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Abstract The lace expansion is a powerful perturbative technique to analyze the crit-
ical behavior of random spatial processes such as the self-avoiding walk, percolation
and lattice trees and animals. The non-backtracking lace expansion (NoBLE) is amod-
ification that allows us to improve its applicability in the nearest-neighbor setting on
theZ

d -lattice for percolation, lattice trees and lattice animals. TheNoBLE gives rise to
a recursive formula that we study in this paper at a general level. We state assumptions
that guarantee that the solution of this recursive formula satisfies the infrared bound.
In two related papers, we show that these conditions are satisfied for percolation in
d ≥ 11, for lattice trees in d ≥ 16 and for lattice animals in d ≥ 18.
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1 Introduction and results

1.1 Motivation

We use the non-backtracking lace expansion (NoBLE) to prove the infrared bound
for several spatial models. The infrared bound implies mean-field behavior for these
models. The classical lace expansion is a perturbative technique that can be used to
show that the two-point function of a model is a perturbation of the two-point function
of simple random walk (SRW). This result was used to prove mean-field behavior for
self-avoidingwalk (SAW) [26,28], percolation [24,29], lattice trees and lattice animals
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Generalized approach to the non-backtracking lace expansion 1043

[25], oriented percolation [34], the contact process [33,41] and the Ising model [42]
in high dimensions.

Being a perturbative method in nature, applications of the lace expansion typically
necessitate a small parameter. This small parameter is often the inverse of the degree of
the underlying graph. There are two possible approaches to obtain a small parameter.
The first is to work in a so-called spread-out model, where long-, but finite-range,
connections over a distance L are possible, and we take L large. This approach has
the advantage that the results hold, for L sufficiently large, all the way down to the
critical dimension of the corresponding model. The second approach applies to the
simplest andmost often studiednearest-neighbor version of themodel. For the nearest-
neighbor model, the degree of a vertex is 2d, which has to be taken large in order to
prove mean-field results.

For the self-avoiding walk (SAW) on the nearest-neighbor lattice, Hara and Slade
(1991) [26,28] proved the seminal result that dimension 5 is small enough for the lace
expansion to be applied, thus that mean-field behavior holds in dimension d ≥ 5. This
result is optimal in the sense that we do not expect mean-field behavior of SAW in
dimension 4 and smaller. The dimension 4 thus acts as the upper critical dimension.
Results in this direction, proving explicit logarithmic corrections, can be found in a
series of papers by Brydges and Slade (some also with Bauerschmidt), see [11] and
the references therein.

For percolation, we expect mean-field behavior for dimensions d > 6. Hara and
Slade also proved this result down to d > 6 for the spread-out model with suffi-
ciently large L [24,29]. For the nearest-neighbor setting, Hara and Slade computed
that dimension 19 is large enough. These computations were never published. Through
private communication with Takashi Hara, the authors learned that in a recent rework
of the analysis and implementation the result was further improved to d ≥ 15 for
percolation.

To obtain the mean-field result also in smaller dimensions above the upper critical
dimensions, we rely on the NoBLE. In the NoBLE, we explicitly take the interaction
due to the last edge used into account. Doing this, we reduce the size of the involved
perturbation drastically and are able to show the mean-field behavior for dimensions
closer to the upper critical dimension.

In this paper, we formalize a number of assumptions on the general model and
prove that under these assumptions the two-point function obeys the infrared bound.
The derivation of themodel-dependent NoBLE and the verification of the assumptions
are not part of this article.Weuse the generalized analysis to obtainmean-field behavior
for the following models: lattice trees in d ≥ 16 and lattice animals in d ≥ 18 [17],
and percolation in d ≥ 11 [18].

A NoBLE analysis consists of four steps: Firstly, for a given model, we derive
the perturbative lace expansion. Secondly, we prove diagrammatic bounds on the
perturbation. Thirdly, we analyze the expansion to conclude the infrared bound given
certain assumptions on the expansion. In our analysis, we derive diagrammatic bounds
on the lace-expansion coefficients in terms of simple random walk integrals, which
can be computed explicitly. This allows us to compute numerical bounds on the lace
expansion coefficients. The fourth step consists of the numerical computation of these
SRW-integrals.
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1044 R. Fitzner, R. van der Hofstad

In the accompanying papers [17,18], we perform the first two steps for percolation,
as well as for lattice trees and lattice animals. In this paper and in a model-independent
way, we perform the analysis in the third step and explain the numerical computations
of the fourth step. The numerical computations and the explicit checks of the sufficient
conditions for theNoBLEanalysis to be successful are done inMathematica notebooks
that are available on the website of Robert Fitzner [14].

The analysis presented in this paper is an enhancement of the analyses performed by
Hara and Slade in [27] (see also [24,25,28,29] for related work by Hara and Slade),
and by Heydenreich, the second author and Sakai in [32]. This paper is organized
as follows: In Sect. 1.2, we first introduce simple random walk (SRW) and non-
backtracking walk (NBW). In Sect. 1.4 we state the two basic NoBLE relations that
are perturbed versions of relations describing the NBW. Then, we state the results for
percolation, lattice trees and lattice animals proved in [17,18].

In Sect. 2, we first explain the idea of the proof at a heuristic level. Then, we state
all assumptions required to perform the analysis in the generalized setting and state
the result we prove in this document, namely the infrared bound. We close in Sect. 2.5
with a discussion of our approach.

In Sect. 3, we prove the technical cornerstone of the analysis, namely, that we
can perform the so-called bootstrap argument. For the analysis in Sects. 2–3, we
use a simplified NoBLE form of the two-point function that allows us to present the
analysis in a clearer way. Thus, we also state the assumptions in Sect. 2.2 in terms of
this simplified characterization.

In Sect. 4, we explain how to derive the simplified NoBLE equation starting from
the NoBLE equation for the two-point function, and reformulate the assumptions of
Sect. 2.2 into assumptions on the NoBLE coefficients that are derived and bounded in
the accompanying papers [17,18].

Section 5 is devoted to the numerical part of the computer-assisted proof.We explain
how we compute bounds on the required SRW-integrals. In Sect. 5.3, we explain the
ideas to bound the NoBLE coefficients that are used for all models that we consider.
We end this paper with a general discussion.

1.2 Random walks

We begin by introducing the random walk models that we perturb around and fix our
notation.

1.2.1 Simple random walk

Simple random walk (SRW) is one of the simplest stochastic processes imaginable
and has proven to be useful in countless applications. For a review of SRW and related
models, we refer the reader to [35,37,44].

An n-step nearest-neighbor simple random walk on Z
d is an ordered (n + 1)-

tuple ω = (ω0, ω1, ω2, . . . , ωn), with ωi ∈ Z
d and ‖ωi − ωi+1‖1 = 1, where

‖x‖1 = ∑d
i=1 |xi |. Unless stated otherwise, we take ω0 = �0 = (0, 0, . . . , 0). The

step distribution of SRW is given by
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Generalized approach to the non-backtracking lace expansion 1045

D(x) = 1

2d
δ‖x‖1,1, (1.1)

where δ is the Kronecker delta. For two functions f, g : Z
d �→ R and n ∈ N, we

define the convolution f � g and the n-fold convolution f �n by

( f � g)(x) =
∑

y∈Zd

f (y)g(x − y), (1.2)

and

f �n(x) = ( f �(n−1) � f )(x) = ( f � f � f � · · · � f )(x). (1.3)

We define pn(x) as the number of n-step SRWs with ωn = x , so that, for n ≥ 1,

pn(x) =
∑

y∈Zd

2dD(y)pn−1(x − y) = 2d(D � pn−1)(x) = (2d)nD�n(x). (1.4)

We analyze this function using Fourier theory. For an absolutely summable function
f , we define the Fourier transform of f by

f̂ (k) =
∑

x∈Zd

f (x)eik·x for k ∈ [−π, π ]d , (1.5)

where k · x =∑d
i=1 ki xi , with inverse

f (x) =
∫

(−π,π)d
f̂ (k)e−ik·x ddk

(2π)d
. (1.6)

We use the letter k exclusively to denote values in the Fourier dual space (−π, π)d .
We note that the Fourier transform of f �n(x) is given by f̂ (k)n and conclude that

p̂n(k) = (2d)n D̂n(k), with D̂(k) = 1

d

d∑

ι=1

cos(kι). (1.7)

The SRW two-point function is given by the generating function of pn , i.e., for z ∈ C,

Cz(x) =
∞∑

n=0

pn(x)z
n, and Ĉz(k) = 1

1 − 2dz D̂(k)
(1.8)

in x-space and k-space, respectively. We denote the SRW susceptibility by

χSRW(z) = Ĉz(0) = 1

1 − 2dz
, (1.9)
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1046 R. Fitzner, R. van der Hofstad

with critical point zc = 1/(2d). By the form of Ĉz(k) in (1.8) and using that 1 −
cos(t) ≈ t2/2 for small t ∈ R, we see that Ĉzc (k) = [1 − D̂(k)]−1 ≈ 2d/‖k‖22 for
small k, where ‖ · ‖2 denotes the Euclidean norm. Since small k correspond to large
wave lengths, the above asymptotics is sometimes called the infrared asymptotics.
The main aim in this paper is to formulate general conditions under which the infrared
bound is valid for general spatial models.

1.2.2 Non-backtracking walk

If an n-step SRW ω satisfies ωi �= ωi+2 for all i = 0, 1, 2, . . . , n − 2, then we call
ω non-backtracking. In order to analyze non-backtracking walk (NBW), we derive an
equation similar to (1.4). The same equation does not hold for NBW as it neglects
the condition that the walk does not revisit the origin after the second step. For this
reason, we introduce the condition that a walk should not go in a certain direction ι in
its first step.

We exclusively use the Greek letters ι and κ for values in {−d,−d + 1, . . . ,−1, 1,
2, . . . , d} and denote the unit vector in direction ι by eι ∈ Z

d , e.g. (eι)i = sign(ι)δ|ι|,i .
Let bn(x) be the number of n-step NBWs with ω0 = 0, ωn = x . Further, let bι

n(x)
be the number of n-step NBWs ω with ωn = x and ω1 �= eι. Summing over the
direction of the first step we obtain, for n ≥ 1,

bn(x) =
∑

ι∈{±1,...,±d}
bι
n−1(x + eι). (1.10)

Further, we distinguish between the case that the walk visits −eι in the first step or
not to obtain, for n ≥ 1,

bn(x) = b−ι
n (x) + bι

n−1(x + eι). (1.11)

The NBW two-point functions Bz and Bι
z are defined as the generating functions of bn

and bι
n , respectively, i.e.,

Bz(x) =
∞∑

n=0

bn(x)z
n, Bι

z(x) =
∞∑

n=0

bι
n(x)z

n . (1.12)

Using (1.10) and (1.11) for the two-point functions gives

Bz(x) = δ0,x + z
∑

ι∈{±1,...,±d}
Bι
z(x + eι), Bz(x) = B−ι

z (x) + zBι
z(x + eι). (1.13)

Taking the Fourier transform, we obtain

B̂z(k) = 1 +
∑

ι∈{±1,...,±d}
ze−ikι B̂ι

z(k), B̂z(k) = B̂−ι
z (k) + ze−ikι B̂ι

z(k). (1.14)
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Generalized approach to the non-backtracking lace expansion 1047

In this paper,weuseC
2d -valued andC

2d×C
2d -valued functions. For a clear distinction

between scalar-, vector- and matrix-valued quantities, we always write C
2d -valued

functions with a vector arrow (e.g. �v) and matrix-valued functions with bold capital
letters (e.g.M). We do not use {1, 2, . . . , 2d} as index set for the elements of a vector
or a matrix, but use {−d,−d + 1, . . . ,−1, 1, 2, . . . , d} instead. Further, for a k ∈
(−π, π)d and negative index ι ∈ {−d,−d + 1, . . . ,−1}, we write kι = −k|ι|.

We denote the identity matrix by I ∈ C
2d×2d and the all-one vector by �1 =

(1, 1, . . . , 1)T ∈ C
2d . Moreover, we define the matrices J, D̂(k) ∈ C

2d×2d by

(J)ι,κ = δι,−κ and (D̂(k))ι,κ = δι,κe
ikι . (1.15)

We define the vector �̂Bz(k) with entries (
�̂Bz(k))ι = �̂B

ι

z(k) and rewrite (1.14) as

B̂z(k) = 1 + z�1T D̂(−k) �̂Bz(k), B̂z(k)�1 = J �̂Bz(k) + zD̂(−k) �̂Bz(k). (1.16)

We use JJ = I and D̂(k)D̂(−k) = I to modify the second equation as follows:

B̂z(k)�1 = JD̂(k)D̂(−k) �̂Bz(k) + zJJD̂(−k) �̂Bz(k) = J
(
D̂(k) + zJ

)
D̂(−k) �̂Bz(k)

(1.17)

which implies that

D̂(−k) �̂Bz(k) = B̂z(k)
[
D̂(k) + zJ

]−1
J�1. (1.18)

We use J�1 = �1 and then combine (1.18) with the first equation in (1.16) to obtain

B̂z(k) = 1

1 − z�1T
[
D̂(k) + zJ

]−1 �1
. (1.19)

Then, we use that

[
D̂(k) + zJ

]−1 = 1

1 − z2

(
D̂(−k) − zJ

)
, (1.20)

and �1T D̂(−k)�1 = 2d D̂(k) to conclude that

B̂z(k) = 1

1 − 2dz D̂(k)−z
1−z2

= 1 − z2

1 + (2d − 1)z2 − 2dz D̂(k)
. (1.21)
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1048 R. Fitzner, R. van der Hofstad

The NBW susceptibility is χNBW(z) = B̂z(0) with critical point zc = 1/(2d − 1). The
NBW and SRW two-point functions are related by

B̂z(k) = 1 − z2

1 + (2d − 1)z2
1

1 − 2dz
1+(2d−1)z2

D̂(k)

= 1 − z2

1 + (2d − 1)z2
Ĉ z

1+(2d−1)z2
(k), (1.22)

so that

B̂1/(2d−1)(k) = 2d − 2

2d − 1
Ĉ1/2d(k) = 2d − 2

2d − 1

1

1 − D̂(k)
. (1.23)

This link allows us to compute values for the NBW two-point function in x- and
k-space. A detailed analysis of the NBW, based on such ideas, can be found in [16].

1.3 General setting

We consider general models defined on the d-dimensional hypercubic lattice Z
d . For

these models, the two-point function Gz : Z
d �→ R is the central quantity. The two-

point function is defined for parameters z ∈ [0, zc) where zc acts as the critical value.
As for the SRW and NBW, the susceptibility Ĝz(0) diverges as z approaches zc from
below. The behavior of Gz and Ĝz as z ↗ zc is of special interest. We use the NoBLE
to prove that the two-point function of the general model is a small perturbation of the
critical NBW two-point function (1.23) and thereby obeys the infrared bound.

To do this, we define Gι
z as the two-point function of the model where eι is being

avoided. The precise definition depends on the model. For NBW, eι is avoided in the
first step, for percolation Gι

z is the two-point function of the model defined on the
graph Z

d\{eι}. For the NBW, these two-point functions are linked by the relations
(1.13). In the NoBLE, we adapt these two relations for the general model with model-
dependent perturbations, and bound the arising perturbation coeffcients. For d ≥ 2,
the NoBLE gives rise to functions 
z, 


ι
z, �

ι
z and �

ι,κ
z for ι, κ ∈ {±1, . . . ,±d}, all

mapping from Z
d to R, and a function μz : R+ → R+, such that, for all x ∈ Z

d and
z ∈ [0, zc),

Gz(x) = δ0,x + 
z(x) + μz

∑

y∈Zd

∑

ι∈{±1,...,±d}
(δ0,y + �ι

z(y))G
ι
z(x − y + eι),

(1.24)

Gz(x) = Gι
z(x)+μzG

−ι
z (x−eι)+

∑

y∈Zd

∑

κ∈{±1,...,±d}
�ι,κ

z (y)Gκ
z (x−y + eκ) + 
ι(x).

(1.25)

In our applications, the variable μz is closely related to the main parameter z, but
it is not equal. Therefore, in the analysis we use a second parameter μ̄z that allows
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Generalized approach to the non-backtracking lace expansion 1049

us to control the critical value in the models under consideration. For example, for
percolation we use

μ̄p = p, μp = pPp(e1 not connected to 0| the bond (0, e1) is vacant). (1.26)

(See Sect. 1.4.1, where the percolation model is formally introduced.)
Our goal is to understand the behavior of Gz , where we consider the functions

μz, 
z, 

ι
z, �ι

z,�
ι,κ
z as given. Applying the Fourier transformation on (1.24) and

(1.25) gives

Ĝz(k) = 1 + 
̂z(k) + μz

∑

ι∈{±1,...,±d}
(1 + �̂ι

z(k))e
−ikι Ĝι

z(k), (1.27)

Ĝz(k) = Ĝι
z(k) + μze

ikι Ĝ−ι
z (k) +

∑

κ∈{±1,...,±d}
�̂ι,κ

z (k)e−ikκ Ĝκ
z (k) + 
̂ι(k). (1.28)

We define the vectors �̂Gz(k),
�̂

(k) and �̂

�(k) and the matrix �̂z(k) by

( �̂Gz(k)
)
ι
= Ĝι

z(k),
( �̂
�(k)

)
ι
= �̂ι

z(k),
( �̂

(k)

)
ι
= 
̂ι

z(k),
(
�̂z(k)

)
ι,κ

= �̂ι,κ
z (k).

(1.29)

Then, we can rewrite (1.28) using vectors and matrices as

Ĝz(k)�1 = �̂Gz(k) + μzD̂(k)J �̂Gz(k) + �̂z(k)D̂(−k) �̂Gz(k) + �̂

(k). (1.30)

We obtain from this that

�̂Gz(k) = D̂(k)
[
D̂(k) + μzJ + �̂z(k)

]−1
(Ĝz(k)�1 − �̂


(k)). (1.31)

That this matrix inverse is well defined will be shown in Sect. 4.3. Next, we rewrite
(1.27) in vector-matrix notation and solve for Ĝz(k) as

Ĝz(k) = 1 + 
̂z(k) + μz(�1 + �̂
�z(k))

T D̂(−k) �̂Gz(k)

= 1 + 
̂z(k) + μz(�1 + �̂
�z(k))

T
[
D̂(k) + μzJ + �̂z(k)

]−1
(Ĝz(k)�1 − �̂


z(k))

=
1+
̂z(k)−μz(�1+ �̂

�z(k))T
[
D̂(k)+μzJ + �̂z(k)

]−1 �̂

z(k)

1 − μz(�1 + �̂
�z(k))T

[
D̂(k) + μzJ + �̂z(k)

]−1 �1

= �̂z(k)

1 − F̂z(k)
, (1.32)
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with

�̂z(k) := 1 + 
̂z(k) − μz(�1 + �̂
�z(k))

T
[
D̂(k) + μzJ + �̂z(k)

]−1 �̂

z(k), (1.33)

F̂z(k) := μz(�1 + �̂
�z(k))

T
[
D̂(k) + μzJ + �̂z(k)

]−1 �1. (1.34)

When comparing (1.32)–(1.34) to its equivalent for NBW in (1.19), we see that

(1.32) reduces to (1.19) when taking μz = z, 
̂z(k) = (
�̂
�z(k))κ = (�̂z(k))ι,κ =

(
�̂

z(k))κ = 0 for all z, k, ι, κ . Our analysis is based on the intuition that the NoBLE
coefficients are small in high dimensions. The majority of our work is to quantify this
statement.

Rewrite of the two-point function We use another characterization of the two-point
function Ĝz(k) to perform the analysis.Weextract all contributions involving constants
and D̂(k), by defining cF,z, c�,z, α�,z, αF,z, R̂�,z(k), R̂F,z(k) such that

�̂z(k) := c�,z + α�,z D̂(k) + R̂�,z(k), (1.35)

F̂z(k) := cF,z + αF,z D̂(k) + R̂F,z(k). (1.36)

Then,

Ĝz(k) = �̂z(k)

1 − F̂z(0) + F̂z(0) − F̂z(k)

= c�,z + α�,z D̂(k) + R̂�,z(k)

�̂z(0)/Ĝz(0) + αF,z[1 − D̂(k)] + R̂F,z(0) − R̂F,z(k)
. (1.37)

In Sect. 4, we show how we transform (1.33)–(1.34) into (1.35)–(1.36). Up to that
point, we only work with the representation (1.35)–(1.36) as it simplifies and shortens
the analysis. The quantity in (1.37) reduces to the NBW-equivalent (1.21), when we
set α�,z = R̂F,z(k) = R̂�,z(k) = 0 and c�,z = 1 − z2, αF,z = 2dz, �̂z(0)/Ĝz(0) =
1 + (2d − 1)z2 − 2dz.

1.4 Results for specific models

In this section, we describe the results that our method allows to prove. These results
are proved in two accompanying papers [17,18].

1.4.1 Percolation

Percolation is a central model in statistical physics and is a very active field of research
since its rigorous definition by Broadbent and Hammersley in 1957 [10], where this
model was proposed to describe the spread of a fluid through a medium. General
references for percolation are [6,20,36]. A review of recent results can be found in [21,
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31] and the references therein. We consider Bernoulli percolation on the hypercubic
lattice. We use the definition of [43, Section 9]: To each nearest-neighbor bond {x, y}
we associate an independent Bernoulli random variable n{x,y} which takes the value
1 with probability p and the value 0 with probability 1 − p, where p ∈ [0, 1]. If
n{x,y} = 1, then we say that the bond {x, y} is open, and otherwise we say that it is
closed. A configuration is a realization of the random variables of all bonds. The joint
probability distribution is denoted by Pp with corresponding expectation Ep.

We say that x and y are connected, denoted by x ←→ y, when there exists a path
consisting of open bonds connecting x and y, or when x = y. We denote by C (x)
the random set of vertices connected to x and denote its cardinality by |C (x)|. The
two-point function τp(x) is the probability that 0 and x are connected, i.e.,

τp(x) = Pp(0 ←→ x). (1.38)

By translation invariance Pp(x ←→ y) = τp(x − y) for all x, y ∈ Z
d . We define the

percolation susceptibility, or expected cluster size, by

χ(p) =
∑

x∈Zd

τp(x) = Ep [|C (0)|] . (1.39)

We say that the system percolateswhen there exists a cluster C (x) such that |C (x)| =
∞. We define θ(p) as the probability that the origin is part of an infinite cluster, i.e.,

θ(p) = Pp(|C (0)| = ∞). (1.40)

For d ≥ 2, there exists a critical value pc ∈ (0, 1) such that

pc(d) = inf{p|θ(p) > 0}. (1.41)

Menshikov in 1986 [39], as well as Aizenmann and Barsky in 1987 [2], have proven
that the critical value can alternatively be characterized as

pc(d) = sup {p|χ(p) < ∞} . (1.42)

The percolation probability p �→ θ(p) is clearly continuous on [0, pc), and it is also
continuous (and even infinitely differentiable) on (pc, 1] by the results of [5] (for
infinite differentiability of p �→ θ(p) for p ∈ (pc, 1], see [40]). Thus, the continuity
of p �→ θ(p) on Z

d is equivalent to the statement that θ(pc(d)) = 0.

Critical exponents We introduce three critical exponents for percolation. It is widely
believed that the following limits exist in all dimensions:
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γ = − lim
p↗pc

logχ(p)

log(|p − pc|) , (1.43)

β = − lim
p↘pc

log θ(p)

log(|p − pc|) , (1.44)

1/δ = − lim
n→∞

logPpc (|C (0)| ≥ n)

log n
. (1.45)

A strong form of (1.43)–(1.45) is that there exist constants cχ , cθ , cδ ∈ (0,∞) such
that

χ(p) = (1 + o(1))cχ (pc − p)−γ as p ↗ pc, (1.46)

θ(p) = (1 + o(1))cθ (p − pc)
β as p ↘ pc, (1.47)

Ppc (|C (0)| ≥ n) = (1 + o(1))cδn
−1/δ as n → ∞, (1.48)

and is expected to hold in all dimensions, expect for the critical dimension d = dc,
where logarithmic corrections are predicted. The constants cχ , cθ and cδ depend on
the dimension. We say that these exponents exist in the bounded-ratio sense when the
asymptotics is replaced with upper and lower bounds with different positive constants.
Further, it is believed that there exist η and c1, c2 such that

τpc (x) = (1 + o(1))
c1

|x |d−2+η
, τ̂pc (k) = (1 + o(1))

c2
|k|2−η

, (1.49)

where c1 and c2 depend on the dimension only. For percolation, the existence of many
more exponents is conjectured and partially also proven. See [20, Section 2.2] for
more details. Our main result for percolation is formulated in the following theorem:

Theorem 1.1 (Infrared bound for percolation) The infrared bound τ̂pc (k) ≤
A2(d)/[1− D̂(k)] for some constant A2(d) holds for nearest-neighbor percolation in
dimension d satisfying d ≥ 11. As a result, the critical exponents γ, β, δ and η exist
in the bounded-ratio sense and take their mean-field values γ = β = 1, δ = 2 and
η = 0.

