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Abstract Weconsider the local eigenvaluedistributionof large self-adjoint N×N ran-
dommatricesH = H∗ with centered independent entries. In contrast to previousworks
thematrix of variances si j = E|hi j |2 is not assumed to be stochastic. Hence the density
of states is not theWigner semicircle law. Its possible shapes are described in the com-
panion paper (Ajanki et al. in Quadratic Vector Equations on the Complex Upper Half
Plane. arXiv:1506.05095).We show that as N grows, the resolvent,G(z) = (H−z)−1,
converges to a diagonal matrix, diag(m(z)), where m(z) = (m1(z), . . . ,mN (z))
solves the vector equation −1/mi (z) = z + ∑

j si jm j (z) that has been analyzed
in Ajanki et al. (Quadratic Vector Equations on the Complex Upper Half Plane.
arXiv:1506.05095). We prove a local law down to the smallest spectral resolution
scale, and bulk universality for both real symmetric and complex hermitian symmetry
classes.
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1 Introduction

In the seminal paper [31] Wigner introduced random self-adjoint matrices, H = H∗,
with centered, identically distributed and independent entries (subject to the symme-
try constraint). He proved that the empirical density of the eigenvalues converges to
the semicircle distribution. Wigner also conjectured that the distribution of the dis-
tance between consecutive eigenvalues (gap statistics) is universal, hence it is the
same as in the Gaussian model. His revolutionary observation was that these univer-
sality phenomena hold for much larger classes of physical systems and only the basic
symmetry type determines local spectral statistics. It is generally believed, but mathe-
matically unproven, that random matrix theory (RMT), among many other examples,
also describes the local statistics of random Schrödinger operators in the delocalized
regime and quantization of chaotic classical Hamiltonians.

The first rigorous results on the local eigenvalue statistics in the bulk spectrumwere
given by Dyson, Mehta and Gaudin in the 60’s. These concerned the Gaussian models
and identified their local correlation functions. According to Wigner’s universality
hypothesis, these statistics should hold independently of the common law of thematrix
elements. This conjecture was resolved recently in a series of works. The strongest
result onWignermatrices in the bulk spectrum is Theorem 7.2 in [13], see [19,30] for a
summary of the history and related results. In fact, the three-step approach developed in
[14,17,20] also applies for generalized Wigner matrices that allow for non-identically
distributed matrix elements as long as the variance matrix si j := E|hi j |2 is stochastic,
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Universality for general Wigner-type matrices 669

i.e.
∑

j si j = 1 (in particular, independent of the index i). The stochasticity of S
guarantees that the eigenvalue density is given by the semicircle law and the diagonal
elements Gii = Gii (z) of the resolvent

G(z) = (H − z)−1, Im z > 0, (1.1)

become not only deterministic but also independent of i as the the matrix size N goes
to infinity. They asymptotically satisfy a system of self-consistent equations

− 1

Gii
≈ z +

∑

j

si j G j j , (1.2)

that reduces to a particularly simple scalar equation

− 1

m
= z + m, (1.3)

for the common value m ≈ Gii for all i as N → ∞. The solution m = m(z) of (1.3)
is the Stieltjes transform of the Wigner semicircle law.

In this paper we consider a general variance matrix S without stochasticity condi-
tion. We show that the approximate self-consistent Eq. (1.2) still holds, but it does not
simplify to a scalar equation. In fact, Gii remains i-dependent even as N → ∞ and
it is close to the solution mi of the Quadratic Vector Equation (QVE)

− 1

mi
= z +

∑

j

si jm j , (1.4)

under the additional condition that Immi > 0.
In the context of random matrices importance of this equation has been realized by

Girko [23], Shlyakhtenko [29], Khorunzhy and Pastur [25], see also Guionnet [24], as
well as Anderson and Zeitouni [5,6], but no detailed study has been initiated. In the
companion paper [1] we analyzed (1.4) in full detail. See also Section 3 of [2] for how
theQVE is related to other randommatrixmodels.We showed that 〈m〉 := N−1∑

i mi

is the Stieltjes transform of a probability density ρ that is supported on a finite number
of intervals, inside ofwhich it is a real analytic function.We also described the behavior
of ρ near the edges of its support; it features only square root or cubic root (cusp)
singularities and an explicit one parameter family of profiles interpolating between
them as a gap in the support closes.

The main result of the current paper is the universality of the local eigenvalue
statistics in the bulk for Wigner-type matrices with a general variance matrix (cf.
Theorem 1.16). This extends Wigner’s vision towards full universality by consider-
ing a much larger class of matrix ensembles than previously studied. In particular,
we demonstrate that local statistics, as expected, are fully independent of the global
density. This fact has already been established for very general β-ensembles in [10]
(see also [8,28]) and for additively deformedWigner ensembles having a density with
a single interval support [27]. Our class admits a general variance matrix and allows
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670 O. H. Ajanki et al.

for densities with several intervals (we do not, however, consider non-centered distri-
butions here; an extension to matrices with non-centered entries on the diagonal may
be incorporated in our analysis with additional technical effort).

Following the three-step approach, we first prove local laws for G on the scale
η = Im z � N−1, i.e. down to the optimal scale just slightly above the eigenvalue
spacing. This is the main and novel part of our analysis. The previous proofs (see
[14] for a pedagogical presentation) heavily relied on properties of the semicircle law,
especially on its square root edge singularity. With possible cubic root singularities
and small gaps in the support of ρ an additional scale appears which needs to be
controlled. The second step is to prove universality for Wigner-type matrices with a
tiny Gaussian component via Dyson Brownian motion (DBM). The method of local
relaxation flow, introduced first in [16,17], also heavily relies on the semicircle law
since it requires that the global density remain unchanged along DBM. In [18] a
new method was developed to localize the DBM that proves universality of the gap
statistics around a fixed energy τ in the bulk, assuming that the local law holds near τ

(we remark that a similar result was obtained independently in [26]). Since Wigner-
type matrices were one of the main motivations for [18], it was formulated such that it
could be directly applied once the local laws are available. Finally, the third step is a
perturbation result to remove the tiny Gaussian component using the Green function
comparisonmethod that first appeared in [20] and can be applied to our case basically
without any modifications.

In a separate paper [3] we apply the results of this work and [1] to treat Gaussian
random matrices with correlated entries. Assuming translation invariance of the cor-
relation structure in these Gaussian matrix ensembles we prove an optimal local law,
bulk universality and non-trivial decay of off-diagonal resolvent entries.

1.1 Set-up and main results

Let H(N ) ∈ C
N×N be a sequence of self-adjoint random matrices. In particular, if the

entries of H are real then H(N ) is symmetric. The matrix ensemble H = H(N ) is said
to be of Wigner-type if its entries hi j are independent for i ≤ j and centered, i.e.,

Ehi j = 0 for all i, j = 1, . . . , N . (1.5)

The dependence of H and other quantities on the dimension N will be suppressed in
our notation. The matrix of variances, S = (si j )Ni, j=1, is defined through

si j := E|hi j |2. (1.6)

It is symmetric with non-negative entries. In [1] it was shown that for every such
matrix S the quadratic vector equation (QVE),

− 1

mi (z)
= z +

N∑

j=1

si jm j (z), for all i = 1, . . . , N and z ∈ H, (1.7)
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Universality for general Wigner-type matrices 671

for a function m = (m1, . . . ,mN ) : H → H
N on the complex upper half plane,

H = {z ∈ C : Imz > 0}, has a unique solution. The main result of this paper is to
establish the local law for Wigner-type matrices, i.e. that for large N the resolvent,
G(z) = (H − z)−1, with spectral parameter z = τ + iη ∈ H, is close to the diago-
nal matrix, diag(m(z)), as long as η � N−1. As a consequence, we obtain rigidity
estimates on the eigenvalues and complete delocalization for the eigenvectors. Com-
bining this information with the Dyson–Brownian motion, we obtain universality of
the eigenvalue gap statistics in the bulk.

We now list the assumptions on the variance matrices S = S(N ). The restrictions
on S are controlled by three model parameters, p, P > 0 and L ∈ N, which do not
depend on N . These parameters will remain fixed throughout this paper.

(A) For all N the matrix S is flat, i.e.,

si j ≤ 1

N
, i, j = 1, . . . , N . (1.8)

(B) For all N the matrix S is uniformly primitive, i.e.,

(SL)i j ≥ p

N
, i, j = 1, . . . , N . (1.9)

(C) For all N the matrix S induces a bounded solution of the QVE, i.e., the unique
solution m of (1.7) corresponding to S is bounded,

|mi (z)| ≤ P, i = 1, . . . , N , z ∈ H. (1.10)

Remark 1.1 (Boundedness and normalization) The assumption on the boundedness
of m is an implicit condition in the sense that it can be checked only after solving
(1.7). In Theorem 6.1 of [1] we list sufficient, explicitly checkable conditions on S,
which ensure (1.10). We also remark that the assumption (1.8) can be replaced by
si j ≤ C/N for some positive constant C . This will lead to a rescaling (cf. Remark 2.2
of [1]) of m. We pick the normalization C = 1 just for convenience.

Remark 1.2 (Primitivity) The primitivity condition (1.9) excludes some important
models, e.g. matrices of the form

H =
(

0 X
X∗ 0

)

,

whose eigenvalues yield the singular values of the Gram matrix XX∗, where X has
independent centered entries with an arbitrary variance profile. Condition (B) is not a
mere technicality; Gram matrices may have singularities in the spectrum near 0 (often
referred to as the ‘hard-edge’) that require separate treatment; but even away from 0
some new ideas are needed. The complete analysis is presented in [4], where we prove
local laws for Gram matrices.
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672 O. H. Ajanki et al.

In addition to the assumptions on the variances of hi j , we also require uniform
boundedness of higher moments. This leads to another basic model parameter, μ =
(μ1, μ2, . . . ), which is a sequence of non-negative real numbers.

(D) For all N the entries hi j of the random matrix H have bounded moments,

E|hi j |k ≤ μks
k/2
i j , k ∈ N, i, j = 1, . . . , N . (1.11)

In order to state our main result, in the next corollary we collect a few facts about
the solution of the QVE that are proven in [1]. Although these properties are sufficient
for the formulation of our results, for their proofs we will need much more precise
information about the solution of the QVE. Theorems 4.1 and 4.2 summarize every-
thing that is needed from [1] besides the existence and uniqueness of the solution of
the QVE. In particular, the statement of Corollary 1.3 follows easily from Theorem 4.1
below.

Corollary 1.3 (Solution of QVE) Suppose S satisfies (A)–(C). Let m : H → H
N be

the solution theQVE (1.7) corresponding toS. Thenm is analytic and has a continuous

extension (denoted again by m) to the closed upper half plane, m : H → H
N
, with

H := H ∪ R. The function ρ : R → [0,∞), defined by

ρ(τ) := lim
η↓0

1

πN

N∑

i=1

Immi (τ + iη), (1.12)

is a probability density. Its support is contained in [−2, 2] and is a union of closed
disjoint intervals

supp ρ =
K⋃

k=1

[αk, βk], where αk < βk < αk+1. (1.13)

There exists a positive constant δ∗, depending only on the model parameters p, P and
L, such that the sizes of these intervals are bounded from below by

βk − αk ≥ 2δ∗. (1.14)

Note that (1.14) provides a lower bound on the length of the intervals that constitute
supp ρ, while the length of the gaps, αk+1 − βk , between neighboring intervals can
be arbitrarily small. Figure 1 shows a shape that the density of states typically might
have. In particular, ρ may have gaps in its support and may have additional zeros
(cusps) in the interior of supp ρ. However, the behavior of ρ on the domain ρ ≤ ε,
for some sufficiently small ε > 0, can be completely characterized by universal shape
functions. For more details see Theorem 2.6 of [1].
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Universality for general Wigner-type matrices 673

Fig. 1 The density of states
may have gaps, cusps and local
minima. It is always a
symmetric function around zero,
i.e., ρ(τ) = ρ(−τ)

Definition 1.4 (Density of states) The functionρ defined in (1.12) is called thedensity
of states. Its harmonic extension to the upper half plane

ρ(τ + iη) :=
∫

R

�η(τ − σ)ρ(σ )dσ,

�η(τ) := 1

π

η

τ 2 + η2
; τ ∈ R, η > 0,

(1.15)

is again denoted by ρ. With a slight abuse of notation we still write supp ρ, as in (1.13),
for the support of the density of states as a function on the real line.

The density of states will be shown to be the eigenvalue distribution of H in the
large N limit on the macroscopic scale. For any fixed values τ1, τ2 ∈ R with τ1 < τ2
it satisfies

lim
N→∞

∣
∣Spec(H(N )) ∩ [τ1, τ2]

∣
∣

N
∫ τ2
τ1

ρ(N )(τ ) dτ
= 1, (1.16)

provided the denominator does not vanish in the limit. The identity (1.16) motivates
the terminology of density of states for the function ρ. The harmonic extension of ρ

toH is a version of the density of states, that is smoothed out on the scale η. It satisfies
the identity ρ(z) = (πN )−1∑

k Immk(z) not just for z ∈ R (cf. (1.12)) but for all
z ∈ H and it will be used in the statement of our main result, Theorem 1.7.

In fact, Theorem 1.7, implies a local version of (1.16), where the length of the
interval, [τ1, τ2], may converge to zero as N tends to infinity. Our estimates and thus
the proven speed of convergence depend on the distance of the interval to the edges of
supp ρ and even on the length of the closest gap in this case. We introduce a function
 : R → [0,∞), which encodes this relation.

Definition 1.5 (Local gap size) Let αk and βk be the edges of the support of the
density of states (cf. (1.13)) and δ∗ the constant introduced in Corollary 1.3. Then for
any δ ∈ [0, δ∗) we set
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674 O. H. Ajanki et al.

δ(τ) :=

⎧
⎪⎨

⎪⎩

αk+1 − βk if βk − δ ≤ τ ≤ αk+1 + δ for some k = 1, . . . , K − 1,

1 if τ ≤ α1 + δ or τ ≥ βK − δ,

0 otherwise.
(1.17)

Finally, we fix an arbitrarily small tolerance exponent γ ∈ (0, 1). This number
will stay fixed throughout this paper in the same fashion as the model parameters P , p,
L andμ. Our main result is stated for spectral parameters z = τ + iη whose imaginary
parts satisfy

η ≥ N γ−1. (1.18)

For a compact statement of the main theorem we define the notion of stochastic
domination, introduced in [12,14]. This notion is designed to compare sequences of
random variables in the large N limit up to small powers of N on high probability sets.

Definition 1.6 (Stochastic domination) Suppose N0 : (0,∞)2 → N is a given func-
tion, depending only on themodel parameters p, P , L andμ, aswell as on the tolerance

exponent γ . For two sequences, ϕ = (ϕ(N ))N andψ = (ψ(N ))N , of non-negative ran-
dom variables we say that ϕ is stochastically dominated by ψ if for all ε > 0 and
D > 0,

P
(
ϕ(N ) > N εψ(N )

)
≤ N−D, N ≥ N0(ε, D). (1.19)

In this case we write ϕ ≺ ψ .

Basic properties of the stochastic domination that are used extensively in this paper
are listed in Lemma A.1. The threshold N0(ε, D) = N0(ε, D; P, p, L , μ, γ ) will
always be an explicit function whose value will be increased throughout the paper,
thoughwewill not follow its form. This will happen only finitelymany times, ensuring
that N0 stays finite. The threshold is uniform in all other parameters, e.g. in the spectral
parameter z, as well as in the indices i, j, . . . of the matrix entries, that the sequences
ϕ and ψ may depend on. Typically, we will not mention the existence of N0 - it is
implicit in the notation ϕ ≺ ψ . As an example, we see that the bounded moment
condition, (D), implies

|hi j | ≺ N−1/2.

Actually, the function N0 depends only on finitely many moment parameters
(μ1, . . . , μM ) instead of the entire sequence μ, where now the number of required
moments M = M(ε, D; P, p, L , γ ), is an explicit function.

Now we are ready to state our main result on the local law. Suppose H = H(N ) is a
sequence of self-adjoint random matrices with the corresponding sequence S = S(N )

of variance matrices and ρ = ρ(N ) the induced sequence of densities of state. Recall
that δ∗ is the positive constant, depending only on p, P and L , introduced in Corollary
1.3 and δ is defined as in Definition 1.5.

Theorem 1.7 (Local law) Suppose that assumptions (A)–(D) are satisfied and fix an
arbitrary γ ∈ (0, 1). There is a deterministic function κ = κ(N ) : H → (0,∞] such
that uniformly for all z = τ + iη ∈ H with η ≥ N γ−1 the resolvents (1.1) of the
random matrices H = H(N ) satisfy
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Universality for general Wigner-type matrices 675

max
i, j

|Gi j (z) − mi (z)δi j | ≺
√

ρ(z)

Nη
+ 1

Nη
+ min

{
1√
Nη

,
κ(z)

Nη

}

. (1.20)

Furthermore, for any sequence of deterministic vectors w = w(N ) ∈ C
N with

maxi |wi | ≤ 1 the averaged resolvent diagonal has an improved convergence rate,
∣
∣
∣
∣
∣

1

N

N∑

i=1

wi
(
Gii (z) − mi (z)

)
∣
∣
∣
∣
∣

≺ min

{
1√
Nη

,
κ(z)

Nη

}

. (1.21)

In particular, for wi = 1 this implies
∣
∣
∣
∣
1

N
ImTr G(z) − πρ(z)

∣
∣
∣
∣ ≺ min

{
1√
Nη

,
κ(z)

Nη

}

. (1.22)

The function κ may be chosen to be

κ(z) = 1

(τ)1/3 + ρ(z)
, (1.23)

where  = δ , with some δ ∈ (0, δ∗) that depends only on the model parameters p,
P and L.

In the regime, where z is not too close to the support of the density of states in the
sense that

((τ)1/3+ ρ(z)) dist(z, supp ρ) ≥ N γ

(Nη)2
, (1.24)

κ maybe improved to

κ(z) = η

dist(z, supp ρ) ((τ)1/3+ ρ(z))

+ 1

Nηdist(z, supp ρ)1/2((τ)1/3 + ρ(z))1/2
. (1.25)

The size of ρ(z) is described in (4.5) below. Theorem 1.7 can be localized to a
spectral interval I ⊂ R, i.e., the statements hold for Re z ∈ I provided (1.10) applies
for z ∈ I + i(0,∞). In particular, in the bulk of the spectrum Theorem 1.7 simplifies
considerably.

