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Abstract We study random triangulations of the integer points [0, n]2 ∩ Z
2, where

each triangulationσ has probabilitymeasureλ|σ | withλ > 0 being a real parameter and
|σ | denoting the sum of the length of the edges in σ . Such triangulations are called
lattice triangulations. We construct a height function on lattice triangulations and
prove that, in the whole subcritical regime λ < 1, the function behaves as a Lyapunov
function with respect to Glauber dynamics; that is, the function is a supermartingale.
We show the applicability of the above result by establishing several features of lattice
triangulations, such as tightness of local measures, exponential tail of edge lengths,
crossings of small triangles, and decay of correlations in thin rectangles. These are
the first results on lattice triangulations that are valid in the whole subcritical regime
λ < 1. In a very recent work with Caputo, Martinelli and Sinclair, we apply this
Lyapunov function to establish tight bounds on the mixing time of Glauber dynamics
in thin rectangles that hold for all λ < 1. The Lyapunov function result here holds in
great generality; it holds for triangulations of general lattice polygons (instead of the
[0, n]2 square) and also in the presence of arbitrary constraint edges.
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470 A. Stauffer

1 Introduction

Consider the set of integer points�0
n = {0, 1, . . . , n}2 in the n×n square on the plane.

A triangulation σ of�0
n is a maximal collection of edges (straight line segments) such

that each edge has its endpoints in �0
n and, aside from its endpoints, intersects no

other edge of σ and no other point of �0
n . We refer to such triangulations as lattice

triangulations; see Fig. 1 for an example.
Our goal is to study properties of random lattice triangulations. Let�n be the set of

all triangulations of �0
n . It is known that, for any triangulation σ ∈ �n , every triangle

in σ has area exactly 1/2, and the set of midpoints of the edges of σ does not depend
on σ . In particular, this set is

�n = {
0, 1

2 , 1,
3
2 , . . . , n − 1

2 , n
}2 \�0

n,

which is the set of half-integer points in [0, n]2 excluding�0
n . This allows us to regard

random lattice triangulations as a spin system since a lattice triangulation σ ∈ �n

can be seen as a collection of variables {σx : x ∈ �n}, where σx denotes the edge
(representing the spin) of the midpoint x in σ . However, many challenges arise when
trying to make use of the vast literature on spin systems to study lattice triangulations.
For example, lattice triangulations have unbounded dependences as long edges affect
far away regions, the interaction between the spins depends on the triangulation, and
some useful properties in the study of spin systems do not hold, one example being
the FKG inequality, see Appendix B.

There is a natural Markov chain (or Glauber dynamics) over �n , where transitions
are given by flips of uniformly random edges [12,19]. More precisely, if σ ∈ �n is
the current state of the Markov chain, a transition consists of picking a non-boundary
edge e of σ uniformly at random, and if the two triangles containing e in σ form

Fig. 1 A 50 × 50 lattice triangulation

123



A Lyapunov function for Glauber dynamics on lattice triangulations 471

e

Fig. 2 A flip of edge e in a 3× 3 triangulation. In the triangulation on the left, the edges that can be flipped
are marked in blue, while unflippable edges are in black (color figure online)

a strictly convex quadrilateral (in which case they actually form a parallelogram),
then with probability 1/2 we remove e and replace it by the opposite diagonal of that
quadrilateral. Otherwise, the Markov chain stays put; see Fig. 2.

The graph on �n induced by the edge-flipping operation above is usually referred
to as the flip graph, and is known to be connected [15]. In addition, since the transi-
tion matrix is symmetric and aperiodic, this Markov chain converges to the uniform
distribution on �n . Very little is currently known regarding the dynamic properties of
this Markov chain, in particular no non-trivial bound on its mixing time (the time until
the Markov chain is close enough to its stationary distribution) is known.

In [5] we introduced a real parameter λ > 0 and studied random lattice triangula-
tions distributed according to the measure

π(σ) = λ
∑

x∈�n |σx |

Z(λ)
, σ ∈ �n,

where |σx | denotes the �1-length of edge σx , and Z(λ) = ∑
σ∈�n

λ
∑

x∈�n |σx | is a
normalizing constant. We adapt the Markov chain discussed above using the so-called
heat-bath dynamics to obtain a Markov chain whose stationary distribution is π .
Namely, if we let σ x denote the triangulation obtained from σ by flipping the edge
σx , the Markov chain moves from σ to σ x with probability

1

|�n|

(
λ|σ x

x |

λ|σx | + λ|σ x
x |

)

.

Simulation suggests that this Markov chain has an intriguing behavior, undergoing a
phase transition at λ = 1; see Fig. 3.

It is believed that for any λ < 1, which we call the subcritical regime, regions far
from one another in the triangulation evolve roughly independently. This suggests the
presence of decay of correlations and small mixing time. On the other hand, for λ > 1,
which we call the supercritical regime, theMarkov chain faces a rigidity phenomenon:
long edges give rise to rigid regions of aligned edges. This suggests the presence of
“bottlenecks” in the Markov chain, giving rise to exponential mixing time. Finally, in
the λ = 1 case, which is the case of uniformly random triangulations, relatively long
edges appear but simulation suggests that the regions of aligned edges are not as rigid
as in the supercritical regime.
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472 A. Stauffer

Fig. 3 50 × 50 lattice triangulations produced by the edge-flipping Markov chain with λ = 0.9 (left) and
λ = 1.1 (right). For comparison, the triangulation in Fig. 1 was obtained by the Markov chain with λ = 1

Our contribution. In this paper we construct a height function on lattice triangula-
tions: given a triangulation σ ∈ �n , the function attributes a positive real value to
each midpoint in �n . We define the function in Sect. 2, after introducing some nec-
essary notation. Our main result (Theorem 2.3) establishes that this function behaves
pointwise as a Lyapunov function with respect to the Glauber dynamics. This means
that the value of the function at any midpoint x ∈ �n behaves like a supermartingale.
Theorem 2.3 holds for any λ ∈ (0, 1), and gives the first result on the dynamics of
lattice triangulations that is valid in the whole subcritical regime. A crucial feature
of Theorem 2.3 is that it holds in great generality: also in the case of triangulations
of general lattice polygons1 and in the presence of arbitrary constraint edges.2 This
generality is key in the application of our main result.

The definition of the height function is a bit involved, so we defer it, as well as the
statement of ourmain result (Theorem 2.3), to Sect. 2. In particular, the height function
is defined in terms of a novel type of geometric crossing, and uses a new partition on
the edges of a triangulation in what we call regions of influence. We believe these
two new concepts (which we introduce and analyze in Sects. 3, 4) are of independent
interest. The proof of Theorem 2.3 is given in Sect. 5.

Our main result has a large range of consequences and applications, which we
discuss in Sects.6–8. For example, we apply it to establish in the whole λ < 1 regime
that the length of an edge of a triangulation has an exponential tail (Corollary 7.4),
that local measures are tight (Theorem 7.1), and that there are crossings of triangles of
constant size (Theorem 7.5). In the particular case of triangulations of n×k rectangles,
where k is a fixed integer independent of n, our technique yields stronger results
such as the existence of local limits (Theorem 8.4), exponential decay of correlations

1 The set of vertices �0
n does not need to be the n × n square, but can be the set of integer points inside

any lattice polygon (a polygon whose vertices are points of Z2).
2 Triangulations where some given set of edges are forced to be present, see Sect. 2 for precise definitions.
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(Theorem 8.3), and recurrence of random walks on the induced graph (Corollary 8.7).
The above results are the best possible with respect to the range of values of λ. For
example, already in the case of one-dimensional, n × 1 lattice triangulations, it is
known that properties such as exponential decay of correlations, existence of local
limits, tightness of local measures and exponential tails of edge lengths do not hold
for any λ ≥ 1. This follows from the well-known bijection between n × 1 lattice
triangulations and “lattice paths” of length 2n, which start from the origin and have
±1 increments at each step [12]. Since for λ ≥ 1 the height at position n of the lattice
path, which corresponds to the length of the edge of the triangulation whose midpoint
is at the center of the n × 1 rectangle, will typically be of order at least

√
n, none of

the above properties hold.
In a very recent work with Caputo, Martinelli and Sinclair [6], we apply Theo-

rem 2.3, as well as some of its consequences and some other geometric properties
introduced in the present paper, to establish tight bounds on the mixing time of n × k
triangulations in the whole λ < 1 regime. Together with our analysis of the case λ > 1
in [5], this establishes for the first time a phase transition on the mixing time of lattice
triangulations at λ = 1.

Motivation and previous works. Lattice triangulations are fundamental discrete geo-
metric objects with fascinating properties, but which bring several mathematical
challenges. For example, even the asymptotic number of lattice triangulations remains
unknown, a feature that is known quite precisely in other types of triangulations such
as the better understood ones coming from the theory of random planar maps [17].
Nonetheless, a number of beautiful combinatorial arguments have been recently devel-
oped to estimate the number of lattice triangulations [2,12,19]. For instance, a very
elegant argument by Anclin [2] shows that the cardinality of �n is at most 8n

2
.

Despite not being the best known upper bound, Anclin’s argument is quite general
and applies to lattice triangulations of general lattice polygons; we state and use it
later, see Lemma 2.1. Despite all these efforts, the best known bounds on |�n| are
exponentially far from each other: |�n| ≥ 4.13n

2
[12] and |�n| ≤ c 6.86n

2
[19] for

some positive constant c.
Lattice triangulations have appeared in a broad range of contexts. For example, in

algebraic geometry, they play a key role in the famous construction of plane alge-
braic curves by Viro [18], which has connections with Hilbert’s 16th problem, and
also appeared in the theory of discriminants [10] and toric varieties [7]. Lattice trian-
gulations have also been studied in the contexts of discretization of random surface
models [9] and two-dimensional quantum gravity [16]. Several other applications of
triangulations are discussed in [8].

Much less is known about random lattice triangulations. The only result on the
mixing time of the above edge-flipping Markov chain is [5]. There we showed that,
for any λ > 1, the mixing time is at least ecn for some constant c > 0. We also
showed that, for all sufficiently small λ, the mixing time is of order n3, and a random
triangulation has decay of correlations. Extending these results to thewhole subcritical
regime turned out to be quite challenging, especially since similar results for other spin
systems make use of fundamental properties that do not hold on lattice triangulations.
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(a) (b) (c) (d)

Fig. 4 a A lattice polygon (black edges), the set �0 (black vertices) and the set Z2\�0 (white vertices).
b Two constraint edges (blue edges). The black and blue edges form the boundary condition ξ . The green
and red points represent the set of midpoints�, with the red points corresponding tomidpoints�bc = ξ ∩�

of the boundary condition. c, d Two distinct triangulations consistent with the boundary condition ξ of part
(b) (color figure online)

This led us to look for new geometric properties of lattice triangulations and to develop
new techniques.
Concurrently to [5], a similarmodel of random lattice triangulations has independently
appeared in the statistical physics literature [13,14]. Also, motivated by [5], a similar
model has been introduced to study the mixing time of random rectangular dissections
and dyadic tilings [4].

2 Notation and statement of main result

In order to define the height function and state our main result, we need to introduce
some notation. We will consider lattice triangulations of general lattice polygons. A
lattice polygon is defined as a polygon whose vertex set only contains points of Z

2,
and whose edges do not intersect one another (aside from their endpoints) and do not
contain points of Z

2 in their interior, see Fig. 4a. Henceforth, let �0 be any subset of
Z
2 such that�0 contains all points ofZ

2 that lie inside some lattice polygon, including
the vertices of the polygon. In a first reading it may be easier to consider �0 as the
n × n square [0, n]2 ∩ Z

2, as mentioned in Sect. 1, which we refer to as the lattice
square. Let � be the set of triangulations of �0, and � be the set of midpoints of
edges of a triangulation of �0.

2.1 Boundary condition

Now we formally define the notion of boundary condition via constraint edges. Con-
sider a collection of edges ξ = {ξx : x ∈ �bc} for some �bc ⊂ � such that each edge
of ξ has endpoints in �0 and, aside from its endpoints, does not intersect other edges
of ξ or points of �0. We say that

a triangulation σ ∈ � is compatible with ξ if σx = ξx for all x ∈ �bc.

These concepts are illustrated in Fig. 4b–d. We refer to ξ as a boundary condition and
let

�ξ = {σ ∈ � : σ is compatible with ξ}.
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A Lyapunov function for Glauber dynamics on lattice triangulations 475

For convenience, we assume that ξ (resp., �bc) always contains the boundary edges
(resp., the midpoints of the boundary edges) of the lattice polygon induced by �0; for
example, in the case of the lattice square �0 = [0, n]2 ∩ Z

2, we have that ξ contains
the 4n edges of length 1 connecting consecutive points on the boundary of [0, n]2.
Define

	(�0) to be the collection of all possible sets of constraint edges with endpoints �0.

Consequently, for any boundary condition ξ ∈ 	(�0), ξ contains the boundary of the
aforementioned lattice polygon induced by �0. When ξ consists of only the edges of
the lattice polygon, then we refer to ξ as the free boundary condition. Henceforth, for
any ξ ∈ 	(�0), we denote by �bc = �bc(ξ) = � ∩ ξ the set of midpoints of the
edges in ξ .

2.2 Glauber dynamics

Given any λ > 0, any set of constraint edges ξ ∈ 	(�0) and any σ ∈ �ξ , let

Mλ
σ (�ξ ) denote the edge-flipping Markov chain obtained by Glauber dynamics

restricted to �ξ with parameter λ and starting state σ.

[When the starting state is not important, we will simply denote the above Markov
chain byMλ(�ξ ).] Given a initial triangulation σ ∈ �ξ , the Markov chainMλ

σ (�ξ )

evolves as follows. Pick a uniformly random midpoint x ∈ �. If σx is a constraint
edge (i.e., σx ∈ ξ ) or σx is unflippable, do nothing. Otherwise, letting σ x denote the

triangulation obtained by flipping σx in σ , flip σx in σ with probability λ|σ xx |
λ|σ xx |+λ|σx | ; else

do nothing. For any edge e, we denote by |e| the �1 length of e.
The stationary measure of Mλ(�ξ ) is denoted by πξ , and is given by

πξ (σ ) = λ
∑

x∈� |σx |/Z ξ (λ), (1)

where Z ξ (λ) = ∑
σ∈�ξ λ

∑
x∈� |σx | is a normalizing constant.We omit the dependence

on λ from πξ to simplify the notation.

2.3 Ground state and edges of given midpoint

Given any midpoint x ∈ �, define Eξ
x as the set of edges of midpoint x that are

compatible with ξ . In symbols,

Eξ
x = {σx : σ ∈ �ξ }. (2)

In the case of a lattice square with free boundary condition, Eξ
x comprises all the edges

that have integer endpoints, have midpoint x , are entirely contained inside [0, n]2, and
do not interesect any point of Z

2 besides its endpoints. See Fig. 5a, b.
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x

(b)(a) (c) (d)

gx

Fig. 5 a A triangulation σ of the lattice square with n = 4 and free boundary condition, with the edge

σx of midpoint x highlighted in blue. b All edges of Eξ
x , with black edges representing the edges e ∈ Eξ

x
which can be obtained from σx by flips that decrease the length of the edges (i.e., e � σx , using the notation

from Sect. 2.4), and red edges representing the other edges of Eξ
x . c A ground state triangulation of the

lattice square with free boundary condition. dAn ilustration for the definition of Eξ
x (σ, g)with ξ being free

boundary condition and σ being the triangulation in part (a) (color figure online)

Despite not being the best known upper bound on the number of triangulations, we
mention the following upper bound due to Anclin as it holds for arbitrary boundary
conditions ξ . Anclin showed that if we order the midpoints in �\�bc from top to
bottom and left to right, and we construct the triangulation by sampling edges one by
one following this order, then for each midpoint x ∈ �\�bc there are at most two
edges of Eξ

x that are compatible with all previously sampled edges. This immediately
implies the following upper bound.

Lemma 2.1 (Anclin’s bound, [2]) Given any set of constraint edges ξ ∈ 	(�0), we
have

|�ξ | ≤ 2|�\�bc|.

We refer to the edges of Eξ
x of smallest length as the ground state edges of x given

ξ . The ground state edges of x are either composed of a single edge or are the two
opposite unit diagonals (i.e., the diagonals of a square of side length 1). In the case
of the lattice square with free boundary condition, the ground state edges are either
horizontal edges, vertical edges, or one of the two opposite unit diagonals; See Fig. 5c.
Let

G
ξ =

⋃

x∈�

{g ∈ Eξ
x : g is a ground state edge of x given ξ} (3)

be the set of ground state edges given ξ . Also, define the set of all possible edges as

Eξ =
⋃

x∈�

Eξ
x ;

that is, Eξ is the set of all edges with integer endpoints that are contained in the lattice
polygon defining�0 and that do not contain any point ofZ

2 in its interior nor intersects
the edges in ξ .
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We consider that the edges in Eξ are open line segments. Hence, two edges e, f ∈ Eξ

that intersect only at their endpoints are considered to be disjoint. The ground state
triangulation is defined as the triangulationwith smallest total edge length. The follow-
ing lemma from [5] gives that a ground state triangulation can be easily constructed
by independently adding a ground state edge for each midpoint that is compatible
with the boundary condition. Figure 4c illustrates a ground state triangulation given
the boundary condition of Fig. 4b. In the case of the lattice square with free boundary
condition, there are exactly 2n

2
ground state triangulations, as there are two possible

choices for each of the n2 unit diagonals; one such example is given in Fig. 5c.