Theorem 1.1 is proved by combining the model-independent results proved in this
paper, with the model-dependent results as proved in [18]. There, we also state and
prove related results on percolation, such as the existence of the so-called incipient
infinite cluster and the existence of one-arm critical exponents. Further, we derive
numerical upper bounds on the critical percolation probability pc(d).

The critical exponents for percolation have received considerable attention in the
literature. For the critical exponents, it is known that β ≤ 1 and γ ≥ 1 for all d ≥ 2,
see Chayes and Chayes [13] and Aizenman and Newman [3]. Further, we know that if
β and γ exists, then β ∈ (0, 1] and γ ∈ [1,∞), see [20, Sections 10.2, 10.4]. In high
dimensions, we expect mean-field behavior for percolation. Namely, we expect that
for all dimensions d > 6, the critical exponents correspond to the exponents of the
regular tree given by γ = β = 1, and η = 0. (For the definition of η for percolation
on trees, see Grimmett [20, Section 10.1].) Alternatively, we can interpret γ = β = 1,
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and η = 0 as the critical exponents for branching random walk, see the discussion in
[31]. An important step to prove mean-field behavior for percolation is the result of
Aizenman and Newman [3] that the finiteness of the triangle diagram, defined by

�(pc) = (τpc � τpc � τpc )(0), (1.50)

implies that γ = 1. This triangle condition also implies that β = 1, see [4]. In
particular, this implies that p �→ θ(p) is continuous.

Hara and Slade [23] use the lace expansion to prove that η = 0 in Fourier space
as well as the finiteness of triangle diagram for d ≥ 7 in the spread-out setting
with a sufficiently large parameter L . In the spread-out setting all bonds {x, y} with
|x− y| ≤ L are independently open or closed. This is an optimal result in the sense that
mean-field behavior is not expected in d ≤ 6, see [46], where Toulouse argues that the
upper critical dimensions dc, above which we can expect mean-field behavior, equals
6. For mathematical arguments why dc = 6, see Chayes and Chayes [13], Tasaki [45]
or [31, Section 11.3.3].

For the nearest-neighbor setting, Hara and Slade proved mean-field behavior in
sufficiently high dimensions [23]. Later, they numerically verified that d = 19 is
sufficiently high by adapting the proof of the seminal result that self-avoiding walk in
dimensions d ≥ 5 satisfies the infrared bound. In private communication with Takashi
Hara, the authors have learned that in a recent improvement of their numericalmethods,
the mean-field result was established for d ≥ 15, and thus this implies Theorem 1.1.
The proof for both these results (d ≥ 15 and d ≥ 19) were never published.

Let us briefly explain how percolation fits into our general framework. For per-
colation, in [18], we perform the non-bracktracking lace expansion (NoBLE) for the
two-point function τp(x) and τ ι

p(x) = Pp(0 ←→ x without using eι). Further, we
bound the coefficients arising in this expansion and check that all general assump-
tions used in the present paper are satisfied. In the NoBLE, we further identify that
μp = pPp(e ∈ C (0)|{0, e} is vacant). For our analysis we also require a bound on
μ̄p = p (recall (1.26)).

1.4.2 Lattice trees and animals

Anearest-neighbor lattice tree (LT) onZ
d is a finite, connected set of nearest-neighbor

bonds containing no cycles (closed loops). A nearest-neighbor lattice animal (LA) on
Z
d is a finite, connected set of nearest-neighbor bonds, which may or may not contain

cycles. Although a tree/animal A is defined as a set of bonds, we write x ∈ A, for
x ∈ Z

d , to denote that x is an element of a bond of A. The number of bonds in A
is denoted by |A|. We define t (a)

n (x) and t (t)n (x) to be the number of LAs and LTs,
respectively, that consist of exactly n bonds and contains the origin and x ∈ Z

d . We
study LA and LT using the one-point function gz and the two-point function Ḡz defined
as

g(a)

z = Ḡ(a)

z (0) =
∑

A:A�0
z|A|, g(t)

z = Ḡ(t)
z (0) =

∑

T :T�0
z|T |, (1.51)
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Ḡ(a)

z (x) =
∞∑

n=0

t (a)

n (x)zn =
∑

A:A�0,x
z|A|, Ḡ(t)

z (x) =
∞∑

n=0

t (t)n (x)zn =
∑

T :T�0,x
z|T |,

(1.52)

where we sum over lattice animals A and trees T , respectively. For technical reasons,
we perform the analysis for the normalised two-point function Gz(x) = Ḡz(x)/gz .
This is not necessary, but simplifies our analysis in the general framework and improves
the numerical performance of our method.

We define the LA and LT susceptibilies by

χ(a)(z) = ˆ̄G(a)

z (0), χ(t)(z) = ˆ̄G(t)
z (0), (1.53)

and denote the radii of convergence of these sums by z(a)
c and z(t)

c , respectively. As
for SRW and NBW, 1/zc describes the exponential growth of the number of LTs/LAs
as the number of bonds n grows. When we drop the superscript (a) or (t), we speak
about LTs and LAs simultaneously. The typical length scale of a lattice tree/animal of
size n is characterized by the average radius of gyration Rn given by

Rn = 1

2t̂n(0)

∑

x∈Zd

‖x‖22tn(x). (1.54)

Critical exponents The asymptotic behavior of tn and Gz can be described using
critical exponents. We define three of these critical exponents for LA and LT. In doing
so we drop the superscripts (a) and (t) as the following holds for LA and LT. It is
believed that there exist γ, δ, ν, η and A1, A2, A3, A4 > 0 such that

χ(z) = (1 + o(1))
A1

(1 − z/zc)γ
, Rn = (1 + o(1))A2 · nν, (1.55)

Ḡzc (x) = (1 + o(1))
A3

‖x‖d−2+η
2

, and ˆ̄Gzc (k) = (1 + o(1))A4‖k‖η−2
2 , (1.56)

as z ↗ zc, n → ∞, ‖x‖2 → ∞ and k → 0, respectively. The exponents are believed
to be universal, in the sense that they do not depend on the detailed lattice structure
(as long as the lattice is non-degenerate and symmetric). In particular, it is believed
that the values of γ, δ, η and ν are the same in the nearest-neighbor setting that we
consider here, and in the spread-out setting. The constants Ai do depend on the lattice
structure.

For LT/LA, it is believed that the critical exponents take their mean-field values
above their upper critical dimension dc, which are γ = 1/2, ν = 1/4, η = 0. These
values correspond to the mean-field model of LT/LA, studied in [7]. It is conjectured
in [38] that the upper critical dimension of LT and LA is dc = 8. This conjecture is
supported by [30], where it is shown that if the “square diagram” is finite at the critical
point, as is believed for d > 8, then the critical exponent γ satisfies γ ≤ 1/2. In [9],
it has been proven that γ ≥ 1/2 in all dimensions.
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For the nearest-neighbor setting that we consider, Hara and Slade give a rigorous
proof of mean-field behavior for LT and LA in sufficiently high dimensions, see [25].
What sufficiently high dimensions means was not made precise. The authors learned
through private communication with Takashi Hara that it was not investigated in which
dimension the classical lace expansion starts to works. In particular, Hara and Slade
expected it to only be successful in dimensionsmuch larger than dc = 8. In the spread-
out settingwith L large enough, Hara and Slade in [25] proved themean-field behavior
for LT and LA in all dimension d > 8. Our main result for LTs and LAs is formulated
in the following theorem:

Theorem 1.2 (Infrared bound for LTs and LAs) The infrared bound ˆ̄Gzc (k) ≤
A(d)/[1 − D̂(k)] holds for some A(d) for nearest-neighbor lattice trees in dimen-
sion d satisfying d ≥ 16, and for nearest-neighbor lattice animals in dimension d
satisfying d ≥ 18. As a result, γ takes its mean-field value γ = 1/2. The critical
exponent η exists in the bounded-ratio sense and takes its mean-field value η = 0.

From our analysis we show directly that η = 0 in Fourier space, see the right side
of (1.56), and can easily deduce that γ = 1/2. The proof that that η = 0 in x-space
is non-trivial and is explained in [17] using the results by Hara [22].

For LTs and LAs, in [17], we perform the non-bracktracking lace expansion
(NoBLE) on the two-point function Ḡz(x) and Ḡι

z(x),which is the two-point function
in which the LT and LA partially avoid eι. In the expansion, we identify μz = zgι

z and
μ̄z = zgz , where gz = Ḡz(0) and gι

z = Ḡι
z(0) are the one-point functions.

The expansion proves two relations for Ḡz(x) and Ḡι
z(x) that are perturbations of

(1.14). TheNoBLEcan further be used to obtain bounds on theNoBLEcoefficients and
to verifies that the assumptions formulated in this paper indeed hold in the dimensions
in Theorem 1.2.

2 Main results

The main result of this paper is the infrared bound in a general setting. In this section,
we first explain the idea of the proof. Then, we state the assumptions on the general
model and prove the infrared bound under these assumptions. We close this section
with a discussion of our results.

2.1 Overview

TheNoBLEwrites Ĝz(k) as a perturbation of the NBW two-point function, see (1.32),
where the perturbation is described by certain NoBLE-coefficients that we denote by

z, 


ι
z, �

κ
z and �

ι,κ
z . In the accompanying papers, we derive the NoBLE and its

coefficients and prove that they can be bounded by a combination of simple diagrams.
Whenwe can bound these simple diagrams, thenwe are able to bound the perturbation,
and thereby also to derive asymptotics for the two-point function.

Thus, we would like to bound simple diagrams for all z ≤ zc. It turn out there
exists a zI ∈ (0, zc) such that we can bound the simple diagrams in terms of NBW
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Fig. 1 Structure of the
bootstrap argument:
improvement of bounds

fi(z) ≤ Γi

fi(z) ≤ γi < Γi

Diagrams

Perturbation

Assume a bound

Conclude a bound

diagrams for all z ≤ zI . For example, for percolation, zI = 1/(2d − 1). To obtain
bounds also for z ∈ (zI , zc), we use a bootstrap argument, which is a common tool
in lace-expansion proofs, see e.g. [12,24,25]. We next explain how such a bootstrap
argument works.

We use the following minor modification of the classical bootstrap argument:

Lemma 2.1 (Bootstrap argument) For i = 1, 2, 3, let z �→ fi (z) be continuous
functions on the interval [zI , zc). Further, let γi , �i ∈ R be such that 1 ≤ γi < �i and
fi (zI ) ≤ γi . If for z ∈ (zI , zc) the condition fi (z) ≤ �i for all i ∈ {1, 2, 3} implies
that fi (z) ≤ γi for all i ∈ {1, 2, 3}, then in fact fi (z) ≤ γi for all z ∈ [zI , zc) and
i ∈ {1, 2, 3}.
Proof We consider the continuous function z �→ maxi=1,2,3 fi (z)/�i and see that the
lemma follows directly from the intermediate value theorem for continuous functions.

��
To apply the bootstrap argument, we use three different functions that we need in

order to bound the lace-expansion coefficients:

(a) f1 to bound the critical values of μ̄z , μz and z ∈ (zI , zc);
(b) f2 to bound the two-point function Gz(x) in Fourier space;
(c) f3 to bound so-called weighted diagrams, such as weighted bubbles or triangles.

We define and explain these functions at the end of this section. We first continue
our explanation at a more heuristic level.

For z = zI , we bound the simple diagrams using the NBW diagrams and use
these bounds to prove that fi (zI ) ≤ γi . This ‘initializes’ the bootstrap argument.
For z ∈ (zI , zc), we use the idea depicted in Fig. 1. First, we assume that fi (z) ≤
�i and use this assumption to conclude bounds on various diagrams consisting of
combinations of two-point functions. Then, we use these bounds to bound the lace-
expansion coefficients. This, in turn, enables us to conclude bounds on the bootstrap
functions fi (z). If these bounds turn out to be such that fi (z) ≤ γi < �i , then we can
use Lemma 2.1 to conclude that fi (z) ≤ γi for all z < zc. These bounds then imply
the infrared bound. We extend the result to zc using a left-continuity property of the
two-point function and the NoBLE coefficients, which we prove in the accompanying
papers as these arguments are model-dependent.

The structure of the proof, shown in Fig. 1, is the reason that we are not able
to prove the infrared bound for all dimensions above the upper critical dimensions
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dc. The perturbation, identified by the NoBLE, is for dimensions close to dc quite
large and reduces as we increase the dimension. Thus, for high dimensions such as
d ≥ 100, it is relatively simple to show that the statement that fi (z) ≤ �i implies that
fi (z) ≤ γi < �i . However, it is very difficult to prove such a statement for dimension
closer to the upper critical dimension dc. The dimensions stated in Theorem 1.1 and
1.2 do not show anything specific about the model, but only the limitation of our
technique. In fact, for example for percolation, d > dc = 6 is the proper condition.

Using exhaustive bounds on the model-dependent NoBLE coefficients and a more
tedious computer-assisted proofmight allow to prove the infrared bound in dimensions
above, yet closer to, dc. Thereby, it is not clear whether it can be used to obtain the
infrared bound for all dimension above dc for percolation, LT and LA.

We next explain the idea of our proof in more detail, so as to further highlight the
ideas in this paper. We continue by defining and discussing the bootstrap functions.

Bootstrap functions For the bootstrap, we use the following functions:

f1(z) := max
{
(2d − 1)μ̄z, cμ(2d − 1)μz

}
, (2.1)

f2(z) := sup
k∈(−π,π)d

|Ĝz(k)|
B̂μc (k)

= 2d − 1

2d − 2
sup

k∈(−π,π)d
[1 − D̂(k)] |Ĝz(k)|, (2.2)

f3(z) := max
{n,l,S}∈S

supx∈S
∑

y ‖y‖22Gz(y)(G�n
z � D�l)(x − y)

cn,l,S
, (2.3)

where cμ > 1 and cn,l,S > 0 are some well-chosen constants and S is some finite set
of indices. Let us now start to discuss the choice of these functions.

The functions f1 and f3 can been seen as the combinations of multiple functions.
We group these functions together as they play a similar role and are analyzed in
the same way. We do not expect that the values of the bounds on the individual
functions constituting f1 and f3 are comparable. This is the reason that we introduce
the constants cμ and cn,l,S .

The value of n is model-dependent. For SAW, we would use only n = 0. For
percolation we use n = 0, 1 and n = 0, 1, 2 for LT and LA. This can intuitively
be understood as follows. By the x-space asymptotics in (1.49) and (1.56), and the
fact that ( f � f )(x) ∼ ‖x‖4−d

2 when d > 4 and f (x) ∼ ‖x‖2−d
2 , we have that

‖y‖22Gz(y) ∼ (Gz � Gz)(y). As a result, this suggests that

∑

y

‖y‖22Gz(y)(G
�n
z � D�l)(x − y) ∼

∑

y

(Gz � Gz)(y)(G
�n
z � D�l)(x − y)

=
(
G�(n+2)

z � D�l
)

(x), (2.4)

so that finiteness of
∑

y ‖y‖22Gz(y)(G�n
z � D�l)(x − y) is related to finiteness of the

bubble when n = 0, of the triangle when n = 1 and of the square when n = 2.
The choices of point-sets S ∈ S improve the numerical accuracy of the method.

For example, we obtain much better estimates in the case when x = 0, since this
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leads to closed diagrams, than for x �= 0. For x being a neighbor of the origin, we can
use symmetry to improve our bounds significantly. To obtain the infrared bound for
percolation in d ≥ 11 we use

S = {{0, 0,X }, {1, 0,X }, {1, 1,X }, {1, 2,X }, {1, 3,X }, {1, 4, {0}}},

with X = {x ∈ Z
d : ‖x‖2 > 1}. This turns out to be sufficient for our main results.

2.2 Assumptions

In this section, we state the assumptions that we need to perform the general NoBLE
analysis. The assumptions are in terms of the simplified formof theNoBLE in (1.37). In
Sect. 4, we derive this simplified NoBLE form of the NoBLE and translate the follow-
ing assumption in terms of the NoBLE-coefficients. We begin with two assumptions
on the two-point function that are completely independent of the expansion:

Assumption 2.2 (Bound for the initial value) There exists a zI ∈ [0, zc) such that

Gz(x) ≤ B1/(2d−1)(x) = 2d − 2

2d − 1
C1/2d(x) (2.5)

for all x ∈ Z
d and z ∈ [0, zI ].

To control the growth of the two-point function as we approach the critical value
zc, we use the following two assumptions:

Assumption 2.3 (Growth of the two-point function) For every x ∈ Z
d , the two-

point functions z �→ Gz(x) and z �→ Gι
z(x) are non-decreasing and differentiable in

z ∈ (0, zc). For all ε > 0 there exists a constant cε ≥ 0 such that for all z ∈ (0, zc −ε)

and x ∈ Z
d\{0},

d

dz
Gz(x) ≤ cε(Gz � D � Gz)(x) and therefore

d

dz
Ĝz(0) ≤ cεĜz(0)

2. (2.6)

For all z ∈ (0, zc), there exists a constant K (z) < ∞ such that
∑

x∈Zd ‖x‖22Gz(x) <

K (z).

Assumption 2.4 (Continuity) For z ∈ [0, zc), z �→ μ̄z and z �→ μz are continuous.

We only consider models where the two-point function has the following set of
symmetries:

Definition 2.5 (Total rotational symmetry) We denote by Pd the set of all permuta-
tions of {1, 2, . . . , d}. For ν ∈ Pd , δ ∈ {−1, 1}d and x ∈ Z

d , we define p(x; ν, δ) ∈ Z
d

to be the vector with entries (p(x; ν, δ)) j = δ j xν j .We say that a function f : Z
d �→ R

is totally rotationally symmetric when f (x) = f (p(x; ν, δ)) for all ν ∈ Pd and
δ ∈ {−1, 1}d .
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Assumption 2.6 (Symmetry) We assume that x �→ Gz(x), x �→ RF,z(x) and x �→
R�,z(x) are totally rotationally symmetric. Further, we assume that the lace-expansion
coefficients satisfy

�̂ι
z(0) = �̂κ

z (0),
∑

ι′
�̂ι′,κ

z (0) =
∑

κ ′
�̂ι,κ ′

z (0) (2.7)

for all ι, κ ∈ {±1,±2, . . . ,±d} and z ≤ zc.

The following is the central assumption to perform the bootstrap. We assume
that if f1(z), f2(z), f3(z) are bounded for a given z ∈ [0, zc), then the functions
αF,z, α�,z, RF,z, R�,z obey certain diagrammatic bounds. The form of these bounds is
delicate and depends sensitively on the precise model under consideration.

Assumption 2.7 (Diagrammatic bounds) Let �1, �2, �3 ≥ 0. Assume that z ∈
(zI , zc) is such that fi (z) ≤ �i holds for all i ∈ {1, 2, 3}. Then, Ĝz(k) ≥ 0 for all
k ∈ (−π, π)d , and the following bounds holdwith β• depending only on�1, �2, �3, d
and the model:

(a) There exist βμ > 1, β
α,F

, βα,F , β|α,�|, βc,�
, βc,� > 0, such that

μ̄z

μz
≤ βμ, β

c,�
≤ c�,z ≤ βc,�, (2.8)

β
α,F

≤ αF,z ≤ βα,F , |α�,z | ≤ β|α,�|. (2.9)

(b) There exist β�ι, β
�κ > 0, such that

∑

x,κ

�ι,κ
z (x) ≤ β�ι,

∑

x

�κ
z (x) ≥ −β

�κ . (2.10)

(c) There exist βR,F , βR,�, β�R,�, β�R,F , β
�R,F

> 0 such that

∑

x

|RF,z(x)| ≤ βR,F ,
∑

x

|R�,z(x)| ≤ βR,�, (2.11)

∑

x

‖x‖22|R�,z(x)| ≤ β�R,�,
∑

x

‖x‖22|RF,z(x)| ≤ β�R,F , (2.12)

R̂F,z(0) − R̂F,z(k) ≥ −β
�R,F

[1 − D̂(k)], (2.13)

for all k ∈ (−π, π)d . Further, we assume that β
α,F

− β
�R,F

> 0 and β
c,�

− β|α,�| −
βR,� > 0. If Assumption 2.2 holds, then the bounds stated above also hold for z = zI ,
where in this case the constants β• only depend on the dimension d and the model.

To extend the infrared bound to z = zc, we use the following assumption:

Assumption 2.8 (Growth at the critical point) We assume that, if the bounds stated
in Assumption 2.7 hold uniformly for z ∈ [zI , zc), then z �→ Ĝz(k) is left-continuous
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at z = zc for any k �= 0, and that the bounds stated in Assumption 2.7 also hold for
z = zc.

Assumptions 2.6–2.8 depend on the NoBLE and are stated in terms of its simplified
form (1.37). In Sect. 4, we replace these assumptions by assumptions on the NoBLE-
coefficients. We have chosen to use the form (1.37) for the analysis, as it simplifies
the presentation of the analysis considerably.

2.3 Main result: infrared bound

To successfully apply the bootstrap argument, we require that we can improve the
bound on the bootstrap functions. This is the content of the following condition:

Definition 2.9 (Sufficient condition for the improvement of bounds) For γ, � ∈ R
3

and z ∈ [zI , zc), we say that P(γ, �, z) holds when fi (z) ≤ �i for i ∈ {1, 2, 3} and
the following conditions hold:

0 ≤ γi < �i for i = 1, 2, 3, (2.14)

γ1 ≥ max

{

f1(zI ),max{βμ, cμ} 1 + β�ι

1 − 2d
2d−1β�κ

}

, (2.15)

γ2 ≥ 2d − 1

2d − 2

βc,� + β|α,�| + β|R,�|
β

α,F
− β

�R,F

, (2.16)

and γ3 is larger than the maximum of the right-hand sides of (3.31) and (3.87).

The last condition states that the initial condition f3(zI ) ≤ γ3 holds and that the
improvement of bounds succeeds for f3. We do not give a formal statement at this
point, as it is involved and would require notation that has not yet been introduced. If
the bootstrap succeeds, then we are able to prove our main result:

Theorem 2.10 (Infrared bound) Let k ∈ [−π, π ]d , zI ∈ [0, zc) and γ, � ∈ R
3. If

Assumptions 2.2–2.8 and P(γ, �, z) hold for all z ∈ [zI , zc), then, for all z ∈ [zI , zc],

Ĝz(k)[1 − D̂(k)] ≤ 2d − 2

2d − 1
γ2, (2.17)

Ĝz(k) ≤ A(d)

1/Ĝz(0) + [1 − D̂(k)] , (2.18)

with

A(d) = βc,� + β|α,�| + βR,�

min
{
β

c,�
− β|α,�| − βR,�, β

α,F
− β

�R,F

} . (2.19)

We postpone the discussion of Theorem 2.10 to Sect. 2.5. We continue to discuss
the strategy of proof.
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2.4 Proof subject to a successful bootstrap

The central statement, that we prove in Sect. 3, is that we can apply the bootstrap
argument when P(γ, �, z) holds. We now formalize this statement in Proposition
2.11:

Proposition 2.11 (A successful bootstrap) Let γ, � ∈ R
3. If Assumptions 2.2–2.8 and

P(γ, �, z) hold for all z ∈ [zI , zc), then the functions f1, f2, f3 defined in (2.1)–(2.3)
are continuous, fi (zI ) < γi for i ∈ {1, 2, 3} hold, and fi (z) ≤ �i for all i ∈ {1, 2, 3}
implies that fi (z) ≤ γi for all i ∈ {1, 2, 3}.