Corollary 1.8 (Local law in the bulk) Assume (A), (B) and (D) with L = 1. Suppose
there is a constant ρ∗ > 0 and an interval I ⊂ supp ρ such that ρ(τ) ≥ ρ∗ for all
τ ∈ I . Then uniformly for all z = τ + iη, with τ ∈ I and η ≥ N γ−1, and non-random
w ∈ C

N satisfying maxi |wi | ≤ 1, the local laws hold

N
max
i, j=1

|Gi j (z) − mi (z)δi j | ≺ 1√
Nη

, and

∣
∣
∣
∣
∣

1

N

N∑

i=1

wi
(
Gii (z) − mi (z)

)
∣
∣
∣
∣
∣

≺ 1

Nη
,

(1.26)

where ρ∗ is considered as an additional model parameter.
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676 O. H. Ajanki et al.

Here the additional assumption L = 1 is only used to guarantee (cf. (i) of Theo-
rem 6.1 in [1]) that the solution m(z) of the QVE stays bounded around z = 0. Indeed,
if z is bounded away fromzero then (i) of Lemma5.4 in [1] implies‖m‖∞ := maxi |mi |
is bounded by a constant independent of N in the bulk of the spectrum. Therefore, if
dist(I, 0) ≥ δ for some δ > 0, or sup{ ‖m(z)‖∞ : Re z ∈ I } ≤ P is known for some
P < ∞, then the assumption L = 1 can be removed, and (1.26) holds with δ or P ,
respectively, considered as model parameters.

Theorem 1.7 generalizes the previous local laws for stochastic variance matrices
S (see [14] and references therein). It is valid for densities ρ with an edge behavior
different from the square root growth that is known from Wigner’s semicircular law.
In particular, singularities that interpolate between a square root and a cubic root are
possible. In the bulk of the support of the density of states, i.e., where ρ is bounded
away from zero, the function κ is bounded. The same is true near the edges, unless
the nearby gap is small. The bound deteriorates near small gaps in the support of ρ.

In applications, the sequence S = S(N ) satisfying (A)–(C) may be constructed by
discretizing a piecewise 1/2-Hölder continuous limit function (cf. Remark 6.2 in [1]).
As a particularly simple example, suppose f is a smooth, non-negative, symmetric,
f (x, y) = f (y, x), function on [0, 1]2 with a positive diagonal, f (x, x) > 0. Then
the sequence of variance matrices,

s(N )
i j := 1

N
f

(
i

N
,
j

N

)

, i, j = 1, . . . , N ,

satisfies conditions (A)–(C). The validity of (C) can be verified by using the general
criteria (cf. Theorem 2.10 and Theorem 6.1 of [1]) for uniform boundedness. In this
case the solution, m = (m1, . . . ,mN ), of the QVE converges to a limit in the sense
that

sup
z∈H

N
max
i=1

∣
∣mi (z) − m(i/N ; z)∣∣ → 0,

where m : [0, 1] × H → H is the solution of the continuous QVE,

− 1

m(x; z) = z +
∫ 1

0
f (x, y)m(y; z)dy, x ∈ [0, 1], z ∈ H.

The continuous QVE such as this one fall into the class of general QVEs thoroughly
analyzed in the companion paper [1]. In particular, the stability analysis applies and
the density of states converges to a limit

ρ(N )(τ ) → 1

π

∫ 1

0
Imm(x; τ)dx .

We introduce a notion for expressing that events hold with high probability in the
limit as N tends to infinity.
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Universality for general Wigner-type matrices 677

Definition 1.9 (Overwhelming probability) Suppose N0 : (0,∞) → N is a given
function, depending only on the model parameters p, P , L and μ, as well as on the

tolerance exponent γ . For a sequence A = (A(N ))N of random events we say that A
hold asymptotically with overwhelming probability (a.w.o.p.), if for all D > 0:

P(A(N )) ≥ 1 − N−D, N ≥ N0(D). (1.27)

There is a simple connection between the notions of stochastic domination and
asymptotically overwhelmingprobability. For two sequences A = A(N ) and B = B(N )

the statement ‘A implies B a.w.o.p.’ is equivalent to1A ≺ 1B , where the threshold N0,
implicit in the stochastic domination, does not depend on ε, i.e., N0(ε, D) = N0(D).

We denote by λ1 ≤ · · · ≤ λN the eigenvalues of the random matrix H. The
following corollary shows that the eigenvalue distribution converges to the density of
states as N tends to infinity.

Corollary 1.10 (Convergence of cumulative eigenvalue distribution) Assume (A)–
(D). Then uniformly for all τ ∈ R the cumulative empirical eigenvalue distribution
approaches the integrated density of states,

∣
∣
∣
∣#{i : λi ≤ τ } − N

∫ τ

−∞
ρ(ω)dω

∣
∣
∣
∣ ≺ min

{
1

(τ)1/3+ ρ(τ)
, N 1/5

}

. (1.28)

Furthermore, for an arbitrary tolerance exponent γ ∈ (0, 1) there are no eigenvalues
away from the support of the density of states,

K
max
k=0

#
{
i : βk + δk < λi < αk+1− δk

} = 0 a.w.o.p., (1.29)

where we interpret β0 := −∞, αK+1 := +∞ and δk is defined as δ0 := δK :=
N γ−2/3, as well as

δk := N γ

(αk+1− βk)1/3N 2/3 , k = 1, . . . , K − 1. (1.30)

Based on (1.16) we define the index, i(τ ), of an eigenvalue that we expect to be
located close to the spectral parameter τ by

i(τ ) :=
⌈

N
∫ τ

−∞
ρ(ω)dω

⌉

. (1.31)

Here, �ω� denotes the smallest integer that is bigger or equal to ω for any ω ∈ R.

Corollary 1.11 (Rigidity of eigenvalues) Assume (A)–(D), and let γ ∈ (0, 1) be an
arbitrary tolerance exponent. Denote

εk := N γ min

{
1

N 3/5
,

1

(αk+1 − βk)1/9N 2/3

}

, k = 1, . . . , K − 1, (1.32)

123



678 O. H. Ajanki et al.

and ε0 := εK := N γ−2/3. Then uniformly for every

τ ∈
K⋃

k=1

[
αk + εk−1, βk − εk

]
, (1.33)

the eigenvalues satisfy the rigidity

|λi(τ ) − τ | ≺ min

{
1

((τ)1/3 + ρ(τ))ρ(τ)N
,

1

N 3/5

}

. (1.34)

Furthermore, if τ is close to the extreme edge, τ ∈ (α1, α1+ε0) or τ ∈ (βK −εK , βK ],
then

|λi(τ ) − τ | ≺ N−2/3. (1.35)

Finally, if τ ∈ (βk − εk, αk+1 + εk) for some 1 ≤ k ≤ K − 1, then the corresponding
eigenvalue is close to an internal edge in the sense that

λi(τ ) ∈ [βk − 2εk, βk + δk
] ∪ [αk+1 − δk, αk+1 + 2εk

]
a.w.o.p., (1.36)

where δk is defined in (1.30).

Remark 1.12 (Eigenvalues outside supp ρ) The statements (1.35) and (1.36) are an
immediate consequence of (1.34) and (1.29). They simply express the fact that the
small number of O(N ε) eigenvalues, very close to the edges, are found in the space
that is left for them by the other eigenvalues for which the rigidity statement (1.34)
applies. For an illustration see Fig. 2. We also note that results of this type date back
to at least [7] (in the sample covariance context).

Theorem 1.13 (Anisotropic law) Assume (A)–(D) and fix arbitrary γ > 0. Then
uniformly for all z = τ + iη ∈ H with η ≥ N γ−1, and for any two deterministic
�2-unit vectors w, v we have

∣
∣
∣
∣
∣
∣

N∑

i, j=1

wi Gi j (z)v j −
N∑

i=1

mi (z)wivi

∣
∣
∣
∣
∣
∣

≺
√

ρ(z)

Nη
+ 1

Nη
+ min

{
1√
Nη

,
κ(z)

Nη

}

,

(1.37)
where κ is the function from Theorem 1.7.

Corollary 1.14 (Delocalization of eigenvectors) Assume (A)–(D) and fix arbitrary
γ > 0. Let u(i) ∈ C

N be the �2-normalized eigenvector of H corresponding to the
eigenvalue λi . All eigenvectors are delocalized in the sense that for any deterministic
unit vector b ∈ C

N we have
∣
∣b · u(i)

∣
∣ ≺ 1√

N
. (1.38)

In particular, the eigenvectors are completely delocalized, i.e., ‖u(i)‖∞ = max j |u(i)
j |

≺ N−1/2.
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Fig. 2 Notations of
Corollary 1.11: At the edges of a
gap of length  in supp ρ the
bound on the eigenvalue
fluctuation is δk inside the gap
and εk inside the support

Definition 1.15 (q-full random matrix) We say that H is q-full for some q > 0
(independent of N ) if either of the following applies:

• H is real symmetric and Eh2i j ≥ q/N for all i, j = 1, . . . , N ;
• H is complex hermitian and for all i, j = 1, . . . , N the real symmetric 2 × 2-
matrix,

σ i j :=
(

E(Rehi j )2 E(Rehi j )(Imhi j )
E(Rehi j )(Imhi j ) E(Imhi j )2

)

,

is strictly positive definite such that σ i j ≥ q/N .

IfH is real symmetric, then the q-fullness ofH is equivalent to the property (B) with
L = 1 and q = p. On the other hand, in the complex hermitian case the q-fullness
condition is stronger than a lower bound on E |hi j |2 = si j , and it can not be captured
by the matrix S alone.

Theorem 1.16 (Universality) Suppose (A) and (D) hold, and H is q-full. Then for all
ε > 0, n ∈ N and all smooth compactly supported observables F : Rn → R, there
are two positive constants C and c, depending on ε, q and F in addition to the model
parameters, such that for any τ ∈ R with ρ(τ) ≥ ε the local eigenvalue distribution
is universal,

∣
∣
∣EF

((
Nρ(λi(τ ))(λi(τ ) − λi(τ )+ j )

)n
j=1

)

−EGF
((

Nρsc(0)(λ�N/2� − λ�N/2�+ j )
)n
j=1

)∣
∣
∣ ≤ CN−c.

Here,EG denotes the expectation with respect to the standardGaussian ensemble, i.e.,
with respect to GUE and GOE in the cases of complex Hermitian and real symmetric
H, respectively, and ρsc(0) = 1/(2π) is the value of Wigner’s semicircle law at the
origin.

This theoremconcerns the universality in the bulk.With the help of our local lawone
may also prove a weaker version of the universality at the edges (including the internal
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edges). Since our local law, Theorem 1.7, is optimal at the edges, a direct application of
the Green function comparison theorem from Section 6 of [22] (with straightforward
adjustments) shows edge universality in the sense that the edge statistics may depend
only on the second moments encoded in the matrices σ i j . In particular, it is the same
as the edge statistics of a Wigner-type matrix with centered Gaussian entries with
coinciding second moments. This argument holds for the extreme edges as well as for
the internal edges. However, it does not yet prove the Tracy-Widom law, i.e. that the
edge statistics is independent even of the variances S.

Convention 1.17 (Constants and comparison relation) We use the convention that
every positive constant with a lower star index, such as δ∗, c∗ and λ∗, explicitly
depends only on the model parameters P, p and L from (B)–(D). These dependen-
cies can be reconstructed from the proofs, but we will not follow them. Constants
c, c1, c2, . . . ,C,C1,C2, . . . also depend only on P, p and L. They will have a local
meaning within a specific proof.

For two non-negative functions ϕ and ψ depending on a set of parameters u ∈ U,
we use the comparison relation

ϕ � ψ, (1.39)

if there exists a positive constant c, depending explicitly on P, p and L such that
ϕ(u) ≥ cψ(u) for all u ∈ U. The notation ψ ∼ ϕ means that both ψ � ϕ and
ψ � ϕ hold true. In this case we say that ψ and ϕ are comparable. We also write
ψ = ϕ + O(ϑ), if |ψ − ϕ| � ϑ .

We denote the normalized scalar product between two vectors u, w ∈ C
N and the

average of a vector by

〈u, w〉 := 1

N

N∑

i=1

uiwi , and 〈w〉 := 1

N

N∑

i=1

wi , (1.40)

respectively. Note that with this convention |〈u, u〉| = N−1‖u‖2
�2
.

2 Bound on the random perturbation of the QVE

We will make the following standing assumptions for the rest of this paper,

• The assumptions (A)–(D) hold true and an arbitrary tolerance exponent γ ∈ (0, 1)
is fixed;

which are always assumed to hold unless explicitly otherwise stated.
We introduce the notation G(V ) for the resolvent of the matrix H(V ), which is

identical to H except for the removal of the rows and columns corresponding to the
indices V ⊆ {1, . . . , N }. The enumeration of the indices is kept, even though G(V )

has a lower dimension.
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The diagonal elements of the resolvent,g := (G11, . . . ,GNN ), satisfy the perturbed
quadratic vector equation

− 1

gi (z)
= z +

N∑

j=1

si j g j (z) + di (z), (2.1)

for all z ∈ H and i = 1, . . . , N . The random perturbation d = (d1, . . . , dN ) is given
by

dk :=
(k)∑

i �= j

hkiG
(k)
i j h jk +

(k)∑

i

(|hki |2 − ski )G
(k)
i i

−
(k)∑

i

ski
GikGki

gk
− hkk − skkgk . (2.2)

Here and in the following, the upper indices on the sums indicate which indices are not
summed over. For the proof of this simple identity as well as (2.3) below via the Schur
complement formula we refer to [14]. As in (2.2) we will often omit the dependence
on the spectral parameter z in our notation, i.e., Gi j = Gi j (z), dk = dk(z), etc.

We will now derive an upper bound on ‖d‖∞ = maxi |di |, provided |gi − mi |
is bounded by a small constant. At the same time we will control the off-diagonal
elements Gkl of the resolvent. These satisfy the identity

Gkl = GkkG
(k)
ll

(kl)∑

i, j

hkiG
(kl)
i j h jl − GkkG

(k)
ll hkl , (2.3)

for k �= l. The strategy in what follows below is that (2.2) and (2.3) are used to
improve a rough bound on the entries of the resolvent G to get the correct bounds on
the random perturbation and the off-diagonal resolvent elements. Later, in Sect. 3, the
stability of the QVE under the small perturbation, d, will provide the improved bound
on the diagonal elements, Gii − mi = gi − mi .

We introduce a short notation for the difference between g and the solution m of
the unperturbed Eq. (1.7),

�d(z) := max
i

|Gii (z) − mi (z)|,
�o(z) := max

i �= j
|Gi j (z)|,

�(z) := max
{
�d(z),�o(z)

}
.

(2.4)

The following lemma is analogous to Lemma 5.2 in [14] with minor modifications.
For the completeness of this paper, we repeat these arguments. One small modification
is that our estimates also deal with the regime where |z| is large. To keep the formulas
short we denote

[z] := 1 + |z|.
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The dependence of the upcoming error bounds on [z] is not always optimal and this
dependence is not kept in the statement of our main result Theorem 1.7, either. In fact,
the regime [z] ∼ 1 is the most interesting, since our results show that the spectrum of
H lies a.w.o.p. inside a compact interval (cf. Corollary 1.10). For the first reading we
therefore recommend to think of [z] = 1 in most of our proofs. The [z]-dependence
is used mainly in order to propagate a bound from the regime of very large imaginary
part of the spectral parameter (Imz ≥ N 5) to the entire domain, on which Theorem 1.7
holds.

Lemma 2.1 (Bound on perturbation) There is a small positive constant λ∗ ∼ 1, such
that uniformly for all spectral parameters z = τ + iη ∈ H with η ≥ N γ−1:

|dk(z)|1
(
�(z) ≤ λ∗/[z]

) ≺ [z]−2

√
Im〈g(z)〉

Nη
+ 1√

N
, (2.5a)

�o(z)1
(
�(z) ≤ λ∗/[z]

) ≺ [z]−2

(√
Im〈g(z)〉

Nη
+ 1√

N

)

. (2.5b)

For the proof of this lemma we will need an additional property of the solution of
the QVE that is a corollary of Theorem 4.1, where all properties of m taken from [1]
are summarized.

Corollary 2.2 (Bounds on solution) The absolute value of the solution of the QVE
satisfies

|mi (z)| ∼ [z]−1, z ∈ H, i = 1, . . . , N . (2.6)

Proof of Lemma 2.1 Here we use the three large deviation estimates,

∣
∣
∣
∣
∣
∣

(k)∑

i �= j

hkiG
(k)
i j h jk

∣
∣
∣
∣
∣
∣

≺
⎛

⎝
(k)∑

i �= j

ski s jk
∣
∣G(k)

i j

∣
∣2

⎞

⎠

1/2

, (2.7a)

∣
∣
∣
∣
∣
∣

(kl)∑

i, j

hkiG
(kl)
i j h jl

∣
∣
∣
∣
∣
∣

≺
⎛

⎝
(kl)∑

i, j

ski s jl
∣
∣G(kl)

i j

∣
∣2

⎞

⎠

1/2

, (2.7b)

∣
∣
∣
∣
∣
∣

(k)∑

i

(|h2ki | − ski
)
G(k)

i i

∣
∣
∣
∣
∣
∣

≺
⎛

⎝
(k)∑

i

s2ki
∣
∣G(k)

i i

∣
∣2

⎞

⎠

1/2

. (2.7c)

Since G(V ) is independent of the rows and columns of H with indices in V , these
estimates follow directly from the large deviation bounds in Appendix C of [14].
Furthermore, we use

|hi j | ≺ N−1/2, si j ≤ N−1, (2.8)

where latter the inequality is just assumption (1.8) and the bound on hi j follows from
(1.11). We remark that the stochastic domination in (2.7) and (2.8) is uniform in k, l
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and i, j , respectively, i.e., the threshold function N0 in Definition 1.6 does not depend
on i, j, k, l.

We will now show that the removal of a few rows and columns in H will only have
a small effect on the entries of the resolvent. The general resolvent identity,

Gi j = G(k)
i j + GikGkj

Gkk
, k /∈ {i, j}, (2.9)

leads to the bound

∣
∣G(k)

i j − Gi j
∣
∣1
(
� ≤ λ∗/[z]

) = |GikGkj |
|gk | 1

(
� ≤ λ∗/[z]

)
� [z]�2

o. (2.10)

In the inequality we used that |mk(z)| ∼ [z]−1 (cf. Corollary 2.2), |gk | = |mk |+O(�)

and that λ∗ is chosen to be small enough. We use (2.10) in a similar calculation for
G(l)

i j and find that on the event where � ≤ λ∗/[z],

∣
∣G(kl)

i j − G(l)
i j

∣
∣ =

∣
∣G(l)

ik G
(l)
k j

∣
∣

∣
∣G(l)

kk

∣
∣

� ( |Gik | + O([z]�2
o) )( |Gkj | + O([z]�2

o) )

|gk | + O([z]�2
o)

.