Lemma 2.2 (Ground State Lemma [5, Lemma 3.4]) Given any boundary condition
ξ ∈ 	(�0), the ground state triangulation given ξ is unique (up to possible flips of
unit diagonals), and can be constructed by placing each edge in its minimal length
configuration consistent with ξ , independent of the other edges.

2.4 Partial order on Eξ
x

The flip operation induces a natural partial order on Eξ
x . We refer to a given flip

operation as a decreasing flip (resp., increasing flip) if it reduces (resp., increases)
the length of the edge being flipped. It is known that for any non-ground-state edge
f ∈ Eξ

x \G
ξ there is a unique edge e ∈ Eξ

x such that e can be obtained from f via
a decreasing flip; see, for example, [5, Section 2.2]. In this case we say that e is the
parent of f . Any other edge that can be obtained by flipping f in some triangulation
has length at least as large as | f |.

When f belongs to a triangulation where f can be flipped to a shorter edge (which
necessarily is the parent of f ), in this triangulation f is the largest diagonal of a
parallelogram, which is referred to as the minimal parallelogram of f . Then for two
distinct edges e, f ∈ Eξ

x , we say that

e ≺ f iff there is a sequence of edges e = e0, e1, e2, . . . , ek = f ∈ Eξ
x such that

ei is the parent of ei+1 for all i = 0, 1, 2, . . . , k − 1. (4)

In other words, if e ≺ f , there is a length-increasing sequence of edges e =
e1, e2, . . . , ek = f with ei ∈ Eξ

x for all i , and such that for each i = 1, 2, . . . , k − 1
there exists two triangulations σ, η adjacent in the flip graph satisfying σy = ηy for all
y ∈ �\{x}, σx = ei and ηx = ei+1. See, for example, Fig. 5b. Hence, the ground state
edges of midpoint x are the only edges g ∈ Eξ

x such that there exists no e ∈ Eξ
x \{g}

with e ≺ g. We say that e � f if either e = f or e ≺ f .

2.5 Height function

Given a boundary condition ξ ∈ 	(�0), a triangulation σ , a midpoint x ∈ � and a
ground state edge g ∈ G

ξ (whose midpoint is not necessarily x), define the set
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478 A. Stauffer

Eξ
x (σ, g) = {e ∈ Eξ

x : e ∩ g 
= ∅ and e � σx }. (5)

If σ is the triangulation in Fig. 5a, and g is the red edge in Fig. 5d, then Eξ
x (σ, g) are

the black edges in Fig. 5d. Note that in this case Eξ
x (σ, g) comprises only two edges

while Eξ
x is formed of the three black edges in Fig. 5b; the horizontal edge of midpoint

x is not in Eξ
x (σ, g) since it does not cross g.

We will show later in Proposition 4.2 that Eξ
x (σ, g) = ∅ if and only if σx does not

intersect g. For any e ∈ Eξ , let |e| denote the �1 length of e. Given a parameter α > 1,
define the height function �

ξ
g : �ξ → R as

�ξ
g (σ ) =

∑

x∈�

∑

e∈Eξ
x (σ,g)

α|e|−|g|. (6)

The term α−|g| is not crucial and is added just as a normalizing factor. With this, for
any g ∈ G

ξ and σ ∈ �ξ , letting x ∈ � be the midpoint of g, we obtain

�ξ
g (σ ) ≥ α|σx |−|g| ≥ 1.

If σ is the ground state triangulation, then �
ξ
g (σ ) = 1 for all g ∈ G

ξ .
We regard �ξ as a height function for triangulations: given any triangulation σ ∈

�ξ , �ξ
g (σ ) can be seen as a height value to the midpoint of g. Intuitively, for any g,

a high value of �
ξ
g (σ ) means that there are several long edges of σ that cross g. This

indicates that in the neighborhood around g the triangulation σ is far from its ground
state, since no edge in any ground state triangulation crosses g (aside from the edge
sharing the same midpoint as g).

2.6 Statement of main result

The theorem below shows that there are values of α for which �
ξ
g is a Lyapunov

function. For this reason, inmany parts of the paperwewill refer to�
ξ
g as theLyapunov

function. Let Pσ = P
ξ
σ denote the probability measure induced by Mλ

σ (�ξ ), and let
Eσ = E

ξ
σ be the corresponding expectation.

Theorem 2.3 For any λ ∈ (0, 1), there exists α ∈ (1, λ−1/2),ψ0 > 1 and ε > 0, each
depending only on λ, such that the following holds. Let ξ ∈ 	(�0) be any boundary
condition, σ ∈ �ξ be any triangulation, and σ ′ be a random triangulation obtained
by applying one step of Mλ

σ (�ξ ). For any g ∈ G
ξ , if �ξ

g (σ ) ≥ ψ0, then

Eσ

(
�ξ

g (σ
′)
) ≤

(
1 − ε

|�|
)

�ξ
g (σ ).
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3 Partition of triangulations and trees of influence

Fix any boundary condition ξ ∈ 	(�0). Given a triangulation σ ∈ �ξ and a midpoint
x ∈ �, we say that σx is increasing if it is a flippable edge of σ and after flipping
σx we obtain a (strictly) larger edge. We could define decreasing edges in a similar
way, however for technical reasons we need to include some constraint edges in the
set of decreasing edges, namely the constraint edges which would be flippable and
decreasing if they were not in ξ . We do this by calling σx decreasing if it is not a unit
diagonal and it is the largest edge of all triangles of σ containing σx . Note that if σx is
decreasing according to the above definition and σx /∈ ξ , then σx is flippable and after
flipping σx we obtain a (strictly) smaller edge. For any � > R+ and triangulation σ ,
define the following subsets of �:

F�(σ ) = {
x ∈ � : |σx | ≤ �

}

Finc(σ ) = {x ∈ � : σx is an increasing edge}
Fdec(σ ) = {x ∈ � : σx is a decreasing edge}
Fdiag(σ ) = {x ∈ � : σx is a unit diagonal and the largest edge of all

triangles of σ containing σx }. (7)

Note that for any triangulation σ ∈ �ξ and midpoint x ∈ Fdiag(σ ), we have that σx is
flippable but does not change its length after being flipped.

Given a triangulation σ ∈ �ξ , we define a collection of trees whose vertices are
elements of �. Each tree is rooted at a midpoint in Fdec(σ ) ∪ Fdiag(σ ), and there will
be two trees for each x ∈ Fdec(σ ) ∪ Fdiag(σ ). We denote these trees by τ (1)(σ, x) and
τ (2)(σ, x). To define τ (1)(σ, x) take one of the triangles of σ containing σx . Denote
this triangle by �. The tree τ (2)(σ, x) will be defined analogously by considering
the other triangle of σ containing σx . The root of τ (1)(σ, x) is x . The children of x in
τ (1)(σ, x) are the midpoints of the other two edges of�. Then we proceed inductively.
The children of a midpoint y with parent z in τ (1)(σ, x) are obtained by considering
the triangle �′ of σ containing σy but not containing σz . If σy is not the largest edge
of �′, then y has no child in τ (1)(σ, x); otherwise the children of y are the midpoints
of the other edges of �′ (see Fig. 6 for a reference). Note that, for any two midpoints
y, z with y being a child of z in τ (1)(σ, x), we have that |σz | > |σy |. This guarantees
that the construction above ends. Define τ(σ, x) as a tree rooted at x obtained by the
union of τ (1)(σ, x) and τ (2)(σ, x). We call τ(σ, x) the tree of influence of x .

Although we used the term tree, it is not explicit from the construction above that
τ (1)(σ, x), τ (2)(σ, x) and τ(σ, x) are actually trees. However, if we orient the edges
from parents to children, since parents are associated to strictly larger edges than their
children, the construction above is at least guaranteed to produce a directed acyclic
graph. But we have not ruled out the case that a midpoint y is reached from two distinct
paths from x (i.e., some vertices may have two parents). Proposition 3.1 below shows
that this does not happen, hence the construction described above indeed produces
trees.
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(a)

x
y1 y2

y3

y4

y5

y6

y7

y8
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y10 y11

y12

(b)

x

y1 y2

y3
y4 y5 y6

y7 y8

(c)

x

y1 y2

y3
y4 y5 y6

y7 y8

y9
y10

y11 y12

Fig. 6 a A triangulation σ , with midpoints illustrated by gray points. b The tree τ (1)(σ, x) constructed
from the triangle σx , σy1 , σy2 . c The tree τ(σ, x)

Given two midpoints y, z ∈ τ(σ, x), we will use standard terminology to say that y is
an ancestor (resp., descendant) of z in τ(σ, x) if there exists a directed path in τ(σ, x)
from y to z (resp., from z to y) using the orientation of edges described above. We
will need one more definition. Partition Z

2 into 1×1 squares whose edges are parallel
to the axes (i.e., each square is a faces of the square lattice). Let S be the set of these
1 × 1 squares. Given any edge e ∈ Eξ , let

S(e) = {Q ∈ S : the interior of Q intersects e}. (8)

Proposition 3.1 Consider any boundary condition ξ ∈ 	(�0), any triangulation
σ ∈ �ξ , and any x ∈ Fdec(σ ) ∪ Fdiag(σ ). The following statements hold:

(i) τ(σ, x) is a tree.
(ii) For any y, z ∈ τ(σ, x) with y being an ancestor of z, we have S(σy) ⊃ S(σz).
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(a)

σx

Q1
Q2

Q∗

√
2
2

(b)

σy1

σy2

Q
(1)
1

Q
(2)
1

σx

p

(c)

Fig. 7 a The set of squares S(σx ) = Q1 ∪ Q2, the two identical regions Q1 and Q2, and the enlarged

region Q∗. b The children y1 and y2 of x decompose Q1 into three disconnected regions: Q(1)
1 , Q(2)

1
and the triangle (σx , σy1 , σy2 ). c A partition (cf. Proposition 3.4) of a triangulation σ of the trapezoid
into the regions {T (σ, x) : x ∈ Fdec(σ ) ∪ Fdiag(σ )}. The bold edges represent the edges of midpoint in
Fdec(σ ) ∪ Fdiag(σ ), which are the roots of the trees. The remaining black edges represent the boundary of
the regions, and the grey edges are the other edges of σ

(iii) For i = 1, 2, we have
∑

y∈τ
(i)
leaves(σ,x)

|σy | = |σx |, where τ
(i)
leaves(σ, x) are the set

of leaves of τ (i)(σ, x), which are the vertices without children.

Proof Consider the set of squares S(σx ). Note that σx partitions this set into two
identical regions, which we denote by Q1 and Q2. See Fig. 7a for a reference.

Note also that Q1 and Q2 are lattice polygons. Let Q∗ be all points of R
2 within

distance
√
2/2 from Q1 ∪ Q2 (including Q1 ∪ Q2). We obtain that Q∗ contains the

same points of Z
2 as Q1 ∪ Q2. Let (σx , σy1 , σy2) be one of the triangles containing

σx (say, the one intersecting Q1), and assume that y1 and y2 are the children of x in
τ (1)(σ, x). We claim that

all descendants of x in τ (1)(σ, x) are contained in Q1. (9)

In the discussion below, refer to Fig. 7b. Since y1, y2 are children of x , we have that σy1

and σy2 have size smaller than σx . This implies that the �2 length of σx is at least
√
2.

Let p denote the vertex of the triangle (σx , σy1 , σy2) that is not an endpoint of σx . Since
the area of each triangle is equal to 1/2 and σx has �2 length at least

√
2, the distance

between p and σx is at most
√
2
2 . Thus p must be inside Q∗ and, therefore, must be

one of the vertices on the boundary of Q1. We can use p to partition Q1 into three
regions: Q(1)

1 , Q(2)
1 and the triangle (σx , σy1 , σy2). Since the triangle (σx , σy1 , σy2)

cannot contain any integer point aside from its three vertices, we have that σy1 and σy2
are entirely contained in Q1. Doing this construction inductively for σy1 and σy2 , we

establish that the descendants of y1 are contained in Q(1)
1 and the descendants of y2 are

contained in Q(2)
1 , which establishes (9). Since Q(1)

1 and Q(2)
1 have disjoint interior,

we obtain that τ(σ, x) does not contain any cycle, proving part (i). This also gives that

|σy1 | + |σy2 | = |σx |. (10)

For part (ii), let S1 be the squares of S whose interior intersects Q(1)
1 , and let S2 be the

squares of Swhose interior intersects Q(2)
1 . Note that S1∩S2 = ∅ and S1∪S2 = S(σy).
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Also, S(σy1) = S1 and S(σy2) = S2. Since the descendants of y1 are contained in

Q(1)
1 ⊂ S1, we obtain part (ii).
For part (iii), applying (10) inductively we have

∑

y∈τ
(1)
leaves(σ,x)

|σy | = |σy1 | + |σy2 | = |σx |.

The same reasoning applies to τ (2)(σ, x). ��

For any triangulation σ ∈ �ξ and any x ∈ �, define the set

τ−1(σ, x) = {z ∈ Fdec(σ ) ∪ Fdiag(σ ) : x ∈ τ(σ, z)}.

In words, τ−1(σ, x) is the set of midpoints z such that x is in the tree rooted at z. Note
that in any tree containing x , the parent of x in the tree is a midpoint y such that σy is
the largest edge in the triangle containing both σx and σy .

Lemma 3.2 For any boundary condition ξ ∈ 	(�0), any triangulation σ ∈ �ξ and
any x, y ∈ � such that σx , σy are in the same triangle and σy is the largest edge of
this triangle, there exists exactly one tree containing both x and y, and y is the parent
of x in that tree.

Proof We will show that we can construct a path z0, z1, z2, . . . of adjacent midpoints
in σ (i.e., midpoints of edges sharing a triangle in σ ) from z0 = x and z1 = y until
the root of the tree containing both x and y. This path will have the property that zi
is the parent of zi−1 in the tree, for all i . Assume, inductively, that we have defined
z0 = x, z1 = y, z2, z3, . . . , zi with the property that for all j = 1, 2, . . . , i we have
that σz j and σz j−1 share the same triangle, for which the largest edge is σz j . Let w be
the midpoint of the largest edge in the triangle containing σzi but not σzi−1 . If w = zi
or zi is contained in only one triangle in σ (the later implies that zi ∈ ξ as σzi is at the
boundary of the smallest lattice polygon containing �0), then σzi is the largest edge
in all triangles of σ containing σzi and, consequently, zi ∈ Fdec(σ ) ∪ Fdiag(σ ) is the
root of a tree. This gives that zi ∈ τ−1(σ, x) ∩ τ−1(σ, y). Otherwise, let zi+1 = w,
and repeat this procedure. Note that |σzi+1 | > |σzi |, which implies that this procedure
eventually ends, yielding the root of a tree containing x and y. It remains to show that
this is the unique tree containing x and y. Since for each i ≥ 1 in the path z0, z1, . . .,
we have that zi is the largest edge in the triangle containing σzi and σzi−1 , we obtain
that σzi cannot be a leaf in any tree and the only midpoint that can be a parent of zi in
any tree is zi+1. This establishes that, for all i ≥ 2, zi is an ancestor of y in any tree
containing y, which implies that the root of the tree obtained by the above construction
is the root of any tree containing σy , completing the proof. ��

Proposition 3.3 Given any boundary condition ξ ∈ 	(�0), any triangulation σ ∈
�ξ and any midpoint x ∈ �, the following holds:
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(i) The cardinality of τ−1(σ, x) is either 1 or 2.
(ii) If τ−1(σ, x) = {y1, y2} contains two midpoints, then x is a leaf in both τ(σ, y1)

and τ(σ, y2).
(iii) If x ∈ Finc(σ ), then τ−1(σ, x) contains two midpoints.
(iv) If x ∈ � is such that σx is the largest edge in some triangle in σ , then τ−1(σ, x)

contains only one midpoint.

