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Abstract Fix constants x > 0 and 6 € [0, 27), and let 4 be an instance of the
Gaussian free field on a planar domain. We study flow lines of the vector field ¢! */x+?)
starting at a fixed boundary point of the domain. Letting 6 vary, one obtains a family
of curves that look locally like SLE,. processes with x € (0, 4) (where x = \/%? — ‘/TE),
which we interpret as the rays of a random geometry with purely imaginary curva-
ture. We extend the fundamental existence and uniqueness results about these paths
to the case that the paths intersect the boundary. We also show that flow lines of dif-
ferent angles cross each other at most once but (in contrast to what happens when
h is smooth) may bounce off of each other after crossing. Flow lines of the same
angle started at different points merge into each other upon intersecting, forming a
tree structure. We construct so-called counterflow lines (SLEj¢,,) within the same
geometry using ordered “light cones” of points accessible by angle-restricted trajec-
tories and develop a robust theory of flow and counterflow line interaction. The theory
leads to new results about SLE. For example, we prove that SLE, (p) processes are
almost surely continuous random curves, even when they intersect the boundary, and
establish Duplantier duality for general SLE1¢/, (0) processes.
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1 Introduction

All readers are familiar with two dimensional Riemannian geometries whose Gaussian
curvature is purely positive (the sphere), purely negative (hyperbolic space), or zero
(the plane). In this paper, we study “geometries” whose Gaussian curvature is purely
imaginary. We call them imaginary geometries.

Imaginary geometries have zero real curvature, which means (informally) that when
a small bug slides without twisting around a closed loop, the bug’s angle of rotation is
unchanged. However, the bug’s size may change (an Alice in Wonderland phenomenon
that further justifies the term “imaginary”).! “Straight lines” and “angles” are well-
defined in imaginary geometry, and the angles of a triangle always sum to m, but
“distance” is not defined.

! In both real and imaginary geometries, parallel transport about a simple loop multiplies a C-identified
tangent space by ¢'C where C is the integral of the enclosed curvature; these transformations are rotations
when C is real, dilations when C is imaginary.
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A simply connected imaginary geometry can be described by a simply connected
subdomain D of the complex plane C and a function #: D — R.? The angle-# ray
beginning at a point z € D is the flow line of ¢/"*?) beginning at z, i.e., the solution
to the ODE

n' () = PO+ fort =~ 0, 50) =z (1.1)

as in Fig. 1.3 In this paper we concern ourselves only with these rays, which we view
as a simple and complete description of the imaginary geometry.* Our goal is to make
sense of and study the properties of these flow lines when 4 is a constant multiple of
arandom generalized function called the Gaussian free field.

1.1 Overview

Given an instance & of the Gaussian free field (GFF), constants x > Oand 6 € [0, 27),
and an initial point z, is there always a canonical way to define the flow lines of the
complex vector field e/#/x+9) j e solutions to the ODE

0 (1) = &N/ X+) for 1 > 0, (1.2)

beginning at z? The answer would obviously be yes if 4 were a smooth function
(Fig. 1), but it is less obvious for an instance of the GFF, which is a distribution (a.k.a.
a generalized function), not a function (Figs. 2, 3, 4, 5).

Several works in recent years have addressed special cases and variants of this
question [6,8,10,19,28,31,37] and have shown that in certain circumstances there is
a sense in which the paths are well-defined (and uniquely determined) by 4, and are
variants of the Schramm-Loewner evolution (SLE). In this article, we will focus on
the case that z is point on the boundary of the domain where % is defined and establish
a more general set of results. (Flow lines beginning at interior points will be addressed
in a subsequent paper.) In particular, we show that the paths exist and are determined
by h even in settings where they hit and bounce off of the boundary, and we will
also describe the interaction of multiple flow lines that hit the boundary and cross or
bounce off each other. These topics have never been previously addressed. Ultimately,
our goal is to establish a robust theory of the imaginary geometry of the GFF, with

2 In the language of differential geometry, an imaginary geometry is a two dimensional manifold endowed
with a torsion-free affine connection whose holonomy group consists entirely of dilations (c.f. ordinary
Riemannian surfaces, whose Levi-Civita holonomy groups consist entirely of rotations), and straight lines
are geodesic flows of the connection. The connection endows the manifold with a conformal structure, and
by the uniformization theorem one can conformally map the geometry to a planar domain on which the
geodesics are determined by some function 4 in the manner described here [31].

3 Imaginary geometries have also been called “altimeter-compass” geometries [28]. If the graph of i
is viewed as a mountainous terrain, then a hiker holding an analog altimeter—with a needle indicating
altitude modulo 2r—in one hand and a compass in the other can trace a ray by walking at constant speed
(continuously changing direction as necessary) in such a way that the two needles always point in the same
direction.

4 This description is canonical up to conformal coordinate change, see Fig. 6.
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Fig. 1 a The vector field 1@ where h(z) = |z|2, together with a flow line started at zero. b Flow lines
of ¢! ("@+9) for 12 uniformly spaced 6 values

Fig.2 Numerically generated flow lines, started at a common point, of e /X +9) \where h is the projection
of a GFF onto the space of functions piecewise linear on the triangles of a 300 x 300 grid; k = 4/3 and
x = 2//k —/x/2 = /&4]3. Different colors indicate different values of @ € [0, 27r). We expect but do not
prove that if one considers increasingly fine meshes (and the same instance of the GFF) the corresponding
paths converge to limiting continuous paths (an analogous result was proven for x = 4 [36,37]) (color
figure online)

a complete description of all the rays and the way they interact with each other. This
will have a range of applications in SLE theory: in particular, this paper will establish
continuity results for SLE, (p) curves and generalizations of so-called Duplantier
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Fig. 3 Numerically generated flow lines, started at —i of ¢! (/%+0) where h is the projection of a GFF
on [—1, 112 onto the space of functions piecewise linear on the triangles of a 300 x 300 grid; k = 1/8.
Different colors indicate different values of 6 € [— % %]. The boundary data for £ is chosen so that the

central (“north-going”) curve shown should approximate an SLE| /g process (color figure online)

Fig.4 Numerically generated flow lines, started at —i of e/ x+0) where h is the projection of a GFF on
[—1, 1]2 onto the space of functions piecewise linear on the triangles of a 300 x 300 grid; x = 1. Different
colors indicate different values of 6 € 7%, %]. The boundary data for 4 is chosen so that the central
(“north-going”) curve shown should approximate an SLE| process (color figure online)

duality [i.e., descriptions of the boundaries of SLE;¢/, (0) curves], along with a “light
cone” interpretation of SLE¢/,(p) that allows these curves to be constructed and
decomposed in surprising ways.

This paper is the first in a four-paper series that also includes [20-22]. Among other
things, the later papers will use the theory established here to produce descriptions of
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Fig. 5 Numerically generated flow lines, started at —i of e/ x+0) where h is the projection of a GFF on

[—1, 1] onto the space of functions piecewise linear on the triangles of a 300 x 300 grid; « = 2. Different

colors indicate different values of 0 € —%, %]. The boundary data for 4 is chosen so that the central

(“north-going”) curve shown should approximate an SLE process (color figure online)

the time-reversals of SLE, (p) for all values of «, a complete construction of trees of
flow lines started from interior points, the first proof that conformal loop ensembles
CLE,- are canonically defined when «’ € (4, 8), and a geometric interpretation of these
loop ensembles. In subsequent works, we expect these results to be useful to the theory
of Liouville quantum gravity, allowing one to generalize the results about “conformal
weldings” of random surfaces that appear [31], and to complete the program outlined
in [32] for showing that discrete loop-decorated random surfaces have CLE-decorated
Liouville quantum gravity as a scaling limit, at least in a certain topology. We will find
that many basic SLE and CLE properties can be established more easily and in more
generality using the theory developed here.

We will fix x > 0 and interpret the paths corresponding to different 6 values as
“rays of a random geometry” angled in different directions and show that different
paths started at a common point never cross one another. Note that these are the rays
of ordinary Euclidean geometry when % is a constant.

Theorems 1.1 and 1.2 establish the fact that the flow lines are well-defined and
uniquely determined by 4 almost surely. Theorem 1.1 is the same as a theorem proved
in [6]. For convenience, we have restated it here and provided a proof in Sect. 3.3. (As
stated in [6], the theorem was conditional on the existence of solutions to a certain
SDE, but we will prove this existence in Sect. 2.) This theorem establishes the existence
of a coupling between 4 and the path with certain properties. Theorem 1.2 then shows
that in this coupling, the path is almost surely determined by the field. Theorem 1.2
is an extension of a result in [6]. Unlike the result in [6], our Theorem 1.2 applies to
paths that interact with the domain boundaries in non-trivial ways, and this requires
new tools.
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The boundary-intersecting case of Theorem 1.2 and other ideas will then be used to
describe the way that distinct flow lines interact with one another when they intersect
(see Fig. 21). We show that the flow lines started at the same point, corresponding to
different 6 values, may bounce off one another (depending on the angle difference) but
almost surely do not cross one another (see Proposition 7.11), that flow lines started
at distinct points with the same angle can “merge” with each other, and that flow lines
started at distinct points with distinct angles almost surely cross at most once. We give
a complete description of the conditional law of h given a finite collection of (possibly
intersecting) flow lines. (The conditional law of & given multiple flow line segments
is discussed in [6], but the results there only apply to non-intersecting segments.
Extending these results requires, among other things, ruling out pathological behavior
of the conditional expectation of the field—given the paths—near points where the
paths intersect.) These are some of the fundamental results one needs to begin to
understand (continuum analogs of) Figs. 2, 3,4, 5, 7, and 8.

As mentioned above, we also establish some new results in classical SLE theory.
For example, the flow line technology enables us to show in Theorem 1.3 that the
so-called SLE, (p) curves are a.s. continuous even when they hit the boundary. Rohde
and Schramm proved that ordinary SLE, on a Jordan domain is continuous when
k # 8 [24]; the continuity of SLEg was proved by Lawler et al. [16] (extensions to
more general domains are proved in [7]) but their techniques do not readily apply
to boundary intersecting SLE, (p), and the lack of a proof for SLE, (p) has been a
persistent gap in the literature. Another approach to proving Theorem 1.3 in the case of
a single force point, based on extremal length arguments, has been proposed (though
not yet published) by Kemppainen et al. [13].

The random geometry point of view also gives us a new way of understanding other
random objects with conformal symmetries. For example, we will use the flow-line
geometry to construct so-called counterflow lines, which are forms of SLEi¢/ (k €
(0, 4)) that arise as the “light cones” of points accessible by certain angle-restricted
SLE, trajectories. To use another metaphor, we say that a point y is “downstream”
from another point x if it can be reached from x by an angle-varying flow line whose
angles lie in some allowed range; the counterflow line is a curve that traces through all
the points that are downstream from a given boundary point x, but it traces them in an
“upstream” (or “counterflow”) direction. This is the content of Theorem 1.4, which is
stated somewhat informally. [A more precise statement of Theorem 1.4, which applies
to SLEj¢/, (p) processes that are not boundary intersecting, appears in Proposition 5.9;
the general version is explained precisely in Sect. 7.4.3.] In contrast to what happens
when £ is smooth, the light cones thus constructed are not simply connected sets when
k € (2,4).Italso turns out that one can reach all points in the light cone by considering
paths that alternate between the two extreme angles. See Figs. 13, 14, 15, 16, 17 and
18 for discrete simulations of light cones generated in this manner (the two extreme
angles differ by 7; see also Fig. 19 for an explanation of the fact that a path with angle
changes of size 7 does not just retrace itself).

We will also show in Proposition 7.33 that, for any « € (0, 4), the closure of the
union of all the flow lines starting at a given point z with angles in a countable, dense
set (as depicted in Figs. 2, 3, 4, 5) almost surely has Lebesgue measure zero. (It is easy
to see that the resulting object does not depend on the choice of countable, dense set.)
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Put somewhat fancifully, this states that when a person holds a gun at a point z in the
imaginary geometry, there are certain other points (in fact, almost all points) that the
gun cannot hit no matter how carefully it is aimed. (One might guess this to be the case
from the amount of black space in Figs. 2, 3, 4, 5, 16.) Generally, random imaginary
geometry yields many natural ways of coupling and understanding multiple SLEs on
the same domain, as well as SLE variants on non-simply-connected domains.

The flow lines constructed here also turn out to be relevant to the study of Liouville
quantum gravity. For example, we plan to show in a subsequent joint work with
Duplantier that the rays in Figs. 2, 3, 4 and 5 arise when gluing together independent
Liouville quantum gravity surfaces via the conformal welding procedure presented in
[31]. The tools developed here are essential for that program.

1.2 Background and setting

Let D € C be a domain with harmonically non-trivial boundary (i.e., a Brownian
motion started at a point z € D almost surely hits d D) and let Cgo(D) denote the
space of compactly supported C* functions on D. For f, g € C;°(D), let

1
(f. 8)v = " / Vix)-Vg(x)dx
7T JD

denote the Dirichlet inner product of f and g where dx is the Lebesgue measure
on D. Let H(D) be the Hilbert space closure of C;°(D) under (-, -)v. The contin-
uum Gaussian free field 4 (with zero boundary conditions) is the so-called standard
Gaussian on H (D). It is given formally as a random linear combination

h = Zan¢ns (1.3)

where («,) arei.i.d. N (0, 1) and (¢,) is an orthonormal basis of H (D). (We will give
a more formal introduction to the GFF in Sect. 3.)

The GFF is a two-dimensional-time analog of Brownian motion. Just as many
random walk models have Brownian motion as a scaling limit, many random (real or
integer valued) functions on two dimensional lattices have the GFF as a scaling limit
[1,11,18,23,25].

The GFF can be used to generate various kinds of random geometric structures,
including both Liouville quantum gravity and the imaginary geometry discussed here
[31]. Roughly speaking, the former corresponds to replacing a Euclidean metric dx*+
dy2 with e¥ (dx? + dyz) [where y € (0, 2) is a fixed constant and 4 is the Gaussian
free field]. The latter is closely related, and corresponds to considering e/*/X, for a
fixed constant x > 0. Informally, as discussed above, the “rays” of the imaginary
geometry are flow lines of the complex vector field e!/x+9 i solutions to the
ODE (1.2), for given values of n(0) and 6.

A brief overview of imaginary geometry (as defined for general functions &) appears
in [31], where the rays are interpreted as geodesics of a variant of the Levi-Civita con-
nection associated with Liouville quantum gravity. One can interpret the e” direction
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Imaginary geometry I: interacting SLEs 561

L =hot) — yargy'

Fig. 6 The set of flow lines in D will be the - pullback via a conformal map ¥ of the set of flow lines in D
provided 4 is transformed to a new function / in the manner shown

as “north” and the ¢’ "*+7/2) direction as “west”, etc. Then h determines a way of assign-
ing a set of compass directions to every point in the domain, and a ray is determined
by an initial point and a direction. (We have not described a Riemannian geometry,
since we have not introduced a notion of length or area.) When 4 is constant, the rays
correspond to rays in ordinary Euclidean geometry. For more general continuous /,
one can still show that when three rays form a triangle, the sum of the angles is always
w [31].

Throughout the rest of this article, when we say that 7 is a flow line of 4 it is to be
interpreted that 7 is a flow line of the vector field e/x; both h and x will be clear
from the context. In particular, the statement that 7 is a flow line of /& with angle 0 is
equivalent to the statement that 7 is a flow line of & + 6 x.

We next remark that if z is a smooth function on D, n a flow line of X and
v D — D a conformal transformation, then by the chain rule, ¥ ~! o 5 is a flow line
of h oy — x arg ¥’ (note that a reparameterization of a flow line remains a flow line),
as in Fig. 6. With this in mind, we define an imaginary surface to be an equivalence
class of pairs (D, h) under the equivalence relation

(D, h) — (YN (D), hoy — yargy') = (D, h). (1.4)

Note that this makes sense even for 4 which are not necessarily smooth. We interpret
as a (conformal) coordinate change of the imaginary surface. In what follows, we will
generally take D to be the upper half plane, but one can map the flow lines defined
there to other domains using (1.4).

When 7 is an instance of the GFF on a planar domain, the ODE (1.2) is not well-
defined, since £ is a distribution-valued random variable and not a continuous function.
One could try to approximate one of these rays by replacing the 4 in (1.2) by its
projection onto a space of continuous functions—for example, the space of functions
that are piecewise linear on the triangles of some very fine lattice. This approach (and
arange of 6 values) was used to generate the rays in Figs. 2, 3,4, 5,7, 8, 13, 14, 15,
16, 17, 18, and 21. We expect that these rays will converge to limiting path-valued
functions of % as the mesh size gets finer. This has not been proved, but an analogous
result has been shown for level sets of & [36,37].

As we discussed briefly in Sect. 1.1, it turns out that it is possible to make sense of
these flow lines and level sets directly in the continuum, without the discretizations
mentioned above. The construction is rather interesting. One begins by constructing
explicit couplings of 4 with variants of the Schramm-Loewner evolution and showing
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Fig.7 Numerically generated flow lines, started at evenly spaced points on [—1 —i, 1 —i] of e/ X where
h is the projection of a GFF on [—1, 112 onto the space of functions piecewise linear on the triangles of a
300 x 300 grid; « = 1/2. The angle of the green lines is % and the angle of the red lines is — % Flow lines
of the same color appear to merge, but the red and green lines always cross at right angles. The boundary

data of & was given by taking 0 boundary conditions on H and then applying the transformation rule (1.4)

with a conformal map v : H — [—1, 11? where ¥ (0) = —i and ¥ (00) = i (color figure online)

Fig. 8 Numerically generated flow lines, started at —1/2 —i and 1/2 — i of &M/ X+0) with angles evenly
spaced in [— % %] where £ is the projection of a GFF on [—1, 112 onto the space of functions piecewise
linear on the triangles of a 300 x 300 grid; k = 1/2. Flow lines of different colors appear to cross at most
once and flow lines of the same color appear to merge. The boundary data for /4 is the same as in Fig. 7
(color figure online)

that these couplings have certain properties. Namely, if one conditions on part of the
curve, then the conditional law of 4 is that of a GFF in the complement of the curve
with certain boundary conditions. Examples of these couplings appear in [6,28,31,37]
as well as variants in [8, 10, 19]. This step is carried out in some generality in [6,31]. A
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Imaginary geometry I: interacting SLEs 563

second step (implemented only for some particular boundary value choices in [6] and
[37]) is to show that in such a coupling, the path is actually completely determined by
h, and thus can be interpreted as a path-valued function of 4.

Before we describe the rigorous construction of the flow lines of et M/ X9 et us
offer some geometric intuition. Suppose that / is a continuous function and consider a
flow line of the complex vector field ¢!/ in H beginning at 0. Thatis, : [0, c0) — H
is a solution to the ODE

0 (1) = MOV fort >0, n(0) =0. (1.5)

Note that ||’ (¢)|| = 1. Thus, the time derivative n’(¢) moves continuously around the
unit circle S' and (h(5(1)) — h(1(0)))/x describes the net amount of winding of n’
around S' between times 0 and 7. Let g; be the Loewner map of 7. That is, for each
t, gr is the unique conformal transformation of the unbounded connected component
of H\n([0, ¢]) to H that looks like the identity at infinity: lim,_.  |g:(z) — z| = O.
Loewner’s theorem says that g; is a solution to the equation

0181 (2) = g0(z2) =z, (1.6)

2
&) — W’
where W; = g;(n(t)), provided n is parameterized appropriately. It will be convenient

for us to consider the centered Loewner flow f; = g; — W; of n in place of g;. The
reason for this particular choice is that f; maps the tip of n|jo ] to 0. Note that

dft(Z) =

dt — dW;. 1.7
G 1.7

We may assume that 7 starts out in the vertical direction, so that the winding number
is approximately v /2 as ¢ |, 0. We claim that the statement that n|[o ] is a flow line of
et/ x+m/2) jg equivalent to the statement that for each x on 1((0, ¢)), we have

xarg f{(z) = —h(x) — x7/2 (1.8)
as z approaches from the left side of 1 and
xarg f{(z) — —h(x) + x7/2 (1.9)

as z approaches from the right side of 1. To see this, first note that both s
f,_] ($)]0,s,) and s > f,_1 (—5)|(s_,0) are parameterizations of n|o,;; where s_, s
are the two images of O under f;. One then checks (1.8) (and (1.9) analogously) by
using that n(s) = f,_1 (¢ (s)) for ¢: (0, 00) — (0, 0o) a smooth decreasing function
and applying (1.5). If x = 0, then (1.8) and (1.9) hold if and only if / is identically
zero along the path, which is to say that n is a zero-height contour line of /. Roughly
speaking, the flow lines of ¢/*/X+7/2) and level sets of & are characterized by (1.8)
and (1.9), though it turns out that the “angle gap” must be modified by a constant
factor in order to account for the roughness of the field. In a sense there is a constant
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—A+xm
=N N

A
A—Tx

A Ix=—N|A-Ix =X

—A A

Fig. 9 Fix k € (0,4) and set A = A(k) = % Write M = A(16/k) = 714—‘/; Conditioned on a flow
line, the heights of the field are given by (a constant plus) x times the winding of the path minus A’ on
the left side and x times the winding plus A’ on the right side. For a fractal curve, these heights are not
pointwise defined (though their harmonic extension is well-defined). The figure illustrates these heights for
a piecewise linear curve. In Fig. 10, we will describe a more compact notation for indicating the boundary
heights in figures

“height gap” between the two sides of the path, analogous to what was shown for level
lines of the GFF in [36,37]. The law of the flow line of /4 starting at O is determined
by the boundary conditions of 4. It turns out that if the boundary conditions of & are
those shown in Fig. 9, then the flow line starting at 0 is an SLE, process (with p = 0).
Namely, one has —2 and A along the left and right sides of the axis and along the
path one has —1’ plus the winding on the left and A’ plus the winding on the right, for
the particular values of A and A’ described in the caption. Each time the path makes a
quarter turn to the left, heights go up by 7 x. Each time the path makes a quarter turn
to the right, heights go down by % x.

1.3 Coupling of paths with the GFF

We will now review some known results about coupling the GFF with SLE. For
convenience and concreteness, we take D to be the upper half-plane H. Couplings for
other simply connected domains are obtained using the change of variables described
in Fig. 6. Recall that SLE, is the random curve described by the centered Loewner
flow (1.7) where W; = /k B, and B, is a standard Brownian motion. More generally,
an SLE, (p) processis a variant of SLE,. in which one keeps track of multiple additional
points, which we refer to as force points. Throughout the rest of the article, we will
denote configurations of force points as follows. We suppose x- = (x¢L < ... <
xbLy where x''L < 0, and iR = (xR < ... < xRy where x"® > 0. The
superscripts L, R stand for “left” and “right,” respectively. If we do not wish to refer
to the elements of x©, x®, we will denote such a configuration as (x; x®). Associated
with each force point x’, ¢ € {L, R} is a weight p"¢ € R and we will refer to the
vector of weights as p = (pL; ,oR). An SLE, (p) process with force points (iL; gR)
corresponding to the weights p is the measure on continuously growing compact hulls
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Fig.10 Throughout this article, we will need to consider Gaussian free fields whose boundary data changes
with the winding of the boundary. In order to indicate this succinctly, we will often make use of the notation
depicted on the left hand side. Specifically, we will delineate the boundary d D of a Jordan domain D with
black dots. On each arc L of d D which lies between a pair of black dots, we will draw either a horizontal
or vertical segment L and label it with x where x € R. This serves to indicate that the boundary data
along L is given by x as well as describe how the boundary data depends on the winding of L. Whenever
L makes a quarter turn to the right, the height goes down by % x and whenever L makes a quarter turn to
the left, the height goes up by % X . More generally, if L makes a turn which is not necessarily at a right
angle, the boundary data is given by x times the winding of L relative to Ly. When we just write x next to
a horizontal or vertical segment, we mean to indicate the boundary data at that segment and nowhere else.
The right panel above has exactly the same meaning as the left panel, but in the former the boundary data is
spelled out explicitly everywhere. Even when the curve has a fractal, non-smooth structure, the harmonic
extension of the boundary values still makes sense, since one can transform the figure via the rule in Fig. 6
to a half plane with piecewise constant boundary conditions. The notation above is simply a convenient way
of describing the values of the constants. We will often include horizontal or vertical segments on curves
in our figures (even if the whole curve is known to be fractal) so that we can label them this way

K,—compact subsets of H so that H\ K is simply connected—such that the conformal
maps g;: H\K;, — H, normalized so that lim,_, - |g/(z) — z| = 0, satisfy (1.7) with
W; replaced by the solution to the system of (integrated) SDEs

W, =VikB + Z/ — 5 s, (1.10)

iq
qe{L,R} i Ws = Vs

t
. 2 .
yia =/ — 45+, qefL,R) (L11)
0 Vol — w

We will provide some additional discussion of both SLE, and SLE, (p) processes in
Sect. 2. The general coupling statement below applies forall k > 0. Theorem 1.1 below
gives a general statement of the existence of the coupling. Essentially, the theorem
states that if we sample a particular random curve on a domain D—and then sample
a Gaussian free field on D minus that curve with certain boundary conditions—then
the resulting field (interpreted as a distribution on all of D) has the law of a Gaussian
free field on D with certain boundary conditions.

It is proved in [6] that Theorem 1.1 holds for any « and p for which a solution
to (1.10) exists (this can also be extended to a continuum of force points; this is done
for a time-reversed version of SLE in [31]). The special case of A boundary conditions
also appears in [28]. (See also [31] for a more detailed version of the argument in [28]
with additional figures and explanation.)
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The question of when (1.10) has a solution is not explicitly addressed in [6]. In
Sect. 2, we will prove the existence of a unique solution to (1.10) up until the con-
tinuation threshold is hit—the first time ¢ that W, = V¥ where >"/_, p"? < -2,
for some g € {L, R}. This is the content of Theorem 2.2. We will reprove Theo-
rem 1.1 here for the convenience of the reader. It is a straightforward consequence of
Theorem 2.2 and [6, Theorem 6.4].

All of our results will hold for SLE, (p) processes up until (and including) the
continuation threshold. It turns out that the continuation threshold is infinite almost
surely if and only if

J J
> ot > =2 foralll <j <k and » p"F> -2 foralll <j <t
= i=1

Theorem 1.1 Fix « > 0 and a vector of weights (BL; BR). Let K; be the hull at
time t of the SLE (p) process generated by the Loewner flow (1.7) where (W, Via)

solves (1.10) and (1.11). Let h? be the function which is harmonic in H with boundary
values

where 0L = pOR =0, x0L =0~ x
(See Fig. 11.) Let

2 Jk

hi(2) = 07(fi(2) — xarg f{(2), x = N

Let (F;) be the filtration generated by (W Vi4). There exists a coupling (K, h) where
hisazero boundary GFFonHandh = h+[)0 such that the following is true. Suppose t
is any JF;-stopping time which almost surely occurs before the continuation threshold
is reached. Then K is a Local set for h and the conditional law of h|p\k, given F is
equal to the law of b + h o f-.

We will give a review of the theory of local sets [37] for the GFF in Sect. 3.2.

Notice that x > 0 when x € (0,4), x < 0 when k > 4, and that x (k) = —x ()
for / = 16/k [though throughout the rest of this article, whenever we write x it
will be assumed that k € (0, 4)]. This means that in the coupling of Theorem 1.1,
the conditional law of & given either an SLE, or an SLE, curve transforms in the
same way under a conformal map, up to a change of sign. Using this, we are able to
construct n ~ SLE,, k € (0,4), and n” ~ SLE,s curves within the same imaginary
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Fig. 11 The function h(r) in Theorem 1.1 is the harmonic extension of the boundary values depicted in
the right panel in the case that there are two boundary force points, one on each side of 0. The function

hr = h(rJ o fr — x arg f] in Theorem 1.1 is the harmonic extension of the boundary data specified in the
left panel. (Recall the relationship between A and A’ indicated in Fig. 9)

o

X

Fig. 12 We can construct SLE, flow lines, k € (0,4), and SLE,/, k' = 16/k, counterflow lines within
the same imaginary geometry. This is depicted above for a single counterflow line 5’ emanating from y
and a flow line g with angle 6 starting from x. In this coupling, g is coupled with h + 6 x and n’ is
coupled with —h as in Theorem 1.1. Also shown is the boundary data for & in D\ (1’ ([0, T/1) U ng ([0, 1))
conditional on 1g ([0, T]) and ([0, ']) where 7 and t’ are stopping times for ng and 1’ respectively (we
intentionally did not specify the boundary data of 4 on 3 D). Assume that 1’ is non-boundary filling. Then if
0= %()\’ —A) = —7% so that the boundary data on the right side of ng matches that on the right side of ',
then 7y will almost surely hit and then “merge” into the right boundary of 1’. The analogous result holds if
0= %()\ — /) = 7% so that the boundary data on the left side of g matches that on the left side of 1)". This
fact is known as Duplantier duality (or SLE duality). More generally, if 6 € [— %, %J then ng is almost
surely contained in n’ but the union of the traces of 7y as @ ranges over the entire interval [— %, %] is almost
surely a strict subset of the range of 1’. We will show, however, that the range of 1’ can be constructed as a
“light cone” of SLE, trajectories whose angle is allowed to vary in time but is restricted to [— % %]
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Fig. 13 Simulation of the light cone construction of an SLEg curve n"in[—1, 1]2 from i to —i, generated
using a projection /4 of a GFF on [—1, 1]° onto the space of functions piecewise linear on the triangles
of an 800 x 800 grid. The lower left panel shows left and right boundaries of n’, which consist of points
accessible by flowing in the vector field e X for x = 2/4/8/3 — /8/3/2 at angle % (red) and 7%

(vellow), respectively, from —i. The lower middle panel shows points accessible by flowing at angle %

(red) or angle — % (vellow) from the yellow and red points, respectively, of the left picture; the lower right
shows another iteration of this. The fop picture illustrates the light cone, the limit of this procedure. (All
paths are red or yellow; any shade variation is a rendering artifact) (color figure online)

geometry (see Fig. 12). We accomplish this by taking 1 to be coupled with & and n’
to be coupled with —#, as in the statement of Theorem 1.1 (this is the reason we can
always take x > 0) (Figs. 13, 14, 15, 16, 17, 18, 19).

Definition When « € (0, 4), we will refer to an SLE, (p) curve (if it exists) coupled
with a GFF 1 on H with boundary conditions as in Theorem 1.1 as a flow line of h. One
can use the conformal coordinate change of Fig. 6 to extend this definition to simply
connected domains other than H. To spell out this point explicitly, suppose that D
is a simply connected domain homeomorphic to the disk, x, y € 9D are distinct,
and ¥ : D — H is a conformal transformation with ¢ (x) = 0 and {(y) = oo. Let
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Fig. 14 Numerical simulation of the light cone construction of an SLEj¢/3 process n"in [—1, 112 from i
to —i generated using a projection i of a GFF on [—1, 112 onto the space of functions piecewise linear on

the triangles of an 800 x 800 grid. The lower left panel depicts the left and right boundaries of n’, which
correspond to the set of points accessible by flowing in the vector field /X for x =2//3—+/3/2at
angle % (red) and 7% (vellow), respectively, from —i. The lower middle panel shows the set of points
accessible by flowing at angle % (red) or angle — % (vellow) from the yellow and red points, respectively,
of the left picture and the lower right panel depicts another iteration of this. The fop picture illustrates the
light cone, which is the limit of this procedure (color figure online)

us assume that we have fixed a branch of arg v’ that is defined continuously on all
of D. We assume further that x (resp. xX) consists of k (resp. £) distinct marked
prime ends in the clockwise (resp. counterclockwise) segment of d D (as defined by
Yr) which are in clockwise (resp. counterclockwise) order. We take X0l = x =
xOR = x and x¥+1.L = x*1LR — y We then suppose that 4 is a GFF on D with
boundary conditions in the clockwise (resp. counterclockwise) segment of 9 D from
xIE to x/TLE (resp. x/R to x/T1R) given by —A(1 + >°/_, pL) — x arg ¥’ (resp.
A1+ Z{:O P RY — x arg y'). We refer to an SLE, (p) curve 7 (if it exists) from x to
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Fig. 15 Numerical simulation of the light cone construction of an SLEg4(32; 32) process 1’ in [—1, 1]2
from i to —i generated using a projection & of a GFF on [—1, 112 onto the space of functions piecewise
linear on the triangles of an 800 x 800 grid. [It turns out that SLEg4 (01; p2) processes are boundary filling
only when p1, pp < 28.] The lower left panel depicts the left and right boundaries of n’, which correspond
to the set of points accessible by flowing in the vector field e//X for y = 2//T/4 — \/T/4/2 at angle z
(red) and —% (vellow), respectively, from —i. The lower middle panel shows the set of points accessible
by flowing at angle % (red) or angle —% (vellow) from the yellow and red points, respectively, of the left
picture and the lower right panel depicts another iteration of this. The fop picture illustrates the light cone,
which is the limit of this procedure (color figure online)

yon D, k € (0,4), coupled with & as a flow line of h if the curve ¥ (1) in H is coupled
as a flow line of the GFF h o ¢ ~! — x arg(y~!)’ on H. (Recall (1.4) and Fig. 6.)

Remark Observe that in the discussion above, the choice of the branch of arg v’ was
important. Changing the branch chosen would in some sense correspond to adding
a multiple of 27 x to either side of the SLE, (p) curve, and if one did this then (in
order for the curve to remain a flow line) one would have to compensate by adding
the same quantity to the boundary data. In some sense, changing the branch of arg v’
is equivalent to adding a multiple of 27 x to the boundary data. If one wishes to be
fully concrete, one can fix the branch of arg’ in an arbitrary way—say, so that
arg gﬁ’(w_l(i)) € (—m,m]—and then assume that the boundary data is adjusted
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Fig. 16 The simulation of the light cone from the fop panel of Fig. 15 where trajectories which flow at

angle % are dark gray and those which flow at angle —% are depicted in a medium-dark gray. The fan

from —i—the set of all points accessible by fixed-angle trajectories with angles in [—%, %J starting at

—i—is drawn on fop of the light cone. The different colors indicate trajectories with different angles. The
simulation shows that the fan does not fill the light cone; we establish this fact rigorously in Proposition 7.33
(color figure online)

accordingly. In practice, when we discuss flow lines (in the half plane or elsewhere)
we will usually specify boundary data using a figure and the notation explained in
Fig. 10 (or in Fig. 11). This approach will avoid any “multiple of 27 x” ambiguity and
will make it completely clear exactly what the boundary data is along the curve. This
remark also applies to the definition of counterflow line given below.

We will give several examples of coordinate changes in Sect. 4. See also Figs. 9
and 10 for an illustration of how the boundary data for the GFF changes when apply-
ing (1.4).

The fact that SLE, (p) is generated by a continuous curve up until hitting the
continuation threshold will be established for general p values in Theorem 1.3. It is not
obvious from the coupling described in Theorem 1.1 that such paths are deterministic
functions of 4. That this is in fact the case is given in Theorem 1.2.

As mentioned earlier, we will sometimes use the phrase flow line of angle 6 to
denote the corresponding curve that one obtains when 6 x is added to the boundary
data (so that & is replaced by h + 6 x).

Definition We will refer to an SLE,/(p) curve (if it exists), k&’ € (4, c0), coupled
with a GFF —# [note the sign change here; this accounts for the x (k) vs. x (k') issue
discussed just above] as in Theorem 1.1 as a counterflow line of h. Again, one can use
conformal maps to extend this definition to simply connected domains other than H.
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Fig. 17 Numerical simulation of the light cone construction of an SLE1,g process 1’ in [—1, 112 from i to
—i generated using a projection /2 of a GFF on [—1, 112 onto the space of functions piecewise linear on the
triangles of an 800 x 800 grid. The red and yellow curves depict the left and right boundaries, respectively,
of the time evolution of 1’ as it traverses [—1, 112 (color figure online)

Suppose that D is a non-trivial simply connected domain, x, y € d D are distinct, and
Y : D — His a conformal transformation with v (x) = 0 and ¥ (y) = o0, and that a
branch of arg " has been fixed (as in the flow line definition above). We assume further
that x% (resp. x®) consists of k (resp. £) distinct marked prime ends in the clockwise
(resp. counterclockwise) segment of d D (as defined by 1) which are in clockwise (resp.
counterclockwise) order. We take xO% = x = xOF = x and x*¥+1.L = xt+1LR =
We then suppose that / is a GFF on D with boundary conditions in the clockwise
(resp. counterclockwise) segment of 3 D from x/L to x/T1L (resp. xR to x/T1R)
given by A'(1 + >°7_ p""F) — x arg ¢/ [resp. =1/ (1 + X_/_, p"R) — x argy']; here
x = x(x) > 0. We refer to an SLE,/(p) curve n’ (if it exists) from x to y on
D,k' € (4, 00), coupled with & as a counterflow line of h if the curve ¥ () in
H is coupled as a counterflow line of the GFF h o ¥y ~! — x arg(yy ')’ on H; here
X = x(k) > 0. (Recall (1.4) and Fig. 6.)

Again, the fact that SLE,/(p) is generated by a continuous curve up until hitting the
continuation threshold is established for general p values in Theorem 1.3.

As in the setting of flow lines, it is not obvious from the coupling described in
Theorem 1.1 that such paths are deterministic functions of 4. That this is in fact the
case is given in Theorem 1.2. The reason for the terminology “counterflow line” is
that, as briefly mentioned earlier, it will turn out that the set of the points hit by an
SLE, counterflow line can be interpreted as a “light cone” of points accessible by
certain angle-restricted SLE,. flow lines; the SLE,/ passes through the points on each
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Fig. 18 Numerical simulation of the light cone construction of an SLE¢ process 1’ in [—1, 112 from i to
—i and its interaction with the zero angle flow line n ~ SLEg/3(—1; —1) and the fan starting from —i,

generated using a projection & of a GFF on [—1, 112 onto the space of functions piecewise linear on the
triangles of an 800 x 800 grid. In the top right panel, the conditional law of the restrictions of " given n
to the left and right sides of [—1, 1]2\71 are independent SLE¢g (— %) processes a An SLEg process i’ from
i to —i generated using the light cone construction. b The zero angle flow line n from —i to i drawn on top
of 1’. ¢ The fan from —i to i. The rays are SLEg/3(p1; p2) processes. d The fan drawn on rop of n’. It does
not cover the range of n’

of these flow lines in the opposite (“‘counterflow”) direction. We will provide some
additional explanation near the statement of Theorem 1.4.

The correction — x arg f; which appears in the statement Theorem 1.1 has the inter-
pretation of being the harmonic extension of x times the winding of o (H\7n ([0, t])).
We will use the informal notation x - winding for this function throughout this arti-
cle and employ a special notation to indicate this in figures. See Fig. 10 for further
explanation of this point.
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Fig. 19 Leth be a GFF on aJordan domain D, fix x, y € d D distinct, and let ) be the flow line of / starting
at x targeted at y. Let 7 be any stopping time for n and let 1 and 1 be the flow lines of & conditional on
n starting at n(7) with angles w and —, respectively, in the sense shown in the figure. If 7 were a smooth
function, then we would have 7 = 717 and since 7 and —7 are the same modulo 27, both paths would
trace 7([0, t]) in the reverse direction. For the GFF, we think of n; (resp. n2) as starting infinitesimally
to the left (resp. right) of n(t); due to the roughness of the field, n; and 1, do not merge into (and in fact
cannot hit) n([0, 7]). If « € (2, 4), then 0y and 0 can hit 5| ) and if « € (0, 2] then 1 and 7, do not
hit 7(z,00)- If & € (8/3,4), then 1 can hit 75 and if « € (0, 8/3] then n; cannot hit 1. This, in particular,
explains why the yellow and red curves of Figs. 13, 14, 15 do not trace each other

Similar couplings are constructed in [10] for the GFF with Neumann boundary data
on part of the domain boundary, and [8] couples the GFF on an annulus with annulus
SLE. Makarov and Smirnov extend the SLE4 results of [28,37] to the setting of the
massive GFF and a massive version of SLE in [19].

1.4 Main results

In the case that p = 0 and 7 is ordinary SLE, Dubédat showed in [6] that in the
coupling of Theorem 1.1 the path is actually a.s. determined by the field. A k = 4
analog of this statement was also shown in [37]. In this paper, we will extend these
results to the more general setting of Theorem 1.1.

Theorem 1.2 Suppose that h is a GFF on H and that n ~ SLE(p). If (n, h) are
coupled as in the statement of Theorem 1.1, then n is almost surely determined by h.

The basic idea of our proof is as follows. First, we extend the argument of [6] for
SLE,, k € (0, 4], to the case of  ~ SLE,(p) with p = (p%; p®) where p’ and p®
are real numbers satisfying p’ > 5 —2and o® > 0. This condition implies that n
almost surely does not intersect dH after time 0 and allows us to apply the argument
from [6] with relatively minor modifications. We then reduce the more general case

that p&, p® > —2 to the former setting by studying the flow lines ng of ¢/ /x+¢)
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emanating from 0. In this case, these are also SLE, (Q) curves with force points at 0~
and 0F. We will prove that if §; < 0 < 6,, then ng, almost surely lies to the right
of 1 which in turn almost surely lies to the right of ng,. We will next show that the
conditional law of 1 given g, , ng, is an SLE, (p%(81); pR(62)) process independently
in each of the connected components of H\ (14, U 17g,) which lie between g, and 7, .
By adjusting 6, 6,, we can obtain any combination of p% (1), p®(92) > —2. We then
extend this result to the setting of many force points by systematically studying the case
with two boundary force points which are both to the right of 0 and then employing
the absolute continuity properties of the GFF combined with an induction argument.
The idea for k¥ > 4 follows from a more elaborate variant of this general strategy.

By applying the same set of techniques used to prove Theorem 1.2, we also obtain
the continuity of the SLE, (Q) trace.

Theorem 1.3 Suppose that k > 0. If n ~ SLE,(p) on H from 0 to oo then n is
almost surely a continuous path, up to and including the continuation threshold. On
the event that the continuation threshold is not hit before n reaches oo, we have a.s.
that lim;_, oo |n(t)| = o0.

The continuity of SLE, (with p = 0) was first proved by Rohde and Schramm
[24]. By invoking the Girsanov theorem, one can deduce from [24] that SLE, (p)
processes are also continuous, but only up until just before the first time that a force
point is absorbed. The main idea of the proof in [24] is to control the moments of
the derivatives of the reverse SLE, Loewner flow near the origin. These estimates
involve martingales whose corresponding PDEs become complicated when working
with SLE, (p) in place of usual SLE,. Our proof uses the Gaussian free field as a
vehicle to construct couplings which allow us to circumvent these technicalities.

Another achievement of this paper will be to show how to jointly construct all
of the flow lines emanating from a single boundary point. This turns out to give us
a flow-line based construction of SLE ¢/, (B)’ k € (0,4). That is, SLE;¢/, variants
occur naturally within the same imaginary geometry as SLE, . Note that 16/k assumes
all possible values in (4, c0) as k ranges over (0, 4). Imprecisely, we have that the set
of all points reachable by proceeding from the origin in a possibly varying but always
“northerly” direction (the so-called “light cone”) along SLE, flow lines is a form of
SLE1¢/« for k € (0, 4) generated in the reverse direction (see Fig. 12).

Theorem 1.4 below is stated somewhat informally. As mentioned earlier, precise
statements will appear in Proposition 5.9 and in Sect. 7.4.3.

Theorem 1.4 Suppose that h is a GFF on H with piecewise constant boundary data.
Let 0/ be the counterflow line of h starting at oo targeted at 0. Assume that the
continuation threshold for n' is almost surely not hit. Then the range of ' is almost
surely equal to the set of points accessible by SLE, trajectories of h starting at 0 whose
angles are restricted to be in [—7, 7] but may change in time. Let 0y be the flow line
of h with angle 7% starting at 0 and ng the flow line of h with angle —%. It is almost
surely the case that if n’ is nowhere boundary filling (i.e., '’ N R has empty interior),
then n1, and ng do not hit the continuation threshold before reaching oo and are the
left and right boundaries of 1.
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Fig. 20 Suppose that & is a GFF on H with the boundary data on the left panel. For each 6 € R, let ng be
the flow line of the GFF i + 6 x. This corresponds to setting the angle of ng to be 6. Just as if 1 were a
smooth function, if 6] < 6 then ng, lies to the right of ng, . The conditional law of / given ng, and ng, is

a GFF on H\ U,2: | Ng; whose boundary data is shown above. By applying a conformal mapping and using
the transformation rule (1.4), we can compute the conditional law of 7g, given the realization of ng, and
vice-versa. That is, ng, given ng, is an SLE, ((a — 62 x)/A — 15 (62 — 61) x /A — 2) process independently
in each of the connected components of H\ng, which lie to the left of ng, . Moreover, ng, given 7y, is an
SLE, ((02 — 601)x /A —2; (b + 601 x)/* — 1) independently in each of the connected components of H\7jg,
which lie to the right of ng, . Versions of this result also hold for flow lines which start at different points as
well as in the setting where the boundary data is piecewise constant (see Theorem 1.5)

A similar statement holds on the event that 1’ is boundary filling on one or more
segments of R. In this case, ny, and ng hit their continuation thresholds before reach-
ing 00, but they can be extended to describe the entire left and right boundaries of n'
in the manner explained in Fig. 67.

The light cone construction of SLEj¢/, processes described in the statement of
Theorem 1.4 includes what is known as Duplantier duality or SLE duality—that the
outer boundary of an SLE;¢,, process is equal in law to a kind of SLE, process. This
was proven in certain cases by Zhan [39,40] and Dubédat [5]. Theorem 1.4 provides
a more general version of this duality. It shows that the law of the right boundary of
any SLE6/, (B’) process 1’ from oo to 0 in H is given by the flow line of angle —%
in the same imaginary geometry. Analogously, the law of the left boundary of any
SLEj6/«(0) process n' is given by the flow line of angle 7 in the same imaginary
geometry.

We can also compute the conditional law of " given either n, or ng. These results
are described in more detail in Sect. 7.4.3. (One version of this statement also appears
in [6, Section 8], where it is called “strong duality”.) We will also describe the law of
n’ conditioned on the boundaries of the portions of 1’ traced before and after n’ hits
a given boundary point. This result will be of particular interest to us in a subsequent
work, in which we will prove the time reversal symmetry of SLE ¢/, processes when
k € (2,4) [sothat 16/k € (4, 8)].

The final result we wish to state concerns the interaction of imaginary rays with
different angle and starting point. In contrast with the case that / is smooth, these rays
may bounce off of each other and even merge, but they have the same monotonicity
behavior in their starting point and angle as in the smooth case. This result leads to a
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()

Fig. 21 Numerical simulations which depict the three types of flow line interaction, as described in the
statement of Theorem 1.5. In each of the simulations, we fixed xo < x1 in[—-1 —i,1 —i],601,0, € R,
and took nzll (resp. 772;‘22) to be the flow line of a projection of a GFF on [—1, 112 to the space of functions
piecewise linear on the triangles of a 300 x 300 grid starting at x| (resp. xp) with angle 0 (resp. 6). a If
61 < 6, then r](jl] stays to the right of 17;; b If 61 = 0;, then r]();l] merges with r]();; upon intersecting. ¢ If

6r < 01 < 6 + 7, then ng)]l crosses ngs upon interesting but does not cross back

theoretical understanding of the phenomena simulated in Figs. 2, 3,4, 5, 7, and 8. The
following statement is somewhat imprecise (as it does not describe all the constraints on
boundary data that affect whether the distinct flow lines are certain to intersect before
getting trapped at other boundary points) but a more detailed discussion appears in
Sect. 7; see also Figs. 20 and 21.

Theorem 1.5 Suppose that h is a GFF on H with piecewise constant boundary data.
For each 6 € R and x € d0H we let ) be the flow line of h starting at x with angle 6.
Fix x1, xo € 0H with x1 > x3.
(i) If01 < 0, then '72;,1 almost surely stays to the right ofngzz. If, in addition, 0, — 01 <
i /(4 — k), then ngll and ngj can bounce off of each other; otherwise the paths
almost surely do not intersect (except possibly at their starting point).
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(i) If 61 = 6o, then ngll may intersect ngzz and, upon intersecting, the two curves
merge and never separate.

(iil) Finally, if 6o + 1 > 61 > 6y, then ngll may intersect ngzz and, upon intersecting,
crosses and then never crosses back. If, in addition, 01 — 0, < wk /(4 — k), then
ngll and ngzz can bounce off of each other; otherwise the paths almost surely do
not subsequently intersect.

The monotonicity component of Theorem 1.5 (i.e., the fact that ng: almost surely
stays to the right of n;j) will be first proved in settings where n(’,‘] , ngz almost surely do
not intersect dH after time O (and have the same starting point) in Sect. 5. In Sect. 7, we
will extend this result to the boundary intersecting regime and establish the merging
and crossing statements. We will also explain in Sects. 6 and 7 how in the setting of
Theorem 1.5 one can compute the conditional law of ngl' given ngj and vice-versa (see
Fig. 20 for an important special case of this).

Note that the angle restriction 6, < 6; < 6> + 7 is also the one that allows the
Euclidean lines to cross (i.e., would allow for 1, to cross from the left side of ng, to
the right side if & were constant). Although we will not explore this issue here, we
remark that it is also interesting to consider what would happen if we took 61 > 6, + .
It turns out that in this regime extra crossings can occur at points where both paths
intersect R, which is somewhat more complicated to describe.

1.5 Outline

The remainder of this article is structured as follows. In Sect. 2, we will prove the
existence and uniqueness of solutions to the SLE, (p) Eq. (1.10), even with force
points starting at 0=, 0F. We will also show that solutions to (1.10) are characterized
by a certain martingale property. Next, in Sect. 3, we will review the construction and
properties of the Gaussian free field which will be relevant for this work. The notion
of a “local set,” first introduced in [37], will be of particular importance to us. We will
also provide an independent proof of Theorem 1.1. In Sect. 4, we will give a new pre-
sentation of Dubédat’s proof of SLE-duality—that the outer boundary of an SLE¢/,
process is described by a certain SLE, process for kx € (0, 4). Following Dubédat,
we explain how this result (and a slight generalization) implies Theorem 1.2 for flow
lines which are non-boundary intersecting. The purpose of Sect. 5 is to establish the
monotonicity of flow lines in their angle and to prove Theorem 1.4—that the range of
an SLE ¢/, trace can be realized as a light cone of points which are accessible by angle
restricted SLE, trajectories, k € (0,4)—in a certain special case. Then, in Sect. 6,
we will prove a number of technical estimates which allow us to rule out pathological
behavior in the conditional mean of the GFF when multiple flow and counterflow lines
interact. This will allow us to compute the conditional law of one path given several
others. Finally, in Sect. 7 we will complete the proofs of our main theorems.
The general strategy in Sects. 4—7 is the following:

1. We first show that non-boundary intersecting flow and counterflow lines are
deterministic functions of the field and respect certain monotonicity properties
(Sects. 4, 5).
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2. We will then explain how to compute the conditional law of one non-boundary-
intersecting path given several others in Sect. 6. The conditional law will always
be an SLE, (p) type process. Even though the paths we consider in Sects. 4-6 do
not intersect the boundary, they can intersect each other.

