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Abstract Fix constants χ > 0 and θ ∈ [0, 2π), and let h be an instance of the
Gaussian free field on a planar domain.We study flow lines of the vector field ei(h/χ+θ)

starting at a fixed boundary point of the domain. Letting θ vary, one obtains a family

of curves that look locally like SLEκ processes with κ ∈ (0, 4) (where χ = 2√
κ
−

√
κ

2 ),
which we interpret as the rays of a random geometry with purely imaginary curva-
ture. We extend the fundamental existence and uniqueness results about these paths
to the case that the paths intersect the boundary. We also show that flow lines of dif-
ferent angles cross each other at most once but (in contrast to what happens when
h is smooth) may bounce off of each other after crossing. Flow lines of the same
angle started at different points merge into each other upon intersecting, forming a
tree structure. We construct so-called counterflow lines (SLE16/κ ) within the same
geometry using ordered “light cones” of points accessible by angle-restricted trajec-
tories and develop a robust theory of flow and counterflow line interaction. The theory
leads to new results about SLE. For example, we prove that SLEκ(ρ) processes are
almost surely continuous random curves, even when they intersect the boundary, and
establish Duplantier duality for general SLE16/κ(ρ) processes.
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1 Introduction

All readers are familiar with two dimensional Riemannian geometries whoseGaussian
curvature is purely positive (the sphere), purely negative (hyperbolic space), or zero
(the plane). In this paper, we study “geometries” whose Gaussian curvature is purely
imaginary. We call them imaginary geometries.

Imaginary geometries have zero real curvature, whichmeans (informally) thatwhen
a small bug slides without twisting around a closed loop, the bug’s angle of rotation is
unchanged. However, the bug’s sizemay change (anAlice inWonderland phenomenon
that further justifies the term “imaginary”).1 “Straight lines” and “angles” are well-
defined in imaginary geometry, and the angles of a triangle always sum to π , but
“distance” is not defined.

1 In both real and imaginary geometries, parallel transport about a simple loop multiplies a C-identified
tangent space by eiC where C is the integral of the enclosed curvature; these transformations are rotations
when C is real, dilations when C is imaginary.
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Imaginary geometry I: interacting SLEs 555

A simply connected imaginary geometry can be described by a simply connected
subdomain D of the complex plane C and a function h : D → R.2 The angle-θ ray
beginning at a point z ∈ D is the flow line of ei(h+θ) beginning at z, i.e., the solution
to the ODE

η′(t) = ei(h(η(t))+θ) for t > 0, η(0) = z (1.1)

as in Fig. 1.3 In this paper we concern ourselves only with these rays, which we view
as a simple and complete description of the imaginary geometry.4 Our goal is to make
sense of and study the properties of these flow lines when h is a constant multiple of
a random generalized function called the Gaussian free field.

1.1 Overview

Given an instance h of the Gaussian free field (GFF), constants χ > 0 and θ ∈ [0, 2π),
and an initial point z, is there always a canonical way to define the flow lines of the
complex vector field ei(h/χ+θ), i.e., solutions to the ODE

η′(t) = ei(h(η(t))/χ+θ) for t > 0, (1.2)

beginning at z? The answer would obviously be yes if h were a smooth function
(Fig. 1), but it is less obvious for an instance of the GFF, which is a distribution (a.k.a.
a generalized function), not a function (Figs. 2, 3, 4, 5).

Several works in recent years have addressed special cases and variants of this
question [6,8,10,19,28,31,37] and have shown that in certain circumstances there is
a sense in which the paths are well-defined (and uniquely determined) by h, and are
variants of the Schramm–Loewner evolution (SLE). In this article, we will focus on
the case that z is point on the boundary of the domain where h is defined and establish
a more general set of results. (Flow lines beginning at interior points will be addressed
in a subsequent paper.) In particular, we show that the paths exist and are determined
by h even in settings where they hit and bounce off of the boundary, and we will
also describe the interaction of multiple flow lines that hit the boundary and cross or
bounce off each other. These topics have never been previously addressed. Ultimately,
our goal is to establish a robust theory of the imaginary geometry of the GFF, with

2 In the language of differential geometry, an imaginary geometry is a two dimensional manifold endowed
with a torsion-free affine connection whose holonomy group consists entirely of dilations (c.f. ordinary
Riemannian surfaces, whose Levi-Civita holonomy groups consist entirely of rotations), and straight lines
are geodesic flows of the connection. The connection endows the manifold with a conformal structure, and
by the uniformization theorem one can conformally map the geometry to a planar domain on which the
geodesics are determined by some function h in the manner described here [31].
3 Imaginary geometries have also been called “altimeter-compass” geometries [28]. If the graph of h
is viewed as a mountainous terrain, then a hiker holding an analog altimeter—with a needle indicating
altitude modulo 2π—in one hand and a compass in the other can trace a ray by walking at constant speed
(continuously changing direction as necessary) in such a way that the two needles always point in the same
direction.
4 This description is canonical up to conformal coordinate change, see Fig. 6.
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(a) (b)

Fig. 1 a The vector field eih(z) where h(z) = |z|2, together with a flow line started at zero. b Flow lines
of ei(h(z)+θ) for 12 uniformly spaced θ values

Fig. 2 Numerically generated flow lines, started at a common point, of ei(h/χ+θ) where h is the projection
of a GFF onto the space of functions piecewise linear on the triangles of a 300 × 300 grid; κ = 4/3 and
χ = 2/