We prove Proposition 2.11 in Sect. 3 one function fi at a time. Now we prove our
main result, Theorem 2.10, assuming that Proposition 2.11 holds:

Proof of Theorem 2.10 subject to Proposition 2.11 By Lemma 2.1,

2d − 1

2d − 2
Ĝz(k)[1 − D̂(k)] ≤ f2(z) ≤ γ2 for all z ∈ (zI , zc). (2.20)

By Assumption 2.8, z �→ Ĝz(k) is left-continuous at z = zc for k �= 0. From this, we
conclude that (2.20) also holds for z = zc and k �= 0, which proves (2.17). To prove
(2.18), we use the bounds of Assumption 2.7 on Ĝz(k) as given in (1.37)

Ĝz(k) = c�,z + α�,z D̂(k) + R̂�,z(k)
c�,z+α�,z D̂(0)+R̂�,z(0)

Ĝz(0)
+ αF,z[1 − D̂(k)] + R̂F,z(0) − R̂F,z(k)

≤ βc,� + β|α,�| + βR,�

β
c,�

−β|α,�|−βR,�

Ĝz(0)
+
(
β

α,F
− β

�R,F

)
[1 − D̂(k)]

≤ βc,� + β|α,�| + βR,�

min
{
β

c,�
− β|α,�| − βR,�, β

α,F
− β

�R,F

}
1

1/Gz(0) + [1 − D̂(k)] , (2.21)

which implies (2.18) and derives the expression for A(d) in (2.19). ��

2.5 Discussion

In general, a proof using theNoBLEconsists of four parts, see alsoFig. 2: (a) the deriva-
tion of the non-backtracking lace expansion or NoBLE; (b) diagrammatic bounds on
the NoBLE coefficients; (c) the analysis of the NoBLE equation; and (d) a numerical
verification of the conditions in P(γ, �, z), using a computer-assisted proof.

Parts (a) and (b) are performed in the model-dependent papers [17,18]. Part (c) is
performed here in a generalized setting. Part (d) is explained in Sect. 5, and is numer-
ically performed in three Mathematica notebooks. In the first notebook, we compute
SRW-integrals for a given dimension, see Sects. 5.1–5.2. In the second notebook, we
implement bounds on the simplified rewrite (1.37) and the bound necessary for the
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General relation

Bounds in
form of diagrams

Coefficients to
describe the
perturbation

Bound on the
perturbation

Prior bounds
on the two-point

function

Numerical values

Expansion
Model dependent

in accompanying papers

Analysis/ Bootstrap
Model independent

in this paper

Numerical bounds
Model dependent

in accompanying Mathematica notebooks

Numerical computation
Model dependent

in accompanying Mathematica notebooks

Diagrammatic bounds
Model dependent

in accompanying papers

Fig. 2 Structure of the non-backtracking lace expansion

improvement of f3, see Appendix D and Sect. 3.3.5, respectively. These two parts
are completely model independent. In the third notebook, we use the values of the
SRW-integrals and the bootstrap assumptions to compute numerical bounds on the
diagrammatic bounds on the NoBLE coefficients. These bounds are then used to ver-
ify the conditions P(γ, �, z), which, when successful, imply that the analysis here
yields the infrared bounds in the specific dimension under consideration. Since the
bounds aremonotone in the dimension, the bounds then also follow for all dimensions
larger than that specific dimension.

In the thesis of the first author [15], the analysis was performed in two ways. The
first was based on the x-space approach, as originally worked out by Hara and Slade
in [27]. This approach was used by Hara and Slade in [27,28] to obtain that mean-field
behavior holds for self-avoiding walk (SAW) in all dimensions d ≥ 5. This is optimal
in the sense that mean-field behavior for SAW in d ≤ 4 should not be true. See [11] and
references therein for results in this direction. Further, Hara and Slade adapted their
method to percolation [24], which led to the famous result that mean-field behavior
for percolation holds for d ≥ 19.

The second analysis was based on the trigonometric approach, first used for finite
tori in [8] and worked out for Z

d in [32,43]. However, it was never verified above
which dimension this technique can be applied. Thus, it was initially not obvious to
us which method would be numerically optimal. It was only by implementing both
methods that we discovered that the x-space approach, combined with the NoBLE
analysis, is numerically superior. This is the reason that we only describe this method
here. In conclusion, our method is, after the derivation of the NoBLE, heavily inspired
by that of Hara and Slade [27]. We have benefitted tremendously from their work, as
well as from the many discussion that we have had with Takashi Hara and Gordon
Slade over the past years. From private communication, we have learned that Takashi
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Hara also managed to prove that percolation in dimension d ≥ 15 obeys the infrared
bound, although this result has not appeared in print. We hope that our method, as
well as the accompanying Mathematica notebooks that are publicly available [14] to
anyone who is interested, increase the transparency of the proof of the infrared bound
for all the models involved.

The main difference between our work and the work by Hara and Slade [27] is
that in our method, the loops creating the perturbative terms are made to consist of at
least 4 bonds, while in the classical lace expansion they could consist of immediate
reversals (2 bonds). This makes the perturbation considerably smaller, and allows for
an analysis that is to amuch larger extentmodel-independent as the analysis in [27] and
its adaptation to percolation. It also explains why our method gives reasonable results
for lattice trees and lattice animals, models that previously had not been attempted by
Hara and Slade. In discussions with Takashi Hara, we have found that our bounds on
e.g. the triangle diagram are slightly better in dimension 15, whereas he has a much
more sophisticated and model-dependent analysis of the lace-expansion coefficients.

For the SAW, we also derived a NoBLE and implemented the bootstrap. In this
way, we can show that mean-field behavior holds for SAW in d ≥ 7, see [15] and
[14]. While the proof for d ≥ 7 is relatively simple, we expect that an extension of the
technique to d = 5, 6 will not produce a substantially simpler proof than that of Hara
and Slade, that is already optimal in the sense that it proves the result in all dimension
above the SAW-upper critical dimension 4. Thus, we have not attempted to improve
upon our result.

Let us dwell a bit on the distinction between the x-space approach and the k-space
or trigonometric approach. We require bounds on weighted diagrams, alike

R̂F,z(0) − R̂F,z(k) =
∑

x

RF,z(x)[1 − cos(k · x)] ≤ [1 − D̂(k)]β. (2.22)

We can either bound the underlying diagram directly in Fourier space or use the
following lemma to translate it into the x-space approach:

Lemma 2.12 (Fourier transforms and step distributions) For a summable, non-
negative function g that is totally rotationally symmetric, as defined in Definition
2.5, the following bound holds:

∑

x

g(x)[1 − cos(k · x)] ≤ [1 − D̂(k)]
∑

x

g(x)‖x‖22. (2.23)

To distribute the weight ‖x‖22 over a large diagram into the weights of parts of the
diagram, we use the relation that, for xi ∈ Z

d :

∥
∥
∥
∥
∥

J∑

i=1

xi

∥
∥
∥
∥
∥

2

2

=
J∑

i=1

‖xi‖22 +
J∑

i=2

xTi

⎛

⎝
i−1∑

j=1

x j

⎞

⎠ ,

∥
∥
∥
∥
∥

J∑

i=1

xi

∥
∥
∥
∥
∥

2

2

≤ J
J∑

i=1

‖xi‖22. (2.24)

The diagrammatic bounds for the k-space approach are very similar, due the following
analogous result, which is of independent interest:
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Lemma 2.13 (Split of cosines) Let t ∈ R and ti ∈ R for i = 1, . . . , J such that
t =∑J

i=1 ti . Then,

1 − cos(t) ≤
J∑

i=1

[1 − cos(ti )] +
J∑

i=2

sin(ti ) sin

⎛

⎝
i−1∑

j=1

t j

⎞

⎠ , (2.25)

1 − cos(t) ≤ J
J∑

i=1

[1 − cos(ti )]. (2.26)

The inequality (2.26) with a factor 2J +1 is commonly used in the lace-expansion lit-
erature.While reviewing the proof, the authors found that aminor adaptation improves
the leading factor to be J . The proof of Lemmas 2.12 and 2.13 can be found in Appen-
dix B.

Let us close this section by proposing some extensions of our work. We do not
manage to prove the infrared bound all the way down to the upper critical dimension
for percolation. For this, we need even better arguments. One might hope that this
can be done by a more careful analysis that compares the interacting models with
memory-m walk for large values ofm. Here, a SRW is called a memory-m walk when
it has no loops of length at most m. Thus, NBW is memory-2. We can easily derive
such a memory-m expansion for SAW, for percolation, LT and LA this is already more
involved.However, the analysis required for this expansion ismuchmore involved, and
we have not tried this more general approach. One particular problem is that we do not
know what the memory-m Green’s function is, so that it is harder to explicitly expand
around this. We think that also for this approach a numerical (and thus computer-
assisted) proof is necessary.

3 Verification of the bootstrap conditions

In this section, we prove Proposition 2.11 one function fi at a time.

3.1 Conditions for f1

In this section, we prove that the properties of f1 in Proposition 2.11 hold.
By Assumption 2.4, z �→ μ̄z and z �→ μz are continuous, so that z �→ f1(z) is

also continuous. From (2.15), we conclude that f1(zI ) ≤ γ1. To show that for all
z ∈ (zI , zc), fi (z) ≤ �i for all i ∈ {1, 2, 3} implies that f1(z) ≤ γ1, we prove
a relation between B̂μ(0) and Ĝz(0). We use the abbreviations ψz = �̂ι(0) and
πι
z = ∑

κ �̂ι,κ (0), where the choice of ι ∈ {±1, . . . ,±d} is by Assumption 2.6 not
relevant.

Lemma 3.1 (Link between NBW and general susceptibility) Let Assumption 2.6 hold
and define
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λz = (1 + ψz)μz

1 + πι
z − μzψz

, so that μz = 1 + πι
z

(1 + ψz)/λz + ψz
. (3.1)

Then, B̂λz (0)�̂z(0) = Ĝz(0) for all z < zc.

Proof Since D̂(0) = I and �̂
�(0) = ψz�1, the two-point function Ĝz(k) in the form of

(1.32) simplifies for k = 0 to

Ĝz(0) = �̂z(0)

1 − μz(�1 + �̂
�(0))T

[
D̂(0) + μzJ + �̂z(0)

]−1 �1

= �̂z(0)

1 − μz(1 + ψz)�1T
[
I + μzJ + �̂z(0)

]−1 �1
. (3.2)

Due to the simple form of I and J and the symmetry of �
ι,κ
z stated in Assumption

2.6, the sum of each column and the sum of each row of I + μzJ + �̂z(0) equals
1+μz+πι. Thus, the one vector �1 is an eigenvector of I+μzJ+�̂z(0) corresponding
to the eigenvalue 1 + μz + πι and we can compute that

Ĝz(0) = �̂z(0)

1 − μz(1 + ψz)
2d

1+μz+πι
z

and B̂λ(0) = 1

1 − 2dλ
1+λ

.

Solving B̂λz (0)�̂z(0) = Ĝz(0) for λz for the first equality, and for μz for the second,
gives the desired result. ��

The above identification allows us to improve the bound on f1 as required in the
bootstrap analysis:

Lemma 3.2 (Improvement of f1) Let z ∈ (zI , zc) and γ, � ∈ R
3. If Assumptions

2.6–2.7 and condition P(γ, �, z) hold, then f1(z) ≤ γ1.

Proof Recall that f1(z) = max
{
(2d − 1)μ̄z, cμ(2d − 1)μz

}
. We select λz as in

Lemma 3.1 and note that λz < (2d − 1)−1 if z < zc as Ĝz(0) = B̂λz (0)�̂z(0) < ∞.
Hence, we can compute that

μz(2d − 1)
Lemma 3.1= (1 + πι

z)(2d − 1)λz

1 + ψz(1 + λz)

(2.10)≤ (1 + β�ι)(2d − 1)λz

1 − β
�κ (1 + λz)

(2d−1)λz≤1≤ 1 + β�ι

1 − 2d
2d−1β�κ

. (3.3)

Using μ̄z
μz

≤ βμ from Assumption 2.7, we obtain

μ̄z(2d − 1) ≤ βμ

1 + β�ι

1 − 2d
2d−1β�κ

. (3.4)
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Thus,

f1(z) ≤ max
{
βμ

1 + β�ι

1 − 2d
2d−1β�κ

, cμ

1 + β�ι

1 − 2d
2d−1β�κ

}
, (3.5)

which is by (2.15) smaller than γ1 when condition P(γ, �, z) holds. ��

3.2 Conditions for f2

In this section, we prove that the properties of f2 in Proposition 2.11 hold. We start
with the required continuity.

Lemma 3.3 (Continuity of f2) The function z �→ f2(z) defined in (2.2) is continuous
for z in [0, zc).
Proof We follow the proof of [32, Lemma 5.3]. To show that f2 is continuous on
[0, zc), we prove that it is continuous on the closed interval [0, zc − ε] for any ε > 0.
Using Assumption 2.3, we know that for any k and z ∈ [0, zc − ε],

∣
∣
∣
∣
d

dz
Ĝz(k)

∣
∣
∣
∣ =

∣
∣
∣
∑

x

eik·x d

dz
Gz(x)

∣
∣
∣ ≤

∑

x

d

dz
Gz(x) = d

dz
Ĝz(0)

≤ cε(Ĝz(0))
2 ≤ cε(Ĝzc−ε(0))

2, (3.6)

where we can interchange differentiation and summation as the sum is bounded in
absolute value, as just shown. From this, we conclude that the derivative of f2(z) is
uniformly bounded on [0, zc − ε], which implies the continuity of f2 on [0, zc − ε].

��
We continue to prove the bootstrap for f2:

Lemma 3.4 (Improvement of f2) Let z ∈ [zI , zc) be such that Assumptions 2.6–2.7
and P(γ, �, z) hold. Then f2(z) ≤ γ2.

Proof Recall that f2(z) = 2d−1
2d−2 supk∈(−π,π)d [1− D̂(k)]Ĝz(k).As already used in the

proof of Theorem 2.10, we know that Assumption 2.7 implies that

|�̂z(k)| ≤ βc,� + β|α,�| + β|R,�|, (3.7)

and

1 − F̂z(k) = �̂z(0)Ĝz(0)
−1 + αF,z[1 − D̂(k)] + R̂F,z(0) − R̂F,z(k)

≥
(
β

α,F
− β

�R,F

)
[1 − D̂(k)], (3.8)

where we use in the last step that 1 − F̂z(0) = (�̂z(0)Ĝ−1
z (0)) = B̂−1

λz
(0) ≥ 0 by

Lemma 3.1. We conclude from this that

|Ĝz(k)|[1 − D̂(k)] = |�̂z(k)|[1 − D̂(k))]
1 − F̂z(k)

≤ βc,� + β|α,�| + β|R,�|
β

α,F
− β

�R,F

. (3.9)
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If condition P(γ, �, z) holds, then this is smaller than γ2, see (2.16), which completes
the proof. ��

3.3 Conditions for f3

In this section, we show that the function f3, defined in (2.3), satisfies the conditions of
the Bootstrap Lemma (Lemma 2.1). Namely, we prove that z �→ f3(z) is continuous,
that f3(zI ) ≤ γ3, and that for all z ∈ (zI , zc), fi (z) ≤ �i for all i ∈ {1, 2, 3} implies
that f3(z) ≤ γ3. As this is more elaborate for f3 than for f1 and f2, we divide the
proof into multiple steps.

The techniques of this section are an adaptation of those used by Hara and Slade
to prove the mean-field behavior for SAW in d ≥ 5, see [28]. The central idea needed
for the adaptation was developed in discussions with Takashi Hara.

3.3.1 Rewrite of f3

We analyze the function

Hn,l
z (x) =

∑

y

‖y‖22Gz(y)(G
�n
z � D�l)(x − y), (3.10)

and conclude the desired results on f3 using that, by definition (2.3),

f3(z) = max
{n,l,S}∈S

supx∈S Hn,l
z (x)

cn,l,S
. (3.11)

We boundHn,l
z using the continuous Laplace operator�. For a differentiable function

g and s ∈ {1, 2, . . . , d}, let ∂sg(k) = ∂
∂ks

g(k) and �g(k) =∑d
s=1 ∂2s g(k). Then,

∂2s Ĝz(k) =
∑

x∈Zd

Gz(x)∂
2
s e

ik·x = −
∑

x∈Zd

x2s Ĝz(k)e
ik·x , (3.12)

�Ĝz(k) = −
∑

x∈Zd

‖x‖22Gz(x)e
ik·x . (3.13)

Thus, we can bound Hn,l
z (x) using the Fourier representation

Hn,l
z (x) = ∫

(−π,π)d
(− � Ĝz(k))D̂l(k)Ĝn

z (k)e
−ik·x ddk

(2π)d
. (3.14)

If we replace Gz in (3.14) by C1/2d (recall (1.8)), then we can compute the value
directly, see Sect. 3.3.3. To obtain a bound for z ∈ (zI , zc), in Sects. 3.3.4, 3.3.5, we
extract a dominant SRW-like contribution from Gz , which we compute directly and
then we bound the remainder terms separately. The bounds are expressed using several
SRW-integrals that can also be computed numerically as we explain in Sect. 5.
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3.3.2 Continuity of f3

Lemma 3.5 (Continuity) The function z �→ f3(z) as defined in (3.10) is continuous
in z ∈ [zI , zc).
Proof We fix an ε > 0 and prove that (Hn,l

z (x))x∈Zd is an equicontinuous family of
functions and is uniformly bounded for all x, n, l for all z ∈ [0, zc − ε). This allows
us to obtain the continuity of z �→ supx∈S Hn,l

z (x) for all sets S directly from the
Arzela-Ascoli Theorem. This implies the continuity of z �→ f3(z) as the index set S
over which we take the maximum in (2.3) is finite. By Assumption 2.3, there exists a
constant K (zc − ε) < ∞ such that

∑

x∈Zd

‖x‖22Gzc−ε(x) < K (zc − ε). (3.15)

Further, Ĝzc−ε(0) = χ(zc − ε) < ∞, so that, uniformly for z ∈ [zI , zc − ε],

Hn,l
z (x) ≤ sup

y
(G�n

z � D�l)(y)K (zc − ε) ≤ χ(zc − ε)nK (zc − ε). (3.16)

By Assumption 2.3,

d

dz
Hn,l

z (x) ≤ cε

∑
y ‖y‖22(Gz � D � Gz)(y)(G�n

z � D�l)(x − y)

+ncε

∑
y ‖y‖22Gz(y)(G

�(n+1)
z � D�(l+1))(x − y). (3.17)

We use that ‖w + x + y‖22 ≤ 3(‖w‖22 + ‖x‖22 + ‖y‖22) for all w, x, y ∈ Z
d to obtain

∑

y∈Zd

‖y‖22(Gz � D � Gz)(y) ≤ 3
∑

w,y

‖w‖22Gz(w)(D � Gz)(y − w)

+ 3
∑

w,y

(Gz � Gz)(y − w)D(w)‖w‖22

+ 3
∑

w,y

(Gz � D)(w)Gz(y − w)‖y − w‖22

≤ 6K (zc − ε)Ĝzc−ε(0) + 3Ĝzc−ε(0)
2. (3.18)

We conclude that

d

dz
Hn,l

z (x) ≤ cε(6K (zc − ε) + 3Gzc−ε(0) + nK (zc − ε))Ĝzc−ε(0)n+1 < ∞.

(3.19)

By the uniformity of this bound in x , we conclude that (Hn,l
z (x))x∈Zd is equicontinu-

ous. ��

123



Generalized approach to the non-backtracking lace expansion 1069

3.3.3 Bound for the initial point f3(zI )

In this section,we prove that f3(zI ) ≤ γ3. ByAssumption 2.2,we can boundGzI (x) ≤
2d−2
2d−1C1/(2d)(x). Thus, we can bound f3(zI ) using only SRW-quantities. We start by

computing the derivatives of Ĉ1/2d(k) = Ĉ(k) = [1 − D̂(k)]−1 and D̂(k), where ∂s
denotes the derivative w.r.t. ks :

d∑

s=1

∂sĈ(k) =
d∑

s=1

∂s D̂(k)

[1 − D̂(k)]2 = −
1
d

∑d
s=1 sin(ks)

[1 − D̂(k)]2 , (3.20)

�Ĉ(k) =
d∑

s=1

(
∂2s D̂(k)

[1 − D̂(k)]2 + 2
(∂s D̂(k))2

[1 − D̂(k)]3
)

, (3.21)

and

�D̂(k) =
d∑

s=1

∂2s D̂(k) = − 1

d

d∑

s=1

cos(ks) = −D̂(k), (3.22)

d∑

s=1

(∂s D̂(k))2 = 1

d2

d∑

s=1

sin2(ks) := D̂sin(k). (3.23)

We use

sin2(ks) = −1

4

(
eiks − e−iks

)2 = 1

2
− 1

4
e2iks − 1

4
e−2iks = 1

2
[1 − cos(2ks)]

(3.24)

to compute that

D̂sin(k) = d

2d2
− 1

4d2
∑

ι

e−2ikι = 1

2d
[1 − D̂(2k)]. (3.25)

We define M̂(k) = D̂(k) − 2D̂sin(k)Ĉ(k) and conclude from the computations above
that

�Ĉ(k) = −Ĉ(k)2M̂(k) = −D̂(k)Ĉ(k)2 + 1

d
Ĉ(k)3 − 1

2d2
∑

ι

e−2ikιĈ(k)3.

(3.26)
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We use this representation to compute the SRW analogue of Hn,l
z (x) as

∑

y

‖y‖22C(y)(D�l � C�n)(x − y)

=
∫

(−π,π)d
D̂l(k)Ĉn+2(k)M̂(k)e−ik·x ddk

(2π)d
(3.27)

=
∫

(−π,π)d
D̂l(k)Ĉn+2(k)

(

D̂(k) − 1

d
Ĉ(k) + 1

2d2
∑

ι

e2ikιĈ(k)

)

e−ik·x ddk

(2π)d
.

(3.28)

As we explain in more detail in Sect. 5.1, we can numerically compute the SRW-
integral

In,l(x) := (D�l � C�n
1/(2d))(x) =

∫

(−π,π)d

D̂l(k)

[1 − D̂(k)]n e
−ik·x ddk

(2π)d
. (3.29)

We use this integral to compute (3.28) numerically as

(3.28) = In+2,l+1(x) − 1

d
In+3,l(x) + 1

2d2
∑

ι

In+3,l(x + 2eι) := Jn,l(x). (3.30)

Thus, f3(zI ) is bounded by

f3(zI ) ≤ 2d − 2

2d − 1
max

{n,l,S}∈S
supx∈S Jn,l(x)

cn,l,S
, (3.31)

By the assumption in P(γ, �, z), this is smaller than γ3.

Remark 3.6 (Close to the upper critical dimension) The bound (3.30) can only be
used in dimension d ≥ 2(n + 3) + 1 as it uses In+3,l+1(x), which is only finite in
these dimensions. This restricts the analysis shown here to dimensions d ≥ dc + 3,
e.g. for percolation we can only use this bound for d ≥ 9 as we require a bound on
H1,0

z (x) to successfully apply the bootstrap argument. This problem can be avoided
using a different bound for the integral. For example, using the bound

D̂sin(k) = 1

d2

d∑

s=1

[1 − cos2(ks)] ≤ 2

d2

d∑

s=1

[1 − cos(ks)] ≤ 2

d
[1 − D̂(k)] (3.32)

in (3.27), we obtain that

∑

y

‖y‖22C(y)(D�l � C�n)(x − y) ≤ In+2,l+1(x) + 4

d
Kn+2,l(x), (3.33)
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wherewe introduce the SRW-integral Kn+2,l(x) in (3.36) below.This and other bounds
applicable in d = dc +1, dc +2, perform numerically worse than the bound in (3.31).
As we are not able to prove mean-field behavior in dimension dc + 1, dc + 2 anyway,
we use the numerically better bound (3.31) instead.

3.3.4 Preparations for the improvement of bounds for f3

We wish to prove for all z ∈ (zI , zc) that fi (z) ≤ �i for all i ∈ {1, 2, 3} implies
f3(z) ≤ γ3. This is the most technical part of our proof. We do this by deriving a
bound on

Hn,l
z (x) =

∫

(−π,π)d
(− � Ĝz(k))D̂

l(k)Ĝn
z (k)e

−ik·x ddk

(2π)d
. (3.14)

For this bound, we extract the SRW-like contributions from (− � Ĝz(k)) by decom-
posing it into five terms H1, . . . , H5. We compute the SRW-like contributions H1 as
in the preceding section and bound the remainder terms using Assumption 2.7 and
certain SRW-integrals that we define next.

