply several transformations to (1.1) and reduce it to a convenient
formonwhichwe performour analysis. Given t ∈ R, we define a gauge transformation
Gt on L2(T) by setting

Gt [ f ] := e2i t
ffl | f |2 f, (3.1)

where
ffl
T
f (x)dx := 1

2π

´
T
f (x)dx . Given a function u ∈ C(R; L2(T)), we define G

by setting

G[u](t) := Gt [u(t)].

Note that G is invertible and its inverse is given by G−1[u](t) = G−t [u(t)].
Let u ∈ C(R; L2(T)) be a solution to (1.1). Define ũ by

ũ(t) := G[u](t) = e2i t
ffl |u(t)|2u(t). (3.2)
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1128 T. Oh, N. Tzvetkov

Then, it follows from the the mass conservation that ũ is a solution to the following
renormalized fourth order NLS:

i∂t ũ = ∂4x ũ +
(

|̃u|2 − 2
 
T

|̃u|2dx
)
ũ. (3.3)

Next, define the interaction representation v of ũ by

v(t) = S(−t )̃u(t), (3.4)

where S(t) = e−i t∂4x . For simplicity of notations, we use vn to denote the Fourier
coefficient of v in the following, when there is no confusion. By writing (3.4) on the
Fourier side, we have

vn(t) = eitn
4
ũn(t). (3.5)

Then, with (3.5), we can reduce (3.3) to the following equation for {vn}n∈Z:

∂tvn = −ieitn
4
(i∂t ũn − n4ũn)

= −i
∑
�(n)

e−iφ(n̄)tvn1vn2vn3 + i |vn|2vn

=: N (v)n + R(v)n, (3.6)

where the phase function φ(n̄) and the plane �(n) are given by

φ(n̄) = φ(n1, n2, n3, n) = n41 − n42 + n43 − n4 (3.7)

and

�(n) = {(n1, n2, n3) ∈ Z
3 : n = n1 − n2 + n3 and n1, n3 �= n}. (3.8)

The phase function φ(n̄) admits the following factorization.

Lemma 3.1 Let n = n1 − n2 + n3. Then, we have

φ(n̄) = (n1 − n2)(n1 − n)
(
n21 + n22 + n23 + n2 + 2(n1 + n3)

2). (3.9)

Proof With n = n1 − n2 + n3, we have

φ(n̄) = (n1 − n2)
{
(n31 + n32 − n33 − n3) + (n21n2 + n1n

2
2 − n23n − n3n

2)
}

=: (n1 − n2)(I + II). (3.10)

On the one hand, we have

I = (n1 − n)(n21 + n1n + n2 + n22 + n2n3 + n23). (3.11)
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On the other hand, with n2 = n1 + n3 − n, we have

II = 2n31 + 3(n3 − n)n21 + (n23 − 2n3n + n2)n1 − n23n − n3n
2

= (n1 − n)
(
2n21 + (3n3 − n)n1 + n23 + n3n

)
. (3.12)

From (3.10) with (3.10) and (3.12) with n2 = n1 + n3 − n, we obtain

φ(n̄) = (n1 − n2)(n1 − n)(3n21 + n22 + 2n23 + n2 + 3n1n3 + n2n3 + n3n)

= (n1 − n2)(n1 − n)
(
n21 + n22 + n23 + n2 + 2(n1 + n3)

2).
��

In the remaining part of the paper, we present the proof of Theorem 1.2 by per-
forming analysis on (3.6). In view of Lemma 3.1, we refer to the first term N (v) and
the second termR(v) on the right-hand side of (3.6) as the non-resonant and resonant
terms, respectively. While we do not have any smoothing on R(v) under a time inte-
gration, Lemma 3.1 shows that there is a smoothing on the non-resonant term N (v).
We will exploit this fact in Sect. 5. In Sect. 6, we will exploit a similar non-resonant
behavior in establishing a crucial energy estimate (Proposition 6.1).

4 Gaussian measures under transformations

In this section, we discuss invariance properties of Gaussian measures under various
transformations.

Lemma 4.1 Let t ∈ R. Then, the Gaussian measure μs defined in (1.5) is invariant
under the linear map S(t).

Proof Note that μs can be written as an infinite product of Gaussian measures:

μs =
⊗
n∈Z

ρn,

whereρn is the probability distribution for ûn . In particular,ρn is amean-zeroGaussian
probability measure on C with variance 2〈n〉−2s . Then, noting that the action of S(t)
on ûn is a rotation by e−i tn4 , the lemma follows from the rotation invariance of each
ρn . ��
Lemma 4.2 Given a complex-valued mean-zero Gaussian random variable g with
variance σ , i.e. g ∈ NC(0, σ ), let T g = eit |g|2g for some t ∈ R. Then, Tg ∈
NC(0, σ ).

Proof By viewing C � R
2, let x = (x, y) = (Re g, Im g) and u = (u, v) =

(Re Tg, Im Tg). Noting that |Tg| = |g|, we have T−1g = e−i t |g|2g. In terms of x
and u, we have

x = T−1u = (u cos t |u|2 + v sin t |u|2,−u sin t |u|2 + v cos t |u|2).
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1130 T. Oh, N. Tzvetkov

Then, with Ct = cos t |u|2 and St = sin t |u|2, a direct computation yields

det DuT
−1 =

∣∣∣∣ Ct − 2tu2St + 2tuvCt St − 2tuvSt + 2tv2Ct

−St − 2tu2Ct − 2tuvSt Ct − 2tuvCt − 2tv2St

∣∣∣∣
= {

C2
t − 2tuvC2

t − 2tv2StCt

− 2tu2StCt + 4t2u3vStCt + 4t2u2v2S2t

+ 2tuvC2
t − 4t2u2v2C2

t − 4t2uv3StCt
}

− { − S2t + 2tuvS2t − 2tv2StCt

− 2tu2StCt + 4t2u3vStCt − 4t2u2v2C2
t

− 2tuvS2t + 4t2u2v2S2t − 4t2uv3StCt
}

= 1.

Let μ and μ̃ be the probability distributions for g and Tg. Then, for a measurable
set A ⊂ C � R

2, we have

μ̃(A) = μ(T−1A) = 1

πσ

ˆ
T−1A

e− |x|2
σ dxdy = 1

πσ

ˆ
A
e− |T−1u|2

σ | det DuT
−1|dudv

= 1

πσ

ˆ
A
e− |u|2

σ dudv = μ(A).

This proves the lemma. ��
Next, we extend Lemma 4.2 to the higher dimensional setting.

Lemma 4.3 Let s ∈ R and N ∈ N. Then, for any t ∈ R, the Gaussian measure μs,N

defined in (2.4) is invariant under the map Gt defined in (3.1).

While we could adapt the proof of Lemma 4.2 to the higher dimensional setting,
this would involve computing determinants of larger and larger matrices. Hence, we
present an alternative proof in the following.

Proof Given N ∈ N, let EN = span{einx : |n| ≤ N }. Given u ∈ EN , let v(t) = Gt [u]
for t ∈ R. Then, noting that ∂t M(v(t)) = 0, where M(v(t)) = ∑

|n|≤N |vn(t)|2, we
see that vn satisfies the following system of ODEs:

dvn = 2iM(v)vndt, |n| ≤ N , (4.1)

With an = Re vn and bn = Im vn , we can rewrite (4.1) as

{
dan = −2M(v)bndt

dbn = 2M(v)andt,
|n| ≤ N . (4.2)

Let LN be the infinitesimal generator for (4.2). Then, μs,N is invariant under Gt
for any t ∈ R if and only if (LN )∗μs,N = 0. See [44]. Note that the last condition is
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equivalent to

ˆ
(a,b)∈R2N+2

LN F(a, b)dμs,N (a, b) = 0 (4.3)

for all test functions F ∈ C∞(R2N+2; R). From (4.2), we have

LN F(a, b) =
∑

|n|≤N

(
− 2M(a, b)bn

∂

∂an
+ 2M(a, b)an

∂

∂bn

)
F(a, b),

where M(a, b) = ∑
|n|≤N (a2n + b2n). Then, by integration by parts, we have

ˆ
(a,b)∈R2N+2

LN F(a, b)dμs,N (a, b)

= 2Z−1
N

∑
|n|≤N

ˆ
R2N+2

F(a, b)
∂

∂an

{
M(a, b)bne

− 1
2

∑
|k|≤N

a2k
〈k〉2s + b2k

〈k〉2s
}
dadb

− 2Z−1
N

∑
|n|≤N

ˆ
R2N+2

F(a, b)
∂

∂bn

{
M(a, b)ane

− 1
2

∑
|k|≤N

a2k
〈k〉2s + b2k

〈k〉2s
}
dadb

= 4Z−1
N

∑
|n|≤N

ˆ
R2N+2

F(a, b)

(
1 − M(a, b)

2〈n〉2s
)
anbne

− 1
2

∑
|k|≤N

a2k
〈k〉2s + b2k

〈k〉2s dadb

− 4Z−1
N

∑
|n|≤N

ˆ
R2N+2

F(a, b)

(
1 − M(a, b)

2〈n〉2s
)
anbne

− 1
2

∑
|k|≤N

a2k
〈k〉2s + b2k

〈k〉2s dadb

= 0

This proves (4.3). ��
In the following, we assume that s > 1

2 such that μs is a well-defined probability
measure on L2(T) and Gt defined in (3.1) makes sense on supp(μs) = L2(T).

Lemma 4.4 Let s > 1
2 . Then, for any t ∈ R, the Gaussian measure μs defined in

(1.5) is invariant under the map Gt .

Note that, when s = 1, Lemma 4.4 basically follows from Theorem 3.1 in [53]
which exploits the properties of the Brownian loop under conformal mappings. For
general s > 1

2 , such approach does not seem to be appropriate. In the following, we
present the proof, using Lemma 4.3.

Proof Fix t ∈ R. Given N ∈ N, let FN ∈ Cb(L2(T); R) be a test function depending
only on the frequencies {|n| ≤ N }. Then, we claim that

ˆ
L2

FN ◦ Gt (u)dμs(u) =
ˆ
L2

FN (u)dμs(u). (4.4)
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With a slight abuse of notations, we write

FN (u) = F
({un}|n|≤N

) = FN (u−N , u−N+1, . . . , uN−1, uN ). (4.5)

Let v = Gt [u], where u is as in (1.6). Then, we have

vn = e
2i t

∑
k∈Z

|gk |2
〈k〉2s gn

〈n〉s = e
2i t

∑
|k|>N

|gk |2
〈k〉2s · e2i t

∑
|k|≤N

|gk |2
〈k〉2s gn

〈n〉s .

By the independence of {gn}|n|≤N and {gn}|n|>N , we can write � = �0 × �1 such
that

gn(ω) =
{
gn(ω0), ω0 ∈ �0, if |n| ≤ N ,

gn(ω1), ω1 ∈ �1, if |n| > N .

Then, we have

ˆ
L2

FN ◦ Gt (u)dμs(u) =
ˆ

�1

IN (ω1)dP(ω1), (4.6)

where IN (ω1) is given by

IN (ω1) =
ˆ

�0

FN

({
e
2i t

∑
|k|>N

|gk (ω1)|2
〈k〉2s · e2i t

∑
|k|≤N

|gk (ω0)|2
〈k〉2s gn(ω0)

〈n〉s
}

|n|≤N

)
dP(ω0).