3. We will use this in Sect. 7 to derive the corresponding statements (as well as
continuity of the trajectories) for boundary intersecting paths from our results in
the case that the paths are not boundary intersecting using conditioning arguments.

2 The Schramm-Loewner evolution
2.1 Overview of SLE,

SLE, is a one-parameter family of conformally invariant random curves, introduced
by Schramm [27] as a candidate for (and later proved to be) the scaling limit of loop
erased random walk [16] and the interfaces in critical percolation [2,33]. Schramm’s
curves have been shown so far also to arise as the scaling limit of the macroscopic
interfaces in several other models from statistical physics: [3,17,34-36]. More detailed
introductions to SLE can be found in many excellent survey articles of the subject,
e.g., [14,38].

An SLE, in H from 0 to oo is defined by the random family of conformal maps
g: obtained by solving the Loewner ODE (1.6) with W = ,/k B and B a standard
Brownian motion. Write K; := {z € H : 7(z) < t} where t(z) = sup{r > 0 :
Im(g;(z)) > 0}. Then g, is the unique conformal map from H;, := H\K; to H
satisfying lim ;| o0 |8/ (2) — 2| = 0.

Rohde and Schramm showed that there a.s. exists a curve 7 (the so-called SLE frace)
such that for each ¢ > 0 the domain H; of g, is the unbounded connected component
of H\n ([0, t]), in which case the (necessarily simply connected and closed) set K, is
called the “filling” of n([0, ¢]) [24]. An SLE, connecting boundary points x and y of
an arbitrary simply connected Jordan domain can be constructed as the image of an
SLE, on H under a conformal transformation ¢ : H — D sending 0 to x and oo to y.
(The choice of ¢ does not affect the law of this image path, since the law of SLE, on
H is scale invariant.)

2.2 Definition of SLE, (p)

The so-called SLE, (p) processes are an important variant of SLE, in which one
keeps track of additional marked points. Just as with regular SLE,, one constructs
SLE, (p) using the Loewner equation except that the driving function W is replaced
with a solution to the SDE (1.10). The purpose of this section is to construct solutions
to (1.10) in a careful and canonical way. We will not actually need to think about the
Loewner evolution on the half plane for any of the discussion in this subsection. It will
be enough for now to think about the Loewner evolution restricted to the real line.

We first recall that the Bessel process of dimension § > 0, also written BES?, is in
some sense a (non-negative) solution to the SDE
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8
dX; =dB
r ¢+ X

dt, Xo=>0 2.1

t

where B is a standard Brownian motion. A detailed construction of the Bessel processes
appears, for example, in [26, Chapter XI]. We review a few of the basic facts here.
When é > 1, (2.1) holds in the sense that X is a.s. instantaneously reflecting at O (i.e.,
the set of times for which X; = 0 has Lebesgue measure zero) and a.s. satisfies

t
X=X B
t o+ t+/0 X

ds, Xo>0. 2.2)

N

In particular, assuming § > 1, the integral in (2.2) is finite a.s. so that X, is a semi-
martingale. The solution is a strong solution in the sense of [26], which means that X
is adapted to the filtration generated by the Brownian motion B. The law of X is
determined by the fact that it is a solution to (2.1) away from times where X; = 0,
instantaneously reflecting where X, = 0, and adapted to the filtration generated by B.

Regardless of §, standard SDE results imply that (2.2) has a unique solution up until
the first time 7 that X; = 0. When § < 1, however, (2.2) cannot hold beyond times
at which X; = 0 without a so-called principal value correction, because the integral
in (2.2) is almost surely infinite beyond such times (see [30, Section 3.1] for additional
discussion of this point). Bessel processes can be defined for all time whenever § > 0
but they are not semi-martingales when § € (0, 1). For this paper, it turns out not to
be necessary to consider settings that require a principal value correction. We may
always assume that either § > 1 or that § < 1 but we only consider the process up to
the first time that X reaches zero.

Fix a value p > —2 and write

2(p +2
L20+D)
K

5=1

noting that § > 1. Let X be an instantaneously reflecting solution to (2.1) for some
Xo = xo > 0. We would like to define a pair W and V¥ that solves the SDE (1.10)
with Wy = 0 and some fixed initial value Vf = x& > 0. To motivate the definition,
note that (1.10) formally implies that the difference VR — W solves the same SDE as
VK X, away from times where it is equal to zero. Thus it is natural to write

t
2
VR — xR +/ —ds,
L0 o VX 2.3)
W, = VR - JkX,.

The standard definition of (single-force-point) SLE, (p) is the Loewner evolution
driven by the process W defined in (2.3).

Let us now extend the definition to the multiple-force-point setting. Although the
definition is straightforward, we have not found a construction of the law of multiple-
force-point SLE in the literature that applies in the generality we consider here. There
are some minor technicalities that arise when solving the SDE (1.10) that do not seem
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to have been fully addressed previously. One definition of SLE, (p) in the case of two
force points, one left and one right, both starting at zero (constructed by continuously
rescaling so that the force points stay at 0 and 1 and using a time change to reduce the
problem to a one-dimensional diffusion) appeared in [36], and it was shown that when
k = 4 the process defined this way is a scaling limit of discrete GFF level lines with
certain boundary conditions. However, [36] did not provide a general-« explanation of
the sense in which the definition was canonical. One could worry that subtle changes
to the way that the process gets started, or the way the process behaves when force
points collide with W;, could lead to different but equally valid definitions of SLE, (p).

Definition 2.1 Let B be a standard Brownian motion. We will say that the continuous
processes W and V"¢ describe an SLE, (p) evolution corresponding to B (up to
some stopping time) if B is a Brownian motion with respect to the filtration F; =
o (By, Wy, Vi'? : s < t) and the following hold (up to that stopping time):

1. For every stopping time t for (W, V) which is almost surely a non-collision
time for W and the V%7, we have that the processes W, V4 and B satisfy (1.10)
in the time interval [t, o] where o is the first time after T that W collides with one
of the V*4. Moreover, (W, V%) in [t, o] is adapted to the filtration generated by
(We, Vi'?) and B|[7.01- _

2. We have instantaneous reflection of W off the V"4, i.e., it is almost surely the case
that for Lebesgue almost all times ¢ we have W, # V,"? for each g and i.

3. We also have almost surely that V;"¢ = x"7 + [/ Vi.q2 W

ds for each ¢ and i.

The three conditions are equivalent to the integral form of (1.10) (as explained just
below), but it will be convenient to treat them separately. The definition stated above
is motivated by but does not make any reference to Loewner evolution.

Once we are given the first two conditions, Condition 3 rules out extraneous “local
time pushes” that might be made to both W and V%4 on the set of collision times.
Condition 3 actually implies Condition 2 (since instantaneous reflection is required in
order for the integral in Condition 3 to be defined). We will use the term SLE, (p) to
describe the Loewner evolution (g;) driven by W or the corresponding trace (W_hiCh
we will eventually prove to be a continuous path almost surely).

We allow for the possibility that some of the V*© may be equal to one another
when ¢ = 0 or that they may merge into each other at some ¢ > 0 (and similarly for
the VIR, We define the continuation threshold to be the infimum of the 7 values for
which either

Z pi’L < -2 or Z pi’R < 2.

vt =w, v R=w,

We will only construct SLE, (p) for ¢ below the continuation threshold.

We will now explain why Conditions 1-3 from Definition 2.1 imply that the
processes W; and V,"? satisfy the integral form of (1.10).

Fix T,€ > 0and S € (0, T) (non-random). Let Sg be the first time ¢ after S that
both V,]‘L — W; < —¢ and V,I’R — W, > € and let T be the minimum of 7 and the
first time after S¢ that either
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1. there are at least two force points within distance € of W or
2. W is within distance € of a force point with weight less than or equal to —2.

Note that 7z occurs before the continuation threshold is hit. We are going to show that
Conditions 1-3 imply that W, and Vti’q satisfy the integral form of (1.10) in the time
interval [ Sz, Tz]. Once we have shown this, it is then clear that W; and Vti’q satisfy the
integral form of (1.10) up until time 7" (or the continuation threshold is hit). Indeed, by
sending € — 0, we see that the integrated version of the equation is solved in the time
interval from S up until the first time after S that there is a collision of force points
(in which case the force points merge), the continuation threshold is hit, or time 7 is
reached. The result thus follows by inducting on the number of force points and then
taking a limit as S — 0.

Fix € € (0,¢). Let o1 = inf{t > Sz: min; 4 |W; — Vti’q| = 0} and let i1, q1
be such that W,, = Vll A Let 1 = inf{r > oy: |W, - Vtil’q'| > ¢} and note
by the monotonicity of the force points (i.e., the V are decreasing in i and the
V"R are increasing in i) that min; , [W;, — V;%| = ¢ > 0. Suppose that o/, 7;

have been defined for 1 < j < k. We then let oy 41 = inf{r > 7: min; 4 |W, —

V/"?| = 0} and let ix41, get1 be such that Wy, = Vot Let tyy = inf{r >

|W, — V1941 > ¢} and note by the monotonicity of the force points that

Ok+1+
min; ¢ |We,,, — Tk+1| =€>0.

Condition 1 implies that there exists a standard Brownian motion B such that

ojp1nTe l q
zm,w Wont)— 3 [ s
ijaq TinTe -V
=D Vk(Bo, i aT: = Bryat:)- 24)
J

Let Ne¢ = min{j

v

1: 7; > T¢}. By the definition of the stopping times, we have that

D IWeinz: = Wopnrl < Nee + > [V,AL = VIl |
j J
< Neet > |VT' N = Vorhrl- (2.5)
i,),q

Condition 3 implies that the V;"? are absolutely continuous, hence the sum on the right
hand side of (2.5) almost surely tends to 0 as € — 0.

We turn to explain why Ngze — 0 almost surely as € — 0 [at least along a positive
sequence (€x) tending to O sufficiently quickly]. As we will explain momentarily in
more detail, this follows in the case that we have a single force point with weight
p > —2 because of the tail for the amount of time it takes for a Bessel process of
dimension § > 1 to exit [0, €] when starting from €. We can reduce the case of many
force points to this case in the following manner.
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We group the intervals [, 0;41] up until time 7% into two different types: those
intervals in which

1. W starts at distance € of V£ and
2. W starts at distance € of VX,

(By relabeling the V"¢ due to merging, we call V! and VR the rightmost and
leftmost force point, respectively, which is to the left and right, respectively, of W after
time Sz.) Let 7 - (resp. J R consist of those Jj of the first (resp. second) type. For each

J.weleté; g =inf{t > o;: |W, — V,l'i‘qj| >¢€landleto; = min(o;41,&j41, T2).

By the Girsanov theorem, the law of the sequence (W,_,j — th_’éj it e[t 05410

for j € J* up until the first j € JL with t; > T is absolutely continuous with
respect to the corresponding sequence for single-force-point SLE, (p) with p > —2
restricted to the corresponding intervals of time (i.e., when the driving function starts
from distance € of its force point and then is run until either hitting the force point or
reaching distance at least € from the force point).

We are now going to explain why the Radon-Nikodym derivative Z between these
two sequences does not degenerate when we take a limitas € — 0 (with S, T, € fixed).
This argument will likewise give that the same is true when we consider j € 7% in
place of j € JL. Let

1 &j+l pisq

ML=—ﬁ Z/ > ————dB,

,q
jeat?t gz Ws = Vs

and also let

2

(ML)=%Z/%HI D A g

Lq
jegr? apra.y Ws = Vs

be the quadratic variation of M L The Girsanov theorem implies that the result of
weighting the law of (W, V") by

zl = exp(mt — L(m*™) (2.6)

(as a consequence of the deterministic upper bound on (M) that we will momentarily
obtain, we will see that there are not any integrability issues with Z*) is a process which
evolves as a single-force-point SLE, (o) with p > —2ineachof theintervals[z;, 5 1]
for j € JL where the force point and driving function start at distance € from each
other and the evolution is stopped once they either collide or reach distance € from
each other. Let Pj’g denote the resulting law. That is, dP:g/ dP = Z~L. Since in each

of the intervals [}, 5j+1], we know that the distance of W to V*4 for (i,q) #(,L)
is at least €, it then follows that with n given by the number of force points and
C =1 max; 4 (p"9)? we have the deterministic bound

MLy < cnTe 2,

@ Springer



584 J. Miller, S. Sheffield

Using that exp(— ML — % (M"™)) has mean 1 in the third step below (as a consequence
of the bound on (M) given just above), we have that

E[(Z5) "] < "' TE 2B exp(—M b))

< eC”ZTgizE[exp(—ML — %<ML>)] _ CnTE?
We thus have that
Bz 2 = E[(Z5) 2 ZM = E[(Z5) '] < T
Then for any event A, we have that

P[A] = E} A[14(Z5) 7] < (P*[AD2(E! (257!
< eCn2TE*2/2(P:g[A])1/2_ 2.7

We claim that for each fixed ¢ > 0 we have that

lim sup P} o[ Nze > ¢] = 0. (2.8)

e—>0

Indeed, Eq. (2.8) follows because of the tail of the amount of time it takes for a Bessel
process of dimension § € (1, 2) starting from € to hit either 0 or €. To make this
precise, we suppose that X is a Bessel process of dimension § € (1, 2) starting from €.
Fix a > €. Let 19 (resp. ty) be the first time that X hits O (resp. @) and let T = 79 A 7,
be the first time that X exits [0, «]. Using that X tz—s is a continuous local martingale,
the optional stopping theorem implies that

70 = X3 = E[X?°]1 = o> Pl < ). 2.9)

Rearranging (2.9) implies that

Pz, < 10] = (E)H. (2.10)

Applying (2.10) for @ = €/2 and using that Bessel processes satisfy Brownian scaling,
it follows that the probability that X takes at least 22 time to exit [0, €] is at least an
€-dependent constant times €279 Since2—8 € (0, 1) so that the exponent of €2 % isin
(0, 1), we see that (2.8) follows from Chebyshev’s inequality as one can stochastically
dominate from below the sum of the lengths of time required by the process starting
from € to exit [0, €] by a sum of independent random variables which take the value
€% with probability proportional to €274 and 0 otherwise.

Combining, (2.7) and (2.8) along with the Borel-Cantelli lemma implies that
Nge — 0 as € — 0 almost surely (at least along a positive sequence € tending
to 0 sufficiently quickly).
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Since Nge — 0 almost surely as € — 0, by combining (2.4) and (2.5) we conse-
quently have that

ojp1nTe

Z(Wcrj+./\rE Wiinz:) — Z/ —ds
Tj

Lq
i g TN W, — Vi

— WTE WSE Z/ ds ase — 0.
Se

S

We also have that

> (Bent: — Bojar:) | = D (Brjatz — Boyat:)(Byatz — Boiaz2)

=D (Bejnt: — Bojar:)> +2 D (Buatz — Boyat:)(Byaz: — Boyats).

i<j

The second summand above has zero expectation by the optional stopping theorem
since the stopping times are bounded by 7. Since

(Bint: — Boynare)® — (1 ATe —0j A Tz) fort > o

is a martingale for each j, it follows from the optional stopping theorem that the
expectation of the first summand above is equal to

E Z(Tj/\TE_aj/\TE)

J

Note that the quantity inside of the expectation is bounded from above by the minimum
of T and the amount of time that W spends within distance € of the V9. Condition 2
implies that this latter quantity tends to O almost surely as € — 0. Therefore the
expectation tends to zero as € — 0 by the dominated convergence theorem (we may
use the constant function 7' as our dominating function). Consequently, it follows that
the sum of the changes to B in the intervals [o; A Tg, t; A T¢] for 1 < j < Ng tends
to 0 in probability as € — 0. Combining, we have that

lq

Te
Wr — W ———ds = k(B — Bs.) + 0o(1
- — Ws, — Z/ T Vi(Br: — Bs) + o(1)

where the o(1) term tends to 0 in probability as ¢ — 0. By passing along a subsequence
as € — 0, we have that the o(1) term tends to 0 almost surely, hence

Wr. — W, — Z/S — V’ qu = k(B — Bs,).
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By sending € — 0 and then repeating the argument at the successive merging times of
the force points, we thus have almost surely with 7 given by the continuation threshold
that

TAT

p4
Wrar — Wsar — E ——ds = \/E(BT/\T — Bsao). (2.11)
sat Wy — Vil
iq K s

Since both sides of (2.11) are continuous, it follows that (2.11) holds almost surely
forall 0 < § < T. It therefore follows that (1.10) is satisfied in integrated form.

Theorem 2.2 Given the vector p and the initial values Vé’q, Definition 2.1 uniquely
determines a joint law for W;, B;, and the V;"'—each defined for all t up to the

continuation threshold. Under this law, the values W;, B;, and V,l'q taken together are
a continuous multidimensional Markovian process indexed by t.

Proof When there is only a single force point, Theorem 2.2 follows from standard facts
about Bessel processes (see Chapter XI of [26]; recall also (2.3)) and the definition
coincides with the standard definition of SLE, (ﬁ)'

If there are multiple force points but all of the V(;’q are non-zero except for one

(without loss of generality, we may suppose that only VOI’R is possibly zero) then one
can obtain existence of a process with the properties above, defined up until the first
time that one of the otherforce points collides with W;, using a Girsanov transformation
(see the discussion of Girsanov’s Theorem, e.g., in [12,26]) applied to the standard
one-force-point SLE, (p) that one would obtain if VOI’R were the only force point.
Girsanov’s theorem applies because the remaining force points introduce a smooth
drift to the Brownian motion, and the new process obtained is absolutely continuous
with respect to the one-force-point process (as long as one stops at a bounded stopping
time that occurs before W; gets within some fixed constant distance of one the other
force points).

One can also reverse this procedure (starting with a process defined for multiple
force points and applying Girsanov’s theorem to produce the process corresponding to
one force point). If there were multiple possibilities for the joint laws of the W;, B;, and
V/*? in the multiple-force-point case, then this would produce multiple possibilities
for the joint laws in the single-force-point case, contradicting what we have already
established.

This gives us existence and uniqueness of the law up until the first time that one
of the other force points (besides VOI’R) hits W;. When this happens, one can use
this other force point in place of VOI’R (or if this other point is on the right, it will

have merged with VO1 “® and one can subsequently treat the two force points together)
and continue until a force point other than this new one is hit. Iterating this process
uniquely defines the law all the way up to the continuation threshold. (To check this
formally, one has to rule out the possibility that infinitely many of these iterations may
occur in a finite period of time. Since there are only finitely many force points, the
number of times at which two right force points merge, or two left points merge, is
finite. Thus, one needs only to check that it takes an infinite amount of time almost
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surely for W; to alternate between hitting a left force point and hitting a right force
point infinitely often, which is a simple exercise, given that the V;*L are decreasing in
time while the V,i’R are increasing.)

The only remaining case to treat is the possibility that there are two force points
immediately to the left and right of the origin at time zero. Let us first consider the
case that these are the only two force points. We then need to construct a triple of
processes V,]’L <W < V,]’R starting at zero. The hypotheses imply that in any such
construction, we cannot have equality of all three processes at any positive time. Thus,
if we know the processes up to any positive time, then the results above imply that the
law of the continuation is uniquely determined thereafter. In a sense, the problem is
figuring out how to “get the process started”. Since both force points start at the origin,
we will be able to use scale invariance to help us deduce existence and uniqueness of
the law.

As an alternative warm-up problem, suppose we start the process off at time zero
with VO1 L= _1and Wo = 0 and VO1 R —1.The previous discussion yields existence
and uniqueness of the law in this case. Let R be the set of values r for which there
existsaz such thate” = |V,1’L - Wil =W — th’R|. Then R is a subset of [0, co) that
contains 0. By scale invariance and the Markovian property, R has a certain renewal
property: namely, for each fixed a, we have that conditioned on a’ = inf{R N [a, 00)},
the conditional law of R N [a’, 00) is the same as the original law of R translated by
a’ units to the right.

Moreover, we claim that R possesses an additional expectation-boundedness prop-
erty: namely, that the expectation of |a’ — a| is bounded independently of a. In fact,
we claim a stronger result: namely, given any choices for V,l’L and th’R and W; at

LL_ LR

a fixed starting time 7, the expected value of log % (i.e., the amount that the
t TVt

log distance between the force points changes between times ¢ and t), where t is the

smallest value greater than ¢ satisfying |Vr1’L — W = |W; — VT"R |, is at most some

fixed constant. This follows from the fact that, no matter where the force points begin
at some fixed starting time, there is a uniformly positive probability that W; will be
exactly between those two force points before the distance between them doubles.
It is enough to show this for the worst case in which W; starts out equal to one of
the two force points, and this follows from absolute continuity with respect to Bessel
processes.

We remark that renewal property described above is enjoyed by other random sets
familiar to the reader: e.g., the zero set of a Brownian motion or more generally the
zero set of a Bessel process with dimension in (0, 2). However, these random sets do
not enjoy the expectation-boundedness property described above. We further recall
the well known fact that each of these random sets can be written as the range of an
increasing stable Lévy process, where the Lévy jump measure v is an infinite measure
on (0, oo) whose density function is a power law. It is not hard to deduce from the
renewal property that the random set R is also the range of an increasing stable Lévy
process, albeit with a different (not necessarily power law) measure v.

Given a fixed @ > 0 and the largest value a” in (—o00, a] N R, the law of @’ — a” is
given by the measure v restricted to the interval (a — a’, 00), and normalized to be a
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probability measure. The finite expectation argument above implies that |, boo rdv(r) <
oo for any b > 0. Now a natural way to construct the SLE, (ﬁ) process is to take a

very negative value r and start the process with Vol’L = —e", Wo =0, and VOI’R =e".
Taking the limit as » — —oo, the law of the corresponding sets R (and of the entire
triple of processes V,I’L , Wy, th’R ) converges to a limit w.r.t. the Hausdorff topology
on compact subsets of R. One can show this by considering two very small values
r < r’, generating corresponding sets R and R’, and then taking r” to be the smallest
value which lies in one of the sets R and R’ and is of distance at most § from the
other set. One can discover this point via a sort of “leapfrog” exploration. Namely,
one first explores the points in R (following the Lévy process) until the first time one
discovers a point larger than (or within § of) r’. One then observes the points in R’
until discovering a point larger than (or within § of) the set of discovered points of
R, and so forth. After discovering the point r”, one can then couple R and R’ to be
translations of each other (by an amount less than §) ever after; by scale invariance, one
can take the corresponding V,l’l‘, Wi, Vll’R processes (after the corresponding small
times) to be rescalings of each other by a factor close to 1. If we fix some K > O,
then Hausdorff-metric compactness implies the existence of subsequential limits of
the laws of RN[—K, K]and R’ N[—K, K] exist. The argument above shows that any
such limits can be coupled in such a way that they agree (up to Hausdorff distance §)
with probability arbitrarily close to one; since § is arbitrary, this implies that there
must be a unique limit. Since K can also be arbitrary, we obtain both the existence of
a limiting random set on R and the fact that there is a unique process satisfying the
hypotheses of Definition 2.1.

The extension from two force points (both at the origin) to many force points (two
at the origin) is the same Girsanov argument given above.

Remark 2.3 Suppose that 7 is an SLE, (o%; p®) process where >/_ p™4 > § -2
forall 1 < j < |p?| and g € {L, R}. Assume further that x’'% < 0 < xR Then 5
is almost surely a continuous curve because its law is mutually absolutely continuous
with respect to the law of an SLE, process (with no force points) up to every fixed
time ¢. The reason is that, in this case, a comparison with Bessel processes implies
that W; # V" forall 1 <i < |p?| and ¢ € {L, R}, so one can compute the Radon—
Nikodym derivative explicitly using Girsanov’s theorem. Moreover, 7 is almost surely
continuous even if x1'© = 0~ and x!*® = 07, the reason being that we can apply the
same Girsanov argument to 7|(s,;] forevery 0 < s < r. We will use this fact repeatedly,
often without reference, throughout the article.

2.3 Martingale characterization of SLE, (p)

The SLE, (p) processes are singled out by the following martingale characterization,
which we will use repeatedly. A version of this result for SLE, (p = 0) appears in [6,
Section 7.2]. The argument that we present here is similar to the one in [6].

If we are given any process W, with Wy = 0 we can define the Loewner evolution
g:. If we are also given a set of points xL < 0 and xR > 0 then we can define

processes Vli’q such that if x*¢ has not yet been absorbed by the Loewner hull K,
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then V,i’q = g;(x"?), and otherwise x"% (resp., x"®) is the g; image of the left (resp.,
right) endpoint of R N K.

Theorem 2.4 Suppose we are given a random continuous curve 1 on H from 0 to oo
whose Loewner driving function W, is almost surely continuous. Suppose that xba
and p"9 values are given and that the V;" are defined to be the images of the x4
under the corresponding Loewner evolution (as described just above). Let b; be the
corresponding harmonic function in the statement of Theorem 1.1. Then W; and the
V,l’q can be coupled with a standard Brownian motion B, to describe an SLE,(p)
process (up to the continuation threshold) if and only if b, (z) evolves as a continuous
local martingale in t for each fixed z € H until the time z is absorbed by K;.

The assumption that n has a continuous Loewner driving function implies that n
is non-self-tracing and does not trace 0H and that 1 does not enter into the bounded
components that it draws. See Proposition 6.12.

Proof of Theorem 2.4 That b, evolves as a continuous local martingale if W, and ;"¢
correspond to an SLE, (o) can be seen by applying It6’s formula. Thus, we need only
prove the reverse implication. We will assume that b, is a continuous local martingale
for each z € H and verify the conditions of Definition 2.1 one at a time:

Proof of Condition 1 Let H, be the harmonic conjugate of h;. This is only defined a
priori up to additive constant, but since the harmonic conjugate of arg(z) is log |z|, we
can fix the additive constant by writing b} (z) := —b;(z) + ih;(z) as follows:

k
=S P log(fi(2) — i) — log( i (2)

i=0

14
+ > o R im —log(fi(2) = fie"®)) + (im —log(f:(2))) — ”TX log f/(2)-
i=0
(2.12)

One can show that E, (z) — E, (y) is a local martingale for any fixed y and z by using
the fact that this quantity is a linear function of b, (representable as the integral of b,
times a test function) and applying Fubini’s theorem. Taking one of these points to
infinity, we find that in fact b, and hence b; is a local martingale.

Observe that h;(z) = Im(h}(z)) evolves as a continuous semi-martingale in the
intervals in which the f; (x4) are not colliding with W;. Indeed, note that in the
expression (2.12) above f;(z) — f,(x"F) = g(z) — g/(x"L) and f/(z) = g/(z) are
both differentiable in ¢. Thus, the terms of the form log(f;(z) — f;(x"F)) in (2.12)
are semi-martingales (and likewise when L is replaced by R and for log f/(z)). Note
also that W; appears only in the term —2 log( f;(z)) = —2log(g:(z) — W;). Since the
other terms are semi-martingales, this term is a semi-martingale, as is its exponential,
which implies that W; is a semi-martingale.

Write

W,:vt+mt
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where, in the non-collision intervals, v; (resp. m;) evolves as a process of bounded
variation (resp. continuous local martingale). We will next show that m; evolves as
/K times a Brownian motion in the non-collision intervals by proving d(m); = «dt
for such ¢ and invoking the Lévy characterization of Brownian motion. To see this, we
compute the It derivative of (2.12). Observe

Flo) = 1 ( 2 )’__ 2
ke fO=25\70) = 7o

Consequently, the drift of the Itd derivative of (2.12) takes the form

k

20" Ld1 o 2pMRar
Z : i,L +Z L i,R
SH@AGD S @A
2 4 2 1
+ K dt = — —di + ——dv, + ——d(m),.

ME Q@) fA@) fi(2) 1 @)

This has to vanish since b} is a local martingale. Thus if we multiply through by
f,2 (z) and evaluate at two different points [or simply consider points for which f;(z)
is extremely close to zero], we see that we must have

2x
(T — 4) dt +d(m), = 0.

This implies d (m), = «dt, as desired. Inserting this back into the formula for the drift
and solving for v, shows that v, takes on the desired form.

What we have shown so far implies that if t is any stopping time for the driving
process (W, V©9) which is almost surely not a collision time then we have that

Wepr — Wy — / Z ds—fB") (2.13)

where B(™ is a standard Brownian motion, at least up until the first time ¢ > 0 such
that ¢ + t is a collision time of (W, V"9). We will now argue that there is in fact a
single Brownian motion B such that

Worr—we— [ 3 R b

for all such stopping times t up until the first  so that t + ¢ is a collision time of
(W, Vi"f). This will complete the proof of Condition 1. To see this, we fix € > 0 and
inductively define stopping times o, 7; as follows. We let og be the infimum of times ¢
that the distance between W and the V4 is at least € and let 7y be the first time after
o0 that W collides with one of the V9. Assuming that o j» T; have been defined for
0 < j < n, welet 0,11 be the first time after 7,, that the distance between W and the
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Vi is at least € and let Tn+1 be the first time after 0,41 that W collides with one of the
V4. We can define a Brownian motion B¢ by defining B¢ +o; B6 as in (2.13) for
t € [0, t; — o] for each j and sampling the evolution of B€ as a standard Brownian
motion independently of everything else in the intervals of the form [z}, oj41]. Note
that the joint law of B€ and (W, V") restricted to any compact time interval [0, T']
is tight as € — 0 as the marginal laws of B€ and (W, V%) do not change with .
Consequently, there exists a sequence (€x) of positive numbers decreasing to 0 such
that the joint law of B and (W, V9) converges weakly to a limit. This gives us a
coupling of a standard Brownian motion B with (W, V7).

We will now show that (2.14) holds (up until the first # such that T + ¢ is a collision
time) for the coupling of B with (W, V/:9). In what follows, it will be helpful to
introduce some extra notation. For each € > 0, we will let (W€, V9-€) and B€ have
the same joint law as (W, V9) and B¢ introduced just above. We suppose that t
is a fixed stopping time as above and write t¢ for the corresponding stopping time
for (W€, Vi-a:€), By compactness, there exists a subsequence (¢, ) of (ex) such that
the joint law of (W<, V#9€ic), % and B converges as k — oo to a triple
(W, Vi), T, and B. Note that the joint law of (W, V"*9) and T is the same as the joint
law of (W, V"4) and t because it is the same as the joint law of (W<, V"9:%i) and
7% for all k. This implies that T = t is determined by (W, V/9) (as 7 is a stopping
time for (W, V’9)). Consequently, the limiting joint law of (W, V/*9), 7 = t, and
B does not depend on the choice of subsequence (¢, ) of (e;) and therefore we have
the weak convergence of the joint law of (W<, V*4:%) ¢ and B to the joint law
of (W, Vi ), 7, and B. By the Skorohod representation theorem, we may couple the
(W€, Via-€) g€ Be and (W, Vi4), 7, B onto a common probability space so that
the convergence is almost sure.

By the definition of B, we observe that (2.14) holds for (W€, V/4-¢) ¢ and
B¢k (up until the first ¢ such that 7€ 4-¢ is a collision time) on the event that the distance
between W, and the V;;Z’E" is at least ;. Using that the joint law of (W€, Vi:9-)
and ¢ does not depend on k, we have that the probability of this event tends to 1 as
k — 00. We will now deduce from this that (2.14) holds for (W, Vi4) 7, and B (up
until the first ¢ such that t + 7 is a collision time). For each ¢ > 0, letting

k4t i,q
€k __ €k €k p 6k
A=Wty = Wed - / W 2 a e T Ve(B,, — Bl and
T¢% i,q WS — V
A= Wepr — Wy / Z s — K (Bess — Bo).

and, for each §, T > 0, 75,7 be the minimum of 7 + 7" and the first time ¢ after  that
the distance between W, and the V,"? is at most &, we will show this by arguing that

sup  |AF — A - 0 ask — oo. (2.15)

re[0,75,7 7]

Note that on the event that the distance between W, and the Vti’q is equal to or
smaller to §, we have T = 75, 7. We define ‘L’a 7 similarly with (W€, V*4-€) in place
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of (W, Vi4). By the argument explained just above (with 156 *, and 5 7 in place of
7% and 7) and recoupling the laws if necessary using the Skorohod representation
theorem, we almost surely have that r§ "T — 15,7 as k — oo. The almost sure local
uniform convergence of W, Vid-€ B¢ to W, Vi, B, the convergence of T to 7,
and 7:56 kT to 75,7 as k — oo implies we have both

sup  |(W. Ekﬂ—WGL‘k — (Weqt —Wo)| = 0 ask — oo

T
te[0,75,7—7]

sup  |(Bi&,, — Bi&) — (Brys — Br)| = 0 ask — oo.
te[0,75,7—7]

Thus to finish proving (2.15), we need to prove the uniform convergence of the integral
in Af* to the integral in A,. Let I;* (resp. I5) denote the integrand in the integral in
the definition of Af* (resp. A,). Then we have that

Tk 4t T+t kvt T+t
/ ISkds —/ Lds 5/ [IEK] + 1%, \ds +/ |k — I|ds.
Tk T T

% AT
The convergence of T to T and the uniform convergence of W€, Vi4:¢% B¢ to
W, V&4, Bin [0, t5,7] implies that I* converges uniformly to /; in [7, t5,7] as k —
00. Therefore second integral on the right hand side of (2.16) tends to 0 as k — oo.
It is similarly not difficult to see that the first integral on the right side of (2.16) tends
to 0 as k — oo.

We have shown that (2.14) holds for (W, V*9), t, and B (up until 75,7 — 7). Since
8, T > 0 were arbitrary, we therefore have that (2.14) holds for (W, Vi’q), 7,and B
(up until the first ¢ that T + ¢ is a collision time).

We note that at this point we have constructed a coupling of a standard Brownian
motion B with (W, V©9) so that Condition 1 holds. We will now check that B is a
Brownian motion with respect to the filtration F; = o (Wj, V; 4 By s < t). To
prove this, it suffices to show that B|[; ) — B¢ is a Brownian motion independently

(2.16)

of (W, V{'?) where 7 is a stopping time as above In order to justify this, we will
first argue that the conditional law of B€|[z¢ o) — BSe given (W, V, Vi) is that of
a standard Brownian motion. Let a;, r; be as deﬁned above for (W6 Vi4-€). By
definition, we can write

BE = M) + M>< Z(Bm 1/\0‘) + Z(Bm We) (2.17)

where Ef fort € [o]?, r;] is determined from (W€, V»9-€) as in (2.13) and BE is
a standard Brownian motion which is 1ndependent of (W€, Via: 5) From the rep-
resentation (2.17), it is easy to see that M €+t — Mt16+[ and M €+z — Mrzge are
both continuous martingales with respect to the filtration generated by (W¢, l 1€y
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and §§ for s < 7€ + . Consequently, Bic , — B:. is also a continuous martin-
gale with respect to the same filtration. Moreover, it is easy to see from (2.17) that
(Bge,. — Bie); = t for all t > 0. Therefore the Lévy characterization of Brown-

ian motion 1mphes that B[T€ o) — B¢, has the law of a standard Brownian motion

conditionally on (W&, V).
Fix T > 0 and a bounded function f on the Cartesian product of the space of

continuous functions defined on the interval [0, T'] equipped with the uniform topology
z q €k
'L’

and R” where n is the number of elements of the vector (W &> ). This implies

that

VR = ELf(B, W, V)]

T

lim E[f(B*(t% + )ljo,r] — Be&,, Wik,
k— 00

where B is a standard Brownian motion on [0, T'] which is independent of W, Vti a

quek

Since the joint law of B (e e 47 and (W:fk, %

) converges to the joint law of

B[z, r+717 and W, VTi’q as k — oo (as explained just above), we have that
E[f(B, Wr, V})] = ELf(B(t + )lj0.1] — B, Wr, V)9)].

The claim thus follows since f was an arbitrary bounded, continuous function.

Proof of Condition 2 To obtain instantaneous reflection, note that the set of times ¢ at
which W; is equal to a force pointis a subset of the set of times at which () € 0H = R.
It turns out that this set must have Lebesgue measure zero for any continuous path n
with a continuous driving function. This fact is stated and proved as Lemma 2.5 below.

Proof of Condition 3 We know that V,1 Lisa non-increasing process which, by Condi-
tion 1, evolves according to the Loewner flow driven by W; in those intervals of time
in which th’L # W;. In particular, this implies that if we have any finite collection of
disjoint open intervals (a;, bj) for 1 < j < k such that Vsl’L # Wy foralls € (aj, b))
and 1 < j < k then for t > by we have that

k k b:
1L 1L 1L _Z / 2
Vt = E (Vbj _Vaj )— / mds
j=1 j=174i s T Ws

Since this inequality holds for any finite collection of disjoint open intervals contained
in{s € [0,1] : W # VSI’L} and {s € [0, ] : Wy, = Vsl’L} has Lebesgue measure zero,
by the monotone convergence theorem we have that

L ! 2
Vt, f/TdS
o Vit — W

In particular, (VS1 L W)l <0is integrable on bounded intervals of time in [0, 00).
The same argument implies that
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! 2
A 5/ ST
u Vs - Ws

forall 0 < u < t. Therefore

! 2 1,L
[[= Tds—V,’
0 V&" _Ws

is non-decreasing.

We claim that I; is almost surely zero. To prove this, consider a force point V,I’L
with which W; can collide. We define an interval of time (s, ¢1) such that sy is the first
time at which V,I’L = W, and 1, is the first subsequent time at which |Vll’L — W =e.
Inductively, we define s; to be the first time after #;_; at which V,I’L = W, and then
take #; to be the first subsequent time at which |Vt1’L — W;| = €. We consider how
much the quantities V,I’L, I; and h;(z) change during the intervals (s, tx) withfy < T
where T is a stopping time that a.s. occurs before W; gets within some fixed distance
of V,I’L. Fix some zp € H and further assume that T is a.s. bounded by some fixed
constant, that 7" a.s. occurs before Im (g;(z9)) gets below some fixed positive value
and also before h;(zp) a.s. changes by at most some fixed constant amount.

The sum of the changes to fot 2(VS1’L — W)~ lds during the intervals (s}, ¢;) tends
to zero as € — 0 (simply because the integral is finite a.s. and the combined Lebesgue
measure of the intervals tends to zero with €). Thus the overall sum of changes to
V,l’L during these times tends to the I, change as ¢ — 0. We will now argue that it
is almost surely the case that the sum of the changes th’L — W; makes during the
intervals (s}, ¢;) tends to zero as € — 0. To see this, we note that the change in each
interval is equal to € by definition. Thus controlling the total change is equivalent to
controlling the number of such intervals before time 7'. This, in turn follows, from
the same argument that we used to show that Nzce — 0 as € — 0 in the proof that
Conditions 1-3 imply that the integrated version of (1.10) given above (which we
emphasize only uses the form of the evolution of the process at times when it is not
colliding with a force point). Thus, the overall sum of the changes to W, during these
intervals must also tend to the /; change as ¢ — 0. Since the Lebesgue measure of the
union of the intervals tends to zero as € — 0, it follows from Loewner evolution that
the sum of the changes made to any force point V¢ other than V,I’L tends to zero.

Recalling the definition of h; (in terms of W; and the Vi:4) in Theorem 1.1 and
the fact that Im g;(zp) is bounded below (recall that we fixed zo above), we find that
if € is sufficiently close to zero, the sum of the net changes to h;(zp) during the
intervals is between constant non-zero-same-sign multiples of the I; change (due to
the corresponding changes to the pair W, and V,l’L during these intervals—the effect
from changes to other force points becomes negligible as € — 0). Thus to prove that
the amount /, changes up until time 7 is zero, it suffices to prove that the sum of the
net changes made to 0;(zo) during these intervals tends to zero as € — 0.

To this end, note that the expected size of the total change of h;(zp) during these
intervals is zero since b, (zp) is a local martingale that is bounded if stopped at time T’
(hence a martingale if stopped at time 7).
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We claim that Conditions 1 and 2 together imply that the quadratic variation of
b:(zo) that occurs during these intervals tends to zero as € — 0. To see this, we recall
that in the non-collision intervals (¢;, s41) we have that the evolution of W, — V,l’L
is absolutely continuous with respect to the law of /k times a Bessel process with
dimension in (1, 2) where in each such interval the Bessel process starts from € and
is then run until it first hits 0. In particular, we can weight the law of (W, V/:9) by a
Radon-Nikodym derivative Z¢ which has the same form as in (2.6) so that, under the
weighted law, in the intervals of time of the form (¢;, s;11) we have that W, — V,I’L
evolves as /i times a Bessel process up until the stopping time 7 defined above.
That is, under the weighted law, we can construct a coupling between W, — V,I’L
and /k times a Bessel process X so that the two processes agree in the intervals of
time in which they are making excursions from € back to 0 up until the stopping time
T defined just above. Since we are considering (W, V*9) up until time T, just as in
the case of (2.6) in our proof that Conditions 1-3 imply that (1.10) is satisfied in
integrated form, we have that this Radon—Nikodym derivative Z¢ has finite moments
of all (positive and negative) orders, each of which is bounded uniformly in € (recall
the arguments just after (2.6)).

For each € > 0, we let (W€, V:4:€), Z€ be an instance of the processes described
just above and let T¢ be the stopping which corresponds to 7. Then there exists
a sequence (ex) of positive numbers decreasing to O so that the joint law of
(W€, Vi) 7 T converges weakly (with respect to the uniform topology on
compact intervals) to a limit (W, V#4), Z, T [where the joint law of (W, V/9) and
T is the same as just above; this follows from the argument given in the proof of
Condition 1]. By the construction, the law of the non-collision intervals of W — th’L
under the law weighted by Z agree in law with those of /k times a Bessel process,
up until the stopping time 7. That is, under the weighted law, we can construct a
coupling of W — V,I’L with /i times a Bessel process so that the excursions that
each makes from 0 are the same, up time time 7. Combining this with Condition 2
and [30, Proposition 3.3],> this implies that W; — th’L is absolutely continuous with

5 We note that [30, Proposition 3.3] states that if X is a continuous process which is adapted to the filtration
of a Brownian motion B, solves the Bessel SDE of a fixed dimension § € (0, 2) when it is not hitting
0, and is instantaneously reflecting at 0, then X has the law of a Bessel process of dimension 8. This
result holds under more generality, namely one may assume that for every stopping time 7 for X such that
Xt # 0 almost surely with o = inf{r > 7: X; = 0} we have that X|[; +] is adapted to the filtration
Ft = 0(X¢, Bs: s < t) and that B|[; o) is a Brownian motion with respect to F; for t > 7. To see
this, we note that under these hypotheses we have that for each € > 0 the law of the ordered collection of
excursions that X makes from € to 0 has the same law as the corresponding collection for a Bessel process
X as the Bessel SDE has a unique strong solution. Therefore we can couple the laws of X and X together
so that these excursions are equal. By sending € — 0, we get an asymptotic coupling between the laws of
X and X so that the ordered collection of excursions that X makes from 0 is equal to the corresponding
collection for X. Fix t > O and let Ay (resp. A,) be the amount of quadratic variation accumulated by X in
{s <t: X5y #0} (resp X in {s <1: Xy # 0}). Then A; (resp. A;) is equal to the amount of time that X
(resp. X) has spentin {s: X5 # 0} (resp. {s: X5 # 0}) by time 7. Since both X and X are instantaneously
reflecting at 0, it follows that A; = A, = t almost surely. On the other hand, by the construction of our
coupling between X and X we almost surely have for any fixed 7 > 0 that X4, = X i Combining, this

implies that X; = X, almost surely for each fixed ¢+ > 0. Thus as both X and X are continuous, we have
that X; = X; for all # > 0 almost surely, as desired.
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respect to 4/k times a Bessel process even in the intervals in which it is hitting 0.
Combining this with the argument used to prove Condition 1, we have that (W, V9)
is a semimartingale for all times and the quadratic variation of W is given by « ¢ for all
t. Consequently, we have that d(h,(z9)) = «Im(1/f; (z0))2dt for all ¢, which proves
the claim.

Let T, denote absolute value of the total (cumulative) change to ;(zo) that occurs
during these intervals. On the event that the quadratic variation is less than some
value §, the probability that 7, exceeds a constant a > 0 is bounded by the probability
that the absolute value of a Brownian motion run for time § exceeds a.

Now, one can use the Borel-Cantelli lemma to show that we can take a sequence (€ )
of € values decreasing fast enough so that the event that the quadratic variation cor-
responding to € a.s. exceeds 27 for at most finitely many k. On this event, one can
use the probability bound above and another application of Borel-Cantelli to show
that T¢, a.s. exceeds a for at most finitely many values of k. Since this is true for any
a, we conclude that a.s. limg . T¢, = 0. Hence the sum of the changes to /; during
these intervals tends to zero, and since /; only changes when W, — V,I’L = 0 we find
that 7; is almost surely constant up until time 7. Repeating this procedure iteratively
(choosing new zg values as necessary) allows us to conclude that I; is almost surely
constant for all time.

We have now shown that (W, Vi ) satisfies Conditions 1-3 in Definition 2.1, which
completes the proof. O

Lemma 2.5 Suppose that 1) is a continuous (non-random) curve on H from 0 to oo with
a continuous Loewner driving function W;. Then the set {t: n(t) € R} has Lebesgue
measure zero.

Proof First we recall a few basic facts about the half-plane capacity (which we will
denote by hcap). Let A and B and C be bounded hulls, i.e., closed subsets of H whose
complements are simply connected. (We interpret all bounded sets X written below
as hulls by including in X the set of points that it disconnects from infinity and then
taking the closure.) We claim that the following hold:

1. hcap(A U B) < hcap(A) + hcap(B).
2. hcap(A U BU C) — hcap(A U B) < hcap(A U C) — hcap(A).

The first is seen by recalling one of the definitions of half-plane capacity:

heap(A) := lim sE[Im B,

where B'* is a Brownian motion started at is and t is the first time it hits A U R.
For the second one, let g4: H\A — H be the conformal map normalized so that
lim;_,« |g4(z) — z| = 0. Recalling the additivity of capacity under compositions of
normalizing maps, the second claim above is equivalent to

hcap(ga(B U C)) — hcap(ga(B)) < hcap(ga(C)),

which follows by applying the first claim to g4 (B) and ga(C).
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Now, to prove the lemma, it suffices to show that for each R, the set of capacity times
at which the tip of the path lies in [— R, R] has Lebesgue measure zero. The capacity
of the closure Sj of the rectangle S5 :={x +iy: —R <x < R,0 <y < §}tendsto
zero as & tends to zero. By the continuity of 7, the set n~ ! (S5) is a countable collection
of disjoint intervals. Let / = U;(s;, t;) be the union of those (disjoint) intervals in
n‘l (Ss) during which n hits R at some point. Now we claim that the total half-plane
capacity time elapsed during 7 is at most the capacity of Ss. Clearly, hcap(5 ([0, £]1NSs))
is non-decreasing and bounded by hcap(S;). The change to hcap(n(I N[0, ¢])) during
an interval (s}, ¢;) is greater than or equal to the change to hcap(n7([0, ¢])) during that
time. This follows from the second property above if we take B = n([0, s;]) and
A =n(IN[0,s;]) and C = n([s;, t;]). [We note that A U R is connected because
n((s;,1;)) URis connected for each j as n hits R at a time in (s}, ;). For the same
reason, C U R is connected.] Summing the changes over the (s}, ¢;), we find that the
total change to hcap(#n ([0, t])) during such intervals is at most the capacity of Ss. By
taking § — 0, we find that indeed the set of capacity times at which the tip of the path
lies in [— R, R] has Lebesgue measure zero. O

Consider an SLE, (p) process (W, Vvia), et (g:) be the Loewner flow driven by
W, and let (K,) be the corresponding growing family of hulls. Then we can write
g:(K;) = [L¢, R;]. It will be important for us in this article to know that L and R both
solve the Loewner equation driven by W (up until the continuation threshold is hit).
In particular, once either L or R have collided with one of the Vi4  the two processes
will continue to agree. That this holds in the case of single-force-point SLE, (p) with
p > —2 is remarked just before the statement of [15, Lemma 8.3], however a proof of
this fact is not given in [15]. We will now explain why this is true. We first note that by
absolute continuity (i.e., the Girsanov theorem), it suffices to explain why the result
holds for single-force-point SLE, (p) with p > —2. Indeed, this follows because W
can only interact with one force point at a time except at the times when force points
merge and the set of such times is finite (at each merging time, the number of force
points decreases by at least 1). The result in the setting of single-force-point SLE, (p)
with p > —2 will follow from two observations.

Before making these two observations, we will first explain why the result is true
for ordinary SLE (so that p = 0). Let 1 be the SLE trace. In this case, we know that R;
evolves according to the Loewner flow in those time intervals in which 7 is not hitting
oH. This implies that R, — W, evolves as /k times a Bessel process of dimension
1+ % in those time intervals in which it is not hitting 0. Moreover, by Lemma 2.5
we have that R; — W; is instantaneously reflecting at 0. These two properties together
imply that R, — W; = \/k X, for all t > 0 where X; is a Bessel process of dimension
1+ %. This proves the claim for ordinary SLE.

Now we are going to generalize the result to the setting of SLE, (p) for p > —2.
Let (W, V1-R) be the driving process. First, by using absolute continuity to compare to
the case of ordinary SLE, we have that R, evolves according to the Loewner flow up
until time 7, the first time ¢ that R, and th’R collide. We now claim that R; > V,I’R for
all r > 7. To see this, we note that both R; and V,I’R evolve according to the Loewner
equation when they are not colliding with W,. The claim follows because we know that
Vl1 R does not get any extraneous pushes when it is colliding with W; (since th’R - W
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evolves as /i times a Bessel process of dimension § > 1), R; is monotone increasing
(so extraneous pushes during collision times can only push R; further to the right),
and both th’R and R; evolve according to the Loewner flow in those intervals when
they are not colliding. In particular, if there is an interval in which R, < V,I’R which
starts after time 7, then we get a contradiction because then d(R; — V,I’R) > 0 1in this
interval. Since fé 2(VS1’R — W)~ ds exists, that R, > th’R after time 7 implies that
fot 2(Ry — W)~ lds exists. We also have that d (R, — th’R) < 0 whenever R; > Vll’R
as both processes evolve according to the Loewner flow driven by W at such times.
Therefore there cannot be such intervals, hence V,I’R > R, fort > 1, and therefore
V,I’R = R, for all + > 7. Thus since V,I’R solves the Loewner equation driven by W
for t > 7, so does R;.