SRW-integrals Here we introduce several SRW integrals that we use to bound
Hn,l

z (x). Using the terminology introduced in Definition 2.5, we define

D̂(x)(k) = 1

2dd!
∑

ν∈Pd

∑

δ∈{−1,1}d
eik·p(x;ν,δ). (3.34)

Performing the sum over δ gives cosines, so that D̂(x)(k) is real. The following SRW-
integrals are adaptations of the integrals used in [27, Section 1.6]: For x ∈ Z

d and
n, l ∈ N, we let

In,l(x) =
∫

(−π,π)d
D̂(k)l Ĉ(k)n D̂(x)(k)

ddk

(2π)d
, (3.35)

Kn,l(x) =
∫

(−π,π)d
|D̂(k)|l Ĉ(k)n|D̂(x)(k)| ddk

(2π)d
, (3.36)

Tn,l(x) =
∫

(−π,π)d
|D̂l(k)|Ĉ(k)n|D̂(x)(k)||M̂(k)| ddk

(2π)d
, (3.37)

Un,l(x) =
∫

(−π,π)d
|D̂l(k)|Ĉ(k)n|D̂(x)(k)||D̂sin(k)| ddk

(2π)d
, (3.38)

where Ĉ(k) = Ĉ1/2d(k) is the critical SRW two-point function and M̂(k) is defined
above (3.26). For any function f such that f (x) = f (p(x; ν, δ)) for all ν, δ (see
Definition 2.5), we see that

∫

(−π,π)d
f̂ (k)e−ik·x ddk

(2π)d
=
∫

(−π,π)d
f̂ (k)D̂(x)(k)

ddk

(2π)d
. (3.39)
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The functions Gz and D have these symmetries, so that we can replace eik·x in (3.14)
by D̂(x)(k). In Sect. 5.1, we show how to compute In,l(x), and in Sect. 5.2, we bound
the other integrals in terms of In,l(x).

Decomposition of the two-point function Wedecompose Ĝz(k) and�Ĝz(k) into sev-
eral pieces, which we then bound in the next section. We start with some preparations
for this decomposition. For the SRW-contributions, we define

Ĉ∗(k) = 1

1 − F̂z(0) + αF,z[1 − D̂(k)] . (3.40)

As F̂z(0) ≤ 1 and αF,z > β
α,F

, we know that Ĉ∗(k) < 1
αF,z

Ĉ(k) < β−1
α,F

Ĉ(k). Further,
we conclude from

Ĉ∗(k) = 1

1 − F̂z(0) + αF,z

1

1 − αF,z

1−F̂z(0)+αF,z
+ αF,z

1−F̂z(0)+a
[1 − D̂(k)]

= 1

1 − F̂z(0) + αF,z
Ĉλ(z)(k), (3.41)

with

λ(z) = 1

2d

αF,z

1 − F̂z(0) + αF,z
, (3.42)

and the monotonicity of Cλ(x) in the parameter of the generating function λ that

C∗(x) ≤ 1

1 − F̂z(0) + αF,z
C(x) ≤ 1

αF,z
C(x) ≤ 1

β
α,F

C(x). (3.43)

Thus, C∗ can be bounded by α−1
F,zC in x-space as well as in k-space. We abbreviate

R̂F,z(0; k) = R̂F,z(0) − R̂F,z(k), R̂�,z(0; k) = R̂�,z(0) − R̂�,z(k), (3.44)

Ê(k) = R̂F,z(0; k)Ĉ∗(k)
1 − F̂z(k)

, M̂∗(k) = D̂(k) − 2D̂sin(k)Ĉ∗(k). (3.45)

Bounds on key quantities To bound the remainder terms, we define

K
�F = 1

β
α,F

− β
�R,F

, so that
1

1 − F̂z(k)
≤ K

�FĈ(k). (3.46)

Further, we assume that f2(z) ≤ �2, i.e., that

|Ĝz(k)| ≤ 2d − 2

2d − 1
�2Ĉ(k), (3.47)

123



Generalized approach to the non-backtracking lace expansion 1073

and from now on abbreviate �′
2 = 2d−2

2d−1�2. We use the bound (2.12) in Assumption
2.7 to obtain

|R̂F,z(0; k)| ≤ [1 − D̂(k)]
∑

x

‖x‖22|RF,z(x)| ≤ [1 − D̂(k)]β�R,F . (3.48)

Arguing as in (3.12), (3.13) we can show that

| � R̂F,z(0; k)| =
∣
∣
∣
∣
∣
−
∑

x

‖x‖22RF,z(x)e
ik·x
∣
∣
∣
∣
∣

(2.12)≤ β�R,F . (3.49)

We conclude the same bounds for R̂�,z(0; k), where β�R,F is replaced by β�R,�.
Combining these bounds with Ĉ(k) = 1/[1 − D̂(k)] we obtain

|Ê(k)| ≤
∣
∣
∣
∣
∣

R̂F,z(0; k)Ĉ∗(k)
1 − F̂z(k)

∣
∣
∣
∣
∣
≤ β�R,F K�FĈ

∗(k) ≤ β�R,F K�F

β
α,F

Ĉ(k), (3.50)

and

|[R̂�,z(k) − R̂F,z(0; k)Ĝz(k)]Ĉ∗(k)| ≤ 1

αF,z
(βR,� + β�R,F�

′
2)Ĉ(k), (3.51)

Decomposition of �Ĝz(k) We decompose�Ĝz(k) into five contributions Ĥi (k). The
dominant contribution is Ĥ1(k), which is defined to be

Ĥ1(k) =
(
αF,z(c�,z + α�,z D̂(k))Ĉ∗(k) + α�,z

)
Ĉ∗(k)M̂∗(k). (3.52)

The remainder terms Ĥ2(k), Ĥ3(k), Ĥ4(k) and Ĥ5(k) are defined as

Ĥ2(k) = −
(

αF,z(c�,z + α�,z D̂(k))

(

Ĉ∗(k) + 1

1 − F̂z(k)

)

+ α�,z

)

Ê(k)M̂∗(k)

+ αF,z
R̂�,z(k)

(1 − F̂z(k))2
M̂∗(k), (3.53)

Ĥ3(k) = 2
D̂sin(k)

1 − F̂z(k)

(
αF,z Ĝz(k) + α�,z

)(

Ê(k) − αF,z − 1

1 − Fz(k)

)

, (3.54)

Ĥ4(k) = − �R̂�,z(k)

1 − F̂z(k)
− �R̂F,z(k)

1 − F̂z(k)
Ĝz(k), (3.55)

Ĥ5(k) = −2

∑d
s=1(∂s R̂F,z(k))2 + 2αF,z∂s D̂(k)∂s R̂F,z(k)

(1 − F̂z(k))2
Ĝz(k)

− 2

(1 − F̂z(k))2

d∑

s=1

(
∂s R̂�,z(k)αF,z∂s D̂(k) + ∂s�̂z(k)∂s R̂F,z(k)

)
. (3.56)

123



1074 R. Fitzner, R. van der Hofstad

In Appendix C, we explicitly show that

− �Ĝz(k) =
5∑

i=1

Ĥi (k). (3.57)

This computation is quite long and tedious. However, since it is crucial to our analysis,
we give the derivation in detail in Appendix C. Let us now give some insight into the
origin of the different contributions. The first term Ĥ1(k) is a SRW-like contribution
that can be bounded similarly as in Sect. 3.3.3. The second term Ĥ2(k) corresponds to
everything that has the factor M̂∗(k) and a remainder term. In Ĥ3(k), we collect the
remaining D̂sin(k) contributions. In Ĥ4(k), we put the contributions of �R̂�,z(k) and
�R̂F,z(k), and in Ĥ5(k), we collect all products of single derivatives.

3.3.5 Improvement of bounds for f3

In this section we bound Hn,l
z (x) by deriving bounds on

Hn,l
i,z (x) =

∫

(−π,π)d
Ĥi (k)D̂

l(k)Ĝn
z (k)D̂

(x)(k)
ddk

(2π)d
, (3.58)

for i = 1, . . . , 5. We do this for i = 1, 2, . . . , 5 one by one, starting with Hn,l
1,z(x).

This is the most technical part of the analysis. We bound each term of Hn,l
i,z (x) using

the bounds of Assumption 2.7 and the SRW-integrals (3.35)–(3.38).

Step 1: Bound on Hn,l
1,z(x) We first recall the rearrangement of (3.28)–(3.30) to see

that, for m ≥ 0,

∫

(−π,π)d
D̂(k)l Ĉ∗(k)m+2M̂∗(k)eik·x ddk

(2π)d
=
∑

y

‖y‖22C∗(y)(D�l � (C∗)�m)(x − y)

(3.43)≤ (αF,z)
−(m+1)

∑

y

‖y‖22C(y)(D�l � C�m)(x − y)

= (αF,z)
−(m+1)Jm,l(x). (3.59)

We perform the bounds for n = 0, n = 1 and n = 2 separately.

Bound on a weighted line (n = 0) Substituting the definition of H0,l
1,z(x), we see that

(3.52) leads to three terms. We bound the first and second term using (3.59). For the
third term we can not use an x-space representation like in (3.59). To bound this term
we repeat (3.27)–(3.30) to see that
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∫

(−π,π)d
D̂(k)l Ĉ∗(k)M̂∗(k)eik·x ddk

(2π)d

= (D�(l+1) � C∗)(x) − 1

d
(D�l � C∗ � C∗)(x) + 1

2d2
∑

ι

(D�l � C∗ � C∗)(x + 2eι)

(3.43)≤ 1

αF,z
I1,l+1(x) + 1

2d2
1

α2
F,z

∑

ι

I2,l(x + 2eι). (3.60)

In this way, we obtain

H0,l
1,z(x) ≤ βc,�J0,l(x) + β|α,�|J0,l+1(x) + β|α,�|

β
α,F

I1,l+1(x)

+ 1

2d2
β|α,�|
β2

α,F

∑

ι

I2,l(x + 2eι). (3.61)

Bound on a weighted bubble (n = 1) To boundH1,l
1,z(x), we expand Ĝz(k) as follows:

Ĝz(k) =(c�,z + α�,z D̂(k))Ĉ∗(k) +
(
R̂�,z(k) − R̂F,z(0; k)Ĝz(k)

)
Ĉ∗(k), (3.62)

so that

H1,l
1,z(x) =

∫

(−π,π)d
(c�,z + α�,z D̂(k))Ĥ1(z)Ĉ

∗(k)D̂(x)(k)D̂l(k)
ddk

(2π)d

+
∫

(−π,π)d

(
R̂�,z(k)− R̂F,z(0; k)Ĝz(k)

)
Ĉ∗(k)Ĥ1(z)D̂

(x)(k)D̂l(k)
ddk

(2π)d
.

(3.63)

We bound the first line using (3.59) and the second line using (3.51) to obtain

|H1,l
1,z(x)| ≤ β−1

α,F
(βc,�)2J1,l(x) + βc,�β−1

α,F
β|α,�|J0,l(x) + 2βc,�β−1

α,F
β|α,�|J1,l+1(x)

+ (β|α,�|)
2β−1

α,F
J0,l+1(x) + β−1

α,F
(β|α,�|)

2J1,l+2(x)

+ βR,� + β�R,F�
′
2

β2
α,F

(
βc,�T3,l(x) + β|α,�|T3,l+1(x) + β|α,�|T2,l(x)

)
,

(3.64)

with Tn,l as defined in (3.37).

Bound on a weighted triangle (n = 2). We decompose Ĝ2
z (k) into two terms as

Ĝz(k)
2 = Ĉ∗(k)2(c�,z + α�,z D̂(k))2 (3.65)

+
[
R̂�,z(k) − R̂F,z(0; k)Ĝz(k)

]
Ĉ∗(k)

[
(c�,z+α�,z D̂(k))Ĉ∗(k)+Ĝz(k)

]
.

(3.66)
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We compute the contribution (3.65) to be

Ĥ1(k)Ĉ
∗(k)2(c�,z + α�,z D̂(k))2

= (c�,z + α�,z D̂(k))2
[
αF,z(c�,z + α�,z D̂(k))Ĉ∗(k) + α�,z

]
M̂∗(k)Ĉ∗(k)3.

(3.67)

We expand the brackets and then use (3.59) to bound this contribution by

∫

(−π,π)d
Ĥ1(k)Ĉ

∗(k)2(c�,z + α�,z D̂(k))2 D̂(x)(k)D̂l(k)
ddk

(2π)d

≤ β−2
α,F

(βc,�)2
[
βc,�J2,l(x) + β|α,�|J1,l(x) + 3β|α,�|J2,l+1(x)

]

+ β−2
α,F

(β|α,�|)
2βc,�

[
2J1,l+1(x) + 3J2,l+2(x)

]

+ β−2
α,F

(βα,�)3
[J2,l+3(x) + J1,l+2(x)

]
, (3.68)

where we use that Jn,l(x) ≥ 0 for every x ∈ Z
d , n, l ≥ 0 by (3.28)–(3.30).

Using (3.51) we bound the absolute value of the minor contributions given in (3.66)
by

βR,� + β�R,��′
2

αF,z

(
(βc,� + β|α,�||D̂(k)|)

αF,z
+ �′

2

)

Ĉ(k)2. (3.69)

Thus, we bound the contributions due to (3.66) by

∫

(−π,π)d
|Ĥ1(k)|D̂l(k)

βR,� + β�R,��′
2

αF,z

(
(βc,� + β|α,�||D̂(k)|)

αF,z
+ �′

2

)

Ĉ(k)2|D̂(x)(k)| ddk

(2π)d

≤ βR,� + β�R,��′
2

β2
α,F

(
βc,�

β
α,F

+ �′
2

)
[
βc,�T4,l(x) + β|α,�|T4,l+1(x) + β|α,�|T3,l(x)

]

+ β|α,�|
βR,� + β�R,��′

2

β3
α,F

[
βc,�T4,l+1(x) + β|α,�|T4,l+2(x) + β|α,�|T3,l+1(x)

]
. (3.70)

Conclusion of Step 1 We have bounded the contribution due to Ĥ1(k) and have
obtained that

|Hn,l
1,z(x)| ≤

⎧
⎪⎨

⎪⎩

(3.61) for n = 0,

(3.64) for n = 1,

(3.68) + (3.70) for n = 2.

(3.71)

By the sum of two equation numbers we mean the sum of the terms given in the right-
hand sides of the corresponding equations.As for z = zI , this bound uses In+2,l(x) and
can therefore not be used in d = dc + 1, dc + 2. We have chosen to use these bounds,
even if other bounds would be available, as they give numerically better bounds.
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Step 2: Bound on Hn,l
2,z(x) For this bound we use

T ∗
n,l(x) =

∫

(−π,π)d
|D̂l(k)|Ĉ(k)n|D̂(x)(k)||M̂∗(k)| ddk

(2π)d
, (3.72)

which is an adaptation of Tn,l defined in (3.37). In Sect. 5.2 we will bound T ∗
n,l in the

same way as Tn,l . We bound the absolute value of Ĥ2(k), defined in (3.53), by

|Ĥ2(k)| ≤
(
αF,z( βc,� + β|α,�||D̂(k)|)

(
α−1

F,z + K
�F

)
Ĉ(k) + β|α,�|

)

× β�R,F K�F

Ĉ(k)

αF,z
|M̂∗(k)| + βα,Fβ�R,�K

2
�FĈ(k)2|M̂∗(k)|. (3.73)

We use that |Ĝz(k)| ≤ �′
2Ĉ(k) and the integrals T ∗

n,l to bound Hn,l
2,z(x) by

|Hn,l
2,z(x)| ≤ β�R,F K�F(�

′
2)

n
[
(βc,�T

∗
n+2,l(x) + β|α,�|T

∗
n+2,l+1(x))

(
β−1

α,F
+ K

�F

)

+ β|α,�|β
−1
α,F

T ∗
n+1,l(x)

]
+ βα,Fβ�R,�K

2
�FT

∗
n+2,l(x). (3.74)

Step 3: Bound on Hn,l
3,z(x) In (3.54), we have defined Ĥ3(k) to be

Ĥ3(k) = 2
D̂sin(k)

1 − F̂z(k)

(
αF,z Ĝz(k) + α�,z

)(

Ê(k) − αF,z − 1

1 − Fz(k)

)

. (3.75)

We bound |Ĥ3(k)| as

|Ĥ3(k)| ≤ 2D̂sin(k)K�FĈ(k)
(
αF,z�

′
2Ĉ(k) + α�,z

)
K�FĈ(k)

(
β�R,F

αF,z
+|αF,z−1|

)

.

(3.76)

and use this bound and the integral Un,l , defined in (3.38), to bound |Hn,l
3,z(x)| as

follows:

|Hn,l
3,z(x)| ≤ 2(�′

2)
n+1K 2

�F

(
β�R,F + βα,F max{|βα,F − 1|, |β

α,F
− 1|}

)
Un+3,l(x)

+ 2(�′
2)

nK 2
�Fβ|α,�|

(
β�R,Fβ

−1
α,F

+max{|βα,F − 1|, |β
α,F

− 1|}
)
Un+2,l(x).

(3.77)

Step 4: Bound on Hn,l
4,z(x) We first bound Ĥ4(k) in Fourier space as

|Ĥ4(k)| ≤ K�F

(
β�R,� + β�R,F�

′
2Ĉ(k)

)
.
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Then, we use the definition of Kn,l in (3.36) to bound

|Hn,l
4,z(x)| ≤K

�F

(
β�R,�Kn,l(x) + β�R,F�

′
2Kn+1,l(x)

)
. (3.78)

Step 5: Bound on Hn,l
5,z(x) We recall that

Ĥ5(k) = −2

∑d
s=1 ∂s R̂F,z(k)(2αF,z∂s D̂(k) + ∂s R̂F,z(k))

(1 − F̂z(k))2
Ĝz(k)

− 2

(1 − F̂z(k))2

d∑

s=1

(
∂s R̂�,z(k)αF,z∂s D̂(k) + ∂s�̂z(k)∂s R̂F,z(k)

)
. (3.79)

To bound the single derivatives we note that for a totally rotationally symmetric func-
tion f , see Definition 2.5, the following holds:

∂s f̂ (k) = i
∑

x

xs f (x)e
ik·x = −

∑

x

f (x)xs sin(ks xs)
∏

ν �=s

cos(kνxν), (3.80)

for s ∈ {1, . . . , d}, so that

|∂s f̂ (k)| ≤
∑

x

| f (x)||xs sin(ksxs)|. (3.81)

Since | sin(nt)| ≤ n| sin(t)| for integer n, we obtain that

|∂s f̂ (k)| ≤ | sin(ks)|
∑

x

| f (x)|x2s . (3.82)

The total rotational symmetry of f also implies that

∑

x

| f (x)|x2s =
∑

x

| f (x)|x2t = 1

d

∑

x

| f (x)|‖x‖22 (3.83)

for all s, t ∈ {1, . . . , d}. From this we conclude for two totally rotationally symmetric
functions f, g that

d∑

s=1

|∂s f̂ (k)∂sg(k)| ≤∑d
s=1 sin

2(ks)
∑

x | f (x)|x2s
∑

y |g(y)|y2s

= D̂sin(k)
∑

x ‖x‖22| f (x)|
∑

y ‖y‖22|g(y)|, (3.84)

where we recall (3.23). Using this relation we can bound Ĥ5(k) by
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|Ĥ5(k)Ĝ
n
z (k)| ≤ 2K 2

�F�
′n+1
2 Ĉ(k)n+3 D̂sin(k)(2αF,zβ�R,F + β2

�R,F)

+ 2K 2
�F�

′n
2 Ĉ(k)n+2 D̂sin(k)(αF,zβ�R,� + β|α,�|β�R,F + β�R,Fβ�R,�).

(3.85)

and obtain the following bound on Hn,l
5,z(x):

|Hn,l
5,z(x)| ≤ 2K 2

�F�
′n+1
2 (2βα,Fβ�R,F + β2

�R,F)Un+3,l(x)

+ 2K 2
�F�

′n
2 (βα,Fβ�R,� + β|α,�|β�R,F + β�R,Fβ�R,�)Un+2,l(x). (3.86)

Final bound on f3 In this section, we have bounded f3 by

f3(z) ≤ max
{n,l,S}∈S

supx∈S
{
(3.71) + (3.74) + (3.77) + (3.78) + (3.86)

}

cn,l,S
. (3.87)

We recall that by the sum of several equation numbers we mean the sum of the terms
given in the right-hand sides of the corresponding equations.

In summary and recallingDefinition 2.9,when P(γ, �, z)holds, this boundon f3(z)
is smaller than γ3. Thus, the improvement of all bounds is successful and we have thus
successfully performed the bootstrap. The computation of a numerical value for the
bound in (3.87) requires the computation of the SRW-integrals In,l , Kn,l , Tn,l ,Un,l . In
Sect. 5.2, we show how to bound SRW-integrals and explain for which x the supremum
over S is obtained.

The bootstrap function f3 provides various bounds on weighed diagrams. The real
size of these diagram depends heavily on the values of n, l and the set S involved. For
example,we can expect thatH2,0

z (x) is of orderO(1)whileH2,4
z (x) is of orderO(d−2).

Since the form of the bounds on Hn,l
z (x) is the same for all n, l, we have introduced

the constants cn,l,S to merge them into one bootstrap function. Alternatively, we could
consider f3 to consist of multiple bootstrap functions that are individually bounded
by �3cn,l,S within the bootstrap argument.

4 Rewrite of the NoBLE equation

In the preceding part of this paper, we have performed the analysis using the form
(1.37) for the two-point function. This form is related to the classical lace expansion.
We have decided to use this as it considerably simplifies the presentation of the analysis
in the preceding section.

In this section,wefirst derive this characterization from theNoBLEequation,mean-
ing thatwe identifyα�,z, αF,z, RF,z and R�,z . Then,we translate the assumptionsmade
on the rewrite (1.37) into assumptions on the NoBLE-coefficients 
z, 


ι
z, �

ι
z,�

ι,κ
z .

The aim of the rewrite is to extract the dominant SRW-like contributions from
�̂z and F̂z , see (1.33), (1.34). These SRW-like contributions will give rise to
α�,z, αF,z, c�,z, cF,z . The remainder is put into RF,z and R�,z .
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Here we show how we extract SRW contributions from �̂z and F̂z and use them
in our analysis. More terms could be extracted from �̂z and F̂z , thereby reducing
the value of RF,z and R�,z and thus increasing the performance of the perturbative
technique. This might allow to prove the infrared bound in even smaller dimensions
above the upper critical dimension.We however found the possible gain not in relation
with the necessary efforts.

4.1 Derivation of the rewrite

In this section, we rewrite the functions �̂z(k) and F̂z(k), as defined in (1.33), (1.34),
and identify α�,z, αF,z, RF,z and R�,z . The NoBLE-coefficients are defined as alter-
nating series of non-negative real-valued functions 


(N)
z , 


(N),ι
z , �

(N),ι
z ,�

(N),ι,κ
z :


z(x) =
∞∑

N=0

(−1)N
(N)

z (x), 
ι
z(x) =

∞∑

N=0

(−1)N
(N),ι
z (x), (4.1)

�κ
z (x) =

∞∑

N=0

(−1)N�(N),κ
z (x), �ι,κ

z (x) =
∞∑

N=0

(−1)N�(N),ι,κ
z (x). (4.2)

4.1.1 The model-dependent split of the coefficients

When rewriting the two-point function, we extract a major SRW-like contribution. We
are guided by the intuition that coefficients are of order O((2d)−1) and that the main
contributions to the NoBLE coefficients are


(0)
z (e1) ≈ �(0),ι

z (e1), 
(1)
z (e1) ≈ �(1),κ

z (e1), (4.3)


(0),ι
z (eι) ≈ μz�

(0),ι,κ
z (eι). (4.4)

Due to the limitation of our bounds it is not beneficial to extract all these contributions.
Thus, we create amodel-dependent split of the coefficients to improve the performance
of the technique. We define non-negative functions


(0)
α,z, 
(1)

α,z, �
(0),ι
α,I ,z, �

(0),ι
α,I I ,z, �

(1),ι
α,I ,z, �

(1),ι
α,I I ,z, 


(0),ι
α,I ,z, 


(0),ι
α,I I ,z, �(0),ι,κ

α,z ,



(0)
R,z, 


(1)
R,z, �

(0),ι
R,I ,z, �

(0),ι
R,I I ,z, �

(1),ι
R,I ,z, �

(1),ι
R,I I ,z, 


(0),ι
R,I ,z, 


(0),ι
R,I I ,z, �

(0),ι,κ
R,z .