Proof Lemma 3.2 implies (i) since for any x there exists at least one and at most two
midpoints z1, z2 ∈ �, not necessarily distinct from x , such that σz1 and σz2 are the
longest edges in a triangle containing σx . For (ii), note that the cardinality of τ−1(σ, x)
being two implies that x is not the root of a tree, and there are two midpoints z1, z2
such that z1 is the parent of x in one tree and z2 is the parent of x in the other tree.
Therefore, σx has two distinct parents, one in each tree, implying that σx cannot be
the largest edge in any triangle of σ ; hence x cannot be the parent of any midpoint
in any tree. This gives that x is a leaf in all trees containing x . For (iii), note that if
x ∈ Finc(σ ), then there are two distinct midpoints z1, z2 ∈ � such that σz1 and σz2 are
the largest edges in triangles containing σx . Therefore, using Lemma 3.2, we have that
z1 and z2 are the parents of x in the trees containing x , implying that x is contained in
two trees. For (iv), note that if σx , σy, σz is a triangle such that σx is the largest edge,
then there exists at most one midpoint that can be the parent of x in a tree: namely,
the midpoint of the largest edge contained in a triangle with σx , if that midpoint exists
and is different than x . Therefore x can belong to only one tree. ��

For each x ∈ Fdec(σ ) ∪ Fdiag(σ ), consider the following subset of Z
2:

T (σ, x) = union of all triangles of σ containing only edges whose midpoint is in τ(σ, x).

Proposition 3.4 For any boundary condition ξ ∈ 	(�0) and any triangulation σ ∈
�ξ , the set {T (σ, z) : z ∈ Fdec(σ ) ∪ Fdiag(σ )} partitions the lattice polygon with
vertices in �0.

Proof Proposition 3.3 (iv) gives that for any triangle σx , σy, σz of σ , where σx is the
largest edge of this triangle, there exists only one tree containing x . Let τ(σ,w) be
this tree. We have that x is the parent of both y and z in τ(σ,w), therefore T (σ,w)

contains the triangle σx , σy, σz , and the proof is completed. ��
We recall the notion of the minimal parallelogram of an edge, which was introduced
in [5] and appeared briefly in the paragraph preceding (4). For any edge e ∈ Eξ ,
the minimal parallelogram of e is the unique parallelogram composed of two lattice
triangles for which e is the longest diagonal.

Proposition 3.5 Let ξ ∈ 	(�0) be any boundary condition and σ ∈ �ξ be any
triangulation. Let �1 = (σy1, σz1 , σw1) and �2 = (σy2 , σz2 , σw2) be two triangles
of σ in the same tree τ(σ, x), for some x ∈ �. Assume that |σy1 | > |σz1 | ≥ |σw1 |,
|σy2 | > |σz2 | ≥ |σw2 | and y1 is an ancestor of y2 in τ(σ, x). Then, |σw1 | ≥ |σw2 |.
Proof First consider the case of y1 being the parent of y2 in τ(σ, x), which gives that
y2 ∈ {z1, w1}.

123



484 A. Stauffer

(a)
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y2 = w1
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z1

(b)
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y2 = z1
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ee

Fig. 8 Illustration for the proof of Proposition 3.5 when y2 = w1 (a) and y2 = z1 (b)

If y2 = w1 (see Fig. 8a), the lemma clearly holds since

|σw2 | < |σy2 | = |σw1 |.

If y2 = z1, then we use that σz1 , σw1 are part of the minimal parallelogram of σy1 .
Refer to Fig. 8b. Let e be the edge opposite to σw1 in the minimal paralellogram of
σy1 . Note that e may not belong to σ , and |e| = |σw1 |. We claim that

e is in the minimal parallelogram of σz1 . (11)

Using this claim, since σw2 is the smallest edge in the minimal parallelogram of
σy2 = σz1 , we have

|σw2 | ≤ |e| = |σw1 |,

and the proposition follows when y1 is the parent of y2. In the general case of y1
not being the parent of y2, the proposition follows by applying the above reasoning
inductively along the path from y1 to y2 in the tree τ(σ, x).

It remains to establish (11). If e were an edge of σ and σy1 were flippable in σ (as
illustrated in Fig. 8b), then σy1 would be a decreasing edge and, by flipping σy1 , we
would obtain a triangulation in which σz1 and e are in the same triangle, whose largest
edge is σz1 . This gives that e is part of the minimal parallelogram of σz1 , as claimed.

��

4 Crossings of ground state edges

In this section we consider a given edge g ∈ G
ξ and establish geometric properties

of the set of edges of a triangulation σ that intersect g; recall the definition of G
ξ

from (3). In particular, given one edge σx intersecting g, one of our main results here
gives that the edges of midpoint τ−1(σ, x) also intersect g.

We will need the following useful facts from [5]. Fix any boundary condition
ξ ∈ 	(�0) and any midpoint x ∈ �. Two edges e, f ∈ Eξ

x are said to be neighbors if
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we can obtain e from f via a single flip; more formally, if there are σ, σ ′ ∈ �ξ such
that σx = e, σ ′

x = f and σy = σ ′
y for all y 
= x . It is known that the graph with vertex

set Eξ
x and the neighborhood relation described above is a tree. This follows since,

for any edge e ∈ Eξ
x , there is at most one f ∈ Eξ

x such that e and f are neighbors
satisfying | f | < |e| (in which case we see f as the parent of e in the tree). We consider
the ground state edges of Eξ

x as the root of the tree, and it is possible that the tree has
two neighboring roots, which are opposite unit diagonals. We will call this tree the
tree induced by Eξ

x .
Given a boundary condition ξ ∈ 	(�0) and a midpoint x ∈ �, we denote by σ̄x

the ground state edge of midpoint x given ξ (with an arbitrary choice among unit
diagonals). Since ground state edges of distinct midpoints are all compatible with one
another, we have that σ̄ = {σ̄x : x ∈ �} is a ground state triangulation. In the lemma
below we use the partial order on the set Eξ

x , which is defined in (4), and the set of
midpoints of constraint edges �bc = ξ ∩ �.

Proposition 4.1 Given any boundary condition ξ ∈ 	(�0), any midpoint x ∈
�\�bc, any two edges e, f ∈ Eξ

x such that e ≺ f , and any triangulation σ con-
taining f , one can obtain a triangulation containing e by performing a sequence of
decreasing flips from σ .

Proof Since the graph induced by Eξ
x is a tree, there is a unique path f = h1 �

h2 � · · · � hk = e in this graph. We claim that there exists a sequence of decreasing
flips from σ that produce a triangulation containing h2. With this the lemma follows
since we can apply this claim repetitively for h2, h3, . . . until we obtain a triangulation
containing e.
Now we establish the above claim. If f is decreasing in σ , the claim follows since we
can flip f to obtain h2. From now on assume that f is not decreasing, and let x be the
midpoint of f . Let Lx (σ ) be the sum of the �1 length of the edges of σ that cross S( f ),
where the set S is defined in (8). Let y ∈ τ−1(σ, x). We have that σy is a decreasing
and flippable edge. Otherwise y ∈ τ−1(σ, x)would imply that σy is a constraint edge,
which gives that f is a ground state edge, contradicting that f � e. Let σ ′ be the
triangulation obtained by flipping σy in σ . By Proposition 3.1(ii), S( f ) ⊂ S(σy),
hence σy intersects S( f ). Using this and the fact that |σ ′

y | ≤ |σy | − 2 we obtain that
Lx (σ

′) ≤ Lx (σ )− 2. Repeating these steps we obtain a sequence of triangulations so
that the i-th triangulation in the sequence is obtained via a decreasing flip of an edge
of the (i − 1)-th triangulation, and the value of Lx monotonically decreases along the
sequence. Since for any triangulation σ ′′ containing f we have that Lx (σ

′′) ≥ | f |, we
obtain that this procedure will eventually make f be a flippable and decreasing edge,
establishing the claim. ��
The lemma below gives the first property of crossings of ground state edges.We denote
by 1 (·) the indicator function.
Proposition 4.2 (Monotonicity)Given any boundary condition ξ ∈ 	(�0), any mid-
point x ∈ �, any ground state edge g ∈ G

ξ , and any two edges e, f ∈ Eξ
x such that

σ̄x � e � f then
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1 (e ∩ g 
= ∅) ≤ 1 ( f ∩ g 
= ∅) .

Proof We show that if f ∩ g = ∅ then e∩ g = ∅. If f does not intersect g, then there
is a triangulation σ ∈ �ξ so that g ∈ σ and σx = f . Proposition 4.1 gives that we can
perform a sequence of decreasing flips from σ until obtaining a triangulation σ ′ with
σ ′
x = e since e � f = σx . Since g is in ground state, g is not flipped in this sequence.

This implies that g is contained in σ ′ and, consequently, cannot intersect e. ��
The following is a simple geometric lemma that we will need later.

Lemma 4.3 In any triangle of a lattice triangulation, the largest angle is at least π/2
and the other angles are at most π/4.

Proof Without loss of generality, assume that �0 = [−n, n]2 ∩ Z
2 and “empty”

boundary condition (i.e., ξ contains only the unit horizontal and vertical edges at the
boundary of �0). The lemma will follow for arbitrary choices of �0 and ξ since
we can choose n large enough so that �0 ⊆ [−n, n]2 ∩ Z

2, which gives that the
set of triangulations of �0 with any boundary condition ξ is contained in the set of
triangulations of [−n, n]2 ∩ Z

2 with empty boundary condition. Now this property
clearly holds (with equality) for any ground state triangulation of [−n, n]2 ∩ Z

2.
Proposition 4.1 implies that any triangulation σ ∈ � can be obtained by a sequence of
increasing flips from some ground state triangulation. Hence it suffices to show that
the property in the statement of the lemma is preserved under increasing flips. Let �
and�′ be two triangles sharing an edge e such that e is increasing. So e is the smallest
diagonal of the parallelogram �∪�′. Let �̃ and �̃′ be the two new triangles obtained
after flipping e. Note that the largest angles of �̃ and �̃′ are larger than the largest
angles of � and �′. Moreover, the other angles of �̃ and �̃′ are obtained by splitting
angles θ, θ ′ of �,�′, respectively, where θ, θ ′ are not the largest angle of �,�′. ��
The next proposition gives an upper bound on the number of small edges intersecting a
given ground state edge. For any triangulation σ ∈ �ξ , any g ∈ G

ξ , and any � ∈ R
+,

let

Ig(σ, �) = {σx : σx ∩ g 
= ∅ and |σx | ≤ |g| + �}

be the set edges of σ that intersect g and have length at most |g| + �. Note that Ig is a
set of edges (rather than a set of midpoints), and the midpoints of the edges in Ig(σ, �)

are given by Ig(σ, �) ∩ �. A crucial property of the lemma below is that the bounds
do not depend on |g|.
Proposition 4.4 Given any boundary condition ξ ∈ 	(�0), any g ∈ G

ξ and any
triangulation σ ∈ �ξ , all the following statements hold:

(i) If an edge σx of σ intersects g, then |σx | ≥ |g|, with strict inequality when the
midpoint of g is not x.

(ii) For any � ≥ 1, the midpoints of Ig(σ, �) are contained in the ball of radius 2�
centered at the midpoint of g.
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X

|g| + 2

g

ΔX

e Y
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minimal parallelogram of g

Fig. 9 The excluded region (blue shaded area) of edge g

(iii) There exists a universal c > 0 such that for any � ≥ 1we have that the cardinality
of Ig(σ, �) is at most c�2 and the cardinality of

⋃
σ∈�ξ Ig(σ, �) is at most c�4.

Proof First we establish the lemma when g is either a unit horizontal, a unit vertical
or a unit diagonal. Then (i) holds trivially since any edge with the same midpoint as
g has length at least |g|, and an edge with midpoint different than g can only intersect
g if its length is larger than

√
2 ≥ |g|. Parts (ii) and (iii) follows since any edge of

length at most � that intersects g must be completely contained inside a ball of radius
|g|
2 + � ≤

√
2
2 + � centered at the midpoint of g.

Now let g be a ground state edge that is not a unit vertical, unit horizontal or unit
diagonal. Thismeans that g is constrained by a constraint edge e ∈ ξ ; that is, g ⊂ S(e).
The proof uses the concept of excluded regions introduced in [5]. The excluded region
of an edge g is obtained by taking its minimal parallelogram and considering the
infinite strips between both pairs of opposite sides of the parallelogram, as illustrated
by the shaded area in Fig. 9. The interior of the excluded region contains no point of
Z
2, cf. [5, Proposition 3.3]. The endpoints of the constraint edge e are in regions X

and Y , which are the two components of the complement of the excluded region of g
that contain an endpoint of g in their boundary, as illustrated in Fig. 9. Thus, all edges
that intersect g must also have endpoint in X and Y , not to intersect e. This gives that
any edge that intersects g must have length larger than |g|, establishing part (i).

Now we establish part (ii). All edges in
⋃

σ Ig(σ, �)must have endpoints inside the
intersection of X ∪ Y with the strip between the red dashed lines in Fig. 9, which are
the lines perpendicular to g and at distance � from the endpoints of g. The intersection
of X ∪ Y and this strip forms two triangles �X ⊂ X and �Y ⊂ Y . Since the triangles
in the minimum parallelogram of g have their two smallest angles of size at most π/4
(cf. Lemma 4.3), the angle of �X at the endpoint of g is at most π/2. Therefore, �X

is contained inside an isosceles right triangle whose right angle is at the vertex of �X

which is an endpoint of g, and whose hypotenuse is in the red dashed line intersecting
�X . The length of the hypotenuse of this isosceles right triangle is 2�. Therefore,
the midpoints of an edge with endpoints in �X and �Y is contained inside a � × 2�
rectangle centered at the midpoint of g and whose smallest edges are parallel to g.
This rectangle is contained inside a ball of radius 2� centered at the midpoint of g.
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Part (iii) follows since part (ii) implies that |Ig(σ, �)| ≤ c�2 for some universal constant
c > 0. Also, since the area of each �X and �Y is at most �2, the number of points
of �0 inside each of �X and �Y is at most c1�2 for some positive constant c1, which
gives that

∣
∣⋃

σ∈�ξ Ig(σ, �)
∣
∣ ≤ c1�4. ��

The geometric property below was the main inspiration for constructing the Lya-
punov function (6). Roughly speaking, if an increasing edge σx of σ that is not in
ground state intersects a ground state edge g, then the decreasing edges in the same
tree as σx [i.e., the edges σy for all y ∈ τ−1(σ, x)] also intersect g. Hence each
increasing edge can be mapped to a decreasing edge of larger length. Since only flips
of increasing edges can increase the value of the Lyapunov function, we are able to
show that when taking the expectation over all possible flips, each flip that increases
the Lyapunov function is “compensated” by flips that decrease the Lyapunov function.
Another fundamental property in the lemma below is that if σx itself does not intersect
g but the edge obtained by flipping σx does, then g is also intersected by at least one
of the decreasing edges in the same tree as σx [i.e., there exists y ∈ τ−1(σ, x) such
that σy intersects g].

Proposition 4.5 Fix any boundary condition ξ ∈ 	(�0), any triangulation σ ∈ �ξ ,
any midpoint x ∈ �, and any ground state edge g ∈ G

ξ . Let {z1, z2} = τ−1(σ, x); if
τ−1(σ, x) has cardinality one, set z1 = z2. Then either σx = g or we have

1 (σx ∩ g 
= ∅) ≤ 1
(
σz1 ∩ g 
= ∅)

1
(
σz2 ∩ g 
= ∅)

. (12)

Moreover, if x ∈ Finc(σ ) and η is the triangulation obtained by flipping σx in σ , we
have that

1 (σx ∩ g = ∅)1 (ηx ∩ g 
= ∅) ≤ 1
(
σz1 ∩ g 
= ∅) + 1

(
σz2 ∩ g 
= ∅)

. (13)

Proof We establish (12) by contradiction. Assume that x /∈ Fdec(σ ) ∪ Fdiag(σ ), oth-
erwise x = z1 = z2 and the lemma follows trivially. Assume also that σx 
= g, and
that σx intersects g but σz1 does not. This implies that there exists a triangulation that
contains g and σz1 . Take ζ to be one such triangulation as following. Remove from
σ all edges intersecting g, regard the edges of σ that were not removed as a new
boundary condition, and define ζ to be a ground state triangulation containing g given
this new boundary condition. Since a ground state triangulation (given any boundary
condition) can be obtained by the union of ground state edges by Lemma 2.2, we
obtain that ζ ≺ σ . Since σx intersects g and σx 
= g, we have |ζx | < |σx |. Also, since
in σ we have that σz1 is the root of a tree containing σx , we have that σx is in ground
state given σz1 . Since ζz1 = σz1 , then |ζx | ≥ |σx |, establishing a contradiction. The
same reasoning applies to z2.