(4.7)

Since s > 1
2 , we have μ(ω1) := ∑

|k|>N
|gk (ω1)|2

〈k〉2s < ∞ almost surely. For fixed

ω1 ∈ �1, define {g̃ω1
n }|n|≤N by setting g̃ω1

n = e2i tμ(ω1)gn , |n| ≤ N . Then, by the
rotational invariance of the standard complex-valued Gaussian random variables and
independence of {gn}|n|≤N and {gn}|n|>N , we see that, for almost every ω1 ∈ �1,
{g̃ω1

n }|n|≤N is a sequence of independent standard complex-valued Gaussian random
variables (in ω0 ∈ �0). In particular, the law of {g̃ω1

n }|n|≤N is the same as that of
{gn}|n|≤N , almost surely in ω1 ∈ �1. Then, from the definitions of μs,N and Gt , we
can rewrite (4.7) as

IN (ω1) =
ˆ

�0

FN

({
e
2i t

∑
|k|≤N

|̃gω1k (ω0)|2
〈k〉2s g̃ω1

n (ω0)

〈n〉s
}

|n|≤N

)
dP(ω0)

=
ˆ

�0

FN

({
e
2i t

∑
|k|≤N

|gk (ω0)|2
〈k〉2s gn(ω0)

〈n〉s
}

|n|≤N

)
dP(ω0)

=
ˆ
EN

FN (Gt uN )dμs,N (uN )
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for almost every ω1 ∈ �1, where uN = P≤Nu is as in (2.2). Then, it follows from
Lemma 4.3 with (4.5) and (2.1) that

IN (ω1) =
ˆ
EN

FN (Gt uN )dμs,N (uN ) =
ˆ
EN

FN (uN )dμs,N (uN ) =
ˆ
L2

FN (u)dμs(u),

(4.8)

for almost every ω1 ∈ �1. Note that the right-hand side of (4.8) is independent of
ω1 ∈ �1. Therefore, from (4.6) and (4.8), we have

ˆ
L2

FN ◦ Gt (u)dμs(u) =
ˆ

�1

ˆ
L2

FN (u)dμs(u)dP(ω1) =
ˆ
L2

FN (u)dμs(u)

This proves (4.4).
Next, given F ∈ Cb(L2(T); R), let FN (u) = F(P≤Nu), N ∈ N. Then, FN (u)

converges to F(u) almost surely with respect to μs . Also, FN (Gt u) converges to
F(Gt u) almost surely with respect to μs . Then, from the dominated convergence
theorem and (4.4), we have

ˆ
L2

F ◦ Gt (u)dμs(u) = lim
N→∞

ˆ
L2

FN ◦ Gt (u)dμs(u) = lim
N→∞

ˆ
L2

FN (u)dμs(u)

=
ˆ
L2

F(u)dμs(u)

for all F ∈ Cb(L2(T); R). Hence, the lemma follows (see, for example, [26, Propo-
sition 1.5]). ��

Lastly, we conclude this section by stating the invariance property of quasi-
invariance under a composition of two maps.

Lemma 4.5 Let (X, μ) be a measure space. Suppose that T1 and T2 are maps on
X into itself such that μ is quasi-invariant under Tj for each j = 1, 2. Then, μ is
quasi-invariant under T = T1 ◦ T2.

Proof Suppose that A ⊂ X is a measurable set such that μ(A) = 0. By the quasi-
invariance of μ under T1, this is equivalent to μ(T−1

1 A) = 0. Then, by the quasi-
invariance of μ under T2, the pushforward measure T∗μ satisfies

T∗μ(A) = μ(T−1A) = μ
(
T−1
2 (T−1

1 A)
) = 0.

Conversely, if T∗μ(A) = 0, then we have μ(T−1
1 A) = 0, which in turn implies

μ(A) = 0. Hence, μ and T∗μ are mutually absolutely continuous. ��

5 Ramer’s argument: s > 1

In this section, we present the proof of Theorem 1.2 for s > 1. Our basic approach is
to apply Ramer’s result after exhibiting a sufficient smoothing on the nonlinear part.
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1134 T. Oh, N. Tzvetkov

As it is written, the Eq. (1.1) or (3.6) does not manifest a smoothing in an explicit
manner. In the following,we performanormal form reduction and establish a nonlinear
smoothing by exploiting the dispersion of the equation.

5.1 Normal form reduction

By writing (3.6) in the integral form, we have

vn(t) = vn(0) − i
ˆ t

0

∑
�(n)

e−iφ(n̄)t ′vn1vn2vn3(t
′)dt ′ + i

ˆ t

0
|vn|2vn(t ′)dt ′

=: vn(0) + N(v)(n, t) + R(v)(n, t). (5.1)

Lemma 3.1 states that we have a non-trivial (in fact, fast) oscillation caused by the
phase function φ(n̄) in the non-resonant part N(v). The main idea of a normal form
reduction is to transform the non-resonant part N(v) into smoother terms of higher
degrees, exploiting this rapid oscillation. More concretely, integrating by parts, we
formally have

N(v)(n, t) =
∑
�(n)

e−iφ(n̄)t ′

φ(n̄)
vn1 (t

′)vn2 (t ′)vn3 (t ′)
∣∣∣∣
t

t ′=0
−

∑
�(n)

ˆ t

0

e−iφ(n̄)t ′

φ(n̄)
∂t (vn1vn2vn3 )(t

′)dt ′

=
∑
�(n)

e−iφ(n̄)t

φ(n̄)
vn1 (t)vn2 (t)vn3 (t) −

∑
�(n)

1

φ(n̄)
vn1 (0)vn2 (0)vn3 (0)

− 2
ˆ t

0

∑
�(n)

e−iφ(n̄)t ′

φ(n̄)

{N (v)n1 + R(v)n1
}
vn2vn3 (t

′)dt ′

−
ˆ t

0

∑
�(n)

e−iφ(n̄)t ′

φ(n̄)
vn1

{N (v)n2 + R(v)n2
}
vn3 (t

′)dt ′

=: I + II + III + IV. (5.2)

In view of Lemma 3.1, the phase function φ(n̄) appearing in the denominators allows
us to exhibit a smoothing inN(v). See Lemma 5.1 below.

At this point, the computation in (5.2) is rather formal and thus requires justification
in several steps. In the first step, we switched the order of the time integration and the
summation:

−i
ˆ t

0

∑
�(n)

e−iφ(n̄)t ′vn1vn2vn3(t
′)dt ′ = −i

∑
�(n)

ˆ t

0
e−iφ(n̄)t ′vn1vn2vn3(t

′)dt ′. (5.3)

With w = F−1
(|̂vn|) = ∑

n∈Z |̂vn|einx , we have
∑
�(n)

|vn1vn2vn3 | ≤ ‖w‖3L3 � ‖w‖3
H

1
6

= ‖v‖3
H

1
6
. (5.4)
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Hence, the sum
∑

�(n) e
−iφ(n̄)t ′vn1vn2vn3(t

′) is absolutely convergent with a bound

uniform in time t ′, provided that v ∈ C(R; Hs(T)) with s ≥ 1
6 . This justifies (5.3).

If v ∈ C(R; Hs(T)) with s ≥ 1
6 , it follows from (3.6) and a computation similar

to (5.4) that vn ∈ C1(R). This allows us to apply integration by parts and the product
rule. Lastly, we need to justify the switching of the time integration and the summation
in the last equality of (5.2). By crudely estimating with (3.6), (5.4) and Lemma 3.1
(note that |φ(n̄)| ≥ 1 on �(n)), we have

∑
�(n)

∣∣∣∣ e−iφ(n̄)t ′

φ(n̄)

{N (v)n1 + R(v)n1
}
vn2vn3(t

′)
∣∣∣∣ � ‖N (v)n1 + R(v)n1‖∞

n1

∑
n2,n3

|vn2vn3 |
〈n2〉〈n3〉

� ‖v(t ′)‖3
H

1
6
‖v(t ′)‖2L2 . (5.5)

Hence, the series on the left-hand side of (5.5) is absolutely convergent with a bound
uniform in time t ′, provided that v ∈ C(R; Hs(T)) with s ≥ 1

6 . This justifies the last
equality in (5.2).

The following lemma shows a nonlinear smoothing for (3.6). Note that the amount
of smoothing for R(v) depends on the regularity s > 1

2 .

Lemma 5.1 Let s > 1
2 . Then, we have

‖N(v)(t)‖Hs+2 � ‖v(0)‖3Hs + ‖v(t)‖3Hs + t sup
t ′∈[0,t]

‖v(t ′)‖5Hs , (5.6)

‖R(v)(t)‖H3s � t sup
t ′∈[0,t]

‖v(t ′)‖3Hs . (5.7)

Proof By Lemma 3.1 and the algebra property of Hs(T), s > 1
2 , we have

‖I‖Hs+2 �
∥∥∥∥〈n〉s

∑
�(n)

|vn1(t)vn2(t)vn3(t)|
∥∥∥∥

2n

�
∥∥∥∥〈n〉s

∑
n=n1−n2+n3

3∏
j=1

|vn j (t)|
∥∥∥∥

2n

= ∥∥{F−1(|̂vn|)(t)}3
∥∥
Hs � ‖v(t)‖3Hs .

The second term II in (5.2) can be estimated in an analogous manner. Similarly, by
Lemma 3.1, (3.6), and the algebra property of Hs(T), s > 1

2 , we have

‖III‖Hs+2 � t sup
t ′∈[0,t]

∥∥∥∥〈n〉s
∑
�(n)

∣∣{N (v)n1 + R(v)n1
}
vn2vn3(t

′)
∣∣∥∥∥∥

2n

= t sup
t ′∈[0,t]

∥∥{F−1(|̂vn|)(t ′)}5
∥∥
Hs � t sup

t ′∈[0,t]
‖v(t ′)‖5Hs .
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The fourth term IV in (5.2) can be estimated in an analogous manner. From (5.1) and
2n ⊂ 6n , we have

‖R(v)(t)‖H3s ≤ t sup
t ′∈[0,t]

( ∑
n∈Z

〈n〉6s |vn(t ′)|6
) 1

2 = t sup
t ′∈[0,t]

‖〈n〉svn(t ′)‖36n
≤ t sup

t ′∈[0,t]
‖〈n〉svn(t ′)‖32n = t sup

t ′∈[0,t]
‖v(t ′)‖3Hs .

This proves the second estimate (5.7). ��

5.2 Consequence of Ramer’s result

In this subsection, we present the proof of Theorem 1.2 for s > 1. The main ingredient
is Ramer’s result [62] along with the nonlinear smoothing discussed in the previous
subsection. We first recall the precise statement of the main result in [62] for readers’
convenience.

Proposition 5.2 (Ramer [62]) Let (i, H, E) be an abstract Wiener space and μ be
the standard Gaussian measure on E. Suppose that T = Id + K : U → E be a
continuous (nonlinear) transformation from some open subset U ⊂ E into E such
that

(i) T is a homeomorphism of U onto an open subset of E.
(ii) We have K (U ) ⊂ H and K : U → H is continuous.
(iii) For each x ∈ U, the map DK (x) is a Hilbert–Schmidt operator on H. Moreover,

DK: x ∈ U → DK (x) ∈ HS(H) is continuous.
(iv) IdH + DK (x) ∈ GL(H) for each x ∈ U.

Then, μ and μ ◦ T are mutually absolutely continuous measures on U.

Here, HS(H) denotes the space of Hilbert–Schmidt operators on H and GL(H)

denotes invertible linear operators on H with a bounded inverse.
Given t, τ ∈ R, let �(t): L2 → L2 be the solution map for (1.1) and �(t, τ ):

L2 → L2 be the solution map for (3.6),2 sending initial data at time τ to solutions at
time t . When τ = 0, we may denote �(t, 0) by �(t) for simplicity.

By inverting the transformations (3.2) and (3.4) with (5.1), we have

�(t)(u0) = G−1 ◦ S(t) ◦ �(t)(u0) = G−1 ◦ S(t)(u0 + N(v)(t) + R(v)(t)), (5.8)

where v(t) = �(t)(u0) andN is given by (5.2). Now, write�(t) = Id+K (t), where

K (t)(u0) := N(v)(t) + R(v)(t)

2 Note that (3.6) is non-autonomous. We point out that this non-autonomy does not play an essential role
in the remaining part of the paper, since all the estimates hold uniformly in t ∈ R.

123



Quasi-invariant Gaussian measures for the cubic fourth order… 1137

and v is the solution to (3.6) with v|t=0 = u0. In view of Lemmas 4.1, 4.4, and 4.5, it
suffices to show that μs is quasi-invariant under �(t).

Fix s > 1 and σ1 > 1
2 sufficiently close to 1

2 . First, note that μs is a probability
measure on Hs−σ1(T). Given R > 0, let BR be the open ball of radius R centered
at the origin in Hs−σ1(T). The following proposition shows that the hypotheses of
Ramer’s result in [62] are indeed satisfied.

Proposition 5.3 Let s > 1. Given R > 0, there exists τ = τ(R) > 0 such that, for
each t ∈ (0, τ (R)], the following statements hold:

(i) �(t) is a homeomorphism of BR onto an open subset of Hs−σ1(T).
(ii) We have K (t)(BR) ⊂ Hs(T) and K (t) : BR → Hs(T) is continuous.
(iii) For each u0 ∈ BR, the map DK (t)|u0 is a Hilbert–Schmidt operator on Hs(T).

Moreover, DK (t) : u0 ∈ BR �→ DK (t)|u0 ∈ HS(Hs(T)) is continuous.
(iv) IdHs + DK (t)|u0 ∈ GL(Hs(T)) for each u0 ∈ BR.