√
κ−√κ/2 = √

4/3.Different colors indicate different values of θ ∈ [0, 2π). We expect but do not
prove that if one considers increasingly fine meshes (and the same instance of the GFF) the corresponding
paths converge to limiting continuous paths (an analogous result was proven for κ = 4 [36,37]) (color
figure online)

a complete description of all the rays and the way they interact with each other. This
will have a range of applications in SLE theory: in particular, this paper will establish
continuity results for SLEκ(ρ) curves and generalizations of so-called Duplantier
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Imaginary geometry I: interacting SLEs 557

Fig. 3 Numerically generated flow lines, started at −i of ei(h/χ+θ) where h is the projection of a GFF
on [−1, 1]2 onto the space of functions piecewise linear on the triangles of a 300 × 300 grid; κ = 1/8.
Different colors indicate different values of θ ∈ [−π

2 , π
2 ]. The boundary data for h is chosen so that the

central (“north-going”) curve shown should approximate an SLE1/8 process (color figure online)

Fig. 4 Numerically generated flow lines, started at−i of ei(h/χ+θ) where h is the projection of a GFF on
[−1, 1]2 onto the space of functions piecewise linear on the triangles of a 300× 300 grid; κ = 1. Different
colors indicate different values of θ ∈ [−π

2 , π
2 ]. The boundary data for h is chosen so that the central

(“north-going”) curve shown should approximate an SLE1 process (color figure online)

duality [i.e., descriptions of the boundaries of SLE16/κ(ρ) curves], along with a “light
cone” interpretation of SLE16/κ (ρ) that allows these curves to be constructed and
decomposed in surprising ways.

This paper is the first in a four-paper series that also includes [20–22]. Among other
things, the later papers will use the theory established here to produce descriptions of
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Fig. 5 Numerically generated flow lines, started at−i of ei(h/χ+θ) where h is the projection of a GFF on
[−1, 1]2 onto the space of functions piecewise linear on the triangles of a 300× 300 grid; κ = 2. Different
colors indicate different values of θ ∈ [−π

2 , π
2 ]. The boundary data for h is chosen so that the central

(“north-going”) curve shown should approximate an SLE2 process (color figure online)

the time-reversals of SLEκ(ρ) for all values of κ , a complete construction of trees of
flow lines started from interior points, the first proof that conformal loop ensembles
CLEκ ′ are canonically definedwhen κ ′ ∈ (4, 8), and a geometric interpretation of these
loop ensembles. In subsequent works, we expect these results to be useful to the theory
of Liouville quantum gravity, allowing one to generalize the results about “conformal
weldings” of random surfaces that appear [31], and to complete the program outlined
in [32] for showing that discrete loop-decorated random surfaces have CLE-decorated
Liouville quantum gravity as a scaling limit, at least in a certain topology. We will find
that many basic SLE and CLE properties can be established more easily and in more
generality using the theory developed here.

We will fix χ > 0 and interpret the paths corresponding to different θ values as
“rays of a random geometry” angled in different directions and show that different
paths started at a common point never cross one another. Note that these are the rays
of ordinary Euclidean geometry when h is a constant.

Theorems 1.1 and 1.2 establish the fact that the flow lines are well-defined and
uniquely determined by h almost surely. Theorem 1.1 is the same as a theorem proved
in [6]. For convenience, we have restated it here and provided a proof in Sect. 3.3. (As
stated in [6], the theorem was conditional on the existence of solutions to a certain
SDE, butwewill prove this existence in Sect. 2.) This theoremestablishes the existence
of a coupling between h and the path with certain properties. Theorem 1.2 then shows
that in this coupling, the path is almost surely determined by the field. Theorem 1.2
is an extension of a result in [6]. Unlike the result in [6], our Theorem 1.2 applies to
paths that interact with the domain boundaries in non-trivial ways, and this requires
new tools.
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The boundary-intersecting case of Theorem 1.2 and other ideas will then be used to
describe the way that distinct flow lines interact with one another when they intersect
(see Fig. 21). We show that the flow lines started at the same point, corresponding to
different θ values, may bounce off one another (depending on the angle difference) but
almost surely do not cross one another (see Proposition 7.11), that flow lines started
at distinct points with the same angle can “merge” with each other, and that flow lines
started at distinct points with distinct angles almost surely cross at most once. We give
a complete description of the conditional law of h given a finite collection of (possibly
intersecting) flow lines. (The conditional law of h given multiple flow line segments
is discussed in [6], but the results there only apply to non-intersecting segments.
Extending these results requires, among other things, ruling out pathological behavior
of the conditional expectation of the field—given the paths—near points where the
paths intersect.) These are some of the fundamental results one needs to begin to
understand (continuum analogs of) Figs. 2, 3, 4, 5, 7, and 8.

As mentioned above, we also establish some new results in classical SLE theory.
For example, the flow line technology enables us to show in Theorem 1.3 that the
so-called SLEκ(ρ) curves are a.s. continuous even when they hit the boundary. Rohde
and Schramm proved that ordinary SLEκ on a Jordan domain is continuous when
κ �= 8 [24]; the continuity of SLE8 was proved by Lawler et al. [16] (extensions to
more general domains are proved in [7]) but their techniques do not readily apply
to boundary intersecting SLEκ(ρ), and the lack of a proof for SLEκ(ρ) has been a
persistent gap in the literature. Another approach to proving Theorem 1.3 in the case of
a single force point, based on extremal length arguments, has been proposed (though
not yet published) by Kemppainen et al. [13].