Here these functions satisfy that, for N = 0, 1 and all x ∈ Z
d ,


(N)

z (x) = 
(N)

α,z(x) + 

(N)

R,z(x), �(0),ι,κ
α,z (x) = �(0),ι,κ

α,z (x) + �
(0),ι,κ
R,z (x),

�(N),ι
z (x) = �

(N),ι
α,I ,z(x) + �

(N),ι
R,I ,z(x) = �

(N),ι
α,I I ,z(x) + �

(N),ι
R,I I ,z(x),


(0),ι
z (x) = 


(0),ι
α,I ,z(x) + 


(0),ι
R,I ,z(x) = 


(0),ι
α,I I ,z(x) + 


(0),ι
R,I I ,z(x),
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and, for x ∈ Z
d with ‖x‖2 > 1,


(N)

α,z(x) = 0, �
(N),ι
α,I ,z(x + eι) = 0, �

(N),ι
α,I I ,z(x) = 0,



(0),ι
α,I ,z(x + eι) = 0, 


(0),ι
α,I I ,z(x) = 0,

and

�(0),ι,κ
α,z (x) = 0,

for x /∈ {eι, eι +eκ }. Further, these functions have the same symmetries as the original
coefficients. The idea behind these two different splits (giving rise to the terms with
subscripts I and I I , respectively) is that we split off specific contributions that can be
explicitly incorporated in the constant and D̂(k) terms in our expansion. Contributions
with subscript I correspond to x for which ‖x − eι‖ ≤ 1, while contributions with
subscript I I correspond to x for which ‖x‖ ≤ 1. In Fourier space, this corresponds to
contributions with a factor eik(x−eι) and eikx , respectively. See (4.14) below for how
such contributions will arise.

4.1.2 The Fourier inverse of F̂ and �̂

Throughout this section, we omit z from our notation and write, e.g., μz = μ and
F̂z(k) = F̂(k). As a first step, we use the Neumann-series to rewrite F̂ and �̂ into
a form without matrices. We use that (D̂(k) + μJ)−1 = (D̂(−k) − μJ)/(1 − μ2) to
rearrange F̂(k) as

F̂(k) = μ
(�1 + �̂

�(k)
) [

D̂(k) + μJ + �̂(k)
]−1 �1

= μ

1 − μ2

(�1 + �̂
�(k)

) [

I + 1

1 − μ2 (D̂(−k) − μJ)�̂(k)

]−1

(D̂(−k) − μJ)�1

= μ

1 − μ2

(�1+ �̂
�(k)

) ∞∑

n=0

(−1)n
(

1

1−μ2 (D̂(−k)−μJ)�̂(k)

)n

(D̂(−k)−μJ)�1

= μ

1 − μ2

∞∑

n=0

∑

ι0,...,ιn

(
1 + �̂ι0(k)

) (−1)n

(1 − μ2)n

×
(

n∏

s=1

(e−ikιs−1 �̂ιs−1,ιs (k) − μ�̂−ιs−1,ιs (k))

)

(e−ikιn − μ). (4.5)

We define F̂n as the nth contribution in the sum in (4.5) and analyze these terms
separately. The Fourier inverse of F̂n = F̂n,z is given by

F0(x) = μ

1 − μ2

∑

ι

(
δx,−eι − μδ0,x + �ι(x + eι) − μ�ι(x)

)
, (4.6)
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Fn(x) = μ
∑

ι0,...,ιn

∑

xi :∑i xi=x

(−1)n(δx0,0 + �ι0(x0))

(1 − μ2)n+1

×
(
n−1∏

s=1

(�ιs−1,ιs (xs + eιs−1) − μ�−ιs−1,ιs (xs))

)

× (�ιn−1,ιn (xn + eιn−1 + eιn ) − μ�ιn−1,ιn (xn + eιn−1)

− μ�−ιn−1,ιn (xn + eιn ) + μ2�−ιn−1,ιn (xn)
)
. (4.7)

In a similar way, we define �n such that

�̂(k) =
∞∑

n=0

�̂n(k), so that also �(x) =
∞∑

n=0

�n(x). (4.8)

These function are given by

�̂0(k) = 1 + 
̂(k) − μ

1 − μ2

∑

ι

(1 + �̂ι(k))(
̂ι(k)e−ikι − μ
̂−ι(k)), (4.9)

�̂n(k) = μ
∑

ι0,...,ιn

(1 + �̂ι0(k))
(−1)n+1

(1 − μ2)n+1 (4.10)

×
n∏

s=1

(
�̂ιs−1,ιs (k)e−ikιs−1 − μ�−ιs−1,ιs (xs)

)
(
̂ιn (k)e−ikιn − μ
̂−ιn (k)).

The Fourier inverses of these functions are

�0(x) = δ0,x+
(x)− μ

1−μ2

∑

ι,y

(δ0,y+�ι(y))(
ι(x−y+eι) − μ
−ι(x − y)),

(4.11)

�n(x) = μ
∑

ι0,...,ιn

∑

xi :∑i xi=x

(δ0,x0 + �ι0(x0))
(−1)n+1

(1 − μ2)n+1

×
n∏

s=1

(�ιs−1,ιs (xs+eιs−1)−μ�−ιs−1,ιs (xs))(

ιn (xn+1+eιn )−μ
−ιn (xn+1)).

(4.12)

4.1.3 Definition of the rewrite

In the rewrite, we extract explicit terms that are independent of k and terms that involve
D̂(k) for F̂ and �̂. Everything else is put into the remainder terms R̂F,z and R̂�,z . The
major contributions that we can extract are part of F̂0 and �̂0. Also F̂1 gives some
contributions. We begin with F̂0 and rewrite it as
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F̂0(k) = μ

1 − μ2

∑

ι

(
1 + �̂ι(k)

)
(e−ikι − μ)

= μ

1 − μ2

(

2d D̂(k) − 2dμ +
∞∑

N=0

∑

ι

(−1)N �̂(N),ι(k)(e−ikι − μ)

)

. (4.13)

Recall that the lace-expansion coefficients are defined via an alternating series of
non-negative functions, see (4.1), (4.2). For N = 0, 1, we split the sum into

∑

ι

�̂(N),ι(k)(e−ikι − μ) =
∑

ι,x

eik·x
(
�(N),ι(x + eι) − μ�(N),ι(x)

)

= 2d(�
(N),ι
α,I (e1) − μ�

(N),ι
α,I I (0))

+ 2d D̂(k)
∑

κ

(
�

(N),1
α,I (e1 + eκ) − μ�

(N),1
α,I I (eκ)

)

+
∑

ι

∑

x∈Zd

eik·x
(
�

(N),ι
R,I (x + eι) − μ�

(N),ι
R,I I (x)

)
, (4.14)

where we see how the splits involving the subscripts I and I I are used to extract
random-walk contributions. From

F̂1(k) = −μ

(1 − μ2)2

∑

ι0,ι1

(
1 + �̂ι0(k)

) (
e−ikι0 �̂ι0,ι1(k) − μ�̂−ι0,ιs (k))

)
(e−ikι1 − μ),

(4.15)

we extract the contribution of 1 × e−ikι0�(0),ι0,ι1 × e−ikι1 and split it as

∑

ι0,ι1

e−i(kι0+kι1 )�̂(0),ι0,ι1(k) = 2d
∑

κ

(
�(0),1,κ

α (e1 + eκ) + D̂(k)�(0),1,κ
α (e1)

)

+
∑

ι0,ι1

∑

x∈Zd

eik·x�(0),ι0,ι1
R (x + eι0 + eι1). (4.16)

We have now collected all the terms of the split in the lines (4.13)–(4.16). The constant
terms contribute to cF,z . Terms involving D̂(k) give rise to αF,z . All other terms
contribute to R̂F,z(k). Thus, we conclude that

cF,z = − 2dμ2
z

1 − μ2
z

+ 2dμz

1 − μ2
z

∑

N∈{0,1}
(−1)N (�

(N),ι
α,I ,z(e1) − μ�

(N),ι
α,I I ,z(0))

− 2dμz

(1 − μ2
z )

2

∑

κ

�(0),1,κ
α,z (e1 + eκ), (4.17)
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αF,z = 2dμz

1 − μ2
z

⎡

⎣1 +
∑

N∈{0,1}
(−1)N

∑

ι

(
�

(N),1
α,I (e1 + eι) − μ�

(N),1
α,I I (eι)

)
⎤

⎦

− 2dμz

(1 − μ2
z )

2

∑

κ

�(0),1,κ
α (e1), (4.18)

and

R̂F,z(k) = F̂z(k) − cF,z − αF,z D̂(k), (4.19)

which is the sum of the final contributions to the right hand side of (4.13), (4.14),
(4.16) and the remainder of (4.15). We rewrite �̂(k) in the same way. We begin by
noting that

�̂0(k) = 1 +
∑

N∈{0,1}
(−1)N 
̂(N)(k) +

∞∑

N=2

(−1)N 
̂(N)(k)

− μ

1 − μ2

∑

ι

(1 + �̂ι(0))(
̂ι(k)e−ikι − μ
̂−ι(k)). (4.20)

For N = 0, 1, we split 
̂(N)(k) as


̂(N)(k) = 
(N)

α (0) + 2d D̂(k)
(N)

α (e1) + 
̂
(N)

R (k). (4.21)

Further, we extract the contribution of the factor 1 and 
(0),ι in the second line of
(4.20) as

∑

x,ι

eik·x (
(0),ι(x + eι) − μ
(0),−ι(0))

= 2d(

(0),ι
α,I (eι) − μ


(0),ι
α,I I (0))

+ 2d D̂(k)
∑

κ

(



(0),ι
α,I (eκ + eι) − μ


(0),ι
α,I I (eκ)

)

+
∑

ι

∑

x∈Zd

eik·x
(



(0),ι
R,I (x + eι) − μ


(0),−ι
R,I I (x)

)
. (4.22)

We define

c�,z = 1 +
∑

N∈{0,1}
(−1)N
(N)

α,z(0) − 2dμz

1 − μ2
z

(



(0),ι
α,I ,z(eι) − μz


(0),ι
α,I I ,z(0)

)
,

(4.23)

α�,z = 2d
∑

N∈{0,1}
(−1)N
(N)

α,z(e1) − 2dμz

1 − μ2
z

∑

κ

(



(0),ι
α,I (eκ + eι) − μz


(0),ι
α,I I (eκ)

)
,

(4.24)
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R̂�,z(k) = �̂z(k) − c�,z − α�,z D̂(k). (4.25)

This completes the derivation of the rewrite (1.35) and (1.36) and identifies
αF,z, α�,z, cF,z, c�,z, R̂F,z and R̂�,z .

At this point, it is worth mentioning that this is not the only possible split. Indeed,
we could try to put more terms into αF,z, α�,z , thus reducing R̂F,z, R̂�,z , and thereby
improving the efficiency of the analysis. However, numerically we found that the
possible gain would not be in relation to the necessary efforts, so we refrain from this.

4.2 Assumption on the NoBLE coefficients

In this section, we reformulate Assumptions 2.6–2.8 on αF,z, α�,z, R̂F,z and R̂�,z in
terms of the NoBLE coefficients. We assume that the NoBLE coefficients have the
following properties:

Assumption 4.1 (Symmetry of the models) Let ι, κ ∈ {±1,±2, . . . ,±d}. The fol-
lowing symmetries hold for all x ∈ Z

d , z ≤ zc, N ∈ N and ι, κ:


(N)

z (x) = 
(N)

z (−x), 
(N),ι
z (x) = 
(N),−ι

z (−x),

�(N),ι
z (x) = �(N),−ι

z (−x), �(N),ι,κ
z (x) = �(N),−ι,−κ

z (−x).

For all N ∈ N, the coefficients


(N)(x),
∑

ι

�(N),ι
z (x),

∑

ι


(N),ι
z (x) and

∑

ι,κ

�(N),ι,κ
z (x), (4.26)

as well as the remainder terms of the split



(N)

R,z(x),
∑

ι

�
(N),ι
R,I ,z(x),

∑

ι

�
(N),ι
R,I I ,z(x),

∑

ι



(0),ι
R,I ,z(x)

∑

ι



(0),ι
R,I I ,z(x),

∑

ι,κ

�
(0),ι,κ
R,z (x), (4.27)

are totally rotationally symmetric functions of x ∈ Z
d . Further, the dimensions are

exchangeable, i.e., for all ι, κ ,

�̂(N),ι
z (0) = �̂(N),κ

z (0), 
̂(N),ι
z (0) = 
̂(N),κ

z (0),
∑

κ ′
�̂(N),ι,κ ′

z (0) =
∑

ι′
�̂(N),ι′,κ

z (0).

(4.28)

The next assumption states a bound on �
(N),κ
z and �

(N),ι,κ
z in terms of 


(N),ι
z :

Assumption 4.2 (Relation between coefficients) For all x ∈ Z
d , p ≤ pc, N ∈ N and

ι, κ ∈ {±1,±2, . . . ,±d}, the following bounds hold:
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�(N),κ
z (x) ≤ μ̄z

μz

(N)

z (x), �(N),ι,κ
z (x) ≤ μ̄z


(N),ι
z (x). (4.29)

As explained in Sect. 2.1, to successfully apply the bootstrap argument, we assume
that the coefficients obey certain bounds when the bootstrap assumption fi (z) ≤ �i

holds for all i ∈ {1, 2, 3} for a given z ∈ [0, zc). These bounds do not depend on
the value of z. However, their form is delicate and depends sensitively on the precise
model under consideration. We assume that the same bounds hold for zI regardless of
the values f1(zI ), f2(zI ), f3(zI ). Assumption 4.3 is the most technical assumption of
this paper, and is phrased so as to allow maximal flexibility in the application of the
NoBLE:

Assumption 4.3 (Diagrammatic bounds) Let �1, �2, �3 ≥ 0. Assume that z ∈
(zI , zc) is such that fi (z) ≤ �i for i ∈ {1, 2, 3} holds. Then Ĝz(k) ≥ 0 for all
k ∈ (−π, π)d . There exists βμ ≥ 1, β

μ
> 0 such that

μ̄z

μz
≤ βμ, μz ≥ β

μ
. (4.30)

Further, there exist β(N)


 , β
(N)


ι , β
(N)

�
, β
(N)

�
ι,0, β
(N)

�
ι,ι ≥ 0, such that


̂(N)

z (0) ≤ β
(N)


 , 
̂(N),ι
z (0) ≤ β

(N)


ι , (4.31)
∑

x

‖x‖22
(N)

z (x) ≤ β
(N)

�
,
∑

x

‖x‖22
(N),ι
z (x) ≤ β

(N)

�
ι,0, (4.32)

∑

x

‖x − eι‖22
(N),ι
z (x) ≤ β

(N)

�
ι,ι
, (4.33)

for all N ≥ 0 and k ∈ (−π, π)d . Moreover, we assume that
∑∞

N=0 β(N)• < ∞ for
• ∈ {
,
ι,�
, {�
ι, 0}, {�
ι, ι}} and that

(2d − 1)μ̄z

1 − μz

∞∑

N=0

β
(N)


ι < 1. (4.34)

Further, there exist β(0)
�
, β(1)

∑
�
such that

�̂(0),ι
z (0) ≥ β(0)

�
,
∑

κ

�̂(1),ι,κ
z (0) ≥ β(1)

∑
�
. (4.35)

Additionally, there exist β(1−0)

α(0), β

(0−1)

α(0), β

(1−0)

α(e1), β

(0−1)

α(e1) with

−β
(1−0)

α(0) ≤ 
(0)

α,z(0) − 
(1)
α,z(0) ≤ β

(0−1)

α(0), (4.36)

−β
(1−0)

α(e1) ≤ 
(0)

α,z(e1) − 
(1)
α,z(e1) ≤ β

(0−1)

α(e1), (4.37)
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and β
(0)

ι

α,I , β
(0)
∑


ι
α,I , β

(0)

ι

α ,I I , β
(0)
∑


ι
α,I I ,≥ 0 such that



(0),ι
α,I ,z(eι) ≤ β

(0)

ι

α,I ,
∑

κ



(0),ι
α,I ,z(eι + eκ) ≤ β

(0)
∑


ι
α,I , (4.38)



(0),ι
α,I I ,z(0) ≤ β

(0)

ι

α,I I ,
∑

κ



(0),ι
α,I I ,z(eκ) ≤ β

(0)
∑


ι
α,I I . (4.39)

Also, there exist β(0−1)
∑

�ι
α,I , β

(0−1)
∑

�ι
α,I I , β

(1−0)
∑

�ι
α,I , β

(1−0)
∑

�ι
α,I I , β

(0)
∑

�α
, β

(0)∑
�α
, such that

−β
(1−0)
∑

�ι
α,I ≤

∑

κ

(
�

(0),ι
α,I ,z(eι + eκ) − �

(1),ι
α,I ,z(eι + eκ)

) ≤ β
(0−1)
∑

�ι
α,I , (4.40)

−β
(1−0)
∑

�ι
α,I I ≤

∑

κ

(
�

(0),ι
α,I I ,z(eκ) − �

(1),ι
α,I I ,z(eκ)

) ≤ β
(0−1)
∑

�ι
α,I , (4.41)

β(0)
∑

�α
≤
∑

κ

�(0),ι,κ
α,z (eι) ≤ β̄

(0)∑
�α

. (4.42)

For N = 0, 1, there exist β(N)


,R, β
(N)

�
,R, β
(N)

�,R,I , β
(N)

��,R,I , β
(N)

�,R,I I , β
(N)

��,R,I I ≥ 0, such that

∑

x



(N)

R,z(x) ≤ β
(N)


,R,
∑

x

‖x‖22
(N)

R,z(x) ≤ β
(N)

�
,R, (4.43)

∑

x

�
(N),ι
R,I ,z(x) ≤ β

(N)

�,R,I ,
∑

x

‖x − eι‖22�(N),ι
R,I ,z(x) ≤ β

(N)

��,R,I , (4.44)

∑

x

�
(N),ι
R,I I ,z(x) ≤ β

(N)

�,R,I I ,
∑

x

‖x‖22�(N),ι
R,I I ,z(x) ≤ β

(N)

��,R,I I . (4.45)

Further, there exist β(0)

ι,R,I , β

(0)
�
ι,R,I , β

(0)

ι,R,I I , β

(0)
�
ι,R,I I , β

(0)
�,R , β

(0)
��,R ≥ 0, such that

∑

x



(0),1
R,I ,z(x) ≤ β

(0)

ι,R,I ,

∑

x

‖x − eι‖22
(0),ι
R,I ,z(x + eι) ≤ β

(0)
�
ι,R,I , (4.46)

∑

x



(0),1
R,I I ,z(x) ≤ β

(0)

ι,R,I I ,

∑

x

‖x‖22
(0),ι
R,I I ,z(x) ≤ β

(0)
�
ι,R,I I , (4.47)

∑

x,ι

�
(0),ι,κ
R,z (x) ≤ β

(0)
�,R,

∑

x,ι,κ

‖x‖22�(0),ι,κ
R,z (x + eι + eκ) ≤ β

(0)
��,R. (4.48)

For all • ∈ {
,
ι,�
, {�
ι, 0}, {�
ι, ι}} and N ∈ N, β(N)• depends only on
�1, �2, �3, d and on the model. If Assumption 2.2 holds, then the bounds stated
above also holds for z = zI with the constants β• only depending on the dimension d
and the model.

Only the bounds (4.30)–(4.33) are essential to perform the analysis for the
NoBLE. The bounds stated in (4.36)–(4.48) are used to obtain good bounds on
c�,z, α�,z, αF,z, R̂F,z and R̂�,z that allow us to increase the performance of the analysis
and to show mean-field result in lower dimensions than otherwise possible.
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We denote by βabs• , βodd• and βeven• the sum over all (resp. odd/even) N of β(N)• , i.e.,

βabs• =
∞∑

N=0

β(N)• , βodd• =
∞∑

N=0

β(2N+1)• , βeven• =
∞∑

N=0

β(2N)• , (4.49)

for • ∈ {
,
ι,�
, {�
ι, 0}, {�
ι, ι}}. By (4.1), the values βeven



, βeven

ι and

(−βodd



), (−βodd

ι ) are explicit upper and lower bounds on 
̂z(0) and 
̂ι

z(0), respec-
tively. By Assumption 4.2 they also imply bounds on �̂ι

z(0) and �̂
ι,κ
z (0).

We next discuss the left-continuity of the coefficients at z = zc:

Assumption 4.4 (Growth at the critical point) The functions z �→ 
̂z(k), z �→

̂ι

z(k), z �→ �̂κ
z (k), z �→ �̂

ι,κ
z (k) are continuous for z ∈ (0, zc). Further, let

�1, �2, �3 ≥ 0 be such that fi (z) ≤ �i and that Assumption 4.3 holds. Then, the
functions stated above are left-continuous in zc with a finite limit z ↗ zc for all
x ∈ Z

d . Further, for technical reasons, we assume that zc < 1/2.

In the remainder of this section we show that Assumptions 4.1–4.4 imply Assump-
tions 2.6–2.8, as formulated in the following proposition:

Proposition 4.5 (Translation of the assumptions) The assumptions stated in Sect. 2.2
are implied by the assumptions stated in Sect. 4.2. More precisely,

(i) Assumption 4.1 implies Assumption 2.6,
(ii) Assumptions 4.1–4.3 imply Assumption 2.7,
(iii) Assumptions 4.2–4.4 imply Assumption 2.8.

The proof of parts (i),(iii) are relatively straightforward and are performed in Sect. 4.3.
Part (ii) is proven using a tedious, but also straightforward, application of the bounds
stated in Assumption 4.3. We add the details of this in Appendix D.

4.3 Properties of the rewrite

In this section, we prove Proposition 4.5(i) and (iii).

Proof of Proposition 4.5(i) In Assumption 4.1, we assume that the dimensions are
interchangeable (recall (4.28)), so that (2.7) clearly holds. Further, we also assume in
Assumption 4.1 that the two-point function x �→ Gz is totally rotationally symmetric.

To see that RF,z and R�,z are totally rotationally symmetric, we note that con-
volutions maintain symmetry and that the NoBLE-coefficients, in the way they are
combined in the definition of RF,z and R�,z , are thus also totally rotationally symmet-
ric. This completes the proof of Proposition 4.5(i). ��
Proof of Proposition 4.5(iii) We prove the statement in three steps:

(a) We prove that [D̂(k) + μzJ + �̂z(k)]−1 is well defined for all k and z ≤ zc;
(b) We conclude that z �→ �̂z(k), z �→ F̂z(k) are continuous at z and well defined at

zc, which implies that the bounds stated in Assumption 2.7 also hold for z = zc;
(c) We show that Ĝz(k) can be continuously extended to z = zc for k �= 0.
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This implies the desired statement that z �→ Ĝz(k) is left-continuous at z = zc for
any k �= 0 and that the bounds stated in Assumption 2.7 also hold for z = zc.

(a) We begin by showing that

∥
∥
∥
[
D̂(k) + μzJ

]−1
�̂z(k)

∥
∥
∥∞ = sup

�v:‖v‖∞=1
max

ι

∣
∣
∣
([
D̂(k) + μzJ

]−1
�̂z(k)�v

)

ι

∣
∣
∣ < 1.

(4.50)

We start by noting that [D̂(k) + μzJ]−1 = 1
1−μ2

z
(D̂(−k) − μzJ), so that

([
D̂(k) + μzJ

]−1
�̂z(k)�v

)

ι
= 1

1 − μ2
z

∑

κ

(�̂ι,κ
z (k)eikι − μz�̂

−ι,κ
z (k))vκ .

(4.51)

Thus, for �v with ‖v‖∞ = 1,

∥
∥
∥
[
D̂(k) + μzJ

]−1
�̂z(k)�v

∥
∥
∥∞ ≤ 1 + μz

1 − μ2
z
‖v‖∞

∑

N ,κ,x

�(N)ι,κ (x)

(4.29),(4.31)≤ 2dμz

1 − μz
βabs


ι

(4.34)
< 1, (4.52)

which proves (4.50). From (4.50), it follows that the matrix I+
[
D̂(k) + μzJ

]−1

�̂z(k) is invertible. Then, we use standard linear algebra to compute

[
I + [D̂(k) + μzJ

]−1
�̂z(k)

]−1 [
D̂(k) + μzJ

]−1[D̂(k) + μzJ + �̂z(k)
]

=
[
I + [D̂(k) + μzJ

]−1
�̂z(k)

]−1 [
I + [D̂(k) + μzJ

]−1
�̂z(k)

]
= I, (4.53)

which implies that the matrix D̂(k) + μzJ + �̂z(k) is invertible.
(b) By Assumption 4.4, we know that the NoBLE coefficients are continuous in z.