Although we will not use it in this paper, we remark (and sketch a proof) that it is
possible to give an alternate martingale characterization in which one only requires
bh:(2) to be a local martingale for a single point z, but one requires a particular form
for its quadratic variation:

Theorem 2.6 As in Theorem 2.4, suppose we are given a random continuous 1 on
H from 0 — oo whose Loewner driving function W; is almost surely continuous.
Suppose further that W, describes the evolution of a random continuous path, and V,"*
the image of force points under the corresponding Loewner evolution, and that for
some fixed 7 € H the correspondingly defined b,(z) is given by \/« times a Brownian
motion when time is parameterized by minus the log of the conformal radius. Then
these processes describe an SLE,(p) evolution at least up to the first time that 7 is
swallowed by the path. B

Proof The proof is similar to the proof of Theorem 2.4. Condition 1 follows from a
straightforward calculation (see, e.g., [31,37] for more explanation of the log confor-
mal radius point of view) and the other two follow from the arguments in the proof of
Theorem 2.4. O

3 The Gaussian free field
3.1 Construction and basic properties

We will now describe the construction of the two-dimensional GFF as well as some
properties that will be important for us later. The reader is referred to [29] for a more
detailed introduction. Let D € C be open with harmonically non-trivial boundary.
By this, we mean that a Brownian motion started at z € D almost surely hits D. Let
C§° (D) denote the set of C* functions compactly supported in D.

We let H(D) be the Hilbert-space closure of C;°(D) equipped with the Dirichlet
inner product:

1
(f, v =5— / Vf(x)-Vg(x)dx for f, g € C¥(D).
T JD
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The GFF h on D can be expressed as a random linear combination of a (-, -)y-
orthonormal basis (¢,,) of H(D)

h=>) anpn. (@) iid. N(O,1).

Although this expansion of & does not converge in H (D), it does converge almost
surely in the space of distributions or (when D is bounded) in the fractional Sobolev
space H (D) foreach e > 0 (see [29, Proposition 2.7] and the discussion thereafter).
Let (-, -) denote the standard L2 (D) inner product. If f, g € Cg° (D) then an integration
by parts gives (f, g)v = —(27) ' (f, Ag). Using this, we define

1
(h, fiv = _E(h’ Af) for f e C¥(D). 3.1

Observe that (h, f)v is a Gaussian random variable with mean zero and variance
(f, f)v. Hence h induces a map CSO(D) — G, G a Gaussian Hilbert space, that
preserves the Dirichlet inner product. This map extends uniquely to H (D) and allows
us to make sense of (k, f)y for all f € H(D) and, moreover,

Cov((h, f)v. (h.g)v) = (f. g)v forall f,g e H(D). (3.2)

More generally, if D € C is not necessarily connected, then the GFF on D is given
by taking & to be independently a GFF on each of the components of D.

Suppose that U € D with U # D is open. There is a natural inclusion ¢ of H(U)
into H (D) where

fx) ifx eU,
UG = [0 otherwise.

We define the following o -algebras. For U € D open, we let j’-'[h] be the o -algebra
generated by the restriction /2|y of & to U . In other words, F; lh] isthe o-algebra generated
by (h, f) for f € C°(U). For every closed set K C D, we let ]-'1@ be the o-algebra
generated by the projection of 4 onto H--(D\K). Throughout this article, we often
consider conditional expectations where we condition on /|y for V € D and by this
we mean that we consider the conditional expectation given ]-"’} (resp. .7-"\%) if Vis
open (resp. closed) in D.

If f e C3P(U)and g € Cg°(D), thenas (f, g)v = —(f, Ag) itis easy to see that
H (D) admits the (-, -)y-orthogonal decomposition H(U) & HL(U) where H+(U)
is the set of functions in H (D) harmonic on U. Thus we can write

h = hU + hUc = Zafl/(ﬁfl/ + Zaé—j(¢g‘
n n

where (oz,? ), (ozg C) are independent i.i.d. sequences of standard normal random vari-
ables and (q),ll] ), (qﬁflj C) are orthonormal bases of H(U) and H+(U), respectively.
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Observe that iy is a GFF on U. The distribution /g« is a random distribution that
agrees with 4 on U*. The restriction of Ayc to U can be interpreted as the “harmonic
extension” of K|y to U. Note that hy and hye are independent. We arrive at the
following proposition:

Proposition 3.1 (Markov property) We can write h = hy + hyc where hy, hye are
independent distributions on D, hy has the law of a zero boundary GFF on D\U and
is zero on U, and hye is harmonic on U°. That is, the conditional law of h|y given
hlp\u is that of the GFF on U plus the harmonic extension (in the sense described
Jjust above) of h|ay to U.

We emphasize that /|y in the statement of Proposition 3.1 refers to the restriction
of h to U while hy above refers to the projection of 4 to H(U). We remark that the
orthogonality of H (U) and the set of functions in H (D) which are harmonic on U is
also proved in [29, Theorem 2.17] and it is explained thereafter how this is related to
the Markov property of the GFF. The proposition allows us to make sense of the GFF
with non-zero boundary conditions: if f: 9D — R is any function that is L' with
respect to harmonic measure on dD viewed from some point (hence every point) in
D, and F is its harmonic extension from 0 D to D, then the law of the GFF on D with
boundary condition f is given by the law of F' + h where £ is a zero boundary GFF
on D.

Using (3.1) and (3.2), we can derive the covariance function for (4, f), (h, g) for
f. g € C§°(D). Namely, we have that

Cov((h, ). (h. 2))
= (2m)*Cov((h, A" f)v. (h. A7 g)v) = @m) (A7 f. A7 g)v

= —2n(f,A7"g) = // J()Gx, y)g(y)dxdy (3-3)

where G is the Green’s function for A on D with Dirichlet boundary conditions. That
is, G solves AG(x,y) = —2m 5, (y) (in the distributional sense) where 8, denotes the
Dirac mass at x and G(x, y) = 0if x or y is in d D. We note that the Green’s function
is monotone in D in the sense that if D € D and G (resp. 6) is the Green’s function
on D (resp. l~)) then G(x, y) < é(x, y) for all x, y € D. This can be seen because
G — G is harmonic in D (viewed as a function of one of the variables with the other
fixed) and has non-negative boundary conditions on d D. We also note that the law of
h is determined by (h, f) as f ranges over C{°(D).

We are now going to show that F I/é+ is given by the intersection of J”-'lh, over all
U C D open containing K.

Proposition 3.2 For any deterministic, closed set K C D we have that ]-'Ih<+ =
Nu> K}'{j where the intersection is over all open sets U C D containing K.

Proof We will give the proof in the case that D is bounded. Upon establishing this,
the result follows for general domains D using the conformal invariance of the GFF.

Let (¢,,) be an orthonormal basis of HJ-(D\K) and, for each n, let o, = (h, ¢p)v.
Then we know that F Ihﬁ = o (a, : n € N). Let ¥ be a radially symmetric C;° bump
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function supported in D. That is, ¥ (z) > 0 for all z € C, ¥ (z) depends only on
|z|, [ ¥ (2)dz =1, and ¥ (z) = O for all |z| > 1. For each n and m, let

%MD=/%@MW@W—WMM

Note that 5,”,, € C*®(D). Let ¢, ,, be given by q?,,, » minus the harmonic extension of
its values from 0D to D. Since ¢, is harmonic in D\ K and v is radially symmetric,
it follows that ¢ ,; is harmonic on the set of z € D with dist(z, K U dD) > %
Moreover, note that ¢, ,, € H(D) as an’m € C*°(D) and

Pnmllv < ldnmllv < lI$pllv forall n, m.

Since

(Dnm: @)v = (P, $)v asm — oo forall ¢ € C5°(D)

it therefore follows that ¢, ,, — ¢, as m — oo in H(D) [recall that if (w,,) is a
sequence in a Hilbert space which converges weakly to a limit w with the property
that ||w,, || < ||w|| for all m then ||w,, — w| — 0 as m — oc]. Thus with o, ,, =
(h, ¢n.m)v, we have that

El(0n — apm)*] = ¢n — umlly — 0 asm — oo.

Suppose that U € D is an open set which contains K and a neighborhood in D
of dD. Then there exists mg € N depending only on K and U such that o, is
}'{’]—measurable for all m > m. Indeed, this follows because

Op.m = (h, ¢nm)V = —2m(h, A(lsn,m)

and A¢, ,(z) vanishes for z € D with dist(z, K UdD) > % Therefore «,, is also
]—'(h]-measurable. That is, .7-'1};+ - ]—'lhj.

We note that the o -algebra given by NF”,, where the intersection is overall V C D
open which contain a neighborhood of d D in D, is trivial by Proposition 3.1. Indeed,
this follows because the variance of the integral of the projection of & onto H(D\V)
against a C;°(D) test function ¢ increases to the variance of the integral of / against
¢ as V decreases to d D because the Green’s function for A on D\'V converges to the
Green’s function on D. This, in particular, implies that the variance of the integral of
the projection of 4 onto H+(D\V) against ¢ decreases to 0 as V decreases (simply
because the sum of the two variances must equal the variance of the integral of / against
¢ by independence). This implies the claim. We therefore have that F Ih(+ - .7-"(’} for
all U € D open which contain K.

Note that ]—'{’, C f§+. Thus to show that }"I’éJr = Ny> K]-'h , it suffices to show

that F I}é+ =Ny> K]—'ng. For each m € N we let U, be the %-neighborhood of K. It
suffices to show that for any fixed ¥, ..., ¥y € C(‘)>Q (D), we have that the joint law of
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(h,¥j)forl < j <k given .7-'%+ converges to the joint law of (h, ¢;) for1 < j <k

given .7-'1}’(+ as m — oo. Given ngr, we know that the (h, ¥;) are jointly Gaussian

with mean given by integrating the projection of 4 onto H(D\U,,) against ¥ j and
covariance given by the Green’s function for A on D\U,,. Their conditional law
given F Z+ admits an analogous description with K in place of U ,,. Since the Green’s
function for A on D\U,, converges as m — oo to the Green’s function for A on D\ K,
it follows that we have the desired convergence of the conditional covariance functions.
To see the convergence of the conditional means, we let (an) be an orthonormal basis
of H(D\K) consisting of C§°(D\K) functions so that (¢,) and (5,1) together form
an orthonormal basis of H (D). Then we can write h = >, oy ¢y + >, tnp, and we
have that the (o) and (o) are i.i.d. N(0, 1). Thus

E[(h, i)l ffﬁ] =D n(@n V) + ZE[&'" 'fH @ ¥ (G4

The first summation on the right hand side is equal to E[(h, ¥ ;) | F I}é+]. We note that
for any ng fixed we have that

no
ZEI:&n |f[h]+j| (al‘ls vi) —> 0 asm — o0

n=1

since for each fixed n there exists mo sufficiently large so that the support of bn is
disjoint from U, for all m > mg and for such m we have that E[a, |.7-"§+] = 0.

Moreover, by Jensen’s inequality we have that

2 2

E (Z E[aufgﬂ <<’5n,w,-)) =E (E[Z an@n,w,-nfl’;;])
n>ng n=ngo

<D @ ) =202 D (G AT

n>ngo n>ng

Since A~y jisin H (D), itfollows that the summation on the right hand side tends to 0
asng — oo. Therefore the second summation in (3.4) tends to 0 in probability as m —
oo which implies that there exists a sequence (my) tending to oo sufficiently quickly
along which it tends to 0 almost surely. Since it is also an L?-bounded martingale, the
martingale convergence theorem implies that it converges almost surely. Combining,
this almost sure limit must be equal to 0, and this implies the result. O

Proposition 3.3 Assume that D is a non-trivial simply connected domain and let K
be a deterministic closed subset of D. Let hy be the harmonic function on D\ K which
agrees with the projection of h onto H-(D\K), restricted to D\K. Then a.s.

lim hi(z) =0 forallzo € 9D\K.
D\K>z—70
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Proof Let U be a simply connected neighborhood of zg such that the distance from U
to K is positive. Then [37, Lemma 3.2] states that the projections of 4 onto H-(D\K)
and H+(D\U) are almost independent, which means that their joint law is absolutely
continuous with respect to the product of their marginal laws. This implies that for
almost all instances of the former, the conditional law of the latter is absolutely con-
tinuous with respect to its unconditioned law. We note that the restriction to U of the
projection of 4 onto H-(D\U) is equal to &|y . Therefore the conditional law of /|y
given the projection of & onto H-(D\K) is absolutely continuous with respect to its
unconditioned law. Moreover, &y given the projection of 4 onto H-(D\K) can be
written as the sum of a function /; which is harmonic in D\ K and a zero-boundary
GFF I in D\K restricted to U.

Assume that we have fixed an instance of /1. Let (z;,) be a sequence in D with
Zn — Zo asn — oo. Foreachn € N, we let ¢,: U — D be the un1que conformal
map with ¢, (z,) = 0 and ¢}, (z,) > 0. Let u, be the law of 1 o @, and let [i, (resp.
i) be the law of ho ©, 1 [resp. (h +hi)og, 11 with the instance of & fixed. Then
Wy and [z, are almost surely (in the realization of 41) mutually absolutely continuous
for each nn. Moreover, the Radon—Nikodym derivative Z, of i, with respect to u, has
the following property. For every € > 0O there exists § > O (uniformly in #) such that
if A is any event with u,[A] < & then 1, [A] = f Zaladu, < €.Indeed, this follows
because we can always express A in terms of an event which involves 4|y and then
compute using the Radon—Nikodym derivative of the law of (h + h1)|y with respect
to the law of a|y.

For each ¢ > 0 we let ¢, be a C* function which is non-negative, radially sym-
metric, has integral 1, and which is sEpported in the annulus D\ B(0, 1 — ¢). Then
we have that both (h o ¢, 1, ¢) and (71 0 ¢, !, ¢¢) tend to 0 in probability as ¢ — 0
and n — oo. Indeed, this can be seen because both are mean-zero Gaussian random
variables for each ¢ > 0 and n € N with variance tending to 0 as { — O and n — oo.
That is, for each § > 0 there exists o > 0 and ngp € N such that ¢ € (O, ;o) and
n € N with n > ng implies that the variance of both (4 o (pn , ¢¢) and (h o gon , qj;)
is at most §. On the other hand, since % is harmonic in U we have that 1 o ¢, L
harmonic in D, hence (h1 0 ¢, !, ) = h1 0 ¢, ' (0) = hi(z,) forall ¢ € (0, 1) and
n € N.

Fix § > 0 so thatif u,[A] < & then it),[A] < 1/4. Let a > 0 be arbitrary. Assume
that we have fixed ¢ > O and ng € N such that ¢ € (0, ;0) and n > ng implies that
Unll(h o @, ,¢§)| > a/2] < §. Then & [I((h +hi)oe, ,¢§)| > a/2] < 1/4. By
possibly further decreasing the value of {y > 0 and i 1ncreasmg the value of ng we also
have that ¢ € (0, ¢p) and n > ng implies that ,un[|(h ° @, ,¢§)| > a/2] < 1/4.
Usmg that the event |h1(z)| > a is the same as the event |((h + A1) o gon , Pr) — (h o
(pn , ¢¢)| > a, we have that (with a slight abuse of notation after the first equality)

iy on=a) = Enll((E+h1) oot ) — (o, b, o) > al
< LR +h) ooy, o)l > a/2) + Fall(ho o', o)l > a/2]

1
<.
-2
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Since 1{j4, (z,)|>a) takes values in {0, 1}, we have that 1y, (;,)|>a) < 1/2 implies that
|h1(zn)| < a. Therefore |h1(z,)| < a for n > ng, hence hi(z,) — 0asn — oo, as
desired.

We finish this subsection with the following proposition, which describes the
absolute continuity properties of the GFF.

Proposition 3.4 (Absolute continuity) Suppose that Dy, Dy are simply connected
domains with D1 N\ Dy # @. Fori = 1, 2, let h; be a zero boundary GFF on D; and
F; harmonic on D;. Fix a bounded simply connected open domain U C Dy N D;.

(i) (nterior) If dist(U, dD;) > 0 fori = 1,2 then the laws of (h; + F1)|y and
(ho + F2)|y are mutually absolutely continuous.

(ii) (Boundary) Suppose that there is a neighborhood U’ of the closure U of U such
that DyNU’ = DyNU’, and that Fy — F, tends to zero as one approaches points
in the sets dD; N U’. Then the laws of (h1 + F1)|y and (hy + F»)|y are mutually
absolutely continuous.

Although Proposition 3.4 is stated in the case that U is bounded, an analogous result
holds when U is not bounded. We will in particular use this result in the following
setting without reference: D1 = D, = D and there exists a conformal transforma-
tion ¢: D — D where D is bounded and U = ¢(U) satisfies the hypotheses of
Proposition 3.4 part (i) or part (ii).

We will often make use of Proposition 3.4 in the following manner. Theorem 1.1
gives the existence of a coupling of an SLE, (p) (a flow line) or SLE,/(p) process (a
counterflow line) with the GFF (say, on H) provided the boundary data of the GFF
is piecewise constant and changes values a finite number of times. For more general
boundary data, one can still construct the flow and counterflow lines of the GFF
provided the boundary data near the starting point is piecewise constant. The reason
for this is that Proposition 3.4 implies that the law of the field near the starting point
is absolutely continuous with respect to the law of a GFF that does have piecewise
constant boundary data which changes a finite number of times.

More precisely, suppose that £ is a GFF on H with piecewise constant boundary
data and that n is its flow or counterflow line starting from x € dH. If & is another
GFF on H whose boundary data agrees with that of /4 in a neighborhood of x and
U is any bounded, open subset of H which contains a neighborhood of x and with
positive distance from those boundary segments where the boundary data of # and h
differ, then we know that the laws of 4|y and h|y are mutually absolutely continuous.
Let Zy denote the Radon—Nikodym derivative of the law of the latter with respect to
the former. Then weighting the law of (h|y, ny), nu given by n stopped upon first
exiting U, by Zy yields a coupling where the marginal law of the first element is the
same as the law of /|y, the marginal law of the second element is mutually absolutely
continuous with respect to the law of ny, and the pair satisfies the same Markov
property described in the statement of Theorem 1.1. (We will justify the Markov
property more carefully just after the proof of Lemma 3.6.)

Note that all of the almost sure properties of ny are preserved under this change
of measure. The caveat is that by combining Theorem 1.1 and Proposition 3.4 in this
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way (with larger and larger domains U), the flow or counterflow line of B will only be
defined up until it hits a boundary segment which does not have piecewise constant
boundary data.

One can also apply this operation in reverse. Namely, suppose that /# is a GFF
on H, U < H is bounded and open such that # has piecewise constant boundary
data in 9H N U, and 7 is a path coupled with & which satisfies the Markov property
described in the statement of Theorem 1.1. Then Proposition 3.4 and Theorem 2.4
together imply that the joint law of (h|y, ny), with ny as defined above, is mutually
absolutely continuous with respect to the joint law of a GFF with piecewise constant
boundary data on all of 0H and its flow or counterflow line starting from the origin,
both restricted to U. In particular, all of the almost sure properties of ny are the same
under both laws. This is useful because the Loewner driving function for ny may not
be described by a simple SDE.

We also remark that it is possible to construct directly (without appealing to Propo-
sition 3.4) a coupling as in Theorem 1.1 with more general types of boundary data. We
will not need this in the present article because we will not need to analyze the specific
form of the driving diffusion in the more general setting. See [31, Theorem 4.5] for a
precise statement of this in the setting of a very closely related coupling of SLE with
the GFF (the so-called “reverse” coupling).

Proof of Proposition 3.4 Let U € D) N D, be such that dist(U, dD;) > 0 fori =
1,2, U C U, and dist(U, BU) > 0. By Proposition 3.1, we can write (h; + F;)|5 =
hU + (hU( + F;)|i where hU is a zero boundary GFF on U and hU + F; is harmonic
on U both restricted to U. We assume that h1, hz a.re coupled together on a common
probability space so thathﬁj = hU and thath{j , h2 are independent. Let ¢ € Cye 0)
be such that |y = 1 and let g = ¢((hUC + F) — (hUC + F1)). Then we have that
g€ H(U)and (h, + Fi+g)lu = (h2+ F2)|y. We note that g is a measurable function
of hy, hy since the hlU for i = 1, 2 are measurable functions of /1, h, as their series
expansions can be determined by taking a (-, -)v-inner product of /1, h, with respect

to an appropriately chosen orthonormal basis. Similarly, (hi], g)v is a measurable
function of &1, hy because we can represent it as »_ ja jbj where (a;), (b)) are the
coordinates of h?, g withrespectto a (-, -)y-orthonormal basis. We note that, although
g is arandom function in H (U), the series 3 ; ab; converges almost surely because
g is independent of h? . [Here, we are using that this holds if g is any fixed function in
H (U) hence also holds in the case that g is independent of h? by Fubini’s theorem.] If
we weight the law of i1, ha by Z~exp((hU, g)v) where Z = exp(}lgl1%) then the
law of hl7 under the weighted law is equal to the law of hl7 + g under the unweighted
law. As g is compactly supported i in U and hU + Fy is harmonic in U, we have
that (hU + F1,8)v = () hence (h1 ,8)v = (h1 + F1, g)v. Therefore if we weight
the law of &1, hy by Z~ ' exp((hy + F1, g)v) where Z = exp( ||g||v) then the law
of (h1 + F1)|y under the weighted law is equal to the law of (h] + F1+9lv =

(h2 4+ F>)|y under the unweighted law. We conclude that, under the coupling that we
have constructed of &1, h7, an event for (h| + F)|y has zero probability if and only
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if it has zero probability for (hy + F>)|y. That is, the law of (A1 + F1)|y is mutually
absolutely continuous WEh respect to the law of (hy + F>)|y. This proves part (i).
For part (ii), we let U = U’ N Dy = U’ N D,. Then we have (h; + g =
hU + (hU( + F})| where hU is a zero boundary GFF on U and hU + F; is harmonic
in U, both restricted to U We assume that /11, h are coupled on a common probability
space so that h = h2 and hﬁj , hg are independent. Let ¢ be a C*° function with
¢ly = 1and With ¢ equal to 0 on a neighborhood of (U’)¢ and let g = ¢((h§] + F)—
(h?c + F1)). Then we have that (h; + F1 + g)|lyu = (ho + F2)|y where g € H(fj).
The rest of the proof thus follows using the same argument used to prove the proof of
part (i). O

We remark that a slight variant of Proposition 3.4 is stated and proved in [37,
Lemma 3.2] in the case that one considers the law of the GFF on disjoint closed
subsets.

Remark 3.5 Suppose that /2 is a GFF on a domain D, and f € C3°(D). As in the proof
of Proposition 3.4, we know that reweighing the law p of & by Z~!exp((h, f)v)
yields the law ,u ,« of h + f. Consequently, the Cauchy—Schwarz inequality implies

that u(E) < ,uf (E) exp(||f||2) for every event E. The same holds if we reverse
the roles of 1 and p . More generally, if we apply Holder’s inequality, we have that
W(E) < u}/p(E) exp(% ||f||2v) where % + % = 1. These simple facts allow us to give
explicit bounds which relate the probabilities of events in the setting of parts (i) and (ii)
of Proposition 3.4. For example, suppose that D = D| = D, is a Jordan domain and
L is aninterval in d D. Suppose that 211 and s are GFFs on D with i1 |ap\ = h2lap\L
and |hy|| < M, |hy|L| < M for some constant M > 0. Let F be the function which

is harmonic in D with Flyp\y = 0and F|. = ha|p — hi|.. Then hy + F 4 hy. Let
U be the set of points in D which have distance at least € > 0 from L and let G be
the function which agrees with F in U, is 0 on the set of points with distance at most
%e from 9D, and otherwise harmonic. Then there exists C > 0 depending only on
M, D, € such that ||G||2V < C. Moreover, with ug the law of &1 + G restricted to U,
we have that h7|y ~ ug. Thus with p the law of &1y, for each p > 1 there exists
a constant C,, > 0 depending only on M, D, € such that u(E) < CP/LGP(E) for all
events E.

3.2 Local sets

The theory of local sets, developed in [37], extends the Markovian structure of the
field (Proposition 3.1) to the setting of conditioning on the values it takes on a random
set A C D. In this section, we will give an overview of local sets which is very closely
based on the treatment given in [37, Section 3.3]. We will cite some of the results in
[37] in the proofs of the statements below.

Throughout, we shall assume for convenience that D C C is a bounded domain
and  is a GFF on D. Let I be the collection of all nonempty, closed subsets of D
which contain d D. We view I" as a metric space endowed with the Hausdor{f distance.
That is, the distance between sets Sy, S» € I' is
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duaus (S, S2) := max [ sup dist(x, S>2), sup dist(y, Sl)] .

X€ES| YES)

It is well known (and the reader may easily verify) that I" is a compact metric space.
(In order to treat the case that D is unbounded, we can conformally map to the sphere
and use the induced Euclidean metric on the sphere.) Let G be the Borel o -algebra on
I' induced by this metric.

Suppose that (A, &) is a coupling of a GFF 4 on D and a random variable A taking
values in I'. Then A is said to be a local set of h if there exists a law on pairs (A, k1)
where h1 is a distribution on D with &1|p\ 4 harmonic is such that a sample with the
law (A, h) can be produced by

1. choosing the pair (h, A),
1. then sampling an instance hy of the zero boundary GFF on D\A and setting
h=hy+ hs.

Whenever we use the phrase “A is a local set of 4,” we will always assume that
dD C A even though we may not say this explicitly.

Deterministic closed sets are also obviously local and, by Theorem 1.1, so is the hull
K. of an SLE, (p) process stopped at time 7 at or before the continuation threshold
is reached. These are the motivating examples for the theory.

Given A € I', let As denote the closed set containing all points in D whose distance
from A is at most §. Let As be the smallest o -algebra in which A and the restriction of &
(as a distribution) to the interior of As are measurable. Let 4 = [ 50 As. Intuitively,
this is the smallest o-algebra in which A and the values of 4 in an infinitesimal
neighborhood of A are measurable. Suppose that A is local for . We let C4 be the
conditional expectation of & given .A. We note that we can view C4 as a random
variable which takes values in the space of distributions and we can identify C4 with
the harmonic function /1, and this is the perspective that we will take. Indeed, as
we will explain carefully just below, the o-algebra generated by the values of 4y
in As becomes trivial as § — 0, i.e., A = o (k). Hence, we can write (C4, ¢) =
El(h, ¢) | Al = El(h1, 9) | Al = (h1, ¢).

Let us now explain carefully why A = o (k). We first note that % is obviously
A-measurable because it is As-measurable for every § > 0 as it is harmonic in D\ A.
To show that A C o (hy), it suffices to show that the conditional law of &, given A
is the same as the conditional law of /> given o (). [Indeed, this will imply that the
conditional law of & given o (k1) is the same as the conditional law of & given A.]
That is, it is a zero boundary GFF on D\A. Let B; = {x € D: dist(x, A) > §}.
Let B; be the o-algebra generated by /| and the projection h821 of hy onto H+(B?%).
Note that Bj contains Aj for every § > 0 because if ¢ € C3°(D), on the event that
the support of ¢ is contained in As, we have (h, ¢) = (h1, ¢) + (hg1 , ). Therefore
B = Ns=0Bs contains A. It suffices to show that the conditional law of hy given 5 is
that of a zero-boundary GFF on D\ A (because then the same will be true for .4). This
follows from the backwards martingale convergence theorem. Indeed, if ¢ € C;°(D)
and S; is the event that the support of ¢ is contained in Bs and S is the event that the
support of ¢ is contained in D\ A, then with hazz the projection of 45 onto H(Bs) we
have that
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E[exp(if (h2, $)v) | Bs1ls, = E[exp(i0(h3,, ¢)v) | BsIls, = exp(—67(|p[1%/2)1s,

where the final equality follows by the Markov property of the GFF. Taking a limit
as § — 0, the right hand side converges to exp(—92||¢||zv/2)15 as S; increases to S
while the left hand side converges to

Elexp(i6(h2, 9)v) | Blls

by the backwards martingale convergence theorem.

We note that in the case that A is a deterministic, closed set then Proposition 3.2
implies that A is the same as the o-algebra generated by the projection of & onto
H+(D\A) so that Cy is the same as the projection of 4 onto H-(D\A). The proof
of Lemma 3.6 given just below implies that A is equal to the o-algebra generated by
(h1, A) as in the definition of a local set given above.

In many places in this article, we will consider conditional expectations where we
condition on A and /|4 where A is a local set for /. By this, we mean that we consider
the conditional expectation C4 of h given the o-algebra A4 defined just above.

There are several other characterizations of local sets which are given in the fol-
lowing restatement of [37, Lemma 3.9].

Lemma 3.6 Suppose that (A, h) is a random variable which is a coupling of an
instance h of the GFF on D with a random element A of I'. Then the following are
equivalent:

(i) For each deterministic open U C D, we have that given the projection of h onto
HL(U), the event ANU = @ is independent of the projection of h onto H(U). In
other words, the conditional probability that ANU = () given h is a measurable
function of the projection of h onto H(U).

(ii) For each deterministic open U C D, we let S be the event that A intersects U
and let

~ A on S,
() otherwise.
Then we have that given the projection of h onto H-(U), the pair (S, Z) is
independent of the projection of h onto H(U).

(iii) Conditioned on A, (a regular version of) the conditional law of h is that of h1+h;
where hy is the GFF with zero boundary values on D\ A (extended to all of D)
and hy is an A-measurable random distribution [i.e., as a distribution-valued
function on the space of distribution-set pairs (A, h), hy is A-measurable] which
is almost surely harmonic on D\ A.

(iv) Aisalocal set for h. That is, a sample with the law of (A, h) can be produced as
follows. First choose the pair (A, h1) according to some law where hy is almost
surely harmonic on D\ A. Then sample an instance hy of the GFF on D\ A and
seth = hy + hy.
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Proof Trivially, (ii) implies (i).

Next, suppose A satisfies (i). We will show that (iii) holds. For each § > 0, let Ds
be the collection of sets which can be written as D N S where § is a closed square in
C of side length 8 with corners in the grid 877 and let Ag =U{§eDs: SNA;s # (/J}
We claim that A5 satisfies (i) for each § > 0. To see this, ﬁx U < D open and let U5
be given by the interior of U{S € Ds: SN U # ¢}. Then A5 intersects U if and only
if A; intersects the intersection of D and the closure of U,; For each §' > 0, let Us
be given by the §'- -neighborhood of Us in D. Then Ay intersects the intersection of D
and the closure of Us if and only if A intersects the intersection of D and the closure
of 175,5. Equivalently, A; intersects the intersection of D and the closure of [75 if and
only if A intersects Ny~ l~]5 s- Since A satisfies (i), we know that the conditional
probability of {A N Ug s # O} given h is a measurable function of the projection of
h onto H J‘(U(g 5)- Th1s is in turn a measurable functlon of the pI‘Q]eCthIl of h onto
HL(U) (since U C Ug s'). Therefore the event {A5 NU # 0} =Ng=s{AN U(;’a/ # (0}
is a measurable function of the projection of / onto H-(U) (note that we can represent
the intersection as a countable intersection so that the event in question is measurable).
Note that there are only finitely many possible choices for ;f,g since we assumed D to
be bounded.

We will now show that ;4\3 satisfies (iii). Let DU be the collection of all sets which
can be expressed as a finite union of elements in Ds. Fix C € DU and assume that
P[A5 C C] > 0 Since A5 satisfies (i), we have that the condmonal law of & in
D\C given both A5 C C and the projection of & onto H-(D\C) is the same as the
conditional law of 4 in D\C given just the projection of & onto H(D\C). That A5
satisfies (iii) thus follows from Proposition 3.1.

We are now going to use a limiting procedure to deduce that A satisfies (iii) from
the fact that ;1\5 satisfies (iii). Assume that § = 277 fgr some j € N. Let ﬁa be defined
analogously to A but with 1’4\5 inplace of A5 and let A5 be the smallest o -algebra which
contains Az and with respect to which A is measurable. As we will see momentarily,
the o -algebras Ajs will be useful to consider because they decrease as § decreases.
We claim that the conditional law of & given .2(5 is the same as the conditional law
of h given As. To see that this is the case, fix k > j, let 8 = 27%, and let A5 Py
be the smallest o -algebra which contains both As and Ag/ By the argument in the
previous paragraph, it follows that the conditional law of & given .A5 is the same as the
conditional law of & given A(; 5. The claim then follows because As = bl ]A5 2—k.

Since the o -algebras .A2 -j are decreasing, the conditional law of / given A2 j
is the same as the conditional law of & given A,-;, and n%e 1A2 j = A, the reverse
martingale convergence theorem implies the almost sure convergence Cx ;a8 Jj — 00

-

in the weak sense, i.e., for each fixed ¢, we have a.s. that
(Ci,_;-9) — El(h. ¢)| Al asj — oo. (3.5)

In order to finish the proof that (iii) holds for A, we need to show that E[(&, ¢) | A]
defines a distribution on D and that the conditional law of ¢ — (i, ¢) —E[(h, ¢) | A]
given A is that of a GFF on D\ A with zero boundary conditions. Since (iii) holds for
each A\g, we have that
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Elexp(i6(h, $)) | Ay-j] = exp(0(Ch,_,9) —0%0) 2 (@#)/2)  (3.6)

where Glz)\ﬁz,j (p) = ffqb(x)GD\;Tj (x, V)¢ (y)dxdy and GD\KT,- is the Green’s

function for A on D\A\zf j. Thus sending j — oo, by combining (3.5) and (3.6) we
have a.s. that

Elexp(i6(h, $)) | Al = exp(i0E[(h, §) | Al — 670, 4($)/2)

where olz)\A (@) = [[ ¢x)Gp\a(x, y)$(y)dxdy and G p\ 4 is the Green’s function
for A on D\ A. That is, for each fixed ¢ we have that the conditional law of (4, ¢) —
E[(h, ¢) | A] given A is equal to that of (h, ¢) where, given A, I has the law of a zero-
boundary GFF on D\ A. This implies that we can find a coupling of h and h, A so that
for each ¢ € C;°(D) we almost surely have that (i, ¢) = (h, ¢) — E[(h, ¢) | A]. By
letting (¢ ;) be a suitably chosen family in C (D), itis easy to see that the family of
random variables (h, ¢;) — E[(h, ¢;) | A] a.s. determines h. Thus using this, we set
Ca, @) = (h, ¢) — (h ¢) and see that this a.s. defines a distribution on D since &, h
are a.s. distributions on D. Therefore (iii) holds for A.

Now (iv) is immediate from (iii) when we set i1 = Ca.

To obtain (ii) from (iv), if suffices to show that given the projection of A onto
HL(U) and the pair (S, A) the conditional law of the projection of & onto H (U) is
the same as its a priori law (or its law conditioned on only the projection of 4 onto
HL()y), namely the law of the zero boundary GFF on U. Assuming (iv), we can
write & = h| + hy where, conditional on A, we have that /; is harmonic in D\ A and
hy has the law of a zero-boundary GFF in D\ A. On the event that A € D\U (which
we emphasize is A-measurable), we can apply the Markov property to the GFF £ so
that, given the o-algebra F; generated by A and F, ( ( D\ anwy+ e have that

hy = ha1 + h

where hj; is harmonic on U and A, has the law of a GFF on U with zero boundary
conditions. We claim that Fj is the same as the o -algebra F, generated by A and
F (hD\U)+' (It is intuitively obvious that this should be true because both o-algebras
depend on the values of the GFF in the same way, we can build /& from /4 and %;, and
we can also build 4y from /4 and h. As we will see below, this intuition is what leads
to the proof.) Upon showing this, we will have (on A € D\U) that the conditional

law of i given A and F D\ y)+ can be written as

h=hi+hy+h»n

where /7 is a distribution on D which is harmonic on D\ A, h7; is a distribution on
D\ A which is harmonic on U, and hj» is a zero-boundary GFF on U and h1, hy are
determined by A and F This, in particular will imply that the conditional law

on the event that A € D\U,

(D\U e
of the projection of & onto H (U) given A and F
is that of a zero-boundary GFF on U'.

(D\U)+’
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To see the claim, one simply has to note that, on A € D\U, conditioning on either
JF1 or JF; is equivalent to conditioning on o (1, ha1). Indeed, we note that this is
obviously true in the case of F; from how it is defined. To see that conditioning on
J> is equivalent to conditioning on o (h1, ha1) on A € D\U, we first note that /1 is
obviously F,-measurable. Let G s be the o-algebra generated by A and the values
of hy in ((D\A)\U)s. That is, G5 s is the o -algebra generated by 1 and, with S5(¢)
the event that the support of ¢ is contained in ((D\A)\U)s, the random variables
(h2, ) 1s5(p) for ¢ € C3°(D). Then we have that G, s is contained in the o-algebra
generated by i and f{lD\U)S because (D\U)s contains ((D\A)\U)s and, for any
¢ € C*° with support contained in ((D\A)\U);s we have that (h3, ¢) is determined
by (h, ¢) and (h, ¢). Thus, by taking an intersection over 6 > 0, by Proposition 3.2
applied to the conditional law of h given A = o (h}), this implies that (on A C
D\U) o (h1, ha1) € F,. For the reverse inclusion, we have that & is o (hy, h21)-
measurable. Moreover, (D\U)s C AsU((D\A)\U)s. Therefore F, (hD\ U)s is contained
in the o-algebra generated by A and (h2, ¢)175¢) = ((h, §) — (h1, @) 17yg) for
¢ € C3°(D) where Ts(¢) is the event that the support of ¢ is contained either in As
orin ((D\A)\U)s. Recall that the conditional law of 4, given A is that of a GFF on
D\ A with zero boundary conditions. Therefore, as § — 0, the o-algebra generated
by A and the values of /i, in As (defined analogously to the case of G, s) decreases
to the o -algebra generated by .4. Moreover, it follows from Proposition 3.2 that G5 s
decreases to the o-algebra generated by A and o (h21). By sending § — 0, we thus
see that 7, C o (hy, hyy).

Now, we know from the Markov property (Proposition 3.1) for the GFF & by itself
that we can also write

h=h+h;

where ﬁl is a distribution which is harmonic on U and the conditional law of iz\z given
F(p\v)+ 1s that of a GFF on U. Combining our two expressions tells us that further
conditioning on A tells us nothing about the projection of h onto H(U) on the event
that A € D\U. In other words, the conditional law of the projection of 4 onto H (U)
given F(p\yy+, A, and A € D\U is equal to the conditional law of the projection of
h onto H(U) given F(p\y)~+. This implies (ii). O

Since K is local for &, we can write & = h1 + hy where h; is harmonic in H\ K
and the conditional law of &, given h is that of a zero-boundary GFF on H\ K.
Equivalently, we can write h = ho fr + h1 where h; is harmonic in H\ K, and h
is a zero-boundary GFF on H independently of f; and ;. Theorem 1.1 also implies
that on H\ K;, we have that h = h o f; + b, where A is a zero-boundary GFF given
fr. Combining, it is not difficult to see that 71 = §; on H\ K. (We will see later
in Lemma 3.10 that under certain weak hypotheses which are satisfied by SLE, for
k € (0, 8) [24] we have that & is determined by its restriction to H\ K. That is, /|
is determined by h;.)

Let us now elaborate further on the remark made just after the proof of Proposi-
tion 3.4 regarding the Markov property when one performs a change of measure to the
GFF which corresponds to changing its boundary data away from the starting point
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of the SLE. We will use the same notation introduced just after Proposition 3.4 and
write K, for the hull of n([O0, ]).

Suppose that ¢ € H (H). Then the Radon—-Nikodym derivative of the law of & + ¢
with respect to the law of & is given by a normalizing constant times exp((%, ¢)v)
[this is the infinite dimensional analog of the fact that if Z ~ N (0, 1) and i € R then
the Radon—Nikodym derivative of the law of Z + p with respect to the law of Z is
given by a normalizing constant times e”*]. Let  be any stopping time for 7y . Then
we have that h = h| + hy where hy = ho Jfr and I has the law of a zero- boundary
GFF on H which is independent of the pair /1, f; and h is a distribution defined on
all of H which is harmonic in H\K;. As the Dirichlet inner product is conformally
invariant, we have that

o £ v = ldlmk, v < lIdllv < oco.

This implies that it makes sense to take the (-, -)y-inner product of the partial sums in
the series expansion of h with ¢o fr_1 and that these partial sums converge asn — oo.
Moreover, using the conformal invariance of the Dirichlet inner product, we also have
that (h o fr,d)v = (h, Qo f 1y as this equality holds when one replaces I with the
partial sums in the series expansion for h.If ¢ € C§°(H), then we can define (i1, ¢)v
by taking it to be equal to —%(hl, A¢), using that this integral is defined as /7 is a
distribution on all of H. With this definition, we have that (h{, ¢)v = (h — ho Jo, D)v
for all ¢ € CP(H). If ¢ € H(H), then we can find a sequence (¢,,) in C;°(H)
which converges to ¢ in H(H). Since (h — h o fr, ¢pp)v — (h — h o fr, $)v almost
surely (at least along a subsequence) we can define (A1, ¢)v by taking it to be equal
to (h—ho fr, ¢)v. This gives a definition of (h1, ¢)v for all ¢ € H(H) (which, as in
the case of the GFF, is defined for each ¢ up to a set of measure zero which a priori
depends on ¢). We can write

exp((h, ¢)v) = exp((h o fr + hi, ¢)v)
=exp((h, ¢ o £ 1)v) x exp((h1, $)v).

Note that (h ¢ o fi l)v is equal to the (-, -)v-inner product of h and the (-, )v-
orthogonal projection qbf of p o fr onto H (H) as the series expansion for his given
in terms of an orthonormal basis of H (H). Equivalently, ¢, is given by subtracting
from ¢ o f;l the harmonic extension of its values from dH to H. For x € dH, we
note that ¢ o fr_1 (x) can only be non-zero provided x € f;(ny ([0, t])) as¢ € H(H).
Therefore the conditional law of & given fr, h1 under the weighted law is equal to
that of a zero-boundary GFF on H plus é-. This implies that under the weighted law
we have that

h=ho fe+dcofr+h 3.7
where 71 has the law of a zero-boundary GFF on H given f;, ér, and hy.

Suppose that § is a function which is harmonic in H with zero boundary values
on a neighborhood of U N dH. We then take ¢ € C*°(H) so that ¢ = 1 on U and
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T

Fig. 22 Proposition 3.7 allows us to extend Theorem 1.1 to the setting of multiple SLE-related paths
by taking their conditionally independent union. The illustration depicts a zero-boundary GFF plus an
unspecified harmonic function v coupled with two SLE processes 1, 77 (possibly with different « values)
emanating from distinct points x, X € dH. If 7, T are 7, 7 stopping times, respectively, then the field given
n([0, 71), ([0, T]) is the sum of a zero boundary GFF and a harmonic function, whose boundary values
are given above. One can also change the angle of one or both paths by adding a constant to the boundary
conditions along that path. It is not obvious a priori what the boundary conditions should be at locations
where the paths intersect (we will treat this issue systematically in Sect. 6)

a = 0 on a small enough neighborhood of U so that ¢ = ha vanishes on dH. Thus
¢ € H(H) so that we may apply the above for this choice of ¢. As mentioned earlier,
we have that 71 = h; in H\ K. Observe that 5, o fr + b (for this choice of ¢)
restricted to U is equal to the restriction to U of the function Er which is harmonic in
H\ K; with boundary values given by those of h; on HN 9 K; and those of h; + § on
dH\ K. That is, we have that

h=ho f: +b; (3-8)

in H\ K. This proves the claimed Markov property because we can always transform
the law of the field restricted to U to the law of the field restricted to U with boundary
values which differ outside of U by adding such a function to the field.

One important property of local sets is that given local sets A and A, the con-
ditionally independent union AjUA, (defined in the proposition statement below) is
also local. This result is contained in the following restatement of [37, Lemma 3.10];
see also Fig. 22.

Proposition 3.7 Supposehisa GFFon D, Ay, As are randomvariables taking values
in I, and that (A1, h) and (A2, h) are couplings for which A1 and A, are local. Let
A = A1UA; denote the random variable taking values in T which is given by first
sampling h, then sampling A1, Ay independently from their conditional laws given h,
and then taking the union of A1 and A>. Then A is also a local set of h. Moreover,
given A and the pair (A1, Ay), the conditional law of h is given by the sum of C4 plus
an instance of the GFF on D\ A.

Proof We use characterization (ii) for locality as given in Lemma 3.6 and observe

that [37, Lemma 3.5] implies the analogous result holds for the quadruple (S, A 1, 92,
Ajz)—namely, that for each deterministic open U C D, we have that given the pro-
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jection of i onto H L(U) and the quadruple (S, A 1, 2, Xz), the conditional law of
the projection of 4 onto H (U) is the law of the GFF on U.

The proof that this analog of (ii) implies the corresponding analog of (iii) in the
statement of Proposition 3.7 is essentially the same as the proof of the equivalence
of (ii) and (iii). m]

We say that a local set A of h is almost surely determined by h if there exists a
modification of A which is o (h)-measurable. Many of the local sets we will work with
in this article will be almost surely determined by the corresponding GFF, in which
case the conditionally independent union is almost surely the same as an ordinary
union.

The following proposition (see [37, Lemma 3.11]) allows us to estimate Cy, {4,
near connected components of A1\ A2 and A; N A, which consist of more than a single
point in terms of C4,.

Proposition 3.8 Assume that D is a bounded, simply connected domain. Let Ay, A
be connected local sets. Then C4 5, — Ca, is almost surely a harmonic function in
D\(A1UA») that tends to zero on all sequences of points in D\(A1UA») that tend to
a limit in either:

(1) a connected component of A2\ A1 (consisting of more than a single point) or
(i1) a connected component of A1 N Az (consisting of more than a single point) at a
point that has positive distance from either A1\ A, or A2\ Aj.

Proof We are going to give the argument for (i); the argument for (ii) is analogous.

By Proposition 3.7, the union A;UA, is itself a local set, so C A,04, 18 well defined.
Now, conditioned on A the law of the field in D\ A is given by a GFF in D\ A plus
Ca,. We next claim that A\ A1 is a local subset of D\ A1, with respect to this GFF on
D\ A;. To see this, note that characterization (iii) for locality from Lemma 3.6 follows
from the latter statement in Proposition 3.7.

By replacing D with D\ A and subtracting C4,, we may thus reduce to the case
that A is deterministically empty and C4, = 0. What remains to show is that if A
is any local set on D then C4 (when viewed as a harmonic function on D\ A) tends
to zero almost surely along all sequences of points in D\ A that approach a point x
that lies in a connected component of 8D\A A given by the closure of A N D, that
consists of more than a single point.

If we fix a neighborhood U of x and another neighborhood U, whose distance
from U is positive, then the fact that the statement holds on the event AN D C U» is
immediate from Proposition 3.3.

In the setting of Proposition 3.8, we note that a given pointin A2\ A1 [corresponding
to part (i)] orin A N A [corresponding to part (ii)] may be associated with multiple
prime ends. Proposition 3.8 implies that C, 54, has the same boundary behavior
as Cy4, near each such prime end because we can always choose the sequence so that
it approaches the given prime end.

Propositions 3.7 and 3.8 allow us to extend Theorem 1.1 to the setting of coupling
multiple SLEs with the free field by taking their conditionally independent union
(once Theorem 1.2 is established, we can replace the conditionally independent union
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with a usual union). Figure 22 contains an illustration of this result in the case of
two (counter)flow lines of the same field emanating from different points. See [6,
Lemma 6.1, Theorem 6.4] for another approach to constructing couplings with mul-
tiple SLEs.

The argument described after the proof of Lemma 3.6 implies that if we have a path
n coupled with a GFF & on H as a flow line (or counterflow line), then weighting the
law of the field/path pair &, 7 restricted to a subdomain U in a way that produces a GFF
with boundary conditions which agree with those of 2 on dHN U (but possibly differ
elsewhere) yields a flow line (or counterflow line) of the new GFF which is defined at
leastup until when it first exits U. Moreover, Theorem 2.4 allows one to identify the law
of this flow line. We will now explain a variant of this in which the domains on which
the GFFs are defined are different. Specifically, we suppose that / is a GFF on H with
piecewise constant boundary data which changes only finitely many times and that n
is a flow line of 4 starting from 0. Suppose that D € H is a simply connected domain
whose boundary contains a segment of 9H which is a neighborhood of 0. Fix a simply
connected domain U € D whose boundary also contains a segment of 9H which is a
neighborhood of 0 and satisfies dist(dU \0H, d D\0H) > 0. Let 7y be the first time
that n exits U and let T be a stopping time for 1 such that P[t < try] = 1. Note that
both d D and 5([0, t]) are local for A. Since the former is deterministic, we therefore
have by Proposition 3.7 that 9 D U n([0, t]) is local for & and by Proposition 3.8 that
the conditional law of / given n][o,r] and its values on d D is given by that of the sum
of a zero-boundary GFF % on D\ ([0, t]) plus the function g, which is harmonic in
D\n([0, t]) with boundary values agreeing with those of 4 on d D and with h; (as in
Theorem 1.1) on n ([0, ]).

We will now argue that the boundary data for g, in the conditional law of % just
above is correct for 7 to be a flow line. To this end, we fix x € dD\0H and let
¢: D — H be a conformal transformation which fixes 0 and sends x to co. Let b,
be as in the statement of Theorem 1.1 for ¢(n([0, 7])) (in what follows, it will not
matter how we choose the boundary data for b on dH). Then it suffices to show that
the boundary values of b, along ([0, t]) agree with those of h; o ¢ — x arg¢’. To
see this, we let f; (resp. f2) be the centered Loewner map associated with 7 [resp.
¢(n)] at time 7 so that f; (resp. fr) takes n(t) [resp. ¢(n(7))] to 0. Let m be the
function which is harmonic in H with boundary values given by —A (resp. A) on R_
(resp. Ry4). By definition, b, has the same boundary behavior along n ([0, t]) as the
harmonic function

mOf,—Xargfr/

and likewise, by definition, H, has the same boundary behavior along ¢ (n([0, t])) as
the harmonic function

mof,—xargf,’.

Note that the function m o fr o ¢ is harmonic in H\n ([0, t]) with boundary values
along the left (resp. right) side of n([0, t]) and R_ (resp. R4 ) given by —A (resp. A).
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These are the same as the boundary values of m o f; and therefore mo f; = mo ft 0.
We will next show that

lim (arg f7(z) — (arg(f] o p(2) +arg¢'(2))) =0 for z0€n([0, 7]). (3.9)

Z—>20
zeD\n([0,7])

Let I; = fz(n([0,t])) € 0H and D; = f;(D\n([0, 7])). By precomposing both
sides of (3.9) with f,! it suffices to show that

Jim (arg(f7 o f7'(@) = (g(ff o 9o f;1(2) +argg’ o f71(@)) =0
zeD; (3.10)
forzg € I.

By adding and subtracting arg( f,!)’ to the left side of (3.10) and using that

arg(fl o f71) +arg(f7 1 =arg(fro £71) =0 and
arg(flopo fi ) +arg (¢ o f;71) +arg(f; ) =arg(fropo ;1)

we see that (3.10) is equivalent to showing that

Zli)ngo arg(fr oo 1) (2) =0 forzg € I. (3.11)

zeDy

We conclude that (3.11) holds because ﬁ opo fr‘1 is conformal map from D, into
H which takes the interval I; of 0H corresponding to f7 (n([0, t])) to an interval of
H and is orientation preserving. This proves (3.9), which completes the proof of the
claim.