In order to establish (13), we assume that σx does not intersect g but ηx does, and
show that this implies that either σz1 or σz2 must intersect g. Letw1, y1 ∈ τ(σ, z1) and
w2, y2 ∈ τ(σ, z2) be such that σxσw1σy1 and σxσw2σy2 are triangles in σ . Note that
if p1 is the common endpoint of σw1 and σy1 , and p2 is the common endpoint of σw2

and σy2 , then ηx has endpoints p1, p2. Since ηx intersects g and ηx 
= g, it follows
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that g intersects at least one of σw1 , σy1 , σw2 and σy2 . Assume that g intersects σw1 .
Applying the first part of the lemma with x = w1 yields that g intersects σz1 . ��
Proposition 4.6 Fix any boundary condition ξ ∈ 	(�0), any triangulation σ ∈ �ξ

and any ground state edge g ∈ G
ξ . There is a sequence of non-increasing flips from

σ that produces a triangulation containing g. Moreover, if � ⊂ � are the midpoints
of the edges of σ that intersect g, then in this sequence only the edges of midpoint in
� are flipped.

Remark 4.7 In the sequence of flips above, all flips are (strictly) decreasing unless
when g ⊀ σx , where x is the midpoint of g. In this case, g is a unit diagonal and the
opposite unit diagonal g′ of midpoint x also belongs to G

ξ . Then the sequence of flips
consists of a sequence of decreasing flips that culminates in a triangulation containing
g′ and its minimal parallelogram, and then a length-preserving flip of g′ to obtain g.

Proof of Proposition 4.6 Assume for themoment that g ≺ σx , where x is themidpoint
of g. We perform the same sequence of triangulations σ = η0, η1, η2, . . . as in the
proof of Proposition 4.1 with e = g. In this sequence, ηi is obtained from ηi−1

by performing a decreasing flip of an edge of midpoint in τ−1(ηi−1, x). Since ηi−1
x

intersects g for all i , Proposition 4.5 gives that all edges of midpoint in τ−1(ηi−1, x)
also intersect g. Therefore, all flipped edges in this sequence must intersect g.

When g ⊀ σx , we have that g is a unit diagonal and the opposite unit diagonal g′
of midpoint x also belongs to G

ξ ; otherwise for all f ∈ Eξ
x we have g � f . This

gives that g′ � σx . From the previous case we obtain a sequence of triangulations
σ = η0, η1, η2, . . . , ηk such that ηkx = g′ and, for all i , ηi is obtained by performing
a decreasing flip to an edge of midpoint in τ−1(ηi−1, x). Since ηi−1

x intersects g,
we have that only edges intersecting g are flipped in this sequence. Now we claim
that we can perform a sequence of decreasing flips from ηk to obtain triangulations
ηk+1, ηk+2, . . . , η� such that η� contains g′ and its minimal parallelogram. Using
this the lemma follows since we can perform a length-preserving flip of g′ in η�,
which produces g. To establish the claim, let w1, w2, w3, w4 be the midpoints of
the edges in the minimal parallelogram of g. Note that there are exactly four edges
h1, h2, h3, h4 ∈ G

ξ (which are unit horizontal and vertical edges) such that wi is the
midpoint of hi for all i ∈ {1, 2, 3, 4}. The sequence of flips is obtained by applying
the previous case for each hi ; i.e., at each step we perform a decreasing flip to an
edge of midpoint in τ−1(·, wi ) for some i ∈ {1, 2, 3, 4} until obtaining a triangulation
contaning h1, h2, h3, and h4. It remains to show that in this sequence we only flip
edges that intersect g. Note that any edge of a triangulation that intersects hi for some
i must intersect either g or g′. Since g′ belongs to all triangulations ηk+1, ηk+2, . . . , η�

and any edge flipped in this sequence intersects hi for some i , we have that all flipped
edges intersect g, and the claim is established. ��

5 Proof of the Lyapunov function (Theorem 2.3)

During the proof of Theorem 2.3, we will need to treat small edges (edges smaller
than some constant C) separately. We fix α ∈ (1, λ−1/2) and set C > 1 large enough
so that the following two conditions hold:
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α−C/4 ≤ 1

10
and Cα−C/2 ≤ α2 − 1

10α2 . (14)

Also, we will need to handle “small trees” separately: trees whose root edge is smaller
than some other constant C ′. After C has been fixed, set C ′ large enough so that the
following conditions hold:

C ′ >

(
3 + 2

α − 1

)
C2 and 4xα2C ≤ αx for all x ≥ C ′. (15)

Throughout this section we fix an arbitrary boundary condition ξ ∈ 	(�0) and a
triangulation σ ∈ �ξ . We need to introduce some notation. For any flippable edge
x ∈ � of σ , define

ψx = ψx (σ ) (16)

= the length of the shortest edge different than σx in a triangle of σ containing σx .

Given any g ∈ G
ξ , define

Fg
dec(σ ) = {x ∈ Fdec(σ ) : σx ∩ g 
= ∅} and Fg

inc(σ ) = {x ∈ Finc(σ ) : σ x
x ∩ g 
= ∅},

where

σ x stands for the triangulation obtained by flipping σx in σ.

In words, Fg
dec(σ ) is the set of decreasing edges of σ that intersect g and Fg

inc(σ ) is
the set of increasing edges of σ that either intersect g or get to intersect g after a flip.
[The fact that it is enough to define Fg

inc(σ ) in terms of σ x only is a consequence
of Proposition 4.2.] Since the edges of G

ξ are all compatible with ξ , we obtain that,
unlike Fdec(σ ), the set Fg

dec(σ ) contains no midpoint of λbc. Let

σ ′ be the random triangulation obtained from σ by one step of the Glauber dynamics,

and for x ∈ � let

σ̃ x = the triangulation obtained by choosing x to be flipped in σ.

The triangulation σ̃ x differs fromσ x since σ̃ x is a random triangulation (the probability

that the flip actually occurs is λ|σ xx |
λ|σx |+λ|σ xx | ), while σ x is a deterministic triangulation.

Hence,

Eσ (�g(σ
′) − �g(σ )) =

∑

x∈�

1

|�|Eσ (�g (̃σ
x ) − �g(σ ))

=
∑

x∈Fg
dec(σ )∪Fg

inc(σ )

1

|�|Eσ (�g (̃σ
x ) − �g(σ )). (17)
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We start estimating the expected change in �g(σ ) incurred by flipping a given edge.
For x ∈ �, define

ρg(σ, x) = − α|σx |−|g|

1 + λ2ψx
for all x ∈ Fg

dec(σ ),

ρg(σ, x) = α|σx |−|g|(αλ)2ψx

1 + λ2ψx
for all x ∈ Fg

inc(σ ) (18)

and ρg(σ, x) = 0 for all other x .

Lemma 5.1 Fix any boundary condition ξ ∈ 	(�0), any triangulation σ ∈ �ξ , any
ground state edge g ∈ G

ξ , and any midpoint x ∈ �. We have

Eσ (�g (̃σ
x ) − �g(σ )) = ρg(σ, x).

Proof If x ∈ Fdiag(σ ), then σx ∈ G
ξ and, consequently, σx only intersects g if the

midpoint of g is x ; hence, �g(σ ) = �g(σ
x ) in this case. Assume henceforth that

x /∈ Fdiag(σ ). Then for any x such that σx is a flippable edge we have that the absolute
value of |σ x

x | − |σx | is 2ψx . To see this, note that if w, y ∈ � are such that σw, σy, σx
form a triangle of σ with |σw| ≥ |σy |, then ψx = |σy |. Thus if σx is the largest edge
of the triangle we have |σx | = |σw| + |σy | and |σ x

x | = |σw| − |σy |, otherwise we
have |σx | = |σw| − |σy | and |σ x

x | = |σw| + |σy |. Therefore, the probability that σx is
actually flipped in σ̃ x is

λ|σ x
x |

λ|σx | + λ|σ x
x | = λ|σ x

x |

λ|σx |∧|σ x
x |(1 + λ2ψx )

= λ2ψx1 (x ∈ Finc(σ )) + (x ∈ Fdec(σ )\λbc)
1 + λ2ψx

.

Therefore, if x ∈ Fg
dec(σ ), we have

Eσ (�g (̃σ
x ) − �g(σ )) = −α|σx |−|g| 1

1 + λ2ψx
= ρg(σ, x).

If x ∈ Fg
inc(σ ), we obtain

Eσ (�g (̃σ
x ) − �g(σ )) = α|σx |+2ψx−|g| λ2ψx

1 + λ2ψx
= α|σx |−|g|(αλ)2ψx

1 + λ2ψx
= ρg(σ, x).

��

5.1 Proof overview

Our goal is to show that
∑

x∈Fg
inc(σ ) ρg(σ, x) can be bounded above by −c

∑
x∈Fg

dec(σ )

ρg(σ, x) for some constant c < 1, and then apply Lemma 5.1 and (17) to establish

123



492 A. Stauffer

Theorem 2.3. We will do this by comparing each ρg(σ, x) with x ∈ Fg
inc(σ ) with

ρg(σ, z) for z being a root of a tree containing x (i.e., z ∈ τ−1(σ, x)). Proposition 4.5
guarantees that there exists such a z for which z ∈ Fg

dec(σ ). Proposition 3.3(ii) and
(iii) give that for any x ∈ Fg

inc(σ ), x is a leaf in all trees containing x , so in our proof
we will restrict our attention to the roots and leaves of the trees.

The proof is split into sections. In Sect. 5.2 we bound above ρg(σ, x) with x ∈
Fg
inc(σ ) in terms of ρg(σ, z) with z ∈ τ−1(σ, x) for small leaves (leaves σx that

are small enough in comparison to σz). In Sect. 5.3 we do the same for large leaves,
which will require amore delicate proof. Then in Sect. 5.4 we combine the result of the
previous two sections with (17) and establish that the expected change in the Lyapunov
function can bewritten as a function of only the decreasing edges. In Sect. 5.5 we show
that the value of the Lyapunov function can also be written in terms of the decreasing
edges only. Combining these two results together gives that the expected change in
the Lyapunov function can be written in terms of the value of the Lyapunov function.
This is established in Sect. 5.6, completing the proof of Theorem 2.3.

5.2 Handling small leaves

For any z ∈ Fdec(σ ) ∪ Fdiag(σ ), we will employ the following definition:

τsl(σ, z) = {x ∈ τleaves(σ, z) : |σx | ≤ |σz | − C},

where τleaves(σ, z) are the leaves of τ(σ, z). The subscript sl above stands for “small
leaves.” In the lemma below, recall that ρg(σ, z) < 0 for all z ∈ Fg

dec(σ ).

Lemma 5.2 Given any boundary condition ξ ∈ 	(�0), any triangulation σ ∈ �ξ ,
any z ∈ Fg

dec(σ ), and any g ∈ G
ξ , we have

∑

x∈τsl(σ,z)

ρg(σ, x) ≤ 2|σz |αC−|g| − 4α−Cρg(σ, z).

If in addition we have |σz | ≥ C ′, then the bound above can be simplified to

∑

x∈τsl(σ,z)

ρg(σ, x) ≤ −5α−Cρg(σ, z).

Proof By Proposition 3.1(iii) we have that
∑

x∈τsl(σ,z) |σx | ≤ 2|σz |. Then, since αλ <

1/α, we write

∑

x∈τsl(σ,z)

ρg(σ, x) =
∑

x∈τsl(σ,z)

α|σx |−|g|(αλ)2ψx

1 + λ2ψx
≤

∑

x∈τsl(σ,z)

α|σx |−|g|−2ψx

1 + λ2ψx
.

Now let τ ′
sl(σ, z) ⊆ τsl(σ, z)be the set ofmidpoints x ∈ τsl(σ, z) such that |σx |−2ψx ≤

C . Then for τ ′
sl(σ, z) we use the simple bound
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∑

x∈τ ′
sl(σ,z)

ρg(σ, x) ≤ |τ ′
sl(σ, z)|αC−|g| ≤ 2|σz |αC−|g| ≤ 4|σz |αC−|g|

1 + λ2ψz
.

When |σz | ≥ C ′, using the condition on C ′ in (15) we obtain

∑

x∈τ ′
sl(σ,z)

ρg(σ, x) ≤ α|σz |−|g|−C

1 + λ2ψz
= −α−Cρg(σ, z). (19)

For the other edges, we use the fact that |σx | > ψx , which implies that ψx is the size
of the smallest edge in the triangle containing σx in τ(σ, z), and hence Proposition 3.5
gives that ψx ≤ ψz . Using this, we obtain

∑

x∈τsl(σ,z)\τ ′
sl(σ,z)

ρg(σ, x) ≤ 1

1 + λ2ψz

∑

x∈τsl(σ,z)\τ ′
sl(σ,z)

α|σx |−|g|−2ψx . (20)

For the edges in τsl(σ, z)\τ ′
sl(σ, z) we will also leverage on the fact that they are not

small, applying the following technical estimate. Given any positive �1 ≥ �2 ≥ · · · ≥
�k ∈ Z and any S ≥ ∑k

i=1 �i such that k ≥ 2 and �i ∈ [C, S − C] for all i , we have

k∑

i=1

α�i = α�1+�2(α−�1 + α−�2) +
k∑

i=3

α�i ≤ 2α−Cα�1+�2 +
k∑

i=3

α�i .

Using that 2α−C < 1, and proceeding in the same way as above, we obtain

k∑

i=1

α�i ≤ α�1+�2 +
k∑

i=3

α�i

≤ α�1+�2+···+�k−1 + α�k

≤ 2α−Cα
∑k

i=1 �i ≤ 2αS−C .

If k = 1, then we have
∑k

i=1 α�i = α�1 ≤ αS−C , and we can simply use the upper
bound above. We apply this estimate twice, once for the elements of τsl(σ, z)\τ ′

sl(σ, z)
that belong to τ (1)(σ, z) and another for the ones that belong to τ (2)(σ, z). Since we
have that the sum of the |σx | for x in each of these sets is at most S = |σz|, applying
this to the right-hand side of (20) yields

∑

x∈τsl(σ,z)\τ ′
sl(σ,z)

ρg(σ, x) ≤ 1

1 + λ2ψz
4α|σz |−|g|−C = −4α−Cρg(σ, z).

Summing this and (19) establishes the lemma. ��
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5.3 Large leaves and 1-dimensional configurations

As mentioned above, the most delicate part of the proof will be to etablish an upper
bound on ρg(σ, x) when x ∈ Fg

inc(σ ) is such that x belongs to a tree τ(σ, z) for which
σx and σz have almost the same length. This is the case we treat in this section.

Here we only need to consider trees rooted at long edges. Fix a boundary condition
ξ ∈ 	(�0) and a ground state edge g ∈ G

ξ . Consider the increasing edges σx for
which either both trees containing x have root in Fg

dec(σ ) and have length at least
|g|+C ′, or one of them has root satisfying the conditions above and the other has root
outside Fg

dec(σ ). In addition, only consider x that does not belong to τsl(σ, z) for any
z. More precisely, define

X = {x ∈ Fg
inc(σ ) : ∀z ∈ Fg

dec(σ ) ∩ τ−1(σ, x) we have |σz |
> |g| + C ′ and x /∈ τsl(σ, z)}.

Proposition 4.5 gives that the set Fg
dec(σ ) ∩ τ−1(σ, x) has at least one element.

Weconstruct the followingbipartite graphH withvertex sets X and Fg
dec(σ )\F|g|+C ′

(σ ). [Recall the definition of F�(σ ) from (7).] To avoid ambiguity, we will refer to
the connections between pairs of vertices of H as links instead of edges; we reserve
the word edges to the edges of a triangulation. There is a link between x ∈ X and
z ∈ Fg

dec(σ )\F|g|+C ′(σ ) in H if x ∈ τ(σ, z). Since τ−1(σ, x) has cardinality at most
two [cf. Proposition 3.3(i)], the degree of x in H is at most two. Also each edge of
midpoint z ∈ Fg

dec(σ )\F|g|+C ′(σ ) has length at least |g| +C ′ > 3C , which gives that
a leaf x ∈ τleaves(σ, z)\τsl(σ, z) must have size at least |σz| − C > 2|σz |/3. Since∑

y∈τleaves(σ,z) |σy | = 2|σz |, the set τleaves(σ, z)\τsl(σ, z) has at most two elements,
which gives that the degree of z in H is at most two. Since all vertices of H have
degree at most two, H is a graph formed by paths and cycles.3

We will treat each path P of H individually. Since H is bipartite, the vertices of
P must alternate between midpoints in X (which correspond to increasing edges of
σ ) and midpoints in Fg

dec(σ )\F|g|+C ′(σ ) (which are decreasing edges of σ ). If the
number of decreasing edges in P is at least as large as the number of increasing edges
in P , then we can construct a one-to-one mapping between increasing and decreasing
edges of P , which allow us to show a contraction in the Lyapunov function. The main
challenge is when the number of increasing edges in P is larger than the number of
decreasing edges (that is, the number of increasing edges is one plus the number of
decreasing edges). In this case, we will show that the path must form a specific shape
in σ , which implies that the path is long enough. Only with this we can establish a
contraction in the Lyapunov function for this case. This is proved in Lemma 5.3.