The random geometry point of view also gives us a newway of understanding other
random objects with conformal symmetries. For example, we will use the flow-line
geometry to construct so-called counterflow lines, which are forms of SLE16/κ (κ ∈
(0, 4)) that arise as the “light cones” of points accessible by certain angle-restricted
SLEκ trajectories. To use another metaphor, we say that a point y is “downstream”
from another point x if it can be reached from x by an angle-varying flow line whose
angles lie in some allowed range; the counterflow line is a curve that traces through all
the points that are downstream from a given boundary point x , but it traces them in an
“upstream” (or “counterflow”) direction. This is the content of Theorem 1.4, which is
stated somewhat informally. [Amore precise statement of Theorem 1.4, which applies
to SLE16/κ(ρ) processes that are not boundary intersecting, appears in Proposition 5.9;
the general version is explained precisely in Sect. 7.4.3.] In contrast to what happens
when h is smooth, the light cones thus constructed are not simply connected sets when
κ ∈ (2, 4). It also turns out that one can reach all points in the light cone by considering
paths that alternate between the two extreme angles. See Figs. 13, 14, 15, 16, 17 and
18 for discrete simulations of light cones generated in this manner (the two extreme
angles differ by π ; see also Fig. 19 for an explanation of the fact that a path with angle
changes of size π does not just retrace itself).

We will also show in Proposition 7.33 that, for any κ ∈ (0, 4), the closure of the
union of all the flow lines starting at a given point z with angles in a countable, dense
set (as depicted in Figs. 2, 3, 4, 5) almost surely has Lebesgue measure zero. (It is easy
to see that the resulting object does not depend on the choice of countable, dense set.)
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Put somewhat fancifully, this states that when a person holds a gun at a point z in the
imaginary geometry, there are certain other points (in fact, almost all points) that the
gun cannot hit no matter how carefully it is aimed. (One might guess this to be the case
from the amount of black space in Figs. 2, 3, 4, 5, 16.) Generally, random imaginary
geometry yields many natural ways of coupling and understanding multiple SLEs on
the same domain, as well as SLE variants on non-simply-connected domains.

The flow lines constructed here also turn out to be relevant to the study of Liouville
quantum gravity. For example, we plan to show in a subsequent joint work with
Duplantier that the rays in Figs. 2, 3, 4 and 5 arise when gluing together independent
Liouville quantum gravity surfaces via the conformal welding procedure presented in
[31]. The tools developed here are essential for that program.

1.2 Background and setting

Let D ⊆ C be a domain with harmonically non-trivial boundary (i.e., a Brownian
motion started at a point z ∈ D almost surely hits ∂D) and let C∞

0 (D) denote the
space of compactly supported C∞ functions on D. For f, g ∈ C∞

0 (D), let

( f, g)∇ := 1

2π

∫
D
∇ f (x) · ∇g(x)dx

denote the Dirichlet inner product of f and g where dx is the Lebesgue measure
on D. Let H(D) be the Hilbert space closure of C∞

0 (D) under (·, ·)∇ . The contin-
uum Gaussian free field h (with zero boundary conditions) is the so-called standard
Gaussian on H(D). It is given formally as a random linear combination

h =
∑
n

αnφn, (1.3)

where (αn) are i.i.d. N (0, 1) and (φn) is an orthonormal basis of H(D). (We will give
a more formal introduction to the GFF in Sect. 3.)

The GFF is a two-dimensional-time analog of Brownian motion. Just as many
random walk models have Brownian motion as a scaling limit, many random (real or
integer valued) functions on two dimensional lattices have the GFF as a scaling limit
[1,11,18,23,25].

The GFF can be used to generate various kinds of random geometric structures,
including both Liouville quantum gravity and the imaginary geometry discussed here
[31]. Roughly speaking, the former corresponds to replacing a Euclideanmetric dx2+
dy2 with eγ h(dx2 + dy2) [where γ ∈ (0, 2) is a fixed constant and h is the Gaussian
free field]. The latter is closely related, and corresponds to considering eih/χ , for a
fixed constant χ > 0. Informally, as discussed above, the “rays” of the imaginary
geometry are flow lines of the complex vector field ei(h/χ+θ), i.e., solutions to the
ODE (1.2), for given values of η(0) and θ .

A brief overviewof imaginary geometry (as defined for general functions h) appears
in [31], where the rays are interpreted as geodesics of a variant of the Levi-Civita con-
nection associated with Liouville quantum gravity. One can interpret the eih direction
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Imaginary geometry I: interacting SLEs 561

Fig. 6 The set of flow lines in D̃ will be the pullback via a conformal map ψ of the set of flow lines in D
provided h is transformed to a new function h̃ in the manner shown

as “north” and the ei(h+π/2) direction as “west”, etc. Then h determines awayof assign-
ing a set of compass directions to every point in the domain, and a ray is determined
by an initial point and a direction. (We have not described a Riemannian geometry,
since we have not introduced a notion of length or area.) When h is constant, the rays
correspond to rays in ordinary Euclidean geometry. For more general continuous h,
one can still show that when three rays form a triangle, the sum of the angles is always
π [31].

Throughout the rest of this article, when we say that η is a flow line of h it is to be
interpreted that η is a flow line of the vector field eih/χ ; both h and χ will be clear
from the context. In particular, the statement that η is a flow line of h with angle θ is
equivalent to the statement that η is a flow line of h + θχ .

We next remark that if h is a smooth function on D, η a flow line of eih/χ , and
ψ : D̃ → D a conformal transformation, then by the chain rule, ψ−1 ◦ η is a flow line
of h ◦ψ −χ argψ ′ (note that a reparameterization of a flow line remains a flow line),
as in Fig. 6. With this in mind, we define an imaginary surface to be an equivalence
class of pairs (D, h) under the equivalence relation

(D, h) → (ψ−1(D), h ◦ ψ − χ argψ ′) = (D̃, h̃). (1.4)

Note that this makes sense even for h which are not necessarily smooth.We interpretψ
as a (conformal) coordinate change of the imaginary surface. In what follows, we will
generally take D to be the upper half plane, but one can map the flow lines defined
there to other domains using (1.4).