This also implies that D̂(k) + μzJ + �̂z(k) is continuous in z and, as it is well
defined by (a), its inverse is also continuous. Further, we note that the bounds on
the coefficients β• are independent of the value of z ∈ (zI , zc) and the coefficients
are left-continuous in z = zc. Reviewing the definition of �̂z(k) and F̂z(k) in
(1.33)–(1.34), we conclude that these functions are continuous in z ∈ (zI , zc)
and left-continuous at z = zc.

(c) The dominated convergence theorem implies that

Gzc (x) = lim
z↗zc

Gz(x) = lim
z↗zc

∫

(−π,π)d

�̂z(k)

1 − F̂z(k)
eik·x ddk

(2π)d

=
∫

(−π,π)d

�̂zc (k)

1 − F̂zc (k)
eik·x ddk

(2π)d
, (4.54)
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where we use the left-continuity of z �→ �̂z(k) and z �→ F̂z(k) at z = zc proved
above, and we further note that β

α,F
− β

�R,F
> 0 and β

c,�
− β|α,�| − βR,� > 0

together with (1.37) imply the infrared bound holds uniformly in [zI , zc) for
�̂z(k)/[1− F̂z(k)], so that the integral in (4.54) is well defined. Thus, we still have
the Fourier representation (1.32), with the understanding that Ĝzc (k) for k �= 0 is
defined by Ĝzc (k) = �̂zc (k)/(1− F̂zc (k)). Since F̂zc (0) = 1, this characterization
can not be used for k = 0. This completes the proof of Proposition 4.5(iii).

��

5 Numerical bounds

In this section we discuss the ideas underlying the numerical computation of our
bounds on the NoBLE coefficients. These ideas are model independent, while the
implementation itself is not. We first explain how we compute the numerical bounds
on the SRW-integrals that we have used for the improvement of bounds in Sect. 3 and
to obtain numerical bounds on the coefficients. Then, we explain how the bootstrap
functions are used to bound simple diagrams. At the end of this section, we explain
howwe compute the βabs• as sums over β(N)• , which is not straightforward as the bounds
on the NoBLE coefficients are stated in the form of matrix-products.

5.1 Simple random walk integrals

We bound the SRW-integrals In,l , Kn,l , Tn,l ,Un,l defined in (3.35)–(3.38). We first
compute In,m(x) and then show that the other integrals can be bounded in terms of it.
We compute In,m(x) using

In,m(x) = In,m−1(x) − In−1,m−1(x), (5.1)

which is obtained bywriting D̂(k) = 1−[1− D̂(k)] in (3.29). Using (5.1), the problem
of computing In,m for general n,m ∈ N simplifies to the computation of In,0 and I0,m
for all n,m ∈ N.

5.1.1 Computation of the Green’s function

We compute In,0 in the sameway as Hara and Slade in [27, Appendix B], as we explain
now. Let b(n, s) be the modified Bessel function of the first kind and F(t, d, n) the
modified Bessel function, i.e.,

b(n, s) =∑∞
k=0(−1)k

( s
2

)2k+n 1
k!�(n+k+1)! , F(t, d, n) = e−t/db(n, t/d),

(5.2)
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see e.g. [19, (8.401) and (8.406)] or [1, Section 9.6]. Using

1

[1 − D̂(k)]n = 1

(n − 1)!
∫ ∞

0
tn−1e−t[1−D̂(k)]dt, (5.3)

we compute

In,0(x) = 1

(n − 1)!
∫ ∞

0
tn−1

d∏

μ=1

F(t, d, |xμ|)dt, (5.4)

see [27, Appendix B]. Most mathematical software packages, such as Mathematica,
Matlab, and R, come with a method to compute the modified Bessel Integral. We have
used Mathematica which allows to control the precision of the computation. With the
built-in function we compute I4,0(x) in d ≥ 15 and I5,0(x) in d ≥ 18 up to a precision
of 10−20. To be able to compute these basic SRW-integrals in lower dimensions, we
implement the algorithm given in [27, Appendix B], where also a rigorous bound on
the error is proven. This algorithm is based on a Taylor approximation of the Bessel
function.

5.1.2 Computation of the random walk transition probability

The computation of I0,m(x) is a purely combinatorial problem as (2d)m I0,m(x) =
pm(x), where pm(x) is the number of m-step SRWs with ω0 = 0, ωm = x . The value
of pn(x) can be obtained by simple combinatorial means. As an example, we explain
the computation of p6(0).

When ω0 = ω6 = 0, the walk uses at most three different dimensions as it needs to
undo all its steps. In the following, we distinguish between the number of dimensions
used by the walker:

� When the walk only uses one dimension, it steps three times to the positive
direction (right) and three times to the negative direction (left). As any combination
of left and right steps is allowed there are 6!/(3!3!) different possibilities for that.
As there are d choices for the dimension used, there are d 6!

3!3! such walks.
� When the walk uses two dimensions, it makes 4 steps in one dimension and
2 in the other. As any combination of moves is allowed, there are 6!/(2!2!1!1!)
different possibilities for that. Further, there are d choices for the dimension in
which to take 4 steps, and likewise d − 1 choices for the dimension where 2 steps
are made. Thus, there are d(d − 1) 6!

2!2! SRW 6-step loops using steps in exactly
two dimensions.
� When the walk uses three dimensions, then there are 2 steps in each dimension.
There are 6! different orders for these 6 steps (including the back and forth steps in
each of the three dimensions). Further, we have to choose 3 out of the d dimensions
(without repetition). This gives a factor d(d−1)(d−2)

3! 6!.
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This means that

p6(0) = d

(
6

3, 3

)

+ d(d − 1)

(
6

2, 2, 1, 1

)

+ d(d − 1)(d − 2)

3!
(

6

1, 1, 1, 1, 1, 1

)

,

(5.5)

where the multinomial coefficient is defined as

(
m

k1, k2, . . . , kr

)

= m!
k1!k2! . . . , kr ! . (5.6)

For our analysis, we use the values of pn(x) for n ∈ {0, . . . , 20} for about 24 different
values of x . We have implemented a program for this, and the algorithm can be found
in the accompanyingMathematica notebooks (see also Sect. 6, where theMathematica
notebooks are described in more detail).

5.2 Bounds on related SRW-integrals

In this section, we show how to bound the integrals defined in (3.36)–(3.38). This sec-
tion is an adaption of [27, Appendix B.1] by Hara and Slade, who computed numerical
bounds on these integrals to prove mean-field behaviour for nearest-neighbour SAW
in d ≥ 5.

Bound in terms of In,l , Ln, Vn We first show how we bound the integrals defining
Kn,l(x), Un,l(x) and Tn,l in terms of In,l , as well as the related integrals Ln(x) and
Vn,l defined by

Ln(x) =
∫

(−π,π)d
Ĉ(k)n D̂(x)(k)2

ddk

(2π)d
(5.7)

and

Vn,l =
∫

(−π,π)d

D̂(k)l [D̂sin(k)]2
[1 − D̂(k)]n

ddk

(2π)d
. (5.8)

We use the Cauchy–Schwarz inequality to bound Kn,l(x) andUn,l(x) defined in (3.36)
and (3.38) by

Kn,l(x) ≤[In,2l(0)Ln(x)]1/2, Un,l(x) ≤ [Vn,2l Ln(x)]1/2. (5.9)

To bound Tn,l defined in (3.37), we use (3.32) and |D̂sin(k)| ≤ 1/d, respectively, to
compute

|M̂(k)| ≤ |D̂(k)| + 2|D̂sin(k)|Ĉ(k) ≤ |D̂(k)| + min

{
4

d
,
2

d
Ĉ(k)

}

. (5.10)
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This leads to

Tn,l(x) ≤
∫

(−π,π)d
|D̂l(k)|Ĉ(k)n|M̂(k)||D̂(x)(k)| ddk

(2π)d

≤ Kn,l+1(x) + min

{
4

d
Kn,l(x),

2

d
Kn+1,l(x)

}

. (5.11)

Next, we discuss improvements for the bounds on Kn,l(x) and Un,l . As |D̂sin(k)| ≤
1/d (recall (3.32)), we know that

Un,l(x) ≤ 1

d
Kn,l(x). (5.12)

For x = 0 and even l, we use D̂(0)(k) = 1, D̂sin(k) ≥ 0 and (3.25) to compute

Un,l(0) = 1

2d

(
In,l(0) − In,l(2e1)

)
. (5.13)

For x = 0 we can use a better bound for Kn,l in the form

Kn,l(0)

{
= In,l(0) if l is even,

≤ In,l−1(0)1/2 In,l+1(0)1/2 if l is odd.
(5.14)

Moreover, we use a different bound for l = 0. We note that, for n ≥ 1,

1

[1 − D̂(k)]n = 1

[1 − D̂(k)]n−1
+ D̂(k)

[1 − D̂(k)]n−1
+ D̂(k)2

[1 − D̂(k)]n , (5.15)

which implies that Kn,l(x) ≤ Kn−1,l(x) + Kn−1,l+1(x) + Kn,l+2(x), and thus

Kn,0(x) ≤Kn−1,0(x) + [In−1,2(0)Ln−1(x)]1/2 + [In,4(0)Ln(x)]1/2. (5.16)

Computation of Ln . By the definition of D̂(x)(k) in (3.34), it is not difficult to see that

Ln(x) =
∫

(−π,π)d

(D̂(x)(k))2

[1 − D̂(k)]n
ddk

(2π)d
= 1

2dd!
∑

μ∈Pd

∑

δ∈{−1,1}d
In,0(x + p(x; ν, δ)).

(5.17)

The setPd and the operator p(x; ν, δ) are defined inDefinition 2.5. Aswe can compute
In,0(x), we can also compute the sum in (5.17) directly.

The value of In,0(x)only depends on the number of entries that have a given absolute
value, so that we can reduce the domain over which we sum. We explain this in two
examples:
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Example 1: Computation of Ln(e1) As the first example, we show that

Ln(e1) = 1

2d
In,0(0) + 1

2d
In,0(2e1) + d − 1

d
In,0(e1 + e2). (5.18)

By symmetry, In,0(e1 + p(e1; ν, δ)) = In,0(e1 + e2) for all δ ∈ {−1, 1}d and ν ∈ Pd

with ν1 �= 1. This explains the third summand of (5.18), where we note that there are
(d − 1)!(d − 1) permutations ν with ν1 �= 1. That leaves (d − 1)! permutations ν with
ν1 = 1. As all entries of p(e1; ν, δ) except the first one are zero, the values δ2, . . . , δd
do not affect the summand. If δ1 = 1, then e1 + p(e1; ν, δ) = 2e1 and if δ1 = −1,
then e1 + p(e1; ν, δ) = 0. The two cases correspond to the first and second term in
(5.18) and complete the proof of (5.18).

Example 2: Computation of Ln(e1 + e2) As the second example, we derive that

Ln(e1 + e2) = (d − 2)(d − 3)

d(d − 1)
In,0(e1 + e2 + e3 + e4)

+ d − 2

2d(d − 1)

(
In,0(e1 + e2) + In,0(2e1 + e2 + e3)

)

+ 1

4d(d − 1)

(
In,0(0) + In,0(2e1 + 2e2) + 2In,0(2e1)

)
. (5.19)

There are 2(d − 2)! permutations ν with {ν1, ν2} = {1, 2}. Further, there are 2(d −
2)!(2d − 2) permutation ν that map 1 to {3, . . . , d} and 2 to {1, 2}. That leaves

d! − 2(d − 2)! − 4(d − 2)!(2d − 2) = (d − 2)!(d − 2)(d − 3) (5.20)

permutations ν that do not map 1 and 2 to the first coordinates, i.e., ν for which
{ν1, ν2} ∩ {1, 2} = ∅. For these ν,

In,0(e1 + e2 + p(e1; ν, δ)) = In,0(e1 + e2 + e3 + e4), (5.21)

which yields the first summand of (5.19). The second corresponds to the case that
either e1 or e2 is mapped to one of the first two coordinates. For example, let us
assume ν1 = 1 and ν2 = 3, then

e1 + e2 + p(e1; ν, δ) ∈ {2e1 ± e2 ± e3,±e2 ± e3}, (5.22)

depending on the sign of δ1. This gives the second summand of (5.19). If we map
e1 + e2 to both of the first two coordinates, then

e1 + e2 + p(e1; ν, δ) ∈ {0, 2e1, 2e2, 2e1 + 2e2}, (5.23)

which only depends on δ1 and δ2. This gives the third summandof (5.19) and completes
the proof of (5.19).
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Computation of Vn,l The equality (3.25) implies that

D̂sin(k)2 = 1

(2d)2
[1 − D̂(2k)]2 = 1

(2d)2

[

1 − 2

2d

∑

ι

e2ikι + 1

(2d)2

∑

ι,κ

e2i(kι+kκ )

]

.

(5.24)

From this, we conclude that

Vn,l =
∫

(−π,π)d

D̂(k)l [D̂sin(k)]2
[1 − D̂(k)]n

ddk

(2π)d
(5.25)

= 1

(2d)2

(

In,l(0)−2In,l(2e1)+ d−1

d
In,l(2e1+2e2)+ 1

2d
In,l(0)+ 1

2d
In,l(4e1)

)

.

Bounds on the suprema of In,l(x), Kn,l(x), Tn,l(x),Un,l(x) In Sect. 3.3, we have
bounded Hn,l

z (x) in terms of SRW-integrals. To compute the bound on f3, we need to
rely on

sup
x∈S

In,l(x), sup
x∈S

Kn,l(x), sup
x∈S

Tn,l(x), sup
x∈S

Un,l(x), (5.26)

for different sets of vertices S. For finite sets, we simply take the maximum of the
elements. To obtain bounds for infinite S, we use monotonicity of the SRW-integrals
as formulated in the following lemma:

Lemma 5.1 (Monotonicity of In,l(x) and Ln,l(x) in x) Let n be a positive integer
and consider x, y ∈ Z

d with x1 ≥ x2 ≥ · · · ≥ xd ≥ 0 and y1 ≥ y2 ≥ · · · ≥ yd ≥ 0.
Then,

In,l(x + y) ≤ In,l(x), Ln(x + y) ≤ Ln(x). (5.27)

This lemma is a combination of [27, Lemmas B.3, B.4]. In the previous sec-
tion, we have obtained bounds on Kn,l(x), Tn,l(x),Un,l(x) for a given x in terms
of In,l(x), Ln(x) and Vn,l . Thus, the supremum in (5.26) is obtained for an x with the
lowest order in the sense of Lemma 5.1. Therefore, when we use the following infinite
set Q = {x ∈ Z

d :∑i |xi | > 2}, we bound the corresponding SRW-integrals by

sup
x∈Q

In,l(x) = max{In,l(3e1), In,l(2e1 + e2), In,l(e1 + e2 + e3)}, (5.28)

sup
x∈Q

Ln(x) = max{Ln,l(3e1), Ln,l(2e1 + e2), Ln,l(e1 + e2 + e3)}. (5.29)

5.3 Bounds implied by the bootstrap functions and SRW integrals

For the analysis presented in the previous sections, we use that bounds on the bootstrap
functions f1, f2 and f3 implybounds on theNoBLEcoefficients, see e.g.,Assumptions
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2.7 and 4.3. In the model-dependent papers, we prove that the coefficients can be
bounded by combinations of simple diagrams. Simple diagrams are diagrams arising
from combinations of two-point functions, like the triangle diagram that we have
already seen for percolation:

�p(x) = (Gz � Gz � Gz)(x). (5.30)

The simple diagrams can then be bounded using the bootstrap function f2, e.g.,

�p(x) =
∫

(−π,π)d
Ĝz(k)

3eik·x ddk

(2π)d

≤
(
2d − 2

2d − 1
�2

)3 ∫

(−π,π)d
Ĉ(k)3

ddk

(2π)d
=
(
2d − 2

2d − 1
�2

)3

I3,0(0), (5.31)

which can be computed numerically. In this section, we present the bounds that we
use in our implementation of the analysis. These bounds are optimized so as to obtain
the best numerical bounds on β possible for Assumption 4.3.

5.3.1 Simple and repulsive diagrams

In this section, we explain how to bound simple diagrams and repulsive diagrams, that
we define below.

The bounds on the simple diagrams are model dependent. However, for all models
that we consider, the bounds are using the same idea that we present below.We require
some notions that have not been introduced yet, namely, theminimal length of an inter-
action, the modified two-point function and repulsive diagrams. As an example, we
give the definitions for percolation. The definitions for LT and LA are straightforward
generalizations.

For percolation, we define {x m←→ y} to be the event that there exists a path

consisting of at leastm open bonds connecting x and y. Similarly,we define {x m←→ y}
as the event that there exists a path consisting of exactly m open bonds connecting
x and y. [This is not the same as the event that the graph distance in the percolation
cluster equals m, but it implies that it is at most m.] To characterize these interactions,
we define the adapted two-point function, which are given for percolation by

Gm,z(x) = Pz

(
x

m←→ y
)

, Gm,z(x) = Pz

(
x

m←→ y
)

. (5.32)

For all models under consideration the following holds, for all n ∈ N,

Gm,z(x) ≤ (2dμ̄z)
mcm(x), (5.33)

where cm(x) is the number ofm-step self-avoidingwalks starting at the origin and end-
ing at x . A diagram is repulsive if the paths involved do not intersect. For percolation,
for example, the repulsive bubble and triangle are given by
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Bm1,m2(x) =
∑

y∈Zd

Pz

(
{0 m1←→ y} ◦ {y m2←→ x}

)
, (5.34)

Tm1,m2,m3(x) =
∑

v,y∈Zd

Pz

(
{0 m1←→ v} ◦ {v m2←→ y} ◦ {y m3←→ x}

)
, (5.35)

where the symbol ◦ denotes the disjoint occurrence, which is a standard notion in
percolation theory, see e.g., [20]. For the examples above, it means that the occupied
paths that are required to exist make use of disjoint sets of bonds.

Below, we use the symbol ( f ⊗ g)(x) to describe that the paths involved for f are
disjoint from the path involved in g. For example, (Gn,z ⊗ Gm,z)(x) represents the
diagram where the path used in Gn,z is disjoint from that used in Gm,z . We define
an(x) to be the number of n-step simple randomwalk from 0 to x that never use a bond
twice, and note that (an ⊗ am)(x) ≤ an+m(x). Further, (an ⊗Gm,z)(x) represents the
combination of an n-step SRW path counted in an and a percolation path of length at
mostm, where, given the n-step SRWpath,Gm,z(x) is the probability that an occupied
percolation path exists that uses different bonds than the n-step SRW. The bounds that
we explain below rely on the following bounds on the two-point function that hold for
all models that we consider:

Gm,z(x) ≤ Bm,0 ≤ (2dμ̄z)
m(am ⊗ Gz)(x), (5.36)

Gm,z(x) ≤
s−1∑

i=m

Gi,z(x) + Gs,z(x) ≤
s−1∑

i=m

(2dμ̄z)
i ai (x) + (2dμ̄z)

s(as ⊗ Gz)(x),

(5.37)

Bn,m(x) ≤ (2dμ̄z)
n(an ⊗ Gm,z)(x) + Bn+1,m(x), (5.38)

for s, n,m ∈ N with s > m.

5.3.2 Bounds on simple diagrams

Here we derive efficient numerical bounds on simple diagrams. Throughout this sec-
tion, we fix n ∈ N and mi ∈ N for i = 1, . . . , n. Further, we use the notation
mi, j =∑ j

s=i ms .
Assuming bounds on the bootstrap functions, we obtain the following bound for

non-repulsive diagrams from (5.33):

(Gm1 � Gm2 � · · · � Gmn ) ≤ (2dμ̄z)
m1,n (D�m1,n � G�n)(x)

≤
(

2d

2d − 1
�1

)m1,n
(
2d − 2

2d − 1
�2

)n

Kn,m1,n (x). (5.39)

When m1,n ≥ 10, we also use this bound also for the repulsive diagrams. For
m1,n < 10, we instead use the repulsiveness to reduce the numerical bounds in most
cases by around 50%. We obtain these improved bound by extracting short, explicit
contributions. In high dimensions, short connections typically give the leading con-
tribution to diagrams, so treating them more precisely often pays off. This requires
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the computation of an(x), for all x ∈ Z
d and n ∈ N. For n < 10, we compute these

values using a simple Java program that can be downloaded from the website of the
first author [14].

We start by explaining the bound on the repulsive bound for the example of a bubble.
We fix an M ∈ N with M ≥ m1 + m2 and use (5.38) to obtain

Bm1,m2(x) ≤
M−m2−1∑

i=m1

(2dμ̄z)
i (ai ⊗ Gz,m2)(x) + BM−m2,m2(x)

≤
M−m2−1∑

s1=m1

([
M−1−s1∑

s2=m2

as1+s2(x)μ̄
s1+s2
z

]

+ (2dμ̄z)
M (D�M � Gz)(x)

)

+ (2dμ̄z)
M (D�M � G�2

z )(x)

=
M−1∑

i=m1,2

(i + 1 − m1,2)ai (x) + (M − m1,2)(2dμ̄z)
M (D�M � Gz)(x)μ̄

i
z

+ (2dμ̄z)
M (D�M � G�2

z )(x). (5.40)

We extend this idea to obtain a bound on the triangle of the form

Tm1,m2,m3(x) ≤
M−1∑

i=m1,3

ai (x)μ̄
i
z

i−m2,3∑

s1=m1

i−m3−s1∑

s2=m2

1

+
M−m2,3−1∑

s=m1

(M − m2,3 − s)(2dμ̄z)
M (D�M � Gz)(x)

+ (M − m1,3)(2dμ̄z)
M (D�M � G�2

z )(x) + (2dμ̄z)
M (D�M � G�3

z )(x)

=
M−1∑

i=m1,3

(i + 1 − m1,3)(i + 2 − m1,3)

2
ai (x)μ̄

i
z

+ (M − m1,3)(M − 1 − m1,3)

2
(2dμ̄z)

M (D�M � Gz)(x)

+ (M − m1,3)(2dμ̄z)
M (D�M � G�2

z )(x)+(2dμ̄z)
M (D�M � G�3

z )(x).
(5.41)

In the same way, we bound the square by

Sm1,m2,m3,m4(x)

≤
M−1∑

i=m1,4

1

6

3∏

s=1

(i−m1,4+s)ai (x)μ̄
i
z+

1

6

3∏

s=1

(M−m1,4+s)(2dμ̄z)
M (D�M � Gz)(x)

+ (M − m1,4)(M − 1 − m1,4)

2
(2dμ̄z)

M (D�M � G�2
z )(x)

+ (M − m1,4)(2dμ̄z)
M (D�M � G�3

z )(x) + (2dμ̄z)
M (D�M � G�4

z )(x). (5.42)
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5.3.3 Bounds on weighted diagrams

Weighted diagrams, such asHn,l
z (x) in (3.10), are boundedusing the bootstrap function

f3, defined in (2.3). It is especially beneficial to extract explicit contributions from
the weighted diagrams, as the bound produced by f3 is not very sharp and H1,l

z (x)
decreases quite fast when we increase l. We conclude from (5.37) that, for l ≤ M ,

H1,l
z (x) =

∑

y

‖y‖22Gz(y)(Gz � D�l)(x − y) ≤
M−1∑

i=l

(2dμ̄z)
i−lH0,i

z (x)

+ (2dμ̄z)
M−lH1,M

z (x). (5.43)

For x that are close to the origin we can boundH0,i
z (x) quite efficiently. We abbreviate

Hz(x) = ‖x‖22Gz(x) and compute that

H0,0
z (0) = Hz(0) = 0, (5.44)

H0,1
z (0) = (D � Hz)(0) = 1

2d

∑

ι

Hz(eι) = Gz(e1), (5.45)

H0,2
z (0) = (D � D � Hz)(0) = 1

(2d)2

∑

ι,κ

‖eι + eκ‖22Gz(eι + eκ),

= 1

2d
(4(2d − 2)Gz(e1 + e2) + 4Gz(2e1)) . (5.46)

Most of the weighted diagram that arise in our bounds on the NoBLE coefficient are
repulsive. Using this repulsiveness, we can make another substantial improvement.
As an example, let us consider (a1 ⊗ Hz)(0). All connections counted in Hz need to
make at least three steps as the direct step is used by a1, so that

1

2d
(a1 ⊗ Hz)(0) = (D ⊗ Hz)(0) = G3,z(e1), (5.47)

which is numerically a factor 1/2d better than the bound in (5.45). If we consider two
explicit steps of eι + eκ , then we obtain the bound

(a2 ⊗ Hz)(0) ≤ 8d((2d − 2)μ̄4
z + G6,z(2e1))

+ 8d(2d − 2)(μ̄2
z + 4(2d − 3)μ̄4

z + G6,z(e1 + e2)). (5.48)

In our computations we have extracted all paths up to a length of six and manually
computed the number of percolation paths that do not use any bond of the first path.
This leads to excellent bounds on closedweighted repulsive diagrams. For bubbles and
triangles, we extend the idea used in (5.40), (5.41) form1,m2 ∈ N withm1+m2 < 6,
to compute that

(Gm1,z ⊗ Hz)(0) ≤
5∑

i=m1

μ̄i
z(ai ⊗ Hz)(0) + (G6,z ⊗ Hz)(0), (5.49)
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(Gm1,z ⊗ Gm2,z ⊗ Hz)(0) ≤
5∑

i=m1+m2

1
2 (i+1−m1−m2)(i+2−m1−m2)μ̄

i
z(ai ⊗ Hz)(0)

+ (6 − m1 − m2)μ̄
6
z (a6 ⊗ Gz ⊗ Hz)(0)

+ μ̄6
z (a6 ⊗ Gz ⊗ Gz ⊗ Hz)(0). (5.50)

The terms involving ai ⊗ Hz are computed explicitly. All contributions involving
a Gz factor also contain a factor a6, numerically making them of order d−3. Since
Hz(y) = ‖y‖2Gz(y), we can bound these minor contributions using f3 by removing
the added restrictions that the ⊗ convolution imposes and replacing it by a normal
convolution. In this bound, we even bound a6(y) ≤ (2d)6D�6(y). Following this
strategy, we reduce the effect of the bad bound f3 and enhance our numerical bounds.