We first present the proof of Theorem 1.2 for s > 1, assuming Proposition 5.3.
Thanks to Ramer’s result (Proposition 5.2 above), Proposition 5.3 implies that μs and
the pullback measure �(t)∗μs := μs ◦ �(t) are mutually absolutely continuous as
measures restricted to the ball BR for any t ∈ (0, τ (R)].
Proof of Theorem 1.2 for s > 1 Given R > 0, let BR ⊂ Hs−σ1 be the open ball
of radius R centered at the origin as above. Fix T > 0. It follows from the growth
estimate (A.12) of the Hs−σ1 -norm that

sup
t∈[0,T ]

‖v(t)‖Hs−σ1 ≤ C(T, R) =: R∗ (5.9)

for all solutions v to (3.6) with v|t=0 ∈ BR .
Suppose that A ∈ BHs−σ1 is a Borel set in Hs−σ1 such that μs(A) = 0. Given

R > 0, let R∗ be as in (5.9). Then, from (5.9), we have

�(t)(A ∩ BR) ⊂ BR∗ (5.10)

for all t ∈ [0, T ]. Noting that μs(A ∩ BR) = 0, it follows from Proposition 5.3 and
the result in [62] that

μs(�(t)(A ∩ BR)) = 0 (5.11)

for any 0 ≤ t ≤ τ , where τ = τ(R∗) is as in Proposition 5.3. In view of (5.10),
we can iteratively apply Proposition 5.3 and the main result in [62] on time interval
[ jτ, ( j + 1)τ ] and see that (5.11) holds for all t ∈ [0, T ]. In particular, we have

μs(�(T )(A ∩ BR)) = 0.

Now, letting R → ∞, it follows from the continuity from below of a measure that
μs(�(T )(A)) = 0. Note that the choice of T was arbitrary. In view of the time
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reversibility of the Eq. (3.6), we conclude that μs is quasi-invariant under the flow of
(3.6). Therefore, Theorem 1.2 follows from (5.8) with Lemmas 4.1, 4.4, and 4.5.

The remaining part of this section is devoted to the proof of Proposition 5.3. The
claim (i) follows from the well-posedness of (3.6) in Hs−σ1 . In particular, the conti-
nuity of�(t) on Hs−σ1 with the time reversibility implies (i). As before, from (A.12),
we have the uniform growth bound:

sup
t∈[0,τ ]

‖v(t)‖Hs−σ1 ≤ CRθ τ R =: Rτ (5.12)

for all solutions v to (3.6) with v|t=0 = u0 ∈ BR . Then, the claim (ii) follows from
Lemma 5.1 and the continuity of �(t) on Hs−σ1 .

We postpone the proof of the claim (iii) and first prove the claim (iv). For fixed
u0 ∈ BR ⊂ Hs−σ1 and t ∈ R, define a map F : Hs → Hs by

F(h) = �(t)(u0 + h) − u0 = h + K (t)(u0 + h), h ∈ Hs .

Then, by computing a derivative of F at the origin,wehave3 DF |0 = IdHs+DK (t)|u0 .
This is clearly a linear map. Moreover, the boundedness of DF |0 on Hs follows from
the claim (iii). Note that F is invertible with the inverse F−1 given by

F−1(h) = �(−t)(u0 + h) − u0 = h + K (−t)(u0 + h).

Hence, it follows from the chain rule that DF |0 = IdHs + DK (t)|u0 is invertible.
Moreover, we have

(DF |0)−1 = IdHs + DK (−t)|u0 . (5.13)

Hence, we proved the claim (iv) except for the boundedness of (DF |0)−1. We will
prove the boundedness of (DF |0)−1 at the end of this section.

Next, we prove the claim (iii). In the following, we will prove that DK (t)|u0 is
Hilbert-Schmidt on Hs for u0 ∈ BR ⊂ Hs−σ1 as long as t = t (R) � 1. Given
u0 ∈ BR ⊂ Hs−σ1 , let v be the global solution to (3.6) with v|t=0 = u0.

We first introduce some notations. Given amultilinear4 expressionM(v, v, . . . , v),
we use M(v∗, v∗, . . . , v∗) to denote the sum of the form M(w, v, . . .) + M
(v,w, v, . . .), where each multilinear term has exactly one factor ofw and the remain-
ing arguments are v. For example, we have

v∗
n1(t)v

∗
n2(t)v

∗
n3(t) = wn1(t)vn2(t)vn3(t) + vn1(t)wn2(t)vn3(t) + vn1(t)vn2(t)wn3(t).

We use a similar convention for multilinear expressions in v(0). In this case, we
use M(v∗(0), v∗(0), . . .) to denote the sum of the form M(w(0), v(0), . . .) +

3 By viewing (Hs , Hs−σ1 , μs ) as an abstract Wiener space, DF |0 is the so-called H -derivative of F at
0, where H = Hs is the Cameron–Martin space. See [62].
4 By multilinearity, we mean it is either linear or conjugate linear in each argument, i.e. linear over real
numbers.
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M(v(0), w(0), v(0), . . .), where each multilinear term has exactly one factor of w(0)
and the remaining arguments are v(0).

Let w(t) be a solution to the following linear equation:⎧⎨
⎩

∂twn = −i
∑
�(n)

e−iφ(n̄)tv∗
n1v

∗
n2v

∗
n3 + i |v∗

n |2v∗
n

w|t=0 = w(0).
(5.14)

Given (m1,m2,m3) ∈ Z
3 and n ∈ Z, we use the following shorthand notation:

(m̄, n) := (m1,m2,m3, n). (5.15)

Then, by a direct computation with (3.6), (5.1), and (5.2), we have

F[
DK (t)|u0(w(0))

]
(n) = i

ˆ t

0
|v∗

n(t
′)|2v∗

n(t
′)dt ′

+
∑
�(n)

e−iφ(n̄)t

φ(n̄)
v∗
n1(t)v

∗
n2(t)v

∗
n3(t) −

∑
�(n)

1

φ(n̄)
v∗
n1(0)v

∗
n2(0)v

∗
n3(0)

+ 2i
ˆ t

0

∑
(n1,n2,n3)∈�(n)

(m1,m2,m3)∈�(n1)

e−iφ(n̄)t ′−iφ(m̄,n1)t ′

φ(n̄)
v∗
m1

v∗
m2

v∗
m3

v∗
n2v

∗
n3(t

′)dt ′

− 2i
ˆ t

0

∑
�(n)

e−iφ(n̄)t ′

φ(n̄)
|v∗

n1 |2v∗
n1v

∗
n2v

∗
n3(t

′)dt ′

− i
ˆ t

0

∑
(n1,n2,n3)∈�(n)

(m1,m2,m3)∈�(n2)

e−iφ(n̄)t ′+iφ(m̄,n2)t ′

φ(n̄)
v∗
n1v

∗
m1

v∗
m2

v∗
m3

v∗
n3(t

′)dt ′

+ i
ˆ t

0

∑
�(n)

e−iφ(n̄)t ′

φ(n̄)
v∗
n1 |v∗

n2 |2v∗
n2v

∗
n3(t

′)dt ′,

where φ(n̄) and �(n) are as in (3.7) and (3.8), respectively.
Fix σ2 > 1

2 (to be chosen later) and write

DK (t)|u0(w(0)) = 〈∂x 〉−σ2 ◦ At (w(0))

where At (w(0)) is given by

F[
At (w(0))

]
(n) = i

ˆ t

0
〈n〉σ2 |v∗

n(t
′)|2v∗

n(t
′)dt ′

+
∑
�(n)

e−iφ(n̄)t

φ(n̄)
〈n〉σ2v∗

n1(t)v
∗
n2(t)v

∗
n3(t) −

∑
�(n)

1

φ(n̄)
〈n〉σ2v∗

n1(0)v
∗
n2(0)v

∗
n3(0)

+2i
ˆ t

0

∑
(n1,n2,n3)∈�(n)

(m1,m2,m3)∈�(n1)

e−iφ(n̄)t ′−iφ(m̄,n1)t ′

φ(n̄)
〈n〉σ2v∗

m1
v∗
m2

v∗
m3

v∗
n2v

∗
n3(t

′)dt ′
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1140 T. Oh, N. Tzvetkov

−2i
ˆ t

0

∑
�(n)

e−iφ(n̄)t ′

φ(n̄)
〈n〉σ2 |v∗

n1 |2v∗
n1v

∗
n2v

∗
n3(t

′)dt ′

−i
ˆ t

0

∑
(n1,n2,n3)∈�(n)

(m1,m2,m3)∈�(n2)

e−iφ(n̄)t ′+iφ(m̄,n2)t ′

φ(n̄)
〈n〉σ2v∗

n1v
∗
m1

v∗
m2

v∗
m3

v∗
n3(t

′)dt ′

+i
ˆ t

0

∑
�(n)

e−iφ(n̄)t ′

φ(n̄)
〈n〉σ2v∗

n1 |v∗
n2 |2v∗

n2v
∗
n3(t

′)dt ′, (5.16)

Note that 〈∂x 〉−σ2 is a Hilbert–Schmidt operator on Hs . Thus, if we prove that At is
bounded on Hs , then it follows that DK (t)|u0 is Hilbert-Schmidt on Hs . Hence, we
focus on proving the boundedness of At on Hs in the following.

Let t ∈ [0, 1]. Given s > 1, choose σ1, σ2 > 1
2 such that

s − σ1 > 1
2 ,

s+σ2
3 ≤ s − σ1, and s + σ2 − 2 ≤ s − σ1. (5.17)

Applying Young’s inequality and 2n ⊂ 6n to (5.16) with Lemma 3.1 and (5.17), we
have

‖At (w(0))‖Hs � sup
t ′∈[0,t]

{
‖v(t ′)‖2

H
s+σ2
3

‖w(t ′)‖
H

s+σ2
3

+ ‖v(t ′)‖2Hs−σ1 ‖w(t ′)‖Hs−σ1

+ ‖v(t ′)‖4Hs−σ1 ‖w(t ′)‖Hs−σ1

}
. (5.18)

Given τ > 0, it follows from (A.12) that

sup
t∈[0,τ ]

‖v(t)‖Hs−σ1 ≤ C(R). (5.19)

Then, from (5.14) and (5.19) with (5.17), we have

sup
t∈[0,τ ]

‖w(t)‖Hs−σ1 ≤ ‖w(0)‖Hs + Cτ sup
t∈[0,τ ]

‖v(t)‖2Hs−σ1 ‖w(t)‖Hs−σ1

≤ ‖w(0)‖Hs + C(R)τ sup
t∈[0,τ ]

‖w(t)‖Hs−σ1 .

In particular, by choosing τ = τ(R) > 0 sufficiently small, we obtain

sup
t∈[0,τ ]

‖w(t ′)‖Hs−σ1 � ‖w(0)‖Hs . (5.20)

Finally, it follows from (5.18), (5.19), and (5.20) with (5.17) that

‖At (w(0))‖Hs ≤ C(R)‖w(0)‖Hs .
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Quasi-invariant Gaussian measures for the cubic fourth order… 1141

Therefore, At is bounded on Hs and hence DK (t)|u0 is a Hilbert–Schmidt operator on
Hs for all t ∈ [0, τ ]. The second claim in (iii) basically follows from the continuous
dependence of (3.6) and (5.14) (in v) and thus we omit details.

It remains to prove the boundedness of (DF |0)−1 = (IdHs + DK (t)|u0)−1 By
the time reversibility of the equation and (5.13), the argument above shows that
(DF |0)−1− IdHs is Hilbert–Schmidt on Hs by choosing τ = τ(R) sufficiently small.
In particular, (DF |0)−1 is bounded on Hs . This completes the proof of Proposition
5.3.

Remark 5.4 The condition s > 1 is necessary for this argument. In estimating the
resonant term, i.e. the first term in (5.16) by the Hs−σ1 -norms of its arguments, we
need to use the second condition s+σ2

3 ≤ s − σ1 in (5.17). Thus, we must have

s ≥ 3σ1 + σ2

2
> 1,

since σ1, σ2 > 1
2 .

6 Proof of Theorem 1.2: s > 3
4

In this section, we present the proof of Theorem 1.2 for s > 3
4 . The basic structure

of our argument follows the argument introduced in [70] by the second author in the
context of the (generalized) BBM equation, with one importance difference.While the
energy estimate in [70] was carried out on the Hs-norm of solutions (to the truncated
equations), we carry out our energy estimate on a modified energy. This introduction
of a modified energy is necessary to exhibit a hidden nonlinear smoothing, exploiting
the dispersion of the equation. See Proposition 6.1 below. This, in turn, forces us to
work with the weighted Gaussian measure ρs,N ,r,t and ρs,r,t adapted to this modified
energy, instead of the Gaussian measure μs,r with an L2-cutoff. See (6.21) and (6.22)
below for the definitions of ρs,N ,r,t and ρs,r,t . Lastly, we point out that this usage of the
modified energy is close to the spirit of higher order modified energies in the I -method
introduced by Colliander–Keel–Staffilani–Takaoka–Tao [22,23].