Lemma 5.3 Let P = {w1, w2, . . . , w�} be a path of H such that w1, w� ∈ X. Then,

� ≥ C ′ − C

C2 .

Moreover, ψw1 = ψw2 = · · · = ψw�
. We also obtain that H has no cycles.

3 Actually, as it will be proved in Lemma 5.3, there is no cycle in H . But we will not need this fact.
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w1

x2 = w2

w4

w5

y1

y4 y2

w1

u

v y2

parallel line L

p0

p1

p−1

(b)(a)

x1

y1

u

L

L

x1
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x4 = w3

Fig. 10 a A 1-dimensional configuration: blue edges are decreasing, red edges are increasing, and green
edges are the other edges that form the parallel lines L and L ′. b Details of the proof of Lemma 5.3 (color
figure online)

Proof Given P , we will construct a path of adjacent triangles �1,�2, . . . ,�k

in σ starting from σw1 until reaching σw�
, and such that it contains all edges

σw1 , σw2 , . . . , σw�
. We will show that this path of triangles must have a certain 1-

dimensional shape, which we illustrate in Fig. 10a.
Now we construct the path of triangles. Let �1 be the triangle of σ containing σw1

and formed of edges of midpoint in τ(σ,w2). Let σx1 and σy1 with |σx1 | ≥ |σy1 | be the
other edges of�1. Since σw1 is increasing, we have |σx1 | > |σw1 |. Let�2 be the other
triangle containing σx1 in σ , and let σx2 , σy2 be the other edges of �2 with σx2 larger
than σy2 . Then either σx1 is a decreasing edge or |σx2 | > |σx1 |. In the latter case, we
look at the other triangle containing σx2 and repeat the procedure above until we reach
a triangle � j such that σx j is a decreasing edge. Since w1 ∈ X , it holds that x j = w2;
this must happen since at each step we cross the largest edge of the triangle, traversing
a path in τ(σ,w2) from the leaf w1 to the root w2. This establishes a path of adjacent
triangles from σw1 to σw2 . Similarly, we can find a path of adjacent triangles from
the increasing edge σw3 to the decreasing edge σw2 and concatenate the two paths to
obtain a path from σw1 to σw3 . Iterating this procedure we obtain a path of adjacent
triangles from σw1 to σw�

.
Now define L to be the infinite line containing σy1 and L ′ to be the infinite line

that is parallel to L and contains the other endpoint of σw1 . We show that the union
of the σy j must lie on L ∪ L ′, and that each triangle � j has all its vertices on L ∪ L ′
(as illustrated in Fig. 10a). First assume that x1 
= w2, and let σy1 = (u, v) where
u, v ∈ �0 and v = σx1 ∩ σy1 (refer to Fig. 10b). We claim that

σy2 = (v, v + v − u), (21)

which is an edge colinear with σy1 and is illustrated by (v, p1) in Fig. 10b. The reason
for (21) is the following. Given σx1 , the third vertex of�2 must lie on a line L ′′ parallel
to σx1 since the area of �2 is 1/2; this is the line containing p−1, p0, p1 in Fig. 10b.
This line must pass through the vertex v + v − u since v − (v − u) = u pass through
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a similar line on the other side of σx1 . Let . . . , p−2, p−1, p0, p1, p2, . . . be the lattice
vertices on L ′′ such that p0 is the only such vertex in the minimal parallelogram of
σx1 . Since x1 
= w2, then σx1 is not decreasing and p0 is not a vertex of �2. Let
p1 = v + v − u and define u′ ∈ Z

2 ∩ L ′ such that σw1 = (u, u′). Note that for the
same reason that (v, p1) is a translate of σy1 , (u′, p−1) is a translate of σw1 . If p−1
were a vertex of �2, then

|σx2 | = |σx1 | + |σw1 | ≥ 2|σw1 | ≥ 2(|σw2 | − C).

But since |σw2 | ≥ 2C , we obtain |σx2 | ≥ |σw2 | which is a contradiction since x2 ∈
τ(σ,w2). Similarly, any point p−2, p−3, . . . in L ′′ cannot be a vertex of�2; otherwise
it makes σx2 be too large. For a similar reason, any point p2, p3, . . . in L ′′ cannot be
a vertex of �2, otherwise we would have

|σx2 | ≥ |σx1 | + ‖v − p2‖1 = |σx1 | + |σy1 | + |σx1 | ≥ 2|σw1 |.

Therefore, p1 must be the vertex of �2 giving that σy1 and σy2 are colinear, and
establishing (21). Now, if x1 = w2, then x1 is decreasing and p0 is the vertex of �2.
In this case, x1 is the diagonal of a paralellogram and, clearly, (u′, p0) is parallel to
and has the same length as σy1 . Proceeding inductively, we obtain that the path of
triangles must be between the two (green) parallel lines L and L ′ in Fig. 10a, which
also implies that H has no cycle. Also, it implies that ψwi = |σy1 | for all i .

Now we compute a lower bound on � (the size of the path P). First notice that σw1

and σw�
do not intersect g, otherwise their degree in H would be two. Also, if R is

the region between L and L ′, and ĝ is the closure of g (i.e., ĝ is the union of g and its
endpoints), then R\ĝ is not simply connected (i.e., ĝ intersects both L and L ′). The
reason for this is that R must intersect g (because σw2 intersects g and is contained
in R), but R does not contain any lattice point since R is part of the excluded region
of σw2 . (See [5, Proposition 3.3] for the proof that the excluded region of any edge
does not contain lattice points.) Let s = ĝ ∩ L and s′ = ĝ ∩ L ′ be the points where ĝ
intersects L and L ′, and let r, r ′ be the endpoints of σw�

such that r ∈ L and r ′ ∈ L ′.
Clearly, s is between r and u in L , and s′ is between r ′ and u′ in L ′. Recalling that σw1

stands for the triangulation obtained from σ by flipping σw1 , and since σ
w1
w1 intersects

g and |σy1 | ≤ |σw2 | − |σw1 | ≤ C , we have that

‖s − u‖1 ≤ |σy1 | ≤ C,

and

‖s′ − u′‖1 ≥ |σw1 | − |g| ≥ |σw2 | − C − |g| ≥ C ′ − C.

Consequently, the number of edges σyi on L ′ that belongs to triangles of the path

�1,�2, . . . is at least C
′−C
C . Since for even j we have |σw j | ≤ |σw j−1 |+C , there must

be at most C edges σyi between σw j and σw j−1 . Therefore, we have that
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� ≥ C ′ − C

C2 .

��

Lemma 5.4 Let P = {w1, w2, . . . , w�} be a path of H. Then

∑

x∈P∩Fg
inc(σ )

ρg(σ, x) ≤ −
∑

z∈P∩Fg
dec(σ )

α−2ψzρg(σ, z).

Proof Since H is bipartite, the midpoints in P must alternate between increasing and
decreasing edges of σ . Also, if σwi is increasing, then |σwi | ≤ |σwi−1 | ∧ |σwi+1 |. By
Lemma 5.3 we have that all ψwi are the same; for simplicity we write ψ = ψwi . If
σw�

is decreasing, then the lemma follows since each increasing σwi can be associated
with the decreasing edge σwi+1 , and we can write

ρg(σ,wi ) = α|σwi |−|g|(αλ)2ψ

1 + λ2ψ
≤ α

|σwi+1 |−|g|−ψ
(αλ)2ψ

1 + λ2ψ

≤ α
|σwi+1 |−|g|−3ψ

1 + λ2ψ
= −α−3ψρg(σ,wi+1). (22)

Similarly, if σw1 is decreasing but σw�
is increasing, then associate each increasing

σwi with the decreasing edge σwi−1 , and the lemma follows by an analogous argument
as in (22).

It remains to establish the lemma when both σw1 and σw�
are increasing. In this

case, let j be such that σw j is the smallest edge of σ with midpoint in P . Clearly, σw j

must be an increasing edge. The idea is to associate each increasing edge that is not
σw j to a different decreasing edge, and then split ρg(σ,w j ) among all �−1

2 decreasing
edges of P . Since σw j is the smallest edge, and � is large enough, this extra addition

can be controlled. Letting κ = �−1
2 ≥ C ′−C

2C2 − 1
2 , we write

∑

x∈P∩Fg
inc(σ )

ρg(σ, x) =
∑

x∈P∩Fg
inc(σ )

α|σx |−|g|(αλ)2ψx

1 + λ2ψx

= α
|σw j |−|g|

(αλ)2ψ

1 + λ2ψ
+

∑

odd i 
= j

α|σwi |−|g|(αλ)2ψ

1 + λ2ψ

≤
∑

odd i 
= j

(
1 + 1

κ

)
α|σwi |−|g|(αλ)2ψ

1 + λ2ψ
,

where in the inequality we used that σw j is the smallest among all edges in P , and that
there are κ terms in the summation. Now for i < j , associate each increasing edge
σwi to the decreasing edge σwi+1 , obtaining
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(
1 + 1

κ

)
α|σwi |−|g|(αλ)2ψ

1 + λ2ψ
≤

(
1 + 1

κ

)
α

|σwi+1 |−ψ−|g|
(αλ)2ψ

1 + λ2ψ

≤
(
1 + 1

κ

)
α

|σwi+1 |−3ψ−|g|

1 + λ2ψ

≤ α
|σwi+1 |−2ψ−|g|

1 + λ2ψ
= −α−2ψρg(σ,wi+1), (23)

where in the last inequality we use that 1+ 1/κ ≤ α from the condition on C ′ in (15).
For i > j , we associate each increasing edge σwi to the decreasing edge σwi−1 , and
perform the same derivation as in (23). This completes the proof of the lemma. ��

5.4 Expected change in terms of decreasing edges

The next lemma puts together the results from Sects. 5.2 and 5.3 to show that the
expected change in the Lyapunov function can be written as a function of only the
decreasing edges, and only those that are large enough.

Lemma 5.5 There exists a positive constant c1 = c1(α,C,C ′) such that given any
boundary condition ξ ∈ 	(�0), any triangulation σ ∈ �ξ and any ground state edge
g ∈ G

ξ , we have

Eσ (�g(σ
′) − �g(σ )) ≤ c1

|�| + (α2 − 1)

2α2|�|
∑

z∈Fg
dec(σ )\F|g|+C ′ (σ )

ρg(σ, z).

Consequently, if
∑

z∈Fg
dec(σ )\F|g|+C ′ (σ ) ρg(σ, z) ≤ − 4α2c1

α2−1
, we obtain

Eσ (�g(σ
′) − �g(σ )) ≤ (α2 − 1)

4α2|�|
∑

z∈Fg
dec(σ )\F|g|+C ′ (σ )

ρg(σ, z).

Remark 5.6 In Lemma 5.5, recall that ρg(σ, z) < 0 for all z ∈ Fg
dec(σ ), which implies

that

Eσ (�g(σ
′) − �g(σ )) ≤ c1

|�| for all σ ∈ �ξ .

Proof of Lemma 5.5 Among the increasing edges, only the ones in Fg
inc(σ ) can change

the value of �g(σ ), cf. (17). From Proposition 4.5, for any x ∈ Fg
inc(σ ) that is not in

ground state, we have that there is a decreasing edge σz so that x ∈ τ(σ, z) and σz
intersects g. Consequently, z ∈ Fg

dec(σ ). Note that σz is not a constraint edge and is
not in ground state, since no constraint edge can intersect g and no decreasing edge
can be in ground state.
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Let K ⊂ � be defined as

K = {x ∈ Fg
dec(σ ) ∪ Fg

inc(σ ) : τ−1(σ, x) ∩ Fg
dec(σ ) 
= ∅}.

By Proposition 4.5, K includes all flippable edges that are not in ground state and
either intersect g or will intersect g after being flipped. Letw be the midpoint of g. For
the ground state edges of σ , only the one with midpoint w can intersect g. Therefore,
from (17), we write

Eσ (�g(σ
′) − �g(σ ))

≤ (σw ∈ G
ξ , w ∈ Finc(σ ))

|�| Eσ (�g (̃σ
w) − �g(σ )) + 1

|�|
∑

x∈K
Eσ (�g (̃σ

x ) − �g(σ ))

≤ (σw ∈ G
ξ , w ∈ Finc(σ ))

|�| α|σw |−|g|(αλ)2ψw + 1

|�|
∑

x∈K
Eσ (�g (̃σ

x ) − �g(σ ))

≤ (σw ∈ G
ξ , w ∈ Finc(σ ))

|�| α−2 + 1

|�|
∑

x∈K
Eσ (�g (̃σ

x ) − �g(σ )). (24)

We split K into two sets Kbig, Ksmall. Define

Kbig = {x ∈ K : ∀z ∈ τ−1(σ, x) ∩ Fg
dec(σ ) we have |σz | > |g| + C ′}.

This set is related to the vertices of the graph H in Sect. 5.3. Also define

Ksmall = K\Kbig.

We start with Ksmall. Note that for all x ∈ Ksmall ∩ Fg
inc(σ ), there exists an edge

z ∈ τ−1(σ, x)∩Fg
dec(σ ) such that |σz | ≤ |g|+C ′. Hence, for each x ∈ Ksmall∩Fg

inc(σ ),
we can associate one z ∈ τ−1(σ, x)∩ Fg

dec(σ ) such that |σx | < |σz | ≤ |g|+C ′. Thus,

1

|�|
∑

x∈Ksmall

Eσ (�g (̃σ
x ) − �g(σ )) ≤ 1

|�|
∑

x∈Ksmall∩Fg
inc(σ )

Eσ (�g (̃σ
x ) − �g(σ ))

≤ 1

|�|
∑

x∈Ksmall∩Fg
inc(σ )

α|σx |−|g|−2ψx

≤ αC ′

|�|
∑

x∈Ksmall∩Fg
inc(σ )

α−2ψx .

Note that for each x ∈ Ksmall ∩ Fg
inc(σ ), either σx or σ x

x intersects g. In the first case,
σx belongs to the set Ig(σ,C ′), which is the set of edges of σ of size at most |g| +C ′
that intersect g. By Proposition 4.4, we have |Ig(σ,C ′)| ≤ c1C ′2, for some positive
constant c1. For the case when σ x

x intersects g but σx does not, then one edge σy in
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the same triangle as σx must intersect g. Clearly, |σy | ≤ |σx | + ψx ≤ |g| + C ′ + ψx ,
giving that σy ∈ Ig(σ,C ′ + ψx ). Since for each such edge σy there are at most four
other edges in the same triangle as σy , we obtain

1

|�|
∑

x∈Ksmall

Eσ (�g (̃σ
x ) − �g(σ )) ≤ αC ′

|�|

⎛

⎝α−2c1C
′2 +

∑

i≥1

4|Ig(σ,C ′ + i)|α−2i

⎞

⎠

≤ αC ′

|�|

⎛

⎝α−2c1C
′2 +

∑

i≥1

4c1(C
′ + i)2α−2i

⎞

⎠

≤ c2
|�| , (25)

for some positive constant c2 = c2(α,C ′). An important feature of the bound above
is that it does not depend on |g|.

Now for Kbig we have that

1

|�|
∑

x∈Kbig

Eσ (�g (̃σ
x ) − �g(σ )) ≤ 1

|�|
∑

z∈Fg
dec(σ )\F|g|+C ′ (σ )

Eσ (�g (̃σ
z) − �g(σ ))

+ 1

|�|
∑

z∈Fg
dec(σ )\F|g|+C ′ (σ )

×
∑

x∈τ(σ,z)∩Finc(σ )

Eσ (�g (̃σ
x ) − �g(σ )). (26)

Using Lemmas 5.2 and 5.4 we obtain

1

|�|
∑

z∈Fg
dec(σ )\F|g|+C ′ (σ )

∑

x∈τ(σ,z)∩Finc(σ )

Eσ (�g (̃σ
x ) − �g(σ ))

≤ −
(
5α−C + 1

α2

)
1

|�|
∑

z∈Fg
dec(σ )\F|g|+C ′ (σ )

Eσ (�g (̃σ
z) − �g(σ )).

Plugging this into (26), and using that 1 − 5α−C − α−2 = α2−1
α2 − 5α−C ≤ α2−1

2α2 we
have

1

|�|
∑

x∈Kbig

Eσ (�g (̃σx ) − �g(σ )) ≤
(

α2 − 1

2α2

)
1

|�|
∑

z∈Fg
dec(σ )\F|g|+C ′ (σ )

ρg(σ, z).

(27)

Putting (25) and (27) together into (24) concludes the proof. ��
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5.5 Long decreasing edges dominate the Lyapunov function

From Sect. 5.4 we have that the change in the Lyapunov function can be written as
a sum of ρg(σ, x) over all x such that σx is decreasing and large enough. If this sum
is small enough, then the Lyapunov function decreases in expectation. However, we
want to write that the decrease in the Lyapunov function is a function of �g(σ ), the
value of the function. The next two lemmas are used to establish this. They show that
�g(σ ) can be written as a constant times a sum over decreasing edges.