When h is an instance of the GFF on a planar domain, the ODE (1.2) is not well-
defined, since h is a distribution-valued randomvariable and not a continuous function.
One could try to approximate one of these rays by replacing the h in (1.2) by its
projection onto a space of continuous functions—for example, the space of functions
that are piecewise linear on the triangles of some very fine lattice. This approach (and
a range of θ values) was used to generate the rays in Figs. 2, 3, 4, 5, 7, 8, 13, 14, 15,
16, 17, 18, and 21. We expect that these rays will converge to limiting path-valued
functions of h as the mesh size gets finer. This has not been proved, but an analogous
result has been shown for level sets of h [36,37].

As we discussed briefly in Sect. 1.1, it turns out that it is possible to make sense of
these flow lines and level sets directly in the continuum, without the discretizations
mentioned above. The construction is rather interesting. One begins by constructing
explicit couplings of h with variants of the Schramm–Loewner evolution and showing
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Fig. 7 Numerically generated flow lines, started at evenly spaced points on [−1− i, 1− i] of eih/χ where
h is the projection of a GFF on [−1, 1]2 onto the space of functions piecewise linear on the triangles of a
300× 300 grid; κ = 1/2. The angle of the green lines is π

4 and the angle of the red lines is−π
4 . Flow lines

of the same color appear to merge, but the red and green lines always cross at right angles. The boundary
data of h was given by taking 0 boundary conditions on H and then applying the transformation rule (1.4)

with a conformal map ψ : H → [−1, 1]2 where ψ(0) = −i and ψ(∞) = i (color figure online)

Fig. 8 Numerically generated flow lines, started at−1/2− i and 1/2− i of ei(h/χ+θ) with angles evenly
spaced in [−π

4 , π
4 ] where h is the projection of a GFF on [−1, 1]2 onto the space of functions piecewise

linear on the triangles of a 300× 300 grid; κ = 1/2. Flow lines of different colors appear to cross at most
once and flow lines of the same color appear to merge. The boundary data for h is the same as in Fig. 7
(color figure online)

that these couplings have certain properties. Namely, if one conditions on part of the
curve, then the conditional law of h is that of a GFF in the complement of the curve
with certain boundary conditions. Examples of these couplings appear in [6,28,31,37]
as well as variants in [8,10,19]. This step is carried out in some generality in [6,31]. A
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Imaginary geometry I: interacting SLEs 563

second step (implemented only for some particular boundary value choices in [6] and
[37]) is to show that in such a coupling, the path is actually completely determined by
h, and thus can be interpreted as a path-valued function of h.

Before we describe the rigorous construction of the flow lines of ei(h/χ+θ), let us
offer some geometric intuition. Suppose that h is a continuous function and consider a
flow line of the complex vector field eih/χ inH beginning at 0. That is, η : [0,∞) → H
is a solution to the ODE

η′(t) = eih(η(t))/χ for t > 0, η(0) = 0. (1.5)

Note that ‖η′(t)‖ = 1. Thus, the time derivative η′(t) moves continuously around the
unit circle S1 and (h(η(t)) − h(η(0)))/χ describes the net amount of winding of η′
around S1 between times 0 and t . Let gt be the Loewner map of η. That is, for each
t, gt is the unique conformal transformation of the unbounded connected component
of H\η([0, t]) to H that looks like the identity at infinity: limz→∞ |gt (z) − z| = 0.
Loewner’s theorem says that gt is a solution to the equation

∂t gt (z) = 2

gt (z)−Wt
, g0(z) = z, (1.6)

whereWt = gt (η(t)), provided η is parameterized appropriately. It will be convenient
for us to consider the centered Loewner flow ft = gt − Wt of η in place of gt . The
reason for this particular choice is that ft maps the tip of η|[0,t] to 0. Note that

d ft (z) = 2

ft (z)
dt − dWt . (1.7)

We may assume that η starts out in the vertical direction, so that the winding number
is approximately π/2 as t ↓ 0. We claim that the statement that η|[0,t] is a flow line of
ei(h/χ+π/2) is equivalent to the statement that for each x on η((0, t)), we have

χ arg f ′t (z) →−h(x)− χπ/2 (1.8)

as z approaches from the left side of η and

χ arg f ′t (z) →−h(x)+ χπ/2 (1.9)

as z approaches from the right side of η. To see this, first note that both s →
f −1
t (s)|(0,s+) and s → f −1

t (−s)|(s−,0) are parameterizations of η|[0,t] where s−, s+
are the two images of 0 under ft . One then checks (1.8) (and (1.9) analogously) by
using that η(s) = f −1

t (φ(s)) for φ : (0,∞) → (0,∞) a smooth decreasing function
and applying (1.5). If χ = 0, then (1.8) and (1.9) hold if and only if h is identically
zero along the path, which is to say that η is a zero-height contour line of h. Roughly
speaking, the flow lines of ei(h/χ+π/2) and level sets of h are characterized by (1.8)
and (1.9), though it turns out that the “angle gap” must be modified by a constant
factor in order to account for the roughness of the field. In a sense there is a constant
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Fig. 9 Fix κ ∈ (0, 4) and set λ = λ(κ) = π√
κ
. Write λ′ = λ(16/κ) = π