5.4 Analysis of matrix-valued diagrammatic bounds

In Sect. 4, we use the bounds in Assumption 4.3 to bound the terms appearing in the
rewrite of the NoBLE equation. These bounds are stated in terms of the functions
(N)

and 
(N),ι. Bounds on these quantities are proved in the model-dependent articles,
where they are stated in terms of matrix products, such as

∑

x


(N)(x) ≤ �vTBN �w, (5.51)

∑

x

‖x‖22
(N)(x) ≤ (N + 2)

(

�hTBN �w +
N−1∑

M=0

�vTBMCBN−M−1 �w + �vTBN �h
)

,

(5.52)

where �h, �v, �w ∈ R
n+ and B,C ∈ R

n×n+ for some n ≥ 2 and N ≥ 0. We need to sum
these bounds over various sets of N to create βabs• , βodd• and βeven• .

In this section, we explain how we compute the sum of these estimates. As a first
step, we compute the eigensystem/spectrum of B, so the left eigenvectors �ηi and right
eigenvectors �ζi to the eigenvalue λi . In our applications, there always exists a set of
n independent left and right eigenvectors. As these vectors are linearly independent,
there exists r1, . . . , rn and b1, . . . , bn such that

�v =
n∑

i=1

ri �ηi , �w =
n∑

i=1

bi �ζi . (5.53)

We compute r1, . . . , rn using relations of the form

�v =
n∑

i=1

r1�ηi = η�a, (5.54)

where �rT = (r1, . . . , rn), while the i th row of the matrix η equals �ηTi . As the rows of
the matrix η are independent vectors, η is invertible, so that
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η−1�v = �r , (5.55)

which allows us to compute the ai . The bi ’s are computed in the same way. We define

�vi = ri �ηi , �wi = bi �ζi , (5.56)

and note that these are also eigenvectors of B to the eigenvalue λi . Thus, for N ≥ 0,

∑

x


(N)(x) ≤ �vBN �w = �v
(
∑

i

λN
i �wi

)

. (5.57)

Using a geometric sum, we obtain

∑

x,N

∑

x


(N)(x) ≤
∑

i

1

1 − λi
�v �wi =: βabs



. (5.58)

To create a closed form expression for the bound on the weighted diagrams appearing
in (5.52) and use that �vi and �w j are eigenvectors of B to obtain

∑

N≥0

∑

x

‖x‖22
(N)(x) ≤ �hT
(
∑

i

∞∑

N=0

(N + 2)λN
i �wi

)

+
(
∑

i

∞∑

N=0

(N + 2)λN
i �vTi

)

�h

+
∞∑

N=0

(N + 2)
N−1∑

M=0

(
∑

i

λM
i �vTi

)

C

⎛

⎝
∑

j

λN−M−1
j �w j

⎞

⎠ .

(5.59)

For the second line, we rewrite the sums over N , M for fixed i, j as

∞∑

N=0

(N + 2)
N−1∑

M=0

λM
i λN−M−1

j �vTi C �w j =
∞∑

N=0

∞∑

M=0

(N + M + 2)λM
i λN

j �vTi C �w j .

(5.60)

We use the geometric sum identity

∞∑

n=0

(n + 1)λn = 1

(1 − λ)2
, (5.61)

to bound (5.52) as

∑

N ,x

‖x‖22
(N)(x)

≤ �hT
(
∑

i

∞∑

N=0

(N + 2)λN
i �wi

)

+
(
∑

i

∞∑

N=0

(N + 2)λN
i �vTi

)

�h
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+
∑

i, j

∞∑

N=0

∞∑

M=0

(N + 1)λM
i λN

j �vTi C �w j +
∑

i, j

∞∑

N=0

∞∑

M=0

(M + 1)λM
i λN

j �vTi C �w j

=
∑

i

�hT λi �wi

(
1

(1 − λi )2
+ 1

1 − λi

)

+
∑

i

λi �vTi �h
(

1

(1 − λi )2
+ 1

1 − λi

)

+
∑

i, j

�vTi C �w j

(1 − λi )2(1 − λ j )
+
∑

i, j

�vTi C �w j

(1 − λi )

1

(1 − λ j )2
=: βabs

�

. (5.62)

This highlight how we bound
(N). The bounds on
(N),ι are obtained in a similar way.

Remark 5.2 (The numerics of the matrix powers and the eigensystem) In the classical
lace expansion, similar exponential bounds appear for the N th lace-expansion coeffi-
cient as a function of N , in which the base of the exponential is roughly bounded by
the sum of the matrix elements

∑
i, j Bi, j (in fact, it is worse, since there loops do not

have length at least 4). We use the matrix-valued bound to optimally use the fact that
the number of steps in shared lines in loops appearing in our lace-expansion bounds
provide information about the number of steps in other lines that are part of the same
loop. Such bounds are most easily expressed in terms of matrix products. In these
matrix bounds, the largest eigenvalue of B decides the magnitude of the bounds (see
(5.58) and (5.62)). For example, for percolation and d = 11, the matrix B equals

B =
⎛

⎝
0.0134202 0.0112907 0.0257405
0.0127527 0.0108018 0.0338533
0.028009 0.0260537 0.0401418

⎞

⎠ .

For this matrix, the largest eigenvalue equals λ1 ≈ 0.073, which is quite small, cer-
tainly when compared to

∑
i, j Bi, j ≈ 0.2.

6 Completion of the bootstrap argument and conclusions

In this section, we complete the bootstrap argument, and explain how the conditions
are verified in Mathematica notebooks. We start by summarizing where we stand.

Verification of the bootstrap conditions In Sect. 3, we have verified the bootstrap
conditions. Part of this verification was the improvement of the bootstrap bounds on
the functions f1, f2 and f3 defined in (2.1)–(2.3), the latter being technically the
most demanding. A sufficient condition on the bounds on the NoBLE coefficients
that allows us to improve the bounds on f1, f2 and f3 is formulated in Definition 2.9
in terms of bounds on a simplified rewrite of the NoBLE formulated in (1.37), that
is formulated in Assumption 2.7. These bounds on the rewrite are reformulated in
terms of the original NoBLE coefficients 
z, 


ι
z, �

κ
z and �

ι,κ
z in Appendix D. The

assumptions that we need to verify in the model-dependent papers [17] and [18] are
Assumptions 2.2–2.4 and Assumptions 4.1–4.3. The initial Assumptions 2.6–2.8 are
replaced using Proposition 4.5 in Sect. 4.
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Implications of the completed bootstrap and proof main result The bound on f1
implies a bound on zc, while that on f2 implies that the infrared bound holds with an
explicit estimate on the constant given by �2. Thus, f1 and f2 imply our main results
for the model-dependent analysis for percolation in [18] and for LT and LA in [17].
The bound on f3 implies bounds on simple weighted diagrams, such as weighted lines,
bubbles and triangles. These bounds are crucial in improving the bound on f2, which
implies our main result.

We now discuss the improvement of f3 in more detail, splitting between the model-
independent and the model-dependent parts, and their relations to SRW integrals,
the bounds on the NoBLE coefficients and the Mathematica notebooks that finally
complete the analysis and thus complete our proofs.We begin by discussing themodel-
independent improvement of f3 and SRW integrals.

Model-independent improvement of f3 and SRW integrals In Sect. 3.3, we have
proven that the bootstrap conditions on f3 hold. Both for the verification of the condi-
tions on the initial point in Sect. 3.3.3, as well as for the improvement of the bounds
on f3 in Sects. 3.3.4, 3.3.5, we have formulated our conditions in terms of x-space
SRW integrals such as In,l(x), Kn,l(x), Tn,l(x),Un,l(x), Ln(x), Vn(x) and Jn,l(x).
The numerical values of these functions are crucial to allow us to verify that the
required bounds on the initial point hold, and to improve the bound on f3. Thus, in
order to perform a successful bootstrap analysis, we need to obtain rigorous numer-
ical bounds on such SRW integrals. These numerical bounds are explained in detail
in Sect. 5, using the ideas by Hara and Slade in [27]. These values are formulated in
terms of integrals of Bessel-functions and are computed analytically, up to a specified
precision in the Mathematica notebook available at [14]. This notebook needs to be
compiled before themodel-dependent parts can be performed, as themodel-dependent
analyses use them.Wewill explain theMathematica notebooks in the next paragraphs.
We first explain how the bounds on f1, f2 and f3 can be used to obtain sharp numerical
bounds on the NoBLE coefficients.

Model-dependent improvement of f3 and bounds onNoBLEcoefficients Having accu-
rate numerical bounds on all the SRW-integrals involved at hand, we can obtain all
bounds on f3 formulated in Sect. 3.3, see in particular (3.87). The remaining main
ingredient of the bounds on f3 is formed by the bounds on theNoBLE coefficients. The
initial bounds on f1, f2, f3 imply bounds on zc, Ĝz(k), as well as on several simple
weighted diagrams implied by f3, in terms of �1, �2 and �3. These, in turn, allow us
to prove bounds on the NoBLE coefficients and to identify β(N)• for every N ≥ 0 and
• ∈ {
,
ι,�
, {�
ι, 0}, {�
ι, 1}}, as formulated in Assumption 4.3. This is, next
to the derivation of the NoBLE, the second main result in the model-dependent papers
[17,18], where [18] treats percolation, and [17] LT and LA. As a result, we then have
all necessary bounds needed to verify the improvement of the bootstrap bounds. The
numerical verification is performed in several Mathematica notebooks as we explain
next.

Model-dependent and computer-assisted verifications using mathematica In order to
complete themodel-dependent and computer-assisted proof, we need to run themodel-
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dependent Mathematica notebooks that can be found at the first author’s web page
[14]. We first need to choose the dimension in SRW_basic.nb and run the file. This
creates the numerical input needed for the model-dependent NoBLE computations,
which is done in the filesPercolation.nb,LT.nb, andLA.nb.1 When compiled,
these model-dependent files compute whether P(γ, �, ·) holds for the given input,
�1, �2, �3 and cμ, cn,l,S , by going through the loop described in Fig. 1: We first
compute bounds on simple diagrams for the initial point zI , forwhichwe do not need to
rely on the bootstrap bounds in terms of�1, �2, �3, but we can rely directly on the link
to SRW as formulated in Assumption 2.2. For z ∈ (zI , zc), we do rely on the bootstrap
bounds to concludebounds on the bootstrap functions.Whenboth the bounds for zI and
for z ∈ (zI , zc), are boundedby the chosen�i for i = 1, 2, 3,we conclude the existence
of appropriateγi , e.g. γi = (�i+(computed bound))/2,we have proven that P(γ, �, ·)
holds. This numerical verification completes the argument for the given model in the
given dimension. In [17,18], it is also explained how we can then use monotonicity
in the dimension d to obtain the result for all dimensions larger than the specified
dimension. Further, the model-dependent notebooks contains an algorithm that helps
to choose the optimal value for the constants�1, �2, �3 and cμ, cn,l,S . This is explained
in the implementation. See e.g., [18] for a more extensive discussion for percolation.

Complete version of the mathematica SRW files Next to the basic version of the
SRW notebooks, we also provide a complete version, which should be used when
dealing with the models in relatively low dimensions. The notebook SRW.nb serves
two purposes. First, it allows us to compute SRW integrals with the desired precision in
dimensions close to the upper critical dimension. The fileSRW_basic.nb uses built-
inMathematica functions, and can only be used for percolation in d ≥ 15, as otherwise
the desired numerical precision cannot be guaranteed. In the file SRW.nb, we use a
Taylor approximation of the Bessel function, as explained in detail in [27, Appendix
B], instead, that gives reliable results for d ≥ 9. These computations make compiling
SRW.nb take around an hour, while SRW_basic.nb is compiled in less than a
minute. Second, SRW.nb allows the use of arbitrary index sets S for f3, see (2.3).
Using the basic version only the vertex sets S = 0 and S = Z

d\{0} can be considered.
These extensions are crucial to reduce the dimension above which our results apply.
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Appendix A: Notation

See Table 1 in Appendix.

Table 1 List of notation, that is used in at least two different sections

Notation Brief description Defined in

SRW Simple random walk Section 1.2.1

NBW Non-backtracking random walk Section 1.2.2

D SRW step distribution (1.1)

ι, κ Direction of a bond ι, κ ∈ {±1, . . . , ±d} Section 1.2.1

u, v, w, x, y Points on the lattice: Zd

k Fourier argument, so k ∈ (−π, π)d Section 1.2.1

z Parameter of a generating function, z ∈ [0, zc]
f � g, f �n Convolution of functions f, g �→ Z

d (1.2)

∂i f,� f Directional derivative and Laplace operator (3.12)

Cz , Bz SRW and NBW two-point functions (1.8), (1.12)

J Permutation matrix with entries (J)ι,κ = δι,−κ (1.15)

D̂(k) Diagonal matrix with entries (D̂(k))ι,κ = δι,κeikι . (1.15)

χ(z) Susceptibility of a given model (1.9)

Gz Two-point function of general model (1.24), (1.32), (1.37)


z , 

ι
z Coefficient of the NoBLE expansion (1.24), (4.1)

�κ
z , �

ι,κ
z Coefficient of the NoBLE expansion (1.25), (4.2)

μz , μ̄z NoBLE parameters directly connected to z (1.24), (1.25)

�̂z , F̂z Numerator and denominator of Ĝz (1.33), (1.34)

α�,z , c�,z SRW contributions in �̂z(k) (1.35), (4.23), (4.24)

αF,z , cF,z SRW contributions in F̂z(k) (1.36), (4.18), (4.17)

R̂�,z(k), R̂F,z(k) Remainder of the split of �̂z(k) and F̂z(k) (D.6), (1.36)

f1, f2, f3 Bootstrap functions (2.1)–(2.3)

γi , �i Assumed/concluded bounds on the fi (2.1)–(2.3)

β• Assumed bound on the coefficient Assumptions 2.7, 4.3

D̂sin(k)
∑d

s=1(∂s D̂(k))2 (3.23)

In,l , Kn,l , Tn,l ,Un,l SRW two-point function and integrals (3.35)–(3.38)



(N)
α,z , �

(N),ι
α,I I ,z , �

(0),ι,κ
R,z Model-dependent split of the NoBLE coefficients Section 4.1.1
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Appendix B: Proof of lemmas 2.12, 2.13

Proof of Lemma 2.12 Using a telescoping sum identity, we write

1 − eik·x = 1 − eik1x1 + eik1x1(1 − eik2x2) + · · · + ei
∑d−1

j=1 k j x j (1 − eikd xd ). (B.1)

We reorder the sum over x using the symmetry of x �→ g(x), to obtain

∑

x

g(x)[1 − cos(k · x)] =
∑

x

g(x)
d∑

μ=1

cos

⎛

⎝
μ−1∑

j=1

k j x j

⎞

⎠ [1 − cos(kμ · xμ)]

≤
∑

x

g(x)
d∑

μ=1

[1 − cos(kμ · xμ)]. (B.2)

We use 1− cos(nt) ≤ n2[1− cos(t)], see e.g. Lemma 2.13 below, and the symmetry
of g to see that

∑

x

g(x)[1 − cos(k · x)] ≤
∑

x

g(x)
d∑

μ=1

x2μ[1 − cos(kμ)]

= [1 − D̂(k)]
∑

x

g(x)‖x‖22. (B.3)

��
Proof of Lemma 2.13 We obtain (2.25) by taking the real part of the telescoping sum
identity

1 − eit =
J∑

i=1

[1 − eiti ]
i−1∏

j=1

eit j . (B.4)

In the following, we use that | sin(x + y)| ≤ | sin(x)| + | sin(y)|, |ab| ≤ (a2 + b2)/2
and 1 − cos2(a) ≤ 2[1 − cos(a)] to conclude from (2.25) that

1 − cos(t) ≤
J∑

i=1

[1 − cos(ti )] +
J∑

i=2

i−1∑

j=1

| sin(ti )|| sin(t j )|

≤
J∑

i=1

[1 − cos(ti )] + 1

2

J∑

i=2

i−1∑

j=1

[
sin2(ti ) + sin2(t j )

]

=
J∑

i=1

[1 − cos(ti )] + J − 1

2

J∑

i=1

sin2(ti ) ≤ J
J∑

i=1

[1 − cos(ti )]. (B.5)

��
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Appendix C: Decomposition of �Ĝz(k) for the bootstrap function f3

We improve the bound on the bootstrap function f3 in Sect. 3.3.5 using the decom-
position of �Ĝz(k) into the five pieces Ĥ1(k) − Ĥ5(k) defined in (3.52)–(3.56), as
stated in (3.57). We create this decomposition by expanding �Ĝz(k) in the form of
the simplified rewrite, defined in (1.35)–(1.37), and group the terms with common
factors. This decomposition is a key step in our analysis. The decomposition is long
and tedious and, due to the many terms, prone to errors. For this reason, we explicitly
perform it here in the appendix.

Expanding the terms. Our strategy is to first expand

�Ĝz(k) = ��̂z(k)

1 − F̂z(k)
+ �̂z(k)

(

� 1

1 − F̂z(k)

)

+ 2
d∑

s=1

∂s�̂z(k)∂s

(
1

1 − F̂z(k)

)

,

(C.1)

and then group them in terms of their common factors. To not loose track of terms,
we label them using the line number in the formula in which they appear, e.g., (C.6.a)
and (C.8.d).

Before stating this, we remark how we extract SRW-contributions Ĉ∗(k) from
inverse powers of (1 − F̂z(k)) using the notation introduced in (3.40)–(3.44):

1

1 − F̂z(k)
= 1

1 − F̂z(0) + αF,z[1 − D̂(k)] + R̂F,z(0; k)
= Ĉ∗(k) − Ê(k),

(C.2)

1

(1 − F̂z(k))2
= Ĉ∗(k)2 − Ê(k)Ĉ∗(k) − Ê(k)

1 − F̂z(k)
, (C.3)

1

(1 − F̂z(k))3
= Ĉ∗(k)3 − Ê(k)Ĉ∗(k)2 − Ê(k)Ĉ∗(k)

1 − F̂z(k)
− Ê(k)

(1 − F̂z(k))2
. (C.4)

Further, we recall the form of �̂z(k) and F̂z(k), see (1.35)–(1.36), and note that

��̂z(k) = − α�,z D̂(k) + �R̂�,z(k), �F̂z(k) = −αF,z D̂(k) + �R̂F,z(k). (C.5)

Then, we proceed by expanding the terms in (C.1).

First term of (C.1) Using (C.2) we compute

��̂z(k)

1 − F̂z(k)
= −α�,z D̂(k)Ĉ∗(k)
︸ ︷︷ ︸

:=(C.6.a)

+α�,z D̂(k)Ê(k)
︸ ︷︷ ︸

:=(C.6.b)

+ �R̂�,z(k)

1 − F̂z(k)︸ ︷︷ ︸
:=(C.6.c)

. (C.6)
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Second term of (C.1) We first note that

� 1

1 − F̂z(k)
= �F̂z(k)

(1 − F̂z(k))2
+ 2

∑d
s=1(∂s F̂z(k))

2

(1 − F̂z(k))3
.

We use (C.3), (C.5) and �̂z(k) = c�,z + α�,z D̂(k) + R̂�,z(k) for the term containing
�F̂z(k) and obtain

�̂z(k)
�F̂z(k)

(1 − F̂z(k))2
= �̂z(k)

−αF,z D̂(k)

(1 − F̂z(k))2
+ �̂z(k)

�R̂�,z(k)

(1 − F̂z(k))2

= −αF,z D̂(k)(c�,z + α�,z D̂(k))Ĉ∗(k)2
︸ ︷︷ ︸

:=(C.7.a)

+ αF,z D̂(k)(c�,z + α�,z D̂(k))

(

Ê(k)Ĉ∗(k) + Ê(k)

(1 − F̂z(k))

)

︸ ︷︷ ︸
:=(C.7.b)

− R̂�,z(k)αF,z D̂(k)

(1 − F̂z(k))2︸ ︷︷ ︸
:=(C.7.c)

+ �R̂F,z(k)

(1 − F̂z(k))
Ĝz(k)

︸ ︷︷ ︸
:=(C.7.d)

. (C.7)

For the term including the mixed derivatives we compute that

2�̂z(k)

∑d
s=1(∂s F̂z(k))

2

(1 − F̂z(k))3

= 2�̂z(k)

∑d
s=1(αF,z∂s D̂(k) + ∂s R̂F,z(k))2

(1 − F̂z(k))3

= 2α2
F,z(c�,z + α�,z D̂(k) + R̂�,z(k))

∑d
s=1 ∂s D̂(k)2

(1 − F̂z(k))3

+ 2�̂z(k)

∑d
s=1 ∂s R̂F,z(k)2 + 2αF,z∂s D̂(k)∂s R̂F,z(k)

(1 − F̂z(k))3

= 2αF,z(c�,z + α�,z D̂(k))D̂sin(k)Ĉ∗(k)3
︸ ︷︷ ︸

:=(C.8.a)

−2αF,z(c�,z + α�,z D̂(k))D̂sin(k)

(

Ê(k)Ĉ∗(k)2 + Ê(k)Ĉ∗(k)
1 − F̂z(k)

)

︸ ︷︷ ︸
:=(C.8.b)

+ 2αF,z R̂�,z(k)
D̂sin(k)

(1 − F̂z(k))2
Ĉ∗(k)

︸ ︷︷ ︸
:=(C.8.c)

−2αF,z�̂z(k)
D̂sin(k)

(1 − F̂z(k))2
Ê(k)

︸ ︷︷ ︸
:=(C.8.d)
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+ 2αF,z(αF,z − 1)�̂z(k)
D̂sin(k)

(1 − F̂z(k))3︸ ︷︷ ︸
:=(C.8.e)

+ 2�̂z(k)

∑d
s=1 ∂s R̂F,z(k)2 + 2αF,z∂s D̂(k)∂s R̂F,z(k)

(1 − F̂z(k))3︸ ︷︷ ︸
:=(C.8.f)

(C.8)

Third term of (C.1). The expand the last term of (C.1) as follows

2
d∑

s=1

∂s

(
�̂z(k)

)
∂s

(
1

1 − F̂z(k)

)

= 2
d∑

s=1

(α�,z∂s D̂(k) + ∂s R̂�,z(k))
(αF,z∂s D̂(k) + ∂s R̂F,z(k))

(1 − F̂z(k))2

= 2α�,z D̂
sin(k)Ĉ∗(k)2

︸ ︷︷ ︸
:=(C.9.a)

−2α�,z D̂
sin(k)Ê(k)Ĉ∗(k)

︸ ︷︷ ︸
:=(C.9.b)

−2α�,z D̂
sin(k)

Ê(k)

1 − F̂z(k)︸ ︷︷ ︸
:=(C.9.c)

+ 2(αF,z − 1)α�,z D̂
sin(k)

1

(1 − F̂z(k))2︸ ︷︷ ︸
:=(C.9.d)

+ 2
1

(1 − F̂z(k))2

d∑

s=1

(
∂s R̂�,z(k)αF,z∂s D̂(k) + ∂s�̂z(k)∂s R̂F,z(k)

)

︸ ︷︷ ︸
:=(C.9.e)

. (C.9)

Regrouping the terms In this section we group the terms (C.6.a)-(C.9.e) to derive
Ĥ1(k) − Ĥ5(k).
Let us start by recalling that M̂∗(k) = D̂(k) − 2D̂sin(k)Ĉ∗(k) and see that

(C.6.a) + (C.9.a) = −α�,zĈ
∗(k)M̂∗(k),

(C.7.a) + (C.8.a) = −αF,z(c�,z + α�,z D̂(k))Ĉ∗(k)2M̂∗(k).