In summary, we have argued that the conditional law of (k|p, nl[0,z,]) given the
values of 4 on 3D is given by a pair consisting of:

e a GFF on D whose boundary values agree with those of 4 along d D and

e apath in D with the property that if 7 is any stopping time which a.s. occurs before
7y we have that the conditional law of the field given 7|, is that of a GFF on
D\n([0, t]) with the same boundary values as 7 on d D and the correct boundary
values along 7 ([0, t]) so that it is a flow line.

In other words, conditionally on the values of 4 on d D, we have that the coupling
(hlp,nlo,zy1) isihat of a GFF on D and a flow line of /| p stopped upon exiting U.

Suppose that & is a GFF on D with boundary values which agree with those of &
on a neighborhood of 0 in dH. Then, conditionally on the values of 2 on d D, we have
that both A|p and h are GFFs on the same domain D with boundary data that agrees
on a neighborhood of 0 in dH. Since we can transform from the conditional law of
h|p given its values on d D to the law of h by adding to the former a function which is
harmonic in D with zero boundary values on d D N dH, it follows from the procedure
described just after Lemma 3.6 that the result of weighting the law of the field/path
pair &, n in such way so that the restriction of the field to U agrees with the law of m U
yields a flow line of h which is defined up until the first time it exits U.
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Proposition 3.9 Suppose that D is a bounded, simply connected domain and that
A1, Ay are connected local sets which are conditionally independent given h. Suppose
that C is a o (A1)-measurable open subset of D\ A1 which can be written as a union
of components of D\ A1 such that C N Ay = () almost surely. Then Ca,ua,|c = Ca,lc
almost surely. In particular, h|c is independent of the pair (h|p\c, A2) given A;.

Proof This follows from the argument used to prove Proposition 3.8. O

A simple example of the type of application we have in mind for Proposition 3.9
is the following. Suppose that 4 is a GFF on H and 71, 1, are flow lines of 4 starting
from O which intersect dH only at {O}. Suppose further that 1, almost surely lies to
the left of n1. Then Proposition 3.9 implies that the restriction of 4 to the left side of
H\ 7 is independent of the pair consisting of the restriction of % to the right side of
H\ 7> and 751, conditionally on 7.

We end this subsection with a lemma which gives a simple condition under which
h is determined by its restriction to D\ A for a local set A. When this condition
holds, it will in particular imply that % is determined by the restriction of C4 to D\ A
and the projection of & onto H (D\A). Informally, this means that there is no “extra
information” which is only contained in C4 on A itself.

Lemma 3.10 Suppose that A is a local set for h such that for every compact set
K C D there exists a sequence (8) of positive numbers with §p — 0 as k — 00 such
that we almost surely have that the number of squares with corners in 8y Z* required
to cover AN K is 0(8;2 (log 8;1)_1) as k — oo. Then h is almost surely determined
by the restriction h of h to D\ A.

Proof Fix a compact square K C D and ¢ € C§°(D) with supp(¢) € K. For each
8 > 0, we let Dy be the collection of half-open squares (a, b] x (c, d] of side length
§ contained in K with corners in §Z2. We also let ¢ be the function on K whose
common value on each S C D; is given by the average of ¢ on S. By bounding the
variance of (h, ¢ — ¢;s), it is easy to see that we almost surely have

(h, ¢s) — (h, ) asd — 0, (3.12)
at least if the limit is taken along a subsequence of (8;) which tends to O sufficiently

quickly. Let As be the union of the set of squares in Ds which intersect A. Then it
suffices to show that we almost surely have

|, ¢51ae) — (. @5)| = |, dslpc) — (h, ¢p)| = 0 as§—0,  (3.13)

at least if the limit is taken along a subsequence of (6;) which tends to O sufficiently
quickly. An argument analogous to the proof of [4, Proposition 3.2] implies that the
variance of (h, §21g) for S € Dsis O (log 1) where the implicit constant is uniform
in § > 0. It therefore follows from the Gaussian tail bound

1
P[Z > A] ~ e ash - o0

V2
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for Z ~ N(0, 1) (see, e.g., [9, Lemma A.4]) and the Borel-Cantelli lemma that there
exists a constant ¢ > 0 such that the average of # on each S € D; is at most ¢ log 8_1,
at least along a subsequence of (8) tending to O sufficiently quickly. Consequently,
with N equal to the number of squares in Ds which A intersects we almost surely
have that

|(h, ¢s1ac)—(h, ¢5)] < llglloo x N5 x 8% x clogs™! =o(1) ass —0, (3.14)

at least along a subsequence of (&) tending to O sufficiently quickly. The equality
in (3.14) follows because we have assumed that we almost surely have that Ns, is
0(8;*(log8;")™1) as k — oo. The result thus follows by combining (3.12), (3.13),
and (3.14). O

3.3 Proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1. As we mentioned before, many
of the steps in the proof given below are slight generalizations of those from [31,
Section 4]. Let W and V¢ be a solution to the SLE, (p) SDE as in Definition 2.1
stopped upon hitting the continuation threshold, let (g;) be the chordal Loewner
evolution driven by W, and let f; = g — W;. We let (F;) be the filtration gen-
erated by (W, Vi4) and B as in Definition 2.1. Then (F;) is right-continuous, i.e.
Fir = Ng=1Fg for each t+ > 0. This property will be important for us later on. We
also let (K;) be the corresponding family of hulls. In what follows, it is impor-
tant that the SDEs for our SLE, (p) driving process make sense in integrated form
(as defined in Sect. 2) so that all of the SDEs written below make sense in inte-
grated form. We begin by writing down the Itd derivatives of the four processes
fi1(2), log fi(2), f/(z), and log f/(z). Here, f/(z) denotes the spatial derlvatlve f,
Forz e Hand t < 7(z) = sup{t > 0 : Im(g;(z)) > 0}, we have that

dfi(z) = T dt — JxdB,,
4 —«) p" VK
dlog fi(z) = -~ — L lar- dB,
t 212 qe%R} = fi@QW, =V L)
dfl(2) = ;(f’)(f) {, and
13
dlog ft/(Z) = mdl‘

We next define the martingale b, and compute its stochastic derivatives. The calcu-
lations below will show that it is a local martingale (and the fact it is a martingale will
be proved later). Let x = 2/.4/k — /k/2 as in the statement of Theorem 1.1. We also

let h¥(z) be given by 1//k times the expression in (2.12) where f; (x49) = V,i’q — W;.
Then it is not hard to see that

@ Springer



Imaginary geometry I: interacting SLEs 619

2
dh;‘(z)=%d3n bi(z) :==1Im (h;(z)), and

d[’)t(Z) =Im (

2
dB;. 3.15
ﬁ(z)) i (3.15)

See [31, Remarks 4.1, 4.2] for some additional interpretation.
Since h;(z) is a continuous local martingale for each fixed z, it is thus a Brownian
motion under the quadratic variation parameterization, which we can give explicitly:

d{h:(2), h:(2)) = —=dCi(z) and C;(z) :=logIm(f;(z)) — Re(log f/(2)).

If z is a point in a simply connected domain D, and ¢ conformally maps the unit disk
to D, with ¢ (0) = z, then we refer to the quantity |¢'(0)| as the conformal radius of
D viewed from z. If, in the above definition of conformal radius, we replaced the unit
disk with H and 0 with i, this would only change the definition by a multiplicative
constant. Thus, C;(z) is (up to an additive constant) the log of the conformal radius of
H\ K, viewed from z. If the time parameter —C,(z) (which is increasing as a function
of t) then b, (z) is a Brownian motion. The fact that d(h;(z), h;(z)) = —dC;(z) may
be computed directly via Itd’s formula but it is also easy to see by taking y — z in
the formulas for (h;(y), h;(z)) and the formulas we will give below.

We will now show that weighted averages of hj; over multiple points in H are also
continuous local martingales (and hence Brownian motions when properly parame-
terized). The calculation will make use of the function

G(y,z) :=logly —z| —logly — z,

which is the Dirichlet Green’s function for A on H. That is, G is the distributional
solution of AG(y, ) = —2méy(-) with zero boundary conditions where §, denotes
the Dirac mass at y.

We let G;(y, z) = G(f;(y), f:(z)) when y and z are both in the infinite component
of H\ K;; it is otherwise equal to zero. Observe for ¢t < t(y) A t(z) that

2 2
dG,(y,z) = -1 I d d 3.16
1(y,2) m(ft(y)) m(f;(z)) t an (3.16)
d(h:(y), b:(2)) = —dG(y, 2). (3.17)

The details of (3.16) in the case of SLE, (with no p values) is worked out explicitly
in [31, Section 4]. The case with p values follows from a similar calculation. It is then
immediate from (3.15) that (3.17) holds.

Now we let ¢ be a smooth compactly supported function on H, fix U € H open
which contains the support supp(¢) of ¢, and let

tw =inf{t > 0: K, N U # &} (3.18)
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We let
Ei(¢) = / / ()G (v, 6 (2)dydz
HxH

and we will show that

d((br, @), (b, ¢)) = —dEi(¢) fort < 1y. (3.19)

A Fubini type calculation gives (3.19) but it requires some justification. First, we
claim that the (h;, ¢) is a continuous martingale. We first note that ((h;, ¢))|0,7,] is
characterized by the fact that

(b, )% — ((hr, $)) fort <1y

is a continuous local martingale. Thus it suffices to show that
(b @)% + E(¢) fort <ty (3.20)

is a continuous local martingale. We know from the above calculations that

h: (Wb (2) + G (y,z) fort <ty

is a continuous local martingale for fixed y, z € supp(¢). For each M < oo, we let

WM = inf{t >0: sup |h(2)| > M] ATy,
zesupp(¢)

Since G, (y, z) is non-increasing and SUP_ csupp() [6:(2)| < M fort < 1ty ¢, M, Wecan
use Fubini’s theorem to conclude that (3.20) is a continuous martingale up to time
Ty,¢,M- Since 1y ¢ v — Ty as M — oo, it follows that (3.20) is a continuous local
martingale.

We will now combine the above calculations to establish the following intermediate
step in the proof of Theorem 1.1.

Lemma 3.11 Fix U C H open, let Tty be as in (3.18), and let T be any F;-stopping
time such thatP[t < ty] = 1. Consider the random field hy » on U which is generated
by:

1. sampling K,

2. sampling a zero boundary GFF h° on H\K; and adding it to Y, and then
3. restricting the sum to U.

Then hy - 4 h|y where h = h+ ho and Hisa zero-boundary GFF on H.
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Proof Since h|y is a Gaussian field, it suffices to show that (hy -, ¢) 4 (h, ¢) for
each ¢ € Cf)’o (H) with supp(¢) € U. Note that h; is measurable with respect to F;
and that Var((ho, ¢)) = E;(¢). Consequently, for each 6 € R, we have that

Elexp(i6(hu., $))] = E[E[exp(6(1°, §)|F¢ 1 exp(i61(he. )]
2
—E [exp(z‘ea)n é) — @)]

02Eo(¢)

=E [eXp(ié’(bo, 9~ —

= Elexp(i0(h, ¢))].

)} (by (3.19))

This proves the lemma. O

In order to work towards completing the proof of Theorem 1.1, we will explain
how to generalize Lemma 3.11 to the setting in which it holds for multiple stopping
times and open sets. We begin with the setting of a finite number of stopping times.

Lemma 3.12 Assume that we have the setup of Lemma 3.11 for a given open set
U C H. Assume thatn € Nandty, ..., 1, are F;-stopping times withP[t; < ty] =1
foreach 1 < i < n. For each 1 < i < n, let hy , have the law as defined in
Lemma 3.11. There exists a coupling of the laws hy ; for 1 < i < n so that they
are all generated using the same instance (W, V54) of the SLE, (p) driving process
such that for h = h+ bo, ha zero-boundary GFF on H, we almost surely have that
hy,; = hly. Moreover, we have that the conditional law of the projection of h onto
H(U) given F=; and the projection of h onto HL(U) is that of a zero-boundary GFF
on H(U) foreach 1 <i <n.

Proof For simplicity, we will first explain the proof in the case that n = 2 and then
later explain how to generalize it to arbitrary values of n € N. Lemma 3.11 implies
that there exists a coupling of the law of the pair (hy,c, (Winz,. V,ih,)) [where the
latter element is the driving SLE, (p) process stopped at time ty7] with & such that
hy,: = h|y almost surely. N

Suppose that 11, 7 are F;-stopping times with P[t; < 7y] = 1 fori = 1, 2. By
applying the above first with the stopping time o1 = 71 A7 and then withoy = 71V 12
[using the conformal Markov property of SLE, (p)], it is easy to see that we can

construct a coupling of the law of the triple (hy o, hv,0n, Winzy V,ifru)) with h
such that hy ,, = hly almost surely for i = 1, 2. In particular, on the event that
71 = 01, we have almost surely that

hy.« =hu.e = hlu. (3.21)

On the event that 71 = o0», we almost surely have that

hu,e, = hu,e, = hlu. (3.22)
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Since one of the two events 71 = o} or 71 = o must hold, we conclude from (3.21)
and (3.22) that hy,r, = h|y almost surely. Similarly, we have that by -, = h|y almost
surely.

By construction, we have that

hu,e; = (h% o fo, + bo)lu
where A% for i = 1, 2 has the law of a zero-boundary GFF on H given F,. We let
R = h* g, + h 1 (gy—ry).
Then we have that

hy, = (h" o fr +b)lu.

To finish the proof of the first assertion of the lemma for n = 2, we need to show
that 2% for i = 1,2 has the law of a zero-boundary GFF on H given F7,. We will
explain the proof for i = 1 (as the proof for i = 2 is analogous). Fix a test function
¢ € C°(H) and 0 € R. Using that both of the events {o] = 71} and {02 = 71} are
F+, -measurable, we have that

E[exp(i6 (h™, ¢)) | Fo,]
= E[exp(ie(hrl )| f‘[] ]l{mzr]} + E[CXP(iQ(h” ,$)) |‘F71 ]1{02=r1}
= E[exp(i0(h°", ¢)) | Fo,11{o,=r,) + Elexp(i0(h°?, $)) | Fo, Lior=1)

— exp (_92E0<¢))
2

where the last equality follows because we know that 427 has the law of a zero-boundary
GFF on H given F, fori =1, 2.

Suppose now that n € N. We can iterate the same argument above with a finite
collection of stopping times 7y, ..., 7, with P[r; < ty] = 1foralli =1,...,nto
obtain a coupling such that 2y, = h|y almost surely foralli =1, ..., n. Indeed, to
do so foreach 1 < j < n we let o; be the first time 7 that at least j of the stopping
times 7; have occurred at or before time ¢. Then each o} is a stopping time and we have
that 01 < op < --- < 0,. Thus we can construct the coupling iteratively as described
above in the case that n = 2. Under this coupling, we have that hU,Uj = h|y almost
surely for each 1 < j < n. Since for each 1 < i < n there exists | < j < n such that
7; = 0, we then have that hy ;; = h|y almost surely for each 1 < i < n. The result
follows because a simple elaboration of the argument given just above implies that we
can write hy ¢, as (h" o fr, + by,)|y where A% has the law of a zero-boundary GFF
on H given 7.

In the construction of the coupling given above, it is not immediately clear that
the conditional law of the projection of & onto H(U) given both its projection onto
H+(U) and F7; is that of a zero-boundary GFF in U for each 1 < i < n even though
it is immediate from the construction that this holds if we condition on either the
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projection onto H+(U) or F,. We can modify the coupling so that it has this property
by, given both H1(U) and Fr,» resampling the projection of 4 onto H (U) from the
law of a zero-boundary GFF on U. Note that performing this resampling operation
leaves the marginal law of # unchanged [since the law of the projection of & onto
HL(U) is unchanged as is the conditional law of the projection of 4 onto H (U) given
its projection onto H--(U)]. This resampling operation also preserves the conditional
law of 1|y given F7, foreach 1 < i < n.Indeed, this follows because this resampling
operation preserves the restriction of the projection of / onto H-(U) to U. Moreover,
by the Markov property for hy , given Fr, (which is the restriction of a GFF on
H\K, to U), we know that the conditional law of the projection of 4 onto H(U)
given both 7, and the restriction of the projection of 4 onto H L(U) to U is that of a
zero boundary GFF on U. This proves the claim. O

We are now going to extend Lemma 3.11 to the setting of both a finite number of
stopping times and open sets.

Lemma 3.13 Suppose thatn € N, Uy, ..., U, C Hareopen sets, and thatty, ..., T,
are F;-stopping times such that P[t; < ty,] = 1 for each 1 < i < n. For each
1 <i < n,lethy, 1, have the law as defined in Lemma 3.11 with U = U;. There exists
a coupling of the laws hy; v, for 1 < i < n so that they are all generated using the
same instance (W, Vi4) of the SLE, (p) driving process such that for h = h+ ho, h

a zero-boundary GFF on H, we almost surely have that hy, ;, = hl|y,. Moreover,
we have that the conditional law of the projection of h onto H(U;) given F, and
the projection of h onto H*(U;) is that of a zero-boundary GFF on H(U;) for each
1<i<n.

Proof As in the proof of Lemma 3.12, we begin with the argument in the case of two
open sets Uy, Uy C H; define 7y, , Ty, accordingly and suppose that P[7; < 7y,] =1
fori =1,2.Weleto| = 1y Atz andletor = 71 V 12. Let Vi = U; UU,. Then we can
find a coupling of the laws of (hy, o, (Winsy, V;f{,l)) and h such that hy, o, = hly,
almost surely and such that the conditional law of the projection of & onto H(V7)
given both its projection onto H (V) and Fo, is that of a zero-boundary GFF on V.
Conditionally on (W, Vi) up to time o7, we know whether t; or 7 occurred first.
On the event that 71 occurred first, it is easy to see by the Markov property of the
GFF that we can take our coupling so that 2|y, = hy, 7, almost surely. We can also
repeat the same argument [using the conformal Markov property of SLE, (p)] so that
we also have that /1|y, = hy, -, almost surely. Similarly, on the event that 75 occurred
first, it is easy to see by the Markov property of the GFF that we can take our coupling
so that h|y, = hy, -, almost surely. We can also repeat the same argument [using
the conformal Markov property of SLE, (p)] so that we also have that iy, = hy,
almost surely. B
In summary, at this point we have a coupling such that the following hold:

e hly; = hy; ¢ for j = 1,2 and hly, = hy, ¢, almost surely.
e The conditional law of the projection of & onto H(V}) given its projection onto
H+(V}) and Fo, 1s that of a zero boundary GFF on V.

We will now explain how to modify 4 so that it satisfies the above properties and so
that the conditional law of the projection of & onto H (U;) given its projection onto
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H+(U j) and Fy; for j = 1, 2 is that of a GFF on U; with zero boundary conditions.
To this end, we let hUJ? for j = 1, 2 be the projection of & onto H+(U 7). We then take

h = (hy, + hus) iz <o) + (hu, + hye)lir,<v)

where hU1 (resp. hUz) has the law of a GFF on U; (resp. U,) with zero boundary
conditions where we take /i, , iy, to be independent of each other and independent
of everything else. The Markov property of the GFF implies that the coupling of &
with (W, V:9) satisfies all of the desired properties. In particular, the conditional law
of the projection of h onto H(U j) given its projection onto H Ltw j) and F; is that
of a zero boundary GFF on U; for j =1, 2.

We can iterate this argument with any finite collection of stopping times 7y, .. ., T,
and open sets Uy, ..., U, with P[t; < ty,] = 1 foreachi = 1,...,n to obtain a
coupling such that hy, ;; = h|y, foreachi =1, ..., n almost surely and so that the

conditional law of the projection of & onto H (U;) given its projection onto H L)
and F7, is that of a zero-boundary GFF on U;. To do so, we let o be the first time ¢
that at least j of the t; have occurred at or before time 7. Then we know that we can
construct a coupling so that with V; = U!_, U; we have that hy, 5, = h|y, almost
surely and the conditional law of the projection of & onto H (V) given its projection
onto H+(V}) and Fo, is that of a zero-boundary GFF on V;. At time oy, we know
which of the 7; have occurred. Assume for simplicity that the 7; are almost surely
distinct and that ;, is the first to occur. Then we can repeat the same argument [using
the conformal Markov property of SLE, (p)] with Vo = U;;, U; and o, to obtain a
coupling such that we have hy, 5, = hlvj_almost surely and the conditional law of
the projection of z onto H (V) given its projection onto H J-(Vj) and Fy; is that of a
zero-boundary GFF on V; for j = 1, 2. After iterating this n times, we get a coupling
with hy; 5, = h|y; almost surely and such that the conditional law of the projection
of h onto H(V;) givenits projection onto H+ (V) and .7-17 is that of a zero-boundary
GFFon V; for j = 1,...,n.1f we let i; be such that T, = 0j, then we have that
Ui; € V;. Therefore hU, ;= h|U almost surely for each J hence hy, -, = hly,
for each i. Likewise, the condmonal law of the projection of & onto H (U;) for each i
given its projection onto H L(U;) and F7, is that of a zero-boundary GFFon U;. O

We now turn to extend Lemma 3.11 to the setting of a countable collection of
stopping times and open sets.

Lemma 3.14 Suppose that (U;) and (t;) are respectively sequences of open sets in H
and F;-stopping times such that Plt; < ty,] =1 for alli € N. For eachi € N, let
hu, «; have the law as defined in Lemma 3.11 with U = U;. There exists a coupling of
the laws hy «; fori € N so that they are all generated with the same instance (W, Via)
of the SLE(p) driving process such that for h = h+ ho, I a zero- -boundary GFF on
H, we almost surely have that hy; w; = hly,. Moreover, we have that the conditional
law of the projection of h onto H(U;) given F=; and the projection of h onto H-(U;)
is that of a zero-boundary GFF on H (Uy;).
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Proof Fixn € N.Lemma 3.13 implies that there exists acouplingof hy, ¢, ..., hy, .z,
and h, (W, V%)) which satisfies the property that iy, ;; = h|y, and that the condi-
tional law of the projection of 2 onto H (U;) given the projection of 4 onto H(U;)
and F, is that of a zero-boundary GFF on U; for each 1 < i < n. Let u, denote
the law of this coupling. Let k be the number of force points for the SLE, (p) driving
process. We view u, as a law on (RNM)"*1 x C([0, c0))**! by expressing each of
the Ay, r; as well as & in terms of coordinates by integrating each against a count-
able subset of C(‘)’O (H) which is dense in L?(H), say. We note that for m > n we
have the w,, marginal law of (hy, ¢, ..., hvu,. 1, h, (W, V9)) is tight in m since
the marginal of each of the coordinates does not depend on m. It therefore follows
that for each n € N there exists a subsequence (Mn;") of () such that the marginal
law of (hy, <, ..., hu, .z, ", (W, Vi:4)) under U, converges weakly to a limiting
law as k — oo. By passing to a further diagonal subsequence if necessary, we can
find a subsequence (u,,) of (w,) such that for every m € N the marginal law of
huyos o huy g, By (W, Vi4)) under M, converges weakly to a limiting law as
k — oo. Letting u" denote this law for a given value of m, we observe that the
u™ are consistent in the sense that for every j < n, m we have that the u” mar-
ginal law of (hy, 7, ..., hu; 7, h, (W, Vi4)) is the same as the p” marginal law
of the same vector. Therefore by the Kolmogorov extension theorem, there exists
alaw w on (RMN x C([0, 00))**! whose marginals agree with the u™. By con-
struction, this law p clearly satisfies the property that Ay, ; = h|y, almost surely
for every i € N and that the conditional law of the projection of i onto H (U;)
given the projection of & onto H-(U;) and F; is that of a zero-boundary GFF
on U;. O

We now complete the proof of Theorem 1.1.

Proof of Theorem 1.1 To complete the proof of the theorem, we need to extend
Lemma 3.14 so that it holds simultaneously for all F;-stopping times. We can choose
our 7; and U; so that every pair of the form (U, r A ty) where U is a finite union of
balls which are centered at a point with rational coordinates and with rational radii
and r € Q. appears in the sequence (U;, 1;).

Suppose that 7 is any J;-stopping time. Given F, we fix atest function ¢ € C°(H)
whose support is disjoint from K. We then let 0, = 7, be the smallest element of
71, ..., T, which is larger than 7 such that the support of ¢ is contained in U}, (on
the event that there is no such t; we take 0, = 00). Fix 6 € R. Note that for each
1 < j < n,theevent {0, = 7} is .7-',]. -measurable. On the event that {o,, < oo}, we
have that

E[exp(i6(h, 9)) | Fo,1 = ZE[exp(i@(h, ) | Fo, N5, =1
j=1

= > Elexp(it(h, $)) | Fr;1(5,=1;)
j=1
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- 02 Eqr;(9)
= Zexp(ie(hf,., )~ ——— o=
j=1

. 02 Eq, (¢)
= exp(z@(b%, ¢) — ; )
This proves that the conditional law of (4, ¢) given F, is equal to the law of (A7 o
fo, + bo,. @) where h?" given F, has the law of a zero-boundary GFF on H. Note
that the sequence of stopping times (o;,) almost surely decreases to t as n — oo. The
backwards martingale convergence theorem and the right-continuity of the filtration
(F;) together imply that we almost surely have

Jim E[exp(i0(h, ¢)) | Fo,] = Elexp(i0/(h, ¢)) | F7]- (3.23)

Moreover, the continuity of the SLE, (p) driving process implies that we almost surely
have

02E,, (¢)

. (3.24)

2
lim exp(m(hw ¢) - ) - exp(iemf, g - L) E’“”) .
n— 00 2
Combining (3.23) and (3.24) implies that the conditional law of (4, ¢) given F; is
equal to the law of (h% o f; + b, ¢) where A" given F has the law of a zero-boundary
GFF on H.

Fix U C H open. A similar argument using the backwards martingale convergence
theorem implies that the conditional law of the projection of 4 onto H(U) given its
projection onto HL(U) and F; is that of a zero-boundary GFF on U on the event
that T < ty. Indeed, by our choice of t;, U; we can find a sequence (j,) such that
Uj, < U,Uj, €Uj,,,and 7j, = 1y, foreveryn andsuchthatU,U;, = U.We then
take 0, = 7, foreachn.Fix ¢ € Cgo(U ). Then we have that supp(¢) € U, foralln

large enough. For each n, we let hy; (resp. hch_ ) be the projection of & onto H (U ,)

[resp. H L jn)]. We similarly let 2y (resp. hyc) be the projection of 4 onto H(U)
[resp. H+(U)]. Proposition 3.2 and the backwards martingale convergence theorem
together imply that

(hus . ¢) = Bl ¢) | Fagy, -] = ELL ) | Fig )] = (hue, )
almost surely as n — oo. Therefore
(v, ¢) = (h, &) — (hye , ¢) — (h, @) — (hye, ¢) = (hy, ) (3.25)

almost surely asn — oo. Let 012],, (@) = [[¢(0)Guy,, (x, )¢ (y)dxdy where Gy, is
the Green’s function for A on U, . We define 012] (¢) similarly and note that alzjj (@) —

0(2] (¢) as n — o0. By the construction of the coupling, for each n € N we have that
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0207 (¢)
: h Jn
Elexp(i0(hy,,, #)) | Fo,, Fyy,, )+1 = €Xp -— | (3.26)

As n — oo, the right hand side of (3.26) converges to exp(—0205 (¢)/2) while,
by (3.25) and the backwards martingale convergence theorem, the left hand side
of (3.26) converges to E[exp(if(hy, ¢)) | F,, ]:(hH\U)+]‘ Since ¢ € C8°(U) was
arbitrary, it therefore follows that the conditional law of 1y given hye and F, is that
of a GFF on U with zero boundary conditions. It therefore follows that the conditional
law of hy given hye and F; on T < 1y is that of a GFF on U with zero boundary
conditions. That is, characterization (i) of Lemma 3.6 implies that K is local for A.
O

4 Dubédat’s argument

This section will present the argument from [5,6] to establish Theorem 1.2 for x < 4
with some particular boundary conditions. One of its nice features is that it simul-
taneously establishes a particular case of so-called Duplantier duality: that the outer
boundary of a certain SLE ¢/, (0) process is equal in law to a certain SLE, (o) process.
Indeed, we find that the left and right boundaries of a counterflow line corresponding
to a given h are almost surely flow lines for the same /. Our exposition (the inter-
pretations, illustrations, and geometric point of view) is rather different from what
appears in [5,6], but the basic argument is the same. We will also explain how duality
implies the transience (continuity upon exiting) of certain non-boundary intersecting
flow lines (see [24] for an alternative approach to proving the transience of SLE).

When following the illustrations, it will be useful to keep in mind a few definitions
and identities:

hm e TRk 2 WK
Ji K Jo 4 4 Ji 2
4.1)
!/ / T
2mx =40 =), A =i-Tx (4.2)
2rx =@ — )k = —4HN. 4.3)

Throughout, we shall assume that « € (0, 4) so that«” € (4, 00). Eachof A, A/, and
x is determined by « through (4.1) and is positive. We will frequently go back and
forth between these four values using the identities above. To interpret (4.2), recall that
an angle change of 6 corresponds to a change of 9 x in the value of the field. Thus (4.2)
says that the difference A — A" corresponds to “a ninety-degree turn to the left” in the
imaginary geometry, which will frequently be useful. (This fact was already illustrated
in Fig. 9.) Recall also from Theorem 1.1 that a force point of weight p corresponds to
ajump of size pA in the boundary values. Thus (4.3) implies that a gap of size 27 x (a
“full revolution” gap) corresponds to a p value of (4 — k). More generally, a 8 x gap
in boundary values corresponds to p = %(4 —K).
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4.1 Critical heights for boundary intersection, path continuation

We begin by observing some basic facts about SLE, (p) processes, which tell us
what kinds of boundary segments the flow and counterflow lines of Theorem 1.1 can
intersect. Throughout, we let S = R x (0, 1) € C be an infinite horizontal strip
and we decompose dS into its lower and upper boundaries 9, S = (—o0, 00) and
dyS = (—00, ) + i, respectively.

Remark 4.1 Throughout this and the next subsection, we will often make the assump-
tion that the boundary data of 4 on 9, S is at most —A + 7 x to the left of 0 and at least
A — 1 x to the right of 0. The significance of this assumption is that, by Remark 2.3
and absolute continuity (the Girsanov theorem), it implies that the flow line 1 of & is
almost surely a continuous path, at least until it accumulates in dy S. Moreover, by [5,
Lemma 15], it implies that n must accumulate either in dy S or at 00 before accu-
mulating in 9, S after time O (and upon proving Theorem 1.3, we will later be able to
show that it actually never accumulates in 97, S after time 0). This will be important for
the results explained in this section because [5, Lemma 15] only gives us information
regarding the first force point disconnected by 7.

Remark 4.2 All of the results of this subsection are applicable both to n ~ SLE, (p)
and n° ~ SLE, (p). In the case of the latter, the boundary data is given as in the
statement of Theorem 1.1 (the boundary data is —A’ to the left of 1’ and A’ to its right)
to make the lemma statements consistent for SLE, and SLE,/ processes. In this case,
the condition that implies that n" does not hit 9, S is that the boundary data for &
should be at most —A" — 7  to the left of 0 and at least A’ + 7 x to the right of 0. In
Sect. 4.2, we will apply these results to n” ~ SLE,» where 1’ is coupled with —# as in
the statement of Theorem 1.1, so the boundary data is reversed.

Lemma 4.3 Suppose that his a GFF on the strip S whose boundary data is as depicted
in Figs. 23, 24 and 25 and let n be the flow line of h starting at 0. If a > X, then n
almost surely accumulates at —oo and if a < —A, then n almost surely accumulates
at +00. In both cases, n almost surely does not hit 9y S. If a € (—A, A), then n almost
surely accumulates in 9y S. If, moreover, a > —A + xm (resp. a < A — wy), then n
can be continued when it is targeted toward —oo (resp. +00)—i.e., the continuation
threshold is not reached in this case when 1 first accumulates in oy S. This holds more
generally when the boundary data on 91 S is piecewise constant, changes only a finite
number of times, and is at most —A + 1 x to the left of 0 and is at least . — 7 x to the
right of 0 (see Remark 4.1). Furthermore, the analogous statement holds for SLE,
processes when ) is replaced by )" and x is replaced by — x (see Remark 4.2).

Remark 4.4 1f it happens that —A + m x < a < A — m x, then, after the path first hits
dy S, it is possible to branch the path and continue it in both directions (both toward
—o0 and toward +00). Since

At ot (4 — k) )\(1 ")
— T = — — —_ = - =1,
X )3 2

there exists a values for which this is possible whenever x > 2.
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Fig. 23 Suppose that / is a GFF on S whose boundary data is as depicted on the right side. Then the flow
line 1 of i shown has the law of an SLE, (p) process in S from 0 to +o0o where the force point is located
at —oo. To see this, let ¥ : S — H be the conformal map which fixes 0, sends —oo to —1, and 400 to
00. Then h o 1//_1 — X arg(l//_l)/ is a GFF on H whose boundary data is depicted on the left side. Given
the path, the expectation of the field (in the Theorem 1.1 coupling) is the harmonic extension of the given
values on R and 41’ 4 x - winding on the curve, as in Fig. 9. The critical p for v/ () to be able to intersect
(—00, —1) before reaching oo is pg = «/2 — 2. This implies that  accumulates in the upper boundary 3y S
or at —oo before +ooifandonly if p < k/2 —2,ie.,a > —(1+p)r—mx = —(k/2— DA —7m)x = —A,
and otherwise it accumulates at +oo without hitting dy S. [Recall that 27w x = (4 — «)A.] Symmetrically,
it accumulates in 97 S or at +o0o before —oo if and only if a < A, and otherwise it accumulates at —oco
without hitting 97 S. The same result also holds when the boundary data on 9; S is piecewise constant,
changes values a finite number of times, and is at most —A + 7 x to the left of 0 and at least > —  x to the
right of 0 (see Remark 4.1). Furthermore, the analogous statement holds when 7 is replaced by an SLE,
counterflow line, A is replaced by A’, and  is replaced by —x

Fig.24 In the setting of Fig. 23, the flow line behavior depends on a. Curves shown represent a.s. behaviors
corresponding to the three different regimes of a (indicated by the closed boxes). From Fig. 23, the path
hits the upper boundary of the strip a.s. if and only if a € (=X, A). Whena > A, it tends to —oo (left end of
the strip) and when a < —A it tends to oo (right end of the strip) without hitting the upper boundary. These
facts also hold whenever the boundary data of 4 on 97, S is piecewise constant, changes only a finite number
of times, and is at most —A + 7 x to the left of O and at least A — 7 x to the right of O (see Remark 4.1).
The same statement holds when 7 is replaced by an SLE, ./ process, A is replaced by A and  is replaced
by —x (see Remark 4.2)

Proof of Lemma 4.3 Let p € Rbesuchthata = —(14+p)A—my andlety: S - H
be the conformal transformation which sends 0 to 0, —oo to —1, and +0o0 to oo. Then
the transformation rule (1.4) implies that /() is an SLE, (p) process in H from O to
oo where the force point of weight p is located at —1. We will prove the lemma by
checking the criterion of [5, Lemma 15].

We first suppose that a > A. This holds if and only if p < 5 — 4. Consequently,
[5, Lemma 15] implies that ¥ (1) almost surely hits 0H for the first time (after its
initial point) at —1, which translates into 1 tending to —oo without hitting 9y S. On
the other hand, if @ < —A then p > 5 — 2. Applying [5, Lemma 15] analogously
implies ¥ (1) tends to oo without exiting H so that n tends to +oo without hitting

dyS. The case where a € (—A, A) so that p € (5 — 4, 5 — 2) is similar. Finally, we
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,

Aty <a<A

—A

Fig. 25 Take a € (—A, A). Consider Fig. 23 with p = —2, the critical value of p for the path being able to
continue after the force point is absorbed. Conformally mapping to the strip S, we find that the path may
be continued to the left when a € (—A + 7 x, 1) and to the right when a € (—A, > — 7 x). In the extreme
case a = A — 1w x(p = —2), the path on the right “merges into” the upper line. (When the path turns right
and runs parallel to R, the height on its lower side is A — 7 x. The merging phenomenon will be developed
in Sect. 7.2.) A similar statement holds in the setting of SLE,./ processes when 1 is replaced by A" and x is
replaced by —x (see Remark 4.2)

Fig. 26 1If the left interval has height @ < —A\ and the right has height b > A, then the first accumulating
point of the path on the upper line will be at z(. The same result holds if the boundary data is piecewise
constant and changes at most a finite number of times, is at most —A to the left of z(, at least X to the right
of z1, at most —A + 7 x to the left of 0, and at least 1 — 7 x to the right of O (see Remark 4.1). The same
statement holds for SLE, s processes provided A is replaced by A’ and  is replaced by — x (see Remark 4.2)

note that @ < A — xm (resp. a > —A + x) translates into p > —2 which means
that the continuation threshold for the path targeted at 400 (resp. —o0) is not reached
when it hits 9y S. This observation implies that we have the behavior described in the
statement of the lemma for these ranges of a values. O

Lemma 4.5 Suppose that h is a GFF on S whose boundary data is as depicted in
Fig. 26. Let zg be the point of 9y S which separates dy S into the segments where the
boundary data changes from a to b. Then the flow line n of h starting at 0 almost
surely exits S at zg without otherwise hitting oy S. This result holds more generally
when the boundary data of h on dy S is piecewise constant, changes a finite number
of times, and is at most —\ to the left of zo, at least A to the right of zo, and on 91.S is
piecewise constant, changes a finite number of times, and is at most —A + 7 x to the
left of 0 and at least A — 7 x to the right of 0 (see Remark 4.1). Moreover, this result
holds in the setting of SLE, processes when A is replaced by )" and x is replaced by
—x (see Remark 4.2).

Proof Let ¥ : S — H be the conformal transformation which sends 0 to 0, —oo to
—1, and z¢ to —2. Applying the transformation rule (and analogously to Fig. 23), we
see that ¥ (n) ~ SLE, (p1, p2) where the weights p1, p» are located at the force points
—1, —2, respectively, and are determined from a, b by the equations
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Fig. 27 In the same setting as Fig. 26 but with an additional interval of height ¢ € (—A, 1), the path first
hits the upper boundary in this middle interval. The same result holds when the constants a, b are replaced
by piecewise constant functions which each take on a finite number of values which do not exceed —A and
are at least A in their respective intervals and the boundary data on 97 S is piecewise constant, changes a
finite number of times, and is at most —X + 7 x to the left of O and is at least A — 7 x to the right of O (see
Remark 4.1). The same statement holds in the setting of counterflow lines provided A is replaced by A" and
x is replaced by —x (see Remark 4.2)

a=—0+p)r—xm, b=—0+p1+ p)r— xm.
The condition @ < —X implies p; > 5 — 2 and that b > A gives py + p2 < 5 — 4.
Consequently, it follows from [5, Lemma 15] that ¥ (n) first exits H at —2, which is
to say that » first exits S at zo. O

Lemma 4.6 Suppose that h is a GFF on S whose boundary data is as depicted in
Fig. 27. Let zo, z1 be the points which separate dyS into the segments where the
boundary data changes from a to ¢ and c to b, respectively. Then the flow line n of
h almost surely exits S in [z0, z1] without otherwise hitting dyS. This holds more
generally when the boundary data of h is piecewise constant, changes a finite number
of times, is at most —A to the left of zo, at least A to the right of zo, at most —A + wx
to the left of 0, and at least . — 7 x to the right of O (see Remark 4.1). Moreover, this
result holds when 1 is replaced by a counterflow line provided X is replaced by A" and
X is replaced by — x (see Remark 4.2).

Proof Let ¥ : S — H be the conformal transformation which sends 0 to 0, —oo to
—1,z0 to —2, and let y; = ¥ (z1) < —2. Applying the transformation rule (analo-
gously to Fig. 23), we see that ¥ () ~ SLE, (p1, p2, p3) where the weights p1, p2, 03
are located at the force points —1, —2, y;, respectively, and are determined from a, b, ¢
by the equations

a=—{1+p)A—xm, b=—1+p1+p)r— xm,
c=—(+p1+p2+ p3)r — xm.

As in the proof of the previous lemma, the hypothesis on a implies p; > 5 — 2, and
that b > X gives p1 + p2 + p3 < § — 4. Finally, that ¢ € (—A, 1) gives p| + p2 €
(% — 4, % — 2). Consequently, it is easy to see from [5, Lemma 15] that () first
exits H in [y, —2], which is to say that 7 first exits S in [zg, z1]. O
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—A 7Y

—A-Tx

Fig. 28 The path 1 represents a flow line and 1’ a counterflow line in the reverse direction, once we subtract
% x from the field. The boundary data on the vertical segment of 1 matches that of the left of the vertical
segment of n’, suggesting that 1 could “merge into” the left boundary of n’. Since —1 + %X € (=i, A),
Fig. 24 shows n must hit the upper boundary of the strip somewhere on the left (not the right) semi-infinite
interval. Using Fig. 26, we see that 5" must first hit the lower boundary of the strip at the lower dot. This is
because (subtracting 7% x from everything) we find that since =1 — 5 x < =1 (left side) and . — F x = )/
(right side). If we grow 1 and 5’ (up to some time before they intersect) then after a coordinate change, we
can map the complement of these paths back to the original strip so that the boundary conditions are the
same as they originally were (though the locations of the dots may be translated). Thus 1’ a.s. hits each of a
countable dense set of points along » (up until the first time it hits the upper interval) and n always first hits
to the left of the tip of n([0, ¢]) (for some countable dense set of ¢ values). a The boundary data for a flow
line and counterflow line. b Subtracting % x from the boundary data on the left makes the upper boundary
conditions symmetric

4.2 A special case of Theorem 1.2

In this subsection, we will prove Theorem 1.2 for a certain class of boundary data in
which the flow line is non-boundary intersecting.

Lemma 4.7 Suppose we are in the setting of Fig. 28. That is, we fix k € (0,4), let h
be a GFF on S whose boundary data is as depicted in Fig. 28a, n the flow line of h
starting at 0, n' the counterflow line of h — 5 x starting at zo, and assume that n, n', h
are coupled together so that n and n' are conditionally independent given h. Let T
be any stopping time for n. Then n' almost surely first hits 3, S U n([0, t]) at ().
In particular, 7’ contains n and hits the points of 1 in reverse chronological order: if
s < t then n' hits n(t) before n(s).

Proof Conditional on the realization of 7,7}, the field is equal in distribution to
a GFF whose boundary data is —A’ 4+ x - winding on the left side of 1 ([0, t]) and
A"+ x - winding on the right side of ([0, 7]) (see Fig. 11). We note that n’ viewed as
a path in S\n ([0, t]) has a continuous Loewner driving function up until it first hits
n([0, t]) (see, for example Proposition 6.12). On the event that ¢ occurs before the
first time that ” accumulates in ;S U n([0, 7]), Propositions 3.7 and 3.8 together tell
us that the boundary data for the conditional law of & given both n|[0.-] and 7’|{0.1]
in the unbounded component of S\(n([0, z]) U 1'([0, ¢])) is that of a GFF whose
boundary conditions along 9, S U ([0, t]) (resp. dyS U ([0, t])) agree with those
of the conditional law of & given just nl[o,7] (resp. n’|0.;) alone. This allows us to
use Theorem 2.4 to compute the conditional law of " given 1([0, ]). In particular,
we see that conformally mapping S\n([0, t]) back to S with n(z) sent to 0 and
+oo fixed leaves us in the setting of the lemma with t = 0. Thus we just need to
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argue that n’ first hits 9, S at 0. The boundary data for n” on .S is (as described
in Fig. 28b)

—A—%Xf—A’ on (—o00,0) and A—%sz’ on (0, 00);

recall (4.2). Consequently, Lemma 4.5 implies n’ almost surely first hits 9, S at 0, as
desired. Since 1 up until the first time it hits dy S is almost surely continuous (recall
Remark 2.3), it follows that ’ almost surely contains 1 by applying this argument to
a countable dense set of stopping times (e.g., the positive rationals). It is also easy to
see from this that n’ hits the points of 7 in reverse chronological order (recall Fig. 28).

O

Remark 4.8 The proof of Lemma 4.7 has two inputs:

(a) the continuity of » up until it first accumulates in dy S and that
(b) for every n stopping time , n’ almost surely first exits S\ ([0, t]) at (7).

Condition (a) holds more generally when the boundary data on 9, S is piecewise
constant, changes a finite number of times, and is at most —A + m x to the left of
0 and at least A — 7 x to the right of zero. This ensures that n almost surely does
not hit ;S after starting, so is almost surely continuous since its law is mutually
absolutely continuous with respect to SLE, (p = 0) by the Girsanov theorem (recall
Remark 2.3). Condition (b) holds when the boundary data of & — %X on dy S is
piecewise constant, changes a finite number of times, and is at most —A" — 7w x to
the left of zo and at least A’ + 7 x to the right of zg [or we have —A’, A" boundary
data as in the statement of Lemma 4.7; note that the reason for the sign is that x =
Xx (k) = —x («")]. This also implies the continuity of n" up until it hits 9, S, arguing
using absolute continuity as before (this will be important for a more general version
of Proposition 4.9). Additionally, we need that the boundary data of & — 5 x on 9. S is
piecewise constant, changes a finite number of times, is not more than —2’ to the left
of 0, and is at least A’ to the right of 0. In short, Lemma 4.7 holds when the boundary
data of / is “large and negative” to the left of 0 and z¢ and “large and positive” to the
right of 0 and zp.

Proposition 4.9 Suppose we are in the setting of Fig. 28. That is, we fix k € (0, 4),
let h be a GFF on S whose boundary data is as depicted in Fig. 28a, let 1 be the flow
line of h starting at 0, 1" the counterflow line of h — % x starting at zo, and assume
that n, n', h are coupled together so that n, n' are conditionally independent given h.
Almost surely, 1 is equal to the left boundary n'.

Proof Lemma 4.7 implies that the range of " contains 1. To complete the proof, we
just need to show that 5 is to the left of . To see this, fix any stopping time t’ for n’
such that n’ almost surely has not hit 9, S. Then 5 almost surely exits S\»'([0, t']) on
the left side of 1’([0, T’]) or to the left of zg on dyS. Indeed, arguing as in the proof
of Lemma 4.7, we can conformally map the picture back to S to see that it suffices to
show that n almost surely first hits dy S to the left of zg. This, in turn, is a consequence
of Lemma 4.6.
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\d

Fig. 29 Suppose that we have the same setup as Fig. 28. Fix an 1’ stopping time t’. Then it must be that
n'(t’) is to the right of 1. Indeed, if this were not the case, then after hitting the left side of n([0, T']), say
at time 7, 7 would have to wrap around »’(t”) and then hit the right side of 1’ ([0, 7']), say at time o . This is
a contradiction since 1’ hits all of the points in 7 in reverse chronological order. In particular, we have that
n(t), n(o) € n’'([0, T']) while there exists s € (t, o) such that n(s) ¢ »’([0, T']). We conclude that n’ lies
to the right of n applying this result to a dense collection of stopping times 7’ (e.g., the positive rationals)
and using the continuity of n’

We will now argue that 5(z’) is to the right of 7. Let t be the first time 7 exits
S\n'([0, T']). There are two possibilities: n(t) is either in dyS or in 1’([0, T']). In
the former case we are done, so we shall assume that we are in the latter. Now, the
only way that n’(z") could be strictly to the left of 7 is if after T, n wraps around
7' ([0, 7']) and hits its right side. This implies the existence of times ¢; < #; < t3 such
that n(t1), n(t3) € ([0, T']) but n(t2) ¢ n'([0, t']). This is a contradiction since n’
absorbs the points of 7 in reverse chronological order by Lemma 4.7. The result now
follows by taking a countable dense collection of stopping times t’ (e.g., the positive
rationals) and invoking the almost sure continuity of " up until when it first hits 9, S
(Fig. 29). O

Remark 4.10 In addition to the hypotheses described in Remark 4.8 (which imply the
almost sure continuity of " up until when it first accumulates in 9, S), Proposition 4.9
requires the boundary data of 4 to be such that n almost surely first accumulates in
dy S to the left of zo. By Lemma 4.5, this means that the boundary data for 4 on 9y S
should be piecewise constant, change only a finite number of times, and be less than
A to the left of zg and be at least X to the right of zg.

By combining Remarks 4.8 and 4.10, we obtain the following extension of Propo-
sition 4.9.

Proposition 4.11 Suppose we are in the setting of Fig. 28 where the boundary data
on 91§ is replaced by any piecewise constant function which changes a finite number
of times, does not exceed —)\ + 1 x to the left of 0, and is at least A to the right
of 0. Assume furthermore that the boundary data of h on 9y S is piecewise constant,
changes a finite number of times, and does not exceed — A to the left of zg and is at least
A+ 7 to the right of zo. Almost surely, the flow line n starting from 0 is equal to the
left boundary of the counterflow line n' of the field minus 5 x starting from zo. Here,
we assume that n, ', h are coupled together so that n is conditionally independent of
n' given h.
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Using Proposition 4.11, we obtain Theorem 1.2 in the special case we have only
boundary force points with weights p = (BL’BR) with |£L| = k and |£R| =/
satisfying:

pi’Lz%—Z foralll < j <k and

e

I
-

(4.4)
PR >0 foralll <j <.

Mo

1

Proof of Theorem 1.2 for k € (0,4) assuming (4.4) We suppose that we are in the
setting of Fig. 28 but with boundary data satisfying Remarks 4.8 and 4.10. That is, we
consider the Gaussian free field / on the strip S with piecewise constant boundary data
on d; S which changes a finite number of times, is at most —A + 7 x on (—o0, 0) and
at least A on (0, 00). Moreover, we assume that the boundary data of & on 9y S is at
most —A to the left of zp and at least A 4 7 x to the right of zo. Then Proposition 4.11
implies that the flow line n of h starting at O is equal to the left boundary of the
counterflow line ' starting at zo of 2 — 5 x, where 5, n’, h are coupled together so
that 7 is conditionally independent of 5" given A. Since n and n’ are conditionally
independent given £, it follows that 1 is almost surely determined by 4. The result
follows since by adjusting the boundary data of /, we can arrange so that n ~ SLE, (p)
with any choice of weights p satisfying (4.4). O

At this point in the article, it follows that the flow lines thus considered (almost
surely non-boundary intersecting) are deterministic functions of the GFF. We have not
yet shown that the counterflow lines in any setting are deterministic functions of the
GFF; this will be shown in Sect. 5.

We finish this section with the following proposition, which gives an alternative
proof of the transience of certain non-boundary intersecting SLE, (p) processes using
duality (see [24] for another approach for ordinary SLE). B

Proposition 4.12 Suppose that n ~ SLE(p), k € (0,4), from 0 to 0o in H with the
weights p satisfying (4.4). Then lim;_, o n(1) = 00 almost surely.