(2.11)
Again using (2.10) and that the denominator of the last expression is comparable to
[z]−1, we conclude

|G(kl)
i j − Gi j |1

(
� ≤ λ∗/[z]

)
� [z]�2

o, (2.12)

provided λ∗ is small. Therefore, we see that it is possible to remove one or two upper
indices from Gi j for the price of a term, whose size is at most [z]�2

o.
We have now collected all necessary ingredients and use them to estimate all the

terms in (2.2) one by one. We start with the first summand. By (2.7a) we find

∣
∣
∣
∣
∣
∣

(k)∑

i �= j

hkiG
(k)
i j h jk

∣
∣
∣
∣
∣
∣

2

≺
(k)∑

i �= j

ski s jk
∣
∣G(k)

i j

∣
∣2 ≤ 1

N 2

(k)∑

i �= j

∣
∣G(k)

i j

∣
∣2. (2.13)

With the help of (2.10) we remove the upper index from G(k)
i j and get

∣
∣
∣
∣
∣
∣

(k)∑

i �= j

hkiG
(k)
i j h jk

∣
∣
∣
∣
∣
∣

2

1
(
� ≤ λ∗/[z]

) ≺ (
�2

o + [z]2�4
o

)
1
(
� ≤ λ∗/[z]

)
� �2

o.

(2.14)
For the second summand in (2.2) we use the large deviation bound for the diagonal,

(2.7c), and find that
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∣
∣
∣
∣
∣
∣

(k)∑

i

(|hki |2 − ski )G
(k)
i i

∣
∣
∣
∣
∣
∣

2

≺
(k)∑

i

s2ki
∣
∣G(k)

i i

∣
∣2 ≤ 1

N 2

(k)∑

i

∣
∣G(k)

i i

∣
∣2. (2.15)

By removing the upper index again we estimate

∣
∣G(k)

i i

∣
∣1
(
� ≤ λ∗/[z]

)
� |mi | + �d + [z]�2

o. (2.16)

We use this in (2.15) and for sufficiently small λ∗ we arrive at

∣
∣
∣
∣
∣
∣

(k)∑

i

(|hki |2 − ski )G
(k)
i i

∣
∣
∣
∣
∣
∣

2

1
(
� ≤ λ∗/[z]

) ≺ 1

[z]2N . (2.17)

The third summand in (2.2) is estimated directly by

∣
∣
∣
∣
∣
∣

(k)∑

i

ski
GikGki

gk

∣
∣
∣
∣
∣
∣
1
(
� ≤ λ∗/[z]

) ≤ �2
o

|gk | 1
(
� ≤ λ∗/[z]

)
� �o. (2.18)

We combine the estimates for the individual terms (2.14), (2.17), (2.18) and (2.8).
Altogether we conclude that

|dk |1
(
� ≤ λ∗/[z]

) ≺ �o(z) + 1√
N

. (2.19)

We will now derive in a similar fashion a stochastic domination bound for the off-
diagonal error term �o. Afterwards, we will combine the two bounds and infer the
claim of the lemma. For the off-diagonal error term we proceed along the same lines
as for |dk |, using (2.3) instead of (2.2). For k �= l we find

|Gkl |2 ≺ |gk |2
∣
∣G(k)

ll

∣
∣2

⎛

⎝ 1

N 2

(kl)∑

i, j

∣
∣G(kl)

i j

∣
∣2 + 1

N

⎞

⎠ . (2.20)

Here, we applied the large deviation bound (2.7b). Using the Ward identity for the
resolvent G(kl),

(kl)∑

j

∣
∣G(kl)

i j

∣
∣2 = ImG(kl)

i i

η
, (2.21)

and (2.10) for removing the upper index of G(k)
ll we get

|Gkl |2 1
(
� ≤ λ∗/[z]

) ≺ [z]−4

⎛

⎝ 1

N 2η

(kl)∑

i

ImG(kl)
i i + 1

N

⎞

⎠ . (2.22)
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We remove the upper indices from G(kl)
i i and end up with

�o 1
(
� ≤ λ∗/[z]

) ≺ [z]−2

(√
Im 〈g〉
Nη

+
√

[z]
Nη

�o + 1√
N

)

. (2.23)

The bound remains true without the summand containing �o on the right hand side,
since this term can be absorbed into the left hand side, as its coefficient is bounded
by N−γ /2, while on the left �o is not multiplied by a small coefficient. Putting (2.19)
and (2.23) together yields the desired result (2.5). ��

3 Local law away from local minima

In this section we will use the stability of the QVE to establish the main result away
from the local minima of the density of states inside its own support, i.e. away from
the set

M := {
τ ∈ supp ρ : τ is the location of a local minimum of ρ

}
. (3.1)

The case where z is close to M requires a more detailed analysis. This is given is
Sect. 4. At the end of this section we will also sketch the proof of Corollary 1.8. In
this section we prove the following.

Proposition 3.1 (Local law away from local minima) Let δ∗ be any positive constant,
dependingonly on themodel parameters p, P and L. Then, uniformly for all z = τ + iη
with η ≥ N γ−1 and dist(z,M) ≥ δ∗, we have

[z]2�d(z) + ‖d(z)‖∞ ≺ [z]−2

√
ρ(z)

Nη
+ [z]−6

Nη
+ 1√

N
, (3.2a)

�o(z) ≺ [z]−2

√
ρ(z)

Nη
+ [z]−4

Nη
+ [z]−2

√
N

. (3.2b)

Furthermore, on the same domain, for any sequence of deterministic vectors w =
w(N ) ∈ C

N with the uniform bound, ‖w‖∞ ≤ 1, we have

|〈w, g(z) − m(z)〉| ≺ [z]−3 ρ(z)

Nη
+ [z]−7

(Nη)2
+ [z]−2

N
. (3.3)

This proposition, combined with the properties of ρ given in Theorem 4.1 later,
yields the local law (Theorem 1.7) away from the setM. Indeed, using ρ(z) � [z]−2η

(cf. relations (4.5) below) and κ(z) ≥ 0 we see that (3.2) implies (1.20).
In order to see that also the averaged local law (1.21) follows from (3.3) we split

the domain {z ∈ H : dist(z,M)} ≥ δ∗ into three subdomains that are considered sep-
arately. To this end, let B0 and B1 be the upper bounds on κ from (1.23) and (1.25),
respectively.
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First we consider the regime η ≥ δ∗/2. Using 1/3 + ρ � 1 we see that B0 � 1.
Similarly, we get B1 � η[z]−1. Since (Nη)−1Bk , k = 0, 1, are both bigger than the
right hand side of (3.3), we obtain (1.21) for η ≥ δ∗/2.

Now we consider the regime η ≤ δ∗/2, which is split into two cases depend-
ing on whether dist(Re z, supp ρ) = 0, or not. In the former case [z] � 1 and
dist(z, supp ρ) = η, and (4.5a) implies ρ(Re z) ∼ 1. Feeding these estimates into
(1.23) and (1.25) yields B0 ∼ 1 and B1 � 1. These imply (1.21).

Finally, suppose dist(Re z, supp ρ) ≥ δ∗/2 and η ≤ δ∗/2. In this regime  ∼ 1
(cf. (1.17)), while (4.5f) implies ρ ∼ η [z]−2. Hence, B0 ∼ 1 and B1 � η [z]−1, and
(Nη)−1 min{B0, B1} ≥ [z]−1N−1. By comparing with the right hand side of (3.3) we
conclude that (1.21) applies for all dist(z,M) ≥ δ∗.

The proof of Proposition 3.1 uses a continuity argument in z. In particular, continuity
of the solution of the QVE is needed. The statement of the following corollary is part
of the properties of m listed in Theorem 4.1 below.

Corollary 3.2 (Stieltjes-transform representation) For every i = 1, . . . , N there is
a probability density pi : R → [0,∞) with support in [−2, 2] such that mi is the
Stieltjes-transform of this density, i.e.,

mi (z) =
∫

R

pi (τ )dτ

τ − z
, z ∈ H. (3.4)

The solution of the QVE is uniformly Hölder-continuous,

‖m(z1) − m(z2)‖∞ � |z1 − z2|1/3, z1, z2 ∈ H. (3.5)

Since the solution can be extended to the real line, it is the harmonic extension
to the complex upper half plane of its own restriction to the real line. Therefore,
Immi (τ ) = πpi (τ ) for τ ∈ R. The density of states is the average of the probability
densities pi , i.e., ρ = 〈p〉.

Since we will estimate the difference, g − m, we start by deriving an equation for
this quantity. Using the QVE for m and the perturbed Eq. (2.1) for g we find

gi − mi = − 1

z + (Sg)i + di
+ 1

z + (Sm)i

= (S(g − m))i + di
(z + (Sg)i + di )(z + (Sm)i )

= m2
i (S(g − m))i + mi (gi − mi )(S(g − m))i + mi gi di . (3.6)

Rearranging the terms leads to
(
(1 − diag(m)2S)(g − m)

)
i = mi (gi − mi )(S(g − m))i

+ m2
i di + mi (gi − mi ) di .

(3.7)

In the proof of Proposition 3.1 we will view (3.7) as a quadratic equation for g − m
and we use its stability to bound �d in terms of ‖d‖∞. We will now demonstrate this
effect in the case when z is far away from the support of the density of states.
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Lemma 3.3 (Stability far away from support) For z ∈ H with |z| ≥ 10, we have

�d(z)1(�d(z) ≤ 4|z|−1) � |z|−2‖d(z)‖∞. (3.8)

Furthermore, there is a matrix valued function T : H → C
N×N , depending only on

S and satisfying the uniform bound ‖T(z)‖∞→∞ � 1, such that for all w ∈ C
N and

|z| ≥ 10 the averaged difference between g and m satisfies the improved bound

∣
∣
〈
w, g(z) − m(z)

〉∣
∣1
(
�d(z) ≤ 4|z|−1)

� |z|−2(‖w‖∞‖d(z)‖2∞ + |〈T(z)w, d(z)〉|). (3.9)

For a matrix A we denote by ‖A‖∞→∞ the operator norm of w �→ Aw on �∞.

Proof Since the matrix S is flat (cf. (1.8)), it satisfies the norm bound ‖S‖∞→∞ ≤ 1.
We also have the trivial bound |mi (z)| ≤ 1/dist(z, supp ρ) ≤ 2|z|−1 ≤ 1/5 at

our disposal. This follows directly from the Stieltjes transform representation (3.4).
In particular,

‖(1 − diag(m)2S)−1‖∞→∞ ≤ 2, (3.10)

from the geometric series. By inverting the matrix 1−diag(m)2S and using the trivial
bound on m in (3.7) we find

�d(z) ≤ 4
(

|z|−1�d(z)
2 + |z|−1�d(z)‖d(z)‖∞ + 2|z|−2‖d(z)‖∞

)
. (3.11)

Using the bound inside the indicator function from (3.8) and |z| ≥ 10 the assertion
(3.8) of the lemma follows.

The bound for the average, (3.9), follows by taking the inverse of 1 − diag(m)2S
on both sides of (3.7) and using (3.8) and |mi | ∼ |z|−1.

For the proof of Proposition 3.1 we use the stability of (3.7) also close to supp ρ.
This requires more care and is carried out in detail in [1]. The result of that analysis is
Theorem 4.2. Here we will only need the following consequence of that theorem and
(4.5a).

Corollary 3.4 (Stability away from minima) Suppose δ∗ is an arbitrary positive con-
stant, depending only on the model parameters p, P and L. Let d : H → C

N ,
g : H → (C\{0})N be arbitrary vector valued functions on the complex upper half
plane that satisfy

− 1

gi (z)
= z +

N∑

j=1

si j g j (z) + di (z), z ∈ H. (3.12)

There exists a positive constant λ∗ ∼ 1, such that the QVE is stable away from M,

‖g(z) − m(z)‖∞ 1
(‖g(z) − m(z)‖∞ ≤ λ∗

)
� ‖d(z)‖∞,

z ∈ H, dist(z,M) ≥ δ∗.
(3.13)
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Furthermore, there is a matrix valued function T : H → C
N×N , depending only on S

and satisfying the uniform bound ‖T(z)‖∞→∞ � 1, such that for all w ∈ C
N ,

|〈w, g(z) − m(z)〉|1(‖g(z) − m(z)‖∞ ≤ λ∗
)

� ‖w‖∞‖d(z)‖2∞ + |〈T(z)w, d(z)〉|,
(3.14)

for z ∈ H with dist(z,M) ≥ δ∗.

Furthermore, the following fluctuation averaging result is needed. It was first estab-
lished for generalized Wigner matrices with Bernoulli distributed entries in [21].

Theorem 3.5 (Fluctuation averaging) For any z ∈ H, with Im z ≥ N γ−1, and any
sequence of deterministic vectorsw = w(N ) ∈ C

N with the uniformbound, ‖w‖∞ ≤ 1
the following holds true: If �o(z) ≺ �/[z]2 for some deterministic (N-dependent)
� ≤ N−γ /3 and �(z) ≺ N−γ /3/(1 + |z|) , then

|〈w, d(z)〉| ≺ [z]−1�2 + 1

N
, (3.15)

where d(z) is defined in (2.2).

Proof The proof directly follows the one given in [14]. We only mention some minor
necessary modifications. Let Qk X := X − E[X |H(k)] be the complementary projec-
tion to the conditional expectation of a random variable X given the matrix H(k), in
which the k-th row and column are removed. From the definition of d in (2.2) and
Schur’s complement formula in the form,

1

Gkk
= hkk − z −

(k)∑

i, j

hkiG
(k)
i j h jk, (3.16)

we infer the identity

dk = −Qk
1

Gkk
− skkGkk −

(k)∑

i

ski
GikGki

Gkk
.

In particular, we have that a.w.o.p.

∣
∣
∣dk + Qk

1

Gkk

∣
∣
∣ � [z]−1

N
+ [z]�2

o.

Thus, proving (3.15) reduces to showing

∣
∣
∣
∣
∣

1

N

N∑

k=1

wk Qk
1

Gkk

∣
∣
∣
∣
∣

≺ [z]−1�2 + 1

N
.

In the setting where H is a generalized Wigner matrix and |z| ≤ 10 this bound is
precisely the content of Theorem 4.7 from [14].
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The a priori bound used in the proof of that theorem is replaced by

∣
∣
∣
∣
∣
Qk

1

G(V )
kk

∣
∣
∣
∣
∣

≺ �o + 1√
N

, (3.17)

for any V ⊆ {1, . . . , N } with N -independent size. This bound is proven in the same
way as (2.19). Here, the N0 hidden in the stochastic domination depends on the size
|V | of the index set. Following the proof of Theorem 4.7 given in [14] with (3.17) and
tracking the z-dependence,

1

|G(V )
kk (z)|

≺ [z],

yields the fluctuation averaging, Theorem 3.5. ��
Proof of Proposition 3.1 Let us show first that (3.3) follows directly from (3.2) by
applying the fluctuation averaging, Theorem3.5. Indeed, (3.2) provides a deterministic
bound on the off-diagonal error,�o, which is needed to apply the fluctuation averaging
to the second terms on the right hand sides of (3.14) and (3.9). It also shows that the
indicator functions on the left hand sides of (3.14) and (3.9) are a.w.o.p. nonzero.
The stability bound (3.9) valid in the large |z| regime is necessary to get the correct
[z]-factors in (3.3). Thus, (3.3) is proven, provided (3.2) is true.

The proof of (3.2) is split into the consideration of two different regimes. In the
first regime the absolute value of z is large, |z| ≥ N 5. In this case we make use only
of weak a priori bounds on the resolvent elements and the entries of d. Together with
Lemma 3.3 they will suffice to prove (3.2) in this case. In the second regime, |z| ≤ N 5,
we use a continuity argument. We will establish a gap in the possible values that the
continuous function, z �→ [z]�(z), might have. Here, the stability result Corollary 3.4
is used. We use this gap to propagate the bound with the help of Lemma A.2 in the
appendix from |z| = N 5 to the whole domain where |z| ≤ N 5, η ≥ N γ−1 and we
stay away fromM.

Regime 1: Let |z| ≥ N 5. We show that the indicator functions in the statement of
Lemma 2.1 are a.w.o.p. not vanishing. We start by showing that the diagonal contri-
bution, �d, to � is sufficiently small. The reduced resolvent elements for an arbitrary
V ⊆ {1, . . . , N } satisfy

|G(V )
i j (z)| ≤ η−1 ≤ N 1−γ . (3.18)

From this and the definition of d in (2.2) we read off the a priori bound,

‖d(z)‖∞ ≺ N 2−γ . (3.19)

Here, we used the general resolvent identity (2.9) in the formGikGki = gk(gi −G(k)
i i ).

Since g satisfies the perturbed QVE (2.1) and |∑N
j=1 si j g j (z) + di (z)| ≺ N 2−γ from

(3.19) and (3.18) we conclude that uniformly for |z| ≥ N 2 we have

|gk(z)| ≤ 2|z|−1, a.w.o.p. (3.20)
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With the trivial bound |mi (z)| ≤ 1/dist(z, supp ρ) on the solution of the QVEwe infer
that on this domain the indicator function in (3.8) is a.w.o.p. non-zero and therefore
uniformly for |z| ≥ N 2. Lemma 3.3 yields

�d(z) � |z|−2‖d(z)‖∞ ≤ N−γ /2|z|−1, a.w.o.p. (3.21)

In the last inequality we have used (3.19) in the form ‖d‖∞ ≤ N−γ /2N 2 a.w.o.p.
(cf. Definitions 1.6 and 1.9) and the extra factor [z]−2 on the right hand side of (3.8).
Thus, for |z| ≥ N 2 the diagonal contribution to � does not play a role in the indicator
function in the statement of Lemma 2.1.