As in Sect. 5, we carry out our analysis on (3.6). Let us first introduce the following
truncated approximation to (3.6):

∂tvn = 1|n|≤N

{
− i

∑
�N (n)

e−iφ(n̄)tvn1vn2vn3 + i |vn|2vn
}
, (6.1)

where �N (n) is defined by

�N (n) = �(n) ∩ {(n1, n2, n3) ∈ Z
3 : |n j | ≤ N }

= {(n1, n2, n3) ∈ Z
3 : n = n1 − n2 + n3, n1, n3, �= n, and |n j | ≤ N }.

(6.2)

123



1142 T. Oh, N. Tzvetkov

Amajor part of this section is devoted to the study of the dynamical properties of (6.1).
Note that (6.1) is an infinite dimensional system ODEs for the Fourier coefficients
{vn}n∈Z, where the flow is constant on the high frequencies {|n| > N }.

We also consider the following finite dimensional system of ODEs:

∂tvn = −i
∑

�N (n)

e−iφ(n̄)tvn1vn2vn3 + i |vn|2vn, |n| ≤ N . (6.3)

Given t, τ ∈ R, denote by�N (t, τ ) and �̃N (t, τ ) the solution maps of (6.1) and (6.3),
sending initial data at time τ to solutions at time t , respectively. For simplicity, we set

�N (t) = �N (t, 0) and �̃N (t) = �̃N (t, 0) (6.4)

when τ = 0. Then, we have the following relations:

�N (t, τ ) = �̃N (t, τ )P≤N + P>N and P≤N�N (t, τ ) = �̃N (t, τ )P≤N . (6.5)

6.1 Energy estimate

In this subsection, we establish a key energy estimate. Before stating the main propo-
sition, let us first perform a preliminary computation. Given a smooth solution u to
(1.1), let v be as in (3.4). Then, from (3.6), we have

d

dt
‖u(t)‖2Hs = d

dt
‖v(t)‖2Hs = −2Re i

∑
n∈Z

∑
�(n)

e−iφ(n̄)t 〈n〉2svn1vn2vn3vn . (6.6)

Then, differentiating by parts, i.e. integrating by parts without an integral sign,5 we
obtain

d

dt
‖v(t)‖2Hs = 2Re

d

dt

[ ∑
n∈Z

∑
�(n)

e−iφ(n̄)t

φ(n̄)
〈n〉2svn1vn2vn3vn

]

− 2Re
∑
n∈Z

∑
�(n)

e−iφ(n̄)t

φ(n̄)
〈n〉2s∂t (vn1vn2vn3vn). (6.7)

This motivates us to define the following quantity. Given s > 1
2 , define the modified

energy Et (v) by

Et (v) = ‖v‖2Hs − 2Re
∑
n∈Z

∑
�(n)

e−iφ(n̄)t

φ(n̄)
〈n〉2svn1vn2vn3vn

=: ‖v‖2Hs + Rt (v). (6.8)

Then, we have the following energy estimate.

5 This is indeed a normal form reduction applied to the evolution Eq. (6.6) for ‖v(t)‖2Hs . Compare this
with the normal form reduction argument in Sect. 5.
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Quasi-invariant Gaussian measures for the cubic fourth order… 1143

Proposition 6.1 Let s > 3
4 . Then, for any sufficiently small ε > 0, there exist small

θ > 0 and C > 0 such that∣∣∣∣ ddt Et (P≤Nv)

∣∣∣∣ ≤ C‖v‖4+θ

L2 ‖v‖2−θ

Hs− 1
2−ε

, (6.9)

for all N ∈ N and any solution v to (6.1), uniformly in t ∈ R.

Recall that the probability measures μs and μs,r defined in (1.5) and (2.5) are

supported on Hs− 1
2−ε(T) for any ε > 0, while we have ‖v‖L2 ≤ r in the support of

μs,r .
Before proceeding to the proof of this proposition, recall the following arithmetic

fact [39]. Given n ∈ N, the number d(n) of the divisors of n satisfies

d(n) ≤ Cδn
δ (6.10)

for any δ > 0.

Proof Let v be a solution to (6.1). Then, from (6.7) and (6.8) with (6.1), we have

d

dt
Et (P≤Nv) = N1(v) + R1(v) + N2(v) + R2(v) + N3(v) + R3(v), (6.11)

where N j (v) and R j (v), j = 1, 2, 3, are defined by

N1(v)(t) := 4Re i
∑

|n|≤N

∑
(n1,n2,n3)∈�N (n)

(m1,m2,m3)∈�N (n1)

e−iφ(n̄)t−iφ(m̄,n1)t

φ(n̄)
〈n〉2svm1vm2vm3vn2vn3vn

R1(v)(t) := −4Re i
∑

|n|≤N

∑
�N (n)

e−iφ(n̄)t

φ(n̄)
〈n〉2s |vn1 |2vn1vn2vn3vn

N2(v)(t) := −2Re i
∑

|n|≤N

∑
(n1,n2,n3)∈�N (n)

(m1,m2,m3)∈�N (n2)

e−iφ(n̄)t+iφ(m̄,n2)t

φ(n̄)
〈n〉2svn1vm1vm2vm3vn3vn

R2(v)(t) := 2Re i
∑

|n|≤N

∑
�N (n)

e−iφ(n̄)t

φ(n̄)
〈n〉2svn1 |vn2 |2vn2vn3vn

N3(v)(t) := −2Re i
∑

|n|≤N

∑
(n1,n2,n3)∈�N (n)

(m1,m2,m3)∈�N (n)

e−iφ(n̄)t+iφ(m̄,n)t

φ(n̄)
〈n〉2svn1vn2vn3vm1vm2vm3

R3(v)(t) := 2Re i
∑

|n|≤N

∑
�N (n)

e−iφ(n̄)t

φ(n̄)
〈n〉2svn1vn2vn3 |vn |2vn . (6.12)

Here, (m̄, n) = (m1,m2,m3, n) and (m̄, n j ) = (m1,m2,m3, n j ) are as in (5.15). For
simplicity of the presentation, we drop the restriction on the summations in (6.12)
with the understanding that vn = 0 for |n| > N . Moreover, we can assume that all
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1144 T. Oh, N. Tzvetkov

the Fourier coefficients are non-negative. In the following, we establish uniform (in
t) estimates for these multilinear terms N j and R j , j = 1, 2, 3. For simplicity, we
suppress the t-dependence with the understanding that all the estimates hold with
implicit constants independent of t ∈ R.

Given n, μ ∈ Z, define �(n, μ) by

�(n, μ) := �(n) ∩ {(n1, n2, n3) ∈ Z
3 : μ = (n − n1)(n − n3)}

= {(n1, n2, n3) ∈ Z
3 : n = n1 − n2 + n3,

n1, n3 �= n, μ = (n − n1)(n − n3)}.

Then, given δ > 0, it follows from the divisor counting estimate (6.10) that

#�(n, μ) =
∑

�(n,μ)

1 ≤ Cδ|μ|δ. (6.13)

In the following,weuse (6.13) to estimateN j (v) andR j (v), j = 1, 2, 3. For simplicity
of the presentation, we drop multiplicative constants depending on δ > 0.

We now estimateN1(v). We first consider the case s < 1. By Sobolev’s inequality
and interpolation, we have∥∥∥∥ ∑

�(n1)

vm1vm2vm3

∥∥∥∥
∞
n1

≤ ‖F−1(|̂vn|)‖3L3 � ‖v‖3
H

1
6

� ‖v‖1+θ

L2 ‖v‖2−θ

H
1
4+γ

(6.14)

for small γ > 0 and some θ = θ(γ ) > 0. Then, by Lemma 3.1 and Cauchy–Schwarz
inequality (in n and then in n2, n3) with (6.14), we have

|N1(v)| �
∑
n∈Z

∑
μ�=0

∑
�(n,μ)

1

|μ|n2−2s
max

vn2vn3vn

∥∥∥∥ ∑
�(n1)

vm1vm2vm3

∥∥∥∥
∞
n1

≤ ‖v‖2+θ

L2 ‖v‖2−θ

H
1
4+γ

×
{ ∑

n∈Z

( ∑
μ�=0

1

|μ|1+2δ

∑
�(n,μ)

1

)( ∑
�(n)

v2n2v
2
n3

|(n2 − n3)(n − n3)|1−2δn4−4s
max

)} 1
2

(6.15)

for small γ, δ > 0 such that 5−4s−2δ > 1, where nmax := max(|n|, |n1|, |n2|, |n3|).
From the divisor counting argument (6.13), we have

|N1(v)| � ‖v‖2+θ

L2 ‖v‖2−θ

H
1
4 +γ

{ ∑
n∈Z

( ∑
μ �=0

1

μ1+2δ |μ|δ
)( ∑

�(n)

v2n2v
2
n3

|(n − n1)(n − n3)|1−2δn4−4s
max

)} 1
2

� ‖v‖2+θ

L2 ‖v‖2−θ

H
1
4 +γ

{ ∑
n2,n3∈Z

v2n2v
2
n3

∑
n �=n3

1

|n − n3|1−2δ〈n〉4−4s

} 1
2

� ‖v‖4+θ

L2 ‖v‖2−θ

Hs− 1
2 −ε

(6.16)

for sufficiently small δ, ε, γ > 0, provided that s > 3
4 .
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Next, we consider the case s ≥ 1. Note that for (n1, n2, n3) ∈ �(n), we have
max j=1,2,3 |n j | � |n|. First, suppose that |n1| � |n|. In this case, we use the fact
that max j=1,2,3 |m j | � |n1| for (m1,m2,m3) ∈ �(n1). Without loss of generality,
assume that |m1| � |n1|(� |n|). Proceeding as in (6.15) and (6.16) with (6.14),
Cauchy-Schwarz inequality, (6.13), and interpolation, we have

|N1(v)| �
∑
n∈Z

∑
μ�=0

∑
�(n,μ)

1

|μ|〈n〉2δ vn2vn3〈n〉s−1+δvn

∥∥∥∥ ∑
�(n1)

〈m1〉s−1+δvm1vm2vm3

∥∥∥∥
∞
n1

� ‖v‖Hs−1+δ‖v‖
Hs− 5

6+δ
‖v‖2

H
1
6

×
{ ∑

n∈Z

( ∑
μ�=0

1

|μ|1+2δ

∑
�(n,μ)

1

)( ∑
�(n)

v2n2v
2
n3

|(n − n1)(n − n3)|1−2δ〈n〉4δ
)} 1

2

� ‖v‖Hs−1+δ‖v‖
Hs− 5

6+δ
‖v‖2

H
1
6

×
{ ∑

n∈Z

( ∑
μ�=0

1

|μ|1+2δ |μ|δ
)( ∑

�(n)

v2n2v
2
n3

|(n − n1)(n − n3)|1−2δ〈n〉4δ
)} 1

2

� ‖v‖Hs−1+δ‖v‖
Hs− 5

6+δ
‖v‖2

H
1
6

{ ∑
n2,n3∈Z

v2n2v
2
n3

∑
n �=n3

1

|n − n3|1−2δ〈n〉4δ
} 1

2

� ‖v‖2L2‖v‖Hs−1+δ‖v‖
Hs− 5

6+δ
‖v‖2

H
1
6

� ‖v‖4+θ

L2 ‖v‖2−θ

Hs− 1
2−ε

(6.17)

for sufficiently small δ, ε > 0 and some θ = θ(s, δ, ε) > 0.
Suppose that |n1| � |n|. In this case, we have max(|n2|, |n3|) � |n|. Without loss

of generality, assume that |n2| � |n|. Proceeding as in (6.15) and (6.16) with (6.13)
and (6.14), we have

|N1(v)| �
∑
n∈Z

∑
μ �=0

∑
�(n,μ)

1

|μ|〈n〉2δ 〈n2〉s−1+δvn2vn3 〈n〉s−1+δvn

∥∥∥∥ ∑
�(n1)

vm1vm2vm3

∥∥∥∥
∞
n1

� ‖v‖Hs−1+δ ‖v‖3
H

1
6

{ ∑
n∈Z

( ∑
μ �=0

1

|μ|1+2δ |μ|δ
)( ∑

�(n)