√
κ

4 . Conditioned on a flow

line, the heights of the field are given by (a constant plus) χ times the winding of the path minus λ′ on
the left side and χ times the winding plus λ′ on the right side. For a fractal curve, these heights are not
pointwise defined (though their harmonic extension is well-defined). The figure illustrates these heights for
a piecewise linear curve. In Fig. 10, we will describe a more compact notation for indicating the boundary
heights in figures

“height gap” between the two sides of the path, analogous to what was shown for level
lines of the GFF in [36,37]. The law of the flow line of h starting at 0 is determined
by the boundary conditions of h. It turns out that if the boundary conditions of h are
those shown in Fig. 9, then the flow line starting at 0 is an SLEκ process (with ρ ≡ 0).
Namely, one has −λ and λ along the left and right sides of the axis and along the
path one has−λ′ plus the winding on the left and λ′ plus the winding on the right, for
the particular values of λ and λ′ described in the caption. Each time the path makes a
quarter turn to the left, heights go up by π

2 χ . Each time the path makes a quarter turn
to the right, heights go down by π

2 χ .

1.3 Coupling of paths with the GFF

We will now review some known results about coupling the GFF with SLE. For
convenience and concreteness, we take D to be the upper half-planeH. Couplings for
other simply connected domains are obtained using the change of variables described
in Fig. 6. Recall that SLEκ is the random curve described by the centered Loewner
flow (1.7) where Wt = √

κBt and Bt is a standard Brownian motion. More generally,
anSLEκ(ρ) process is a variant of SLEκ inwhich one keeps track ofmultiple additional
points, which we refer to as force points. Throughout the rest of the article, we will
denote configurations of force points as follows. We suppose x L = (xk,L < · · · <

x1,L) where x1,L ≤ 0, and x R = (x1,R < · · · < x�,R) where x1,R ≥ 0. The
superscripts L , R stand for “left” and “right,” respectively. If we do not wish to refer
to the elements of x L , x R , we will denote such a configuration as (x L ; x R). Associated
with each force point xi,q , q ∈ {L , R} is a weight ρi,q ∈ R and we will refer to the
vector of weights as ρ = (ρL ; ρR). An SLEκ(ρ) process with force points (x L ; x R)

corresponding to the weights ρ is the measure on continuously growing compact hulls
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(a) (b)

Fig. 10 Throughout this article, wewill need to consider Gaussian free fields whose boundary data changes
with the winding of the boundary. In order to indicate this succinctly, we will often make use of the notation
depicted on the left hand side. Specifically, we will delineate the boundary ∂D of a Jordan domain D with
black dots. On each arc L of ∂D which lies between a pair of black dots, we will draw either a horizontal
or vertical segment L0 and label it with x˜ where x ∈ R. This serves to indicate that the boundary data
along L0 is given by x as well as describe how the boundary data depends on the winding of L . Whenever
L makes a quarter turn to the right, the height goes down by π

2 χ and whenever L makes a quarter turn to
the left, the height goes up by π

2 χ . More generally, if L makes a turn which is not necessarily at a right
angle, the boundary data is given by χ times the winding of L relative to L0. When we just write x next to
a horizontal or vertical segment, we mean to indicate the boundary data at that segment and nowhere else.
The right panel above has exactly the same meaning as the left panel, but in the former the boundary data is
spelled out explicitly everywhere. Even when the curve has a fractal, non-smooth structure, the harmonic
extension of the boundary values still makes sense, since one can transform the figure via the rule in Fig. 6
to a half plane with piecewise constant boundary conditions. The notation above is simply a convenient way
of describing the values of the constants. We will often include horizontal or vertical segments on curves
in our figures (even if the whole curve is known to be fractal) so that we can label them this way

Kt—compact subsets ofH so thatH\Kt is simply connected—such that the conformal
maps gt : H\Kt → H, normalized so that limz→∞ |gt (z)− z| = 0, satisfy (1.7) with
Wt replaced by the solution to the system of (integrated) SDEs

Wt = √
κBt +

∑
q∈{L ,R}

∑
i

∫ t

0

ρi,q

Ws − V i,q
s

ds, (1.10)

V i,q
t =

∫ t

0

2

V i,q
s −Ws

ds + xi,q , q ∈ {L , R}. (1.11)

We will provide some additional discussion of both SLEκ and SLEκ(ρ) processes in
Sect. 2. The general coupling statement belowapplies for all κ > 0. Theorem1.1 below
gives a general statement of the existence of the coupling. Essentially, the theorem
states that if we sample a particular random curve on a domain D—and then sample
a Gaussian free field on D minus that curve with certain boundary conditions—then
the resulting field (interpreted as a distribution on all of D) has the law of a Gaussian
free field on D with certain boundary conditions.

It is proved in [6] that Theorem 1.1 holds for any κ and ρ for which a solution
to (1.10) exists (this can also be extended to a continuum of force points; this is done
for a time-reversed version of SLE in [31]). The special case of±λboundary conditions
also appears in [28]. (See also [31] for a more detailed version of the argument in [28]
with additional figures and explanation.)
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The question of when (1.10) has a solution is not explicitly addressed in [6]. In
Sect. 2, we will prove the existence of a unique solution to (1.10) up until the con-
tinuation threshold is hit—the first time t that Wt = V j,q

t where
∑ j

i=1 ρi,q ≤ −2,
for some q ∈ {L , R}. This is the content of Theorem 2.2. We will reprove Theo-
rem 1.1 here for the convenience of the reader. It is a straightforward consequence of
Theorem 2.2 and [6, Theorem 6.4].

All of our results will hold for SLEκ(ρ) processes up until (and including) the
continuation threshold. It turns out that the continuation threshold is infinite almost
surely if and only if

j∑
i=1

ρi,L > −2 for all 1 ≤ j ≤ k and
j∑

i=1

ρi,R > −2 for all 1 ≤ j ≤ �.