Now we derive a similar bound for the off-diagonal contribution �o. Using the
resolvent identity (2.9) for i = j again, the bound |hi j | ≺ N−1/2 on the entries of the
random matrix and the a priori bound on the reduced resolvent elements, (3.18), in
the expansion formula (2.3) yields

|Gkl(z)| ≺ ( |gk(z)gl(z)| + |Gkl(z)Glk(z)|
)
N 2−γ , |Gkl(z)| ≺ |gk(z)|N 3−γ ,

(3.22)
for k �= l. With the bound (3.20) we conclude that

�o(z) ≺ |z|−2N 2−γ + |z|−1N 5−2γ �o(z), |z| ≥ N 2. (3.23)

Thus, �o ≺ N−3|z|−1 on the domain where |z| ≥ N 5. We conclude that Lemma 2.1
applies in this regime even without the indicator functions in the formulas (2.5). We
use the bound from this lemma for the norm of d and the off-diagonal contribution,
�o, to �, while we use the first inequality in (3.21) for the diagonal contribution, �d.
In this way, we get

|z|2�d + ‖d‖∞ ≺ |z|−2
√

ρ

Nη
+ |z|−2

√
�d

Nη
+ 1√

N
,

|z|2�o ≺
√

ρ

Nη
+
√

�d

Nη
+ 1√

N
, (3.24)

where we also used gk = mk + O(�d). Applying the weighted Cauchy-Schwarz
inequality,

√
αβ ≤ θ α + θ−1β, we find for any ε ∈ (0, γ ) that the right hand side of

the first inequality can be estimated further by

|z|2�d + ‖d‖∞ ≺ |z|−2
√

ρ

Nη
+ N−ε|z|2�d + |z|−6 N

ε

Nη
+ 1√

N
.

The term N−ε|z|2�d can be absorbed into the left hand side and by the definition of
the stochastic domination and since ε is arbitrarily small the remaining N ε on the right
hand side can be replaced by 1 without changing the correctness of this bound (cf. (i)
and (ii) of Lemma A.1). In this way we arrive at
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|z|2�d + ‖d‖∞ ≺ |z|−2
√

ρ

Nη
+ |z|−6

Nη
+ 1√

N
.

For the bound on the off-diagonal error term we plug this result into (3.24) and get

�o ≺ |z|−2
√

ρ

Nη
+ |z|−6

Nη
+ |z|−3

N 1/4

√
1

Nη
+ |z|−2

√
N

.

Regime 2: Now let |z| ≤ N 5 and suppose that δ∗ is a positive constant, depending
only on the model parameters p, P and L . The diagonal contribution, �d, satisfies

�d(z)1
(
�d(z) ≤ λ∗/[z]

)
� [z]−2‖d(z)‖∞, (3.25)

according to (3.8) in Lemma 3.3 (for |z| ≥ 10) and (3.13) from Corollary 3.4 (for
|z| ≤ 10), where λ∗ is a sufficiently small positive constant.

We will now establish a gap in the possible values of �(z) by showing (cf. (3.29)
below) that the right hand side of (3.25) is much less than λ∗/[z]. To this end we
estimate the norm of d in (3.25) by Lemma 2.1 and also use the bound on the off-
diagonal contribution, �o, from the same lemma,

([z]2�d + ‖d‖∞
)
1
(
� ≤ λ∗/[z]

)≺ [z]−2

√
Im〈g〉
Nη

+ 1√
N

,

[z]2�o 1
(
� ≤ λ∗/[z]

)≺
√
Im〈g〉
Nη

+ 1√
N

.

(3.26)

Now we use Im〈g〉 = πρ + Im〈g − m〉 � ρ + �d to estimate the first terms on the
right hand side of (3.26):

√
Im〈g〉
Nη

�
√

πρ

Nη
+
√

1

Nη
�d.

Using again the weighted Cauchy-Schwarz inequality in the second term yields

([z]2�d + ‖d‖∞
)
1
(
� ≤ λ∗/[z]

) ≺ [z]−2
√

ρ

Nη
+ [z]−6 N

ε

Nη
+ 1√

N
+ N−ε[z]2�d.

The term N−ε[z]2�d can be absorbed (cf. (ii) of Lemma A.1) into the left hand side
and we arrive at

([z]2�d + ‖d‖∞
)
1
(
� ≤ λ∗/[z]

) ≺ [z]−2
√

ρ

Nη
+ [z]−6

Nη
+ 1√

N
. (3.27)
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For the off-diagonal error terms we plug this into the second bound of (3.26) after
using Im〈g〉 � ρ + �d and get

�o ≺ [z]−2
√

ρ

Nη
+ [z]−6

Nη
+ [z]−3

N 1/4

√
1

Nη
+ [z]−2

√
N

. (3.28)

In particular, we combine (3.27) and (3.28) to establish a gap in the values that � can
take,

�1
(
� ≤ λ∗/[z]

) ≺ [z]−1N−γ /2. (3.29)

Here we used η ≥ N γ−1. This shows that either � ≥ λ∗/[z] or � ≤ N−γ /4/[z]
a.w.o.p.

Now we apply Lemma A.2 on the connected domain

{
z ∈ H : Imz ≥ N γ−1, dist(z,M) ≥ δ∗, |z| ≤ N 5

}
,

with the choices

ϕ(z) := [z]�(z), �(z) := N−γ /3, z0 := iN 5. (3.30)

The continuity condition (A.1) of the lemma for these two functions follows from the
Hölder-continuity, (3.5), of the solution of the QVE and the weak continuity of the
resolvent elements,

|Gi j (z1) − Gi j (z2)| ≤ |z1 − z2|
(Imz1)(Imz2)

≤ N 2|z1 − z2|. (3.31)

The condition (A.3) holds since by (3.2) on the first regime we have a.w.o.p. ϕ(z0) ≤
�(z0). Finally, (3.29) implies a.w.o.p. ϕ 1(ϕ ∈ [� − N−1,�]) < � − N−1 and thus
(A.2). We infer that a.w.o.p. ϕ ≤ �. In particular, the indicator function in (3.27) and
(3.28) is non-zero a.w.o.p. Thus, (3.27) and (3.28) imply (3.2) in the second regime.

��
We will now sketch the proof of Corollary 1.8. The set-up in this corollary dif-

fers slightly from the one used in the rest of this paper, because the uniform bound
(assumption (C)) on the solution of (1.7) is not assumed. We therefore use additional
information from [1] about m in this more general setting.

Proof of Corollary 1.8 Since the boundedness assumption (C) on the solution of the
QVE is dropped in this corollary, its proof starts by showing that nevertheless for some
constant P > 0 we have

|mi (z)| ≤ P, i = 1, . . . , N , z ∈ I + i(0,∞). (3.32)

In this setting the solution m(z) is not guaranteed to be extendable as a Hölder-
continuous function with N -independent Hölder-norm to z ∈ H. The density of states,
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defined by (1.12), however still has a Hölder-norm with Hölder-exponent 1/13 that
is independent of N (cf. (i) of Proposition 7.1 and (i) of Theorem 6.1 in [1]). Here,
we used L = 1 for the model parameter from assumption (B). Furthermore, (3.32)
follows from the lower bound on the density of states and (i) of Lemma 5.4 and (i)
of Theorem 6.1 in [1]. For the proof of Proposition 3.1 we only used the properties
of the solution of (1.7), valid for z in the entire complex upper half plane, that are
listed in Corollaries 2.2, 3.2 and 3.4. These properties remain true for Rez ∈ I (cf.
Theorem 2.1, (i) of Theorem 2.12, (i) of Proposition 5.3 and Proposition 7.1 in [1])
if only (3.32) instead of (1.10) is satisfied. Thus, (3.2a), (3.2b) and (3.3) hold for
z ∈ I + i[N γ−1,∞) and Corollary 1.8 is proven. ��

4 Local law close to local minima

4.1 The solution of the QVE

In this subsection we state a few facts about the solution m of the QVE (1.7) and
about the stability of this equation against perturbations. These facts are summarized
in two theorems that are taken from the companion paper [1]. The first theorem con-
tains regularity properties of m. Furthermore, it provides lower and upper bounds on
the imaginary part, Im〈m〉 = πρ, by explicit functions. It is a combination of the
statements from Theorem 2.1, Theorem 2.4, Theorem 2.6 and Corollary A.1 of [1].

Theorem 4.1 (Solution of the QVE) Let the sequence S = S(N ) satisfy the assump-
tions (A)-(C). Then for every component, mi : H → H, of the unique solution,
m = (m1, . . . ,mN ), of the QVE there is a probability density pi : R → [0,∞) with
support in the interval [−2, 2], such that

mi (z) =
∫

R

pi (τ )dτ

τ − z
, z ∈ H, i = 1, . . . , N . (4.1)

The probability densities are comparable,

pi (τ ) ∼ p j (τ ), τ ∈ R, i, j = 1, . . . , N . (4.2)

The solution m has a uniformly Hölder-continuous extension (denoted again by m) to
the closed complex upper half plane H = H ∪ R,

‖m(z1) − m(z2)‖∞ � |z1 − z2|1/3, z1, z2 ∈ H. (4.3)

Its absolute value satisfies

|mi (z)| ∼ [z]−1, z ∈ H, i = 1, . . . , N .

Let ρ : R → [0,∞), τ �→ 〈p(τ )〉 be the density of states, defined in (1.12). Then
there exists a positive constant δ∗ ∼ 1 such that the following holds true. The support
of the density consists of K ∼ 1 disjoint intervals of lengths at least 2δ∗, i.e.,
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supp ρ =
K⋃

i=1

[αi , βi ], where βi − αi ≥ 2δ∗, and αi < βi < αi+1. (4.4)

The size of the harmonic extension (1.15) of ρ, up to constant factors, is given by
explicit functions as follows. Let η ∈ [0, δ∗].
• Bulk: Close to the support of the density of states but away from the local minima
inM (cf. (3.1)) the function ρ is comparable to 1, i.e.,

ρ(τ + iη) ∼ 1, τ ∈ supp ρ, dist(τ,M) ≥ δ∗. (4.5a)

• At an internal edge: At the edges αi , βi−1 with i = 2, . . . , K in the direction
where the support of the density of states continues the size of ρ is

ρ(αi + ω + iη) ∼ ρ(βi−1 − ω + iη) ∼ (ω + η)1/2

(αi − βi−1 + ω + η)1/6
, (4.5b)

for all ω ∈ [0, δ∗].
• Inside a gap: Between two neighboring edges βi−1 and αi with i = 2, . . . , K, the
function ρ satisfies

ρ(βi−1 + ω + iη) ∼ ρ(αi − ω + iη) ∼ η

(αi − βi−1 + η)1/6(ω + η)1/2
,

(4.5c)
for all ω ∈ [0, (αi − βi−1)/2].

• Around an extreme edge: At the extreme points α1 and βK of supp ρ the density
of states grows like a square root,

ρ(α1 + ω + iη) ∼ ρ(βK − ω + iη) ∼
⎧
⎨

⎩

(ω + η)1/2, ω ∈ [0, δ∗],
η

(|ω| + η)1/2
, ω ∈ [−δ∗, 0].

(4.5d)
• Close to a local minimum: In a neighborhood of a local minimum in the interior
of the support of the density of states, i.e., for τ0 ∈ M ∩ int supp ρ, we have

ρ(τ0 + ω + iη) ∼ ρ(τ0) + (|ω| + η)1/3, ω ∈ [−δ∗, δ∗]. (4.5e)

• Away from the support: Away from the interval in which supp ρ is contained

ρ(z) ∼ Imz

|z|2 , z ∈ H, dist(z, [α1, βK ]) ≥ δ∗. (4.5f)

The next theorem shows that the QVE is stable under small perturbations, d, in the
sense that once a solution of the perturbed QVE (4.6) is sufficiently close to m, then
the difference between the two can be estimated in terms of ‖d‖∞. In [1] it is stated
as Proposition 10.1.
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Theorem 4.2 (Stability) There exists a scalar function σ : H → [0,∞), three vector
valued functions s, t(1), t(2) : H → C

N , a matrix valued function T : H → C
N×N ,

all depending only on S, and a positive constant λ∗, depending only on the model
parameters p, P and L, such that for two arbitrary vector valued functions d : H →
C

N and g : H → (C\{0})N that satisfy

− 1

gi (z)
= z +

N∑

j=1

si j g j (z) + di (z), z ∈ H, (4.6)

the difference between g = g(z) and m = m(z) is bounded in terms of

� = �(z) := ∣
∣
〈
s(z), g(z) − m(z)

〉∣
∣, z ∈ H, (4.7)

in the following two ways. On the whole complex upper half plane

‖g − m‖∞1
(‖g − m‖∞ ≤ λ∗

)
� � + ‖d‖∞, (4.8)

|〈w, g − m〉|1(‖g − m‖∞ ≤ λ∗
)

� ‖w‖∞� + ‖w‖∞‖d‖2∞ + |〈Tw, d〉|, (4.9)

for any non-random w ∈ C
N . The scalar function � : H → [0,∞) satisfies a cubic

equation
∣
∣�3 + π2�

2 + π1�
∣
∣1
(‖g − m‖∞ ≤ λ∗

)
� ‖d‖2∞ + |〈t(1), d〉| + |〈t(2), d〉|.

(4.10)
The coefficients π1, π2 : H → C may depend on S and g. They satisfy

|π1(z)| ∼ Imz

ρ(z)
+ ρ(z)(ρ(z) + σ(z)), (4.11a)

|π2(z)| ∼ ρ(z) + σ(z), (4.11b)

for all z ∈ H. Moreover, the functions σ , s, t(1), t(2) and T are regular in the sense that

|σ(z1) − σ(z2)| + ‖s(z1) − s(z2)‖ � |z1 − z2|1/3, z1, z2 ∈ H, (4.12)

σ(z) + ‖s(z)‖∞ + ‖t(1)(z)‖∞ + ‖t(2)(z)‖∞ + ‖T(z)‖∞→∞ � 1, z ∈ H.

(4.13)

Furthermore, the function σ is related to the density of states by

σ(αi ) ∼ σ(βi−1) ∼ (αi − βi−1)
1/3, i = 2, . . . , K , (4.14a)

σ(α1) ∼ σ(βK ) ∼ 1, (4.14b)

σ(τ0) � ρ(τ0)
2, τ0 ∈ M\{αi , βi }. (4.14c)

We warn the reader that in this paper � and σ denote the absolute values of the
quantities denoted by the same symbols in Proposition 10.1 of [1]. The function
σ appears naturally in the analysis of the QVE. Analogous to the more explicitly
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constructed function  from Definition 1.5, at an edge the value of σ 3 encodes the
size of the corresponding gap in supp ρ. At the local minima in M\{αi , βi } the value
of σ 3 is small, provided the density of states has a small value at the minimum. In this
sense it is again analogous to , which vanishes at these internal minima.

4.2 Coefficients of the cubic equation

The stability of QVE near the points in M requires a careful analysis of the cubic
equation (4.10) for � from Theorem 4.2. For this, we will provide a more explicit
description of the upper and lower bounds from (4.11) on the coefficients, π1 and π2,
of the cubic equation.

Proposition 4.3 (Behavior of the coefficients) There exist δ∗, c∗ ∼ 1 such that for all
η ∈ [0, δ∗] the coefficients, π1 and π2, of the cubic Eq. (4.10) satisfy the following
bounds.

• Around an internal edge: At the edges αi , βi−1 of the gap with length  :=
αi − βi−1 for i = 2, . . . , K, we have

|π1(αi + ω + iη)| ∼ |π1(βi−1 − ω + iη)| ∼ (|ω| + η)1/2(|ω| + η + )1/6,

|π2(αi + ω + iη)| ∼ |π2(βi−1 − ω + iη)| ∼ (|ω| + η + )1/3,

ω ∈ [−c∗, δ∗]. (4.15a)

• Well inside a gap: Between two neighboring edges βi−1 and αi of the gap with
length  := αi − βi−1 for i = 2, . . . , K, the first coefficient, π1, satisfies

|π1(αi − ω + iη)| ∼ |π1(βi−1 + ω + iη)| ∼ (η + )2/3, ω ∈
[

c∗,


2

]

.

(4.15b)
The second coefficient, π2, satisfies the upper bounds,

|π2(αi − ω + iη)| � (η + )1/3,

|π2(βi−1 + ω + iη)| � (η + )1/3,
ω ∈

[

c∗,


2

]

. (4.15c)

• Around an extreme edge: Around the extreme points α1 and βK of supp ρ, we
have

|π1(α1 + ω + iη)| ∼ |π1(βK − ω + iη)| ∼ (ω + η)1/2

|π2(α1 + ω + iη)| ∼ |π2(βK − ω + iη)| ∼ 1,
ω ∈ [−δ∗, δ∗].

(4.15d)
• Close to a local minimum: In a neighborhood of the local minimum in the interior
of the support of the density of states, i.e. for τ0 ∈ M ∩ int supp ρ, we have

|π1(τ0 + ω + iη)| ∼ ρ(τ0)
2 + (|ω| + η)2/3,

|π2(τ0 + ω + iη)| ∼ ρ(τ0) + (|ω| + η)1/3,
ω ∈ [−δ∗, δ∗]. (4.15e)
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Proof The proof is split according to the cases above. In each case we combine the
general formulas (4.11) with the knowledge about the harmonic extension, ρ, of the
density of states from Theorem 4.1 and about the behavior of the positive Hölder-
continuous function, σ , at the minima in M from (4.14). The positive constant δ∗ is
chosen to have at most the same value as in Theorem 4.1. We start with the simplest
case.

Around an extreme edge: By the Hölder-continuity of σ (cf. (4.12)) and because σ is
comparable to 1 at the points α1 and βK (cf. (4.14)), this function is comparable to
1 in the whole δ∗-neighborhood of the extreme edges. Thus, using (4.11) inside this
neighborhood, we find

|π1(z)| ∼ Imz

ρ(z)
+ ρ(z), |π2(z)| ∼ 1.

The claim now follows from the behavior of ρ, given in Theorem 4.1, inside this
domain.

Close to a local minimum: In this case ρ + σ is comparable to ρ. In fact, using the
1/3-Hölder-continuity of σ (cf. (4.12)) and its bound at the minimum, τ0 ∈ M, (cf.
(4.14)) we find

ρ(z) ≤ ρ(z) + σ(z) � ρ(z) + ρ(τ0)
2 + |z − τ0|1/3 ∼ ρ(z), |z − τ0| ≤ δ∗.

(4.16)

In the last relation we used the behavior (4.5e) of ρ from Theorem 4.1. By (4.11) we
conclude that inside the δ∗-neighborhood of τ0,

|π1(z)| ∼ Imz

ρ(z)
+ ρ(z)2, |π2(z)| ∼ ρ(z). (4.17)

Using the upper and lower bounds on ρ(z) again, gives the desired result, (4.15e).

Around an internal edge: First we prove the bounds on |π2|, starting from (4.11). The
upper bound simply uses the 1/3-Hölder-continuity and the behavior at the edge points
of σ ,

|π2(z)| ∼ ρ(z) + σ(z) � ρ(z) + 1/3 + |z − τ0|1/3, (4.18)

where τ0 is one of the edge points αi or βi−1. The claim follows from plugging in the
size of ρ from the two corresponding domains in Theorem 4.1, i.e., the domain close
to an edge, (4.5b), and the domain inside a gap, (4.5c).