〈n2〉2(s−1+δ)v2n2v
2
n3

|(n − n1)(n − n3)|1−2δ〈n〉4δ
)} 1

2

� ‖v‖Hs−1+δ ‖v‖3
H

1
6

{ ∑
n2,n3∈Z

〈n2〉2(s−1+δ)v2n2v
2
n3

∑
n �=n3

1

|n − n3|1−2δ〈n〉4δ
} 1

2

� ‖v‖L2‖v‖2Hs−1+δ ‖v‖3
H

1
6

� ‖v‖4+θ

L2 ‖v‖2−θ

Hs− 1
2 −ε

(6.18)

for sufficiently small δ, ε > 0 and some θ = θ(s, δ, ε) > 0.
Noting that μ = (n − n1)(n − n3) = (n2 − n1)(n2 − n3) under n = n1 − n2 + n3,

we can estimate N2(v) and N3(v) in a similar manner.
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Next, we estimateR1(v). The remaining termsR2(v) andR3(v) can be estimated
in a similar manner. Without loss of generality, suppose that |n3| � |n|. From Lemma
3.1 and the divisor counting argument (6.13), we have

|R1(v)| � ‖v‖Hs−1+δ

{ ∑
n∈Z

( ∑
μ�=0

1

μ1+2δ |μ|δ
)( ∑

�(n)

v6n1v
2
n2 〈n3〉2(s−1+δ)v2n3

|(n − n1)(n − n3)|1−2δ〈n〉4δ
)} 1

2

� ‖v‖4L2‖v‖2Hs−1+δ � ‖v‖4+θ
L2 ‖v‖2−θ

Hs− 1
2−ε

(6.19)

for sufficiently small δ, ε > 0 and some θ = θ(s, δ, ε) > 0.
Therefore, (6.9) follows from (6.16), (6.17), (6.18), and (6.19). This completes the

proof of Proposition 6.1. ��

6.2 Weighted Gaussian measures

Our main goal in this subsection is to define weighted Gaussian measures adapted
to the modified energy Et (P≤Nv) and Et (v) defined in the previous section. Given
N ∈ N and r > 0, define FN ,r,t (v) and Fr,t (v) by

FN ,r,t (v) = 1{‖v‖L2≤r}e− 1
2 Rt (P≤N v) and Fr,t (v) = 1{‖v‖L2≤r}e− 1

2 Rt (v), (6.20)

where Rt is defined in (6.8). Then, we would like to construct probability measures
ρs,N ,r,t and ρs,r,t of the form:6

dρs,N ,r,t = “Z−1
s,N ,r1{‖v‖L2≤r}e− 1

2 Et (P≤N v)dv”

= Z−1
s,N ,r FN ,r,t dμs (6.21)

and

dρs,r,t = “Z−1
s,r 1{‖v‖L2≤r}e− 1

2 Et (v)dv”

= Z−1
s,r Fr,t dμs . (6.22)

The following proposition shows that they are indeed well defined probability mea-

sures on Hs− 1
2−ε(T), ε > 0.

Proposition 6.2 Let s > 1
2 and r > 0. Then, FN ,r,t (v) ∈ L p(μs) for any p ≥ 1 with

a uniform bound in N ∈ N and t ∈ R, depending only on p ≥ 1 and r > 0. Moreover,
for any finite p ≥ 1, FN ,r,t (v) converges to Fr,t (v) in L p(μs), uniformly in t ∈ R, as
N → ∞.

6 The normalizing constants Zs,N ,r and Zs,r a priori depend on t ∈ R. It is, however, easy to see that
they are indeed independent of t ∈ R by (i) noticing that Rt (v) defined in (6.8) is autonomous in terms of
ũ(t) = S(t)v(t) and (ii) the invariance of μs under S(t) (Lemma 4.1).
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In the following, we restrict our attention to s > 1
2 . Hence, we view ρs,N ,r,t and ρs,r,t

as probability measures on L2(T).
Let μs,r be as in (2.5). Then, it follows from Proposition 6.2 that ρs,r,t and μs,r are

mutually absolutely continuous. Moreover, we have the following ‘uniform conver-
gence’ property of ρs,N ,r,t to ρs,r,t .

Corollary 6.3 Given s > 1
2 and r > 0, let ρs,N ,r,t and ρs,r,t be as in (6.21) and

(6.22). Then, for any γ > 0, there exists N0 ∈ N such that

|ρs,N ,r,t (A) − ρs,r,t (A)| < γ

for any N ≥ N0 and any measurable set A ⊂ L2(T), uniformly in t ∈ R.

The proof of Proposition 6.2 follows closely Bourgain’s argument in constructing
Gibbs measures [8]. We first recall the following basic tail estimate. See [58, Lemma
4.2] for a short proof.

Lemma 6.4 Let {gn}n∈N be independent standard complex-valued Gaussian random
variables. Then, there exist constant c,C > 0 such that, for any M ≥ 1, we have the
following tail estimate:

P

[( M∑
n=1

|gn|2
) 1

2 ≥ K

]
≤ e−cK 2

, K ≥ CM
1
2 .

Proof of Proposition 6.2 Fix r > 0. We first prove

‖FN ,r,t‖L p(μs ), ‖Fr,t‖L p(μs ) ≤ Cp,r < ∞ (6.23)

for all N ∈ N and t ∈ R. From the distributional characterization of the L p-norm and
(6.20), we have

‖Fr,t‖p
L p(μs )

= p
ˆ ∞

0
λp−1μs(|Fr,t | > λ)dλ

≤ C + p
ˆ ∞

e
λp−1μs

(|Rt (v)| ≥ log λ, ‖v‖L2 ≤ r
)
dλ.

In the following, we estimate μs
(|Rt (v)| ≥ K , ‖v‖L2 ≤ r

)
for K ≥ 1, using the

dyadic pigeon hole principle and Lemma 6.4. Let us divide the argument into two
cases: s > 1 and 1

2 < s ≤ 1. Note that, while Rt depends on t ∈ R, all the estimates
below hold uniformly in t ∈ R.

First, suppose that s > 1. Then, fromLemma 3.1 and the divisor counting argument
as in the proof of Proposition 6.1 (see (6.19)), we have

|Rt (v)| ≤ C0‖v‖2L2‖v‖2Hs−1 ≤ C0r
2‖v‖2Hs−1 . (6.24)
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1148 T. Oh, N. Tzvetkov

under ‖v‖L2 ≤ r . Similarly, we have

|Rt (P≤M0v)| ≤ C0M
2(s−1)
0 ‖P≤M0v‖4L2 ≤ C0M

2(s−1)
0 r4. (6.25)

Given K ≥ 1, choose M0 > 0 such that

1
2K = C0M

2(s−1)
0 r4. (6.26)

For j ∈ N, let Mj = 2 j M0 and σ j = Cε2−ε j for some small ε > 0 such that∑
j∈N σ j = 1

2 . Then, from (6.24) and (6.25), we have

μs
(|Rt (v)| ≥ K , ‖v‖L2 ≤ r

) ≤ μs
(‖v‖2Hs−1 ≥ C−1

0 r−2K
)

≤
∞∑
j=1

μs
(‖PMj v‖2Hs−1 ≥ σ jC

−1
0 r−2K

)

�
∞∑
j=1

P

[( ∑
|n|∼Mj

|gn|2
) 1

2 � L j

]
,

where L j := (σ j r−2K )
1
2 Mj � M

1
2 ε

0 M
1− 1

2 ε

j � M
1
2
j . Here, we used that r−2K ∼

Ms−1
0 r2 � 1 in view of (6.26). Then, applying Lemma 6.4 with (6.26), we obtain

μs
(|Rt (v)| ≥ K , ‖v‖L2 ≤ r

)
�

∞∑
j=1

e−cL2
j =

∞∑
j=1

e−cr2(2−ε) j M2
0 K

=
∞∑
j=1

e−c′
r2

(2−ε) j K
1+ 1

s−1 � e−c′′
r K

1+ 1
s−1

.

This proves (6.23) for Fr,t when s > 1. A similar argument holds for FN ,r,t with a
uniform bound in N ∈ N.

Next, suppose that 1
2 < s ≤ 1. Proceeding with Lemma 3.1 as before, we have

|Rt (v)| � ‖v‖4
H

s
2− 1

2
≤ r4 (6.27)

under ‖v‖L2 ≤ r . Hence, (6.23) trivially follows in this case.
It remains to show that FN ,r,t converges to Fr,t in L p(μs). It follows from a small

modification of (6.24) and (6.27) that Rt (P≤Nv) converges to Rt (v) almost surely
with respect to μs , uniformly in t ∈ R. Indeed, when s > 1, we have

|Rt (v) − Rt (P≤N v)| � ‖P>N v‖L2‖v‖L2‖v‖2Hs−1 + ‖v‖2L2‖P>N v‖Hs−1‖v‖Hs−1 −→ 0,

while we have

|Rt (v) − Rt (P≤Nv)| � ‖P>Nv‖
H

s
2− 1

2
‖v‖3

H
s
2− 1

2
−→ 0,
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Quasi-invariant Gaussian measures for the cubic fourth order… 1149

when 1
2 < s ≤ 1. Hence, FN ,r,t converges to Fr,t almost surely with respect to μs .

As a consequence of Egoroff’s theorem, we see that FN ,r,t converges to Fr,t almost
uniformly and hence in measure (uniformly in t ∈ R). Namely, given ε > 0, if we let

AN ,ε,t = {v ∈ L2(T) : |FN ,r,t (v) − Fr,t (v)| ≤ 1
2ε},

we haveμs(Ac
N ,ε,t ) → 0, uniformly in t ∈ R, as N → ∞. Then, by Cauchy-Schwarz

inequality and (6.23), we have

‖FN ,r,t − Fr,t‖L p(μs ) ≤ ‖(FN ,r,t − Fr,t )1AN ,ε,t ‖L p(μs ) + ‖(FN ,r,t − Fr,t )1Ac
N ,ε,t

‖L p(μs )

≤ 1
2 ε + ‖FN ,r,t − Fr,t‖L2p(μs )

‖1Ac
N ,ε,t

‖L2p(μs )

≤ 1
2 ε + 2C2p,rμs(A

c
N ,ε,t )

1
2p

≤ ε

for all sufficiently large N ∈ N, uniformly in t ∈ R. Therefore, FN ,r,t converges to
Fr,t in L p(μs) for any p ≥ 1. ��

We conclude this subsection by stating a large deviation estimate on the quantity
appearing in the energy estimate (Proposition 6.1).

Lemma 6.5 Let ε > 0 and r > 0. Then, there exists C = C(ε, r) > 0 such that

∥∥‖v‖
Hs− 1

2−ε

∥∥
L p(ρs,N ,r,t )

≤ Cp
1
2

for any p ≥ 2, any t ∈ R, and all sufficiently large N ∈ N.

Proof By Proposition 6.2, we have

∥∥‖v‖
Hs− 1

2−ε

∥∥
L p(ρs,N ,r,t )

≤ ‖FN ,r‖L2p(μs )

∥∥‖v‖
Hs− 1

2−ε

∥∥
L2p(μs )

�
∥∥∥∥
∥∥∥ ∑
n∈Z

gn

〈n〉 1
2+ε

einx
∥∥∥
L2
x

∥∥∥∥
L2p(�)

� p
1
2

∥∥∥∥∥∥∥ ∑
n∈Z

gn

〈n〉 1
2+ε

einx
∥∥∥
L2(�)

∥∥∥∥
L2
x

� p
1
2 .

Here, the second to the last inequality follows from the hypercontractvity estimate due
to Nelson [54, Theorem 2]. See also [17, Lemma 3.1]. ��

6.3 A change-of-variable formula

In this subsection, we establish an important change-of-variable formula (Proposition
6.6). It is strongly motivated by the work [71,72]. We closely follow the argument
presented in [70].
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1150 T. Oh, N. Tzvetkov

Given N ∈ N, let dLN = ∏
|n|≤N dûn denote the Lebesgue measure on C

2N+1.
Then, from (6.20) and (6.21) with (2.4), we have

dρs,N ,r,t = Z−1
s,N ,r1{‖v‖L2≤r}e− 1

2 Rt (P≤N v)dμs

= Ẑ−1
s,N ,r1{‖v‖L2≤r}e− 1

2 Et (P≤N v)dLN ⊗ dμ⊥
s,N ,

where Ẑs,N ,r is a normalizing constant defined by7

Ẑs,N ,r =
ˆ
L2

1{‖v‖L2≤r}e− 1
2 Et (P≤N v)dLN ⊗ dμ⊥

s,N .