Reviewing the definition of Ĥ1(k) we see that

(C.6.a) + (C.7.a) + (C.8.a) + (C.9.a) = −Ĥ1(k). (C.10)

Then, we proceed with the term Ĥ2(k):

(c.6.b) + (C.9.b) = α�,z Ê(k)M̂∗(k),

(C.7.b) + (C.8.b) = αF,z(c�,z + α�,z D̂(k))M̂∗(k)
(

Ê(k)Ĉ∗(k) + Ê(k)

(1 − F̂z(k))

)

,
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(C.7.c) + (C.8.c) = − αF,z R̂�,z(k)

(1 − F̂z(k))2
M̂∗(k),

(C.6.b) + (C.9.b) + (C.7.b) + (C.8.b) + (C.7.c) + (C.8.c) = −Ĥ2(k). (C.11)

Ĥ3(k) captures the following terms:

(C.8.d) + (C.8.e) = 2αF,z Ĝz(k)
D̂sin(k)

1 − F̂z(k)

(
αF,z − 1

(1 − F̂z(k))
− Ê(k)

)

,

(C.9.c) + (C.9.e) = 2α�,z
D̂sin(k)

1 − Fz(k)

(
αF,z − 1

1 − Fz(k)
− Ê(k)

)

,

(C.8.d) + (C.8.e) + (C.9.c) + (C.9.d) = −Ĥ3(k). (C.12)

In Ĥ4(k), we collect the double derivatives of the remainder terms.

(C.6.c) + (C.7.d) = �R̂�,z(k)

1 − F̂z(k)
+ �R̂F,z(k)

(1 − F̂z(k))
Ĝz(k) = −Ĥ4(k). (C.13)

The two remaining terms consist of mixed derivatives and are put into Ĥ5(k):

(C.8.f) + (C.9.e) = −Ĥ5(k). (C.14)

This completes the derivation of the split into Ĥ1(k) − Ĥ5(k).

Appendix D: Bound on the rewrite

Herewe prove Proposition 4.5(ii). Namely,we prove that the bounds stated inAssump-
tion 2.7 are implied byAssumptions 4.1–4.3, by computing expressions for the bounds
required in Assumption 2.7 one after the other.

For better readability, we divide this into five steps: Step 1 contains the six relatively
simple bounds stated in (2.8)–(2.10), while Steps 2-5 show the more elaborate bounds
stated in (2.11)–(2.13). The bounds involved are not difficult, but rather somewhat
tedious. Throughout this section, we omit the subscripts z and write, e.g., μ = μz and
μ̄ = μ̄z .

Step 1: bounds stated in (2.8)–(2.10)

(a) The bound βμ in (2.8) is also assumed in (4.30) of Assumption 4.3.
(b) We recall the definition of c�,z in (4.23), use the bounds of Assumption 4.3 and

the fact that the coefficients 

(N)
z , 


(N),ι
z are non-negative to conclude

1 − β
(1−0)

α(0) − 2dμ

1 − μ2 β
(0)

ι

α,I ≤ c�,z ≤ 1 + β
(0−1)

α(0) + 2dμ2

1 − μ2 β
(0)

ι

α,I I . (D.1)

In this and the following lines we bound μ by �1cμ
2d−1 .
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(c) For αF,z , defined in (4.18), we use the bounds of Assumption 4.3 to obtain

2dμ

1 − μ2

[

1 − β
(1−0)
∑

�ι
α,I − μβ

(0−1)
∑

�ι
α,I I − 1

1 − μ2 β̄
(0)∑

�α

]

≤ αF,z ≤ 2dμz

1 − μ2
z

[

1 + β
(0−1)
∑

�ι
α,I + μβ

(1−0)
∑

�ι
α,I I − 1

1 − μ2 β(0)
∑

�α

]

. (D.2)

We bound μ on the left-hand side of the inequality from below by β
μ
.

(d) The absolute value of α�,z defined in (4.24) is bounded by

|α�,z | = max

{

2dβ(1−0)

α(e1) + 2dμ

1 − μ2 β
(0)
∑


ι
α,I , 2dβ

(0−1)

α(e1) + 2dμ2

1 − μ2 β
(0)
∑


ι
α,I I

}

. (D.3)

(e) To bound
∑

x,κ �
κ,ι
z (x) we use that the coefficients are defined by an alternating

series, as well as Assumptions 4.2, 4.3, to obtain

∑

x,κ

�κ,ι
z (x) ≤

∞∑

N=0

∑

x,κ

�(2N),κ,ι
z (x) − �(1),κ,ι

z (x)

≤ μ̄
∑

x,N ,κ


(2N),ι
z (x) −

∑

κ

�̂(1),κ,ι
z (0)

≤ 2dμ̄

( ∞∑

N=0

β
(2N)


ι

)

− β(1)
∑

�
. (D.4)

(f) In the same way, we obtain that

∑

x

�κ
z (x) ≥ −βμ

( ∞∑

N=0

β
(2N+1)



)

+ β(0)

�
. (D.5)

Step 2: bounds stated in (2.11) In the steps 2-5 we create bounds for the remainder
terms, as defined in Sect. 4.1.3. For the bounding it is useful to note the explicit
formulae for the remainder R̂F,z(k) and R̂�,z(k):

R̂F,z(k) =
∞∑

n=2

F̂n(k) + μ

1 − μ2

∞∑

N=2

∑

ι

(−1)N �̂(N),ι
z (k)(e−ikι − μ)

+ μ

1 − μ2

∑

N∈{0,1}

∑

ι

(−1)N
(
e−ikι �̂

(N),ι
R,I ,z(k) − μ�̂

(N),ι
R,I I ,z(k)

)

− μ

(1 − μ2)2

∑

ι0,ι1

e−i(kι0+kι1 )
(
�̂

(0),ι0,ι1
R,z (k) +

∞∑

N=1

(−1)N �̂(N),ι0,ι1
z (k)

)
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1112 R. Fitzner, R. van der Hofstad

+ μ2

(1 − μ2)2

∑

ι0,ι1

(
e−ikι1 �̂−ι0,ι1(k) + e−ikι0 �̂ι0,ι1(k) − μ�̂−ι0,ι1(k)

)

− μ

(1 − μ2)2

∑

ι0,ι1

�̂ι0(k)
(
e−ikι0 �̂ι0,ι1(k) − μ�̂−ι0,ι1(k))

)
(e−ikι1 − μ).

(D.6)

and

R̂�,z(k) =
∑

N∈{0,1}
(−1)N 
̂

(N)

R (k) +
∞∑

N=2

(−1)N 
̂(N)(k) +
∞∑

n=1

�̂n(k)

− μz

1 − μ2
z

∑

ι

�̂ι(k)(
̂ι(k)e−ikι − μz
̂
−ι(k))

− μz

1 − μ2
z

∞∑

N=1

(−1)N
∑

ι

(
̂(N),ι(k)e−ikι − μz
̂
(N),−ι(k))

− μz

1 − μ2
z

∑

ι

(
̂
(0),ι
R,I (k)e−ikι − μz
̂

(0),−ι
R,I I (k)). (D.7)

Now, we start by bounding F̂n and �̂n , for n ≥ 1. Starting from (4.7), we take the
absolute value into the sums and use Assumption 4.2 for all �ι

z and �
ι,κ
z to obtain

∑

x∈Zd

|Fn(x)| ≤ μ
∑

x

∑

ι0,...,ιn

∑

xi :∑i xi=x

(δx0,0 + μ̄
μ
|
(x0)|)

1 − μ2

(
μ̄

1 − μ2

)n

×
(
n−1∏

s=1

(|
ιs−1(xs + eιs−1)| + μ|
−ιs−1(xs)|)
)

× (|
ιn−1(xn + eιn−1 + eιn )| + μ|
ιn−1(xn + eιn−1)|
+ μ|
−ιn−1(xn + eιn )| + μ2|
−ιn−1(xn)|

)
. (D.8)

As we sum over all x , the sums factorize and we obtain

∑

x∈Zd

|Fn(x)| ≤
(

μ

1−μ

)(

1+ μ̄
μ

∑

x

|
(x)|
)(

μ̄

1−μ

)n
⎛

⎝
n∏

s=1

∑

xs ,ιs−1

|
ιs−1(xs)|
⎞

⎠
∑

ιn

1

≤ 2dμ

1 − μ

(
1 + μ̄

μ
βabs




)(2dμβabs

ι

1 − μ

)n

. (D.9)

In the same way, we obtain

∑

x∈Zd

|�n(x)| ≤ 2dμ

1 − μ

(
1 + μ̄

μ
βabs




)(2dμ̄βabs

ι

1 − μ

)n

βabs

ι . (D.10)
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Using the geometric sum, we compute that

∞∑

n=2

∑

x∈Zd

|Fn(x)| ≤ 2dμ

1 − μ

1 + μ̄
μ
βabs




1 − 2dμ̄βabs

ι

1−μ

(
2dμ̄βabs


ι

1 − μ

)2

, (D.11)

∞∑

n=1

∑

x∈Zd

|�n(x)| ≤2dμβabs

ι

1 − μ

1 + μ̄
μ
βabs




1 − 2dμ̄βabs

ι

1−μ

(
2dμ̄βabs


ι

1 − μ

)

. (D.12)

Using these bounds, we obtain that RF,z (defined in (D.6)) is bounded by

∑

x∈Zd

|RF,z(x)| ≤ 2dμ

1 − μ

1 + μ̄
μ
βabs




1 − 2dμ̄βabs

ι

1−μ

(
2dμ̄βabs


ι

1 − μ

)2

+ 2dμ

1 − μ2

⎛

⎝

⎡

⎣
∑

N∈{0,1}
β

(N)

�,R,I + μβ
(N)

�,R,I I

⎤

⎦+ μ̄
μ
(1 + μ)

∞∑

N=2

β
(N)




⎞

⎠

+ 2dμ

(1 − μ2)2

(

β
(0)
�,R + 2dμ̄

∞∑

N=1

β
(N)


ι

)

+ (2dμ)2μ̄

(1 − μ2)2
(2 + μ)βabs


ι + (2d)2μ̄2

(1 − μ)2
βabs



βabs


ι , (D.13)

and R�,z (given in (D.7)) by

∑

x∈Zd

|R�,z(x)| ≤ β
(0)

,R + β

(1)

,R +

∞∑

N=2

β
(N)


 + 2dμβabs

ι

1 − μ

1 + μ̄
μ
βabs




1 − 2dμ̄βabs

ι

1−μ

(
2dμ̄βabs


ι

1 − μ

)

+ 2dμ̄

1−μ
βabs



βabs


ι + 2dμ

1−μ2

(

β
(0)

ι,R,I + μβ

(0)

ι,R,I I + (1 + μ)

∞∑

N=1

β
(N)


ι

)

.

(D.14)

This proves the bounds stated in (2.11).

Step 3: The first bound in (2.12) We call a sum as appearing on the left hand side of
(2.12) a weighted sum, where the factor ‖x‖22 is called the weight (see also Sect. 2.5).
To obtain a bound on weighted sums, we split the weight using (2.24). We explain this
now in detail for the following contribution to

∑
x ‖x‖22|R�,z(x)|:

μ

1 − μ2

∑

x,y,ι

‖x + y‖22
∣
∣�ι(x)(
ι(y − eι) − μ
−ι(y))

∣
∣ . (D.15)
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We use Assumption 4.2 to bound �ι
z by 
z , and obtain

(D.15) ≤ μ̄

1 − μ2

∑

x,y,ι

‖x + y‖22|
(x)|(|
ι(y − eι)| + μ|
−ι(y)|). (D.16)

Then, we rewrite ‖x‖22 using the equality in (2.24) as

(D.15) ≤ μ̄

1 − μ2

∑

x

‖x‖22|
(x)|
∑

y,ι

(1 + μ)|
ι(y)|

+ μ̄

1 − μ2

∑

x

|
(x)|
∑

y,ι

‖y‖22(|
ι(y − eι)| + μ|
−ι(y)|)

+ 2μ̄

1 − μ2

d∑

i=1

∑

x

xi |
(x)|
∑

y,ι

yi (|
ι(y − eι)| + μ|
−ι(y)|). (D.17)

Since 
 is totally rotationally symmetric, we know that
∑

x xi |
(x)| = 0. Thus, the
last term cancels. We apply the bounds of Assumption 4.3 to obtain

(D.15) ≤ μ̄

1 − μ2

(
(1 + μ)βabs

�

βabs


ι + βabs



(βabs
�
ι,ι

+ μβabs
�
ι,0)

)
. (D.18)

Now we extend this idea. First we use Assumption 4.2 to obtain

∑

x

‖x‖22|�n(x)| ≤ μ

μ̄

(
μ̄

1 − μ2

)n+1 ∑

x0,...,xn+1

∥
∥
∥
∥
∥

N∑

i=0

xi

∥
∥
∥
∥
∥

2

2

(
δ0,x0 + μ̄

μ
|
(x0)|

)

×
n+1∏

s=1

⎡

⎣
∑

ιs−1

(|
ιs−1(xs + eιs−1)| + μ|
−ιs−1(xs)
)
⎤

⎦ . (D.19)

Then, we split the weight using the equality in (2.24). We note that x �→∑
ι 


ι(x) is
totally rotationally symmetric so that any contribution due to the second sum in the
equality in (2.24) cancels. After the split of the weight, the sums factor and we obtain

∑

x

‖x‖22|�n(x)| ≤
(

μ̄(1 + μ)

1 − μ2

)n+1∑

x

‖x‖22|
(x)|
(
∑

ι,x

|
ι(x)|
)n+1

+ (n + 1)

(
μ̄(1 + μ)

1 − μ2

)n+1∑

x

(
μ

μ̄
δ0,x + |
(x)|

)(∑

ι,x

|
ι(x)|
)n

×
[
∑

ι,x

‖x‖22
(|
ι(x + eι)| + μ|
−ι(x)

)
]

≤
(

2dμ̄

1 − μ

)n+1

(βabs

ι )

n
(

βabs
�


βabs

ι + n + 1

1 + μ

(
μ
μ̄

+ βabs



) [
βabs

�
ι,ι
+ μβabs

�
ι,0

]
)

.

(D.20)
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Other contributions to R�,z (recall (D.7)) are bounded in a similar straightforward
manner, leading to the final bound

∑

x

‖x‖22|R�,z(x)|

≤ β
(0)
�
,R + β

(1)
�
,R +

∞∑

N=2

β
(N)

�


+
∞∑

n=1

(
2dμ̄

1 − μ

)n+1

(βabs

ι )

n
(

βabs
�


βabs

ι + n + 1

1 + μ

(
μ
μ̄

+ βabs



) [
βabs

�
ι,ι
+ μβabs

�
ι,0

]
)

+ 2dμ̄

1 − μ2

(
(1 + μ)βabs

�

βabs


ι + βabs



(
βabs

�
ι,ι
+ μβabs

�
ι,0

))

+ 2dμ

1 − μ2

(

β
(0)
�
ι,R,I + μβ

(0)
�
ι,R,I I +

∞∑

N=1

(
βN

�
ι,ι
+ μβN

�
ι,0

)
)

. (D.21)

This proves (2.12) with β�R,� equal to the right-hand side of (D.21).

Step 4: The second bound in (2.12) We bound the weighted sum of RF,z in the same
way as for R�,z . We require the following three additional bounds:

∑

x∈Zd

∑

κ

‖x‖22�(N),κ (x + eκ) ≤2d μ̄
μ

(
β

(N)

�
 + β
(N)


ι

)
, (D.22)

∑

x,ι,κ

‖x‖22�(N),ι,κ (x + eκ) ≤(2d)2μ̄
(
β

(N)

�
ι,0 + β
(N)


ι

)
, (D.23)

∑

x,ι,κ

‖x‖22�(N),ι,κ (x + eι + eκ) ≤(2d)2μ̄
(
β

(N)

�
ι,ι
+ β

(N)


ι

)
. (D.24)

Next we explain how to derive these bounds for the example of (D.22).
First, we use (4.29) and then (2.24) to obtain

∑

x∈Zd

∑

κ

‖x‖22�(N),κ (x + eκ) ≤ μ̄
μ

∑

x∈Zd

∑

κ

(
‖x + eκ‖22 + ‖eκ‖22 + xκ

)

(N)(x + eκ).

(D.25)

Then, we note that all terms containing a single xκ cancel by the total rotational
symmetry of 
 and

∑
ι 


ι, i.e.,

∑

x,κ

xκ
(N)(x + eκ) =
∑

x,κ,ι

xκ
(N),ι(x + eκ) =
∑

x,κ,ι

xκ
(N),ι(x + eι + eκ) = 0.

(D.26)

Applying the bounds of Assumption 4.3, we obtain (D.22).
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For n ≥ 2, we bound Fn as we have bounded �n in Step 3. Indeed, first, we use
that

∑

x∈Zd

‖x‖22|Fn(x)| ≤
∑

ι0,...,ιn

∑

x0,...,xn

∥
∥
∥
∥
∥

n∑

i=0

xi

∥
∥
∥
∥
∥

2

2

(
μ

μ̄
+ |
(x0)|

)(
μ̄

1 − μ2

)n+1

×
(
n−1∏

s=1

(|
ιs−1(xs + eιs−1)| + μ|
−ιs−1(xs))|
)

× (|
ιn−1(xn + eιn−1 + eιn )| + μ|
ιn−1(xn + eιn−1)|
+ μ|
ιn−1(xn + eιn )| + μ2|
−ιn−1(xn)|

)
. (D.27)

We split the weight using the equality in (2.24), use that the sums factor and then use
the bounds stated above to obtain

∑

x∈Zd

‖x‖22|Fn(x)| ≤
(

2dμ̄

1 − μ

)n+1

βabs
�


(
βabs


ι

)n

+ (n − 1)

(
2dμ̄

1 − μ

)n+1 (βabs

ι

)n−1

1 + μ

(
μ
μ̄

+ βabs



) (
βabs

�
ι,ι
+ μβabs

�
ι,0

)

+
(

2dμ̄

1 − μ

)n+1 (βabs

ι

)n−1

1 + μ

(
μ
μ̄

+ βabs



) (
βabs

�
ι,ι
+ μβabs

�
ι,0 + βabs

ι

)
.

(D.28)

The additional contribution RF,z (recall (D.6)) are bounded in a straightforwardmanner
and we obtain the bound

∑

x∈Zd

‖x‖22|RF,z(x)| ≤
∞∑

n=2

(
2dμ̄

1 − μ

)n+1
βabs

�


(
βabs


ι

)n

+
∞∑

n=2

(n − 1)

(
2dμ̄

1 − μ

)n+1
(
βabs


ι

)n−1

1 + μ

(
μ
μ̄

+ βabs



) (
βabs

�
ι,ι
+ μβabs

�
ι,0

)

+
∞∑

n=2

(
2dμ̄

1 − μ

)n+1
(
βabs


ι

)n−1

1 + μ

(
μ
μ̄

+ βabs



) (
βabs

�
ι,ι
+ μβabs

�
ι,0 + βabs

ι

)

+ 2dμ

1 − μ2

⎡

⎣
∑

N∈{0,1}

(
β

(N)

��,R,I + β
(N)

��,R,I I

)
+ μ̄

μ

∞∑

N=2

(
β

(N)
�
 + β

(N)

 + μβ

(N)
�


)
⎤

⎦

+ μ

(1 − μ2)2

(
β

(0)
��,R + (2d)2μ̄

∞∑

N=1

(
β

(N)

�
ι,ι
+ β

(N)


ι

) )

+ (2d)2μ2μ̄

(1 − μ2)2

(
βabs

�
ι,ι
+ βabs

�
ι,0 + βabs

ι + μβabs

�
ι,0

)

+ (2d)2μ̄2

(1 − μ)2
βabs

�
βabs

ι + (2d)2μ̄2

(1 − μ2)(1 − μ)
βabs




(
βabs

�
ι,ι
+ μβabs

�
ι,0 + βabs

ι

)
.

(D.29)
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We complete Step 4 by defining β�R,F as the right-hand of (D.29).

Step 5: The bounds in (2.13) Now we compute a lower bound on R̂F,z(0)− R̂F,z(k):

R̂F,z(0) − R̂F,z(k) =
∑

x

RF,z(x)[1 − cos(k · x)] (D.30)

which could also be negative. We could apply Lemma 2.12 and bound (D.30) from
below by −β�R,F [1− D̂(k)]. Since this bound plays a central role, we prefer to use a
better bounds. For this, we note that [1 − cos(k · x)] ≥ 0 for all k and x . So we can
create a lower bound by only consider the negative part of the function RF,z .

We are not able to identify the points x at which RF,z(x) is negative. However, we
can decompose all summands defining R̂F,z in (D.6) into a negative and a positive part
as the coefficients were defined via alternating sequences. In this ways, we create the
lower bound as follows:

− μ

(1 − μ2)2

∞∑

N=1

∑

ι0,ι1

(−1)N
[
�̂(N),ι0,ι1(0) − e−i(kι0+kι1 )�̂(N),ι0,ι1(k)

]

≥ − μ

(1 − μ2)2

∞∑

N=1

∑

ι0,ι1

[
�̂(2N),ι0,ι1(0) − e−i(kι0+kι1 )�̂(2N),ι0,ι1(k)

]

≥ − (2d)2μμ̄

(1 − μ2)2

∞∑

N=1

(
β

(2N)

�
ι,ι
+ 2dβ(2N)


ι

) [1 − D̂(k)], (D.31)

where we applied Lemma 2.12 and (D.24) only in the very last step. We use this idea
to bound all terms in (D.6), except the minor term

∑∞
n=2 F̂n(k) and in this way obtain

− R̂F,z(0) − R̂F,z(k)

1 − D̂(k)
≤

∞∑

n=2

(
2dμ̄

1 − μ

)n+1

βabs
�


(
βabs


ι

)n

+
∞∑

n=2

(n − 1)

(
2dμ̄

1 − μ

)n+1 (βabs

ι

)n−1

1 + μ
(
μ
μ̄

+ βabs



)(βabs
�
ι,ι

+ μβabs
�
ι,0)

+
∞∑

n=2

(
2dμ̄

1 − μ

)n+1 (βabs

ι

)n−1

1 + μ
(
μ
μ̄

+ βabs



)
(
βabs

�
ι,ι
+ μβabs

�
ι,0 + βabs

ι

)

+ 2dμ

1 − μ2

[

β
(1)
��,R,I + μβ

(0)
��,R,I I + μ̄

μ

∞∑

N=1

(
β

(2N+1)
�
 + β

(2N+1)

 + μβ

(2N)

�


)
]

+ μ

(1 − μ2)2

(

β
(0)
��,R + (2d)2μ̄

∞∑

N=1

(
β

(2N)

�
ι,ι
+ β

(2N)


ι

)
)

+ (2dμ)2μ̄

(1 − μ2)2

(
βodd

�
ι,ι
+ βodd

�
ι,0 + βodd

ι + μβeven

�
ι,0

)

+ (2dμ̄)2

(1 − μ2)2

(
βodd

�

βodd


ι (1 + μ2) + 2μβeven
�


βeven

ι

)
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+ (2dμ̄)2

(1 − μ2)2
βodd




(
βodd

�
ι,ι
+ βodd


ι + μβeven
�
ι,0 + μβeven


ι + μβeven
�
ι,ι

+ μ2βodd
�
ι,0

)

+ (2dμ̄)2

(1 − μ2)2
βeven




(
βeven

�
ι,ι
+ βeven


ι + μβodd
�
ι,0 + μβodd


ι + μβodd
�
ι,ι

+ μ2βeven
�
ι,0

)
.

(D.32)

We modified the desired inequality (2.13) here slightly for better readability. This
proves the lower bound in (2.13) with −β

�R,F
equal to the right-hand side of (D.32).
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