For the lower bound we consider two different regimes. In the first case z is close
to the edge point, |z − τ0| ≤ c, for some small positive constant c, depending only
on the model parameters p, P and L . We find

|π2(z)| ∼ ρ(z) + σ(z) � ρ(z) + 1/3 − C |z − τ0|1/3 ∼ ρ(z) + 1/3,
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provided c is small enough. This bound coincides with the lower bound on π2 in
(4.15a), once the size of ρ from (4.5b) is used.

In the second regime, |z − τ0| ≥ c, we simply use |π2(z)| � ρ(z) from (4.11).
If Rez ∈ supp ρ, then the size of ρ from (4.5b) yields the desired lower bound. If, on
the other hand, Rez lies inside a gap of supp ρ, then we use the freedom of choosing
the constant c∗ in Proposition 4.3. Suppose c∗ ≤ c/2. Then |z − τ0| ≥ c and
|Rez − τ0| ≤ c∗ imply Imz �  and

ρ(z) ∼ (Imz)1/3 � 1/3 + |z − τ0|1/3.

This finishes the proof of the upper and lower bound on |π2| on this domain. For
the claim about |π1| we plug the result about |π2| and the size of ρ into

|π1| ∼ Imz

ρ(z)
+ ρ(z)|π2(z)|. (4.19)

Well inside a gap: For the upper bound on |π2| we simply use (4.18) again, which
follows from (4.12) and (4.14). The comparison relation for |π1| now follows from
(4.19) again. For the lower bound, |π1| � Imz/ρ and (4.5c) from Theorem 4.1 are
sufficient. This finishes the proof of the proposition. ��

4.3 Rough bound on � close to local minima

In the following lemma we will see that a.w.o.p. � ≤ c for some arbitrarily small
constant c > 0. Since the local law away fromM is already shown in Proposition 3.1
we may restrict to bounded z in the following. From here on until the end of Section 4
we assume |z| ≤ 10.

Lemma 4.4 (Rough bound) Let λ∗ be a positive constant. Then, uniformly for all
z = τ + iη ∈ H with η ≥ N γ−1, the function � is uniformly small,

�(z) ≤ λ∗ a.w.o.p. (4.20)

Proof Away from the local minima in M the claim follows from (3.2) in Proposi-
tion 3.1. We will therefore prove that � is smaller than any fixed positive constant in
some δ-neighborhood ofM. We will use the freedom to choose the size δ ∼ 1 of these
neighborhoods as small as we like.

Let us sketch the upcoming argument. Close to the points in M we make use
of Theorem 4.2. Using Lemma 2.1, we will see that the right hand side of the cubic
equation in�, (4.10), is smaller than a small negative power, N−ε, of N , provided� is
bounded by a small constant,� ≤ λ∗. This will imply that� itself is small and through
(4.8) that the bound on � can be improved to � ≤ λ∗/2. In this way we establish
a gap in the possible values that the continuous function � can take. Lemma A.2 in
the appendix is then used to propagate the bound on � from Proposition 3.1 into the
δ-neighborhoods of the points inM.
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Now we start the detailed proof from the fact that � satisfies the cubic equation
(4.10), whose right hand side is bounded by C‖d‖∞ for some constant C , depending
only on the model parameters. Note that ‖d‖∞ � 1 as long as � ≤ λ∗ because in this
case |mi | ∼ 1, |gi | ∼ 1 and g satisfies the perturbed QVE with perturbation d. From
the definition of � in (4.7) and the uniform bound on s from (4.13), we get � � �.
Since the coefficient |π2| is uniformly bounded (cf. (4.11)), the cubic equation for �

implies the three bounds

�1(� ≤ ε1, |π1| ≥ C1ε1) � ‖d‖∞
|π1| , (4.21a)

�1(� ≤ ε2, |π2| ≥ C2ε2) � |π1|
|π2| + ‖d‖1/2∞

|π2|1/2 , (4.21b)

�1(� ≤ λ∗) � |π2| +√|π1| + ‖d‖1/3∞ . (4.21c)

Here, ε1, ε2 ∈ (0, λ∗), with λ∗ ∈ (0, 1) from Theorem 4.2, are arbitrary constants and
C1,C2 > 0 depend only on the model parameters. We prove (4.21b); the other two
bounds are obtained similarly. First we show that under the assumptions � ≤ ε2 and
|π2| ≥ C2ε2 the second order term π2�

2 is at least three times larger than�3 provided
C2 ∼ 1 is chosen to be sufficiently large. Indeed, since � ≤ ‖s‖∞� ≤ ‖s‖∞ε2 and
|π2| ≥ C2ε2, it suffices to choose C2 ≥ 3‖s‖∞ ∼ 1. Here we have also used (4.13).
Next we compare the second order term to the linear term π1�. We may assume that
� ≥ 3|π1/π2|, otherwise (4.21b) holds trivially. Together with |π2|�2 ≥ 3�3 proved
above this implies that the second order term π2�

2 dominates the left hand side of
(4.10). Combining this with |〈t( j), d〉| � ‖d‖∞ (cf. (4.13)) on the right hand side of
(4.10), hence yields

1

3
|π2|�2 ≤ |�3 + π2�

2 + π1�| � ‖d‖∞. (4.22)

In order to satisfy the constraint of (4.10) we have also used ε2 ≤ λ∗. This together
with (4.22) yields (4.21b).

Let δ ∈ (0, 1) be another constant to be chosen later which depends only on
the model parameters p, P , and L . We split M into four subsets, which are treated
separately,

M1(δ) := {τ0 ∈ M\∂ supp ρ : ρ(τ0) > δ1/3
}
,

M2(δ) := {τ0 ∈ ∂ supp ρ : (τ0) > δ1/2
}
,

M3(δ) := {τ0 ∈ M\∂ supp ρ : ρ(τ0) ≤ δ1/3
}
,

M4(δ) := {τ0 ∈ ∂ supp ρ : (τ0) ≤ δ1/2
}
.

The function  is from Definition 1.5 and its value is simply the length of the gap at
the point τ0 ∈ ∂ supp ρ where it is evaluated. We also define the δ-neighborhoods of
these subsets,

Dk(δ) := {
z ∈ H : dist(z,Mk(δ)) ≤ δ

}
, k = 1, 2, 3, 4.
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As an immediate consequence of the upper and lower bounds on the coefficients, π1
and π2, presented in Proposition 4.3, we see that

|π1(z)| � δ2/3, z ∈ D1(δ), (4.23a)

|π1(z)| � δ1/2, |π2(z)| � δ1/6, z ∈ D2(δ), (4.23b)

|π1(z)| � δ1/2, |π2(z)| � δ1/6, z ∈ D3(δ) ∪ D4(δ). (4.23c)

On D2(δ) only the regimes around an internal edge, (4.15a), and around an extreme
edge, (4.15d), are relevant. The case well inside the gap, (4.15b) and (4.15c), does not
apply for small enough δ, since (τ0) > δ1/2 but |z − τ0| ≤ δ.

Now we make a choice for the two constants ε1 and ε2. We express them in terms
of δ as

ε1 := δ, ε2 := δ1/5.

We pair the bounds on � from (4.21) with the corresponding bounds from (4.23) on
the coefficients of the cubic equation. For small enough δ the conditions on π1 in
(4.21a) and π2 in (4.21b) are automatically satisfied by the choice of ε1 and ε2, as well
as the upper and lower bounds from (4.23a) and (4.23b). Thus, for small enough δ we
end up with

�(z)1(�(z) ≤ δ) � δ−2/3‖d(z)‖∞, z ∈ D1(δ),

�(z)1(�(z) ≤ δ1/5) � δ1/3 + δ−1/12‖d(z)‖1/2∞ , z ∈ D2(δ),

�(z)1(�(z) ≤ λ∗) � δ1/6 + ‖d(z)‖1/3∞ , z ∈ D3(δ) ∪ D4(δ).

At this stage we use Lemma 2.1 in the form of ‖d‖∞ ≺ N−γ /2 on the set where
� ≤ λ∗/10, say, and (4.8) from Theorem 4.2. We may choose λ∗ to be sufficiently
small compared to the constants with the same name from these two statements.
Furthermore, we choose δ so small that δ1/5 ≤ λ∗. Since ‖d‖∞ ≤ N−γ /2+c a.w.o.p.
for an arbitrary c > 0 we obtain

�(z)1(�(z) ≤ δ) � δ−2/3N−γ /3, z ∈ D1(δ), (4.24a)

a.w.o.p. �(z)1(�(z) ≤ δ1/5) � δ1/3 + δ−1/12N−γ /5, z ∈ D2(δ), (4.24b)

�(z)1(�(z) ≤ λ∗) � δ1/6 + N−γ /7, z ∈ D3(δ) ∪ D4(δ). (4.24c)

The right hand sides, including the constants from the comparison relation, canbemade
smaller than any given constant λ∗ by choosing δ = δ∗, depending only on the model
parameters, small enough and N sufficiently large. Furthermore, (4.24) establish a gap
in the possible values that � can take on the δ∗-neighborhood of any point in M. By
Proposition 3.1 we have the bound � ≺ N−γ /2 outside these δ∗-neighborhoods and
thus also for at least one point in the boundary of each neighborhood. Now we apply
Lemma A.2 to each neighborhood and in this way we propagate the bound � ≤ λ∗ to
every point z in the δ∗-neighborhood of M with Imz ≥ N γ−1. ��

123



Universality for general Wigner-type matrices 701

4.4 Proof of Theorem 1.7

According to Proposition 3.1 the local law, Theorem 1.7, holds outside the δ∗-
neighborhoods of the points in M. It remains to show that it is true inside these
neighborhoods as well. From here on we assume that z ∈ H satisfies dist(z,M) ≤ δ∗
and Imz ≥ N γ−1. Let τ0 ∈ M be one of the closest points to z inM, i.e.,

|z − τ0| = dist(z,M).

When τ0 ∈ ∂ supp ρ we denote by θ = θ(τ0) ∈ {±1} the direction that points towards
the gap in supp ρ at τ0. In case τ0 /∈ ∂ supp ρ we make the arbitrary choice θ := +1,
i.e.,

θ :=

⎧
⎪⎨

⎪⎩

−1 if τ0 ∈ {αi },
+1 if τ0 ∈ {βi },
+1 if τ0 ∈ M\∂ supp ρ.

The minimum τ0 will be considered fixed in the following analysis. We parametrize z
as follows in the neighborhood of τ0 ∈ M:

z = τ0 + θω + iη, (4.25)

where η ∈ (0, δ∗] and ω ∈ [−δ∗, δ∗]. We will then prove the local law in the form

�(z) ≺
√

ρ(z)

Nη
+ 1

Nη
+ E(ω, η), (4.26a)

∣
∣
〈
w, g(z) − m(z)

〉∣
∣ ≺ E(ω, η), (4.26b)

where the positive error function E : [−δ∗, δ∗] × (0, δ∗] → (0,∞) is given as the
unique solution of an explicit cubic equation in (4.30) below.

To define E we introduce explicit auxiliary functions π̃1, π̃2 and ρ̃ that are com-
parable in size to the corresponding functions π1, π2 and ρ. The reason for using
these auxiliary quantities for the definition of E instead of the original ones is twofold.
Firstly, in this way E will be an explicit function instead of one that is implicitly defined
through the solution of the QVE. The function E is explicit in the sense that there is
a formula for the solution of the cubic equation that defines it and the coefficients
are given by the explicit functions π̃1, π̃2 and ρ̃. Secondly, E will be monotonic of
its second variable, η. This property will be used later. The definition of the three
auxiliary functions will be different, depending on whether τ0 is in the boundary of
the support of the density of states or not. Recall the definition (1.17) of δ(τ).

• Edge: If τ0 ∈ ∂ supp ρ, i.e. τ0 is an edge of a gap of size  := 0(τ0) in the
support of the density of states or an extreme edge. Then we define the three
explicit functions
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ρ̃(ω, η) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(|ω| + η)1/2

( + |ω| + η)1/6
, ω ∈ [−δ∗, 0

]
,

η

( + η)1/6(ω + η)1/2
, ω ∈ [0, c∗

]
,

η

( + η)2/3
, ω ∈

[

c∗,


2

]

.

(4.27a)

π̃1(ω, η) :=

⎧
⎪⎨

⎪⎩

(|ω| + η)1/2(|ω| + η + )1/6, ω ∈ [−δ∗, 0
]
,

(ω + η)1/2( + η)1/6, ω ∈ [0, c∗
]
,

( + η)2/3, ω ∈ [c∗, 
2

]
(4.27b)

π̃2(ω, η) :=

⎧
⎪⎪⎨

⎪⎪⎩

(|ω| + η + )1/3, ω ∈ [−δ∗, 0
]
,

( + η)1/3, ω ∈ [0, c∗
]
,

( + η)1/3, ω ∈
[

c∗,


2

] (4.27c)

Here, c∗ ∼ 1 is the constant from Proposition 4.3.
• Internal minimum: If τ0 ∈ M\∂ supp ρ, then we define for ω ∈ [−δ∗, δ∗] the
three functions

ρ̃(ω, η) := ρ(τ0) + (|ω| + η)1/3, (4.28a)

π̃1(ω, η) := ρ(τ0)
2 + (|ω| + η)2/3, (4.28b)

π̃2(ω, η) := ρ(τ0) + (|ω| + η)1/3, (4.28c)

By design (cf. Proposition 4.3 and Theorem 4.1) these functions satisfy

ρ(τ0 + θω + iη) ∼ ρ̃(ω, η), and |πk(τ0 + θω + iη)| ∼ π̃k(ω, η), (4.29)

except in one special case where the second bound does not hold, namely when k = 2,
τ0 ∈ ∂ supp ρ and ω ∈ [c∗,/2]. In this case only the direction |π2| � π̃2 is true
(cf. (4.15c)).

We fix a positive constant ε̃ ∈ (0, γ /16). The value of the function E at (ω, η) is
then defined to be the unique positive solution of the cubic equation

E(ω, η)3 + π̃2(ω, η)E(ω, η)2 + π̃1(ω, η)E(ω, η)

= N 8̃ε E(ω, η)

Nη
+ ρ̃(ω, η)

Nη
+ 1

(Nη)2
,

(4.30)

With the choices (1.23) and (1.25) for κ = κ(z) we have

E ≤ N 9̃ε min

{
1√
Nη

,
κ

Nη

}

, (4.31)

for any N ≥ N0, where the threshold N0 here depends on ε̃ in addition to p, P , L , μ
and γ . The inequality (4.31) is verified by plugging its right hand side into (4.30) in
place of E and checking that on each regime the resulting expression on the right hand
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side of (4.30) is smaller than the resulting expression on the left hand side of (4.30).
The factor of N 9̃ε in (4.31) can be absorbed in the stochastic domination in (4.26).
Thus (4.26) becomes (1.20) and (1.21) of Theorem 1.7.

Before we start the proof of the local law (4.26), let us motivate the definition of
E . As a consequence of Lemma 4.4 the indicator function equals one a.w.o.p. in the
statement of Lemma 2.1. Thus, uniformly in the δ∗-neighborhood of τ0 we have

‖d‖∞ + �o ≺
√

ρ + |〈g − m〉|
Nη

+ 1√
N

. (4.32)

Here we used Im〈g〉 � ρ + |〈g − m〉|. Since at the end the local law implies |〈g −
m〉| ≺ E , heuristically we may replace |〈g − m〉| in (4.32) by E . In this case, from
the fluctuation averaging, Theorem 3.5, we would be able to conclude that for any
deterministic vector w with bounded entries,

‖d‖2∞ + |〈w, d〉| ≺ E
Nη

+ ρ

Nη
+ 1

(Nη)2
. (4.33)

Up to the technical factor of N 8ε the right hand side coincides with the right hand side
of the cubic equation defining E . On the other hand, the right hand side of the cubic
equation (4.10) for the quantity � from Theorem 4.2 is of the same form as the left
hand side of (4.33). Therefore, we infer

|�3 + π2�
2 + π1�| ≺ E

Nη
+ ρ

Nη
+ 1

(Nη)2
. (4.34)

We will argue that on appropriately chosen domains out of the three summands in the
cubic expression in � always one is the biggest by far. Therefore, the error function
E , defined by (4.30), is essentially the best bound on � that one may hope to deduce
from (4.34). Indeed, since � is by definition an average of g − m, we expect � ≺ E .

We will now prove (4.26). To this end we gradually improve the bound on �. Fix
some ε ∈ (0, ε̃). The sequence of deterministic bounds on this quantity is defined as

�0 := 1, �k+1 := max
{
N−ε�k, N 9εE}. (4.35)

From here on until the end of this section the threshold function N0 from the definition
of the stochastic domination (cf. Definition 1.6) as well as the definition of ’a.w.o.p.’
(cf. Definition 1.9) may depend on ε in addition to p, P , L , μ and γ . At the end of
the proof we will remove this dependence. The following lemma is essential for doing
one step in the upcoming iteration.

Lemma 4.5 (Improving bound through cubic) Suppose that for all z ∈ τ0 +
[−δ∗, δ∗] + i[N γ−1, δ∗] and some k ∈ N the quantity �(z) from (4.7) fulfills
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∣
∣�(z)3 + π2(z)�(z)2 + π1(z)�(z)

∣
∣ ≺ ρ(z) + �k(ω, η)

Nη
+ 1

(Nη)2
. (4.36)

Then �(z) ≺ �k+1(ω, η).

We will postpone the proof of this lemma until the end of this section. First we
show how to use this result to prove the local law (Theorem 1.7). Fix an integer k ≥ 0
and assume that � + |〈g − m〉| ≺ �k is already proven. For k = 0 this follows from
the rough bound on � in Lemma 4.4, � ≺ 1 = �0. As an induction step we show
that � + |〈g − m〉| ≺ �k+1.