Then, we have the following change-of-variable formula:

Proposition 6.6 Let s > 1
2 , N ∈ N, and r > 0. Then, we have

ρs,N ,r,t (�N (t, τ )(A)) = Z−1
s,N ,r

ˆ
�N (t,τ )(A)

1{‖v‖L2≤r}e− 1
2 Rt (P≤N v)dμs(v)

= Ẑ−1
s,N ,r

ˆ
A

1{‖v‖L2≤r}e− 1
2 Et (P≤N�N (t,τ )(v))dLN ⊗ dμ⊥

s,N

(6.28)

for any t, τ ∈ R and any measurable set A ⊂ L2.

We first state the basic invariance property of LN .

Lemma 6.7 Let N ∈ N. Then, the Lebesguemeasure dLN = ∏
|n|≤N dûn is invariant

under the flow �̃N (t, τ ).

Proof The finite dimensional system (6.3) basically corresponds to the finite dimen-
sional Hamiltonian approximation to (1.1) under two transformations (3.2) and (3.4).
Therefore, morally speaking, the lemma should follow from the inherited Hamiltonian
structure andLiouville’s theorem. In the following, however, we provide a direct proof.

Write (6.3) as ∂tvn = Xn , |n| ≤ N . Then, by Liouville’s theorem, it suffices to
show

∑
|n|≤N

[
∂Re Xn

∂Re vn
+ ∂Im Xn

∂Im vn

]
= 0,

or equivalently,

∑
|n|≤N

[
∂Xn

∂vn
+ ∂Xn

∂vn

]
= 0. (6.29)

7 The normalizing constant Ẑs,N ,r a priori depends on t ∈ R. Arguing as for Zs,N ,r and Zs,r defined in
(6.21) and (6.22), however, we see that it is indeed independent of t ∈ R.
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Note that the first sum in (6.3) does not have any contribution to (6.29) due to the
frequency restriction n1, n3 �= n. Hence, we have

∂Xn

∂vn
+ ∂Xn

∂vn
= 2i |vn|2 − 2i |vn|2 = 0

for each |n| ≤ N . Therefore, (6.29) holds. ��
We now present the proof of Proposition 6.6.

Proof of Proposition 6.6 The first equality in (6.28) is nothing but the definition of
ρs,N ,r,t . From (6.20) and (6.21) with (6.8), we have

ρs,N ,r,t (�N (t, τ )(A)) = Ẑ−1
s,N ,r

ˆ
EN

ˆ
E⊥
N

1�N (t,τ )(A)(v)1{‖v‖L2≤r}e− 1
2 Et (P≤N v)dLN ⊗ dμ⊥

s,N

By Fubini’s theorem, Lemma 6.7, and (6.5) we have

= Ẑ−1
s,N ,r

ˆ
E⊥
N

{ ˆ
EN

1�N (t,τ )(A)(�̃N (t, τ )(P≤Nv) + P>Nv)

× 1{‖�̃N (t,τ )(P≤N v)+P>N v‖L2≤r}e− 1
2 Et (�̃N (t,τ )(P≤N v))dLN

}
dμ⊥

s,N

= Ẑ−1
s,N ,r

ˆ
E⊥
N

{ ˆ
EN

1�N (t,τ )A(�N (t, τ )(v))

× 1{‖�N (t,τ )v‖L2≤r}e− 1
2 Et (P≤N�N (t,τ )(v))dLN

}
dμ⊥

s,N .

By the bijectivity of �N (t, τ ), we have 1�N (t,τ )(A)(�N (t, τ )(v)) = 1A(v). We also
have the L2-conservation: ‖�N (t, τ )(v)‖L2 = ‖v‖L2 Hence, we have

ρs,N ,r,t (�N (t, τ )(A)) = Ẑ−1
s,N ,r

ˆ
L2

1A(v)1{‖v‖L2≤r}e−
1
2 Et (P≤N�N (t,τ )(v))dLN ⊗ dμ⊥

s,N .

This proves the second equality in (6.28). ��

6.4 On the evolution of the truncated measures

In this subsection, we establish a growth estimate on the truncated measure ρs,N ,r,t .
The key ingredients are the energy estimate (Proposition 6.1), the large deviation
estimate (Lemma 6.5), and the change-of-variable formula (Proposition 6.6) from the
previous subsections.

Lemma 6.8 Let s > 3
4 . There exists 0 ≤ β < 1 such that, given r > 0, there exists

C > 0 such that
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d

dt
ρs,N ,r,t (�N (t)(A)) ≤ Cpβ

{
ρs,N ,r,t (�N (t)(A))

}1− 1
p (6.30)

for any p ≥ 2, any N ∈ N, any t ∈ R, and any measurable set A ⊂ L2(T). Here,
�N (t) = �N (t, 0) as in (6.4).

As in [69,71,72], the main idea of the proof of Lemma 6.8 is to reduce the analysis to
that at t = 0.

Proof Let t0 ∈ R. By the definition of �(t, τ ) and Proposition 6.6, we have

d

dt
ρs,N ,r,t (�N (t)(A))

∣∣∣∣
t=t0

= d

dt
ρs,N ,r,t0+t

(
�N (t0 + t, t0)(�N (t0)(A))

)∣∣∣∣
t=0

= Ẑ−1
s,N ,r

d

dt

ˆ
�N (t0)(A)

1{‖v‖L2≤r}e− 1
2 Et0+t (P≤N�N (t0+t,t0)(v))dLN ⊗ dμ⊥

s,N

∣∣∣∣
t=0

= −1

2

ˆ
�N (t0)(A)

d

dt
Et0+t

(
P≤N�N (t0 + t, t0)(v)

)∣∣∣∣
t=0

dρs,N ,r,t0 .

Hence, by Proposition 6.1, Hölder’s inequality, and Lemma 6.5, we have

d

dt
ρs,N ,r,t (�N (t)(A))

∣∣∣∣
t=t0

≤ C
∥∥∥‖v‖4+θ

L2
‖v‖2−θ

Hs− 1
2−ε

∥∥∥
L p(ρs,N ,r,t0 )

{
ρs,N ,r,t0 (�N (t0)(A))

}1− 1
p

≤ Cr4+θ
∥∥∥‖v‖

Hs− 1
2−ε

∥∥∥2−θ

L(2−θ)p(ρs,N ,r,t0 )

{
ρs,N ,r,t0 (�N (t0)(A))

}1− 1
p

≤ Cr p
1− θ

2
{
ρs,N ,r,t0 (�N (t0)(A))

}1− 1
p

for some small θ > 0. This proves (6.30) with β = 1 − θ
2 . ��

As a corollary to Lemma 6.8, we obtain the following control on the truncated
measures ρs,N ,r,t .

Lemma 6.9 Let s > 3
4 . Then, given t ∈ R, r > 0, and δ > 0, there exists C =

C(t, r, δ) > 0 such that

ρs,N ,r,t (�N (t)(A)) ≤ C
{
ρs,N ,r,t (A)

}1−δ

for any N ∈ N and any measurable set A ⊂ L2(T).

Proof As in [70], we apply a variant of Yudovich’s argument [73]. From Lemma 6.8,
we have

d

dt

{
ρs,N ,r,t (�N (t)(A))

} 1
p ≤ Cp−α (6.31)
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for any p ≥ 2, where α = 1 − β > 0. Integrating (6.31), we have

ρs,N ,r,t (�N (t)(A)) ≤ {
(ρs,N ,r,t (A))

1
p + Ctp−α

}p

= ρs,N ,r,t (A)ep log
{
1+Ctp−αρs,N ,r,t (A)

− 1
p
}

≤ ρs,N ,r,t (A)eCtp1−αρs,N ,r,t (A)
− 1

p
, (6.32)

where, in the last inequality, we used the fact that log(1 + x) ≤ x for x ≥ 0. By
choosing p = 2 − log ρs,N ,r,t (A) such that

ρs,N ,r,t (A)
− 1

p = e1−
2
p ≤ e,

it follows from (6.32) that

ρs,N ,r,t (�N (t)(A)) ≤ ρs,N ,r,t (A)eCet{2−log ρs,N ,r,t (A)}1−α

. (6.33)

We claim that, given δ > 0, there exists C = C(t, δ, α) > 0 such that

eCet{2−log ρ}1−α ≤ C(t, δ, α)ρ−δ (6.34)

for all ρ ∈ [0, 1]. By rewriting (6.34), it suffices to prove

{2 − log ρ}1−α ≤ −δ log ρ + logC(t, δ, α) (6.35)

Clearly, (6.35) holds as ρ → 1− by choosing sufficiently large C(t, δ, α) > 0. On
the other hand, (6.35) also holds as ρ → 0+, since α > 0. Hence, (6.35) holds for all
ρ ∈ [0, 1] by the continuity of log ρ and choosing sufficiently large C(t, δ, α) > 0.

Therefore, from (6.33) and (6.34), we conclude that given δ > 0, there exists
C = C(t, r, δ, α) > 0 such that

ρs,N ,r,t (�N (t)(A)) ≤ C(t, r, δ, α)
{
ρs,N ,r,t (A)

}1−δ
.

This completes the proof of Lemma 6.9. ��

6.5 Proof of Theorem 1.2

We conclude this section by presenting the proof of Theorem 1.2 for s > 3
4 . Before

doing so, we first upgrade Lemma 6.9 to the untruncated measure ρs,r,t .

Lemma 6.10 Let s > 3
4 . Then, given t ∈ R, r > 0, R > 0, and δ > 0, there exists

C = C(t, r, δ) > 0 such that

ρs,r,t (�(t)(A)) ≤ C
{
ρs,r,t (A)

}1−δ
. (6.36)

for any measurable set A ⊂ L2(T).
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Proof Given R > 0, let BR denote the ball of radius R centered at the origin in L2(T).
We first consider the case when A is compact in L2 and A ⊂ BR for some R > 0.
It follows from Proposition 6.21 and Corollary 6.3 that, given ε, γ > 0, there exists
N0 = N0(t, R, ε, γ ) ∈ N such that

ρs,r,t (�(t)(A)) ≤ ρs,r,t (�N (t)(A + Bε)) ≤ ρs,N ,r,t (�N (t)(A + Bε)) + γ

for any N ≥ N0. Then, by Lemma 6.9 and Corollary 6.3, we have

ρs,r,t (�(t)(A)) ≤ C(t, r, δ)
{
ρs,N ,r,t (A + Bε)

}1−δ + γ

≤ C(t, r, δ)
{
ρs,r,t (A + Bε)

}1−δ + 2γ. (6.37)

Hence, by taking a limit of (6.37) as ε, γ → 0 (with the continuity from above of a
probability measure), we obtain (6.36) in this case.

Next, let A be any measurable set in L2. Then, by the inner regularity of ρs,r,t , there
exists a sequence {K j } j∈N of compact sets such that K j ⊂ �(t)(A) and

ρs,r,t (�(t)(A)) = lim
j→∞ ρs,r,t (K j ). (6.38)

By the bijectivity of �(t, τ ), we have

K j = �(t, 0)(�(0, t)(K j )) = �(t)(�(0, t)(K j )).

Note that �(0, t)(K j ) is compact since it is the image of a compact set K j under the
continuous map �(0, t). Moreover, we have �(0, t)(K j ) ⊂ �(0, t)�(t)(A) = A.
Then, by (6.36) applied to �(0, t)(K j ), we have

ρs,r,t (K j ) = ρs,r,t
(
�(t)(�(0, t)(K j ))

) ≤ C
{
ρs,r,t (�(0, t)(K j ))

}1−δ

≤ C
{
ρs,r,t (A)

}1−δ
. (6.39)

By taking a limit as j → ∞, we obtain (6.36) from (6.38) and (6.39). ��
Finally, we present the proof of Theorem 1.2.

Proof of Theorem 1.2 As in Sect. 5, it follows from Lemmas 4.1, 4.4, and 4.5 that it
suffices to prove that μs is quasi-invariant under �(t), i.e. the dynamics of (3.6).

Fix t ∈ R. Let A ⊂ L2(T) be a measurable set such that μs(A) = 0. Then, for any
r > 0, we have

μs,r (A) = 0.

By the mutual absolute continuity of μs,r and ρs,r,t , we obtain

ρs,r,t (A) = 0
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for any r > 0. Then, by Lemma 6.10, we have

ρs,r,t (�(t)(A)) = 0.

By invoking the mutual absolute continuity of μs,r and ρs,r,t once again, we have

μs,r (�(t)(A)) = 0.

Then, the dominated convergence theorem yields

μs
(
�(t)(A)

) = lim
r→∞ μs,r

(
�(t)(A)

) = 0.