Proof This is similar to the proof of Theorem 1.2 for k € (0, 4) assuming that the
weights p satisfy (4.4). Indeed, we can choose the boundary data of a GFF / on S so
that the flow line 7 of / starting at 0 is an SLE, (p) process for any choice of weights
p satisfying (4.4). Let 1’ be the counterflow line of 7 — 7 X starting at zo, taken to be
conditionally independent of 1 given 4. Let t be any positive stopping time for 7 such
that n almost surely has not hit zop by time t. We know from the proof of Lemma 4.7
that " almost surely first exits S\n ([0, T]) at n(t), say at time t’. Moreover, it follows
from Proposition 4.11 that n|[; ) is equal to the left boundary of '([0, t’]) (we know
that n lies to the left of ' ([0, 7’]) and that n’ hits the points of 7 in reverse chronological
order). By Remark 2.3, we know that ’|jo ./} is almost surely continuous which implies
that the left boundary of n’([0, t’]) is locally connected. Therefore the range of 7 is
locally connected (we know that n|[o,¢) is locally connected by Remark 2.3), hence n
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is continuous even when it hits zg. Applying a conformal map v : S — H completes
the proof of the proposition. O

Part of Theorem 1.3, which will be proved in Sect. 7.3 for« € (0, 4) and in Sect. 7.4
for k' € (4, 00), is the continuity of general SLE, (p) and SLE,/(p) processes upon
hitting their terminal point. This is equivalent to transience when the terminal point is
0.

5 The non-boundary-intersecting regime

This section contains two main results. First, we will show that the flow lines of the
GFF h enjoy the same monotonicity properties as if iz were a smooth function: namely,
if 61 < 6> and 5y, is the flow line of / with angle 6; for i = 1, 2 started at a given
boundary point then 74, almost surely lies to the right of 1, (Proposition 5.5). Second,
we will show that SLE ¢/, for k € (0, 4) can be realized as a so-called “light cone”
of angle-varying SLE, flow lines (Proposition 5.9). The proofs of this section will
apply to a certain class of boundary data in which the flow lines are non-boundary-
intersecting. In Sect. 7, we will extend these results to the setting of general piecewise
constant boundary data, in particular in the setting in which the paths may hit the
boundary.

5.1 Monotonicity of flow and counterflow lines

In order to prove our first version of the monotonicity result, it will be more convenient
for us to work on the strip S = R x (0, 1). Throughout, we let 9y S and 9, S denote the
upper and lower boundaries of S, respectively. This puts us into a setting in which we
can make use of the SLE duality theory from the previous section. Assume that 61 < 6.
Then we know from Proposition 4.11 that g, is almost surely the left boundary of
the counterflow line 77’91 of i + (61 — %) x emanating from the upper boundary dy S
of S, provided the boundary data of 4 is chosen appropriately (we will spell out the
restrictions on the boundary data in the statements of the results below). Thus to show
that ng, passes to the left of ng, it suffices to show that ng, passes to the left of nél.
This in turn is a consequence of the following proposition, which gives us the range
of angles in which a flow line passes either to the left or to the right of a counterflow
line:

Proposition 5.1 Suppose that h is a GFF on S with boundary data as described in
Fig. 30. Assume a’, b’ > )\ +mwx and a,b > ). Let 0 be the counterflow line of h
starting at zo. Fix 0 such that

A — —b — A
ATTIX D g At TX A (5.1)
X X
and let ng be the flow line of h + 0 starting from 0. If 6 > %(A — ) = 7, then
ne almost surely passes to the left of n' and if 0 < %(A/ —A) = —% then ng almost
surely passes to the right of n'.
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v —a

Fig. 30 Consider a GFF on the infinite strip S with boundary data as described in the illustrations above.
Let ng be the flow line starting at O with initial angle 6 (which corresponds to adding 6 x to the boundary
data) and n’ the counterflow line starting at zo. We assume that a, b are chosen sufficiently large so that
both 1’ and ng almost surely do not intersect the lower boundary 9; S of S except at 0 and a’, b’ are
sufficiently large so that ” almost surely does not intersect the upper boundary 3y S of S except at zo. We
will show in Proposition 5.1 that if 6 > %(A — /) = %, then ng almost surely passes to the leff of 1)’ and

ifo < %(A’ — 1) = —%, then ng almost surely passes to the right of n’. By SLE duality, this implies the
monotonicity of ng in 6. a On the lefr 6 > +- (A — 2') = 5. b On the right 6 < +(2/ —3) = =%

The hypothesis (5.1) implies that 79 almost surely accumulates in dy S or tends to
+o0 before hitting 9, S (see Remark 4.1; upon proving Theorem 1.3, we in fact will be
able to prove that g almost surely does not hit ;S after time 0). The reason we assume
a,b' >N +mxanda,b > )\ is that the former implies that n” almost surely does
not intersect dy S except at zo and the latter implies that n’ intersects 9, S only when
it terminates at 0. Consequently, 1 is almost surely continuous (recall Remark 2.3).
Moreover, it implies that if § < %()J — ) = =% then —a’ +6x < —A so that 7
does not hit the side of dyS which is to the left of zg and if 6 > %(A —A) = % then

b+ 0y > X so that g does not hit the side of 9y S which is to the right of zq (see
Fig. 27).

We are now going to give an overview of the proof of Proposition 5.1, which is based
on an extension of the proof of Proposition 4.9. We assume without loss of generality
that 6 > %(A — 1) = Z. We begin by fixing an n’-stopping time t’ and then show
that n’(z’) almost surely lies to the right of 7g. As in the proof of Proposition 4.9, we
will first show that 7g almost surely first exits S\n’([0, t’]) on either the left side of
17'([0, ']) or the side of 3y S which is to the left of zg (see Fig. 32, which also contains
an explanation of the critical angles). If we are in the latter situation, then we have the
desired monotonicity. If not, we suppose for contradiction that n’(z’) is to the left of
no. Then after ng hits ' ([0, T]), it must be that ng wraps around n’(z’) and hits the
right side of 1’ ([0, t']) since ny cannot exit S on the part of 9y S which lies to the right
of zo. This, however, cannot happen because the evolution of 7y near the right side
of ([0, T']) looks like (up to conformal transformation and a mutually absolutely
continuous change of measures) an SLE process on the strip S starting from 0 which
cannot hit its upper boundary dy S (see Fig. 23). We begin by proving the following
extension of Lemma 4.3, which serves to make this last point precise.

Lemma 5.2 Suppose that h is a GFF on S whose boundary data is as described in

Fig. 31 and let n be the flow line of h starting at 0. If n|[0,1,] is almost surely continuous
for some n-stopping time 0 < Ty < oo, then n([0, To]) N J = @ almost surely.
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J Ja
® = TS ® = ® °
—a _ b

Fig. 31 Suppose that & is a GFF on the strip S and let J € 9y S be open. Write J = Uy J; where the
Ji are disjoint open intervals and assume that h|;, = ci for given constants ¢ ¢ (=2, ). Assume that
0 < Tp < oo is an n-stopping time such that 7][o, ;)] is almost surely continuous. Then 7 cannot hit J
by time 7p. To see this, fix wq in the interior of any J; and pick € > 0 such that dB(wp, €) N Iy S is
contained in the interior of Ji. Fix €/ € (0, €). The evolution of 7 after it hits d B(wq, €’) for the first
time up until when it subsequently exits B(wy, €) is (after applying a conformal transformation) mutually
absolutely continuous with respect to the setup described in Fig. 23 by Proposition 3.4, consequently n
almost surely exits B(wy, €) before hitting B(wg, €) N Ji. The result follows by considering the collection
of balls centered at some countable dense set of points in J; with rational radii and invoking the continuity
of nljo, 75

In order for Lemma 5.2 to be meaningful, there must exist a non-zero n-stopping time
Tp such that 1[0, 7;) is continuous. This will be clear for the application we have in
mind in this section. Upon establishing Theorem 1.3 in Sect. 7, we will be able to apply
Lemma 5.2 to the flow lines of a GFF with piecewise constant boundary conditions.

Proof of Lemma 5.2 Write J = Uy J; where the Jj are pairwise disjoint intervals in
dyS. Fix k € N and wy in the interior of Ji. Let € > 0 be such that 3 B(wq, €) N oy S,
where dy S is the upper boundary of S, is contained in the interior of J; and fix
€’ € (0, €). Let t be the first time ¢ that n hits d B(wg, €’) and o the first time ¢ after t
that n is not in B(wo, €). Assume that n(t) ¢ dyS. Let D be the connected component
of S\n ([0, t]) which contains wo. By Proposition 3.4, the law of /1| gy, ¢) conditional
on the realization of 71|, ] is mutually absolutely continuous with respect to the law

of the restriction of a GFF /1 on D to B(wy, €) whose boundary data is A" — x - winding
(resp. —A" — x - winding) on the right (resp. left) side of 1([0, 7]), the same as & on
91 S, the lower boundary of S, and identically ¢ on all of dyS. Let 77 be the flow
line of starting at (t). Then Lemma 4.3 implies that 7 almost surely does not hit
dy S and, in particular, exits B(wy, €) before hitting 9y S. Applying Proposition 3.4 a
second time implies that with E(wo, €’, €) the event {n([t, c]) NdyS # @, o < To}
we have P[E (wq, €/, €) | n(r) ¢ 9y S] = 0.

Let (w;) be a countable dense set in J and let D be the set of all triples of the form
(wj,r’, r)where0 < r’ < r arerational. If n hits 3y S with positive probability before
time Ty, the almost sure continuity of 1|, 7] implies there exists (w, r’,r) € Dsuch
that PLE(wj, ', r) | n(t) ¢ duS] > 0 where v < Tpis the first time n hits d B(wj, r').
This is a contradiction, which proves the lemma. O

Remark 5.3 By changing coordinates from S to H, Lemma 5.2 implies the following.
Suppose that n is an SLE,(p) process on H with weights p = (QL; BR) placed

at force points (x’; x®). Assume that n|[o,7,] is almost surely continuous for some
n stopping time 0 < Ty < oo. Then n([0, Tp]) almost surely does not intersect
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Fig. 32 Suppose that we have the same setup as in Fig. 30 and let 7/ be a stopping time for 1’. We assume 6
is chosen so that g almost surely does not hit 3; S after time 0. If 6 > % r=1)= % sothat A’ +60x > A

and b’ + 6 x > X then by Fig. 27, ng exits S\n'([0, t’]) on either the left side of 1’ ([0, T’]) or on the left
side of 9y S, almost surely. If 6 < %()\’ —A) = —% sothat —A' +0x < —Aand —a’ +60x < —A, ng first

exits on the right side of ([0, T’]) or the right side of 3y S, almost surely. a The evolution of n’ up to time
7’ and 1y up until the first time it hits 1" ([0, ]). b The boundary data for ng after conformally mapping
the picture on the left hand side back to the strip with 00 and 0 fixed, wq the image of zg

any interval (x*t1F, xbL) [resp. (xR, x'T1R)] such that 30 _, pof > £ —2or
zs=1PSL < £_4(resp Zs—lloSR > £_20rz lpAR < 5_4)

Lemma 5.4 Suppose that we have the same hypotheses as Proposition 5.1 with 6 >
%(X — ) = 7 fixed. Let t' be an 1)’ stopping time such that, almost surely, n’ has not
hit O by time t'. For eacht > 0, let K[ be the hull of ' ([0, t]), i.e. the complement of
the unbounded connected component of S\n'([0, t]). Let T be any stopping time for
the filtration F; = o(n(s): s < t, n'([0, t'])) and let E = {dist(n(7), K,) > 0}.
Then on E, n|[r.c0) intersects neither the right side of n' ([0, t']) nor the part of dyS
which lies to the right of zo before hitting either the left side of ' ([0, t'1) or the part
of 0y S which lies to the left of zo.

Proof Ifn([0, t)NK ;/ = (), then the result is immediate from the argument described
in Fig. 32. Thus for the rest of the proof, we shall assume that 1 ([0, ]) N K;, = ).
Since 7 is almost surely a simple path, there exists a unique connected component D
of S\(n([0, t]) U K;,) such that for some €p > 0, n(t +€) € D forall € € (0, €p).
We consider two cases. First, suppose that d D has non-empty intersection with the
part of dyS which is to the left of zg. Then there is nothing to prove since a simple
topological argument implies that 1|[;, o) can only exit D either on the left side of
7' ([0, 7']) or on the part of 9y S which lies to the left of zg (since ([0, T]) must have
an intersection with either the left side of 1’([0, t’]) or the part of 9y S which is to
the left of zp; see Fig. 27). Second, suppose that d D has non-empty intersection with
the part of 9y S which is to the right of zg or the right side of 1’ ([0, t']). Observe that
D is simply connected. Let 7o be the largest time ¢ < 7 such that n(r) € K/,. Let
Y : D — S be the conformal transformation which sends n(t) to 0, and the left and
right boundaries of n([zo, ]) to (—oo, 0) and (0, 00), respectively. Since 7|o,;] and
n |[0 /] are continuous paths, it follows that v extends as a homeomorphism to D.
Leth=hoy ! — yarg(yy~!). Then hisaGFFon S by Proposition 3.7 since K’
is local for & and ([0, 7]) is local for 4 given K,. By Proposition 3.8, we know the
boundary data of h on 9;.S as well as the parts of dy S whose preimage under  lies in
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Fig. 33 Suppose we have the same setup as Fig. 32 with 6 > %(A -\ = % so that ng first exits

S\’ ([0, T']) on the left side of ([0, t']). The only way that 1’(z’) can be to the left of ng is if, after
hitting the left side of 1’ ([0, t']), ng wraps around n’(z’) and then hits the right side of n'([0, t’]). Let
K,/ be the hull of 1’ ([0, t]). This implies that with t5 the first time ¢ after t for which 5(¢) is in the right
connected component of S\ (1'([0, ']) U n([0, t]1)) and dist(1(¢), K;,) > § we have that P[tg < oo] > 0

provided § > 0 is small enough. Let D be the connected component of S\(n([0, t5] U K ; ,) which, for
some € > 0, contains 7([tg5, T5 + €]). Let ¥ : D — S be a conformal transformation sending the left side
of n from the largest time ¢ < 75 that n(r) € B(S\K;,) to 75 to (—o0, 0) and the corresponding right side
of 1 to (0, 0o). Then the boundary data for the coordinate change of the GFF i|p + 6 x by ¥ in S is shown
on the right hand side. The intervals Jj are the images of the segments in d D which also lie on the right
side of 1’ ([0, 7']). By Fig. 31, we know in this case n cannot hit any of the J in finite time. This leads
to a contradiction. a In order for 1’(z’) to be to the left of 19, ng must wrap around n’(z’) after hitting on
the left side of n/([0, t']). b The boundary data for the flow line 7g as it approaches the right side of n’,
conformally mapped back to the strip

either ([0, ]) or in 1’([0, £’]) but (at this point) we cannot determine the boundary
behavior of & near points in ([0, T]) N 1’ ([0, £']). This is indicated in the right panel
of Fig. 33. The result now follows from Lemma 5.2 (see Fig. 33). O

Proof of Proposition 5.1 We assume 6 > %(A — A') = % the argument for the other
case is the same. Let 7’ be any stopping time for i’ such that ' has almost surely
not yet hit O by time t’. Conditioning # on 1’([0, t']) and conformally mapping
S\K!, (recall that K is the hull of 1'([0, ¢])) back to S, the boundary data of the
corresponding field plus 6 x is given in Fig. 32b. That 0 > %(A — 1) = % implies
XM +0x >—A A +0x > A and b’ + 6y > A. Consequently, it follows from that
ng almost surely exits S\n' ([0, t']) on the left side of 1’ ([0, t']) or on the part of 9y S
which lies to the left of z, say at time , or does not hit dy S (Figs. 24, 27).

We will now argue that ' (z”) is almost surely to the right of ny. If this is not the
case, then after time 7,  must wrap around (but not hit) n’(z’) and then hit the right
side of 1/([0, T']) (recall that n almost surely does not hit the side of dyS which lies
to the right of zp). Let 75 be the first time ¢ after t that 7(¢) is in the right connected
component of S\ (1 ([0, 7]) U n'([0, t'])) and dist(n(zs), K.,) > & (we take 5 = 00
if this never happens). Then it must be that limgs_, o+ P[t5 < oo] > 0, for otherwise
n' () is contained in the range of n since we have assumed that n’(z’) is to the left
of n. This leads to a contradiction since Lemma 5.4 implies that  cannot hit the right
side of 1’([0, t']) or the part of 9y S which lies to the right of zo before it hits the left
side of 1’ ([0, T']), the part of 3y S which lies to the left of zg, or tends to oo after time
75, any & > 0. O
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Proposition 5.5 Suppose that h is a GFF on S whose boundary data is as in Fig. 30.
Fix 01, 0> such that

L < << —L T (5.2)
X X

Let ng,, fori = 1,2, be the flow line of h + 0; x starting at 0 and let T; be the first time
that ne; accumulates in 3y S. Then ng, |[0,,] almost surely lies to the left of ng, |[0,7,]-
The same result holds if ne,, ne, are flow lines of a GFF h on H from 0 to oo with
boundary data —a on (—o00, 0) and b on (0, 00).

The reason for the asymmetry in the hypothesis (5.2) is to allow for “enough space”
so that we can fit a counterflow line '7/6| whose left boundary is 7g, which does not
intersect d;,S. We note that it is not necessary to make any hypotheses about the
boundary data of 4 on dyS. The reason is that the lemma is only applicable for the
paths up until when they first accumulate in 9y S. This means that we can prove the
result with a convenient choice and then use Proposition 3.4.

Proof of Proposition 5.5 Fix € > 0. For i = 1,2, let 7/ be the first time ¢ that 7y,
gets within distance € of dyS. It suffices to show that n;22|[0,15] almost surely lies

to the left of ng]' l10.¢) for every € > 0. We assume that a > N+ (61 + F)x and

b >N+ (%n — 0))x (by Proposition 3.4, it suffices to prove this result with any
choice of @', b’). This implies that the boundary data of 2 + () — 5) x on 9y S which
lies to the left of zg is at most —A’ — 7 x and to the right of zg is at least A’ + 7 x.
Moreover, the hypothesis (5.2) implies that the boundary data of 1+ (0 — %) x on 9. S
which lies to the left of 0 is at most —A” and to the right of 0 is at least A’. Consequently,
Proposition 5.1 is applicable to the counterflow line nél of h+(61— %) X . Since ng, |[0,r2€]
is the flow line of 71 4- (9 — %) x with angle 6, —6; + 7 > 7, Proposition 5.1 implies
that 1g, |[0,7¢] 1 to the left of nél . The result then follows since Proposition 4.11 implies
that 7, [[0,¢] is contained in the left boundary of nél . Theresult whenthe ng,, i =1, 2,
are flow lines of a GFF on H follows from the result on S and Proposition 3.4. O

5.2 Light cone construction of counterflow lines

In this section, we will prove Proposition 5.9, our first version of Theorem 1.4. Along
the way, we will explain the inputs we need in order to prove the result in its full gen-
erality (the technical ingredients for the general version will be developed in Sect. 7).
Suppose that 4 is a GFF on S with boundary data as depicted in Fig. 34. Throughout,
we will make the same hypotheses on the boundary data of 4 as in Proposition 5.1.
That is, we shall assume thata, b > A — % x = A/; the reason for this choice is that
it implies that the counterflow line 1" of & starting at zg almost surely hits 9, S, the
bottom of 385, only when it exits at 0. We also assume that a’, b’ > A’ + 7 x so that n’
almost surely does not intersect dy S, the top of S, except at zg (recall Fig. 26).

Fix angles 6y, ..., 0. Let ng, be the flow line of & starting at O with angle 6,
let 71 be an 7, stopping time, and let 775} = ng,l10,7;] (.e., g, stopped at time 11).

For each 2 < j < ¢, we inductively let n;l;j ! be the flow line of 4 conditional

@ Springer



642 J. Miller, S. Sheffield

on 17;11'..1]-71 l(0.7;_,] starting at n(;:"'rj’l (tj—1) with angle 0- and let 7; be an 7g, ..,

stopping time, as depicted in Fig. 34. We call 77;1 ;Z = 7791 0/ |[0,r,-] anangle-varying

flow line with angles 0y, ..., 6, with respect to the stopping times 7, ..., t¢. Note
that

1< <---<71 and 77 775;559 Cﬂ;i ;f
We emphasize that 779 9 ' is defined on [0, 7;]and n0 0 | 01711 = 7701 ! The light

cone L of h starting at 0 is the closure of the set of pomts accessible by angle varying
flow lines with rational angles 0 restricted by

4 1 / 1 / i
— == -n<0<—-0-N==, (53)
2 X X 2

i.e. always pointing in a northerly direction, and with positive rational angle change
times. More generally, if ng:;’; is any angle-varying flow line and o is an 77;],(;];

o]+-0k

stopping time, the light cone L(ny,...¢, , o) starting at n vy (cr) is the closure of the
set of points accessible by angle-varying flow lines starting at 19, ¢ %k (cr) with rational
angles restricted by (5.3) and with positive rational angle change tlmes The main result
of this subsection (Proposition 5.9) states that the range of " stopped when it hits the

tip 774)1 (m k(o) of 774)1 ¢k| 0,0] 1s almost surely equal to L(nd)1 % o). The first step in

its proof is Lemma 5.7, which states that any angle-varying ﬂow line 7’01~-:(§f

angles are restricted by (5.3) is almost surely contained in the range of n’ and that 7’
hits the points of né} ::f;ﬁ in reverse chronological order. Before we prove Lemma 5.7,
we record the following technical result which gives that non-boundary intersecting
angle-varying flow lines with relative angles which are not larger than 7 in magnitude
are almost surely simple and determined by /.

whose

Lemma 5.6 Let 7791 It be an angle-varying flow line of h with angles 0;,1 <i < {,

with |0; — 0;| < nfor all pairs 1 < i, j < L. Assume, moreover, that ’791 gf is

non-boundary-intersecting. Then nT‘ W is almost surely simple and continuous. If we
assume further that the boundary data for h + 01 x is at least ) on (0, c0) and at
most —A + 1w x on (—00,0), then n;:gﬁ is almost surely determined by h. The same
likewise holds if the boundary data for h + 01 x is at least A — 7w x on (0, 00) and at
most —\ on (—o0, 0).

The exact conditions on the 6; for ng::::gﬁ to be non-boundary-intersecting are as
follows. In order for the path not to 9, S, we need both

—0; b+6;
L R S i L B | (5.4)
A 2 A 2
In order for the path not to hit 3y S other than at zg, we need both
a/—(9j+rr))(_ K b+ 0 —m)x

1>5 2 ang 229 TOX 2K 50 (55
) 2 ) 2
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20 wo
v —a’ v
= Oax|N = bax ¥

A

,/\/

b —a —A—0ix —A—fx A—bx AN—06ix_ b

Fig. 34 Suppose that & is a GFF on S with the boundary data depicted above. We assume that a, b >
A —=%x =2 andd’,b" = A 4 my. The reason for these choices is that the former implies that the
counterflow line " of & starting at z( almost surely first exits 3, S at O and the latter implies that n’
intersects dy S only at zo Fix angles 01, ..., 0p. Let ng, be the ﬂow line of h + 01 . let 7| be an ng,

stopping time, and let 179 = ng, l[0,7,]- For] > 2, mductlvely let 179 ’ " be the flow line of & + 0jx

Ti—]
conditional on 7’91 9 |[0 i1l starting at n91 9 (rj 1), let7; be any '79 ] stopping time, and let

'701 Tj n;I ; [0, i) The random subset of S one obtains by taking the closure of the union of the

ranges of 19, .., Where the stopping times 7; and angles 6; with —7 = %(A’ X)) <0 < %(A—A ) =75
forall 1 < j < k vary among appropriate countable dense collections is equal in distribution to the range
of the counterflow line starting at zg. The picture on the rzght side shows the boundary data of the GFF
(€ = 2) after applying a conformal transformation v : S \1791 9k * ([0, 7x1) — S which sends 779 1‘ (‘[k) to

0 and fixes +00; wy = ¥ (z9) € IyS

Indeed, these two conditions together with the condition that |6; — 0;| < 7 for all
pairs 1 < i, j < £ imply that all of the partial sums of the force points which are to the
left and right of the driving function exceed 5 — 2. Note that for any fixed choice of
0j for 1 < j < ¢, we can always pick a, b, a’, b’ large enough so that (5.4) and (5.5)
hold.

Proof of Lemma 5.6 The proof is by induction on £ > 1. Suppose ¢ = 1. That the
path is simple and continuous in this case follows from the mutual absolute continuity
of the path to usual SLE,, x € (0,4) (see Sect. 2, Remark 2.3). Suppose the result
holds for angle-varying paths with £ — 1 > 0 angle changes. To see it holds when
there are ¢ angle changes, we condition on the realization of the path until the (¢ — 1)st
angle change and conformally map back to S as in Fig. 34. Due to the restriction
|6; — 0;| < m, it follows that the image of the path after the (¢ — 1)st angle change is
a non-boundary intersecting SLE, (p), so the induction step clearly follows. The final
claim of the lemma for £ = 1 follows from the special case of Theorem 1.2 we proved
in Sect. 4.2. That it holds for larger £ also follows by induction and Proposition 3.4.
]

Lemma 5.7 Let n;::;ﬁ be an angle-varying flow line of h with angles 6;,1 <i < £,

satisfying (5.3). The counterflow line v’ of h starting at zo almost surely contains
T T . . T Tp - .

Ng,...0, and, moreover, hits the points of Ng,..q, 1N reverse chronological order.

Proof We first note that n;”';f is almost surely continuous by Lemma 5.6. Fix an
n91 9{ stopping time o such that r; ;ﬁ ([0, o]) almost surely does not contain zo. We
apply a conformal transformation w: S\ng, 5. (10, 0]) — S which fixes +oo and
sends néf:::gﬁ (o) to 0; the boundary data for the GFF which describes the evolution of
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¥ (n') is as in the right panel of Fig. 34 (with the obvious generalization from ¢ = 2
to other values of £). Let wg = ¥ (z¢). Our hypotheses on 6; imply

—A—6ix <=\ and A—0;x >\ foralll <i<Z{.

Lemma4.5 (see also Fig 26) thus implies that ¥ (") does not hit 3, S\ {0} and exits S at
0. This implies that ” almost surely exits S \r;(91 L ,([0,0]) at 7791 ) , (0). By choosing a
dense collectlon of stopping times (e.g., the posmve ratlonals) and using the continuity

of n’ and ’79 9 we conclude that the range of ' contains ’79 “ . Moreover, the proof

clearly also implies that the points of n 1“_92 are hit by 5" in reverse chronological

order. |

Remark 5.8 The proof of Lemma 5.7 requires two inputs:

(i) n’ almost surely exits S at 0 and
(ii) 775:::52 and n’ are almost surely continuous paths.

The reason that we chose our boundary data so that " does not intersect 9, S\ {0} was
to ensure the continuity of n’. Upon proving Theorem 1.3 in Sects. 7.3 and 7.4, we
will have shown that (i) and (ii) hold whenever n’ and ng: ::_';f make sense (the SDE for
the driving functions of these processes has a solution), so that Lemma 5.7 also holds
in the same generality.

Lemma 5.7 implies that " almost surely contains L(ng: :::;’)’Z, o) forany ¢1, ..., P
satisfying (5.3). We now turn to prove the reverse inclusion.

Proposition 5.9 Let nal"ﬁk be an angle-varying flow line of h with angles ¢; sat-

Ok Ul O'k

isfying (5.3) and let o be any 17¢1 ¢, Stopping time. The random set L(n
obtained by taking the closure of the union of n ¢1 g’l‘(g: ;i (10, 7¢]) as £ ranges over
N and 01, ..., 0y range over any countable dense set of angles satisfying (5.3), and
o < 11 < --- < T¢ range over any dense subset of (o, 00) is almost surely equal
to the range of the counterflow line n' of h starting at zy stopped upon first hitting

nd)i ok - (o) (which is the same time that it hits nal ok - ([0, 0 1))

,0)

We pause to give an overview of the proof of Proposition 5.9. Fix an n’ stopping
time 7’. We will prove for every € > 0 there exists an angle-varying flow line with
angles restricted by (5.3) whose range comes within distance € of '(z’) (see Fig. 35
for an illustration). By conformally mapping the unbounded connected component of
S\n'([0, T']) to H with n’(z") mapped to oo and 0 fixed, it suffices to show for every
R > 0 there exists an angle-varying flow line with angles restricted by (5.3) of the
corresponding field on H whose diameter is at least R. By rescaling, we may assume
that the images of the left and right sides of z¢ are contained in R\ (-3, 3). Consider
the path 7; which begins by flowing at angle 7, i.e. maximally to the left. By the
choice of boundary data, 7] first hits R after time 0 in (—oo, —3]. We let 7, be the
path which starts at the tip of 771 when it gets close to (—oo, —3] and then flows at angle
— 7, i.e. maximally to the right. Again by the choice of boundary data, 7, first hits R
in [3, o). We inductively let 77; be the path which flows at angle (— 1)/ *1 7 starting at

@ Springer



Imaginary geometry I: interacting SLEs 645

—a b

Fig.35 Consider the GFF with the boundary data depicted in the illustration above witha, b > A— % x =
and a’, b’ > A’ + 7 x and let ' be the counterflow line starting at zg. Fix any ’ stopping time t’. To show
that the random set described in Fig. 34 almost surely contains 1’(z’), we consider flow lines of the form

1721;] where 0; = (—l)j'"1 l()L -\ = (—1)j+1 % With this choice, n;I ;] can hit the left but not

1Y) X 10

the right side of ’ when j is odd and vice-versa when j is even. We choose the stopping times © j so that

n;: ;’ gets progressively closer to the left side if j is odd and to the right side if j is even. Taking a limit
i

as the number of angles tends to oo, the corresponding curves almost surely accumulate at n’(z”)

-
- -

Fig. 36 In order to prove that the construction in Fig. 35 accumulates at ' (t”), we apply a conformal map
Y which takes the unbounded connected component of S\’ ([0, T']) to H and which sends /(") to oo and

fixes 0. Then it suffices to show that 7j; := 1//(779 GJ ) is almost surely unbounded as j — oo. To prove

this, it suffices so show that the amount of capacity tlme it takes 77; to traverse from left to right (resp. right
to left) if j is even (resp. odd) is stochastically bounded from below by a non-negative random variable
whose law has positive mean

the tip of 7;_; when it gets close to (— 1)/[3, 0o). This is depicted in Fig. 36. To show
that the paths 77; are unbounded as j — oo, it suffices to show that the amount of
capacity time it takes for 77; to traverse from left to right (resp. right to left) if j is even
(resp. odd) is stochastically bounded from below by a non-negative random variable
with positive mean (Lemma 5.10 serves to make this point precise). The challenge in
showing this is that each change of angle leads to the creation of two additional force
points. The amount of force applied to the driving function, nevertheless, remains
bounded because the force alternates in sign but has the same magnitude with each
angle change.

Lemma 5.10 Suppose that (W;, V, q) is an SLE, (,0 ,oR) process with Wy = 0 and

force points located (x*; x®). Let © be the first time that W exits the interval [—1, 1].
Assume there exists C > 0 such that

i,L ¢ i,R

ip—-,JFZ .

T —% <C forallt €0, 1]
o W=V i W=V
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where k = |£L| and l = |£R|. Then P[t > 1] > po > 0 where pg depends only on
C, k, and ,ol'R.

Proof Let /ﬁx be the law under which (W;, VZI’R) evolves as an SLE, (p!-) process
with a single force point of weight p!® with initial position x = VO1 R Let ¢ =
TtAl,A={tr >1},and

iL ¢ i.R

k '
14 o 1
u=> -3 L and Mtz—/ UdB,
T Ew vt S w vk Vo

where B is the standard Brownian motion driving W. We denote by (M), = % fol U2ds
the quadratic variation of M at time t. By the Girsanov theorem [12,26] and the
Cauchy—Schwarz inequality, we have that

P.[A] =E[14 exp(M; — L(M):)] < (P[AIE[exp(2M; — (M)))DV2. (5.6)

The optional stopping theorem implies that E[exp(aM; — %az(M )e)] = 1 for all
a € R. Since (M), < C?/«, it consequently follows that

E[exp(aM;)] < exp(5C?a*) fora € R.

Hence, E[exp(2M; — (M);)] < Cy for some constant Cy depending only on C and «.
Thus rearranging (§\.6), we obtain P[A] > Cy ! (ﬁx[A])z. To finish the proof, we just
have to argue that P,[A] is uniformly positive in x. This is clear when x > 2 since
then the total amount of force th’R applies to W in the time interval [0, ¢] is bounded
by | ,ol'R|. The result then follows since ﬁx[A] is both continuous and positive for
x €[0,2]. O

Proof of Proposition 5.9 We have already shown in Lemma 5.7 that n’ stopped at
the first time o’ it hits ng]l:gi (o) almost surely contains L(ngi::‘;’; ,0), so we need
to show that L(nglgi , o) almost surely contains 1’([0, o’]). To this end, fix any
n’ stopping time t’ such that t/ < ¢’ almost surely; we will show that P[n'(z’) €
L(ng: :::‘;’l‘( , )] = 1. This completes the proof since, by the continuity of r’, it suffices
to have this result for a countable collection of stopping times (rj’.) such that {n’ (t]’.)}
is dense in 1'([0, 0']).

Let K,’ denote the hull of n" at time 7, i.e. the complement of the unbounded
connected component of S\n/([0, z]). We begin by applying a conformal map
e 3\(77;11;1‘;1([0, o]) U K!,) — H which takes ”21:::gi (0) to 0 and 1/ (t’) to oco.
The boundary data for the corresponding GFF hi=hoy ' —yx arg(¥ 1) on H is
shown in Fig. 36 in the special case k = 0. Let z_ and z4 be the images of the left
and right sides of K/, N dy S, respectively. We may assume without loss of generality
that t" > 0 almost surely, which in turn implies that z_ < 0 < z4. We have only
specified 1 up to rescaling since we have only fixed the image of the two boundary
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o]0k

points n Py (o) and n’(z’). Thus by choosing the scaling factor to be large enough,
we may assume without loss of generality that z_ < —3 and z4 > 3.

It suffices to exhibit angles 6; satisfying (5.3) and stopping times (7;) such that the
flow line 7 of the GFF h with angles 01, ..., 0¢ and angle-change times 7y, ..., T¢—|
is unbounded as £ — oo. To this end, we let

| , T
b= (DT =0 = 1) = (=D

Note that this particular choice may not lie in our fixed dense set of angles satis-
fying (5.3). It will be clear from the proof, however, that we can achieve the same
effect by approximating the 6; by elements of this set. Indeed, to see this, we just
have to explain why an angle-varying flow line with angles contained in {—7, 7} can
be approximated arbitrarily well by an angle-varying flow line with angles in a dense
subset of [—7, 7]. It suffices to explain why if 6, isa sequence of anglesin [— 7, 7]
which decrease to —5 as n — oo then the sequence of flow lines with angles 6, con-
verge to the flow line of angle —7. Note that the SDE which describes the driving
function for a flow line of angle 6, is that of an SLE, (p,,) process which, for large n,
has weights which are close to those which correspond to the driving function of the
flow line with angle — 7. It is thus a simple matter using the Girsanov theorem to see
that the laws of the dr1v1ng functions of the flow lines with 6, converge to that of the
driving function of the —75 angle flow line as n — 0o. Moreover, by monotonicity,
the flow lines themselves each drawn up to a fixed time ¢ convergence almost surely
(say, with respect to the Hausdorff topology after conformally mapping to a bounded
domain) to a limiting hull. This gives a coupling of two growing families of hulls
whose Loewner driving functions have the same law but with one almost surely to the
left of the other. This can only be the case if the two processes are equal. Our stopping
times will also not necessarily lie in our fixed dense subset of (0, co), however, it
will also be clear from the proof that the path we construct will still be contained in
L(na1 ”k , 0) by the continuity of our angle varying trajectories.

We now turn to the construction of 7. Let 7 be the flow line of h + 6 x which
starts at 0 and let W! be its Loewner driving function. By Lemma 4.6, it follows that
71 must hit R to the left of z_ < —3 in finite time. Let 7] be the first time ¢ that
W1 < -2 Inductlvely let 77; be the curve which traces along 7;_1 and then flows at
angle 6; starting at 7;_1(7;_1) and W/ its Loewner driving function. Let 7; be the

first time ¢ after 7;_ that W] enters (—oo, —2] (resp. [2, 00)) if j is odd (resp. j is
even). Then Wi |t>, ., is asolution to the SLE, (p) SDEwith N+ 1, N :=k+ j +2,
force points on each side of 0 (this can be seen by reading off the boundary data for the
GFF after mapping back and applying the change of coordinates formula). The first
k + j arise from the k 4 j angle changes and the last 3 come from the initial choice
of boundary data. Let V%7 > 7Tj_1forg € {L,R}and 1 <i < N + 1, denote the
time evolution of the force points associated with Wi | >7;_

To complete the proof, it suffices to show there ex1sts i 1 d non-negative random
variables (Z;) with E[Z;] > 0 such that, almost surely, To; — Tp;_1 > Z; for all j.
Indeed, the strong law of large numbers then implies
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—a' + (02 + m)x =A(1 = (02— ¢1)%) AL+ (02— 601)%F) b+ Oax N+ (62 — m)x
=N 4 (02 +m)x —a+ 6ax A1 = (62 - 61)%) A1+ (62 = 61)%) b+ (62 — m)x

Fig. 37 The boundary data for g i1 (777) in the special case £ = 2 and k = 1
J
T > Z Z; — oo almost surely as j — oo,
i=1

hence the result follows from the diameter-capacity lower bound

diam(77; ([0, T;1) > c,/hecap(7; ([0, T;1) = ¢\/7}

(the inequality is [14, Equation 3.8] and the equality follows since our curve is para-
meterized by capac1ty)

Note that V~ =[(=DIH2]~, V. = [(—1)712]* [the left and right sides

of (—1)/+12, respectlvely] and V~q J = Vl llq =1 for q € {L, R}. Assume that j
Si,L,j

lR]

is even. By the monotonicity of the evolutlon of the V’ 4. (V,”™’ is decreasing in ¢
and V 7 is increasing in 1), it follows that V" bi< —2 for alliand¢ > 7;_; and
Vl R.J >2foralli > 2 and t > T;_y. In particular, V RJ s the only force point
which can bounce off of W, fort > T;_; when W/ isin [—1, 1] and all other force

points have distance at least 1 to VT/tj . Let &; be the first time ¢ after T;_; that VT/tj =0
and

We are now going to check that W/ ,t > &;, satisfies the hypotheses of Lemma 5.10.

Let p = (BL; BR) denote the weights of the force points of VT/,j ,t > ?j_1. For
1 <i < j — 1, note that

X . .
B=@j-ip1 =007 and ptt=—ptf
(see Fig. 37 for an example of this when £ = 2 and k = 1). In particular, by our choice
of 0;, the weights ,01"1, R ,0/_1"1, q € {L, R}, only algernate in sign but have the
same magnitude. Let Co = |p'L|. We have |VT/,] — ‘7;,!1,”—1 < lfort>T;_| when
V~Vt" e[—1,1]foralll <i < j—1forg=Landall2 <i < jforgq = R. Thus

since |W,j - Vti’q’jl_l is decreasing in i for ¢, j fixed, when le € [—1, 1] we have
j—1 oL J= pi-R
—_— | < CO and —_— | < C() for ¢ > ?j_l. (57)
2 2w -7

Moreover, there exists C; > 0 depending only on k, «, a, b, a’, b’, in particular not
growing with j, such that
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N+1 N+1 iR

Z~ gL Z~- ,R]§C1 fort >7; (5.8)

when Wj e [—1,1]. Let ,7-"tj = o(n;(s) : s < t). Applying LemmaS 10 we see
that P[¢; —&; > 1 |]~'J 1> po > 0 for pg depending only on Cy, Cy, pR, k which

implies P[sz — 1:2]_1 >1 |fg{_,-] > po > 0. This completes the proof. O

Remark 5.11 The proof of Proposition 5.9 requires two inputs:

(1) n'is almost surely a continuous path,
O1---0kT]

(i1) Nepy -0 - 9 ¢ almost surely hits the left side of ' ([0, T’]) or the side of 3y S to the

left of zo when 6y = 5 Z and almost surely hits the right side of n'([0, T']) or the
side of 9y S to the right of zo when 6y = —7.

We will show in Sect. 7 that (i)—(ii) hold whenever the counterflow line " and angle-
varying flow line %' "% make sense (the SDEs for the Loewner driving processes have
solutions). Combining this with Remark 5.8 implies that the light cone construction
holds whenever 1’ makes sense [i.e., is an SLE, (QL; BR) process with 2{21 phd >
—2foralll < j <|p?|and g € {L, R}].

Taking 0 = 0 in Proposition 5.9 allows us to construct the range of the entire
counterflow line. We consider the result sufficiently important that we restate it as the
following corollary.

Corollary 5.12 The random set obtained by taking the closure of r]r] W([O ¢]) as
01, ..., 0¢ range over any countable dense subset of the interval (5. 3) and T, ..., T¢
over any countable dense subset of (0, 00) is almost surely equal to the range of the
counterflow line n' starting at 7.

We will now show that the entire path of the counterflow line 1’ is determined by
the light cone, not just its range.

Proposition 5.13 Almost surely, ' is determined by h.

Proof The proof of Proposition 5.9 implies that if 5 is any angle varying flow line
with angles satisfying (5.3) and o is an n stopping time then 7 (o) is almost surely
contained in the range of ". Moreover, we can realize the entire range of n’ by taking
the closure of I := {n(c): (n,0) € D x Q4} where D is the set of angle varying
flow lines with rational angles satisfying (5.3) and rational angle change times and
Q. = QN (0, 00). Proposition 5.9 also allows us to order I'" according to the order in
which n(o), (1, 0) € D x Q4, is traced by 1. Indeed, we can associate with the pair
(n,0) € D x Q4 the light cone L(n, o) of angle varying flow lines starting at (o)
with angles restricted by (5.3). We know that L(, o) is equal to the range of i stopped
when it first hits ([0, o]) (the point of intersection is always 1(o')). This implies that
if (n, o), (7,0) € D x Q, then we almost surely have that either L(n, o) C L(7, 5)
or L(77,0) € L(n, o). That is, the sets (5, o) are ordered by inclusion—which in
turn orders 7’. O
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We finish this section by making two remarks. Our first remark is that we only
needed to make use of maximal angles in the proof of Proposition 5.9, though the range
of 1’ still of course contains those angle varying flow lines in which the angles take on
intermediate values. If ng:::g}’z is an angle varying flow line with angle change times
Ti, ..., Tk where the 6; satisfy (5.3) and 6; = %(A — 1) = %, then n;}:::gf [

T Tk

traces the left boundary of 1’ stopped at the time o’ it first hits Mgy ([0, t;—1]) starting
from 7'(0”). The same is also true if §; = %()\’ — A) = —7% but with left replaced
by right. Thus we can view the light cone construction of " as a refinement of SLE
duality, as described in Sect. 4. (We remark that the simulations in Figs. 13, 14, 15,
16, 17 and 18 were generated using maximal angle changes). A flow line with an
intermediate angle 6 can be thought of as an angle-varying flow line which only takes
maximal angles, but oscillates between going maximally left and right at infinitesimal
scales, with the rate of oscillation depending on the particular value of 6.

Second, suppose that § < @ are fixed angles. Then we define L(8, #) to be the
closure of the set of points which are accessible by angle-restricted trajectories with
rational angles which lie in the interval [0, 6] and with positive rational angle change
times. Lemma 5.7 implies that if § > —Z and 6 < %, then L (9, 6) is almost surely
contained in the counterflow line n’. We are now going to argue that, in this case,
L(0, 0) is actually almost surely determined by 1’ when x € (2, 4). In particular, if
6 € [-75, 51, then the flow line 7y with angle 6 is almost surely determined by ’".
To see this, we first note that since k € (2, 4) it follows that ' = 16/« € (4, 8). This
implies that the range of n’ almost surely satisfies the hypothesis of Lemma 3.10 (see
[24, Theorem 8.1]), which in turn implies that the law of & given 5’ is the same as the
law of & given both 1" and %[, . (We emphasize here that we are conditioning 2 on " as
a curve as opposed to the range of ’ as a set.) Since L(6, 6) is almost surely contained
in 7/, Proposition 3.9 implies that the law of & given n’ is equal to the law of & given
both 1’ and L(0, 0). This implies that 4 and L(0, 0) are conditionally independent
given n'. Since L(6, 6) is almost surely determined by / (Lemma 5.6), this, in turn,
implies that L(6, 6) is almost surely determined by #’. (If 7 and a function of & are
conditionally independent given n’, then that function of # must be determined by 71’.)

Proposition 5.14 Suppose that k € (2,4) so that k" € (4,8). For any —% < 6 <
0 < 7. 1’ almost surely determines L(0, 0). In particular, n’ almost surely determines
ng for any —% <0< % and 1’ almost surely determines F where F is the closure of
Ugng where the union is over any fixed, countable dense subset of [—7%, 7.

6 Interacting flow lines

Suppose that / is a GFF on H with boundary data as in Fig. 38. For each 6, let ny be
the flow line of 2 with angle 6, i.e. the flow line of 4 + 6 x from 0 to co. Fix 6 < 65
and assume a, b > 0 are large enough so that Proposition 5.5 is applicable to 7, and
ne, (the exact values of a, b will not be important for the applications we have in mind
in Sect. 7). We know from Proposition 5.5 that g, almost surely is to the right of ng,.
It may be that ng, intersects ng,, depending on the choice of 8y, 6>. The purpose of this
section is to rule out pathological behavior in the conditional mean of & given 7y, , 16,
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N —0x N=bix N—0x
N=hx N—0;x Nt
—a . , 4 b
(a) (b)

Fig. 38 Suppose that 0; < 6 and 7y, is the flow line of a GFF on H with the boundary data depicted
above with angle 6;. Assume 601, 6, and the boundary data of / are chosen so that Proposition 5.5 applies to
16, » Mg, - Since ng, Ung, is alocal set for h, Proposition 3.9 implies that the boundary behavior of C,ml Ung,
agrees with that of C,wz to the left of 19, and with that of C'Ie, to the right of 1, . Proposition 3.8 implies
the same in the connected components of H\(ng, U ng,) which lie between ng, and g, , except at those
points where ng, intersects 7g, . (There can only be two such points on the boundary of such a component,
as illustrated.) In Proposition 6.1, we will show that these intersection points do not introduce pathological
behavior into the conditional mean. The same result also holds when we consider multiple flow lines (see
the right panel for the case 61 < 0 < 6, and n := nq), as explained in Remark 6.7. a The boundary data
for the conditional mean of & given flow lines 7, , ng, . b The boundary data for the conditional mean of
given flow lines g, , 7 := ng, ng, for 0y <0 < 6>

(Sect. 6.1), in particular when they intersect, and to show that the Loewner driving
function of ng, viewed as a path in the right connected component of H\ng, exists
and is continuous (Sect. 6.2) and likewise when the roles of 7, and 7y, are swapped.
We will also explain how similar results can be obtained in the setting of multiple
flow lines as well as counterflow lines. We will use these results in Sect. 7 to compute
the conditional law of one path given the realization of a configuration of other paths,
even if they intersect.

We emphasize that, throughout this section, the results we will state and prove will
be for paths which do not intersect the boundary. The reason for this restriction is that
this is the class of boundary data for which we have the almost sure continuity of flow
and counterflow lines at this point in the article (recall Remark 2.3 and [24]) as well
as the results of Sects. 4 and 5. Upon establishing Theorems 1.2—-1.5 in Sect. 7, the
arguments we present here will imply that the conditional mean of the field given any
configuration of flow and counterflow lines does not exhibit pathological behavior and
that the Loewner driving function of one path given the realization of a configuration
of other paths exists and is continuous, at least until there is a crossing.

6.1 The conditional mean

By Proposition 3.7, we know that g, U 14, (as a slight abuse of notation, throughout
we will use g, to denote both the path and its range) is a local set for /. Indeed,
as a consequence of the special case of Theorem 1.2 we proved in Sect. 4.2, the
conditionally independent union of ng, and 7, given A is almost surely the same as
the usual union since ng, and ng, are both almost surely determined by /. Recall that
if A is a local set for &, then C4 is equal to the conditional mean of / given A (see
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Sect. 3.2). By the continuity of 7y, and 7, (recall Remark 2.3), we know that all
of the connected components of 1y, \ng, and ng,\n, are larger than a single point.
Consequently, by Proposition 3.8, we know the boundary behavior of Cm,1 Ung, away
from ng, N ne,: if z € ng, \ng, and (zx) is a sequence in H\(ny, U np,) converging to
z then

C’,w1 Una, (zk) — C’Ifh (zk) & 0 ask — oo almost surely

and vice-versa when the roles of 7g, and ng, are swapped. Proposition 3.8 implies
the same is true at those points z which are at a positive distance from either ng, \ne,
or 1g, \1ne, and are contained in a connected component of 7g, N 1, which consists
of more than one point. Also, Proposition 3.9 gives us that the boundary behavior of
C,,é,1 Une, agrees with that of Cm,l (resp. C,,Hz) to the right (resp. left) of g, (resp. ng,).
This leaves us to determine the boundary behavior of Cp, Uy, in between ng, and
1, at intersection points of 7g, and 7g,. This is the purpose of the next proposition.
Throughout, we let

A(t) =g, ([0, 2]) Ung, and F; =0 (e, (s) 15 <1, 7ng,). (6.1)

Proposition 6.1 Fix an F;-stopping time t. Let h be distributed according to the
conditional law of h given A(t) and let C be any connected component of H\A(t)
which is to the right of ng,. Let 9C; . (resp. 9C; ) be the part of 0C which is contained
in the left (resp. right) side of ng,. Let xq (resp. yo) be the point on 0C which is visited
first (resp. last) by ng, and let ¢ : C — H be a conformal transformation which takes
xo (resp. yo) to O (resp. 00). Let gc be the function which is harmonic in H with
boundary values

—A—bix on@@Cig), A+0ix one(dCir), and bon p((0,00))

and let h¢ = gc o ¢ — x arg@’ (where the branch of arg ¢’ is chosen so that the
boundary values of ¢ agree with those of the conditional law of h given either 1,
or ng, on a segment of dC which agrees with either ng, or ng,). Then the law of h|c
is equal to that of the sum of a zero boundary GFF in C plus Yc. In particular, there
is no singular contribution to hc coming from the intersection points of the paths.

We note that the choice of the branch of the argument of arg ¢’ in the statement
of Proposition 6.1 is well-defined because Proposition 3.8 implies that the boundary
behavior of h|¢ agrees with that of /1 given ng, (resp. 7g,) along the part of dC which
agrees with ng, (resp. np,), except possibly at two exceptional points. (In fact, the
proof of Proposition 6.1 will in fact rule out such exceptional behavior.)

See Fig. 38 for an illustration of the boundary data described in the statement of
Proposition 6.1. The main step in the proof is to show for z € H\ng, that C4(;)(z) has
a modification which is continuous in ¢ up until the first time ng, hits z. Roughly, this
suffices since pathological behavior in CW1 Ung, at @ point zg = ng, (tp) for a time #(
when 7, intersects 19, would correspond to a discontinuity in C4 () (z) at t9. We begin
by proving the following lemma, which implies that A(7) is a local set for 4 for every
JFy-stopping time .