From (4.32) we see that

‖d‖∞ + �o ≺
√

ρ + �k

Nη
+ 1

Nη
. (4.37)

The right hand side is a deterministic bound on the off-diagonal error �o. Therefore
the fluctuation averaging (Theorem 3.5) is applicable to 〈t(1), d〉 and 〈t(2), d〉 on right
hand side of the cubic equation (4.10)

∣
∣〈t( j), d〉∣∣ ≺

(√
ρ + �k

Nη
+ 1

Nη

)2

,

where N−1 from (3.15) has been neglected since ρ � η. In this way we see that
the hypothesis (4.36) of Lemma 4.5 is satisfied. Using the lemma the bound on � is
improved to

�(z) ≺ �k+1(ω, η). (4.38)

In order to improve the bound on |〈g − m〉| as well, we use the bound (4.9) from
Theorem 4.2 for averages of g − m against bounded vectors. Since by Lemma 4.4 the
deviation function � is bounded by a small constant, the indicator function in (4.9) is
a.w.o.p. non-zero. Choosing w = (1, . . . , 1), we find that

|〈g − m〉| � � + ‖d‖2∞ + |〈w̃, d〉|, a.w.o.p., (4.39)

where w̃ = Tw is a bounded, ‖w̃‖∞ � 1, deterministic vector. Together with the
bound (4.37) we apply the fluctuation averaging (Theorem 3.5) again,

|〈g − m〉| ≺ �k+1 + ρ + �k

Nη
+ 1

(Nη)2
� N−ε�k + �k+1 � �k+1. (4.40)

This concludes one step in the iteration, i.e., we have shown � + |〈g − m〉| ≺ �k+1.
We repeat this step finitely many times and each time improve �k by a factor of

N−ε until it reaches its target value N 9εE and is not improved anymore. Note that all
constants in our estimates, explicit and hidden, depend only on the model parameters
and ε. In particular, the number of steps needed is uniform in (ω, η). At that stage we
have
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� + |〈g − m〉| ≺ε N 9εE,

where the subindex ε indicates that the threshold N0 from the stochastic domination
may depend on ε. But since ε > 0 was arbitrary, we infer (cf. (i) of Lemma A.1) that
� + |〈g − m〉| ≺ E , where now and until the start of the proof of Lemma 4.5 below
the stochastic domination is ε-independent. By (4.32) we conclude

‖d‖∞ + �o ≺
√

ρ

Nη
+ 1

Nη
+ E . (4.41)

For the bound on the diagonal contribution, �d, we use (4.8) to get

�d � � + ‖d‖∞ ≺
√

ρ

Nη
+ 1

Nη
+ E .

Finally, with the help of (4.9), (4.41) and the fluctuation averaging, we prove the bound
on averages of g − m against any bounded, ‖w‖∞ ≤ 1, deterministic vector,

|〈w, g − m〉| ≺ ρ

Nη
+ 1

(Nη)2
+ � ≺ ρ

Nη
+ 1

(Nη)2
+ E .

This finishes the proof of Theorem 1.7 apart from the proof of Lemma 4.5 which we
will tackle now.

Proof of Lemma 4.5 The spectral parameter z = τ0 + θω + iη lies inside the δ∗-
neighborhood of τ0. We fix ω ∈ [−δ∗, δ∗] and show that the claim holds for any
choice of η ∈ [N γ−1, δ∗]. We split the interval of possible values of η into two or
three regimes, depending on the case we are treating.

• Edge: If τ0 ∈ ∂ supp ρ is an edge of a gap of size  := 0(τ0), then we define

I1(ω) :=
{

η ∈ [N γ−1, δ∗] : (|ω| + η)1/2

(|ω| + η + )1/6
≥ N−5ε�k(ω, η)

}

,

I2(ω) :=
{

η ∈ [N γ−1, δ∗] : N 5ε (|ω| + η)1/2

(|ω| + η + )1/6
≤ �k(ω, η)

≤ N 2ε(|ω| + η + )1/3
}

,

I3(ω) :=
{

η ∈ [N γ−1, δ∗] : (|ω| + η + )1/3 ≤ N−2ε�k(ω, η)
}

.

If any of the two regimes Il(ω) with l = 2, 3 consists of a single point only, then
we set Il(ω) := ∅.

• Internal minimum: If τ0 ∈ M\∂ supp ρ, then we set I2(ω) := ∅ and define

I1(ω) :=
{
η ∈ [N γ−1, δ∗] : ρ(τ0) + (|ω| + η)1/3 ≥ N−2ε�k(ω, η)

}
,

I3(ω) :=
{
η ∈ [N γ−1, δ∗] : ρ(τ0) + (|ω| + η)1/3 ≤ N−2ε�k(ω, η)

}
.
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If I3(ω) consists of a single point only, then we set I3(ω) := ∅.
In the cubic equation (4.30), used to define the error function E , the coefficients π̃1
and π̃2 on the left hand side are monotonously increasing functions of η. The linear
and the constant coefficient of E on the right hand side are monotonously decreasing
in η. Thus, E itself is a monotonously decreasing function of η. From this fact and the
definition of the regimes I1, I2 and I3 we see that I1 = [η1, δ∗], I2 = [η2, η1] and
I3 = [N γ−1, η2] for some η1, η2 ∈ [N γ−1, δ∗]. Here, we interpret I2 = ∅ if η1 ≤ η2
and I3 = ∅ if η2 ≤ N γ−1.

Now we define a z-dependent indicator function

χ(ω, η)

:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
(
N−7ε�k(ω, η) ≤ �(τ0 + θω + iη) ≤ N−6ε�k(ω, η)

)
if η ∈ I1(ω)

1
(
N−4ε�k(ω, η) ≤ �(τ0 + θω + iη) ≤ N−3ε�k(ω, η)

)
if η ∈ I2(ω)

1
(
N−ε�k(ω, η) ≤ �(τ0 + θω + iη) ≤ �k(ω, η)

)
if η ∈ I3(ω)

.

(4.42)
This function fixes the values of � to a small interval just below the deterministic
control parameter �k . We will prove that � cannot take these values, i.e. χ = 0
a.w.o.p. Figure 3 illustrates this argument. Compared to Figure 6.1 in [14] we see that
instead of two there are now three domains, I1(ω), I2(ω) and I3(ω), to be distinguished.
The reason for this extra complication is that (4.10) is cubic in �, compared to the
quadratic equation for [v] that appeared in the proof of Lemma 6.2 in [14]. To see that
χ = 0, first note that the choice of the domains, Il , ensures that there is always one
summand on the left hand side of the cubic equation (4.10) for � which dominates
the two others by a factor N ε, whenever χ does not vanish. In fact, by construction
we have:

Fig. 3 The shaded area is forbidden for�. Since the continuous function� lies below this region at η = δ∗
it stays below it for any η ≥ Nγ−1, hence proving � ≤ �k+1

123



Universality for general Wigner-type matrices 707

The random functions � and χ satisfy a.w.o.p.

(
�(z)3 + π̃2(ω, η)�(z)2 + π̃1(ω, η)�(z)

)
χ(ω, η)

�
∣
∣
∣�(z)3 + π2(z)�(z)2 + π1(z)�(z)

∣
∣
∣ .

(4.43)

We will verify this fact at the end of the proof of this lemma. Now we will simply
use it. First we combine the assumption (4.36) of the lemma and (4.43) to obtain

N−ε(�3 + π̃2�
2 + π̃1�) χ ≤ ρ̃ + �k

Nη
+ 1

(Nη)2
a.w.o.p.

Here we also gave up a factor of N ε to get an inequality instead of the stochastic
domination, and replaced ρ by the comparable quantity ρ̃. By the definition of the
indicator function χ we have �χ ≥ N−7ε�k . Using this to bound the left hand side,
and that ε ≤ ε̃, we obtain

(R3 + π̃2R2 + π̃1R
)
χ ≤ N 8̃ε R

Nη
+ ρ̃

Nη
+ 1

(Nη)2
, a.w.o.p.,

R := N−8ε�k .

Comparing this with the defining Eq. (4.30) for E we conclude that a.w.o.p.
N−8ε�kχ ≤ E .

On the other hand, by the definition of �k in (4.35) we know that �k > N 8εE .
These two inequalities yield

χ(ω, η) = 0, η ∈ [N γ−1, δ∗], a.w.o.p. (4.44)

Now we successively, for l = 1, 2, 3, apply Lemma A.2 on the connected domains
τ0 + θω + iIl(ω) with the choices ϕ := � and

�(τ0 + θω + iη) :=

⎧
⎪⎨

⎪⎩

N−6ε�k(ω, η) if l = 1,

N−3ε�k(ω, η) if l = 2,

�k(ω, η) if l = 3,

z0 :=

⎧
⎪⎨

⎪⎩

τ0 + θω + iδ∗ if l = 1,

τ0 + θω + iη1 if l = 2,

τ0 + θω + iη2 if l = 3,

where as explained after the definition of I1, I2 and I3 above we have I1 = [η1, δ∗],
I2 = [η2, η1] and I3 = [N γ−1, η2]. The condition (A.1) of the lemma is satisfied by
the definition of� in (4.7), the Hölder-continuity of the solution of the QVE, the weak
Lipschitz-continuity of g with Lipschitz-constant N 2 and the Hölder-continuity of s
from (4.12). The gap condition, (A.2), holds because of (4.44) and the definition of χ

and � for an appropriate choice of the exponent D3.
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The condition, ϕ(z0) ≤ �(z0) a.w.o.p., necessary for the application of LemmaA.2
on thefirst domain, τ0+θω+iI1(ω), is obtained formProposition3.1.WithLemmaA.2
we propagate the bound to all z ∈ τ0 + θω + iI1(ω). Now we apply Lemma A.2 on
the second domain τ0 + θω + iI2(ω), provided I2(ω) is not empty. The bound (A.3)
for the new z0 = τ0 + θω + iη1 is obtained from the previous step. Finally, we
apply Lemma A.2 to τ0 + θω + iI3(ω), in case it is not empty, with the new choice
z0 = τ0 + θω + iη2. Altogether, we applied the lemma at most three times. Through
this procedure we prove that a.w.o.p. �(z) ≤ �(z) for all z ∈ τ0 + θω + i[N γ−1, δ∗].
On the third domain, τ0 + θω + iI3(ω), we use that a.w.o.p. χ = 0 (cf. (4.44)) and
thus a.w.o.p. �(z) ≤ N−ε�k . Altogether we showed that in the δ∗-neighborhood of
τ0,

a.w.o.p. �(z) ≤ N−ε�k ≤ �k+1.

This finishes the proof of Lemma 4.5 up to verifying the claim (4.43).
For the proof of (4.43) one verifies case by case that on I1 the term π̃1� ∼ |π1|�

is bigger than the two other terms, π̃2�
2 and �3 by a factor of N ε. If I3 is not empty

then the term �3 is the biggest. If I2 is not empty, then |π2| ∼ π̃2 and π̃2�
2 is the

biggest term by a factor of N ε. More specifically, when η ∈ I j and χ = χ(ω, η) = 1
we show

∣
∣�3 + π2�

2 + π1�
∣
∣ ∼ |π j |� j ∼ π̃ j�

j ∼ �3 + π̃2�
2 + π̃1�,

where π3 = π̃3 := 1. As an example we demonstrate these relations in a few cases:

• Well inside a gap: If τ0 ∈ ∂ supp ρ and ω ∈ [c∗,/2] then I2(ω) = ∅. We
now check that on I1(ω) the linear term in � is the biggest while on I3(ω) the
cubic term dominates. First, let η ∈ I1(ω). Then the following chain of inequalities
hold,

π̃1� ∼ |π1|� ∼ ( + η)2/3� � N−5ε( + η)1/3�k� ∼ N−5επ̃2�k�

� N−10ε�2
k�.

Here, we used (4.29), (4.15b), the definition of I1(ω) and (4.27c) in the form
π̃2 ∼ ( + η)1/3. Now we can use χ to replace �k by �. By definition of χ and
since π̃k � |πk | for k = 1, 2 we also get

N−5επ̃2�k�χ ≥ N επ̃2�
2χ � N ε|π2|�2χ, N−10ε�2

k�χ ≥ N 2ε�3χ.

We conclude that on I1(ω) the linear term in � dominates the others,

π̃1�χ � N ε(�3 + π̃2�
2)χ.

Suppose now that η ∈ I3(ω). In this case, using the choice of the indicator function
χ ,

�3χ ≥ N−ε�k�
2χ ≥ N−2ε�2

k�χ.
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By definition of I3(ω) and (4.27c) we find that

N−ε�k�
2 � N ε( + η)1/3�2 ∼ N επ̃2�

2,

N−2ε�2
k� � N 2ε( + η)2/3� ∼ N 2επ̃1�.

Altogether we find that the cubic term dominates the two others,

�3χ � N ε(π̃2�
2 + π̃1�)χ.

• Inside a gap close to an edge on I2: If τ0 ∈ ∂ supp ρ,ω ∈ [0, c∗] and η ∈ I2(ω),
then wewill show the quadratic term in� dominates the two other terms.We have

|π2|�2 ∼ π̃2�
2 ∼ ( + η)1/3�2 � N−2ε�k�

2,

where in the inequality we used the definition of I2(ω). The choice of χ guarantees
that �kχ ≥ N 3ε�χ . Thus, the quadratic term is larger than the cubic term by a
factor of N ε. On the other hand

( + η)1/3�2χ � N−4ε( + η)1/3�k�

� N ε(ω + η)1/2( + η)1/6� ∼ N επ̃1�

∼ N ε|π1|�.

Here, in the first inequality we used the indicator function χ and in the second
inequality the definition of I2(ω). Altogether, we arrive at

π̃2�
2χ � N ε(�3 + π̃1�)χ.

• Internal minimum on I1: If τ0 ∈ M\∂ supp ρ and η ∈ I1(ω), then the linear term
is the biggest,

|π1|� ∼ π̃1� ∼ (
ρ(τ0)

2 + (|ω| + η)2/3
)
�

� N−2ε(ρ(τ0) + (|ω| + η)1/3
)
�k�.

Here, we used (4.29) and the definitions of π̃1 and I1(ω), respectively. Since
�kχ ≥ N 6ε�χ and by the definition of π̃2 this shows that the linear term is larger
than the quadratic term by a factor of N 4ε. In order to compare the linear with the
cubic term we estimate further. By definition of I1(ω),

N−2ε( ρ(τ0) + (|ω| + η)1/3
)
�k� ≥ N−4ε�2

k�.

Again we use the lower bound on �kχ and get

N−4ε�2
k�χ ≥ N 8ε�3χ.
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Thus we showed that on the domain I1(ω)

π̃1�χ � N ε (�3 + π̃2�
2)χ.

The other cases are proven similarly. This completes the proof of (4.43). ��

5 Rigidity and delocalization of eigenvectors

5.1 Proof of Corollary 1.10

Here we explain how the local law, Theorem 1.7, is used to estimate the difference
between the cumulative density of states and the eigenvalue distribution function
of the random matrix H. The following auxiliary result shows that the difference
between two probability measures can be estimated in terms of the difference of their
respective Stieltjes transforms. For completeness the proof is given in the appendix.
It uses a Cauchy-integral formula that was also applied in the construction of the
Helffer-Sjöstrand functional calculus (cf. [11]) and it appeared in different variants in
[15,20,21].

Lemma 5.1 (Bounding measures by Stieltjes transforms) There is a universal con-
stant C > 0, such that for any two probability measures, ν1 and ν2, on the real line and
any three numbers η1, η2, ε ∈ (0, 1] with ε ≥ max{η1, η2}, the difference between the
two measures evaluated on the interval [τ1, τ2] ⊆ R, with τ1 < τ2, satisfies

∣
∣ν1([τ1, τ2]) − ν2([τ1, τ2])

∣
∣

≤ C
(

ν1([τ1 − η1, τ1]) + ν1([τ2, τ2 + η2]) + J1 + J2 + J3
)
.

(5.1)

Here, the three contributions to the error, J1, J2 and J3, are defined as

J1 :=
∫ τ1

τ1−η1

dω

(

Immν1(ω + iη1) + |mν1−ν2(ω + iη1)|

+ 1

η1

∫ 2ε

η1

dη|mν1−ν2(ω + iη)|
)

,

J2 :=
∫ τ2+η2

τ2

dω

(

Immν1(ω + iη2) + |mν1−ν2(ω + iη2)|

+ 1

η2

∫ 2ε

η2

dη|mν1−ν2(ω + iη)|
)

,

J3 := 1

ε

∫ τ2+η2

τ1−η1

dω
∫ 2ε

ε

dη|mν1−ν2(ω + iη)| ,

(5.2)

where mν denotes the Stieltjes transform of ν for any signed measure ν.
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We will now apply this lemma to prove Corollary 1.10 with the choices of the
measures

ν1(dω) := ρ(ω)dω, and ν2(dω) := 1

N

N∑

i=1

δλi (dω). (5.3)

As a first step we show that a.w.o.p. there are no eigenvalues with an absolute value
larger or equal than 10, i.e.,

#{ i : |λi | ≥ 10} = 0 a.w.o.p. (5.4)

We focus on the eigenvalues λi ≥ 10. The ones with λi ≤ −10 are treated in the same
way. We will show first that there are no eigenvalues in a small interval around τ with
τ ≥ 10. In fact, we prove that for γ ∈ (0, 1/3),

#
{
i : τ ≤ λi ≤ τ + N−1} ≺ N−γ . (5.5)

For this we apply Lemma 5.1 with the same choices of the measures ν1 and ν2 as in
(5.3) and with

η1 := η2 := ε := N γ−1, τ1 := τ, τ2 := τ + N−1. (5.6)

Theorem 1.7 takes the form

∣
∣〈g(ω + iη)〉 − 〈m(ω + iη)〉∣∣ ≺ 1

N
+ N−2γ , (ω, η) ∈ �, (5.7)

where � := [τ − N γ−1, τ + 2N γ−1] × [N γ−1, 2N γ−1]. Here we used κ(ω + iη) �
η1+(Nη)−1, that follows from the facts that we arewell outside supp ρ ⊂ [−2, 2], and
hence (ω) = 1 by (1.17) so the condition (1.24) holds, and thus (1.25) is applicable.

Using the definition of stochastic domination (Definition 1.6), the basic union
bound, and the part (iii) of Lemma A.1 we see that the estimate (5.7) holds even
with supremum over (ω, η) ∈ �̂, where �̂ := (N−10

Z)2 ∩ � is a fine grid of spacing
N−10 with |�̂| ≤ N 20. Using the Lipschitz-continuity of z �→ 〈g(z)〉 with Lipschitz-
constant bounded by N 2, aswell as the uniform1/3-Hölder-continuity of z �→ 〈m(z)〉,
we can extend the supremum over �̂ to the entire domain �, i.e.,

sup
(ω,η)∈�

∣
∣〈g(ω + iη)〉 − 〈m(ω + iη)〉∣∣ ≺ 1

N
+ N−2γ .

Plugging this bound into the definitions of J1, J2 and J3 from (5.2) and using (5.1)
and the fact that ρ = 0 in this regime shows the validity of (5.5).