Theorem 1.1 Fix κ > 0 and a vector of weights (ρL ; ρR). Let Kt be the hull at

time t of the SLEκ(ρ) process generated by the Loewner flow (1.7) where (W, V i,q)

solves (1.10) and (1.11). Let h0t be the function which is harmonic inH with boundary
values

−λ

⎛
⎝1+

j∑
i=0

ρi,L

⎞
⎠ if s ∈ [V j+1,L

t , V j,L
t ),

λ

⎛
⎝1+

j∑
i=0

ρi,R

⎞
⎠ if s ∈ [V j,R

t , V j+1,R
t ),

where ρ0,L = ρ0,R = 0, x0,L = 0−, xk+1,L = −∞, x0,R = 0+, and x�+1,R = ∞.
(See Fig. 11.) Let

ht (z) = h0t ( ft (z))− χ arg f ′t (z), χ = 2√
κ
−
√

κ

2
.

Let (Ft ) be the filtration generated by (W, V i,q). There exists a coupling (K , h)where
h̃ is a zeroboundaryGFFonH andh = h̃+h0 such that the following is true. Suppose τ

is any Ft -stopping time which almost surely occurs before the continuation threshold
is reached. Then Kτ is a local set for h and the conditional law of h|H\Kτ given Fτ is
equal to the law of hτ + h̃ ◦ fτ .

We will give a review of the theory of local sets [37] for the GFF in Sect. 3.2.
Notice that χ > 0 when κ ∈ (0, 4), χ < 0 when κ > 4, and that χ(κ) = −χ(κ ′)

for κ ′ = 16/κ [though throughout the rest of this article, whenever we write χ it
will be assumed that κ ∈ (0, 4)]. This means that in the coupling of Theorem 1.1,
the conditional law of h given either an SLEκ or an SLEκ ′ curve transforms in the
same way under a conformal map, up to a change of sign. Using this, we are able to
construct η ∼ SLEκ , κ ∈ (0, 4), and η′ ∼ SLEκ ′ curves within the same imaginary

123



Imaginary geometry I: interacting SLEs 567

Fig. 11 The function h0τ in Theorem 1.1 is the harmonic extension of the boundary values depicted in
the right panel in the case that there are two boundary force points, one on each side of 0. The function
hτ = h0τ ◦ fτ − χ arg f ′τ in Theorem 1.1 is the harmonic extension of the boundary data specified in the
left panel. (Recall the relationship between λ and λ′ indicated in Fig. 9)

Fig. 12 We can construct SLEκ flow lines, κ ∈ (0, 4), and SLEκ ′ , κ ′ = 16/κ , counterflow lines within
the same imaginary geometry. This is depicted above for a single counterflow line η′ emanating from y
and a flow line ηθ with angle θ starting from x . In this coupling, ηθ is coupled with h + θχ and η′ is
coupled with −h as in Theorem 1.1. Also shown is the boundary data for h in D\(η′([0, τ ′])∪ ηθ ([0, τ ]))
conditional on ηθ ([0, τ ]) and η′([0, τ ′]) where τ and τ ′ are stopping times for ηθ and η′ respectively (we
intentionally did not specify the boundary data of h on ∂D). Assume that η′ is non-boundary filling. Then if
θ = 1

χ (λ′ −λ) = −π
2 so that the boundary data on the right side of ηθ matches that on the right side of η′,

then ηθ will almost surely hit and then “merge” into the right boundary of η′. The analogous result holds if
θ = 1

χ (λ− λ′) = π
2 so that the boundary data on the left side of ηθ matches that on the left side of η′. This

fact is known as Duplantier duality (or SLE duality). More generally, if θ ∈ [−π
2 , π

2 ] then ηθ is almost
surely contained in η′ but the union of the traces of ηθ as θ ranges over the entire interval [−π

2 , π
2 ] is almost

surely a strict subset of the range of η′. We will show, however, that the range of η′ can be constructed as a
“light cone” of SLEκ trajectories whose angle is allowed to vary in time but is restricted to [−π

2 , π
2 ]
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Fig. 13 Simulation of the light cone construction of an SLE6 curve η′ in [−1, 1]2 from i to−i , generated
using a projection h of a GFF on [−1, 1]2 onto the space of functions piecewise linear on the triangles
of an 800 × 800 grid. The lower left panel shows left and right boundaries of η′, which consist of points
accessible by flowing in the vector field eih/χ for χ = 2/

√
8/3 − √

8/3/2 at angle π
2 (red) and −π

2
(yellow), respectively, from −i . The lower middle panel shows points accessible by flowing at angle π

2
(red) or angle −π

2 (yellow) from the yellow and red points, respectively, of the left picture; the lower right
shows another iteration of this. The top picture illustrates the light cone, the limit of this procedure. (All
paths are red or yellow; any shade variation is a rendering artifact) (color figure online)

geometry (see Fig. 12). We accomplish this by taking η to be coupled with h and η′
to be coupled with −h, as in the statement of Theorem 1.1 (this is the reason we can
always take χ > 0) (Figs. 13, 14, 15, 16, 17, 18, 19).