@ Springer



Imaginary geometry I: interacting SLEs 653

Lemma 6.2 Suppose that 11, . .., ng are continuous paths such that for each 1 <i <
k, we have that

1. n; ([0, t]) is a local set for h for every n;-stopping time Tt and
2. n; is almost surely determined by h.

Suppose that T is a stopping time for n1 and, for each 2 < j < k, inductively let ;
be a stopping time for the filtration F] generated by nilj0,z,], - - -, -1 lt0,z;_,1 and
nj(s) fors < t. Then U;_ n; ([0, 7;]) is a local set for h.

Proof Let Aj = U',-l:mi([o» 7;]). Fix U € H open. We are going to prove that A; N
U = ¢ is almost surely determined by the projection /e of 4 onto H+(U) and that,
ontheevent A; NU =, A; is itself almost surely determined by Aye. This suffices
by characterization (i) of local sets given in Lemma 3.6, which we will in turn check
by induction on the number of paths. The hypotheses of the lemma imply this is true
for j = 1. Suppose the result holds for j — 1 paths for j > 2 fixed. We will now show
that it holds for j paths. Let © JU be the infimum of times in which ; isin U. We claim

that the hypotheses of the lemma imply that n; ([0, ]U]) is almost surely determined

by hye. Indeed, this follows because 7; ([0, r]U]) is both almost surely determined by
h and local for . In particular, since the projections hy and hye of h onto H(U) and
Ht (U) together determine £, it follows that &y, hyc together almost surely determine
n;([0, ]V]). On the other hand, since 1; ([0, T JU]) is local for & and almost surely does
not intersect U, it follows that the conditional law of Ay given hye is equal to the
conditional law of 4y given both Aye and n; ([0, ‘E]U]). That is, Ay and n; ([0, r}]])
are conditionally independent given Ayc. Combining these two observations proves
the claim.
Observe

{AjNU =0y ={A;j.1NU =0}N{1j <]}

and that {t; <t lU} is almost surely determined by A;_; and hye. Thus on the event

{Aj_1NU = @}, wehave that {7; < r}]} is almost surely determined by &y so that the
event {A; NU = @} is almost surely determined by hyc. Moreover, on {A; NU = @},
we have that A is almost surely determined by /yec. This completes the proof of the
induction step. O

We next prove the following simple lemma, which says that if X, Y are independent,
Y is Gaussian, and X + Y is Gaussian, then X is Gaussian as well.

Lemma 6.3 Suppose that X,Y are independent random variables such that Y ~

N(/Ly,O'}%) and Z .= X +Y ~ N(,bLz,O'%). Then X ~ N(Mx,o’)%) where uxy =

2 _ 2 2
nz — uy and oy = 05 — Oy.

Proof The proof follows from the calculus of characteristic functions. Indeed, we
know that

E[el)LY] — etkuy—k oy /2 and E[eth] — ezAMZ—)L 02/2.
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Since X is independent of Y, we have
E[¢'*?] = E[¢*XE[¢*],
which allows us to solve for E[¢/*X] to see that
E[¢"X] = oMz —1y) =23 (05 —07)/2

O

Suppose that D C C is a non-trivial simply connected domain and that z € D is
fixed. Recall that the conformal radius C(z; D) is the quantity |¢’(0)| where ¢ is a
conformal transformation which takes the unit disk D to D with ¢(0) = z. By the
Koebe-1/4 theorem [14, Theorem 3.16], the ratio between the conformal radius of z
and the distance of z to d D is contained in [41_1’ 4]. Suppose that 4 is a GFF on D (with
boundary conditions which are not necessarily equal to 0) and let C be the function
which is harmonic in D and has the same boundary data as 4. The following lemma
gives us the law of C4 (z) for a local set A in terms of C(z; D), C(z; D\ A), and C(z).

Lemma 6.4 Suppose that D C C is a non-trivial, simply connected domain. Let
h be a GFF on D and fix z € D. Suppose that A is a local set for h such that
D\ A is simply connected and C(z; D\ A) is almost surely constant and positive. Then
Ca(2) is distributed as a Gaussian random variable with mean C(z) and variance

log C(z; D) —log C(z; D\ A).

Proof The Koebe 1/4 theorem [14, Theorem 3.16] implies there exists non-random
€ > 0 such that, almost surely, B(z,2¢) < D\A. Let he denote the average
of h on 9B(z,€) (the construction and properties of the circle average process
are explained in detail in [4, Section 3]). By [4, Proposition 3.2], we know that
he(z) ~ N(C(z), —loge + log C(z; D)). Since A is a local set for i, we can write
h = h1 + hp where h; is harmonic on D\ A and the conditional law of &, given
hy is that of a zero-boundary GFF on D\ A. Since k| is harmonic in D\ A, we note
that &1(z) is equal to the average of its values on d B(z, €). Moreover, we have that
Elhc(2) | A] = hi(z). Consequently, we have that h.(z) — E[h¢(z) | A] is equal to
the average of i, on d B(z, €). Therefore it follows that i (z) — E[h¢(2) | A] given A
follows the N (0, —loge + log C(z; D\ A)) distribution. This implies that

he(@) — Elhe(z) | Al ~ N(0, —log e + log C(z; D\A))
[no longer conditioning on A; recall that C(z; D\ A) is almost surely constant]. Since
E[h(z) | A] is independent of h(z) — E[h(z) | A] (as the former is determined by
A and the latter is independent of .A), Lemma 6.3 implies that

E[he(z) | Al ~ N(C(2),1og C(z; D) — log C(z; D\A)).

Since C4(z) is harmonic in D\ A, we know that C4(z) = E[h(z) | A] almost surely,
which proves the lemma. O
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From Lemma 6.4 we obtain the following, which roughly says that the conditional
mean at a fixed point given an increasing family of local sets evolves as a Brownian
motion when it is parameterized by the log conformal radius:

Proposition 6.5 Suppose that D € C is a non-trivial simply connected domain. Let
h be a GFF on D and suppose that (Z(t): t > 0) is an increasing family of closed
sets such that

(i) D\Z(t) is simply connected for each t > 0 and
(ii) Z(r) is local for h for every Z-stopping time t.

Suppose that z € D is such that C(z; D\ Z(t)) is almost surely continuous and strictly
decreasing int. Then Cz(;)(2) —Cz(0)(2) has amodification which is a Brownian motion
when parameterized by log C(z; D\Z(0)) — log C(z; D\Z(t)) up until the first time
T(2) that Z(t) accumulates at z. Moreover, with S = {(t,z): C(z; D\Z(t)) > 0}
we have that the map (t,z) — Cz()(z) has a modification which is almost surely
continuous.

Proof Foreachs > 0 let
7,(z) = inf{t > 0: log C(z; D\Z(0)) —log C(z; D\Z(t)) = s}.
Fix 51 < s2. Then Lemma 6.4 implies that

C2(1, () (@) = Cz(z,, (2 (@) ~ N(0, 52 — 51).

Since Cz(x,, (2))(2) — Cz(x,, (z))(2) is independent of Cz(x,, (2))(2), the first part of the
proposition follows since Cz(«, (;)) (z) has the same finite dimensional distributions as a
standard Brownian motion. This, in particular, implies that Cz ;) (z) has a modification
which is continuous in 7.

That Cz)(z) has a modification which is jointly continuous in ¢ and z is a conse-
quence of the proof given in [4, Section 3] that the circle average process h(z) has a
modification which is jointly continuous in € and z. Fix T > 0 and w € B(z, 1—169_T)
and € € (0, %e’r). Then for s,¢ € [0, T] and p > 2, we have for some constants
c1, ¢ > 0 that

E[Cz(,(2)) (@) — Cz(z(z)) (W) 7]
< c1EB[ICz(r,2)) (@) — Cz(x,2) @IP1 + ElIC2(x,2))(2) — Cz(z, 2 (w)IP])
< (|t = s|P/? + E[|E[he () — he(w) | A]IP])

where A; is as in Sect. 3.2 for the local set Z (t;(z)). By Jensen’s inequality, the second
term is bounded from above by c;E[|h(z) — he (w)|P]. The moments of this type are
bounded in the proof of [4, Proposition 3.1] (see also [4, Proposition 3.2]). The final
claim of the proposition then follows from the Kolmogorov—Centsov theorem. O

We now have all of the ingredients to complete the proof of Proposition 6.1.
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Fig. 39 Suppose that we have the same setup as in Fig. 38 and that C is a connected component of
H\(ng, U ng,) which lies between ng, and ng,. By the discussion in Fig. 38, we know the behavior of
C,w1 Ung, in C away from xq and yg, the first and last points of dC traced by 16, » respectively. To rule out
pathological behavior near xq, yo, with A(#) = ng, ([0, 1])Ung, , we first prove that C 4 (;) has a modification
which is continuous in . We argue that the conditional mean does not behave pathologically at yq (illustrated
in the left panel above) by taking a limit as 7 increases to the time 7g, closes the pocket C opened at x( and
invoking the continuity of C4 ;). At the pocket opening point x(, we can rule out pathological behavior by
using that ng, is almost surely the left boundary of a counterflow line nél (see the right panel) so that xq is a

pocket closing point of 17(;1 and an analogous continuity argument. a Pocket closing time. b Pocket opening
time; this is the same as a pocket closing time for a counterflow line 77{91 whose left boundary is ng,

Proof of Proposition 6.1 See Fig. 39 for an illustration of the argument. We first
assume we are in the setting of Proposition 5.5, so that & is a GFF on the strip S
rather than H. The result for the GFF on H follows from absolute continuity (Propo-
sition 3.4). Note that A(t) (recall the definition of A(z) from (6.1)) is a local set for i
by Lemma 6.2 applied for the case k = 2.

We start by working in the special case T = oo and we let A = A(o0) = ng, U g, .
First of all, since 7g, and 1, are almost surely continuous, the connected compo-
nents of ng, \ng, and ng, \ne, consist of more than a single point. Consequently, by
Propositions 3.7 and 3.8, we know that C4 — Cp,, tends to zero along any sequence of
points (zx) which converges to a point that is contained in ng, \14, or to a point in a
connected component of ng, N 1y, which contains more than a single point and is at
a positive distance from either 7, \ng, or ng, \ne, . Proposition 3.9 implies the same if
(zx) converges to a point on the right side of g, [[0,]. Likewise, C4 — Cp,, converges
to zero along any sequence of points (zx) which converges to a point in either ng, \7g,
or to the left side of 7g,. Fix a component C of H\ A. Then this implies that C4 agrees
with b if C is either the unbounded connected component which lies to the right of
ng, or to the left of 7, .

Suppose that C is a bounded and connected component of S\ A. Then dC has two
special points, say xo, yo which are contained in both the ranges of ng, and ng,. To
complete the proof for T = oo in this case, we just need to show that the boundary
behavior of C4 agrees with hc at xo and yp. Assume xo = 1, (so) and yo = g, (o)
for 5o < to. Proposition 6.5 implies C4(;)(z) has a modification which is continuous
in both ¢ and z since we know that A (o) is local for any F;-stopping time o and 1,
is continuous (recall Remark 2.3).
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We can express C4 ;) (z) explicitly as follows. For each ¢, we let C; be the component
of H\A(¢) which contains C. We note that x( corresponds to two prime ends on
dC;. We shall abuse notation in what follows and write xo for the prime end on 9C;
which corresponds to the boundary point of dC (as opposed to the prime end which
corresponds to a boundary point of the component of H\ng, which is to the right
of ng,). Let ¢; be the conformal map from C; to H which takes xg to 0, yo to oo, and
a given point wo on dC N ng, which is distinct from xp, yo to —1. We assume that wq
does not change with 7. Let g; be the function which is harmonic in H with boundary
values given by A — 6, x on R_, —A — 67 x on the image of the left side of 7, ([0, 1])
under ¢;, A — 61 x on the image of the right side of 7, ([0, ¢]) under ¢;, and b on
@:(R4). Then g; o ¢y — x arg ¢; is harmonic in C;.

We claim that g; o ¢; — x arg ¢; has the same boundary behavior as C4(;) except
possibly at xo (as we have not yet ruled out pathological boundary behavior at x).
That is, Ca¢) — (g: 0 1 — x arg ;) is harmonic in C, with zero boundary values
on dC;\{xo}. To see this, we note that Proposition 3.8 implies that this is the case at
points on dC;\ {xp} which are also contained in the ranges of 14, and 7, after the paths
have visited xo. Moreover, Proposition 3.8 implies that C4(;) has the same boundary
behavior as C4 at points on the right side of g, ([0, #]) and Proposition 3.9 implies that
Ca restricted to the component of H\ny, which is to the right of g, is equal to Cy, .
Combining implies the claim.

As t 1 19, we note that g, converges locally uniformly to the function which is
harmonic in H with boundary values given by A — 6, x on R_ and —A — 61 x on R;..
Moreover, ¢; converges locally uniformly to the unique conformal transformation
C — H which takes xg to 0, yp to 0o, and wg to —1. Therefore g; o ¢ — x arg ¢;
converges locally uniformly to hc as ¢ 1 fp. Combining, we see that, as ¢ 1 o, Ca¢) —
hc converges to a function which is harmonic in C whose boundary values on dC\{x¢}
are equal to 0. By the continuity of C4(y) in t and z, this implies that C4 —b¢ is harmonic
in C with boundary values on dC\{xo} are equal to 0. This leaves us to deal with the
boundary behavior near x.

Let 77(’91 be the counterflow line as in the proof of Proposition 5.5 whose left boundary
is almost surely 7g,. Note that C is a bounded and connected component of S\ A if
and only if it is a bounded connected component of S \(17’01 U ng,) whose boundary
contains arcs from both '7/01 and 7, . Since 1, is almost surely the left boundary of 77(/91 ,
it follows from Proposition 3.9 that Cnél Unio, (z) = Ca(z) forall z € C. An analogous

continuity argument implies C,y has the same boundary behavior as h¢c near x.

0y U162
Consequently, Cy4 also has the salme boundary behavior as h¢ near xg. This completes
the proof for r = oo.

The case T < oo follows from the T = oo case. Indeed, we know that A(7) and A
are both local, so we can apply Proposition 3.8 to get that C 4 () has the same boundary
behavior as hc near xg, yo since Ca(r) has the same boundary behavior as C4 near

X0, Y0- O
There are a number of other situations in which statements very similar to Propo-
sition 6.1 also hold. We will describe these informally in the following remarks. In

each case, the justification is nearly the same as the proof of Proposition 6.1 and we
are careful to point out any differences in the proof. Roughly speaking, the content
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is that the conditional mean of & does not exhibit pathological behavior, even when
many different types of flow and counterflow lines interact with each other. The rest
of this subsection may be skipped on a first reading.

Remark 6.6 All of the results that we state and prove here will be restricted to the
regime of boundary data in which the flow and counterflow lines do not intersect the
boundary. The reason for this is that, at this point in the article, this is the setting
in which we have the continuity of these curves (recall Remark 2.3 as well as [24])
and that they are determined by the field in the coupling of Theorem 1.1 (Sect. 4.2).
Moreover, our results thus far regarding the interaction of flow and counterflow lines
are also restricted to this setting (Sect. 5). In Sect. 7, we will complete the proof
of Theorems 1.2-1.5, which together provide the missing ingredients to extend the
arguments from this section to the setting of general piecewise constant boundary data
without further modification.

Remark 6.7 (Three flow lines) Suppose that 8; < 0 < 6, and 1 := no. Assume that
the boundary data of / is chosen so that Proposition 5.5 applies to ng,, 17, ng,. Then
we know that ng, lies to the right of n which in turn lies to the right of ng,, as in
Fig. 38. Let C be any connected component of H\ (19, U 1g,). A statement analogous
to Proposition 6.1 also holds for the conditional law of & given 7ng,, 1,, and (o]
where 7 is any stopping time for the filtration F; = o (n(s): s < f, ng,, ne,). This is
depicted in the right panel of Fig. 38. Let A(t) = ng, U n([0, t]) U ng,. Just as in
the proof of Proposition 5.5, the general theory of local sets allows us to determine
the boundary behavior of C4 () at all points with the exception of those points where
some pair of 71|[0.7], ng,, Ne, intersect. We can, however, reduce the three flow line
case to the two flow line case as follows. Proposition 3.8 allows us to compare C4r)
with C4 where A = ng, U n U 5g,. The latter does not exhibit pathological behavior
at intersection points because Proposition 6.1 applies to both CnUﬂol and C%U,7 and
Propositions 3.8 and 3.9 together imply that C4 has the same boundary behavior as
Cnung, to the right of 7 and the same as Cy,, uy to the left of 7.

Remark 6.8 (One flow line and one angle varying flow line) The next analog of
Proposition 6.1 which we will describe is when we have a flow line n and an angle
varying flow line 77;; ::g’; with angles 01, . . ., 6¢ and with respect to the stopping times
Tl, ..., k. We assume that |6; — 6;| < z for all pairs i, j. This implies that ng:::;’;
is simple, almost surely determined by 4, and continuous (Lemma 5.6; in Sect. 7,
we will be able to relax this to the case that |0; — 0;| < 2A/x, which is the condi-

tion which implies that ’7;}:::5],: does not cross itself). We assume that ngi::;’; almost
surely stays to the right of 1 (in Proposition 7.11 we will prove that 6y, ...,6; < 0

is a sufficient condition for this to be true). Let A(r) = n([0,¢]) U 77511:::;2 and

Fr=o0(s) 1 s <t ngi:g';). Lemma 6.2 implies that A(t) is a local set of &
for every JF;-stopping time . The boundary data for C4(s) is described in Fig. 40 in
the special case k = 2. The proof of this result is exactly the same as for the non-angle
varying case: we rule out pathological behavior at pocket opening times using the
continuity of C4(y) in ¢ and at pocket closing times by using the analogous quantity
with 7 replaced by the counterflow line " whose right boundary is the range of 7.
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Fig. 40 Suppose that & is a GFF on H with boundary data as on the left side; assume a, b > 0 are large. Let
n be the zero angle flow line of 4. Fix angles 01, 6, and let n;iz be an angle-varying flow line with angles
01, 62. Assume |0] — 62| < 7 so that ngi ;; is simple (Lemma 5.6; we will relax this to |6] — 63| < 2A/x
in Sect. 7) and that n;; ;; passes to the right of n (we will show in Proposition 7.11 that 61,6, < O is a
sufficient condition for this to be true). The boundary data for C4 () for A(t) = n([0, t]) U ng: ;i and t an
Fr=o(n(s) s <t, ngp,)-stopping time is depicted in the left panel. Changing the coordinates of the
left side of H\n;:% to H by a conformal map ¥ which preserves 0 and oo yields a GFF whose boundary
data is as on the right side

)\—02)( - —/\—61)(

Fig. 41 Assume that / is a GFF on the strip S whose boundary data is depicted in the left panel. Let
0 < %(A’ -3 =-% and 6, > %(A — /) = Z. Assume that the boundary data of / is such that
Proposition 5.1 applies. Then we know that ng, and ng, pass to the right and left, respectively, of the
counterflow line n” of h starting at zg. Let C be any connected component of S \ (g, U ng,) which lies
between 7, and 79, and let 7/ be a stopping time for the filtration 7y = o ('(s): s < t, g, Mg, ) such
that ’(z") € C almost surely. Then C,7 6, Un' (0.7 Urg, in C has the boundary behavior depicted on the
left side. Let v be the conformal map which takes the connected component Co(z”) of C\n’([0, t']) which
contains xq to S where xq is sent to 0 and the left and right sides of C(t”) which are contained in 1g, and
19, » respectively, are sent to (—o0, 0) and (0, 00), respectively; wo = ¥ (' (t")). The boundary data for
the GFF ho ! — y arg(y 1)/ is depicted in the right panel

Remark 6.9 (Counterflow line between two flow lines) We will now describe a version
of Proposition 6.1 which holds for counterflow lines (see Fig. 41). This result is easier
to describe on the strip S. Assume /4 is a GFF on & whose boundary data is as in the
left side of Fig. 41 where the constants a, b, a’, b" are chosen so that Proposition 5.1
applies. Let ng,, 1, be the flow lines of & emanating from O with angles

| 1
B < —F =W N <—-0-M)=Z <0,
2 X X 2
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respectively, and let " be the counterflow line emanating from zg. For any stopping
time t’ for the filtration F; = o('(s): s < t, ng,, np,), we let A(t)) = ng, U
1n'([0, T’]) U ng,, which is local by Lemma 6.2, and A = ng, U n’ U ng,. Suppose
that C is any connected component of S\ (17g, U 1g,) which lies between 1y, and 7, .
Then C\n’ consists of three different types of connected components: those whose
boundary does not intersect the outer boundary of ', those whose boundary intersects
ne,, and those whose boundary intersects 7y,. Proposition 3.9 implies that C4 in C
has the same boundary behavior as C,; in the former case. The connected components
which intersect 7, are the same as the connected components of S\ (179, U ng) which
intersect C and ng,, where ng is the flow line of angle %()J —A) = —%, since

ng is the right boundary of n’. Propositions 3.8 and 3.9 thus imply C4 agrees with
Cnrune, in these connected components, so we have the desired boundary behavior
here (Proposition 6.1). The same is likewise true for those which intersect ng,. The
case where 7/ < oo follows from the t/ = oo case by Proposition 3.8 using the same
argument as in the proof of Proposition 6.1.

Remark 6.10 (Counterflow line which contains flow lines) Assume that we have the
same setup as Remark 6.9. Let [ := [~7, 5]. If 6; € I, then by Lemma 5.7 we
know that 1, is almost surely contained in the range of n’. Results analogous to those
described in Remark 6.9 also hold in the case that one or both of 8; < 6, are contained
in /. We will describe this in a bit more detail in the case 61, 6> € I. Fix any connected
component C of S\ (19, U ng,) which lies between g, , ng,. Since n’ hits the points
of ng, , ne, in reverse chronological order (Lemma 5.7), the connected components of
C\n' are all completely surrounded by 5. Thus the boundary behavior of Cy4 in the
connected components of C\n’ agrees with that of C,/ by Propositions 3.8 and 3.9.
Fix a stopping time 7’ < oo for the filtration 7; = o (3/(s) : s < t, 1ng,, ng,) and
assume that C is a connected component of S\ (g, U ng,) such that n’(z’) € C almost
surely. Proposition 3.9 implies that C4(;y has the same boundary behavior as C,/ in
the connected components of C\n'([0, T']) which are surrounded by 1'([0, t’]). This
leaves us to deal with the boundary behavior of C4(;/) in the connected component
Co(t") of C\n'([0, 7']) which contains xo, the first point in dC traced by both 7y, and
ne,. This is depicted in Fig. 42.

We can rule out pathological behavior at points where 1’ intersects either ng, or
1, in Co(t’) as follows. First, we assume that t’ is a rational time. Then we can
sample Co(t’) by first picking 7'|[0.,/] then, conditional on »/([0, z']), sample 7y, and
1, up until the first time they hit ’([0, ']). It is easy to see by the continuity of
the conditional mean (Proposition 6.5) that C 4,y has the desired boundary behavior
where 1’ ([0, t']) intersects 7g, , ns,. We now generalize to F;-stopping times t” which
are not necessarily rational. First assume that n’(t”) ¢ g, U ng,. Suppose that r is any
rational time. Then on the event that neither A(z")\A(r) nor A(r)\A(z’) intersects
1o, U ng,, we know that the points in dCo(t’) where #/([0, t’]) intersects ng, U ng,
are the same as those in dCo(r). Proposition 3.8 thus implies that C4(-) has the same
boundary behavior as C4 .7y near these points. This covers the case that n'(z”) is not in
1, U ng, because the continuity of n’ implies there almost surely always exists such a
rational. If, on the other hand, 7’ (z’) is in ne, Uneg,, then the desired result follows from
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=\ N

A=y —A—bix

Fig. 42 Assume that /2 is a GFF on the strip S whose boundary data is depicted in the left panel where the

constants are chosen so that Proposition 5.1 applies. Let %(A’ —A) = 7% <01 <b < % = %(A — ).

Then 79, and ng, are both contained in the counterflow line n’ starting at zg. Let C be any connected
component of S\(ng; U ng,) which lies between 7y, and 1, and let 7/ be a stopping time for the filtration
Fr =o0'(s) : s < t, ng,,ng,) such that n(z') € C almost surely. Then Cn(’l Un' (10,7 DU, in C has
the boundary behavior depicted on the left side. Let Co(z’) be the connected component of C\»'([0, T'])
which contains x( and let ¥ : Co(z’) — S be the conformal map which sends x( to 0 and the left and right
sides of Co(t”) which are contained in 79, and 7g, , respectively, to (—o0, 0) and (0, 00); wo = ¥ (' (/).
The boundary data for the GFF 1 o 1//_1 — xarg(y— 1Y on S is depicted in the right panel. A similar result
also holds when only one of the 7g, is contained in n

the continuity of the conditional mean (Proposition 6.5) by first sampling 79, U g,
and taking a limit of Cq(sy ast 1 7'.

Remark 6.11 (Counterflow line and an angle varying flow line) Suppose that we have
the same setup as in Remarks 6.9 and 6.10, except now we replace the flow lines
ne,, Ne, by a single angle varying flow line with angles 6y, 6, which satisfy |6; —

62| < m [so that '7;:5; is simple, almost surely determined by 4, and continuous

(Lemma 5.6); we will relax this to |6; — 62| < 2A/x in Sect. 7] and such that ngllgi
almost surely does not intersect dS except at its starting point. We further assume
that 77;: 5; almost surely lies to the right of the left boundary of 1’ (we will prove
in Proposition 7.11 that 61,6, < % is a sufficient condition for this to hold). Let
A@t) = n'([0, 1) U ’75;;; and F; =o(/(s): s <t, n;gg). By Lemma 6.2, know that
A(7) is a local set for & for every F;-stopping time 7. The boundary data for C4(s) is
described in the left panel of Fig. 43 in the special case that ’ contains part of n;:;;
The justification of this follows from exactly the same argument as in Remark 6.10.
The case when ngi ;; is disjoint from %’ is analogous and follows from the argument

in Remark 6.9.

One other case that will be especially important for us is when we have two angle
varying flow lines 11, 72 which actually cross each other along with a counterflow line
n’. Since we have not yet discussed crossing of flow lines, we will defer the discussion
of the case until Sect. 7. (As we will explain later, flows lines of fixed angle can cross
each other only when they start at distinct points x; < x with respective angles
91 < 92.)
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—a b —a = A—bix _—A—0bx

Fig. 43 Assume that 4 is a GFF on the strip S whose boundary data is depicted in the left panel. Let
77;; ;; be an angle varying flow line of 2 with angles 61, 6> satisfying |0] — 65| < 7 so that n;; ;; is simple
(Lemma 5.6; we will relax this to |6] — 6>| < 24/ in Sect. 7). Let n’ be the counterflow line of / starting
at zo and assume that n;:(z almost surely lies to the right of the left boundary of ' (we will prove in

Proposition 7.11 that 61, 6y < % is a sufficient condition for this to hold). With A(¢) = »/([0, t]) U ”(S:(Z

and v’ any F; = o('(s) : s < t, ngig)—stopping time, we know that A(z’) is a local set for i. The
boundary data for C A(«) 18 depicted on the left hand side above in the special case 1’ contains part of n;]l ;i .
Let C be the connected component of S \r;;ig; which lies to the left of 27;: ;; and let C((t”) be the connected

component of C\n’([0, t’]) which contains 0. With v : Co(z') — S the conformal map sending 0 to 0,
the part of 3C((t’) contained in n;ig to (0, 00) and (—o0, 0) to (—o0, 0), the boundary data for the field

ho 1//_1 —xarg(y— y is depicted on the right side (wy = ¥ (1’ (z"))). Analogous results hold when ngi%

does not intersect or enter the hull of 1’ or we have more angles 1, . .., 6

6.2 Existence and continuity of Loewner driving functions

The purpose of this subsection is to establish the existence and continuity of the
Loewner driving function of 7g,, viewed as a path in the right connected component
of H\ng,. We will also describe related results which hold in the setting of multiple
flow lines and counterflow lines. We begin with the following proposition, which gives
criteria which imply that a continuous curve 7 in H starting from 0 has a continuous
Loewner driving function.

Proposition 6.12 Suppose that T € (0, 0o]. Letn: [0, T) — H be a continuous, non-
crossing curve with n(0) = 0. Assume n satisfies the following: for everyt € (0, T),

(a) n((¢, T)) is contained in the closure of the unbounded connected component of
H\n((0, 1)) and
(b) 77_1 (n([0, t]) UR) has empty interior in (t, T).

For each t > 0, let g; be the conformal map which takes the unbounded connected
component of H\n ([0, t]) to Hwithlim,_, « |g:(z) —z| = 0. After reparameterization,
(g1) solves the Loewner equation

0181(2) = go(z) =0,

2
8(z) — U’

with continuous driving function U;.

@ Springer



Imaginary geometry I: interacting SLEs 663

7o,

Fig. 44 The set of times I that 1, (¢) is contained in 7, almost surely cannot contain an open interval.
Indeed, the contrary would imply that (C,,g1 Ung, = X~ winding) converges to both A’ — 6 x and A" — 65 x
as zj converges to a point in an interval of intersection on the right side of g, N ng,. This is the key step
to showing that ng, has a continuous Loewner driving function viewed as a path in the right connected
component of H\ng,

Roughly speaking, the first hypothesis states that n never enters a loop consisting of
either its own range or part of dH upon closing it. The second condition intuitively
means that 7 traces neither 9H nor itself.

Proof The proof is essentially the same as that of [14, Proposition 4.3], though the
statement of [14, Proposition 4.3] contains the stronger hypothesis that n is simple.
(]

The main step in our proof that 74, admits a continuous Loewner driving function
as a continuous path in the right connected component of H\ 7y, is that the set of times
t that 7y, (¢) is contained in the range of ng, is nowhere dense in [0, 00). The reason
this holds is explained in Fig. 44 and is proved rigorously in Lemma 6.13.

Lemma 6.13 Let v be a conformal map which takes the right connected component
of H\ng, to Hwith ¥ (0) = 0 and vy (0c0) = 0o. Then y (ng, ) has a continuous Loewner
driving function viewed as a path in H from 0 to oo.

Proof Since ng, is almost surely continuous (recall Remark 2.3), the right connected
component C of H\7jy, is almost surely a Jordan domain. Thus v extends as a home-
omorphism C — H, so that ¥ (ns,) is almost surely a continuous path in H from 0
to oo.

We will now argue that the first criterion of Proposition 6.12 holds in this case.
The reason is that the only way this could fail to be true is if the following occurs.
After intersecting 7g,, say at time #g, ng, enters a bounded connected component Cy
of H\ (ng, ([0, t0]) Ung,). Since ng, lies to the right of 7, , this would force g, to have
a self intersection upon exiting Co. This is a contradiction since 7y, is a simple path.

To check the second criterion of Proposition 6.12, it suffices to show that the set
I of times ¢ € [0, co) such that ng, (¢) is contained in the range of 7, is nowhere
dense in [0, co) almost surely. Indeed, we note that we do not need to check that
¥ (ng,) does not trace itself because we know that ng, does not trace itself. Since / is
closed, it suffices to show the event E that I contains an open interval has probability
zero. Suppose for sake of contradiction that P[E] > 0. Let 7 = o (ng,, ns,). Fix an
open interval Ip € [ and let 7y be an F-measurable random variable taking values in
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[0, 00) such that P[Tp € Iy | E] = 1. Since ng, and ng, are both simple paths, on E we
can find a sequence of points (zx) contained in the right component of H\ (14, U 1, )
converging to ng, (7Tp). Note that we can apply Proposition 3.8 to Cm,1 Ung, €valuated at
ne, (To) since ng, (Ip) is connected and contains more than one point. This leads to a
contradiction since Proposition 3.8 thus implies (C,, | Uneg, (zx) — x -winding) converges
to both

N —01x and A —6rx;

(see Fig. 44). O

In the following series of remarks, we will describe results analogous to Lemma 6.13
which hold for a number of different configurations of flow and counterflow lines. In
each case, the proof is roughly the same as Lemma 6.13, except for minor modifications
which we are careful to point out (we will in particular not explain in each case why
the relevant path does not trace itself). Although this might seem pedantic, we felt
obliged to treat each case separately for the sake of completeness. The reader should
feel free to skip the remainder of this section on a first reading. Remark 6.6 also applies
here: the subsequent remarks will prove the continuity of the Loewner driving function
of one path given several others, restricted to the regime of boundary data in which
the paths do not intersect the boundary. Once Theorems 1.2—1.5 have been proven
in Sect. 7, the arguments we present here will also work without modification in the
regime of general piecewise constant boundary data.

Remark 6.14 The result of Lemma 6.13 extends to the setting of multiple flow lines.
Suppose that 61 < 0 < 6, and 1 := ng is the flow line with angle 0. Let C be any
connected component of H\ (ng, U ng,) which lies between ng, and ng, and let xq, yo
be the first and last points on dC traced by 7y,. Let ¥ : C — H a conformal map with
Y (xp) = 0 and ¥ (yp) = oo. Then v (n) has a continuous Loewner driving function
as a curve in H. The justification that the first criterion of Proposition 6.12 holds is
exactly the same as in the setting of two flow lines. As before, we also know that ¥
extends as a homeomorphism C — H since C is a Jordan domain by the continuity
of ng, and ng,. The proof of Lemma 6.13 implies that the set of times ¢ that n(f) is
contained in the range of either ng, or ng, is nowhere dense in [0, co). Therefore the
second criterion of Proposition 6.12 also holds.

Remark 6.15 A version of Lemma 6.13 also holds in the setting of angle varying flow
lines. In particular, we suppose that 6y, .. ., 6 € R and that 775; :::;ﬁ is an angle varying
flow line with these angles starting at 0. We assume 6, ..., 6 are chosen so that
77; _'::;’kf almost surely stays to the right of 7, the zero angle flow line of & (we will prove
in Proposition 7.11 that 61, ..., 6r < 0 is a sufficient condition for this to hold). We
moreover assume that |0; —0;| < m forall pairs 1 < i, j < k so thatby Lemma 5.6 we
know that 77” rk is almost surely continuous and determined by & (we will relax this
to |6; — 0] < 2A /x in Sect. 7). Let C be the left connected component of H\nT1 r"
and let ¥ : C — H be a conformal map which preserves 0 and oco. Since C is a J ordan
domain, 1 extends as a homeomorphism to dC. Then ¥ () has a continuous Loewner
driving function as a path from 0 to co. The proof is the same as Lemma 6.13.
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Mo, |2 12X

Fig. 45 Suppose that / is a GFF on the strip S, 1, , ng, are flow lines with angles %()L’ —1) = 7% <
01 <6 < %(A -y = % so that g, , 179, are almost surely contained in the range of the counterflow line
n’. Fix any bounded connected component C of S \(ng, Ung,) and let x be the first point on 9C traced by
1, and let yq be the last. The boundary data for C77 6, Un'Ung, is depicted above. For every pair of rationals
r < s, we almost surely have that n’((r, 5)) does not contain a non-trivial interval of and stay to the right
of 79, or a non-trivial interval and stay to the left of 1, . Indeed, this would lead to the contradiction that
C,m1 Un'Ung, takes on two different values on 1’ ((r, s)) N dC. This is the analog of Fig. 44 for boundary

filling counterflow lines and is the key observation for showing that 5’ viewed as a continuous path in C
admits a continuous Loewner driving function

Remark 6.16 We will now describe an analog of Lemma 6.13 which holds in the
setting of counterflow lines. In order to state this result, we will for convenience work
with the GFF 4 on the strip S rather than H. We assume the boundary data for 4 is
as in Fig. 45, let n’ be the counterflow line starting at zo, and N6, Ne, be the flow
lines of £ starting at O with angles 0y, 6,. We assume that a, b, a’, b’ are sufficiently
large so that Proposition 5.1 applies to ng,, ng,, and n’. We first consider the case
6, < %()\/—)\) =—Zand6 > %()\ —1') = % sothat by Proposition 5.1 we have that
1, passes to the right of " and ng, passes to its left. Let C be any connected component
of S\ (1, U ns,) which lies between ng, and 1y, and x the first point on dC traced by
ne, and yq the last. Let ¢ : C — H be a conformal transformation with ¥ (xo) = oo
and ¥ (yp) = 0. Since ng, and ng, are continuous, C is a Jordan domain so that v
extends as a homeomorphism C — H. Asin Remark 6.14, the set 7 of times 7 that 1’ (¢)
is contained in 7y, U ng, is nowhere dense in [0, 00). The reason for this is that the left
(resp. right) boundary of n" is . (resp. ), the flow line of & with angle xl A=) = 7
[resp. %()J — A) = —7%] (recall Proposition 5.9) and we know from the proof of
Lemma 6.13 that n; Nng, (resp. ngN1ng,;) is nowhere dense in ng, fori = 1, 2. Therefore
the second criterion of Proposition 6.12 holds. In order to see that the first criterion
holds, suppose that ' (fo) is contained in the range of ng, . Then n’(#9) is also in the right
outer boundary ng of n’. This implies that it is impossible for i’ to turn into a connected
component of C\n'([0, 7p]) which does not contain x( because it would contradict
Lemma 5.7 (see also Lemma 4.7), that ’ hits points in g in reverse chronological
order. A symmetrical argument applies in the case n’(fo) is contained in the range of
ng,. Therefore ¥ (n’) has a continuous Loewner driving function as a path in H.

Remark 6.17 This is a continuation of the previous remark, in which we now consider
the case that both 8; < 6, lie in the interval [ = [— % %] (the case that only one of the
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0; are in I follows from an analogous argument). Let C, xq, yo, ¥ be as in the previous
remark. We will first argue that the part of n” which traces through C is a continuous
pathin C. To see this, let T = inf{r > 0: n'(t) = yo} and o = inf{t > 0: ' (t) = xo}.
Lemma 5.7 (see also Lemma 4.7) implies that n" hits the points in 7g, in reverse
chronological order. This implies ¢ > 7 almost surely. Let 7, be the path with
Neli0.71 = Y0. Mg lio,00) = Xo. We will now describe . |(z,01. Let D = S\C. Since
D is open and 7’ is continuous, J = (n’)_l(D) C (0, 00) is open. We can write
J = Ui Ji where the J; = (ag, by) are pairwise disjoint open intervals in (0, 00).
Suppose that Jx C (, o). Since n’ hits the points of 7g,, ng, in reverse chronological
order (Lemmas 4.7, 5.7), it must be that x; := n'(ax) = n'(bi). We set n¢|[q;.b] = Xk
and n’c|[r,g]\J = 1'|{z,07\s- Then n/c is clearly a continuous path in C which agrees
with 7’ at times when it is in C.

We will now argue that ¥ (1);.) has a continuous Loewner driving function by check-
ing the criterion of Proposition 6.12. In order to check the first part of the proposition, it
suffices to show that n’c ((¢, 00)) is contained in the closure of the connected component
of C\n((0, t)) which contains xo. This is true because 1. ((t, o0)) = n'((t,00))NC.
Since n’ cannot cross itself and hits the points of g, and ng, in reverse chronological
order, it is obvious that ’((¢, o0)) N C has this property. We now turn to check the sec-
ond hypothesis of the proposition. Suppose that 0 < r < g are rational. If 7. ((r, ¢))
contains a non-trivial interval of and is contained in dC, then n’((r, ¢)) also contains
a non-trivial interval of dC and is contained in D. This leads to a contradiction as
described in Fig. 45. Thus, almost surely, n’c does not contain a non-trivial interval of
1, OI ng, in any rational time interval. This completes the proof that n’ satisfies the
second criterion of Proposition 6.12.

Remark 6.18 This is a continuation of the previous remark. Let n;::;: be an angle
varying flow line of /2 with angles 6y, . .., 6. We assume that the boundary data of &
is such that both " and n;;::g’; almost surely intersect dS only at 0 and zg. Assume
that |6; — 6;] < 7 for all i, j so that n;i::;’; is simple, continuous, and almost surely
determined by /2 by Lemma 5.6. (This can be relaxed to |6; — 6| < 24/ x upon proving
that such angle varying paths are almost surely continuous and determined by /. This
will be accomplished in Sect. 7.) Moreover, assume that n;;::;z stays to the right of
the left boundary of " (we will prove in Proposition 7.11 that 6, ...,6; < 7 is a
sufficient criterion for this). Then ', viewed as a path in the left connected component
of S \r/;i::g’; almost surely has a continuous Loewner driving function. The proof of

this is the same as that given in Remarks 6.16 and 6.17.

There is one more configuration of paths that will be important for us: two angle
varying flow lines 11, 17 and a counterflow line " where i and 7, actually cross each
other. We defer this case until after we study the crossing phenomenon of flow lines
in Sect. 7.2.

7 Proofs of main theorems

In this section, we will complete the proof of Theorems 1.2-1.5. We will start in
Sect. 7.1 by proving Theorems 1.2 and 1.3 for « € (0, 4] in the special case of two
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force points x = 0~ and x® = 0 with weights p, p® > —2, respectively. Then
by an induction argument, we will deduce Theorem 1.2 for k € (0, 4] in complete
generality from the two force point case. The proof of these results will also imply
that the monotonicity result for flow lines established in Sect. 5 holds in the regime
of boundary data which is constant on (—oo, 0) and on (0, co). Next, in Sect. 7.2,
we will extend the monotonicity result further to cover the case of flow lines of GFFs
with general piecewise constant boundary data and then, from this, we will extract
the monotonicity of angle varying flow lines. This is one of the key tools that we will
use in Sect. 7.3 to prove Theorem 1.3 for k € (0, 4] in the setting of multiple force
points, at least up until just before the continuation threshold is hit. We also prove
Theorem 1.5 in Sect. 7.2, that flow lines with the same angle almost surely merge
upon intersecting and never separate and that flow lines with different angles may
cross upon intersecting (depending on their relative angle and their starting points),
after which they may bounce off of each other but never cross again. The latter will
then allow us to prove Theorem 1.3 for k € (0, 4], even up to and including when the
continuation threshold is hit. We continue in Sect. 7.4 by explaining the modifications
necessary to prove Theorems 1.2 and 1.3 for ¥’ > 4. We will also extend the light
cone construction of Sect. 5 to the setting in which the counterflow line can intersect
the boundary. Finally, in Sect. 7.5, we will combine all of the machinery we have
developed in this article to show that the fan F—the set of points accessible by flow
lines of different (but constant) angles starting from an initial boundary point x (recall
Figs. 2, 3, 4, 5, and 16)—almost surely has zero Lebesgue measure for « € (0, 4).
(We remark that this follows for k € (2, 4) since, as suggested by the discussion at
the end of Sect. 5, F is contained in a counterflow line which is an SLE, type curve
with ¥’ = 16/« € (4, 8). New arguments will be needed for x € (0, 2].)

7.1 Two boundary force points

Setup Fix a,b > 0 and let 7 be a GFF on H with boundary data as in the left side
of Fig. 46. Fix 61 < 0 < 6, and let ng, be the flow line of 4 with angle 6;,7 = 1, 2.

Fig. 46 Suppose that i is a GFF on H with boundary data as shown in the illustration on the left hand
side. Suppose 0] < 0 < 6 and let g, be the flow line of & starting from 0 with angle 6;, i.e. the flow
line of i + 6; x. Assume a, b are chosen sufficiently large so that Proposition 5.5 applies to 1, , 7g,, and
1, the zero angle flow line of /. Then ng, almost surely lies to the right of n which in turn almost surely
lies to the right of ng,. We will prove in Lemmas 7.1 and 7.2 that, conditionally on 7y, , 7, , the law of
in every connected component C of H\(ng, U ng,) which lies between ng, and 7y, is independently that

of an SLE, (,oL; pR) process with ,oL = 92% — 2 and pR = -0 % — 2 and, moreover, is almost surely
determined by /|¢
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That is, ng, is the flow line of 7 + 6; x, fori = 1, 2. Let n be the (zero angle) flow line
of h. Assume that a, b are chosen sufficiently large so that Proposition 5.5 applies to
ne,, N, and ng,. Thus we know that ng, lies to the right of # which in turn lies to the
right of ng,. By Theorem 1.2, in a certain non-boundary-intersecting regime, which
we proved in Sect. 4.2, we know that ng,, 1, and 1y, are all almost surely determined
by h. Fix a connected component C of H\(ng, U ng,) which lies between ng, and
ne,. [The particular way that we select C will ultimately be unimportant since what
we will argue holds for all such C simultaneously. One example of an explicit rule
for selecting C would be to fix a positive integer k and a countable, dense sequence
(rn) of points in C and consider the subsequence containing those r; that lie between
ne, and ng,; we may then let C be the component containing the kth element in the
subsequence.] Let xo be the first point in dC traced by ng, and yq the last. Let hc
be the restriction of & to C and n¢ the restriction of n to the time interval in which
it takes values in C. Let ¥: C — H be a conformal transformation which sends x
to 0 and yg to oo (the scale factor can be determined by an arbitrary rule—e.g., by
requiring the kth element in the subsequence discussed above to map to a point on
the unit circle) and let hy, = h o ¥~ — yarg(y ') be the GFF on H given by the
coordinate change (1.4) of h¢ under ¥ and let 1y be the flow line of 4, starting from
0 and targeted at oco.

To complete the proof of Theorem 1.2 for € (0, 4] with two force points p%, p® >
—2, we will show the following:

1. ny is almost surely determined by Ay, .
2. ny ~ SLE, (o; p%), and by adjusting 67, 6, we can obtain any pair of weights
pt. pR > 2.

Theorem 1.3 for k € (0, 4] with two force points p~, p® > —2 then follows by
showing that ny is almost surely continuous. We will accomplish these two steps in
the following lemmas.

Lemma 7.1 Conditional on ng,, 19, and 1 up until the first time that it hits 3C, we
have that ny ~ SLE, (pL: pR) where the weights pR, pL are given by

01 x 02
R L
=—-——-2 d =—_-2
P and p

and correspond to force points at 0T and 07, respectively. Moreover, 1y is almost

surely continuous with lim,_, oo 1y (t) = 00 and (ny, hy) are coupled as in Theo-
rem 1.1.

Note that Lemma 7.1 implies that (ny, iy ) is independent of (g, , 1s,). This fact
will be important for us in the proof of Lemma 7.2.

Proof of Lemma 7.1 By Remark 6.14, the uniformizing conformal maps (g;) of the
unbounded connected component of H\ 7y, ([0, ¢]) withlim,_, o |g;(z) —z| = O satisfy
the Loewner equation with continuous driving function W;. For a local set A of Ay,
let Cf be as in Sect. 3.2. That n, ng, , 76, are almost surely determined by /s and are
local sets for & combined with Lemma 6.2 implies that ny ([0, T]) is a local set for
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hy for every n stopping time 7. Moreover, Remark 6.7 implies that C:ﬁ,([o, 77 1s the

harmonic function in H\ny ([0, T]) whose boundary values are described in the right

4
0y ([0,2

is continuous in ¢ and z. Consequently, Theorem 2.4 implies ny, ~ SLE, (oL; p®) in
H from 0 to co where the values of pZ, p¥ are as in the statement of the lemma (recall
Fig. 11). The continuity of 5y follows since n is almost surely continuous [recall
Remark 2.3 and Proposition 4.12, which gives the continuity of ny (¢) ast — oc] and,
as explained in Remark 6.14, v extends as a homeomorphism from C to H. O

hand side of Fig. 46. Proposition 6.5 implies that C ) (2) has a modification which

We now turn to show that 7y, is almost surely determined by /Ay, .
Lemma 7.2 Almost surely, hy, determines ny,.

Proof We remark again that n lies to the left of 79, and to the right of ng, by
Proposition 5.5. Moreover, ng,, 17, and 1y, are almost surely determined by & by the
non-boundary-intersecting version of Theorem 1.2, which was proved in Sect. 4.2.
Let /' be the restriction of 7 to H\C and Q = (1s,, ns,, h'). Since Q determines C
hence v, it follows from Lemma 3.10 and [24, Theorem 8.1] that the pair (Q, hy)
determines the entire GFF &, hence also 1y, . Thus to show that 1y, is determined by 4y,
it suffices to show that the pair (1, hy ) is independent of Q since &y is independent
of Q. Itin turn suffices to show that A’ is independent of (1, hy,) given ng,, ns,. The
reason is that the previous lemma implies (17y, 2y ) is independent of (ng,, 16,) since
its law conditionally on (1, , 17¢,) does not depend on 7y, , g, .

Let ) and &, be the restrictions of A’ to the right and left sides of ng, and n,,
respectively. Let U be the set of points in H\ (19, U 1g,) which lie between 1y, and 1y, .
We can put an ordering on the set of connected components U of U by saying that
A < Bfor A, B € Uifand only if n intersects A before B. Let h%, hﬁt be the restrictions
of h to those components which come strictly before and after C in this ordering,
respectively. By Lemma 3.10 and [24, Theorem 8.1], we have that 4’ is determined
by (h), ..., h}). Proposition 3.9 [with A given by 1y, U n4,, A2 = 1, and C given
by the components of H\ (59, U ng,) which are to the right of 74, and to the left of
16,1 implies that the pair (h, k) is independent of (1y,, hy,) given (h%, b}, 16, , ng,).
Another application of Proposition 3.9 [with A; given by ng, U 1g,, A2 given by n
stopped upon the last time it hits dC, and C given by the components of H\ (n4, Uns,)
which come after C] implies that /) is independent of (ny,, hy) given (g, , ng,, h'y).
Finally, Proposition 3.9 [with A; = ng, U ng,, A2 given by the union njy,, ng,, and
the restriction of 7 to the interval of time in which it is in C, and C given by those
components of H\ (s, U ng,) which come before C; we note that A, is local for i by
Lemma 7.1 because it implies that the conditional law of 7 in C does not depend on its
realization up until first hitting dC when 1y, , 1y, are fixed] (ny, hy) is independent
of h’3 given (1, , 1g,). This completes the proof. O

The important ingredients in the proof of Lemma 7.2 are that:

1. the conditional law of & given 1y, , 19,, and n restricted to the left and right con-
nected components of H\ (14, Ung, ) does not depend either on 1 or on the restriction
of h to the connected components which lie between 74, and 74, ,
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2. the conditional law of 5 in C given ng, , g, does not depend on # restricted to the
connected components whose boundaries are traced by 1y, and 7y, before C,

3. the conditional law of i given 1ng,, ng, restricted to the connected components
whose boundaries are traced by ng, and 7, after C does not depend on n stopped
upon exiting C, and that

4. n, ng,, and ng, are all determined by A.

By the same argument, an analogous result holds in the setting of counterflow lines
(see Sect. 7.4).

By combining Lemmas 7.1 and 7.2, we have obtained Theorems 1.2 and 1.3 in the
special case of two boundary force points, one to the left and one to the right of the
SLE seed. We will record this result in the following proposition.