This completes the proof of Theorem 1.2. ��
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Appendix A. On the Cauchy problem (1.1)

In this appendix, we discuss the well-posedness issue for the Cauchy problem (1.1). In
particular, we prove global well-posedness of (1.1) in L2(T) and ill-posedness below
L2(T).

Well-posedness in L2(T)

We say u is a solution to (1.1) if u satisfies the following Duhamel formulation

u(t) = S(t)u0 ∓ i
ˆ t

0
S(t − t ′)|u|2u(t ′)dt ′,

where S(t) = e−i t∂4x . The main result of this section is the following local well-
posedness of (1.1).

Proposition 6.11 Let s ≥ 0. Then, given u0 ∈ Hs(T), there exist T = T (‖u0‖L2) >

0 and a unique solution u ∈ C([−T, T ]; Hs) to (1.1) with u|t=0 = u0. Moreover, we
have

sup
t∈[−T,T ]

‖u(t)‖Hs ≤ C‖u0‖Hs . (A.1)
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See Remark 6.12 below for the precise uniqueness statement. Once we prove Propo-
sition 6.11, global well-posedness (Proposition 1.1) follows from the conservation of
mass (1.4). We prove Proposition 6.11 via the Fourier restriction norm method [7].
While the argument is standard, we present the details of the proof for the sake of
completeness.

Given s, b ∈ R, define Xs,b as the completion of S(T × R) under the following
norm:

‖u‖Xs,b(T×R) = ‖〈n〉s〈τ + n4〉bû(n, τ )‖2n L
2
τ
. (A.2)

Given a time interval I ⊂ R, we define the local-in-time version Xs,b
I restricted to the

time interval I by setting

‖u‖Xs,b(I ) = inf
{‖ũ‖Xs,b : ũ|I = u

}
.

Remark 6.12 When s > 1
2 , the uniqueness statement in Proposition 6.11 holds

in C([−T, T ]; Hs). When s ∈ [0, 1
2 ], the uniqueness holds only within a ball in

C([−T, T ]; Hs) ∩ Xs,b([−T, T ]) for some b > 1
2 .
8

Before presenting the proof of Proposition 6.11, we first go over preliminary lem-
mas. Let η ∈ C∞

c (R) be a smooth cut off function such that η(t) ≡ 1 for |t | ≤ 1 and
η(t) ≡ 0 for |t | ≥ 2. Given T > 0, set ηT (t) = η(T−1t). Then, we have the following
basic linear estimates. See [7,34,43,64]

Lemma 6.13 Let s ∈ R.
(i) For any b ∈ R, we have

‖η(t)S(t)u0‖Xs,b ≤ Cb‖u0‖Hs .

(ii) Let − 1
2 < b′ ≤ 0 ≤ b ≤ b′ + 1. Then, for T ≤ 1, we have

∥∥∥∥ηT (t)
ˆ t

0
S(t − t ′)F(t ′)dt ′

∥∥∥∥
Xs,b

≤ Cb,b′T 1−b+b′ ‖F‖Xs,b′ .

Next, we state the L4-Strichartz estimate.

Lemma 6.14 The following estimate holds:

‖u‖L4(T×R) � ‖u‖
X0, 5

16
. (A.3)

8 When s ≥ 1
6 , one can also prove unconditional uniqueness in the entire C([−T, T ]; Hs ), by applying

normal form reductions infinitely many times as in [37]. The proof is precisely the same as that in [37] for
the standard cubic NLS on T.
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Note that the value b = 5
16 in (A.3) is sharp in the sense that the estimate (A.3) fails

for b < 5
16 .

9

Proof We closely follow the argument for the L4-Strichartz estimate for the usual
(second order) Schrödinger equation presented in [64]. Given dyadic M ≥ 1, let uM

be the restriction of u onto the modulation size 〈τ + n4〉 ∼ M . Then, it suffices to
show that there exists ε > 0 such that

‖uMu2mM‖L2
x,t

� 2−εmM
5
16 ‖uM‖L2

x,t
(2mM)

5
16 ‖u2mM‖L2

x,t
(A.4)

for any M ∈ N and m ∈ N ∪ {0}.
Indeed, assuming (A.4), by Cauchy-Schwarz inequality, we have

‖u‖2L4(T×R)
�

∑
M

∑
m≥0

‖uMu2mM‖L2
x,t

�
∑
M

∑
m≥0

2−εmM
5
16 ‖uM‖L2

x,t
(2mM)

5
16 ‖u2mM‖L2

x,t

�
∑
m≥0

2−εm
( ∑

M

M
5
8 ‖uM‖2

L2
x,t

) 1
2
(∑

M

(2mM)
5
8 ‖u2mM‖2

L2
x,t

) 1
2

� ‖u‖2
X0, 5

16
.

This proves (A.3).
Hence, it remains to prove (A.4). By Plancherel’s identity and Hölder’s inequality,

we have

LHS of ((A.4)) =
∥∥∥∥ ∑
n=n1+n2

ˆ

τ=τ1+τ2

ûM (n1, τ1)û2mM (n2, τ2)dτ1

∥∥∥∥
2n L

2
τ

≤ sup
n,τ

A(n, τ )
1
2 · ‖uM‖L2

x,t
‖u2mM‖L2

x,t
, (A.5)

where A(n, τ ) is defined by

A(n, τ ) =
∑

n=n1+n2

ˆ

τ=τ1+τ2

1τ1+n41=O(M), τ2+n42=O(2mM) dτ1.

9 Consider the function

uN (x, t) =
∑

|n|≤N

ˆ
|τ |≤N4

ei(nx+τ t)dτ.

Footnote 9 continued
Namely,wehave ûN (n, τ ) = 1N (n)1N4 (τ ),where1N is the characteristic functionof the interval [−N , N ].
Then, a direct computation shows that ‖uN ‖L4(T×R) ∼ N

15
4 , while ‖uN ‖X0,b ∼ N

5
2+4b , showing the

sharpness of (A.3).
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Integrating in τ1, we have

A(n, τ ) � M
∑

n=n1+n2

1τ=−n41−n42+O(2mM). (A.6)

Under n = n1 + n2 and τ = −n41 − n42 + O(2mM), we have

(
(n1 − n2)

2 + 3n2
)2 = 8(n41 + n42) + 8n4 = −8τ + 8n4 + O(2mM).

This implies that (n1−n2)2+3n2 belongs to at most two intervals of size O(2
m
2 M

1
2 ),

i.e.

(n1 − n2)
2 + 3n2 = C j,τ,n + O(2

m
2 M

1
2 )

for some C j,τ,n , j = 1, 2. This, in turn, implies that n1 − n2 belongs to at most four

intervals of size O(2
m
4 M

1
4 ). Hence, from (A.6), we have

A(n, τ )
1
2 � 2

m
8 M

5
8 ≤ 2− 3

16mM
5
16 (2mM)

5
16 . (A.7)

Finally, (A.4) follows from (A.5) and (A.7). ��
Now, we are ready to prove Proposition 6.11.

Proof of Proposition 6.11 Let u0 ∈ L2(T). Given 0 < T ≤ 1, let

�(u)(t) = �u0(u)(t) := η(t)S(t)u0 ∓ iηT (t)
ˆ t

0
S(t − t ′)|u|2u(t ′)dt ′. (A.8)

Let b > 1
2 and small δ > 0. Then, from Lemma 6.13, a duality argument, Hölder’s

inequality, and Lemma 6.14, we have

‖�(u)‖X0,b � ‖u0‖L2 + T δ
∥∥|u|2u∥∥

X0,b−1+δ

= ‖u0‖L2 + T δ sup
‖v‖X0,1−b−δ=1

∣∣∣∣
ˆ

|u|2u · v dxdt

∣∣∣∣
≤ ‖u0‖L2 + T δ sup

‖v‖X0,1−b−δ=1

‖u‖3
L4
x,t

‖v‖L4
x,t

� ‖u0‖L2 + T δ‖u‖3
X0, 5

16
, (A.9)

as long as b ≤ 11
16 − δ. Similarly, we have

‖�(u) − �(v)‖X0,b � T δ
(‖u‖2X0,b + ‖v‖2X0,b

)‖u − v‖X0,b . (A.10)

Hence, it follows from (A.9) and (A.10) that � is a contraction on some ball in X0,b

as long as T = T (‖u0‖L2) > 0 is sufficiently small.
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Quasi-invariant Gaussian measures for the cubic fourth order… 1159

Now, suppose that u0 ∈ Hs(T) for some s > 0. Then, proceeding as in (A.9) with
T = T (‖u0‖L2) > 0 as above, we have

‖�(u)‖Xs,b � ‖u0‖Hs + T δ‖u‖2X0,b‖u‖Xs,b � ‖u0‖Hs + T δ‖u0‖2L2‖u‖Xs,b ,

(A.11)

yielding (A.1). A similar argument yields local Lipschitz dependence of the solution
map on Hs(T). This completes the proof of Proposition 6.11. ��
Remark 6.15 When s = 0, the conservation of mass yields ‖u(t)‖L2 = ‖u0‖L2 for
all t ∈ R.

Now, suppose that s > 0. Then, by iterating (A.1) alongwith themass conservation,
we conclude that there exists θ > 0 such that the following growth estimate on the
Hs-norm holds:

sup
t∈[0,τ ]

‖u(t)‖Hs ≤ CK θ τ‖u0‖Hs (A.12)

for any τ > 0 and all u0 ∈ Hs(T) with ‖u0‖L2 ≤ K .

Ill-posedness below L2(T)

In the following, we briefly discuss the ill-posedness of (1.1) below L2(T). We first
present the following failure of uniform continuity of the solution map on bounded
sets below L2(T).

Lemma 6.16 Let s < 0. There exist two sequences {u0,n}n∈N and {̃u0,n}n∈N in H∞(T)

such that

(i) u0,n and ũ0,n are uniformly bounded in Hs(T),
(ii) lim

n→∞ ‖u0,n − ũ0,n‖Hs = 0,

(iii) Let un and ũn be the solutions to (1.1) with initial data un|t=0 = u0,n and
ũn|t=0 = ũ0,n, respectively. Then, there exists c > 0 such that

lim inf
n→∞ ‖un − ũn‖L∞([−T,T ];Hs ) ≥ c > 0

for any T > 0.

Lemma 6.16 exhibits a “mild” ill-posedness result for s < 0. The proof of
Lemma 6.16 closely follows the argument in Burq–Gérard–Tzvetkov [13] and Christ–
Colliander–Tao [20].

Proof Given N ∈ N and a ∈ C, define u(N ,a) by

u(N ,a)(x, t) = N−saei(Nx−N4t∓N−2s |a|2t).

Then, it is easy to see that u(N ,a) is a smooth global solution to (1.1).
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1160 T. Oh, N. Tzvetkov

Given n ∈ N, let u0,n = u(Nn ,1)(0) and ũ0,n = u(Nn ,1+ 1
n )(0), where Nn ∈ N is to

be chosen later. Then, we have

‖u0,n‖Hs , ‖ũ0,n‖Hs � 1 (A.13)

uniformly in n ∈ N. Moreover, we have

‖u0,n − ũ0,n‖Hs ∼ 1

n
. (A.14)

Note that (A.13) and (A.14) hold independently of a choice of Nn ∈ N.
Let un and ũn be the solutions to (1.1) with initial data un|t=0 = u0,n and ũn|t=0 =

ũ0,n , respectively. Namely, un = u(Nn ,1) and ũn = u(Nn ,1+ 1
n ). Given n ∈ N, define

tn > 0 by

tn = πN 2s
n(

1 + 1
n

)2 − 1
.

Since s < 0, we can choose Nn ∈ N sufficiently large such that tn ≤ 1
n . Then, we

have

‖un(tn) − ũn(tn)‖Hs =
∣∣∣e∓i N−2s

n {1−(1+ 1
n )2}tn − (

1 + 1
n

)∣∣∣ = 2 + 1
n ≥ 2. (A.15)

Noting that tn → 0 as n → ∞, Lemma 6.16 follows from (A.13), (A.14), and (A.15).
��

Remark 6.17 The cubic NLS (1.7) enjoys the Galilean symmetry, which preserves the
L2-norm. Namely, L2 is critical with respect to the Galilean symmetry. Indeed, the
cubic NLS is known to be ill-posed below L2(T). See [13,20,21,38,51].

As for the fourth order NLS (1.1), there seems to be no Galilean symmetry10 and
it is not clear why the regularity s = 0 plays a role as a critical value.