Lemma 5.7 For any boundary condition ξ ∈ 	(�0), any triangulation σ ∈ �ξ and
any z ∈ Fdec(σ ), we have

∑

x∈τ(σ,z)

α|σx | ≤
(

α + 1

α − 1

)
α|σz | + 10(C − 1)αC |σz |.

If |σz | ≥ C ′, the bound above simplifies to

∑

x∈τ(σ,z)

α|σx | ≤
(

2α

α − 1

)
α|σz |.

Proof First, we decompose

∑

x∈τ(σ,z)

α|σx | =
∑

x∈τ(σ,z)\FC (σ )

α|σx | +
∑

x∈τ(σ,z)∩FC (σ )

α|σx |.

For the edges that are not small (i.e., the first sum in the right-hand side above), we use
the tree of influence. If σw1 , σw2 , σw3 form a triangle in σ such that |σw1 | > |σw2 | ≥
|σw3 |, and we set δ = 1

α−1 , then

δα|σw1 | ≥ (1 + δ)(α|σw2 |1 (w2 /∈ FC (σ )) + α|σw3 |1 (w3 /∈ FC (σ ))). (28)

In order to see this, note that |σw1 | = |σw2 | + |σw3 |, which gives that

(1 + δ)(α|σw2 |1 (w2 /∈ FC (σ )) + α|σw3 |1 (w3 /∈ FC (σ )))

= (1 + δ)α|σw1 |(α−|σw3 |1 (w2 /∈ FC (σ )) + α−|σw2 |1 (w3 /∈ FC (σ )))

≤ α|σw1 |
(
1 + δ

α

)
= δα|σw1 |.

Let w1, w2, w3, w4 be the children of z in τ(σ, z). Iterating (28), we obtain

∑

x∈τ(σ,z)\FC (σ )

α|σx | ≤ α|σz | + (1 + δ)(α|σw1 | + α|σw2 | + α|σw3 | + α|σw4 |)

≤ (1 + 2δ)α|σz |. (29)
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For the small edges, note that an edge of length � crosses at most � − 1 squares of S;
recall the definition of S from the paragraph preceding (8). Proposition 3.1(ii) gives
that for any w ∈ τ(σ, z) the descendants of w are contained in S(σw). Therefore, all
descendants of w in the tree τ(σ, z) must amount to at most 5S(σw) midpoints since
each square of S has 5 midpoints of �. Let R ⊂ τ(σ, z) be the set of midpoints in
τ(σ, z) whose edge has length smaller than C and whose parent has length larger than
C ; if no such midpoint of τ(σ, z) satisfies this condition, set R = {z}. By definition,
no midpoint of R can be a descendant of another midpoint of R. Therefore,

∑

w∈R

|σw| ≤
∑

w∈τleaves(σ,z)

|σw| ≤ 2|σz |,

implying that the cardinality of R is at most 2|σz |. Using this and the fact that the
descendants of any w ∈ R have length at most |σw| ≤ C we obtain

∑

x∈τ(σ,z)∩FC (σ )

α|σx | ≤
∑

w∈R

5S(σw)α|σw | ≤
∑

w∈R

5(C − 1)αC ≤ 10(C − 1)|σz |αC .

In addition, if |σz | ≥ C ′, we obtain

∑

x∈τ(σ,z)∩FC (σ )

α|σx | ≤ 10(C − 1)α−C |σz |α2C ≤ 10(C − 1)α−C

4
α|σz | ≤ α|σz |,

wherewe used the condition onC ′ from (15) in the second inequality, and the condition
on C from (14) in the last inequality. Together with (29), this establishes the lemma.

��
Lemma 5.8 For any boundary condition ξ ∈ 	(�0), any triangulation σ ∈ �ξ , and
any ground state edge g ∈ G

ξ , if w is the midpoint of g, then

�g(σ ) ≤ (σw ∈ G
ξ ) + cC ′2αC ′+2

α2 − 1

+
(

2α3

(α − 1)2(α + 1)

) ∑

z∈Fg
dec(σ )\F|g|+C ′ (σ )

α|σz |−|g|,

where c is the constant in Proposition 4.4(iii).

Proof Since a decreasing flip decreases the length of an edge by at least 2, we have
for any given midpoint x ∈ � that

∑

e∈Eξ
x (σ,g)

α|e| ≤
|σx |/2∑

j=0

α|σx |−2 j ≤
(

α2

α2 − 1

)
α|σx |.
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[Recall the definition of Eξ
x (σ, g) from (5).] We decompose �g(σ ) using Proposi-

tion 4.5, which gives that all edges intersecting g must either be in ground state or be
in trees rooted at edges that also intersect g. Letting w be the midpoint of g, we obtain

�g(σ ) ≤ (σw ∈ G
ξ ) +

∑

z∈Fg
dec(σ )

∑

x∈τ(σ,z)

∑

e∈Eξ
x (σ,g)

α|e|−|g|

≤ (σw ∈ G
ξ ) + α2

α2 − 1

∑

z∈Fg
dec(σ )

∑

x∈τ(σ,z) : σx∩g 
=∅
α|σx |−|g|. (30)

We consider two cases, first when z ∈ Fg
dec(σ ) ∩ F|g|+C ′(σ ) and then when z ∈

Fg
dec(σ )\F|g|+C ′(σ ). For the first case, since all edges σx in that sum are smaller than

|g| + C ′ and intersect g, Proposition 4.4(iii) yields

∑

z∈Fg
dec(σ )∩F|g|+C ′ (σ )

∑

x∈τ(σ,z) : σx∩g 
=∅
α|σx |−|g| ≤ cC ′2αC ′

. (31)

For the second case, we apply Lemma 5.7 to obtain

∑

z∈Fg
dec(σ )\F|g|+C ′ (σ )

∑

x∈τ(σ,z) : σx∩g 
=∅
α|σx |−|g| ≤ 2α

α − 1

∑

z∈Fg
dec(σ )\F|g|+C ′ (σ )

α|σz |−|g|.

(32)
Plugging (31) and (32) into (30) concludes the proof. ��

5.6 Finishing the proof

Proof of Theorem 2.3 Using Lemma 5.8 we have

∑

z∈Fg
dec(σ )\F|g|+C ′ (σ )

α|σz |−|g| ≥
(

(α − 1)2(α + 1)

2α3

) (

�g(σ ) −1 (σw ∈ G) − cC ′2αC ′+2

α2 − 1

)

.

(33)

Using Lemma 5.5, since ρg(σ, z) ≤ −α|σz |−|g|/2 we have that if

(
(α − 1)2(α + 1)

2α3

) (

�g(σ ) − 1 (σw ∈ G) − cC ′2αC ′+2

α2 − 1

)

≥ 8α2c1
α2 − 1

,

then there is a contraction on the expected change of �g(σ ), where c1 is the constant
in Lemma 5.5. We can set a constant ψ0 > 1 such that

ψ0 > 1 + cC ′2αC ′+2

α2 − 1
+ 16α5c1

(α − 1)3(α + 1)2
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and

�g(σ ) − 1 (σw ∈ G) − cC ′2αC ′+2

α2 − 1
≥ �g(σ )

2
for all �g(σ ) ≥ ψ0.

Then, whenever �g(σ ) ≥ ψ0 there is a contraction in the Lyapunov function, and
using the second statement in Lemma 5.5 and (33) we have

Eσ (�g(σ
′) − �g(σ )) ≤

(
α2 − 1

4α2|�|
) ∑

z∈Fg
dec(σ )\F|g|+C ′ (σ )

ρg(σ, z)

≤ −
(

α2 − 1

4α2|�|
) ∑

z∈Fg
dec(σ )\F|g|+C ′ (σ )

α|σz |−|g|/2

≤ −
(

α2 − 1

4α2|�|
) (

(α − 1)2(α + 1)

4α3

)
�g(σ )

2
.

Setting ε = (α−1)3(α+1)2

32α5 concludes the proof. ��

6 Direct consequences of the Lyapunov function

Throughout this section, we fix an arbitrary boundary condition ξ ∈ 	(�0), an arbi-
trary triangulation σ ∈ �ξ and an arbitrary ground state edge g ∈ G

ξ , and we let α,ψ0
and ε refer to the constants in Theorem 2.3. Since α, ψ0 and ε all depend on λ, in the
results below we omit dependences on α,ψ0 and ε and highlight only dependences on
λ. Let σ = σ 0, σ 1, σ 2, . . . be a sequence of triangulations obtained from the Markov
chain Mλ

σ (�ξ ), the edge-flipping Glauber dynamics with parameter λ, state space
�ξ , and initial configuration σ . Define

�good = �
ξ
good = {η ∈ �ξ : �g(η) ≤ ψ0}.

Theorem 2.3 establishes that �g(η) contracts in expectation for all η /∈ �good.
We denote by π = πξ the stationary measure of Mλ(�ξ ), see (1). For any function
f : �ξ → R, we denote by π( f ) = ∑

σ∈�ξ π(σ ) f (σ ) the expectation of f with
respect to π . The first proposition establishes that if the initial configuration σ does
not belong to �good, then very quickly the Glauber dynamics enters the set �good.

Proposition 6.1 Fix any boundary condition ξ ∈ 	(�0), any initial triangulation
σ ∈ �ξ and any ground state edge g ∈ G

ξ . If T = min{t ≥ 0 : σ t ∈ �good}, then

Eσ ((1 + ε/|�|)T ) ≤ �g(σ ). (34)

Consequently, there exist a constant �0 = �0(λ) > 0 so that for any � ≥ �0, we have

Pσ (T ≥ �|�| + �0|�| log(�g(σ ))) ≤ exp(−�/�0). (35)
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Proof For all t ≥ 0, define the random variable

Xt = �g(σ
t∧T )(1 + ε/|�|)t∧T .

Letting Ft be the σ -algebra generated by σ0, σ1, . . . , σt , we have for all t ≥ 1 for
which T ≥ t that

Eσ (Xt | Ft−1) ≤ (1 − ε/|�|)�g(σ
t−1)(1 + ε/|�|)t

≤ (1 + ε/|�|)t−1�g(σ
t−1) = Xt−1.

Consequently, Xt is a supermartingale, which gives that

Eσ (Xt ) ≤ X0 = �g(σ ) for all t ≥ 0 (36)

and
Eσ (Xt ) ≥ Eσ ((1 + ε/|�|)t∧T ) (37)

since �g(σ ) ≥ 1 for all σ ∈ �ξ . Plugging the bound on Eσ (Xt ) from (36) into (37),
and taking the limit as t → ∞ in (37) establishes (34).

The statement in (35) is a simple application of Chernoff’s inequality using (34),
which gives

Pσ (T ≥ �|�| + �0|�| log(�g(σ ))) ≤ Eσ ((1 + ε/|�|)T )

(1 + ε/|�|)�|�|+�0|�| log(�g(σ ))

≤ �g(σ )

(1 + ε/|�|)�|�|+�0|�| log(�g(σ ))
.

The result follows for all � ≥ �0 where �0 is the smallest positive number such that
(1 + ε/x)�0x ≥ e for all x ≥ 1. ��
Proposition 6.2 Fix any boundary condition ξ ∈ 	(�0), any initial triangulation
σ ∈ �ξ and any ground state edge g ∈ G

ξ . There exists a constant c = c(λ) > 0
such that for any t ≥ 1 we have

Eσ (�g(σ
t )) ≤ max

{
�g(σ )

(
1 − ε

|�|
)t

, c

}
.

Consequently, π(�g) ≤ c.

Proof Letμbe anydistributionon triangulations, and letμ′ be the distribution after one
step of theMarkov chain starting from a random triangulation distributed according to
μ. For any function f : �ξ → R and any�′ ⊂ �ξ , we denote byμ( f ;�′) the expec-
tation of f with respect toμ under the set�′; formally,μ( f ;�′) = ∑

η∈�′ f (η)μ(η).
Using this notation, we write

μ(�g) = μ(�g;�good) + μ(�g;�c
good) ≤ ψ0μ(�good) + μ(�g;�c

good). (38)
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Then, for η, η′ ∈ �ξ , letting p(η, η′) be the probability that the Markov chain moves
from η to η′ in one transition, we write

μ′(�g) =
∑

η,η′
μ(η)p(η, η′)�g(η

′)

≤
∑

η∈�good

μ(η)

(
�g(η) + c1

|�|
)

+
∑

η∈�c
good

μ(η)

(
1 − ε

|�|
)

�g(η).

where c1 is the constant from Lemma 5.5 (see Remark 5.6). Hence,

μ′(�g) ≤ μ(�g) + c1
|�|μ(�good) − ε

|�|μ(�g;�c
good).

Applying the lower bound on μ(�g;�c
good) from (38) we obtain

μ′(�g) ≤
(
1 − ε

|�|
)

μ(�g) +
(
c1 + εψ0

|�|
)

μ(�good).

Fix any initial triangulation σ 0 = σ ∈ �ξ , and consider the sequence {Xt }t where
Xt = Eσ (�g(σ

t )). Clearly, Xt is deterministic given σ , and the equation above gives
that

Xt ≤
(
1 − ε

|�|
)
Xt−1 + c1 + εψ0

|�|

≤
(
1 − ε

|�|
)t

X0 + c1 + εψ0

|�|
t−1∑

i=0

(
1 − ε

|�|
)i

≤
(
1 − ε

|�|
)t

X0 + c1 + εψ0

ε
,

for all t , which implies the proposition. ��
The following two simple propositions establish that if a triangulation σ is such

that �g(σ ) is small, then the largest edge of σ intersecting g and the number of edges
of σ intersecting g are both small.

Proposition 6.3 (Largest intersection) Given any boundary condition ξ ∈ 	(�0),
any triangulation σ ∈ �ξ and any ground state edge g ∈ G

ξ , the largest edge of σ

that intersects g has length at most |g| + log�g(σ )

logα
.

Proof If an edge σx intersects g, then�g(σ ) ≥ α|σx |−|g|, which establishes the lemma.
��

Proposition 6.4 (Number of intersections) Given any boundary condition ξ ∈
	(�0), any triangulation σ ∈ �ξ and any ground state edge g ∈ G

ξ , the number of
edges of σ that intersect g is at most �g(σ ).

Proof If � ⊂ � are the midpoint of the edges of σ intersecting g, we obtain �g(σ ) ≥∑
x∈� α|σx |−|g| ≥ |�|, where the last step follows since, by Proposition 4.2, if σx

intersects g then |σx | ≥ |g|. ��
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7 Applications of the Lyapunov function

7.1 Tightness of local measures

To avoid a cumbersome statement of the theorem below, in this section we only
consider the special case where �0 is the n × n square [−n/2, n/2]2 ∩ Z

2, which we
denote by �0

n . For �0
n , let �n denote the set of triangulations with vertices in �0

n , let
�n be the set of midpoints of the edges of some triangulation in �n , and let πn be the
stationary measure over triangulations in �n with parameter λ. Consider that ξ is the
free boundary condition; i.e., ξ only contains the horizontal and vertical edges that
form the boundary of the n × n square. To emphasize this, we will drop ξ from the
notation.

Here we want to study how the configuration of edges inside a fixed neighborhood
around the origin behaves as n goes to infinity. In particular, does themeasure over such
local configurations converge as n → ∞? We will show via the Lyapunov function
that these measures are tight as n → ∞.

For any k > 0, let ϒk = [−k/2, k/2]2 ∩ �n be the set of midpoints inside
[−k/2, k/2]2. Let �k be the set of configurations of disjoint edges of midpoint in
ϒk such that for any γ ∈ �k there exists at least one n ≥ k and one triangulation
σ ∈ �n such that the edges in γ are the edges of σϒk , the edges of σ whose midpoints
lie in ϒk . More formally,

�k =
⋃

n≥k

{σϒk : σ ∈ �n}.

Finally, let πk
n be the stationary measure projected onto �k ; that is, for any γ ∈ �k ,

we have

πk
n (γ ) = 1

Zk
n

∑

σ∈�n : σϒk=γ

πn(σ ),

where Zk
n is a normalizing constant to make πk

n a probability measure over �k .

Theorem 7.1 For any λ ∈ (0, 1) and any k ≥ 2, πk
n is a tight measure.

Proof Let H ⊂ G be the set of vertical and horizontal ground state edges forming
the (outer) boundary of ϒk . Using Proposition 6.3, the largest edge of a triangulation
σ ∈ �n that intersects the boundary of [−k/2, k/2]2 has length at most

max

{
1 + log�g(σ )

logα
: g ∈ H

}
≤

∑

g∈H

(
1 + log�g(σ )

logα

)
.