Definition When κ ∈ (0, 4), we will refer to an SLEκ(ρ) curve (if it exists) coupled
with a GFF h onHwith boundary conditions as in Theorem 1.1 as a flow line of h. One
can use the conformal coordinate change of Fig. 6 to extend this definition to simply
connected domains other than H. To spell out this point explicitly, suppose that D
is a simply connected domain homeomorphic to the disk, x, y ∈ ∂D are distinct,
and ψ : D → H is a conformal transformation with ψ(x) = 0 and ψ(y) = ∞. Let
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Imaginary geometry I: interacting SLEs 569

Fig. 14 Numerical simulation of the light cone construction of an SLE16/3 process η′ in [−1, 1]2 from i

to −i generated using a projection h of a GFF on [−1, 1]2 onto the space of functions piecewise linear on
the triangles of an 800 × 800 grid. The lower left panel depicts the left and right boundaries of η′, which
correspond to the set of points accessible by flowing in the vector field eih/χ for χ = 2/

√
3 − √

3/2 at
angle π

2 (red) and −π
2 (yellow), respectively, from −i . The lower middle panel shows the set of points

accessible by flowing at angle π
2 (red) or angle −π

2 (yellow) from the yellow and red points, respectively,
of the left picture and the lower right panel depicts another iteration of this. The top picture illustrates the
light cone, which is the limit of this procedure (color figure online)

us assume that we have fixed a branch of argψ ′ that is defined continuously on all
of D. We assume further that x L (resp. x R) consists of k (resp. �) distinct marked
prime ends in the clockwise (resp. counterclockwise) segment of ∂D (as defined by
ψ) which are in clockwise (resp. counterclockwise) order. We take x0,L = x =
x0,R = x and xk+1,L = x�+1,R = y. We then suppose that h is a GFF on D with
boundary conditions in the clockwise (resp. counterclockwise) segment of ∂D from
x j,L to x j+1,L (resp. x j,R to x j+1,R) given by −λ(1+∑ j

i=0 ρi,L)− χ argψ ′ (resp.
λ(1+∑ j

i=0 ρi,R)− χ argψ ′). We refer to an SLEκ(ρ) curve η (if it exists) from x to
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Fig. 15 Numerical simulation of the light cone construction of an SLE64(32; 32) process η′ in [−1, 1]2
from i to −i generated using a projection h of a GFF on [−1, 1]2 onto the space of functions piecewise
linear on the triangles of an 800× 800 grid. [It turns out that SLE64(ρ1; ρ2) processes are boundary filling
only when ρ1, ρ2 ≤ 28.] The lower left panel depicts the left and right boundaries of η′, which correspond
to the set of points accessible by flowing in the vector field eih/χ for χ = 2/

√
1/4−√

1/4/2 at angle π
2

(red) and −π
2 (yellow), respectively, from −i . The lower middle panel shows the set of points accessible

by flowing at angle π
2 (red) or angle −π

2 (yellow) from the yellow and red points, respectively, of the left
picture and the lower right panel depicts another iteration of this. The top picture illustrates the light cone,
which is the limit of this procedure (color figure online)

y on D, κ ∈ (0, 4), coupled with h as a flow line of h if the curveψ(η) inH is coupled
as a flow line of the GFF h ◦ ψ−1 − χ arg(ψ−1)′ on H. (Recall (1.4) and Fig. 6.)

Remark Observe that in the discussion above, the choice of the branch of argψ ′ was
important. Changing the branch chosen would in some sense correspond to adding
a multiple of 2πχ to either side of the SLEκ(ρ) curve, and if one did this then (in
order for the curve to remain a flow line) one would have to compensate by adding
the same quantity to the boundary data. In some sense, changing the branch of argψ ′
is equivalent to adding a multiple of 2πχ to the boundary data. If one wishes to be
fully concrete, one can fix the branch of argψ ′ in an arbitrary way—say, so that
argψ ′(ψ−1(i)) ∈ (−π, π ]—and then assume that the boundary data is adjusted
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Fig. 16 The simulation of the light cone from the top panel of Fig. 15 where trajectories which flow at
angle π

2 are dark gray and those which flow at angle −π
2 are depicted in a medium-dark gray. The fan

from −i—the set of all points accessible by fixed-angle trajectories with angles in [−π
2 , π

2 ] starting at
−i—is drawn on top of the light cone. The different colors indicate trajectories with different angles. The
simulation shows that the fan does not fill the light cone; we establish this fact rigorously in Proposition 7.33
(color figure online)

accordingly. In practice, when we discuss flow lines (in the half plane or elsewhere)
we will usually specify boundary data using a figure and the notation explained in
Fig. 10 (or in Fig. 11). This approach will avoid any “multiple of 2πχ” ambiguity and
will make it completely clear exactly what the boundary data is along the curve. This
remark also applies to the definition of counterflow line given below.

We will give several examples of coordinate changes in Sect. 4. See also Figs. 9
and 10 for an illustration of how the boundary data for the GFF changes when apply-
ing (1.4).

The fact that SLEκ(ρ) is generated by a continuous curve up until hitting the
continuation threshold will be established for general ρ values in Theorem 1.3. It is not
obvious from the coupling described in Theorem 1.1 that such paths are deterministic
functions of h. That this is in fact the case is given in Theorem 1.2.

As mentioned earlier, we will sometimes use the phrase flow line of angle θ to
denote the corresponding curve that one obtains when θχ is added to the boundary
data (so that h is replaced by h + θχ ).