Proposition 7.3 Suppose that nis an SLE, (p; p®) process in H from 0 to oo withk €
(0, 4] and with weights p*, p® > —2 located at the force points 0=, 0F, respectively.
Then n is almost surely continuous and 1im;_, 5, n(t) = 0o. Moreover, in the coupling
of n with a GFF h as in Theorem 1.1, n is almost surely determined by h.

Proposition 7.3 implies that the flow lines of the GFF on H starting at 0 with
boundary data which is constant on (—oo, 0) and on (0, co) are almost surely defined
as path valued functionals of the underlying GFF. The technique we used to prove
Proposition 7.3 can be applied to multiple flow lines simultaneously. We obtain as
a consequence the following extension of Proposition 5.5 to the regime of boundary
data which is constant on (—oo, 0) and constant on (0, 00).

Proposition 7.4 Suppose that h is a GFF on H with boundary data as in the left side
of Fig. 46 (though we do not restrict the values of a and b). Assume 61 < 0, satisfy

A
and 92<a+ .

X X

0 > —

With ne, the flow line of h with angle 6; for i = 1,2, we have that ng, almost surely
lies to the left of ng,. The conditional law of ng, given ng, is that of an SLE,((62 —
) x/A —2; (b+ 61x)/A — 1) independently in each of the connected components
of H\ne, which lie to the right of ne,. Similarly, the conditional law of ne, given ng,
is that of an SLE,.((a — 02x) /X — 1; (62 — 01) x /X — 2) independently in each of the
connected components of H\ng, which lie to the left of ng, .

The hypothesis on 61, 6, is to ensure that the values of the weights of the force points
associated with g, , 19, exceed —2.

We are now able to complete the proof of Theorem 1.2 for « € (0,4]. This
follows from an induction argument, the absolute continuity properties of the field
(Proposition 3.4), and the two force point case (Lemma 7.2, Proposition 7.3), and is
accomplished in the following lemma.

Lemma 7.5 In the setting of Theorem 1.1 for k € (0, 4], the SLE, (BL; BR)ﬂow line
n of h is almost surely determined by h.
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Proof Write p& = (p"L, ..., pFL) and pR = (p"k, ..., p©®). We are going to
prove the result by induction on k, £. For simplicity of notation, we are going to
assume without loss of generality that x'-* = 0~ and x""® = 0% by possibly adding 0
weight force points. Lemma 7.2 gives the desired result when k, £ < 1. Let K, denote
the hull of » at time ¢ and let f; : H\K; — H be the corresponding centered Loewner
map. Assume that the statement of the lemma holds for some fixed k, £ > 1. We are
going to prove that the result holds for £ + 1 force points to the left of 0 and ¢ to the
right of 0 (and vice-versa by symmetry). There are two possibilities: either K; does or
does not accumulate in (—o0, xk+1'L]. In the latter case, we are done because we can
invoke Proposition 3.4 to deduce the result from the induction hypothesis. Suppose
that we are in the former case. Let T be the first time K; accumulates in (—oo, xktLL,
Note that K |[o, ] is almost surely determined by & by Proposition 3.4 and the induction
hypothesis (we can apply these results to K|[o ] Where 7. is the first time that K;
gets within distance € > 0 of (—oo, x¥*t1-L] and then send € — 0). If 7 is at the
continuation threshold, then we are done. If not, we just need to show that K |(r,«0) 18
almost surely determined by 4. Assume that the rightmost point of K; is contained
in [x/0-R  xjo+1L.R) Then the conditional law of f;(K,) for t > T given Klj0,711s an
SLE, (EL; ER) process in H from 0 to co where

k+1 Jo
—L __ s, L ~1,R __ s,R ~2.R __ jio+1,R ~(—jo+1,R __ _¢,R
p —Ep and p —Ep s P =l =p".
s=1 s=1

By the induction hypothesis, it thus follows that (f7(K;) : t > t) is almost surely
determined by h o f; — yx arg f/, hence also by h|m\k, given K. The result now
follows. O

The proof of Lemma 7.5 is not specific to SLE, (p) processes when « € (0, 4]. In

particular, upon proving that SLE, (p’; p®) processes are almost surely determined
by h for pX, p® > —2 in the coupling of Theorem 1.1 in Sect. 7.4, we will have
completed the proof of Theorem 1.2.

7.2 Monotonicity, merging, and crossing

Up until now, the only type of interaction between flow lines that we have considered
has been when the paths have the same seed. In this subsection, we will expand on this
to complete the proof of Theorem 1.5 (contingent on a continuity assumption which
will be removed upon proving Theorem 1.3 for flow lines in Sect. 7.3). This gives a
complete description of the manner in which flow lines can interact with each other
and makes the phenomena observed in the simulations from the introduction (Figs. 2,
3,4,5,7,8, 21) precise. In particular, we will consider the following setup: we have
two flow lines ngll and nzzz of a GFF on H with piecewise constant boundary data which
changes a finite number of times with angles 61 and 6, starting at boundary points x|
and x,, respectively. We will show that if x; > x> and 67 < 6, then ngl stays to the

1
right of ngzz. This is a generalization of Proposition 7.4, the monotonicity statement for
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(b)

Fig. 47 Suppose that & is a GFF on H with piecewise constant boundary data which changes a finite
number of times. For each x € R and angle 0, let ng be the flow line of / starting at x with angle 6. If

x1 > xp and 01 = 6, = 0, then 772)(11 will almost surely merge with r)g; upon intersecting (left panel). If
6 < 0] < 6 + 7, then ngll will cross r]g; upon intersecting but will never cross back (right) panel. If
01 < 6, then ’72)11 will almost surely stay to the right of 772»(22 alf 0 = 0p = 0, then the flow lines almost

surely merge upon intersecting and then never separate. b If 6, < 01 < 6, + 7, then the flow lines almost
surely cross upon intersecting. Afterwards, they may bounce off of each other but will never cross again

boundary data which is constant on (—o0, 0) and on (0, 00), to the setting of general
piecewise constant boundary data and where the initial points of the flow lines can be
different. The more interesting behavior occurs when ) = 6, or6, < 61 < 6, +m.In
the former case, the flow lines will actually almost surely merge upon intersecting and
then never separate (in obvious contrast with a Euclidean geometry). In the latter case,
upon intersecting, the flow lines will almost surely cross exactly once. Afterwards,
they may continue to intersect and bounce off of one another, but will never cross
again (Fig. 47).

The first step to proving these results is Lemma 7.7, which says that the set K which
consists of those points of 7, until the first time 7| that n intersects 1> and those
points of 7> until the first time 7 that 7, hits n is a local set for . We will in
particular show that if 71, 70 < oo, then ng]' (1) = ngzz (12) (which is of course not in
general true for continuous paths). This is a particularly interesting example of a local
set because it cannot be generated using a “local algorithm” that explores the values of
the field along the flow lines until stopping times (without ever looking at the field off
of those flow lines). Once Lemma 7.7 is established, we will then prove Lemma 7.8
which gives that the conditional mean Cg of & given KC (where K plays the same role
for K as A from Sect. 3.2) does not exhibit pathological behavior in the unbounded

connected component D of H\ K, even at the first intersection point of ngll and né‘j.

This in turn allows us to show that ng: l[z;,00), i = 1, 2,is the flow line of the conditional
field h|p given K with angle 6; starting at ngll (t1) = n;‘;(rz) provided 11, 17 < oc.
We then prove Proposition 7.10, which is our most general monotonicity statement,
followed by Proposition 7.11, which gives the monotonicity of angle varying flow
lines. The merging and crossing behavior are proved in Proposition 7.12 and follows
by using Lemmas 7.7 and 7.8 to reduce the results to Proposition 7.10. Before we
prove Lemma 7.7, we need to record the following technical lemma.

Lemma 7.6 Suppose that h is a GFF on H with piecewise constant boundary data
which changes a finite number of times. Suppose that x1, x> € R with xo < x| and
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T, (§2) o, (72)

. I= ([o,

7];11(%1) n91 (51) —_—— @ 1/ 1791 [ 51
a— /\+(92—91+7r)x
— N =0x|XN = 0xx N0 x|V =-bix /z_p\ x|y
- v(n;?)
—A A
s A 0

Fig. 48 Suppose that & is a GFF on H with piecewise constant boundary data which changes a finite
number of times. Suppose that x1, xp € R with x < x and fix 6,6y € Rwith 6] < 0 + 7. Let T;
be a stopping time for ng’ ,1 = 1,2, such that ng’ I[0,7;] is almost surely continuous. Let 71 < Tp be any

stopping time for ’7(9 We show in Lemma 7.6 that the following is true. Suppose that 7) < T3 is any
stopping time for the filtration F; = 0(17922 (s):s <t, 7;9] ([0, 71])) such that if & is the largest time
t € [0, T2] so that r792 (t) e r] ([0 71]) then n;z (1) is contained in the unbounded connected component
ofH\(r/ ([0 71hu 7792([0 52])) Let &1 be the smallest time ¢ € [0, 7] that 11 (t) € 77 ([0 75]). Then
'702 |[r2,T2] does not exit the unbounded connected component D of H\(n ([0 rl hu 7792 ([0, 72])) in the
right side of ngll ([0, &1]). To see this, we let ¥ be the conformal from D to S which takes 17922 (1) to 0,
and the left and right sides of ngz ((&2, 7)) to (—o0, 0) and (0, 0o), respectively. The boundary data for the

GFF h + 6> x where h =hlpoy~ 1_ x arg(y— 1) is shown on the right side. Note that 6 — 01 +7 > 0
so that with I = 10()79 ([0, &1))) we have that (h 4+ 62x); = A. Since 1&(7792 I[%,151) is the flow line of

h+ 6 x starting from 0, the result then follows from Lemma 5.2

fix angles 01,0, € R with 61 < 6, 4+ 7. Let T; be a stopping time for ng:, i=172
such that ngj lj0,7;] is almost surely continuous. Let T\ < Ty be any stopping time for
ng:. Then the following is true. Suppose that T, < T, is any stopping time for the
filtration F; = a(ngz (s)' s <t, 7791 ([0, T1])) such that with &) the largest time t €
[0, T2 ] with 17922 (1) € n ([0, T1]) we have that 7192 (72) is contained in the unbounded
connected component ofH\(r;Xl ([0,71pu 77 ([0 &1)). Let 51 be the smallest time t
that 17 (t) € 1702([0 rz]) Then 779 |[f2 D] elther hits oH or 77 ([51, 71]) or escapes

to 00 before hitting n o, ([0, &1)). The analogous result holds when the roles Ofﬂg,l , r)gzz
are swapped.

We note that in the case that either 61 or 8; is outside of the range of values necessary
for the flow line to be defined (i.e., there is a force point of weight less than or equal to
—2 immediately to the left or to the right of the starting point of the path), the statement
of Lemma 7.6 trivially holds as we can view such a flow line to be the path which
is always equal to its starting point. Lemma 7.6 is a consequence of Lemma 5.2; see
Fig. 48 for the setup of the proof. Its proof is also very similar to that of Proposition 5.1.

Proof of Lemma 7.6 Note that ng:([O 71 U n ([0 7p]) is a local set for h by
Lemma 6.2. Let D be the unbounded connected component of H\(n ([O, [Z8) RN,
7792([0 7])). Let ¥: D — S be the conformal map which takes n (?2) to 0,
the left side of ngz((ég, 7)) to (—00,0), and the right side to (0, oo) Let h =
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hlp o ¥~ ! — xarg(y~!). Then h is a GFF on S; the boundary data for h+ O x
is depicted in the right side of Fig. 48. Here, we are using Proposition 3.8 to get the
boundary data for h on the image I under v of the right side of 77)0‘1‘ ([0, &1)) as well
as on the lower boundary 97, S (in particular, we do not try to rule out pathological
behavior in the conditional mean of % at intersection points of ngll and ngzz). Since
ngzz [[0,75] 1s almost surely continuous, we know that the image of ngzz |[%,.7>] under ¥ is
also continuous. Since the boundary data of h+ GoxonlisA+(6r—601+m)x > A,
Lemma 5.2 implies that I/I(ngz |(%.75]) must exit S in dyS\I (or does not exit before
time 77). This corresponds to 71)9(22 exiting D either in 9H or in ngll |{£,,7 (or not exiting
at all). This completes the proof. O

Lemma 7.7 Suppose that h is a GFF on H with piecewise constant boundary data
which changes a finite number of times. Fix x1, xy € oH with x; < x1 and angles
01,62 with 01 < 6, + . Fori = 1,2, let T; be a stopping time for ng’_" such that
ngl_' lj0,7;] is almost surely continuous. Let T, be the first time that ngj l[0,75] intersects
Mg: 10,71 and let Ty be the first time that ny!|j0,1,) intersects ny.|j0.7,)- Let K =
ngll (0, .y AT U ngzz([O, 0 A Ta)). Then K is a local set for h. Moreover, if t; < T;
and t; < oo fori = 1,2 then ngll (1)) = ngzz (1) and ng[_i Itz 131, for i = 1,2, is almost
surely contained in the unbounded connected component of H\K .

We note that in the statement of Lemma 7.7, the stopping times 7;,i = 1,2,
may actually be infinite in the case that ng: l{0,7,] does not touch ngzz {0,757 This can

happen, for example, if one of the ng: [0, 7;1 hits a segment of 0H after which it is not
able to continue, i.e. the boundary data of & + 6; x is at least A on the left side of the
intersection point or is not more than —A on the right side. On the other hand, the
statement is vacuous in the setting in which the boundary of % is such that either ngll

or 71322 immediately hits the continuation threshold (i.e., the p value immediately to
the left or right of one of the paths is not larger than —2).

Proof of Lemma 7.7 Let 7)) (t) = ’79 “(t NT;) fori = 1,2. Assume that 7; < oo for
i = 1, 2 for otherwise the result is trivial. We are now going to prove that 7, ’791 (1) =
?igzz (12). To see this, we apply Lemma 7.6 for the stopping time 7| = T for ﬁg‘ and for
any stopping time 7, < 7, < T for the filtration F; = o(ﬁgzz (s):s <1, 7, 110, 1))
so that the criteria of Lemma 7.6 hold. Let & be the first time ¢ that 7791] {0, 77 hits
'ﬁgj([o, 7]). Lemma 7.6 implies that 7 ’79 ?|[%,.15] cannot hit the right side of 77 ~x' ([0, &)
before hitting either 7, n o, '([&1, T1]) or 0H. By applying this to a countable collection
of stopping times which is dense among admissible times in [12, 72] (i.e, stopping
times 7 so that the criteria of Lemma 7.6 apply), we see that 1762([12, T>]) cannot
hit the right side of 7 n o, '([0, o1)) where o7 is the first time that 7 n ! hits 7]92(‘52) An
analogous argument with the roles of ngll and 17“522 reversed implies that 7, n o) "([r1, T1])
cannot hit the left side of ﬁgzz ([0, 0»)) where o is the first time that ﬁgzz hits ﬁgll (t1).
It thus follows that o1 = t1, which proves the claim.

Recall that we assumed that 7; < oo fori = 1,2. Let K = ’ﬁgl'([O, U

ﬁgzz([O, 72]). The above argument also implies that ﬁgﬂ[n,Ti] is contained in the
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——

wy =17 (Ta) =05} (11)

—N=—bx

Fig. 49 Suppose that & is a GFF on H with piecewise constant boundary data which changes a finite

number of times. Suppose that x1, x» € 0H with x, < x] and fix 61,0, € R with 6; < 6, + 7. For

i =1,2,let T; be a stopping time for ngf such that ngf I[0,7;] is almost surely continuous. Let 7} be the first
1 1

time that ngll [0, ;] hits ngi l[0,75] and let 7 be the first time that ’79? [0, 5] hits r]gll [0, 7;1- In Lemma 7.7,
we show that K = ngll ([0, 71 AT1]) U ngj([O, 7 A Tp]) is a local set for & and, if 71, 79 < o0, then
wo = 77211 (1) = r)g; (12). Let D be the unbounded connected component of H\ K. In Lemma 7.8, we show

that h|p given KC (where KC plays the role for K of A from Sect. 3.2) is a GFF in D whose boundary data
is as depicted above and that 1y’ |[7;, 7;] is the flow line of /| p starting at wg of angle 6; fori = 1,2
1

unbounded connected component of H\ K fori =1, 2 (i.e., if ?]'gll |{z;, 77118 1n abounded
connected component, then 77'2;22 hits ?igll on its right side first). We are now going to
prove that K is local by checking characterization (i) of Lemma 3.6. Fix U € H
open. Fori = 1,2, let t/ = inf{r > 0 : 7,/ (t) € U}. Then 7 ([0, 7”]),i = 1,2,
is almost surely determined by the projection of i onto H-(U) as a consequence of
Theorem 1.2 and that ﬁgi" ([0, ‘L'iU]), i = 1,2, 1s alocal set for /. Since the event that

{KNU # ¢} is determined by ?)'gl‘ (10, 7V1) and ?}"0‘22 (10, T¥’1), itis therefore determined

by the projection of 4 onto H+(U). O

Lemma 7.8 Assume that we have the same setup as Lemma 7.7. Let D be the
unbounded connected component of H\K and let ¢ : D — H be a conformal transfor-
mation which fixes 0o and let g be the function which is harmonic in H with boundary
conditions given by —\ — 0; x (resp. . — 60; x) on the ¢ image of the left (resp. right)
side of nilj0,7; ;1 fori =1, 2 and the same as h O(pfl on ¢ (0H). Then the conditional
mean Cg of h given KC (where KC plays the role for K of A as in Sect. 3.2) restricted
to Disgog — x arg’ (see Fig. 49). Moreover, if t; < oo fori = 1,2 then '7)06; 1,731
is the flow line of the conditional field h given IC restricted to D with angle 6; starting
arwo = 11! (t1) = 1, (12).

Proof Lemma 7.7 implies that K = ngll ([0, U '7)9‘22 ([0, 12]) is a local set for 4. The
claim regarding Cg is clear if wy € dH by Proposition 6.5 or if 71, 72 = oo. To see
this in the case that wy € H, we note that with K, ; = ngl‘ ([0, rh U ngzz([O, s]) we
have that C k., does not exhibit pathological behavior whenever s > 7, and r < 1
by Propositions 3.7 and 3.8. The claim then follows by using Proposition 6.5 and that
Ck = limy, lim, 4, Ck,, almost surely.

To see the second claim, we first note that 77;: I1z;, 131> fori = 1, 2, has a continuous

Loewner driving function viewed as a path in D. The reason is that ng, cannot trace

i
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itself or 0H since it has a continuous Loewner driving function viewed as a path in H
and it cannot trace or create loops with K because the proof of Lemma 7.7 implies that
ng; |[z;,7;1 almost surely does not hit K after time ;. Thus the claim follows by applying
Proposition 6.12. Combining Theorems 1.2, 2.4, and Proposition 6.5 completes the
proof of the result. O

The proofs of Lemmas 7.7 and 7.8 also apply in the following slightly more general
situation.

Lemma 7.9 Assume that we have the same setup as Lemma 7.7. Suppose that o5 < T»
is a stopping time for ngzz such that, almost surely, r;gll lt0.7,1 lies to the right ofr)gz2 110.02]-
Let 11 be the first time that 1! |jo, r hits 12 |{0,,75] and let T be the first time that
ng22| [09.Ty] hits ng‘| 0.1 Let K = 179 L0, 71 ATH]) U ngz([O 0 A T>]). Then K is a
local set for h. If, in addition, t1, T2 < 00 then wy = ’791 (1) = n92 (12). Let D be the
unbounded connected component of H\K. Then 179; Itz ;1 fori = 1,2 is the flow line
of the conditional field h|p given KC (where K plays the same role for K as A from
Sect. 3.2) with angle 0; starting at wy.

Proof This follows from the same argument used to establish Lemmas 7.7 and 7.8. We
note that the intersection points of n“gl‘ ([0, 71)) and 7792([0 7)) (i.e., before 7791 [0, 71]
hits ngzz {02,751 and vice-versa) do not lead to singularities in the conditional mean Cx
of h given K in D by Proposition 3.9. O

By combining Lemma 7.9 with Proposition 7.4, we can now prove our general
monotonicity statement for flow lines.

Proposition 7.10 Suppose that h is a GFF on H with piecewise constant boundary
data which changes a finite number of times, x1, xo € 0H, and fix angles 0y, 6>. For
i = 1,2, let T; be a stopping time for ngl_" such that ngii l[0,7;] is almost surely continuous.
If01 < 0 and x1 > xy, then r]gll l0.7,1 almost surely lies to the right of ngz [[0.75]-

Proof Letz2 = (ylz(2 << )’21 < yg =)cz)ade1 = (y]f’ > > yl1 > y? = x1).
Assume that the boundary data for 4 in [y21 0) is—A —bhy,in [y?, y}) isA—01x,
and otherwise changes to the left of x, only at the pomts of Y, and changes to the right
of xi only at the points of y [note that we are not careful to restrict or specify the
places where the boundary data for 4 changes in (x2, x1)]. We are going to prove the
result by induction on k1, k (see Fig. 50 for an illustration of the setup and the proof).

We first assume that k1, ko < 1. Let 7| be the first time that ng: lj0.7,7 hits ngj 110.75]
and 7, the first time that ngj [0,7>] hits ngll ljo,7;1- If 71 = 12 = o0, then the result
is trivial, so we shall assume that 1:1, ) < 00. Let D be the unbounded connected
component of H\ K where K = 7791 (10, 1) U r/ ([0 72]). Lemma 7.8 implies that

ngi" l(z;,7;1 for i = 1,2 is the flow line of h|p glven K (where K plays the same role

for K as A from Sect. 3.2) starting at wo = ngll (r) = ngzz (10) with angle 6;. Thus the
case k1, ko < 1 follows by Proposition 7.4.

Suppose that the result holds for k; = j;, some ji, jo > 1. We are now going to
show that it holds for k; = j; and k> = j» + 1 (the argument to show that it holds for
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wy = ny; (T2) = 1, (11)

A*)\*HQX N\ )\*91)(‘
vy oo viooow

Fig.50 Suppose that 4 is a GFF on H with piecewise constant boundary data which changes a finite number
of times, x1, xp € 9H with x; > xp, and fix angles 01 < 6. Let y, = (y12<2 << yz1 < yg = x3)

and y, = ()’]1CI > > yll > y? = x1). Assume that the boundary data for /4 changes to the left of x;
only at the points of Yy and to the right of x; only at the points of y It Moreover, assume that the boundary

data for & in [y%, y(z)) is —A — O x and in [y?, yll) isA —61x. Fori = 1,2, let T; be a stopping time
for ngf such that ngf l{0,7;1 is almost surely continuous. We prove in Proposition 7.10 that ngll lfo, 7y lies
1 1

to the right of ’7;2 l[0,7,] by induction on ky, k. The result for the case ki, ky < 1 is a consequence of

Proposition 7.4 and Lemma 7.7 (to justify growing the paths until they first hit each other). Suppose the
result holds for k| = jj and k» = jp, some ji, j» > | and that kp = j, + 1 and k1 = j;. Letting o7 be the

first time ¢ that ?7;22 [0, 7] hits (—o0, y]2(2J, it follows from the induction hypothesis and absolute continuity
(Proposition 3.4) that ng; 10,05 AT lies to the left of ng; l(0,7,]. Let 71 be the first time ¢ that n;f,] I[0, 7,7 hits
’7;2 l[o5,7»] and T3 the first time 7 after o) that ngzz [0, 75] hits n;fll lf0,77]- If 71 = 72 = o0, there is nothing
to prove. If 71, 19 < oo, then Lemma 7.9 implies that K = ngll ([0, 1) U r;gzz ([0, 72]) is a local set for
h and that ngl’ |[Ti i1 i = 1,2, is the flow line of |p, D the unbounded connected component of H\ K,

conditional on IC (where C plays the role for K of A from Sect. 3.2) starting from wg = ng: (1)) = '7;92 (12).

The result then follows from the induction hypothesis. We note that it could be that wg € 0H, though the
case wg € H is depicted above

k1 = j1 + 1 and k» = jp is the same). Fori = 1,2 and € > 0, let of be the first time
that ngl_" l{0,7;] gets within distance € of (—oo, ylgz]. The induction hypothesis combined
with Proposition 3.4 implies that 17 |{0,05 A7, lies to the left of 15! {0, o< a7y for each
€ > 0. Taking alimit as € |, 0, we see that 1757 [[0,0, 751 Stays to the left of 75! 10,0, A7)
where o; = o fori = 1, 2. Since 17! is targeted at oo and 17! |[0,7;1 is simple, we also
know that 1y |{,,7;] does not hit 5> [[0,0, 73] Therefore n! [0,7] lies to the right of
s 110,00 751 Let 1 be the first time that 0, |[0,7,] hits 7,7 |[5,, 7] and let 72 be the first
time that 1y |{o,, 7] hits 7! |07y} If 71 = 72 = 00, then there is nothing to prove. If
Ty, Tp < 0o, Lemma 7.9 implies that K = ngll ([0, 71 H U ngzz([O, 75]) is a local set for
h and that ngi" |(z;,7;1 s the flow line of | p, D the unbounded connected component of
H\K, of angle 6; starting from wo = nj! (1) = 1> (v2) fori = 1,2.Lety: D — H
be a conformal map which fixes oo and takes wq to 0. Then I/J(ngi’ liz;, 1) fori = 1,2

is the flow line of the GFF i o ¢ ~! — x arg(y ")’ on H with angle 6;. The result now
follows from the induction hypothesis. O

Next, we will extend the result of Proposition 7.10 to the setting of angle varying
flow lines.
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Proposition 7.11 Suppose that h is a GFF on H with piecewise constant boundary
data which changes a finite number of times. Fix angles 01, ..., 0 and 6 with 0 >
max; 0;. Assume

21
6 —60;| < == foralll <i,j <k (7.1)
X

Let n := nﬂ'”t" be an angle varying flow line of h starting at 0 and let 11, .. ., T
be the correspondzng angle change times (recall the definition from the begmnlng of
Sect. 5.2). Let 1) be theﬂow line of h starting at 0 with angle 6. Assume that T, T are
stopping times for n, 7, respectively, such that n|jo. 1}, 7, 0.7 are both almost surely
continuous. Then 1[0, almost surely lies to the right of 7| (0.7]-

The hypothesis that the angles 6; satisfy (7.1) implies that 1 never crosses itself,
though n may hit itself (it turns out that if |6; — ;| < 7, then 1 never hits itself).

Proof of Proposition 7.11 We will prove the result by induction on the number of
times that 1 changes angles. Proposition 7.10 implies the result for k = 1 (the fixed
angle case). Suppose k > 2 and the result holds for k — 1 (which corresponds to
k — 2 angle changes). The induction hypothesis implies that n|[o,7, ;7] almost surely
stays to the right of 7, 7. Let T be the first time that 7], 7 hits nljr,_, 7] and let
T be the first time that nljo, 7] hits 7]y 7 after time 7x_;. If T = T = oo, then the
desired result is trivial, so we shall assume that 7, T < oco. The argument of Lemma 7.9
implies that K = n([0, t]) U7 ([0, T]) is a local set for & and that wy = n(r) = 7(7).
Let D be the unbounded connected component of H\ K. Moreover, the argument of
Lemma 7.9 also implies that "7|[%,ﬁ is the flow line of &|p conditional on K (where
KC plays the same role for K as A from Sect. 3.2) with angle 6 in D starting at wg and
that 1|, is the flow line of /| p conditional on K with angle 6; < 5 also starting at
wo. Consequently, the result follows from Proposition 7.10. O

Proposition 7.11 immediately implies the following. Suppose that 61,....6; is

another collection of angles and 77 = ng gﬁ is the angle varying flow line with corre-

sponding angle change times 71, ..., Ty—1. If min; 6; > max; 0; and T, T are stopping
times for 7, 77, respectively, such that [ 7] and ﬁ[o,T] are both almost surely contin-
uous then 7|[p, 77 almost surely lies to the right of 7| (0.7]-

Next, we will complete the proof of Theorem 1.5 (contingent on continuity hypothe-
ses which will be removed in the next subsection) in the following proposition:

Proposition 7.12 Suppose that h is a GFF on H with piecewise constant boundary
data which changes a finite number of times. Fix x1 > xp and angles 01, 0,. For
i = 1,2let T; be a stopping time for r;gi[ such that ng: l[0,7;] is almost surely continuous.
If0) <01 <60+, then ngll l[0,7;] almost surely crosses ngzz l[0,75] upon intersecting.
After crossing, ngll [0, 7,1 and 77)0;2 [0, 7] may continue to bounce off of each other, but will
. X1 . X2 . .
never cross again. If 61 = 0,, then My, l[0,7,] merges with M, l[0,75] upon intersecting.

The statement of the proposition implies that ng: lj0,7;] almost surely crosses ngj [[0.7]

. . o . X1 . X2 .
upon intersecting, but it is not necessarily true that 1 [[0,7;] intersects 7, [jo, 7] since
one of the flow lines may get stuck upon hitting the continuation threshold.
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Proof Let 11 be the first time that 1)} ;0. 7,7 intersects 17,2 |10. 751 and 7> the first time that
0, 110,711 6, 110,72]

r]gzz l[0,75] intersects ngll l10,771- If T1 = 12 = 00, then the desired result is trivial, so we

shall assume that 71, 77 < co. Lemma 7.7 implies that K = ngl‘ ([0, i H U ngzz([O, 5]

is a local set for & and that ng[" liz;, ;1,8 = 1,2, is almost surely contained in the

unbounded connected component D of H\ K. By Lemma 7.8, we know that ng’_" (.71
is the flow line of /| p given KC (where K plays the same role for K as .A from Sect. 3.2)
starting at ngl' (r1) = ngzz (12) with angle §; fori = 1,2.1f 6, < 0 < 6 + 7, then
Proposition 7.10 implies that 1|7, .7;] stays to the left of 1’|z, 7). The merging
claim comes as a consequence of Theorem 1.2, which implies that there is a unique
flow line for each given angle. O

Remark 7.13 We remark that it is straightforward in the setting of Proposition 7.12 to
compute the conditional law of 7' given 7,2 before 7' crosses ny. . For simplicity,
we assume that the boundary data of % is given by some constant, say ¢ (note that
Proposition 7.3 implies that ng: is almost surely continuous for all time, i = 1, 2).
2,L.

In this case, the conditional law is that of an SLE, (pX, p pR) process in the

connected component of H\ngz2 which contains x; where

O1x +c 61 —0)x O1x +c¢
plL = _ ST N N _o, MR _

A A A

1.

In particular, since 6] > 65, we have that p""L + p>L < —2. This implies that in
this case, ngll almost surely intersects (hence crosses) 77()522- This holds more generally
whenever we have boundary data which is piecewise constant and is such that ngll and

r]gzz can be continued upon intersecting dH. The facts summarized here will be useful
for us in Sect. 7.3 because we will employ them in order to prove the almost sure
continuity of SLE, (p) processes right up to when the continuation threshold is hit.

Remark 7.14 1t is also straightforward in the setting of Proposition 7.12 to compute
the conditional law of the segment of the path ngll after it has crossed 77“522 10,751 For
example, in the special case that 4 has constant boundary data c (as before, we already
know that both paths are continuous from Proposition 7.3), the conditional law of the

segment of 7! after it has crossed 7. given both

1. its realization up until hitting ngzz and
2. the entire realization of 7’

viewed as a path in the component of H\ngz2 in which it immediately enters after

crossing is that of an SLE, (p"£, p>L; p®) where
(62 — 1) x Oix +c
oL = plL 2L _

1 LR _ (01 —62)x _
X ) ) —_—

A A

2.

Remark 7.15 Both the merging and crossing phenomena described in Proposition 7.12
can also be seen as a consequence of the light cone construction of counter flow lines
described in Sect. 5.2. The former is explained in Fig. 51 and the latter is in Fig. 52.
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b/

Fig. 51 The merging phenomenon of Fig. 47 and Proposition 7.12 can also be seen through the light cone
perspective of SLE /. To see this, fix a GFF / on the strip S with the boundary data above. Assume for
simplicity that a’, b’ > A’ 4+ 7 x so that " almost surely does not intersect ;7S except at z(. Let g be the
flow line of / of angle 6 € —%, %) starting at 0. Let 77 < 1 be stopping times for ng. Then we know
by Proposition 5.9 that the flow lines #;, i = 1, 2, which run along 7¢ until time 7; and then flow at angle

%(A — ) = % are almost surely the left boundary of the counterflow line n’ starting at zo upon hitting

ng(;). This implies that 71, o almost surely merge and then never separate since " does not cross itself.
This gives the merging result with constant boundary data since the conditional law of / given 7y in the
left connected component of S\ny close to 1y (t1), ng (r2) looks like a GFF with constant boundary data,
provided 71 and 1 are chosen to be very close to each other

Fig. 52 (Continuation of Fig. 51.) It is also possible to see the crossing phenomenon of Fig. 47 and
Proposition 7.12 through light cones and duality. Indeed, assume we have the same setup as Fig. 52 except
we take the angle of 7 at ng(t1) to be an intermediate value in the range (6, %) (orange curve). Then
11 has to cross 1, since n’ swallows n; (Lemma 5.7) and 7, contains the left boundary of n’ when it hits
19 (t2) (Proposition 5.9). It is impossible for 1] to cross 1, subsequently since 1’ swallows the points in 1]
in reverse chronological order (Lemma 5.7) (color figure online)

7.3 Continuity for many boundary force points

We will now complete the proof of Theorem 1.3 for« € (0, 4] by extending the special
case proved in Proposition 7.3 to the setting of many boundary force points. We begin
by noting that absolute continuity (Proposition 3.4) along with the two force point case
implies that in this more general setting, n ~ SLE, (p) is almost surely a continuous
curve when it hits 9H between force points before the continuation threshold is hit.
Indeed, in this case absolute continuity implies that n locally evolves like an SLE,. (p)
process with just one force point with weight p > —2. Thus to get the continuity
of a general SLE, (p) process, we need to rule out pathological behavior when n
interacts with a force point or hits the boundary at the continuation threshold. We
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Mo

716,

Moy

0 X
Fig. 53 Suppose that & is a GFF on H whose boundary data is as depicted above where a, b are very
large. Fix p© > —2 and pR € (-2, % — 2). Choose angles 8] < -+ < 6, and, for each i, let 7y, be the
flow line of & with angle 0;. Assume that 7y, ~ SLE, (,olL; pR) and that the angles 65, ..., 6, are such

that, for each k € {2, ..., n}, the conditional law of ng, given ng,_, is an SLE, (pkL; pR) process in the
left connected component of H\ng, _,. By scale invariance, the probability that g, conditional on ng, _,

hits a particular point x 7 0 in ng,_, is a function of p,f‘, say p(plf‘), but not x. This implies that the
probability that ng, hits x € Ry is p = p(plL) cee p(p,I;). By choosing n large enough, we can arrange so
that g, ~ SLE« (oL; pf) with pR > & — 2. This implies that p = 0, so there exists 1 < ko < n such
that p(,okL0 ) = 0. From this, it is possible to see that the probability that an SLE, (pL; pR ) process hits a
particular point on Ry is zero (see Lemma 7.16)

will accomplish the former in the next series of lemmas, in which we systematically
study the behavior of SLE, (pLR, p2 Ry processes in H from 0 to oo with two force
points located to the right of 0. We will show that if p'® plR 4 p2R = _2 then
n almost surely does not hit its force points. We will prove the continuity right at the
continuation threshold in Lemma 7.21. At the continuation threshold, it turns out that
whether or not 7 hits a particular force point depends on the sum of the weights. This
is natural to expect in view of Lemma 4.5.

The first lemma of the subsection is a simple technical result which states that
the set which consists of those points where an SLE, (p) process with a single force
point of weight p > —2 is in JH almost surely has zero Lebesgue measure. This will
be employed in Lemma 7.18, which handles the regime of p"®, p2® where either
2R < 2 0r pIR € (=2, 5 —2). In Lemma 7.20, we will weaken the hypothesis
to plR, ptR 4 p2R =~ _2 The reason that we need to make the stronger hypothesis
in Lemma 7.18 is that its proof will proceed in analogy with the argument given in
Sect. 7.1, except rather than conditioning on flow lines with angles 6; < 0 < 6>, we
will condition on an angle-varying flow line. The hypothesis that |p>®| < 2 implies
that the angle-varying flow line does not cross itself.

Lemma 7.16 Suppose that n ~ SLE(p*; p®) in H from 0 to oo with p* > —2 and
pR e (-2, 5 — 2) where the force points are located at 0~ and 07T, respectively. The
Lebesgue measure of n N\ 0H is almost surely zero. In particular, for any x € 0H\{0},
the probability that n hits x is zero.

Proof Suppose that & is a GFF on H whose boundary data is as in Fig. 53. By choosing
a, b very large, we can pick angles ; < --- < 6, such that ng, is an SLE, (plL; pR)
process in H from 0 to oo and, foreach k € {2, ..., n}, the law of ng, given ng,_, is an
SLE, (pkL; p®) process in the left connected component of H\ 74, , (Proposition 7.4)
and that ,o,f > 0 for all k € {1,...,n}. By the scale invariance of SLEK(pkL; %)
processes with force points at 0~, 0T, there exists p(,okL) such that the probability that
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P (719192 ‘ [T1 ,00))

A—01x

0
Fig. 54 Suppose that % is a GFF on H whose boundary data is as depicted above. Assume that |01 — 62| <
21/ x. Let n;i(z be the angle varying flow line of & starting at 0 with angle change time 71 > 0 and angles
61, 0. We can see that n;: ;; is continuous by taking 6 (resp. 6) to be such that A — Ox = —Xx —01x (resp.
—A = 9~X = A — 01 x) and let ng (resp. ng) be the flow line of & starting at 0 with angle 0 (resp. 6). The
conditional law of néf gg I[z,,00) &iven ng, g, (10, 71 1) and ng and 5 is that of an SLE, (01 — 62)x /A; (62 —
01)x/A) process (justified in the proof of Lemma 7.17). Therefore Proposition 7.3 implies that n;:% is
almost surely continuous

1, hits any particular point x # 0in ng,_, is p(,o,f). By choosing n large enough, we
can arrange that g, ~ SLE,(p}; oX) with pX > & — 2. Fix x € Ry.. This implies
that P[x € ng,] = 0 (see Lemma 5.2). On the other hand, we also have that

Plx € ng,1 = p(pf) -+ p(pl).

This implies there exists 1 < kg < n such that p(p,é) ) = 0, i.e. so that the probability
that an SLE, (pj; ; p*) process hits any particular point x € R. is 0.

To get the result for general choices of p%, we fix p~ > max(p’; pkLO ) + 2 and let
h be a GFF on H whose boundary data is such that the zero angle flow line 1 of & is an
SLE, (p"; p®) process. Then by choosing 61 = A(p" +2)/x and 62 = A(p{; +2)/x
and letting ng, be the flow line of ~ with angle 6;,i = 1, 2, Proposition 7.4 implies
that the conditional law of 7 given 7y, is an SLE, (p%; p®) process and the conditional
law of n given 7y, is an SLE,((,okL0 : p®) process. Since the probability that the latter
hits any particular point x € Ry is zero, it follows the same is true for the former. O

Lemma 7.17 Suppose that h is a GFF on H whose boundary data is as depicted in
Fig. 54. Fix angles 01, 0y such that |01 — 02| < 2A/x and such that b + 0; x > —A

and —a +0;x < Afori =1,2. Let 775:(% be the angle varying flow line of h starting
from O with angles 61, 6> and angle change time 11 > 0. Then 775}55 is almost surely

continuous.

Proof See Fig. 54 for an illustration of the argument. We pick 6 (resp. 6) so that
A—Ox = —A — 01, ie 0x =21 +0,x (resp. —A —Ox = A — 01, ie. Oy =
—2) + 601 x) and let ng (resp. nz) be the flow line of 4 with angle 6 (resp. 0) starting
at 0. Note that § < 01, 6> < 0. We first assume that a, b are sufficiently large so that
ne and ngz almost surely do not intersect dH after time 0. Fix € > 0 and let 7, be
the first time 7 > 7 that 15! 57 |7, o) comes within distance € of 9H. Proposition 7.3

implies that 17;:5; l[0,711> M6, and ng are almost surely continuous and Proposition 3.4
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implies that neigi |[z,,7.11s almost surely continuous since its law is mutually absolutely
contlnuous with respect to that of an SLE, (p; p®) process in H\ﬂel ;; ([0, 71]) with

= (01 — 62)x /A and p™ = (6, — 61) x /». Consequently, Proposition 7.11 implies
that 77;: 5; |[z,,7,] Stays to the right of g and to the left of ng The argument of Remark 6.8
implies that the conditional expectation of & given ’79162’ ng, and ng does not have

TITZ

singularities at points where 7, o> intersects one of 7¢ or 1 (and the same holds when

Wwe run 77910; l[o,7.uptoa stoppmg time by Proposition 3.8). Moreover, the argument
of Remark 6.15 implies that ;] 92 ?|iz,.7.1 has a continuous Loewner driving function
viewed as a path in the connected component of H\(ng U ng U ne;;f([o 71])) which
lies between 1y and ng. Consequently, Theorem 2.4 combined with Proposition 6.5
together imply that the conditional law of r;gi (Z o). 721 glven ’70195 ([0, 711), 16, and nz
is an SLE, (p%; p®) process with the same weights p, p¥ as before. Lemma 7.16
implies that the distance n;; 5; |{z;,7.1 comes within 0 remains strictly positive ase — 0
(since ngllgi |{r;.7,] is continuous and almost surely does not hit 0 or 07). Since 1
and ng otherwise do not intersect 9H (since we picked a, b > 0 large), it follows that
T — oo as € — 0 almost surely. Therefore 7791 72 is almost surely continuous. To
see the result for general choices of a, b, we apply the same argument used to prove
Proposition 7.3 (we condition on flow lines with appropriately chosen angles and use
the continuity of 179”2 for large a, b). ]

Lemma 7.18 Suppose p"-R, ptR + p2R > 2. Additionally, assume that either

Let 1) be an SLE, (p"R, p>®) process in H from 0 to 0o where the force points corre-
sponding to the weights p"® and p*® are located at 0% and 1, respectively. Then 1
almost surely does not hit 1 and is generated by a continuous curve.

Proof Assume |p>®| < 2. Let
__* I.R _ A LR, 2.R
0 = X(2+p ) and 6 = X(2+p +077).

Suppose that % is a GFF with boundary data as in Fig. 46 where a = A and b > 0 is
sufficiently large so that the angle-varying flow line n;: 5; with angles 0y, 6> and angle
change time 71 = 1 starting at 0 almost surely does not hit dH after time 0. Note
that |p>®| < 2 implies |#; — 6»| < 21 /x, which is the condition necessary for N o
not to cross itself. Let n be the zero angle flow line of 4 starting at 0. Proposition 7.3
implies that 7 is continuous and Lemma 7.17 implies that 77” 72 is continuous. Thus by
Proposition 7.11, we know that n is almost surely to the left of 77” ” because 01,60, <O0.

Lemma 7.17 implies that the left connected component C of H\nrl 72 isalmost surely
a Jordan domain. Let ¥ : C — H be a conformal map which ﬁxes 0 and oco. Then
¥ extends continuously to dC. Therefore v () is a continuous path in H. Moreover,
¥ (n) has a continuous Loewner driving function by Remark 6.15. (Remark 6.15

@ Springer



684 J. Miller, S. Sheffield

assumed |01 — 62| < 7 to ensure the continuity of 4/ ;> and that ng' ;> is almost surely

determined by 4. We have now proved both of these facts in the setting we consider
here.) The boundary data for the conditional law of & given n;:gj is shown in Fig. 40.
Consequently, it follows from Proposition 6.5 and Theorem 2.4 that the conditional law
of n given ng g is that of an SLE, (o' R, p>R) process. Therefore SLE, (0%, p>R)
processes are continuous provided |p?®| < 2.

To see the second claim of the lemma when |p%®| < 2, we take max (6, 6») <

I

6 < 0. Then ng lies to the left of 9,6, and to the right of 5. Let z( be the leftmost point
of the intersection of '7;: ;; ([t1, 00)) with '7;: 5; ([0, 71]). If ng does not hit zq, then the
desired claim follows. If ng does hit zg, then we know that 5 almost surely does not hit
z0 because the conditional law of 7 given 1y and n;; 5; is that of an SLE, (=0 x /A —2)
process in the left connected component of H\7g (Proposition 7.3), hence we can
apply Lemma 7.16.

Alternatively, suppose p! % < 5 — 2. There are two possibilities. If o R4 p2R e
(=2, © —2) then |p>®| < 2 so that the result in this case follows as before. Suppose
pLR 4 p2R > % — 2. Assume that 7 is coupled with a GFF £ so that 7 is its flow line
starting from 0. We claim that n almost surely does not hit [1, 00), in which case we
are done because then Proposition 3.4 implies that the law of 1 (stopped upon exiting
a ball of any finite size) is mutually absolutely continuous with respect to the law of
an SLE, (p"R, p%R) process, p>® such that p!"R 4+ p>R = & — 2, (stopped upon
exiting a ball of the same finite size) and we know from the previous argument that
such processes are continuous.

To see that i does not hit [1, 00), we let ' be the flow line of & (with angle 0)
starting at 1. Let T (resp. TEI) be the first time 7 that n (resp. n') gets within distance
€ of [1, 00) (resp. (—00, 0]) and let 7 = lim_,¢ Tt (resp. T' = lim._,¢ 7.}). On the
event {T < oo} U {T! < oo}, we have that nljo,7y and n'! ljo,71) intersect. Since both
of the (restricted) paths are continuous by Propositions 3.4 and 7.3, Proposition 7.12
then implies that ! and  merge. Let 7 be the first time , hits n! and 7! be the first
time n' hits  and let K = n([0, t]) U ' ([0, t']). The conditional law of 5 given K
is that of an SLE, (p"'® + p%®) process in the unbounded connected component of
H\ K (Proposition 7.12). Therefore Lemma 4.3 implies that  almost surely does not
hit [1, co), which is a contradiction (see Fig. 55). O

Remark 7.19 A slight modification of the proof of Lemma 7.18 implies the continuity
of SLE, (pL; ptR  p%R) processes where p!*L > —2 and the same hypotheses are

made on p"R, p>R_ Indeed, this is accomplished by conditioning on the flow line
with angle (2 + ,OI’L)% > 0.

Lemma 7.18 requires that if p!'% > 5 — 2 then oL R + p2R is larger than both

p'® — 2 and —2. The purpose of the next lemma is to remove this restriction.

Lemma 7.20 Suppose
pl’R > g —2 and pl’R —i—,oz’R > =2,
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Fig.55 Suppose that /2 is a GFF whose boundary data is as depicted on the right side withb € (—A, A—m x)
and ¢ > L —m x. We can see that the flow line 1 of 2 does not intersect [ 1, co) by noting that, if it did, it would
have to intersect hence merge with the flow line nl of h starting at 1 (Proposition 7.12). Letting t be the first
time 7 hits r]l and ! the first time nl hits 1, the conditional law of n given K = ([0, t]) Unl ([0, rl]) is that
of an SLE (p) process with p > % — 2 in the unbounded connected component of H\ K. By Lemma 4.3,
we know that such processes do not hit the boundary, which implies that  cannot hit [1, co)

Let n be an SLE(p" R, p>®) process in H where the force points corresponding to
the weights p"® and p*>® are located at 0% and 1, respectively. Then n almost surely
does not hit 1 and is generated by a continuous curve.

Proof We may assume without loss of generality that 'R + p2R e (-2, 5 —2)
since if p1 K + p2 R > 5 — 2, we know by Remark 2.3 that 1 almost surely does not
hit 9H after time O and is almost surely continuous. Assume that 7 is coupled with a
GFF h as in Theorem 1.1. By Propositions 3.4 and 7.3 we know that » is continuous,
at least up until just before the first time t it accumulates in [1, 0o). Thus, we just need
to show that n is continuous at time t, that 5 is a continuous curve for ¢ > t, and that
n(z) # 1.

To see that 1 does not accumulate at 1, we apply a conformal map ¢ taking H to
the strip S as in Fig. 23 with 0 fixed, 1 going to 400, and co going to —oo. Then
Fig. 24 implies v (1) almost surely hits S after time 0 when it accumulates on the
upper boundary of &, which in turn implies that 5 almost surely does not accumulate
at 1. This implies that, by Proposition 3.4 and Theorem 1.2, for any fixed 7o > 0
the law of 1][4,00) conditional on 1 ([0, fo]) is absolutely continuous with respect to
that of an SLE,(p"® + p2R) process. Therefore the continuity of n up to time t
follows from Proposition 7.3. After time 7, we know that 7 is a continuous curve since
conditional on n([0, t]), n evolves as an SLE, (,ol’R + ,OZ’R ) process in the unbounded
connected component C of H\»n ([0, t]). We know that such processes are generated
by continuous curves by Proposition 7.3 in H. Since C is a Jordan domain, the Loewner
map f; extends as a homeomorphism to d(H\ K;), hence we see that n for t > 7 is
also a continuous curve. O

Lemma 7.21 Let n be an SLE, (p"R, p>®) process in H starting at 0 where the
force points corresponding to the weights p"® and p*® are located at 0 < x"R <
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%
A A0 o(n)
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~\ A ¢ )e N/ N e —Xx—0x
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0 T 2 0 b 2R

Fig. 56 Suppose that /2 is a GFF on H whose boundary data is as depicted on the left side where ¢ €
(—A, A —myx]. Let 775 be the flow line of / starting at 2 with angle 6 € [0, ). Note thatc +0x € (=X, A)

and —A + 0y < —XA + wx. Thus ng exists (does not immediately hit the continuation threshold) and the
event E that ng is continuous for all time and does not hit (—oo, x) has positive probability (Proposition 3.4,
Remarks 5.3, 7.19). Condition on né, E and let C be the connected component of H\ng which contains

0. Let ¥ : C — H be the conformal map which fixes 0, sends the leftmost intersection point z of ng with

Z'R, and fixes 0co. We let x 'R

(0, 00) to x = ¥ (x). Note that once we have conditioned on ng, we can
adjust x between 0 and z to obtain any value of x 1R between 0 and x2-® we like. The boundary data for
the GFF h o 1//_1 - X arg(l//_l)’ is depicted on the right side and ¥ (n) is an SLE, (,o]’R, pz*R) process
with pl'R =c¢/A—land pl*R + pZ'R = —0x /A — 2. Since n and 7]5 are almost surely continuous given
E, sois ¥ (n). By adjusting 6 € [0, ), we can achieve any value of pl*R + p2'R S (% — 4, —2] we like.
Likewise, by adjusting ¢, we can obtain any value of ol R e (=2, % — 2] we like. Finally, we note that by
either conditioning on an additional flow line starting at O of positive angle or changing the boundary data

to the left of 0 to be smaller than —A, we can also get the continuity of SLE, (p] L, ,ol*R, ,oz*R) processes

with p1- R p2:R ag before and any oL > 2
v
n ~ A
—)\ A a b “
0 bR 2R D(a"R)

Fig. 57 Suppose that / is a GFF on H whose boundary data is as depicted on the left side. We assume that
a > —XAand b < —)A — 7w x. Then the flow line n of & is an SLEK(,OLR, pz'R) process with pl*R > =2
and pl*R + pz*R < % — 4. Let ¥ : H — H be a conformal map which fixes 0 and takes xR 10 co.
The boundary data for the GFF / o 1,0*1 - X arg(xﬂfl)/ is depicted on the right side. Hence (1) is an
SLE, (pl’L; ,ol'R) process with pl’L > % —2and pl’R > —2 and therefore continuous by Proposition 7.3.
This implies the continuity of » and that  almost surely terminates at x2R [because ¥ (1) almost surely
tends to co by Proposition 7.3]. If a € (—A — x, —A], then we can apply the same conformal map and then
get the continuity from the argument described at the end of Fig. 56 [the process one gets after applying the
conformal map is an SLEK(pl’L; pl’R) with pl’L > % — 2 and pl*R > % —4].Ifa < —A — 7y, then

we can apply a conformal map which sends both xR and xZR to (—o0, 0) and get the continuity from
the fact that ¥ () ~ SLE, (5", 52L) with p1L > & —2and gL + 52 > & —2

x2R < oo, respectively. If ptR < =2 or p"R + p2R < —2, then n is almost surely

a continuous curve.