Therefore, taking expectation over σ ∈ �n according to the stationary measure πn ,
we have that the expected value for the largest edge crossing an edge of H is at most
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∑

g∈H

(

1 + π
(
log�g(σ )

)

logα

)

≤
∑

g∈H

(
1 + log c

logα

)
≤ 8(k + 1)

(
1 + log c

logα

)
,

where the inequality follows by Jensen’s inequality and Proposition 6.2. Since the
bound above does not depend on n, Markov’s inequality gives that for any δ > 0 there
exists L such that with probability at least 1 − δ, a triangulation σ distributed as πn

is such that the edges in σϒk are contained inside [−L/2, L/2]2. Since L does not
depend on n, the tightness of πk

n is established. ��
A consequence of the proposition above is that πk

n has subsequential limits. An inter-
esting open problem iswhether the limit is unique, whichwould establish the existence
of an infinite random lattice triangulation in the whole λ < 1 regime. For small enough
λ, this holds and follows from the decay of correlations obtained in [5, Theorem 4.5].

7.2 Ground state probability

The theorem below establishes that, given anymidpoint x ∈ �, the probability that the
edge of midpoint x is in ground state given any boundary condition (even boundary
conditions containing arbitrarily long edges that are very close to x), is bounded away
from zero by a constant independent of the boundary condition. This will be used later
in Theorem 8.3 to establish decay of correlations in thin rectangles.

Theorem 7.2 Fix any boundary condition ξ ∈ 	(�0), and any ground state edge
g ∈ G

ξ . For any λ ∈ (0, 1), there exists a positive constant δ = δ(λ) such that if σ is
a random triangulation distributed according to πξ , we have

πξ (g ∈ σ) ≥ δ.

Proof Let x ∈ � be the midpoint of g. Proposition 6.2 gives that πξ (�g) ≤ c2, for
some constant c2. Let �̃ξ ⊂ �ξ be the set of triangulations such that η ∈ �ξ belongs
to �̃ξ if and only if �g(η) ≤ 2c2. By Markov’s inequality we have

πξ (�̃ξ ) ≥ 1/2.

Let �
ξ
g ⊂ �̃ξ be the set of triangulations η for which ηx = g. We define a mapping

φ : �̃ξ → �
ξ
g as follows. From η ∈ �̃ξ , construct φ(η) by using the sequence of

triangulations from Proposition 4.6. Since this sequence is obtained by performing
only non-increasing flips, we obtain that

|φ(η)y | ≤ |ηy | for all y ∈ �, and consequently, πξ (φ(η)) ≥ πξ (η).

Also, Proposition 4.6 gives that in this sequence we only flip edges that intersect g.
Let �g(η) be the length of the largest edge of η intersecting g. Proposition 6.3 gives
that
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�g(η) ≤ |g| + log�g(η)

logα
≤ |g| + log(2c2)

logα
for all η ∈ �̃ξ .

Using Proposition 4.4(ii) we obtain that the midpoints of the edges crossing g in any
η ∈ �̃ξ must belong to a ball centered at x of radius 2 log(2c2)

logα
. Hence, there exists a

constant c3 = c3(λ) such that the number of midpoints of � inside this ball is at most
c3. This implies that the number of different triangulations η ∈ �̃ξ that map to the
same φ(η) is (by Anclin’s bound, Lemma 2.1) at most 2c3 .

For each τ ∈ �
ξ
g , denote by κ(τ) the number of triangulations η ∈ �̃ξ for which

φ(η) = τ . Using all that, we have

πξ (�ξ
g) =

∑

σ∈�
ξ
g

πξ (σ ) ≥
∑

σ∈�
ξ
g

∑

τ∈�̃ξ : φ(τ)=σ

πξ (τ )

κ(σ )

≥
∑

τ∈�̃ξ

πξ (τ )

2c3
= 2−c3πξ (�̃ξ ) ≥ 2−c3−1.

Since πξ (g ∈ σ) ≥ πξ (�
ξ
g), the theorem follows. ��

7.3 Exponential decay of edge length

In the next theoremwe show that after running theMarkov chain for a long time, given
any ground state edge g, the length of the edges crossing g are not much larger than
|g|. This shows that the Markov chain quickly gets to a triangulation where edges are
close to their ground state.

Theorem 7.3 (Tail of intersecting ground state) Let ξ ∈ 	(�0) be any boundary
condition, and g ∈ G

ξ be a ground state edge of midpoint x ∈ �. Fix any λ ∈ (0, 1).
Let σ ∈ �ξ be any initial triangulation, and σ 0 = σ, σ 1, σ 2, . . . be a sequence of
triangulations obtained by theMarkov chainMλ

σ (�ξ ). There exists a positive constant
c = c(λ) such that for any t ≥ 1 and any � ≥ 0, we have

Pσ

⎛

⎝
⋃

y∈�

{
σ t
y ∩ g 
= ∅} ∩ {|σ t

y | ≥ |g| + �
}
⎞

⎠ ≤
(

�g(σ )

(
1 − ε

|�|
)t

∨ c

)
α−�.

Proof The proof is a simple application of Markov’s inequality to Proposition 6.2,
which gives that the left-hand side above is at most

Pσ (�g(σ
t ) ≥ α�) ≤ Eσ (�g(σ

t ))α−� ≤
(

�g(σ )

(
1 − ε

|�|
)t

∨ c

)
α−�.

��
The following is a direct consequence of Theorem 7.3
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Corollary 7.4 (Tail at a given time) Let ξ ∈ 	(�0) be any boundary condition,
x ∈ � be any midpoint, and g ∈ G

ξ be a ground state edge of midpoint x. Fix any
λ ∈ (0, 1). Let σ ∈ �ξ be any initial triangulation, and σ 0 = σ, σ 1, σ 2, . . . be a
sequence of triangulations obtained by the Markov chain Mλ

σ (�ξ ). There exists a
positive constant c = c(λ) such that for any t ≥ 1 and any � ≥ 0, we have

Pσ

(|σ t
x | ≥ |g| + �

) ≤
(

�g(σ )

(
1 − ε

|�|
)t

∨ c

)
α−�.

Consequently, taking the limit as t → ∞, we obtain for a random triangulation σ

distributed according to πξ that

πξ (|σx | ≥ |g| + �) ≤ cα−�.

7.4 Crossings of small triangles

To simplify the statement of the theorem below, consider that �0
n is the set of integer

points inside [−n/2, n/2]2. Let �n be the set of midpoints of the edges of a triangula-
tion of �0

n . Let ξ ∈ 	(�0
n) be any boundary condition, �

ξ
n be the set of triangulations

of �0
n consistent with ξ , and π

ξ
n be the stationary measure of Mλ(�

ξ
n). Let σ ∈ �

ξ
n

be any triangulation. We say that two triangles of σ are adjacent if they share an edge.
In [5], decay of correlations for all λ small enough is established by showing the
existence of crossings of triangles whose edges are all in ground state. It is not clear
whether this holds for all λ < 1. The two theorems below establish a weaker version
of this. First consider the case of ξ being the free boundary condition. The theorem
below establishes that, with high probability, a triangulation sampled fromπ

ξ
n contains

a left-to-right crossing of adjacent triangles, where all edges in the triangles are smaller
than some constant depending only on λ.

Theorem 7.5 Let ξ be the free boundary condition, and fix any λ ∈ (0, 1). Let σ be
a random triangulation distributed according to π

ξ
n . Let C(σ, L) be the event that

there exists a path of adjacent triangles in σ that intersects both the left and right
boundaries of�0

n and such that the edges of the triangles have length at most L. Then,
there exist positive constants c = c(λ) and L0 = L0(λ) such that for all L ≥ L0 we
have

πξ
n (C(σ, L)) ≥ 1 − exp (−cn) .

The theorem above is a consequence of the following, more general theorem which
establishes that crossings of small triangles occur even in thin slabs inside �0

n .

Theorem 7.6 Let R be a m × k rectangle inside �0
n, where m = m(n) ≥ k = k(n).

Consider any boundary condition ξ ∈ 	(�0
n) that does not intersect R, and take any

λ ∈ (0, 1). Let σ be a random triangulation distributed according to π
ξ
n . For any

L ≥ 1, let CR(σ, L) be the event that there exists a path of adjacent triangles in σ
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that intersect both the left and right boundaries of R and such that the edges of the
triangles are contained inside R and have length at most L. Then, there exist positive
constants c = c(λ), c′ = c′(λ), L0 = L0(λ) and m0 = m0(λ, L) such that for all
m ≥ m0, all k ≥ c′ log(m) and all L ≥ L0 we have

πξ
n (CR(σ, L)) ≥ 1 − exp (−ck) .

Proof Let W be a large enough constant depending on λ, but independent of k,m, n.
Partition R into squares of side length W , such that each midpoint of �n belongs to
exactly one square; in order to allow the squares to completely partition R, we let the
squares close to the boundary of R be rectangles with sides of length between W and
2W (for simplicity we will continue to refer to them as squares). Consider an arbitrary
order of the squares and let Qi denote the i th square. Let Gi be the event that all
edges of midpoint inside Qi have length at most L , and let Ggs

i be the event that all
edges of midpoint inside Qi are in ground state given ξ . For any event F for which
F ∩ Ggs

i 
= ∅, we obtain that

πξ
n (Gi | F) ≥ 1−

∑

x∈�∩Qi

πξ
n (|σx | > L | F) ≥ 1−

∑

x∈�∩Qi

c1α
−L ≥ 1−5W 2c1α

−L ,

(39)
where the second inequality follows from the second part of Corollary 7.4 for some
constant c1 > 0, and α comes from Theorem 2.3. We set L = L(W ) as a function
of W so that L ≤ W/100 but 5W 2c1α−L(W ) → 0 as W → ∞. Let C ′

R(σ, L) be the
event that there exists a path of adjacent squares such that Gi holds for each square
Qi in the path and there are two squares in the path containing midpoint of the left
and right boundaries of R. Clearly,

πξ
n (CR(σ, L)) ≥ πξ

n (C ′
R(σ, L)).

By planar duality, if C ′
R(σ, L) does not hold, then there must exist a dual path of

∗-adjacent squares such that Gi does not hold for each square Qi in the dual path
and there are two squares in this path containing midpoints of the top and bottom
boundaries of R. A ∗-adjacent path of squares is a sequence of squares so that two
consecutive squares in the sequence intersect in at least one point. Such a path must
contain at least � k

W � squares. We say that a path of (not necessarily adjacent) squares
Q j1, Q j2 , Q j3 , . . . is an invasive path if, for all i , we have that G ji does not hold
and Q ji+1 is ∗-adjacent to a square Qk for which there is an edge of midpoint in Q ji
intersecting Qk . We say that an invasive path is a top-to-bottom invasive path in R if
it starts with a square containing a midpoint in the top boundary of R and ends with a
square containing a midpoint whose edge intersects the bottom boundary of R. Note
that the existence of a dual top-to-bottom path of ∗-adjacent squares as described in
the beginning of the paragraph implies the existence of a top-to-bottom invasive path
in R.

Letting I denote the set of indices i such that Qi contains a midpoint in the top
boundary of R, we have
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πξ
n (C ′

R(σ, L)) ≥ 1 − πξ
n (there is a top-to-bottom invasive path in R)

≥ 1 −
∑

i∈I
πξ
n (there is a top-to-bottom invasive path in R starting from Qi ).

(40)

For two squares Qi , Q j let d(Qi , Q j ) be the length of the shortest path of ∗-adjacent
squares from Qi to Q j . For each event F such that Ggs

i ∩ F 
= ∅ the probability that
an edge of midpoint x ∈ � ∩ Qi with d(Qi , Q j ) ≥ � intersects Q j is

πξ
n (σx ∩ Q j 
= ∅ | F) ≤ πξ

n (|σx | ≥ (� − 1)W | F) ≤ c1α
−(�−1)W ,

where the last inequality follows from the second part of Corollary 7.4. Hence,

πξ
n

⎛

⎝
⋃

x∈�∩Qi

{σx ∩ Q j 
= ∅} | F
⎞

⎠ ≤ 5W 2c1α
−(d(Qi ,Q j )−1)W .

Let p� = 5W 2c1α−(�−1)W for � ≥ 2. For � = 1, let p� = 5W 2c1α−L , which is the
bound in (39) for the probability that Gi does not hold. Therefore, the probability
that a given top-to-bottom invasive path Q j1, Q j2 , Q j3 , . . . , Q jκ exists such that �i =
d(Q ji , Q ji−1) is at most

∏κ
i=2 p�i−1.Note that, by definition of invasive paths, �i ≥ 2

for all i . The number of invasive paths with a given sequence �2, �3, . . . , �κ is at most∏κ
i=2(2�i + 2)2. We put both expressions together, and set W large enough so that

(2�i + 2)2 p�i−1 ≤ e−c2�i for some positive constant c2 (that increases with W ) and
all i , which yields

κ∏

i=2

(2�i + 2)2 p�i−1 ≤ exp

(

−c2

κ∑

i=1

�i

)

.

For the path to go from the top boundary to the bottom boundary of R we need that∑κ
i=2(�i +1) ≥ � k

W −1�. This implies that
∑κ

i=2 �i ≥ � k
2W −1�. Given s = ∑κ

i=2 �i ,

there are at most s possible values for κ and, given s and κ , there are at most
(s−1
κ−1

)

possible ways to choose the values of �1, �2, . . . , �κ so that s = ∑κ
i=2 �i . Plugging

everything into (40), we have

πξ
n (C ′

R(σ, L)) ≥ 1 −
∑

i∈I

∑

k,�1,�2,...,�k

exp

(
−c2

∑k

i=1
�i

)

≥ 1 −
∑

i∈I

∑

s≥ k
2W −2

s∑

κ= k
2W

(
s − 1

κ − 1

)
exp (−c2s)

≥ 1 −
∑

i∈I

∑

s≥ k
2W −2

2s−1 exp (−c2s) .
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Setting W large enough, which causes c2 to be large enough, we obtain

πξ
n (C ′

R(σ, L)) ≥ 1 −
∑

i∈I
exp

(
− c3k

4W

)
,

for some constant c3 > 0. Noting that the cardinality of I is at most m + 1 and that
k ≥ c′ logm for some large enough c, depending on W , concludes the proof. ��

8 Applications to triangulations of thin rectangles

In this section we apply our Lyapunov function to study asymptotic properties
of triangulations of thin rectangles; i.e., triangulations of the integer points in
[−n/2, n/2] × [0, k] as n → ∞ while k is kept fixed. Define �0

n,k to be the set
of integer points in [−n/2, n/2] × [0, k] and �n,k to be the set of midpoints of a
triangulation of �0

n,k . Given any set of constraint edges ξ ∈ 	(�0), let

�
ξ
n,k be the set of triangulations of �0

n,k compatible with ξ.

We say that a triangulation σ ∈ �
ξ
n,k has a top-to-bottom crossing of unit verticals

if σ contains k unit vertical edges with the same horizontal coordinate. As in (1), for
any λ, we denote by

π
ξ
n,k the stationary measure of Mλ(�

ξ
n,k).

8.1 Vertical crossings

Our first goal is to show that for any λ ∈ (0, 1) a typical triangulation contains many
top-to-bottom crossings of edges that are unit verticals and that the stationary measure
has decay of correlations.

Theorem 8.1 Let m = m(k) be large enough, and let R be an m × k rectangle inside
[−n/2, n/2] × [0, k]. Consider an arbitrary boundary condition ξ ∈ 	(�0

n,k) such

that no edge of ξ intersects R, and take any λ ∈ (0, 1). For any triangulation η ∈ �
ξ
n,k ,

let CR(η) be the number of disjoint top to bottom crossings of unit verticals of η that
are inside R. Let σ be a random triangulation distributed according to π

ξ
n,k . Then

there exist positive constants c = c(λ, k) and δ = δ(λ, k) ∈ (0, 1) such that, for any
large enough m, we have

π
ξ
n,k(CR(σ ) ≤ δm) ≤ e−cm .

Proof Let W > 0 be a large enough constant (independent of m). Partition R into
slabs of width W ; i.e., each such slab is a translate of [0,W ] × [0, k]. For the i th slab,
let �i be the set of midpoints of the i th slab with the smallest horizontal coordinate;
we assume that W is set in such a way that �i only contains midpoints for which the
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ground state edge is a unit vertical. We will sample the edges of �i for each i , in order.
We may need to skip some values of i if edges in previous slabs turn out to be long
edges. In order to do this, define the random variable Ai ≥ 1, such that Ai = j iff slab
i + j is the first slab to the right of �i not to be intersected by an edge of midpoint
in �i . Let Fi be the σ -algebra generated by {σx }x∈⋃i

j=1 � j
. Let Vi be the event that

the edges of midpoint in �i are all unit verticals. We will look at events F ∈ Fi−1 for
which F ∩ Vi 
= ∅, this means that under F the ground state configuration of �i is
unit verticals. For any x ∈ �i and any i , denote by σ̄x the (ground state) unit vertical
edge whose midpoint is x . Thus, for any event F ∈ Fi−1 for which F ∩ Vi 
= ∅ and
any j ≥ 2, we have that

π
ξ
n,k(Ai ≥ j | F) ≤ π

ξ
n,k

⎛

⎝
⋃

x∈�i

{�σ̄x (σ ) ≥ α( j−1)W−1} | F
⎞

⎠

≤
∑

x∈�i

π
ξ
n,k(�σ̄x (σ ) ≥ α( j−1)W−1 | F).