We conclude that a.w.o.p. there are no eigenvalues in an interval of length N−1 to
the right of τ . By using a union bound this implies that

#{ i : 10 ≤ λi ≤ N } = 0 a.w.o.p.
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The eigenvalues larger than N are treated by the following simple argument,

N
max
i=1

λ2i ≤
N∑

i=1

λ2i =
N∑

i, j=1

|hi j |2 ≺ N .

Thus (5.4) holds true.
Now we apply Lemma 5.1 to prove (1.28). In case |τ | ≥ 10 the bound (1.28)

follows because a.w.o.p. there are no eigenvalues of H with absolute value larger or
equal than 10. Thus, we fix τ ∈ (−10, 10) and make the choices

η1 := η2 := N γ−1, τ1 := −10, τ2 := τ, ε := 1. (5.8)

Again we use (1.21) fromTheorem 1.7, the Lipschitz-continuity of 〈g〉 and the Hölder-
continuity of 〈m〉 to see that uniformly for all η ≥ N γ−1,

sup
ω∈[0,η1]

∣
∣〈g(τ1 − ω + iη)〉 − 〈m(τ1 − ω + iη)〉∣∣ ≺ 1

N
+ 1

(Nη)2
.

Here we evaluated (τ1) = 1 and thus κ � η + (Nη)−1. With J1 defined as in (5.2)
we infer J1 ≺ N−1. Theorem 1.7 also implies the bound

sup
ω∈[−20,20]

sup
η∈[1,2]

∣
∣〈g(ω + iη)〉 − 〈m(ω + iη)〉∣∣ ≺ 1

N
,

since in this regime κ � 1, thus showing that J3 ≺ N−1.We are left with estimating the
three terms constituting J2. The first and second of these terms are estimated trivially
by using the boundedness of their integrands. Therefore, we conclude that

∣
∣
∣
∣

∫ τ

−10
ρ(ω)dω − #{ i : −10 ≤ λi ≤ τ }

N

∣
∣
∣
∣ ≺ N γ−1 + R(τ ), (5.9)

where the error term, R, is defined as

R(τ ) := N 1−γ

∫ Nγ−1

0
dω
∫ 2

Nγ−1
dη

min

{
1

Nη((τ + ω)1/3 + ρ(τ + ω + iη))
,

1

(Nη)1/2

}

.

(5.10)

This expression is derived by using the bound (1.23) on κ for the integrand of the third
contribution to J2.

To estimate R further we distinguish three cases, depending on whether τ is away
fromM, close to an edge or close to a local minimum in the interior of supp ρ. In each
of these cases we prove
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R(τ ) ≺ min

{
1

N ((τ)1/3 + ρ(τ))
,

1

N 4/5

}

. (5.11)

Away from M: In case dist(τ,M) ≥ δ∗, with δ∗ the size of the neighborhood around
the local minima from Theorem 4.1, we have 1/3 + ρ ∼ 1 and thus the η-integral in
(5.10) yields a factor comparable to N−1 log N . Thus, R(τ ) ≺ N−1, and hence (5.11)
holds.

Close to an edge: Let dist(τ, {αk, βk}) ≤ δ∗. Then from the size ofρ at an internal edge,
at the extreme edges and inside the gap (cf. (4.5b), (4.5d) and (4.5c) fromTheorem 4.1)
we see that

(τ + ω)1/3 + ρ(τ + ω + iη) ∼ (
(τ) + dist(τ, {αk, βk}) + η

)1/3
.

for any ω ∈ [0, N γ−1] and η ∈ [N γ−1, 2]. With this the size of R is given by

R(τ ) ∼
∫ 2

Nγ−1
dηmin

{
1

Nη((τ) + dist(τ, {αk, βk}) + η)1/3
,

1

(Nη)1/2

}

.

Integrating over η yields that

R(τ ) � min

{
log N

N ((τ) + dist(τ, {αk, βk}))1/3 ,
1

N 4/5

}

.

Now (5.11) follows by using the size of ρ from Theorem 4.1 again.

Close to an internal local minimum: Suppose |τ −τ0| ≤ δ∗ for some τ0 ∈ M\∂ supp ρ.
Then using the size of ρ from (4.5e) of Theorem 4.1 we see that

R(τ ) ∼
∫ 2

Nγ−1
dηmin

{
1

Nη(ρ(τ0) + |τ − τ0|1/3 + η1/3)
,

1

(Nη)1/2

}

.

The bound (5.11) follows by performing the integration over η.
This finishes the proof of (5.11). We insert this bound into (5.9) and use that γ was

arbitrary. Thus, we find

∣
∣
∣
∣

∫ τ

−10
ρ(ω)dω − #{ i : −10 ≤ λi ≤ τ }

N

∣
∣
∣
∣ ≺ min

{
1

N ((τ)1/3 + ρ(τ))
,

1

N 4/5

}

.

This finishes the proof of (1.28) since there are no eigenvalues below −10.
Now we prove (1.29). Let τ ∈ R\supp ρ. Suppose that for some k = 1, . . . , K we

have |τ − βk | = dist(τ, ∂ supp ρ). The case when τ is closer to the set {αk} than to
{βk} is treated similarly. Suppose further that

τ ≥ αk + δk,

where δk are defined as in (1.30) and δ0 = N γ−2/3. Note that there is nothing to show
if k > 1 and the size of the gap, αk −βk−1, is smaller than 2δk , i.e., if such a τ does not
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exist. In particular, we have αk − βk−1 = (τ) � N−1/2. We will show that a.w.o.p.
there are no eigenvalues in an interval of length N−2/3 to the right of τ , i.e.

#
{
i : τ ≤ λi ≤ τ + N−2/3} = 0 a.w.o.p. (5.12)

We apply Lemma 5.1 with the same choices of the measures ν1 and ν2 as in (5.3).
Additionally, we set

η1 := η2 := ε := N−2/3, τ1 := τ, τ2 := τ + N−2/3. (5.13)

We use the local law, Theorem 1.7, to estimate the differences between the Stieltjes
transforms of the two measures for the integrands in the definition of the three error
terms, J1, J2 and J3 from (5.2). By the definition of δk the condition (1.24) is satisfied
inside the integrals and we use the improved bound, (1.25), on κ . Indeed, we find

sup
∣
∣〈g(ω + iη)〉 − 〈m(ω + iη)〉∣∣ ≺ 1

Nδk(τ)1/3
+ 1

N 2/3δ
1/2
k (τ)1/6

,

where the supremum is taken over ω ∈ [τ − N−2/3, τ + 2N−2/3] and η ∈
[N−2/3, 2N−2/3]. With this, the definition of δk and the size of ρ from (4.5c) and
(4.5d) we infer

J1 + J2 + J3 ≺ N−1−γ /2.

From this (5.12) follows. The claim, (1.29), is now a consequence of a simple union
bound taken over the events in (5.12) with different choices of τ . This finishes the
proof of Corollary 1.10.

5.2 Proof of Corollary 1.11

Here we show how we get the rigidity, Corollary 1.11, from Corollary 1.10. Fix a
τ ∈ [α1, βK ]. We define the random fluctuation to the left, δ−, and to the right, δ+, of
the eigenvalue λi(τ ) as

δ+(τ ) := inf

{

δ ≥ 0 : 2 +
∣
∣
∣#
{
i : λi ≤ τ + δ

}− N
∫ τ+δ

−∞
ρ(ω)dω

∣
∣
∣

≤ N
∫ τ+δ

τ

ρ(ω)dω

}

(5.14)

δ−(τ ) := inf

{

δ ≥ 0 : 1 +
∣
∣
∣#
{
i : λi ≤ τ − δ

}− N
∫ τ−δ

−∞
ρ(ω)dω

∣
∣
∣

≤ N
∫ τ

τ−δ

ρ(ω)dω

}

. (5.15)
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We show now that with this definition,

λi(τ ) ∈ [τ − δ−(τ ), τ + δ+(τ )
]
. (5.16)

We start with the upper bound on λi(τ ). By the definition of i(τ ) we find the
inequality

#
{
i : λi ≤ λi(τ )

} = i(τ ) ≤ 1 + N
∫ τ

−∞
ρ(ω)dω

= 1 + N
∫ τ+δ+

−∞
ρ(ω)dω − N

∫ τ+δ+

τ

ρ(ω)dω.

The definition of δ+ = δ+(τ ) implies that

#
{
i : λi ≤ λi(τ )

}
< #{ i : λi ≤ τ + δ+}.

By monotonicity of the cumulative eigenvalue distribution, we conclude that λi(τ ) ≤
τ + δ+. Thus, the upper bound is proven.

Now we show the lower bound. We start similarly,

#
{
i : λi ≤ λi(τ )

} = i(τ ) ≥ N
∫ τ

−∞
ρ(ω)dω

= N
∫ τ−δ−

−∞
ρ(ω)dω + N

∫ τ

τ−δ−
ρ(ω)dω.

By definition of δ− we get

#
{
i : λi ≤ λi(τ )

} ≥ 1 + lim inf
ε↓0 #

{
i : λi ≤ τ − δ−− ε

}
.

Here the lim inf is necessary, since the cumulative eigenvalue distribution is not con-
tinuous from the left. We conclude that λi(τ ) ≥ τ − δ− − ε for all ε > 0 and therefore
the lower bound is proven.

Now we start with the proof of (1.34). For this we show that for any τ that is well
inside the support of the density of states, i.e., that satisfies (1.33), we have

δ−(τ ) + δ+(τ ) ≺ δ, δ := min

{
1

ρ(τ)((τ)1/3 + ρ(τ))N
,

1

N 3/5

}

. (5.17)

If τ is in the bulk, i.e., dist(τ,M) ≥ δ∗, then δ ∼ N−1 and thus (5.17) follows from
(1.28). We distinguish the two remaining cases, namely whether τ is close to an edge
or to a local minimum inside the interior of supp ρ.

Close to an edge: Suppose that τ ∈ [βk − δ∗, βk − εk]. The case when τ is closer to
{αk} than to {βk} is treated similarly. By the definition of εk in (1.32) and by the size of
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716 O. H. Ajanki et al.

ρ from (4.5d) and (4.5b) in Theorem 4.1 we see that εk � N γ δ. Using Corollary 1.10
we find for any ε ∈ (0, γ /2) that

∣
∣
∣
∣
∣
#
{
i : λi ≤ τ + N εδ

}− N
∫ τ+N εδ

−∞
ρ(ω)dω

∣
∣
∣
∣
∣
≺ min

{(
(τ) + βk − τ

)−1/3
, N 1/5

}
.

On the other hand

N
∫ τ+N εδ

τ

ρ(ω)dω ∼ N 1+εδ(βk − τ)1/2

((τ) + βk − τ)1/6

� N ε min
{(

(τ) + βk − τ
)−1/3

, N 1/5
}
.

Here we used the size of ρ from Theorem 4.1, the definition of δ and βk − τ ≥ εk .
Since ε was arbitrary we conclude that δ+(τ ) ≺ δ. The bound, δ−(τ ) ≺ δ, is shown
in the same way.

Close to internal local minima: Suppose |τ − τ0| ≤ δ∗ for some τ0 ∈ M\∂ supp ρ.
Then by (4.5e) with (τ0) = 0 and the definition of δ in (5.17) we have

δ ∼ min

{
1

(ρ(τ0)3 + |τ − τ0|)2/3N ,
1

N 3/5

}

.

We apply (1.28) from Corollary 1.10 and, using (4.5e) again, we get

∣
∣
∣
∣
∣
#
{
i : λi ≤ τ + N εδ

}− N
∫ τ+N εδ

−∞
ρ(ω)dω

∣
∣
∣
∣
∣

≺ min
{(

ρ(τ0)
3 + |τ + N εδ − τ0|

)−1/3
, N 1/5

}
. (5.18)

On the other hand, we find

N
∫ τ+N εδ

τ

ρ(ω)dω ∼ N 1+εδ
(

ρ(τ0)
3 + |τ − τ0| + N εδ

)1/3
. (5.19)

We will now verify that for large enough N ,

N ε/2 min
{(

ρ(τ0)
3 + |τ + N εδ − τ0|

)−1/3
, N 1/5

}

� N 1+εδ
(
ρ(τ0)

3 + |τ − τ0| + N εδ
)1/3

.

(5.20)

Wedistinguish three cases. First let us consider the regimewhereρ(τ0)
3+|τ−τ0| ≤

N−3/5. Then we have δ = N−3/5 and

N 1+εδ
(
ρ(τ0)

3 + |τ − τ0| + N εδ
)1/3 ∼ N 4ε/3N 1/5.
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Now we treat the situation where, N−3/5 < ρ(τ0)
3 +|τ − τ0| ≤ N 3ε/2−3/5. In this

case

N 1+εδ
(
ρ(τ0)

3 + |τ − τ0| + N εδ
)1/3 � N ε

(ρ(τ0)3 + |τ − τ0|)1/3 ≥ N ε/2N 1/5.

Finally, we consider ρ(τ0)
3 + |τ − τ0| > N 3ε/2−3/5. Then for large enough N we

find on the one hand

min
{(

ρ(τ0)
3 + |τ + N εδ − τ0|

)−1/3
, N 1/5

}
∼ 1

(ρ(τ0)3 + |τ − τ0|)1/3 ,

and on the other hand

N 1+ε δ
(
ρ(τ0)

3 + |τ − τ0| + N εδ
)1/3 � N ε

(ρ(τ0)3 + |τ − τ0|)1/3 .

Thus, (5.20) holds true and since ε was arbitrary, we infer from (5.18) and (5.19) that
δ+(τ ) ≺ δ. Along the same lines we prove δ−(τ ) ≺ δ. Thus (5.17) and with it (1.34)
are proven.

The statement about the fluctuation of the eigenvalues at the leftmost edge, (1.35)
follows directly from (1.34) and (1.29) in Corollary 1.10. Indeed, for τ ∈ [α1, α1+ε0)

wehaveλi(τ ) ≤ λi(α1+ε0) and from (1.34)with(τ) = 1, aswell asρ(α1+ε0) ∼ ε
1/2
0 ,

and from the definition of ε0 we see that

λi(α1+ε0) ≤ α1 + ε0 + N γ−2/3 ≤ τ + 2N γ−2/3 a.w.o.p.

On the other hand, (1.29) shows that a.w.o.p. λi(τ ) ≥ α1 − N γ−2/3. Since γ was
arbitrary, (1.35) follows. The rigidity at the rightmost edge is proven along the same
lines.

The claim, (1.36), about the remaining eigenvalues follows froma similar argument.
For τ ∈ (βk − εk, αk+1 + εk), as a consequence of (1.29), we have

λi(τ ) ∈ [λi(βk−εk ), βk + δk
] ∪ [αk+1 − δk, λi(αk+1+εk )

]
a.w.o.p.

From (1.34) and the definition of εk we infer λi(βk−εk ) ≥ βk − 2εk a.w.o.p., as well as
λi(αk+1+εk ) ≤ αk+1 + 2εk a.w.o.p., which finishes the proof of (1.36).

5.3 Proof of Corollary 1.14

The delocalization of eigenvectors is a simple consequence of the anisotropic local
law Theorem 1.13 using the argument from [14]. Expressing the resolvent in the
eigenbasis, we have

b · G(z)b =
N∑

i=1

|b · u(i)|2
λi − z

, (5.21)
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718 O. H. Ajanki et al.

where u(i) is the �2-normalised eigenvector corresponding to the eigenvalue λi . We
evaluate this at z := λk + iN γ−1 with γ > 0 as in the statement of Theorem 1.13. The
anisotropic local law implies that also b · G(z)b is uniformly bounded. Hence we get

1 � Im b · G(z)b ≥ N 1−γ |b · u(k)|2,

by keeping only a single summand i = k from (5.21). As γ > 0 was arbitrary we
conclude that

|b · u(k)| ≺ N−1/2,

uniformly in k.

6 Anisotropic law and universality

6.1 Proof of Theorem 1.13

Given the entrywise local law, Theorem 1.7, the proof of the anisotropic law follows
exactly as in Section 7 of [9], where the same argument was presented for generalized
Wigner matrices (this argument itself mimicked the detailed proof of the isotropic law
for sample covariance matrices in Section 5 of [9]). The only difference is that in our
case Gii (z) is close to mi (z), the i-th component of the solution to the QVE, which
now genuinely depends on i , while in [9] we had Gii (z) ≈ msc(z) for every i , where
msc(z) is the solution to (1.3). However, the diagonal resolvent elements played no
essential role in [9]. We now explain the small modifications.

Recall from Section 5.2 of [9] that by polarization it is sufficient to prove (1.37) for
�2-normalized vectors w = v. We can then write

N∑

i, j=1

vi Gi jv j −
N∑

i=1

mi |vi |2 =
∑

i

(Gii − mi )|vi |2 + Z, Z :=
N∑

i �= j

vi Gi jv j .

The first term containing the diagonal elements Gii is clearly bounded by the right
hand side of (1.37) by Theorem 1.7. This is the first instant where the nontrivial
i-dependence of mi is used.

The main technical part of the proof in [9] is then to control Z , the contribution of
the off diagonal terms. We can follow this proof in our case to the letter; the nontrivial
i-dependence of mi requires a slight modification only at one point. To see this, we
recall the main structure of the proof. For any even p, the moment

E|Z|p = E
∑

b11 �=b12

· · ·
∑

bp1 �=bp2

⎛

⎝
p/2∏

k=1

vbk1Gbk1bk2vbk2

⎞

⎠

⎛

⎝
p∏

k=p/2+1

vbk1G
∗
bk1bk2vbk2

⎞

⎠ ,

(6.1)
is computed. Let us concentrate on a fixed summand in (6.1) and let B = {bk1}∪ {bk2}
be the set of v-indices appearing in that term. Using the resolvent identity (2.9) we
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Universality for general Wigner-type matrices 719

successively expand the resolvents until each of them appears in amaximally expanded
form, where every resolvent entry is of the form G(B\ab)

ab , for some a, b ∈ B (cf. Defi-
nition 5.4 of [9]). Each time a maximally expanded off-diagonal element is produced
we use (2.3). Finally, unless we end up with an expression that contains a very large
numbers of off-diagonal resolvent entries (such trivial leaves are treated separately in
Subsection 5.11 of [9]) we apply (3.16) to expand the remaining maximally expanded
diagonal resolvent entries. This way we end up with an expression where only the
resolvent entries of the type G(B)

i j , with i, j /∈ B, appear. In other words, the v-indices
and the indices of the resolvent entries are completely decoupled; only explicit prod-
ucts of entries of H represent the connections between them. We can now take partial
expectation w.r.t. the rows and columns of these h-terms. In this way we guarantee that
each index in B appears at least twice as a value of bk1 or bk2 in (6.1), i.e., the entries
of v must be at least paired, and therefore the 2p-fold summation in (6.1) effectively
becomes at most a p-fold summation. This renders the uncontrolled �1-norm of v to
�q -norms of v, with q ≥ 2, which are bounded by one by normalization.