In order to prove Lemma 7.21, we will need to consider several different cases.
These are described in Fig. 56 (p!'® > —2, p!:R 4 p2R e (& — 4, -2]), Fig. 57

(PR eR, ptR 4 p>R < & —4) and Fig. 58 (o' < =2, p! R 4+ p?R > £ — 1),
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0 IlyR

Fig. 58 Suppose that / is a GFF on H whose boundary data is as depicted above. We assume thata < —A
and b > —A — . Then the flow line n of & is an SLEK(pl'R, pZ'R) process with pl'R < —2 and
2,R . . . 2R .
pl*R + pZ’R > % —4.Let ny " be the flow line of & starting at x2R with angle 7. Then %~ is an
SLEK(pl’L,pz’L,p3'L; pl’R)processwithpl’L > %72’pl,L+p2,L < 72,p1’L+p2’L+p3’L — %72
2R . . . .
and pI-® > —2. There are two possibilities: either 75~ hits the continuation threshold upon accumulating
in [0, xl’R] or it does not hit the continuation threshold. In the former case, the conditional law of n
2R, 2R . ~ »
given 1% in the leftmost connected component of H\n} = is that of an SLE, (pl’R, pZ'R ) process
~ ~ ~ . . 2,R
with p]’R = g — 2 and p]’R + pz’R = pl’R + pz’R. In this case, 1 does not hit 73~ (Lemma 4.6)
2,R .
and is continuous by the first part of the proof of Lemma 7.21 (recall Fig. 56). If n% "~ does not hit
the continuation threshold, then its law is absolutely continuous (Proposition 3.4) with respect to that of
an SLE,((£ —2;p pl R ) process with p 1R = —2, hence continuous (Proposition 7.3). In this case, the
2,R 2,R . - — .
conditional law of n given 7, up until intersects n  is that of an SLE, (pl'R, pZ'R ) process with

LR = pL.R gng p1.R 4 52K = % — 4. This implies that 7 is continuous in this case by the argument of

Fig. 57 [we note that on this event, 1 exits H in (xl*R, xz’R)]

Proof of Lemma 7.21 The proof of the first claim in the special case p!'® € (=2, 53—
2] and p"R + p*R € (§ — 4, -2] is described in Fig. 56. For p!-R > & — 2,
Lemma 4.3 implies that 7 first hits 9H after time 0 in (x>, 00). Therefore the laws
of the paths when p1-R = 5 —2and plR > 5 — 2 are mutually absolutely continuous
(Proposition 3.4) upon hitting the continuation threshold (this is the same argument
used in the proof of Lemma 7.20), which completes the proof for p!R > 5 —2and
ol R4 p2R e (5 —4, 2]. Note that these results hold if 7 has an additional force point
at 0~ of weight p!"% > —2, as explained in Fig. 56.

We now suppose that p':R + p>R < 5 — 4. If ol R > 5 — 4, by applying a
conformal map ¥ : H — H which fixes 0, sends xR t0 00, and x2 R to —1, we see
that ¥ (7)) ~ SLE,(p"L; p""®) where p"-L' > & — 2 (this argument is described in
Fig. 57). This puts us into the setting of the case considered in the previous paragraph.
Therefore ¥ (1) is continuous, hence also 7. If p!-¥ <3 £ — 4, then we can apply a
conformal map ¥ : H — H which fixes 0 and sends both xl R and x2® to (—o0, 0).
Then (1) is an SLE, (p"L.p*L) process with p1-L > 5 —2and pbl 4 p>l > 3
so the continuity in this case follows as well.

The final possibility is when p!*® < —2 and p"-R + p>R > £ — 4. The proof in
this case is explained in the caption of Fig. 58. O

Lemma 7.22 Suppose that n is an SLE, (p) process in H from 0 targeted atoo, k =
|,0L|and£—|pR| wzthz _, ot > 4andz _ o R s K4 Assumethat
|)c1 Ly |xM®| > 1. Fix M > 0 such that the locations of the force pomts X = LL
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Fig.59 Suppose that / is a GFF on H whose boundary data is as depicted above and let ;) be the flow line of 2
starting at O targeted at 00. Then 7 ~ SLE (p), [pR| = €and |p| = k,with >¥_| pL =a/a—1> §—4
and Zle pi'R =b/r—-1> % — 4. Let U C H consist of those points z whose distance to [xl*R, xZ'R]
and [xKL x1.L] is at least % Then the law of /|y is mutually absolutely continuous with respect to the

law of ZlU where 7 is a GFF on H whose boundary data agrees with £ in (—oo, xk*L) U (xK*R, 00), is
—\in [xk'L, 0] and A in [0, xe’R]. Proposition 7.3 and Lemmas 7.18-7.21 imply that the flow line 7 of n
from O targeted at oo either reaches oo or hits (—oo, xk*L) U (x‘q’R, oo) without leaving U with positive
probability. Consequently, it follows from Proposition 3.4 that the same is likewise true for . Moreover,
from the discussion in Remark 3.5 it is easy to see that this probability admits a positive lower bound which
depends only on |x%-L|, |x®R| and Il c1.L9loc and Il 1.k ce.rylloo

satisfy xi'R/xl’R < Mfor all1 <i < € and xi’L/xl’L <M foralll <i <kand
the weights p satisfy |p"1] < M forall 1 <i < |p| and q € {L, R}. Let E| be the
event that either lim;_, oo n(t) = o0 or n disconnects xUR or xkL_ Let E, be the event
that dist(1([0, 00)), [x "R, x%R]) > 1 and dist(y([0, 00)), [x* L, xL]) > 1. With
E = E| N E>, we have that P[E] > pg where py > 0 depends only on M, z;{:l phL,
and 3°5_, ptR.

Proof This follows from Proposition 3.4 and Remark 3.5; see Fig. 59 for an explana-
tion of the proof. O

Proof of Theorem 1.3 for k € (0,4) We are going to prove the result by induction on
the number of force points. Proposition 7.3 and Lemmas 7.18-7.21 imply the result
for SLE, (p) processes with two force points. Suppose that the result holds for all
SLE, (p) p_rocesses with at most n force points, some n > 2, and that n ~ SLE, (p)
in H from 0 to oo with n 4 1 force points. If  immediately hits the continuation
threshold upon starting, there is nothing to prove. Otherwise, running n for a small
amount of time and then applying a conformal mapping, we may assume that all of

the force points are to the right of 0; we denote their locations by x .

Suppose that there exists jo > 2 such that Zz]();l] PR > % —4and 370, ok <
5 — 2 (if we couple n with a GFF & as in Theorem 1.1 on H, this corresponds
to the boundary data of & in [x/0~1-R xJo-R) being larger than —A — 7 x and in
[x/0-R xJo+1.R) being less than A — m ). Let : H — H be the conformal map
which sends xR to 1, x70% to oo, and oo to —1 (see Fig. 60).
_ Leth = v(n) andletx = (x*; x®) denote the locations of the force points of 77. Let
k = |x| and note that |x%| = jo — 1 by construction. Let W, be the Loewner driving
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Fig. 60 Let /2 be a GFF on H whose boundary data is as depicted on the left side. Let n ~ SLE, (p) be the
flow line of & starting at 0. Suppose that jj lS such thgt Z{O:_ll phR > % —4and ZIJO:I bR < % —2.This
particular choice implies that n can hit (xJo—L.R yjo+L.Ry T ety : H— H be the conformal map which
takes oo to —1, x 'R t0 1, and x/0- R to co. Then it is possible for 7 = ¥ () to hit (—oo, FFLyu 01 00)

or reach oo before hitting [x ks L 1*L] Ulx LR zjo—1.R ] where X denotes the locations of the force points
of 7

function of 77, g; the corresponding family of conformal maps, and let Vi’q =g, (x%%)
denote the time evolution of the force points of 77 under g;. We define stopping times
as follows. We let 51 be the first time ¢ that W, = (0 and let ;1 be the ﬁrst time ¢ after

51 that 77 comes within distance 1 3 of either [V0 , VO ] or [V0 , 0 ]. For each
k > 2, we inductively let & be the first time ¢ after ;k_l that W, = 0 and Cr the
first time ¢ after ék that g; 8E, (n(1)) comes within dlstance of either [V Elk L] or

[VEL’R, Vé{o L R]. Let T be the first time # that 7 hits (—oo, V0 ], [V0 , oo), escapes
to 0o, or hits the continuation threshold.

We are now going to show that 7] [0,7F,] 1s almost surely continuous for every k.
We will argue that this holds by induction on k. It holds for £ = 1 as a consequence
of the induction hypothesis: if W, is to the left or right of 0, then the evolution of 7
is absolutely continuous with respect to the evolution of an SLE, (p) process with at
most n force points by the Girsanov theorem. Suppose that 7], 7 Agk]_is continuous for
some k > 1; we will argue that the same holds with K+ 1 in place of k. For t € (Ek, Ek],
the desired continuity follows from Proposition 3.4 and the two force point case. For
1 € (&, §k+1], the claim follows by applying the Girsanov theorem and the induction
hypothesis in the same manner we used to handle the case that k = 1.

Let E = Uit < E;Tk}. Then on E we know that 70, 7] is continuous. Moreover, the
conditional law of 7][z,0) given 7][o,7] in the connected component C of H\7 ([0, 7])
which contains ¥ (co) = —1 is that of an SLE, (p) process with at most n force
points. Thus since C is a Jordan domain, the desired result follows from the induction
hypothesis. We will complete the proof by showing that P[E¢] = 0. Since BI(V,] R
V,i’R) < 0ifj > i and 0, \A/'t"’R > 0 for all i (these facts come directly from the
Loewner evolution and analogously hold when R is replaced with L), Lemma 7.22
implies the existence of pg > 0 such that P[T < §k+1 |T > Ek] > po for all k.
Therefore P[E€] = 0, as desired.

In order to complete the proof, we need to argue continuity in the case that there
exists J so that >°/_, piR < & _4forall 1 < j < Jand Y/ p"R > £ —2forall
J+1<j<n+1.IfJ=n + 1, we can see the continuity by applylng a conformal
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map ¥ which fixes 0 and sends all of the force points to the other side. Indeed, then
Y (n) ~ SLE, (B) where the partial sums of the weights are all at least % — 2,50 we
canuse Remark 2.3.If 1 < J < n, we can use the same argument described in Fig. 58
(condition on an auxiliary flow line at angle 7 starting from x’*1-®)_ This completes
the proof. O

Now that we have established Theorem 1.3 for ¥ < 4, we can prove the almost sure
continuity of angle varying flow lines.

Proposition 7.23 Suppose that we have the same setup as Proposition 7.11 (without
the a priori assumption of continuity). Let 01, ..., 0 be angles satisfying (7.1). The
angle varying flow line ng, ...q, is almost surely a continuous path.

Proof We prove the result by induction on k. Theorem 1.3, which we have now proven
for k € (0, 4], states that this result holds for k = 1 (which corresponds to the constant
angle case). Suppose that k > 2 and the result holds for k — 1. Let 7, ..., tx—1 be
the angle change times (and take 7z = 00). By assumption, n;:::;’i l[z_0.7,_,] given
n;:::;’;([o, 74—2]) evolves as an SLE, (o%: p*) process. By induction, n;::g’;“o,fkfz]
is continuous so that a conformal map ¥ which takes the unbounded connected com-
ponent of H\ng,...4, ([0, 7x—2]) to H with n;:f::gi' (tk_>) mapped to O extends as a
homeomorphism to the boundary. Thus the continuity of n;:::g’; follows from Theo-
rem 1.3 for « € (0, 4], which completes the proof of the induction step. O

7.4 Counterflow lines

We will now explain how to modify the proofs from the previous subsections to
complete the proof of Theorems 1.2 and 1.3 for ¥’ > 4. Throughout this subsection,
we will often work with a GFF £ on the strip S in order to make the setting compatible
with SLE duality (recall Sect. 4). We assume that the boundary data for % is as in the
left side of Figs. 61 and 62, where a, b, a’, b’ are taken to be sufficiently large so that
the configuration of flow and counterflow lines we consider almost surely does not
interact with 9S.

We let 1’ be the counterflow line of & starting at zo. The proof follows a strategy
similar to but more involved than what we employed for x € (0, 4]. In Sect. 7.4.1,
we will focus on the case with two boundary force points. It turns out that in order
to generate an SLE,(p%; p®) process for arbitrary choices of p%, p® > —2 by con-
ditioning on auxiliary flow lines in a manner similar to that used for k € (0, 4], we
are already led to consider the law of n’ conditional on two angle varying flow lines
(for k € (0, 4], we only had to consider angle varying trajectories when generaliz-
ing the two force point case to the many force point case). Extending these results
from two force points to many force points also follows a similar but more elabo-
rate version of the strategy we used for x € (0, 4], since we will need to consider
four different cases as opposed to three. This is carried out in Sect. 7.4.2. Finally,
in Sect. 7.4.3, we will explain how to extend the light cone construction to the set-
ting of general SLE,(p%; p®) processes and, in particular, obtain general forms of
SLE duality. o
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Fig. 61 Let h be a GFF on the strip S whose boundary data is depicted in the left panel. Fix 61 < 6,
and let ng; be the flow line of / starting at O with angle 6;. Suppose that C is any connected component of
S\(ng, U ng,) which lies between 19, and 7y, . We assume that both 6; < % and 6) > 7%; this choice
implies that " almost surely intersects C. Let xq be the first point on C to be traced by ne; » Mg, and yo
the last. Fix a stopping time ¢’ for 7y = o (' (s): s < 1,79, 119,) such that #’(¢") € C almost surely. The
boundary data for the conditional law of & given g, , ng, and 7'([0, T’]) in C is depicted in the left panel. Let
¥ be a conformal map which takes the connected component of C\n/([0, t’]) which contains x( to S with
1’ (') taken to z and x( taken to 0. The boundary data for the GFF hoy —! — y arg(¥ )’ on S is depicted
on the right side. From this, we can read off the conditional law of ' viewed as a path in C given 16> Mg, it

isan SLE,/ (oL; pR) process where p = (1/24-62/7)(k’ /2—2)—2and pR = (1/2—6, /7) (k' /2—2) -2

7.4.1 Two boundary force points

We are now going to prove Theorems 1.2 and 1.3 for counterflow lines with two
boundary force points. The proof is a bit more elaborate than what we employed for
flow lines because we will need to consider different types of configurations of flow
and counterflow lines depending on the values of p’, p&. In the first step, we will
handle the case that p > —2 and p¥ > "7/ — 4 (and vice-versa)—recall that ’% —4
is the threshold at which 5’ becomes boundary filling. This will be accomplished in
Lemma 7.24 by considering a configuration consisting of two flow lines in addition to
1’ (see Fig. 61). In the second step, accomphshed in Lemma 7.25 (see Fig. 62), we will
take care of the case that p*, p® € (=2, & —4) using a configuration which consists of
two angle varying flow lines in addition to ". Combining these two lemmas completes
the proof of Theorem 1.2 for ¥’ > 4 with many boundary force points (recall that the
proof of Lemma 7.5 was not flow line specific) and Theorem 1.3 for ¥/ > 4 with two
boundary force points with weight exceeding —2, one on each side of the counterflow
line seed.

K K

Lemma 7.24 Suppose that p* > —2 and p® > 7/ —4orpt > 7/ —4and pR > =2.
In the coupling of an SLE (p™; p®) process 1o with a GFF hg as in Theorem 1.1, 1;,
is almost surely determined by ho. Moreover, 1y, is almost surely a continuous path.

The reason that we used the notation 7;, and /o in the statement of Lemma 7.24 is to
avoid confusing n;, with n and i with /. Recall also from Remark 2.3 that by absolute
continuity (the Girsanov theorem) we know that non-boundary intersecting SLE,/(p)
processes are almost surely continuous, at least up until just before terminating (or
tending to oo if the terminal point is at co). The proof of Lemma 7.24 allows us to
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deduce the continuity of such processes even upon terminating by reducing the result
to the transience of SLE,/ processes established in [24]. This is accomplished by
picking angles 0y, 65 so that the conditional law of n’ is an SLE, process given flow
lines ng, , ng, in each of the connected components of H\ (17, Uns,) which lie between

No, and no, -

Proof of Lemma 7.24 We suppose that we have the setup described in Fig. 61. That
is, we fix 0 < 6, and let 5, be the flow line of 4 with angle 6; starting from 0 and
let n’ be the counterflow line starting from zg. We assume that a, a’, b, b’ are large
enough so that 7g,, ng,, and n’ almost surely do not intersect dS except at their initial
and terminal points. We also assume that 6 < % and 6 > —%. This implies that g,
lies to the right of the left boundary of 1" and likewise that ng, lies to the left of the
right boundary of 5’ (recall Propositions 5.1, 5.5). Figure 61 describes the conditional
mean Cy(;y of h given A(t”) where A(t) = ng, U n'([0, 1) U np, and where t’ is any
stopping time for the filtration 7, = o (n'(s): s < 1, N6, Ne,)- Indeed, we know that
A(7’) is a local set for & by Lemma 6.2. Moreover, Remarks 6.9 and 6.10 imply that
Ca(ry does not exhibit pathological behavior at points where any pair of 7g,, 7', 16,
intersect.

Recall also Remarks 6.16 and 6.17, which imply that " has a continuous Loewner
driving function viewed as a path in each of the connected components of S\ (15, Ung,)
which lie between 7y, , ng,. Note that if either 6; > —% orfy < % so that one of the
ne, is actually contained in the range of n’ (Lemma 5.7), we need to interpret what
it means for 1’ to be a path in one of these complementary connected components.
This is explained in complete detail in Remark 6.17. Applying Theorem 2.4 and
Proposition 6.5, we find that the conditional law of 1’ given 5, and 7y, in each of the
connected components of S\ (17g, U1y, ) which lie between 7g, and g, is independently
an SLE, (o; p®) process where

1 6 K’ 1 6 K’
L R
(22 (S 22) 22 and R = (=D (S Z2) -2 @2
P (2+ﬂ)(2 ) ner (2 ”)(2 ) 72

Indeed, the values of p’, p® are determined by solving the equations:
NA+pH=r— O +m)x and V(1 +p®) =1+ (=0, +71)x

(see Fig. 61 and recall Fig. 11). The continuity statement of the lemma follows by
adjusting 61, 6 appropriately and noting that each complementary component is
almost surely a Jordan domain by the almost sure continuity of 7, and ng,. The first
statement of the lemma follows from the same argument as in the proof of Lemma 7.2.

O

Note that in (7.2), as 6 | —Z%—which corresponds to 14, approaching the right
boundary of n’—we have that p~ | —2. Likewise, as 6; 1 Z—which corresponds
to g, approaching the left boundary of n'—we have that pR | —2. The constraint
01 < 6> means that it is not possible to obtain the full range of pL, ,oR > —2 values
by computing the conditional law of n" given configurations of flow lines of this type.
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In the next lemma, we are going to explain how to extend this method to the case
that ,oL , ,oR € (-2, ’% — 4), which corresponds to an SLE, with both weights below
the critical boundary filling threshold.

Lemma 7.25 Suppose that p~, p® e (=2, ’% — 4). Then in the coupling of an
SLE, (p~; p®) process 176 with a GFF hg as in Theorem 1.1, we have that r]6 is
almost surely determined by ho. Moreover, 1, is almost surely continuous.

Proof In order to prove the lemma, we first need to understand the conditional mean
of i given 1’ and two angle varying flow lines (which have the possibility of crossing
each other). Specifically, we let 6, = % and g = —6; = —7. Suppose that 01, 6>

1.1
are such that |6; — Og| < mw and |6, — 0| < mw.Letn; := "5;221 be an angle varying

flow line with angles 6g, 61 and n; := ngig be an angle varying flow line with angles
0L, 6>. We take the angle change time for both 71, 1, to be when the curves first reach
unit capacity (the actual choice here is not important). Our hypotheses on 6y, 8, imply
that 0y, 17, are simple (but may cross each other). We assume a, b, a’, b’ are large
enough so that 71, 72, n’ almost surely do not intersect dS except at their starting and
terminal points.

It follows from Proposition 7.12 that if ny, n2 do cross, they cross precisely once,
after which they may bounce off of one another. Let A(z) = n; U 1'([0, £]) U 1, and
Fr =o' (s):s <t,n1,m). By Lemma 6.2, we know that A(t’) is a local set for
h for every F; stopping time z’. The boundary data for C 4,y is described in the left
panel of Fig. 62, depicted in the case that 11, 1, actually do cross. The justification
of this follows from exactly the same argument as in Remark 6.11. Let C be the
connected component of S\(n; U 1,) which lies between n; and 71 such that the
last point on dC traced by n; is the point where 11, 1, first intersect after changing
angles. It follows from the same argument as Remark 6.18 that ’ viewed as a path in
C from yg to xq (recall Remark 6.17), the last and first points on dC traced by n; and
12, respectively, has a continuous Loewner driving function. Consequently, it follows
from Theorem 2.4 and Proposition 6.5 that the conditional law of " in C given 1y, 02
is an SLE,/ (p’; p®), with the weights given by

1 6> K’ 1 01 K’

1,L 1,R

ol _4 = ——2)=-2, PR =(=-= ——2)-2,
(2 n’)(2 ) (2 T 2

/

Pl 4 p2d = % —4 forg e {L,R). (1.3)

(see the right panel of Fig. 62, the values of p follow from the same argument explained
in Fig. 61; recall also Fig. 23). For the final expression, we used 6 = %(X — 1) so
that

(T+0)x A K’ K
A N 2 2

By choosing 6> € (0g, 1) we can obtain any value of ,o]’L € (-2, ’% — 4) we like.
Likewise, by choosing 6; € (Ag, 6,) we can obtain any value of p''® e (=2, ’% —4)
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20
b/ _)\/ d )\/
~ A
N b
N —0Orx
b A—bax  A=0px —A—0Orx —A—0ix
0
Fig. 62 Assume that 4 is a GFF on the strip S whose boundary data is depicted in the left panel. Let
‘[1 ‘[1 ‘L’zfz
0p = 5 and O = — 7. Suppose that [0] —6Og| < 7w and |6, — 07| < 7. Letn; := 119]'?921 and np := 170292

be angle varying flow lines of 4 with the aforementioned angles. We take the angle change times for both
n1 and 1 to be when they first hit unit capacity as seen from zq. If §; > 6g, then n’ will cross 17 and
likewise if 6y < 0y then n’ will cross 1,. We assume that the boundary data of & is large enough so that
n1, 02, 1 intersect S only at their initial and terminal points. Let yq be the first point where 77 and 1,
intersect after both 1y and 7, change directions and are traveling with angles 8] and 65, respectively. Let
C be the connected component of S\ (11 U 1) which lies between 11 and 7 such that yj is the last point
on dC to be traced by 11, n7; let xq be the first. Fix a stopping time t’ for Fy = o (5/(s) : s < t, 11, 1)
such that ’(z”) € C almost surely. The boundary data for the conditional law of & given 71, 12, and
1’ ([0, 1) is depicted in the left panel. Let ¥ be a conformal map which takes the connected component of
C\1/' ([0, ©’]) which contains x( to S with n’(z") taken to z( and x( taken to 0. The boundary data for the
GFF h o w_l — xarg(y— 1y on S is depicted on the right side. From this, we can read off the conditional
law of n’ viewed as a path in C given 5y, ;. It is an SLEK/(,ol*L, pQ*L; p]’R, pz*R) process where the
weights of the force points are given in (7.3)

we desire. Therefore the continuity statement of the lemma follows by adjusting 6, 6,
appropriately, using the almost sure continuity of 11, 12 to get that C is almost surely a
Jordan domain, and then applying the absolute continuity of the field (Proposition 3.4).
The first statement of the lemma follows from the same argument as the proof of
Lemma 7.2 along with another application of Proposition 3.4. O

7.4.2 Many boundary force points

The reduction of the statement of Theorem 1.2 for counterflow lines to the two bound-
ary force point case is exactly the same as the analogous reduction for flow lines, which
was given in the proof of Lemma 7.5. This means that Theorem 1.2 for k¢’ > 4 follows
from Lemmas 7.24 and 7.25. Thus we are left to complete the proof of Theorem 1.3
for counterflow lines with many boundary force points. Just as in the case of flow
lines, it suffices to prove the continuity of counterflow lines with two boundary force
points on the same side of O (recall that the proof of Lemma 7.22 and Theorem 1.3
for k € (0, 4] was not flow line specific). The proof in this setting is more involved,
though. The reason is that for certain ranges of p values, a counterflow line will almost
surely hit a force point even before the continuation threshold is reached (flow and
counterflow lines only hit force points with positive probability when the partial sum
of the weights is at most 5 —4 < —2 and ’% — 4 > —2, respectively). This leads us
to consider four different types of local behavior:
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phR > 2p1R+p2R> 2with|p2R|<"—/(Lemma726),
pR e (=2,5 ~2), p1R+p2R>K— 2 (Lemma 7.27),

,01R>K— 2, p" R 4 p2R e (— 2——2)(Lemma728) and
atleastoneoflef 20r,01R+,02R§ —2 (Lemma 7.29).

Ll

In the following sequence of lemmas, it may appear to the reader that the roles of
the superscripts “L” and “R” have been reversed. The reason is that the results will
be stated for a counterflow line growing from the bottom of H as opposed to the top
of the strip S, so everything is rotated by 180°.

Lemma 7.26 Suppose that 1, is an SLE, (oL R, p2RY) process in H from 0 to oo with
force points located at —1 and —2 with weights satisfying p" %, pR 4 p>R > -2

and |p>R| < K— Then n,, is almost surely continuous.

Proof Suppose that / is a GFF on the strip S with the same boundary data as in Fig. 62.
Let ’76 02 be an angle varying flow line with angles 01, 8, such that |0; — 6, < ZX—)‘ We
assume that 01, 6, < 7 so that r}” 72 almost surely stays to the right of the left boundary
of the counterflow line 1’ (recall Proposition 7.11 as well as Proposition 5.1). Assume
thata, b, a’, b’ are sufficiently large so that " and nmz intersect dS only at 0 and zo.
Arguing as in the proof of Lemma 7.25, the condltlonal law of " viewed as a path in
the left connected component C of S \nm2 is that of an SLE, (BL; 14 Ry where

1 6> 1 01

1,R 1,R 2,R

p =y — — ——=2)-2 nd P +/)’ =\- - — — =2 -2.
(2 JT)(2 ) a (2 JT)(2 )

Consequently, it is not difficult to see that by adjusting the angles 61, 6>, we can obtain
any combination of values of p'® p2 R such that pt® > —2, plR 4 p2R 5~ 2
and |p>R| < ’% (the restriction on |p%®| comes from the restriction |§; — 62| < 2X—A).
This completes the proof because we know that n” viewed as a path in C is almost
surely continuous and, in particular, is continuous when it interacts with the force

points corresponding to the weights p1-®, p2 K, O

Lemma 7.27 Suppose that n is an SLE. (p" R, p>R) process with force points
located at —1 and —2 satisfying p"® € (=2, ’% —2)and p" R4 p*R > "7/ —2. Then
1, is almost surely continuous.

Proof See Fig. 63 for an explanation of the proof. The one aspect of the proof which
was skipped in the caption is that we did not explain why the conditional law of " given
1o is actually an SLE. (p"®, 5% ®) process with p1® = pl-R and p1-R 4 p>R =
"7, — 2. This follows from an application of Theorem 2.4. In order to justify the usage
of this result, we just need to explain why the conditional mean Ca(;) of h given
A() = ng([0, T]) U n/([0, 1), T the first time that 1 hits [—2, 00), does not exhibit
pathological behavior and is continuous in ¢ > 0 as well as why n’ has a continuous
Loewner driving function viewed as a path in the unbounded connected component

C of H\ny ([0, ]). The latter holds up until the first time t’ that " hits 1 \dH since
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1,R

pz’R) process with

pl’R e (-2, € 2) and pl*R + pZ*R > ’% — 2 (the roles of “R” and “L” are flipped since we are
growing the counterflow line from the bottom of H rather than the top of S, so everything is rotated
by 180°). We suppose that & is a GFF on H with the boundary data depicted above. We assume that
a=NA+p"R) e (=, MV +7x)and b = V(1 + pLR 4+ p2R) > X 4+ 7x. We let 0/ be the
counterflow line of / starting at 0 and 7y be the flow line of 4 starting at co with angle 6. Taking 6 so that
—A—0x = A+ x, we see that the conditional law of n given 7 in the unbounded connected component
C of H\ny ([0, 7]), T the first time ng hits [—2, 00), is an SLEK/(ﬁl'R, 2Ry process with g1 R = pL.R
and g1 R + ,52*R = "7/ — 2. Since 7y is continuous, C is a Jordan domain, so the continuity of 1’ follows
from the case | pz’R | < "7/ We note that the precise location that ng hits [—2, —1] depends on the choice of
a. There are choices of a for which ngy almost surely hits —2 first, which is the case shown in the illustration,
and there are choices of a for which 7y hits somewhere in (—2, —1) first

Fig. 63 The configuration of paths used to prove the continuity of an SLE,/(p

n’ itself has a continuous Loewner driving function. The former also holds up until
time v/ by Lemma 6.2 and Proposition 3.8. Since we know that SLE(p1 R, 52 %)
processes are almost surely continuous by Lemma 7.26, we thus have the continuity
of n’ up until either t/. Lemma 5.2 (see also Remark 5.3) implies that 7/ = oo almost
surely. O

Lemma 7.28 Suppose that 1 is an SLE. (p"R, p>®) process with p" % > ’% —

and p"R 4+ p>R e (=2, ’% —2). Then n' is almost surely continuous.

Proof See Fig. 64 for an explanation of the proof. As in the proof of Lemma 7.27,
we did not explain in the caption why the conditional law of n’ given ny is an
SLE. (p"®, p>R) process with p"® = pL.R and pL.R 4+ p>R = ’% — 2. This
follows from Theorem 2.4 using an argument similar to what we employed for
Lemma 7.27. Indeed, we need to explain why the conditional mean C,(;) of /& given
A(t) = ng([0, T]) U n/([0, t]), T the first time that ny hits [—1, c0), does not exhibit
pathological behavior and is continuous in ¢ as well as why 1" has a continuous Loewner
driving function viewed as a path in the unbounded connected component C of H\ ng.
The latter holds up until the first time ¢’ that n’ hits ny\0H since n’ has a continuous
Loewner driving function. The former also holds up until time t” by Lemma 6.2 and
Proposition 3.8. Since we know that SLE,/ (5%, p>X) processes are almost surely
continuous by Lemma 7.26, we thus have the continuity of " up until 7’. This allows
us to apply Lemma 5.2 to n’|jo ), which in turn implies that P[t" = oo] = 1. O

Lemma 7.29 Suppose that 1)’ is an SLE. (p"L, p>L) process with either p""L < —2

or pbt + p>L < —2 with force points located at 0 < x"t < x*L_ Then n/' is almost
surely continuous.
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1,R

Fig. 64 The configuration of paths used to prove the continuity of an SLE,/ (o pz*R ) counterflow line

with pl*R > "7/ —2and pl*R + pz’R € (-2, "7, — 2). We suppose that /2 is a GFF on H with the boundary
data depicted above. Here, we assume thata = A'(1 + p5®) > M + 7 x andb = A/ (1 + pL-R 4 p2R) ¢
(=, A + 7 x). We let ' be the counterflow line of & starting at 0 and let 1g be the flow line of / starting
at —2 with angle 0. Taking 6 so that —A — 6 = A’ + mx, we see that the conditional law of " given
ng in the unbounded connected component C of H\ny ([0, t]), T the first time ng hits [—1, 00), is an
SLE,/ ("R, 52 R) process with 51+ R = ’% —2and p1R 4 2R = pL.R 4 p2.R Since ng is continuous,

’
C is a Jordan domain, so the continuity of 1’ follows from the case | ,02*R | < "7

v
’ — A

N -\ a b b+ 2mx N -\ a
0 oil g2l 1=9(o0) 0=9(0) (b

Fig. 65 Suppose that / is a GFF on H whose boundary data is as depicted on the left side. We assume that
at least one of @ > A’ or b > A’. Then the counterflow line 5’ of & is an SLEK/(pLL, p%Ly process with
at least one of p'*L < —2or ,02*L < —2. Assume, for example, that ,ol*L > —2 and p]’L + p2*L < -=2.
We can see that i’ is almost surely continuous by applying the conformal map ¥ : H — H which fixes 0,
takes x2-L to 00, and oo to —1. The boundary data for the GFF & o w_l —X arg(w_] )’ is depicted on the
right side. Hence ¥ (17') is an SLE,/ (o1 L; p1R) process with p!'K > &’ —4 > —2and p!L' > —2 and
therefore continuous by Lemma 7.24. This implies the continuity of 1’ and that 1’ almost surely terminates
at 1 because ¥ (1) is almost surely transient. If both ,ol’L < —2and pl’L + ,02’L < —2, the same argument
Workszez(cept we apply a conformal map which switches the sides of both xLand x2L (as opposed to
just x= %)

Proof The proof is explained in Figs. 65 and 66. O

Proof of Theorem 1.3 for k > 4 Exactly the same as the proof for « € (0, 4] (recall
Lemma 7.22). m]

7.4.3 Light cones with general boundary data

We are now going to explain how the light cone construction extends to the setting
of general piecewise constant boundary data. Recall that Remarks 5.8 and 5.11 from
Sect. 5.2 imply that the missing ingredients to prove that the light cone construction
for counterflow lines is applicable in this general setting are:

1. the continuity of SLE,(p) processes for general weights p and
2. the continuity of angle varying flow lines.
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N —A—Ox b
T

Fig. 66 (Continuation of Fig. 65.) Suppose that H is a GFF whose boundary data is as depicted on the
left side where a < A’ and b > 2/. Then 7’ is an SLE,/(p"'L, p>L) process with p!'L < —2 and
bl 4+ ,02’L > —2. Let 1 be the flow line of 4 starting at x L with angle 6. Taking 6 = —%71, we know

that ng lies to the right of ’ and that ng is almost surely continuous. There are two possibilities. Either
ng first hits (—oo, 0) or (xz*L, 00), say at the time 7. In the former case, the conditional law of n given

1ng ([0, 7]) is that of an SLE, s ("7, — 4) process, hence continuous. In the latter case, the conditional law of

n’ given ng ([0, 7]) is that of an SLEK/(%/ —4, ,32’1‘) process where ’% —4+ ,EZ*L = pl’L + pZ,L > =2,
hence continuous

T
(b)

Fig. 67 Suppose that 4 is a GFF on a Jordan domain D and x, y € 3D are distinct. Let n’ be the counterflow
line of h starting at x aimed at y. Let K = K; U K g be the outer boundary of ’, K; and Ky its left and
right sides, respectively, and let  be the interior of K; N dD. We suppose that the event E = {I # {J} that
n’ fills a segment of the left side of 3 D has positive probability, though we emphasize that this does not
mean that n’ traces a segment of d D—which would yield a discontinuous Loewner driving function—with
positive probability. In the illustrations above, ' fills parts of Sy, . .., S5 with positive probability (but with
positive probability does not hit any of Sy, ..., S5). The connected component of K; \I which contains
x is given by the flow line 7 of 4 with angle % starting at x (left panel). On E, ny hits the continuation
threshold before hitting y (in the illustration above, this happens when 5y hits S7). On E it is possible
to describe K completely in terms of flow lines using the following algorithm. First, we flow along np,
starting at x until the continuation threshold is reached, say at time 71, and let z; = ny (71). Second, we
trace along 9D in the clockwise direction until the first point w1 where it is possible to flow starting at
w) with angle % without immediately hitting the continuation threshold. Third, we flow from w1 until the
continuation threshold is hit again. We then repeat this until y is eventually hit. This is depicted in the right
panel above, where three iterations of this algorithm are needed to reach y and are indicated by the colors
red, yellow, and purple, respectively (color figure online)

We have at this point in the article established both of these results, which completes
the proof of Theorem 1.4. We remark that the light cone is a bit different if n’ fills
some segment of the boundary, say on its left side (see Fig. 67); let K be the left
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boundary of 1’. The reason is that, in this case, K, is no longer a flow line, though it is
still possible to express K, as a union of flow lines with angle 6, = 7 and boundary
segments. In particular, if n” does not fill the boundary all of the way until it hits its
terminal point, say x, then the connected component of the closure of K7 \dD which
contains x is given by the flow line starting from x with angle 6, = 5. The same is
likewise true if the roles of left and right are swapped.

Suppose that 7’ is non-boundary filling, i.e. >/_; p"? > ’% —4foralll < j < |p?|
and g € {L, R}, so that the left and right boundaries iz and ng of ' are given by flow
lines with angles 7 and —7, respectively. Then we can write down the conditional
law of 1" given 1z and ng. (This is referred to as “strong duality” in [6]; see also [6,

Section 8] for related results).

Proposition 7.30 Suppose that ' is an SLE,./ (BL; BR ) process on a Jordan domain D

from y to x with x, y € 3D distinct. Assume 2{:1 phd > ’% —dforalll < j < |p?]
and q € {L, R}. Then the conditional law of 0’ given its left and right boundaries
nL and ng is that of an SLE, (5 — 4; 5 — 4) process independently in each of the

connected components of D\ (nr U ng) which lie between 1y, and ng.

Proof This follows from the same proof used to establish the continuity of
SLE, (p%; p®) processes for pl, pR > ’% — 4 and is given explicitly in Lemma 7.24.
The only difference is that the proof of Lemma 7.24 required n’ not to hit the boundary
(with the exception of its initial and terminal points). The reason for this is that, at
that point in the article, we had not yet established the continuity of general bound-
ary hitting counterflow lines. Now that this has been proved, we can repeat the same

argument again to get the proposition. O

If there exists a boundary point z which »" almost surely hits, then we can use
the light cone construction to describe the outer boundary n; of " upon hitting z as
well as compute the conditional law of 1’ given n; before and after hitting z. This is
formulated in the following proposition (see also Figs. 68, 69).

Proposition 7.31 Suppose that h is a GFF on a Jordan domain D and x,y € 0D
are distinct. Let ' be the counterflow line of h from y to x. Suppose that z € 3D is
such that the first time t/ that n' hits z is finite almost surely. If z is on the right side
of D, then the outer boundary of ([0, t/]) is given by the flow line nzl of h starting
at z with angle 0; = 7%. Let C be a connected component of D\nzl which lies to the
right of 77%. Then n/l[o,fz/] given r;zl in C is equal to the counterflow line of the GFF
given by conditioning h on nzl and restricting to C starting from the point where n’
first enters C. Let Cy be the connected component of D\n; which contains x. Then
17’|[rz/,oo) given nzl is equal to the counterflow line of the GFF starting at z given by
conditioning h on n% and restricting to Cy. Analogous results hold when the roles of
left and right are swapped.

Proof The statement regarding the law of the outer boundary of " upon hitting z
follows from Theorem 1.4 by viewing n’ as a counterflow line from y to z. Thus, to
complete the proof of the proposition, we just need to deduce the conditional law of
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=\

Fig. 68 Suppose that & is a GFF on S whose boundary data is depicted above and fix z in the lower
boundary 31 S of S. Then the counterflow line ' ~ SLEK/(%/ —4; € 4) of h from oo to —oo almost
surely hits z, say at time /. The left boundary of ([0, z/]) is almost surely equal to the flow line 5} of h
starting at z with angle 67, = % stopped at time rzl, the first time it hits the upper boundary 3y S of S. The
connected components of S\n; ([0, ‘L'Zl 1) which lie to the right of 17; ([0, rzl ]) are visited by 1’ in the reverse

order that their boundaries are traced by nzl (recall Lemma 5.7 and Remark 5.8). The right and left most
points where the boundary of such a component intersects 97 S are the entrance and exit points of 1’. The
conditional law of & given 17; ([0, rzl ]) in each such component is (independently) the same as £ itself, up
to a conformal change of coordinates which preserves the entrance and exit points of " and the conditional

law of 7’ is (independently) an SLE,/ (%, —4; "7/ — 4) process

z

Fig. 69 (Continuation of Fig. 68.) Moreover, n/([rz’, 00)) almost surely stays to the left of 17; ([0, ‘L'Zl 1) and
is the counterflow line of / given n% (10, rzlJ) starting at z and running to —oo. Let w = n% (‘L'Zl). Since 1’ is
boundary filling and cannot enter into the loops it creates with itself and the boundary, the first point on d;y S
that 7’ hits after / is w. The left boundary of 1/ [ ., is given by the flow line n? of h given n} ([0, 7}1) in
the left connected component of S \nz1 ([0, 1 stopped at the time rzz that it first hits z (Proposition 7.31,
Theorem 1.4). The order in which 5’ hits those connected components which lie to the left of ng([O, rzz]) is
determined by the reverse chronological order that '7% traces their boundary (Lemma 5.7, Remark 5.8) and

the conditional law of »” in each is independently an SLE, s (’(7/ —4; "7/ — 4) process

n’ given n;. This follows the same strategy we used to compute the conditional law
of a counterflow line given a flow line used in Sects. 7.4.1 and 7.4.2. In particular, we
know that n’ has a continuous Loewner driving function viewed as a path in each of
the complementary connected components of 7721 using the same argument described
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in Remarks 6.16 and 6.17. Moreover, the conditional mean of & given 7'([0, 7]) and
nzl, 7 any stopping time for the filtration generated by n’(s) for s < ¢ and nzl, does
not exhibit pathological behavior at intersection points of nzl and n’ using the same
technique as described in Remark 6.9. The desired result then follows by invoking
Theorem 2.4 and Proposition 6.5. O

We chose not to write down the precise law of 1’ given n; in the statement of
Proposition 7.31, though in general this is very easy to do. One special case of this
result that will be especially important for us in a subsequent work is illustrated in
Figs. 68 and 69 and stated precisely in the following proposition:

Proposition 7.32 Suppose that D is a Jordan domain and x,y € 0D are distinct.
Let ' ~ SLE,(/('% — 4 ’% — 4) from y to x in D. Suppose that z € 9D is in the
right boundary of D. Then the conditional law of ' given its left boundary n% upon
hitting 7 is an SLE,(/(’% —4; ’% — 4) process independently in each of the connected
components of D\n; which lie to the right of r]zl. Let Cy be the connected component
of D\nz1 which contains x. Then ' restricted to Cy is equal to the counterflow line of
the conditional GFF h|c, given 17%. Let n? be the flow line of h|c, starting at the first
point w where nzl hits the left side of d D with angle 5. Then 7722, is the left boundary of
n' restricted to Cy. Moreover, the conditional law of n’ in C given nzz is independently
that of an SLE,s (’% —4; ’% —4) process in each of the connected components of C x\r/g
which lie to the left of n?. Analogous results likewise hold when the roles of left and
right are swapped and the angle 7 is replaced with —7.

Proof This is a special case of Proposition 7.31. See Figs. 68 and 69 for further
explanation as to why these are the correct weights for the conditional law of . O

7.5 The fan is not space filling

Suppose that £ is a GFF on the infinite strip S with boundary data as in Fig. 70. We will
firstassume thata, b > A — % x = A" and thata’, b’ > A"+ x so that the counterflow
line n’ of h starting from zo almost surely hits 9, S only when it exits at 0 and does not
hit 9y S except where it starts at zg. Recall from Sect. 5.2 that the fan F is the closure
of the union of the ranges of any collection of flow lines ng of 7 where 6 ranges over
a countable, dense subset of [—7, 5] (recall also the simulations from Figs. 2, 3, 4,
5). By Lemma 5.7, we know that the range of 1’ almost surely contains F. The main
purpose of this subsection is to establish the following proposition, which implies that
F almost surely has zero Lebesgue measure for all « € (0, 4) (recall Fig. 16):

Proposition 7.33 Suppose that we have a GFF h on S whose boundary data is as in
Fig. 10 witha,b > A — Zx = A and a’,b" > ) 4 mx. Let T’ be any n' stopping
time such that n'(t) # 0 almost surely. Then we have that P[n'(t’) € F] = 0. In
particular, the Lebesgue measure of F is almost surely zero.

Before we proceed to the proof of Proposition 7.33, we need to record the following
simple fact about SLE, (p%; p®) processes. In what follows, | - | is used to denote
counting measure.

@ Springer



702 J. Miller, S. Sheffield

5 = () X
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Fig. 70 The setup for Proposition 7.33. Suppose that 4 is a GFF on the strip S with the boundary data
depicted in the left hand side above. We assume thata, b > A — % x =) and thata’, b’ > A + 7 x so that
the counterflow line 1’ of & starting at z¢ intersects S only at z( and 0, its starting and terminal points,
respsectively. Let 7/ be any stopping time for the counterflow line n’ of h starting at z( such that ' (t) # 0
almost surely. We will prove that 1’ (r”) almost surely is not contained F. To prove this, we let ¢ be the
conformal map which takes the unbounded connected component of S \n ([0, 7’1 back to S which ﬁxes
+oo and 0. Let wy = ¥ (7' (r)) € dyS. The boundary data for the GFF h := h o w_ - X arg(l//_ ) is
depicted on the right side. We show that the fan of /# almost surely does not contain wy

Lemma 7.34 Suppose that n is an SLE.(p%; p®) process in H with p*, pR €
(=2, 5 —2) and with the force points located at 0™, 07, respectively. For everyt > 0,
we have that both |n([0, t]) NR_| = oo and |n([0, t]) N R4 | = oo almost surely.

Proof Ttis obvious that [([0, ])NR_| = oo forall # > 0 almost surely when p® = 0
because in this case W; — V,I' evolves as a positive multiple of a boundary intersecting
Bessel process (Sect. 2). This remains true for p® € (=2, £ — 2) because we can
couple 1 with a GFF & so that n is the flow line of 4. As in Sect. 7.1, we can condition
on a flow line ny of & with @ chosen so that p® = —@y /A — 2. Then the law of n
conditional on 1 is an SLE, (p’; p®) process, which proves our claim. Reversing the
roles of pl and pR gives that |5([0, ¢]) N Ry| = oo for all # > 0 almost surely, as
well. O

We can now proceed to the proof of Proposition 7.33. The idea is to construct a
“shield” consisting of a finite number of flow lines at wy, the image of n’(t’) under
the conformal map of the unbounded connected component of S\r'([0, T']) back to
S which fixes 00 and 0. This is described in Fig. 71.

Proof of Proposition 7.33 Fix any stopping time 7’ for ’ such that ’(z’) # 0 almost
surely. Let 1 be the conformal map which takes the unbounded connected component
of S\’ ([0, ']) back to S and fixes =00 and 0. Let wy = ¥ (1'(z")) and note that
wo € dyS. Then the boundary data for the GFF h=hoy '—x arg(¥ 1)’ is depicted
in the right panel of Fig. 70. Fix r > 0 such that B(wo, r)NdS is contained in the image
of the outer boundary of 7'([0, t']) under ¥ in dyS. By Proposition 3.4, h|pay,.r) is
mutually absolutely continuous with respect to a GFF on & whose boundary data is
constant —A’ on the part of 9y S which lies to the left of wg and constant A" on the
part of dyS which lies to the right of wg. Therefore there exists n = n(k) € N and
angles 61, . .., 6, such that with nwo the flow line of /1 startmg from wq with angle 6;,
we have that ngi almost surely intersects both 7 ’70,~,1 and 7 7791,+1 at infinitely many points

for each i. For each i, let T; be the first time 7 that 'ﬁg: O first exits B(wy, r). Note that
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Wo

—a b
—a
(b)
Flg 71 Suppose we have the same setup as the nght panel of Fig. 70. We take n = n(«x) € N flow lines
1701 sy r/g 0 with angles 61, .. ., 6, so that 7 ’79 0 almost surely intersects both of its neighbors (or 3 S if

i = lori =n).Fixr > 0such that B(wg, r)N 38 is almost surely contained in the part of 97 S where the
boundary data of / is either A" or —1’. For each i, we let 7; be the first time that ﬁg 0 first exits B(wq, r).
1

Lemma 7.34 implies that each of the ﬁgfo intersects its neighbors almost surely infinitely many times in
1

every neighborhood of wy. Take any flow line 779 of n starting at O with initial angle 6. By Propositions 7.10
and 7.12, 77y can only intersect at most one pocket between each pair ,7’900’ ﬁg)o Thus the set of points

that 7jg can access is contained in the set of pockets between pairs 179 T 170 Whlch are connected to the
unbounded connected component of S\ U” -1 770 o by a chain of at most n such pockets. Therefore F almost
surely does not contain w(. a The shleldmg fan b Since flow lines can only cross each other at most one

time, it follows that 779 can only intersect at most one pocket between each pair ﬁ;ﬂo, ﬁ;”_f 1

U" 1779 20(10, 7;]) is a local set for h by Proposition 3.7 since each 7, g, Y010, 7;]) is local

and almost surely determined by h (Theorem 1.2).

Let U; be the union of the set of connected components of Uy = (B(wg, ) N
SHI\ V!, 1790([0 7;]) whose boundary intersects d B(wg, r). Inductively let Uy for
k > 2 be the union of those connected components of Uy whose boundary intersects
the boundary of Uy_1. Finally, let U = U?_, U;. Lemma 7.34 implies that U does not
contain wo.

We next claim that, almost surely, 79 = ¥ (ny) for each 6 € [—7, 7] cannot
traverse U and, therefore, cannot hit wp. Once we have established this, the proof of
the proposition will be complete. Fix 6 € [—75, Z]. Note that 7jg can hit only one
side of each 7, ([0, 7;]) and, upon hitting 779’0 ([0, 7 ]) will cross but cannot cross back
(see Fig. 71, Proposition 7.12). Since 77y must cross one of the nw"([O 7;1) when it
passes from Uy to Uy, it follows that 7y cannot enter U4 and therefore cannot
traverse U. O
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