Using Markov’s inequality, we obtain

π
ξ
n,k(Ai ≥ j | F) ≤

∑

x∈�i

π
ξ
n,k(�σ̄x | F)α−( j−1)W+1

≤
∑

x∈�i

cα−( j−1)W+1 ≤ kcα−( j−1)W+1, (41)

where c does not depend on W . We set W large enough so that we can find a β =
β(W ) ∈ (0, 1) for which

π
ξ
n,k(Ai ≥ j | F) ≤ (1 − β) j−1 for all j ≥ 2. (42)

Consequently, πξ
n,k

(
Ai = 1 | F

) ≥ β. In other words, Ai is stochastically dominated
by a geometric random variable of parameter β, uniformly over F ∈ Fi−1 for which
F ∩ Vi 
= ∅. Using Theorem 7.2 for each x ∈ �i we obtain a constant c1 > 0 that is
independent of m and k so that

π
ξ
n,k(Vi | F) ≥ e−c1k for all event F ∈ Fi−1 with F ∩ Vi 
= ∅. (43)

Let A′
1, A

′
2, . . . be i.i.d. geometric random variables of parameter β. We define a

sequence of random variables k1, k2, . . . inductively as follows. Let k1 = 1. Assume
that k j has been defined. Sample A′

k j
and Ak j in a coupled way so that Ak j ≤ A′

k j
.

Given Ak j , sample the edges of midpoint in �k j . Set k j+1 = k j + A′
k j
, and iterate.

Define the stopping time

τ = min{ j ≥ 1 : k j ≥ m
W − 1}.
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In other words, kτ is the first value of k falling outside R. Let Sn,p be a binomial
random variable of parameters n and p. Then, setting δ = e−c1kβ/(2W ), we have

π
ξ
n,k(CR(σ ) ≤ δm) ≤ π

ξ
n,k({τ < 2βm/(3W )} ∪ {S2βm/(3W ),e−c1k ≤ δm})

≤ π
ξ
n,k(τ < 2βm/(3W )) + π

ξ
n,k(S2βm/(3W ),e−c1k ≤ δ).

The first term is the probability that a sum of 2βm/(3W ) i.i.d. geometric random
variables of success probability β is larger than m

W − 1, which using Lemma 9.2 with
ε = 1

2 − 3W
2m ∈ (1/3, 1/2) gives

π
ξ
n,k(τ < 2βm/(3W )) ≤ exp

(
− (1/3)2

2(1 + 1/2)

2βm

3W

)
= exp

(
− 2βm

81W

)
.

The second term is the probability that a Binomial random variable is smaller than
3/4 of its expectation, which can be bounded above using Lemma 9.1, yielding

π
ξ
n,k(S2βm/(3W ),e−c1k ≤ δm) ≤ exp

(
− 1

2 42
2βme−c1k

3W

)
= exp

(
−δm

24

)
.

��
A similar proof establishes that we can couple two triangulations so that they have

the same vertical crossing.

Theorem 8.2 Let m = m(k) be large enough, and let R be an m × k rectangle inside
[0, n]×[0, k]. Consider two arbitrary boundary conditions ξ, ξ ′ ∈ 	(�0

n,k) such that
no edge of ξ ∪ ξ ′ intersects R. Take any λ ∈ (0, 1). Let σ and σ ′ be two random

triangulations distributed according to π
ξ
n,k and π

ξ ′
n,k , respectively. Then there exist

positive constants c = c(λ, k) and δ = δ(λ, k) ∈ (0, 1) such that, for any large
enough m, we can couple σ and σ ′ such that the probability that σ, σ ′ have less than
δm equal top to bottom crossings of unit verticals in R is at most e−cm.

Proof The proof is similar to the proof of Theorem 8.1. We only need to define the
Ai so that Ai = j iff slab i + j is the first slab to the right of �i not to be intersected
by any edge of σ and σ ′ with midpoint in �i , and also need to define Vi as the event
that both σ and σ ′ have unit verticals at edges of midpoint in �i . Then (41) translates
to the bound P(Ai ≥ j | F) ≤ 2kcα−( j−1)W+1, whereas (43) holds with no change
since the bound there holds uniformly on F ∩ Vi 
= ∅. ��

8.2 Decay of correlations

The theorem below establishes decay of correlations for lattice triangulations in thin
rectangles uniformly on the boundary conditions.We denote by the horizontal distance
between two points the distance between their horizontal coordinates (ignoring their
vertical coordinates).
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Theorem 8.3 (Decay of correlations) Consider any region Q ⊂ [−n/2, n/2]×[0, k]
and let ϒ = Q ∩ �n,k be the set of midpoints in Q. Take any λ ∈ (0, 1). Let
ξ, ξ ′ ∈ 	(�0

n,k) be two boundary conditions that do not intersect Q, and let m be the
horizontal distance between Q and the edges of ξ ∪ ξ ′. Let σ and σ ′ be two random

triangulations distributed according to π
ξ
n,k and π

ξ ′
n,k , respectively, and let σϒ and σ ′

ϒ

denote the configuration of the edges of midpoints inϒ in σ and σ ′, respectively. Then
there exist a positive constant c = c(λ, k) and a coupling P between π

ξ
n,k and π

ξ ′
n,k

such that P(σϒ = σ ′
ϒ) ≥ 1 − e−cm .

Proof The proof uses Theorem 8.2. Let R be the rectangle of height k between the
leftmost point of Q and the rightmost point of ξ ∪ ξ ′ that is to the left of Q. Note that
R is a m′ × k rectangle with m′ ≥ m. We can apply Theorem 8.2 with this choice
of R to show that if we sample the edges with midpoint in R from left to right, with
probability at least 1 − e−c1m′

for some constant c1 > 0, at some time we sample
the same top-to-bottom crossing of unit verticals in both σ and σ ′. Then we repeat
the same argument with R′ being the rectangle between the rightmost point of Q and
the leftmost point of ξ ∪ ξ ′ that is to the right of Q. If it turns out that, during the
construction described in the coupling above, σ and σ ′ at some moment sample the
same top-to-bottom crossing of unit verticals inside R, and similarly inside R′, then
letting ϒ ′ denote the set of midpoints between these two crossings we obtain that we
can couple σ, σ ′ so that they coincide inϒ ′. Sinceϒ ′ ⊇ ϒ , the theorem is established.

��

We remark that, already in the one-dimensional case k = 1, such a strong decay of
correlation does not hold for any λ ≥ 1. In this case, there is a bijection between the
set of one-dimensional lattice triangulations �n,1 and the set of (1 + 1)-dimensional
lattice paths, so that when λ = 1 a random triangulation represents a randomwalk path
of length 2n with endpoints at the origin. Consequently, in this situation, the presence
of any edge of length � will influence a region of order �2 around its midpoint.

8.3 Local limits

In Theorem 7.1 we showed that the measure on local configurations of a sequence
of lattice triangulations for any λ ∈ (0, 1) is tight. In the case of triangulations of
thin triangles, taking advantage of decay of correlations (cf. Theorem 8.3), we can
establish the existence of a unique local limit.

We adapt the definitions from Sect. 7.1. For any � such that 0 < � < n, let
ϒ� = [−�/2, �/2] × [0, k] ∩ �n be the midpoints inside [−�/2, �/2] × [0, k], and let
�� be the set of configurations of disjoint edges with midpoint in ϒ� such that for any
γ ∈ �� there exists at least one n and one triangulation σ ∈ �n,k such that γ = σϒ�

,
where we recall that σϒ�

denotes the set of edges of σ whose midpoints belong to
ϒ�. Let π�

n,k be the stationary measure over triangulations of �n,k of the edges with
midpoint in ϒ�. More precisely, for any γ ∈ ��, we have
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π�
n,k(γ ) = 1

Z�
n,k

∑

σ∈�n,k : σϒ�
=γ

πn,k(σ ), (44)

where Z�
n,k is a normalizing constant to make π�

n,k a probability measure over ��.

Theorem 8.4 Let k, � be fixed integers. For any λ ∈ (0, 1), there exists a unique
probability measure π�∞,k over �� so that π�

n,k converges to π�∞,k as n → ∞.

Proof Let δ > 0 and � ∈ Z+ be arbitrary. Let n0 = n0(δ, �) be a large enough integer.
We will show that, for any γ ∈ �� and any n ≥ n0 we have |π�

n,k(γ )−π�
n0,k

(γ )| < δ.

Note that a triangulation of�0
n0,k

can be seen as a triangulation of�0
n,k with boundary

condition containing the unit vertical edges of horizontal coordinates−n0/2 and n0/2.
Then Theorem 8.3 gives that there exists a coupling P between πn,k with πn0,k so that,
if σ, σ ′ are triangulations distributed as πn,k and πn0,k , respectively, then

P(σϒ�

= σ ′

ϒ�
) ≤ exp

(
−c

(
n0 − �

2

))
<

δ

2
,

for some constant c > 0, where the last step follows by having n0 large enough
with respect to δ and �. The theorem follows since 1

2

∑
γ∈��

|π�
n,k(γ ) − π�

n,k(γ )| ≤
P(σϒ�


= σ ′
ϒ�

). ��

8.4 Distributional limit of the induced graph

For each σ ∈ �n,k we obtain a labelled, planar graphG with vertex set�0
n,k and edges

given by the edges of the triangulation σ . We call G the induced graph of σ . Let Gn,k

be the (random) induced graph of a random triangulation distributed according to πn,k .
Benjamini and Schramm [3] introduced the distributional limit of finite graphs. Given
a sequence of graphs {Hn}n , the distributional limit of {Hn}n is a random infinite graph
H, rooted at a (possibly random) vertex ρ, with the property that finite neighborhoods
of Hn around a random vertex converge in distribution to neighborhoods ofH around
ρ. Below we show that the distributional limit of Gn,k exists as n → ∞ and k remains
fixed. Let �0∞,k be the integers points inside Z × {0, 1, . . . , k}.
Theorem 8.5 Let k ≥ 1 and λ ∈ (0, 1) be fixed. There exists a distribution Gk on
infinite graphs with vertex set �0∞,k such that if ρ is a vertex uniformly distributed
on {0} × {0, 1, 2, 3, . . . , k} we have that Gk rooted at ρ is the distributional limit of
{Gn,k}n.
Proof First we sample vn = (i, j) uniformly at random from �0

n,k . We need to show
that, for any fixed integer �, the �-th neighborhood of vn in Gn,k converges in distrib-
ution to some measure. Let δ > 0 be an arbitrary number. Note that with probability

at least 1 − 1√
n
, vn is at distance at least

√
n
3 from the boundary of �0

n,k . Given any

c1 > 1, let c2 = c2(c1, δ) be large enough so that Theorem 7.3 gives that with prob-
ability at least 1 − δ/2, all edges of midpoint in An = vn + [−c1�2, c1�2] × [0, k]
have size at most c2 log(c1�2k). Now set c1 large enough so that c1�2

c2 log(c1�2k)
≥ 3�.
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Therefore, under this event, the �-th neighborhood around vn inGn,k has only edges of
midpoints inside An . But the set of edges of midpoints inside An converge as n → ∞
by Theorem 8.4, concluding the proof. ��
We call the random graph Gk the infinite lattice triangulation on slabs. We can show
that the degree of a given vertex of the infinite lattice triangulation on slabs has an
exponential tail.

Theorem 8.6 For any given ρ ∈ �0∞,k , let dGk (ρ) be a random variable denoting
the degree of ρ in a graph distributed according to Gk . Then there exists a positive
constant c such that for any � ≥ 0 we have that P(dGk (ρ) ≥ �) ≤ exp(−c�).

Proof Take n large enough so that ρ ∈ �n,k . Let� be the set of ground state horizontal
and vertical edges forming the 2 × 2 square centered at ρ. Then the degree of ρ is at
most 8 plus the number of edges intersecting edges of�. Since this last randomvariable
has an exponential tail for all large enough n by Theorem 7.3 and Proposition 6.4, the
proof is completed. ��
It was shown by Gurel-Gurevich and Nachmias [11] that any distributional limit of
graphs where the degrees have an exponential tail is a recurrent graph almost surely.
Therefore, the two theorems above imply the corollary below. We remark that the
below corollary can also be obtained via a direct proof, by establishing that top-to-
bottom crossings of ground-state squares (1×1 squares with a unit diagonal) occur
infinitely often, which follows from decay of correlations, Theorem 8.3 above.

Corollary 8.7 For any integer k ≥ 1 and any real number λ ∈ (0, 1) the infinite
lattice triangulation with parameter λ on k-slabs is almost surely recurrent.

9 Open problems

• In Theorem 8.4 we show that the local limit of random triangulations on thin
rectangles exist. In the case of n × n triangulations, our results only give that
subsequential limits exists (cf. Theorem 7.1). An interesting open problem is to
establish whether for any λ ∈ (0, 1) there exists a unique measure π�∞ over �� so
that π�

n converges to π�∞ as n → ∞?
• In the context of Theorems 7.5 and 7.6, establish the existence of crossings of small
triangles in the presence of arbitrary boundary conditions, where small refers to
the difference between the length of the edges in the triangles and their ground
state.

• Establish decay of correlations (in the context of Theorem 8.3) and the corre-
sponding results for local limits and distributional limits of the induced graph
(Theorems 8.4–8.6) for triangulations of n×n. One important step is Theorem 7.6,
which shows that crossings of small triangles are likely to exist. One can use this
to construct crossings that surround the boundary condition, in an attempt to block
its influence. However, Theorem 7.6 gives no control on the actual shape of the
crossings (besides that they are composed of small triangles). This does not rule
out that, in principle, information could propagate from the boundary to the outside
of the region surrounded by the crossing, contradicting decay of correlations.
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Appendix A: Standard large deviation results

We use the following standard Chernoff bounds and large deviation results.

Lemma 9.1 (Chernoff bound for binomial [1, Corollary A.1.10]) Let X be the sum
of n i.i.d. Bernoulli random variables of mean p. For any ε ∈ (0, 1), we have

P (X ≤ (1 − ε)np) ≤ exp
(
− ε2np

2

)
.

Lemma 9.2 (Chernoff bound for geometric) Let X be the sum of n i.i.d. geomet-

ric random variables with mean p. Then, for any ε > 0, P
(
X ≥ (1 + ε) np

)
≤

exp
(
− ε2

2(1+ε)
n
)

.

Proof Enumerate each trial of the n geometric random variables as Z1, Z2, . . .. Then

the event X ≥ (1+ε) np implies that
∑(1+ε) np

i=1 Zi ≤ n. Since
∑(1+ε) np

i=1 Zi is a binomial
random variable with parameters (1+ ε) np and p, the result follows from Lemma 9.1.

��

Appendix B: Absence of FKG

Given a set of constraint ξ , recall that σ̄x denotes the ground state edge of midpoint x
given ξ , with an arbitrary choice among unit diagonals.

Lemma 9.3 There exist a set of constraints ξ (e.g., Fig. 11) such that the following
holds for two midpoints x, y ∈ �: πξ (σx = σ̄x | σy 
= σ̄y) > πξ (σx = σ̄x | σy = σ̄y)

and πξ (σx = σ̄x ) > πξ (σx = σ̄x | σy = σ̄y). As a consequence, the FKG inequality
does not hold.

x y

Fig. 11 An example violating positive correlation
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Proof Refer to Fig. 11. Solid edges are constraint edges. Dotted edges are the possible
configuration of edges with midpoints in x and y. Note that if σy is in ground state
given the constraints, then there are two choices for the edge σx , therefore πξ (σx =
σ̄x | σy = σ̄y) < 1. On the other hand, if σy is not in ground state, then σx can only
be in ground state, giving that

πξ (σx = σ̄x | σy 
= σ̄y) = 1 > πξ (σx = σ̄x | σy = σ̄y),

which establishes the first inequality of the lemma. For the second inequality, note that

πξ (σx = σ̄x ) = πξ (σx = σ̄x | σy = σ̄y)π
ξ (σy = σ̄y)

+ πξ (σx = σ̄x | σy 
= σ̄y)π
ξ (σy 
= σ̄y)

= πξ (σx = σ̄x | σy = σ̄y)π
ξ (σy = σ̄y) + πξ (σy 
= σ̄y).

Since πξ (σy = σ̄y) ∈ (0, 1), we have that πξ (σx = σ̄x ) is strictly between πξ (σx =
σ̄x | σy = σ̄y) and 1. ��
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