Along this procedure it is only at the treatment of the maximally expanded diagonal
resolvent elements appearing in the non-trivial leaves (cf. Subsection 5.12 of [9])where
we need to slightly adjust the proof to the setting where S is not stochastic. Using the
QVE (1.7) and Schur’s formula, similarly as in (3.16), we obtain a representation,
where all the dependence of the B-columns and -rows of H is explicit

1

G(B\b)
bb

= 1

mb
−

(B)∑

i, j

(
hbiG

(B)
i j h jb − sbimiδi j

)
+
∑

a∈B
sbama + hbb, b ∈ B.

(6.2)
This formula replaces (5.41) from [9]. Taking the inverse of this formula and expanding
around the leading term mb, we get a geometric series representation for G(B\b)

bb in
terms of powers of the last three term in (6.2). The resulting formula is analogous
to (5.42) in [9]. The geometric series converges because the last three term on the
right hand side of (6.2) are much smaller than |1/mb| ∼ 1 a.w.o.p. Indeed, the last
two terms in (6.2) are of size N−1 and N−1/2+c a.w.o.p., respectively. The double
sum in (6.2) is small by using the large deviation estimates (2.7a)–(2.7c), similarly as
in the proof of Lemma 2.1. When estimating the diagonal sum i = j , we note that
|G(B)

i i − mi | is small by first estimating |G(B)
i i − Gii | similarly to (2.12), and then we

use the local law Theorem 1.7 to see that also |Gii − mi | is small.
The proof in [9] did not use the specific form of the subtracted term sbimiδi j in (6.2),

just the fact that the subtraction made (2.7c) applicable for the double summation in
(6.2). After this slight modification, the rest of the proof in [9] goes through without
any further changes.

6.2 Proof of Theorem 1.16

For the proof ofTheorem1.16we follow themethoddeveloped in [14,17,20]. Theorem
2.1 from [18] was designed for proving universality for a random matrix with a small
independent Gaussian component and densities of state that may differ fromWigner’s
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semicircle law. The main theorem in [18] asserts that if local laws hold in a sufficiently
strong sense then bulk universality holds locally for matrices with a small Gaussian
component. We remark that a similar approach was independently developed in [26]
that can also be easily used to conclude bulk universality from Theorem 1.7, but here
we follow [18]. In Section 2.5 of [18] a recipe was given how to use this theorem to
establish universality for a quite general class of random matrix models even without
the Gaussian component, as long as uniform local laws on the optimal scale are known
and the matrix satisfies the appropriate q-fullness condition (cf. Definition 1.15) that
allows for an application of themoment matching (Lemma 6.5 in [20]) and the Green’s
function comparison theorem (Theorem 2.3 in [20]).

Let H be the Wigner-type matrix satisfying the hypotheses of Theorem 1.16, and
for which the universality is to be proven. Let τ be a bulk point of ρ, so that ρ(τ) ≥ ε,
for some ε > 0, and let I := [τ − δ, τ + δ] be some environment of size δ ∼ 1
around τ . Following the above recipe, it remains to show that the local law holds for
the random matrices

Ht = e−t/2H0 + (1 − e−t )1/2U,

uniformly in both t ∈ [0, T ] and the spectral parameters z ∈ I + i[N γ−1,∞). Here
T is a small negative power of N , i.e., T = N−ξ for some ξ > 0, such that H and HT

are close in the four moment comparison sense (cf. Theorem 2.3 of [20]), and U is a
standard GUE/GOE random matrix. The random matrix H0 has independent entries,
is independent of U, and has a variance matrix

S0 := eT S − (eT − 1)SG,

with S and SG denoting the variancematrices ofH and the standardGUE/GOE-matrix,
respectively. It follows that the variance matrix of Ht is

St = e−tS0 + (1 − e−t )SG,

and hence ST = S as required by the moment matching.
We will now show that Ht satisfy the hypotheses of Corollary 1.8 uniformly in t .

Since T = N−ξ is small, the variance matrices St are all small perturbations of S. In
particular, St , t ∈ [0, T ], are hence q/2-full.

Next we show that the interval I is inside the bulk of Ht . To this end, we consider
the QVE associated to the variance matrix St ,

− 1

mt;i
= z + (Smt )i + di , d = (St − S)mt ,

as a perturbation of the original QVE with S = ST . In order to use our stability results
we show ‖d‖∞ � T . Since Ht is q/2-full we have st;i j ≥ q/2 and hence using (i)
of Theorem 6.1 of [1] we see that there is a constant δ′ ∼ 1 such that ‖mt (z)‖∞ ∼ 1
uniformly for |Re z| ≤ δ′. Moreover, the structural L2-bound from Theorem 2.1 of [1]
implies
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‖mt (z)‖2�2
N

= 1

N

N∑

i=1

|mt;i (z)|2 ≤ 4

|z|2 , z ∈ H, t ∈ [0, T ].

Combining these estimates we see that supt,z‖mt (z)‖2�2 � N , and consequently the

perturbation is small in the uniform norm: ‖d‖∞ � N supi, j |st;i j − si j | � N−ξ .
Applying the stability (Theorem 4.2 or Theorem 2.12 from [1]) of the QVE associated
to S we conclude that ‖mt (z) − m(z)‖∞ � N−ξ ε−2, and hence ρt (ω) ≥ ε/2 for
ω ∈ I and all t , provided N is sufficiently large.

The moment condition (D) is automatically satisfied uniformly for every Ht by
construction. Since the condition (A) is merely a matter of normalization we have
now shown that Ht satisfy the hypotheses of Corollary 1.8 uniformly in t . Thus Ht

satisfy local law uniformly in t ∈ [0, T ] and z ∈ I + i[N γ−1,∞). This finishes the
proof of universality.
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A Appendix

The relation ≺ is transitive and it satisfies the following arithmetic rules:

Lemma A.1 (Basic facts about stochastic domination) We have:

(i) If φ ≺ N δψ , for every δ > 0, then φ ≺ ψ;
(ii) If φ ≺ N−δφ + ψ , for some δ > 0, then φ ≺ ψ .

Let φu and ψu be some non-negative random variables parametrized by elements u
of some set U, such that φu ≺ ψu, uniformly in u. If U′ ⊂ U, then

(iii)
∑

u∈U′ φu ≺ ∑
u∈U′ ψu, provided |U′| ≤ NC for some C < ∞;

(iv)
∏

u∈U′ φu ≺ ∏
u∈U′ ψu, provided |U′| ≤ C, for some C < ∞.

These properties follow directly from the definition (Definition 1.6) of stochastic
domination. For further details see [14].

Lemma A.2 (Bound propagation) Suppose C1, D1, D2, D3 and ε1 are positive con-
stants, depending explicitly on p, P, L, μ, γ and possible on additional parameters
in some set V . Suppose further that the threshold function N0 from Definition 1.9
depends on the same parameters. Let D(N ) ⊆ H be a sequence of connected sub-
sets of the complex upper half plane with only polynomially growing diameter,
sup{|z1 − z2| : z1, z2 ∈ D

(N )} ≤ ND1 . Let ϕ = (ϕ(N )(z) : z ∈ D
(N ))N∈N be

a sequence of non-negative random functions and �(N ) : D
(N ) → (N−D3 ,∞) a

sequence of deterministic functions on these sets. Suppose they satisfy the following
conditions:
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• Uniformly for all z1, z2 ∈ D
(N )

|ϕ(N )(z1) − ϕ(N )(z2)| + |�(N )(z1) − �(N )(z2)| ≤ C1N
D2 |z1 − z2|ε1 . (A.1)

• Uniformly for all z ∈ D
(N )

a.w.o.p. ϕ(N ) /∈ [�(N )(z) − N−D3 ,�(N )(z)
]
. (A.2)

• There is a sequence z(N )
0 ∈ D

(N ) such that

a.w.o.p. ϕ(N )(z(N )
0 ) ≤ �(N )(z(N )

0 ). (A.3)

Then the sequence ϕ satisfies the bound

a.w.o.p. for all z ∈ D
(N ) : ϕ(N )(z) ≤ �(N )(z). (A.4)

Proof Wewill not carry the upper index N in this proof. First we choose a gridG ⊆ D

with the following properties

• The number of points in G is polynomially large, i.e., |G| ≤ C2ND4 .
• The grid is connected and sufficiently dense inD, i.e., for any two points z1, z ∈ G

there is a path (zi )Ki=2 ⊆ G, such that max{|zK − z|, |zi+1 − zi |} ≤ N−D5 for all
i = 1, . . . , K − 1.

Here, the positive exponent D5 is chosen sufficiently large such that C1ND2−ε1D5 ≤
N−D3/2. Then an upper bound on the positive constants D4 and C2 is determined by
the choice of D5 and the diameter of D, i.e., by D1.

Now let z ∈ G. Then we find a path (zi )Ki=1 in G that connects z0 with zK+1 := z
in the sense of the second property of G. We may assume the length of the path, K ,
to be bounded by |G|. Inductively we show that for all i = 0, . . . , K + 1

a.w.o.p. ϕ(zi ) ≤ �(zi ) − N−D3 .

For i = 0 this follows from (A.3) and (A.2). For all other i it follows by induction using
the continuity condition (A.1), which implies |ϕ(zi+1)−ϕ(zi )|+|�(zi+1)−�(zi )| ≤
N−D3/2. This shows that if ϕ(zi ) ≤ �(zi ) − N−D3 , then ϕ(zi+1) ≤ �(zi+1) and
with (A.2) even that ϕ(zi+1) ≤ �(zi+1)− N−D3 . In particular, ϕ(z) ≤ �(z)− N−D3

a.w.o.p.
Using a union bound we infer that

a.w.o.p. for all z ∈ G ϕ(z) ≤ �(z) − N−D3 .

By (A.1) and since G is sufficiently dense in D this bound extends to all z ∈ D and
the lemma is proven. ��
Proof of Lemma 5.1 For f, χ compactly supported on R the Cauchy integral formula
holds true,
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f (τ ) = 1

π

∫

R2

∂z f̃ (σ + iη)

τ − σ − iη
dσdη

= 1

2π

∫

R2

iη f ′′(σ )χ(η) + i( f (σ ) + iη f ′(σ ))χ ′(η)

τ − σ − iη
dσdη,

f̃ (σ + iη) := ( f (σ ) + iη f ′(σ ))χ(η).

For a signed measure ν on R this implies the formula

∫

R

f (τ )ν(dτ) = Re
∫

R

f (τ )ν(dτ) = − 1

2π

(
L1(ν) + L2(ν) + L3(ν)

)
,

where the three integrals L1, L2 and L3 are given as

L1(ν) :=
∫

R2
η f ′′(σ )χ(η)Immν(σ + iη)dσdη,

L2(ν) :=
∫

R2
f (σ )χ ′(η)Immν(σ + iη)dσdη,

L3(ν) :=
∫

R2
η f ′(σ )χ ′(η)Remν(σ + iη)dσdη,

and mν is the Stieltjes transform of ν.
Now we choose f ≥ 0, such that f |[τ1,τ2] = 1 and f |R\[τ1−η1,τ2+η2] = 0. Further-

more, we assume that the derivatives of f satisfy

‖ f ′|[τ1−η1,τ1]‖∞ � η−1
1 , ‖ f ′′|[τ1−η1,τ1]‖∞ � η−2

1 ,

‖ f ′|[τ2,τ2+η2]‖∞ � η−1
2 , ‖ f ′′|[τ2,τ2+η2]‖∞ � η−2

2 .

The function χ ≥ 0 is chosen to be symmetric and such that χ |[−ε,ε] = 1,
χ |R\[−2ε,2ε] = 0, as well as ‖χ ′‖∞ � ε−1. Here the constant ε is chosen to sat-
isfy ε ≥ max{η1, η2}. We now derive bounds on Lk(ν1 − ν2) for k = 1, 2, 3.

We split the integral, L1, into the contributions,

L1(ν) = 2
(
L1,1,<(ν) + L1,1,>(ν) + L1,2,<(ν) + L1,2,>(ν)

)
,

L1,1,<(ν) :=
∫ τ1

τ1−η1

dσ
∫ η1

0
dη η f ′′(σ )Immν(σ + iη),

L1,1,>(ν) :=
∫ τ1

τ1−η1

dσ
∫ 2ε

η1

dη η f ′′(σ )χ(η)Immν(σ + iη),

L1,2,<(ν) :=
∫ τ2+η2

τ2

dσ
∫ η2

0
dη η f ′′(σ )Immν(σ + iη),

L1,2,>(ν) :=
∫ τ2+η2

τ2

dσ
∫ 2ε

η2

dη η f ′′(σ )χ(η)Immν(σ + iη).

123
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For a positivemeasureν the functionη �→ η Immν(σ+iη) ismonotonously increasing.
Thus, we estimate

|L1,1,<(ν)| ≤ max
σ∈[0,η1]

| f ′′(τ1 − σ)|
∫ τ1

τ1−η1

dσ
∫ η1

0
dη η1Immν(σ + iη1)

≤
∫ τ1

τ1−η1

dσ Immν(σ + iη1), ν ≥ 0.

We conclude that

|L1,1,<(ν1 − ν2)| ≤
∫ τ1

τ1−η1

dσ
(
2Immν1(σ + iη1) + ∣∣mν1−ν2(σ + iη1)

∣
∣
)
.

(A.5)
In the same way we find

|L1,2,<(ν1 − ν2)| ≤
∫ τ2+η2

τ2

dσ
(
2Immν1(σ + iη2) + ∣∣mν1−ν2(σ + iη2)

∣
∣
)
.

(A.6)
For the treatment of L1,1,> we integrate by parts, first in σ and then in η,

L1,1,>(ν) = −η1

∫ τ1

τ1−η1

dσ f ′(σ )Remν(σ + iη1)

−
∫ 2ε

η1

dη
∫ τ1

τ1−η1

dσ ∂η(ηχ(η)) f ′(σ )Remν(σ + iη).

We use maxη |χ(η) + ηχ ′(η)| � 1 and maxσ∈[0,η1] | f ′(τ1 − σ)| � η−1
1 . In this way

we estimate for ν = ν1 − ν2,

L1,1,>(ν1 − ν2) �
∫ τ1

τ1−η1

dσ |mν1−ν2(σ + iη1)|

+ 1

η1

∫ 2ε

η1

dη
∫ τ1

τ1−η1

dσ |mν1−ν2(σ + iη)|.
(A.7)

Going through the same steps we also arrive at

L1,2,>(ν1 − ν2) �
∫ τ2+η2

τ2

dσ |mν1−ν2(σ + iη2)|

+ 1

η2

∫ 2ε

η2

dη
∫ τ2+η2

τ2

dσ |mν1−ν2(σ + iη)|.
(A.8)

We continue by estimating L2 from above.

|L2(ν1 − ν2)| � 1

ε

∫ τ2+η2

τ1−η1

dσ
∫ 2ε

ε

dη|mν1−ν2(σ + iη)|. (A.9)
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Finally we derive a bound for L3. We split the integral into two components,

L3(ν) = 2
(
L3,1(ν) + L3,2(ν)

)
,

L3,1(ν) :=
∫ τ1

τ1−η1

dσ
∫ 2ε

ε

dη η f ′(σ )χ ′(η)Remν(σ + iη),

L3,2(ν) :=
∫ τ2+η2

τ2

dσ
∫ 2ε

ε

dη η f ′(σ )χ ′(η)Remν(σ + iη).

We arrive at the bound

L3(ν1 − ν2) � 1

η1

∫ τ1

τ1−η1

dσ
∫ 2ε

ε

dη|mν1−ν2(σ + iη)|

+ 1

η2

∫ τ2+η2

τ2

dσ
∫ 2ε

ε

dη|mν1−ν2(σ + iη)|.

We combine this with the estimates from (A.5), (A.6), (A.7), (A.8) and (A.9). Alto-
gether we have

∣
∣
∣

∫

f d(ν1 − ν2)

∣
∣
∣ � J1 + J2 + J3,

where the three terms on the right hand side are given by

J1 :=
∫ τ1

τ1−η1

dσ
(
Immν1(σ + iη1) + |mν1−ν2(σ + iη1)|

+ 1

η1

∫ 2ε

η1

dη|mν1−ν2(σ + iη)|
)
,

J2 :=
∫ τ2+η2

τ2

dσ
(
Immν1(σ + iη2) + |mν1−ν2(σ + iη2)|

+ 1

η2

∫ 2ε

η2

dη|mν1−ν2(σ + iη)|
)
,

J3 := 1

ε

∫ τ2+η2

τ1−η1

dσ
∫ 2ε

ε

dη|mν1−ν2(σ + iη)|.

Now we use this bound for the smoothed out indicator function to derive a bound
on the difference of number of eigenvalues in the interval [τ1, τ2] and the predicted
number, given by the integral over the density of states. We use

ν2([τ1, τ2]) ≤
∫

f dν1 +
∫

f d(ν1 − ν2), (A.10)

123



726 O. H. Ajanki et al.

for f defined as above. Then we get

ν2([τ1, τ2]) ≤ ν1([τ1, τ2]) + ν1([τ1 − η1, τ1] ∪ [τ2, τ2 + η2]) +
∣
∣
∣

∫

f d(ν1 − ν2)

∣
∣
∣.

Similarly we use

ν1([τ1, τ2]) ≥
∫

f dν2 − ν1([τ1 − η1, τ1] ∪ [τ2, τ2 + η2]),

to get the bound

ν1([τ1, τ2]) ≥ ν2([τ1, τ2]) −
∣
∣
∣

∫

f d(ν2 − ν1)

∣
∣
∣ − ν1([τ1 − η1, τ1] ∪ [τ2, τ2 + η2]).

Together, the two bounds imply

|ν1([τ1, τ2]) − ν2([τ1, τ2])| � ν1([τ1 − η1, τ1] ∪ [τ2, τ2 + η2]) + J1 + J2 + J3.

��
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3. Ajanki, O., Erdős, L., Krüger, T.: Local spectral statistics of Gaussian matrices with correlated entries.
J. Stat. Phys. 163(2), 280–302 (2016). doi:10.1007/s10955-016-1479-y
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10. Bourgade, P., Erdős, L., Yau, H.-T.: Universality of general β-ensembles. DukeMath. J. 163(6), 1127–

1190 (2014)
11. Davies, E .B.: The functional calculus. J. Lond. Math. Soc. (2) 52(1), 166–176 (1995)
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