Remark 6.18 (non-existence of solutions below L2(T)) The mild ill-posedness of
(1.1) stated inLemma6.16 can be updated to the following strong formof ill-posedness
of (1.1) below L2(T). Roughly speaking, if u0 /∈ L2(T), then there is noweak solution
to (1.1). More precisely, there exists s0 < 0 such that, for s0 < s < 0 and any T > 0,
there exists no weak solution u ∈ C([−T, T ]; Hs(T)) to NLS (1.1) such that

(i) u|t=0 = u0 ∈ Hs(T)\L2(T)

(ii) There exist smooth solutions {un}n∈N to (1.1) such that un → u in C([−T, T ];
Hs(T)) as n → ∞.

10 Here, the Galilean symmetry means basically a translation in the spatial frequency domain with a
certain modulation. While this modulation is linear in the spatial frequency for the cubic NLS (1.7), such a
modulation for (1.1) is of higher degree for (1.1) in order to match up with ∂4x , which is inconsistent with
the nonlinearity.
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Note that this is one of the strongest forms of ill-posedness.
In the following, we present a sketch of the argument. See [38,59] for details.

Namely, first use the short time Fourier restriction norm method and establish an a
priori bound in Hs , s < 0, to the renormalized Eq. (3.3). Here, the main observation
is that Lemma 3.1 guarantees that the a priori bound for the renormalized cubic NLS
also holds for the renormalized fourth order NLS (3.3).11 This allows us to prove an
existence result for (3.3) in Hs(T), s0 < s < 0, for some s0 < 0. Recall that if u is a
smooth solution to (1.1), then ũ = G[u] is a smooth solution to (3.3).

Now, let u0 ∈ Hs(T)\L2(T), s ∈ (s0, 0) and let {u0,n}n∈N ⊂ L2(T) such that
u0,n → u0 in Hs(T) as n → ∞. Let un denote the unique (global) solution to (1.1)
with un|t=0 = u0,n and let ũn = G[un]. Then, from the a priori bound, there exists
T = T (‖u0‖Hs ) > 0 such that (i) {̃un}n∈N is bounded in C([−T, T ]; Hs) and (ii)
ũn converges to some ũ in C([−T, T ]; Hs). Moreover, ũ is a solution to (3.3). In
particular, ũ(0) = u0. On the other hand, in view of ‖un(0)‖L2 → ∞ as n → ∞,
we have faster and faster phase oscillations in (3.2), as n → ∞. Hence, ũn = G[un]
converges to 0 inD′(T×[−T, T ]). In particular, this implies ũ(0) = 0. This is clearly
a contradiction since ũ(0) = u0 /∈ L2(T).

Appendix B. On the approximation property of the truncated dynamics

In this appendix, we perform further analysis on the Eq. (3.6) and its truncated approx-
imation (6.1) and establish a certain approximation property. See Proposition 6.21
below.

Given N ∈ N, we first consider the following approximation to (1.1):

{
i∂t uN = ∂4x uN − P≤N (|P≤NuN |2P≤NuN )

uN |t=0 = u0.
(A.16)

We first study the approximation property of (A.16) to (1.1). By a slight modification
of the proof of Proposition 6.11, it is easy to see that (A.16) is globally well-posed in
L2(T).

Let �(t) and �N (t) be the solution maps to (1.1) and (A.16), respectively. Given
R > 0, let BR be the ball of radius R centered at the origin in L2(T). Let τ > 0.
By iterating the local-in-time argument (see (A.11)), we have the following uniform
estimate:

sup
N∈N∪{∞}

sup
u0∈BR

‖�N (t)(u0)‖X0,b([0,τ ]) ≤ C(τ, R) (A.17)

11 In fact, one can establish an a priori bound for (3.3) for lower regularities. We, however, do not pursue
this issue here. See [59].
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for some b > 1
2 , with the understanding that�∞(t) = �(t). Then, from Lemma 6.14,

we obtain

sup
N∈N∪{∞}

sup
u0∈BR

‖�N (t)(u0)‖L4
t ([0,τ ];L4

x )
≤ C(τ, R). (A.18)

Lemma 6.19 Given R > 0, let A ⊂ BR be a compact subset in L2(T). Given τ > 0
and ε > 0, there exists N0 ∈ N such that we have

‖P>N�(t)(u0)‖L4([0,τ ];L4
x )

< ε (A.19)

for all u0 ∈ A and N ≥ N0.

Proof By the continuity of the map: u0 ∈ L2 �→ �(t)u0 ∈ L4([0, τ ]; L4
x ) and the

compactness of K , we see that �(t)K is compact in L4([0, τ ]; L4
x ). Hence, there

exists a finite index set J and {u0, j } j∈J ⊂ K such that, given u0 ∈ K , we have

‖�(t)(u0) − �(t)(u0, j )‖L4([0,τ ];L4
x )

<
ε

2
(A.20)

for some j ∈ J . It follows from (A.18) and the dominated convergence theorem that
given j ∈ J , there exists N j ∈ N such that

‖P>N�(t)(u0, j )‖L4([0,τ ];L4
x )

<
ε

2
(A.21)

for all N ≥ N j . Hence, by setting N0 = max j∈J N j , (A.19) follows from (A.20) and
(A.21). ��

We first establish the following approximation property of (A.16) to (1.1).

Lemma 6.20 Given R > 0, let A ⊂ BR be a compact set in L2(T). Then, for any
τ > 0 and ε > 0, there exists N0 ∈ N such that

‖�(t)(u0) − �N (t)(u0)‖L∞
t ([0,τ ];L2

x )
< ε. (A.22)

for all u0 ∈ A and N ≥ N0.

Proof Given u0 ∈ A, let wN = u − P≤NuN = �(t)(u0) − P≤N�N (t)(u0). Then,
wN satisfies

wN (t) = −i
ˆ t

0
S(t − t ′)Q(u, P≤NuN )(t ′)dt ′.

where Q(u, P≤NuN ) is defined by

Q(u, P≤NuN ) = P≤N
(|u|2u − |P≤Nu|2P≤Nu

) + P>N (|u|2u).
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Given T > 0, let ũ and ũN be extensions of u|[0,T ] and P≤NuN |[0,T ] onto R. Then,
defining w̃N by

w̃N (t) = −iηT (t)
ˆ t

0
S(t − t ′)Q(̃u, ũN )(t ′)dt ′,

we see that w̃N is an extension of wN |[0,T ] onto R. Given small δ > 0, let 1
2 < b ≤

11
16 − δ as in the proof of Proposition 6.11. Then, by proceeding as in (A.9), we have

‖wN‖X0,b([0,T ]) ≤ ‖w̃N‖X0,b(T×R)

≤ CT δ
(‖ũ‖2

X0, 5
16

+ ‖ũN‖2
X0, 5

16

)‖ũ − ũN‖
X0, 5

16

+ C‖ũ‖2
L4
x,t

‖P
> N

3
ũ‖L4

x,t
(A.23)

for T = T (R) > 0 sufficiently small. Noting that (A.23) holds for any extensions ũ
and ũN and that ũ − ũN is an extension of wN |[0,T ], we obtain

‖wN‖X0,b([0,T ]) ≤ CT δ
(‖u‖2

X0, 5
16 ([0,T ])

+ ‖uN‖2
X0, 5

16 ([0,T ])
)‖wN‖

X0, 5
16 ([0,T ])

+ C‖u‖2
L4
t ([0,T ];L4

x )
‖P

> N
3
u‖L4

t ([0,T ];L4
x )

. (A.24)

By making T = T (τ, R) > 0 sufficiently small, it follows from (A.24) with (A.17),
that

‖wN‖L∞([0,T ];L2) ≤ C‖wN‖X0,b([0,T ]) ≤ C‖u‖2L4([0,T ];L4
x )

‖P
> N

3
u‖L4

t ([0,T ];L4
x )

.

Hence, by Lemma 6.19 with (A.18),

‖wN‖L∞([0,T ];L2) = oN (1)

as N → ∞, uniformly in u0 ∈ A.
By repeating the argument, we obtain

‖wN‖X0,b([T,2T ]) ≤ oN (1) + CT δ
(‖u‖2

X0, 5
16 ([T,2T ])

+ ‖uN‖2
X0, 5

16 ([T,2T ])
)‖wN‖

X0, 5
16 ([T,2T ])

+ C‖u‖2L4([T,2T ];L4
x )

‖P
> N

3
u‖L4([T,2T ];L4

x )
.

As before, this in turn implies

‖wN‖L∞
t ([T,2T ];L2

x )
= oN (1)

as N → ∞, uniformly in u0 ∈ A. By arguing iteratively on time intervals of length
T , we can cover the whole time interval [0, τ ] and we conclude that there exists
N1 = N1(τ, ε, R) ∈ N such that

‖�(t)(u0) − P≤N�N (t)(u0)‖L∞
t ([0,τ ];L2

x )
<

ε

2
(A.25)
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for all u0 ∈ A and N ≥ N1.
It remains to control P>N�N (t)(u0). Recall that the solution map �N (t) to (A.16)

is locally uniformly continuous. Moreover, it follows from a slight modification of the
proof of Proposition 6.11 that the modulus of continuity is uniform in N ∈ N. Hence,
for any ε > 0, there exists δ > 0 such that if u0, u1 ∈ BR satisfies ‖u0 − u1‖L2 < δ,
then we have

‖�N (t)(u0) − �N (t)(u1)‖L∞
t ([0,τ ];L2

x )
<

ε

4

for all N ∈ N. By the compactness of A, we can cover A by finitely many ball of
radius δ centered at u0, j , j = 1, . . . , J for some J < ∞ such that, given u0 ∈ A,
there exists j ∈ {1, . . . , J } such that

‖�N (t)(u0) − �N (t)(u0, j )‖L∞
t ([0,τ ];L2

x )
<

ε

4
(A.26)

for all N ∈ N.
Noting that P>N�N (t)(u0, j ) = S(t)P>Nu0, j , there exists N2 ∈ N such that

‖P>N�N (t)(u0, j )‖L∞
t ([0,τ ];L2

x )
= ‖S(t)P>Nu0, j‖L∞

t ([0,τ ];L2
x )

= ‖P>Nu0, j‖L2
x

<
ε

4
(A.27)

for all N ≥ N2 and j = 1, . . . , J .
Therefore, the desired estimate (A.22) follows from (A.25), (A.26), and (A.27).

��
Recall that, if u is a solution to (1.1), then v(t) = S(−t)G[u](t) is a solution to

(3.6), where the gauge transformation G is defined in (3.2). Noting that the truncated
L2-norm

´ |P≤Nu|2dx is conserved for (A.16), define GN by

GN [u](t) = e2i t
ffl |P≤N u|2u (A.28)

for a solution u to (A.16). Then, letting

v = S(−t)GN [u](t),

we see that v is a solution to (6.1). Recalling that �(t) = �(t, 0) and �N (t) =
�N (t, 0) represent the solution maps to (3.6) and (6.1), respectively, we have

�(t)(u0) = S(−t) ◦ G ◦ �(t)(u0) and �N (t)(u0) = S(−t) ◦ GN ◦ �N (t)(u0).
(A.29)

We conclude this appendix by establishing the following approximation property
of (6.1) to (3.6). Lemma 6.20 and (A.29) play an important role.
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Proposition 6.21 Given R > 0, let A ⊂ BR be a compact set in L2(T). Fix t ∈ R.
Then, for any ε > 0, there exists N0 = N0(t, R, ε) ∈ N such that we have

�(t)(A) ⊂ �N (t)(A + Bε) (A.30)

for all N ≥ N0.

Proof By writing �(t)(A) as

�(t)(A) = �N (t)
(
�N (0, t)�(t)(A)

)
,

it suffices to show �N (0, t)�(t)(A) ⊂ A + Bε. Given wN ∈ �N (0, t)�(t)(A), we
havewN = �N (0, t)�(t)(u0) for u0 ∈ A. Thus, we can rewritewN aswN = u0+zN ,
where

zN := �N (0, t)
(
�(t)(u0) − �N (t)(u0)

)
.

By the unitarity of �N (0, t), (A.29), and the unitarity of S(−t), we have

‖zN‖L2 = ‖�(t)(u0) − �N (t)(u0)‖L2

= ‖G ◦ �(t)(u0) − GN ◦ �N (t)(u0)‖L2 .

By the mean value theorem with (3.2) and (A.28) followed by Lemma 6.20 and the
unitarity of �(t), we have

‖zN‖L2 ≤ ‖�(t)(u0) − �N (t)(u0)‖L2 + C
(‖u0‖2L2 − ‖P≤Nu0‖2L2

)‖�(t)u0‖L2

<
ε

2
+ CR2‖P>Nu0‖L2 < ε

for all sufficiently large N � 1, uniformly in u0 ∈ A ⊂ BR . This proves (A.30). ��
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