Definition We will refer to an SLEκ ′(ρ) curve (if it exists), κ ′ ∈ (4,∞), coupled
with a GFF −h [note the sign change here; this accounts for the χ(κ) vs. χ(κ ′) issue
discussed just above] as in Theorem 1.1 as a counterflow line of h. Again, one can use
conformal maps to extend this definition to simply connected domains other than H.
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Fig. 17 Numerical simulation of the light cone construction of an SLE128 process η′ in [−1, 1]2 from i to
−i generated using a projection h of a GFF on [−1, 1]2 onto the space of functions piecewise linear on the
triangles of an 800× 800 grid. The red and yellow curves depict the left and right boundaries, respectively,
of the time evolution of η′ as it traverses [−1, 1]2 (color figure online)

Suppose that D is a non-trivial simply connected domain, x, y ∈ ∂D are distinct, and
ψ : D → H is a conformal transformation with ψ(x) = 0 and ψ(y) = ∞, and that a
branch of argψ ′ has been fixed (as in the flow line definition above).We assume further
that x L (resp. x R) consists of k (resp. �) distinct marked prime ends in the clockwise
(resp. counterclockwise) segment of ∂D (as definedbyψ)which are in clockwise (resp.
counterclockwise) order. We take x0,L = x = x0,R = x and xk+1,L = x�+1,R = y.
We then suppose that h is a GFF on D with boundary conditions in the clockwise
(resp. counterclockwise) segment of ∂D from x j,L to x j+1,L (resp. x j,R to x j+1,R)
given by λ′(1+∑ j

i=0 ρi,L)− χ argψ ′ [resp. −λ′(1+∑ j
i=0 ρi,R)− χ argψ ′]; here

χ = χ(κ) > 0. We refer to an SLEκ ′(ρ) curve η′ (if it exists) from x to y on
D, κ ′ ∈ (4,∞), coupled with h as a counterflow line of h if the curve ψ(η′) in
H is coupled as a counterflow line of the GFF h ◦ ψ−1 − χ arg(ψ−1)′ on H; here
χ = χ(κ) > 0. (Recall (1.4) and Fig. 6.)

Again, the fact that SLEκ ′(ρ) is generated by a continuous curve up until hitting the
continuation threshold is established for general ρ values in Theorem 1.3.

As in the setting of flow lines, it is not obvious from the coupling described in
Theorem 1.1 that such paths are deterministic functions of h. That this is in fact the
case is given in Theorem 1.2. The reason for the terminology “counterflow line” is
that, as briefly mentioned earlier, it will turn out that the set of the points hit by an
SLEκ ′ counterflow line can be interpreted as a “light cone” of points accessible by
certain angle-restricted SLEκ flow lines; the SLEκ ′ passes through the points on each
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Fig. 18 Numerical simulation of the light cone construction of an SLE6 process η′ in [−1, 1]2 from i to
−i and its interaction with the zero angle flow line η ∼ SLE8/3(−1;−1) and the fan starting from −i ,
generated using a projection h of a GFF on [−1, 1]2 onto the space of functions piecewise linear on the
triangles of an 800 × 800 grid. In the top right panel, the conditional law of the restrictions of η′ given η

to the left and right sides of [−1, 1]2\η are independent SLE6(− 3
2 ) processes a An SLE6 process η′ from

i to−i generated using the light cone construction. b The zero angle flow line η from−i to i drawn on top
of η′. c The fan from−i to i . The rays are SLE8/3(ρ1; ρ2) processes. d The fan drawn on top of η′. It does
not cover the range of η′

of these flow lines in the opposite (“counterflow”) direction. We will provide some
additional explanation near the statement of Theorem 1.4.

The correction−χ arg f ′t which appears in the statement Theorem 1.1 has the inter-
pretation of being the harmonic extension of χ times the winding of ∂(H\η([0, τ ])).
We will use the informal notation χ · winding for this function throughout this arti-
cle and employ a special notation to indicate this in figures. See Fig. 10 for further
explanation of this point.
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Fig. 19 Let h be a GFF on a Jordan domain D, fix x, y ∈ ∂D distinct, and let η be the flow line of h starting
at x targeted at y. Let τ be any stopping time for η and let η1 and η2 be the flow lines of h conditional on
η starting at η(τ) with angles π and −π , respectively, in the sense shown in the figure. If h were a smooth
function, then we would have η1 = η2 and since π and −π are the same modulo 2π , both paths would
trace η([0, τ ]) in the reverse direction. For the GFF, we think of η1 (resp. η2) as starting infinitesimally
to the left (resp. right) of η(τ); due to the roughness of the field, η1 and η2 do not merge into (and in fact
cannot hit) η([0, τ ]). If κ ∈ (2, 4), then η1 and η2 can hit η|(τ,∞) and if κ ∈ (0, 2] then η1 and η2 do not
hit η|(τ,∞). If κ ∈ (8/3, 4), then η1 can hit η2 and if κ ∈ (0, 8/3] then η1 cannot hit η2. This, in particular,
explains why the yellow and red curves of Figs. 13, 14, 15 do not trace each other

Similar couplings are constructed in [10] for the GFFwith Neumann boundary data
on part of the domain boundary, and [8] couples the GFF on an annulus with annulus
SLE. Makarov and Smirnov extend the SLE4 results of [28,37] to the setting of the
massive GFF and a massive version of SLE in [19].

1.4 Main results

In the case that ρ = 0 and η is ordinary SLE, Dubédat showed in [6] that in the
coupling of Theorem 1.1 the path is actually a.s. determined by the field. A κ = 4
analog of this statement was also shown in [37]. In this paper, we will extend these
results to the more general setting of Theorem 1.1.

Theorem 1.2 Suppose that h is a GFF on H and that η ∼ SLEκ(ρ). If (η, h) are
coupled as in the statement of Theorem 1.1, then η is almost surely determined by h.

The basic idea of our proof is as follows. First, we extend the argument of [6] for
SLEκ , κ ∈ (0, 4], to the case of η ∼ SLEκ(ρ) with ρ = (ρL ; ρR) where ρL and ρR

are real numbers satisfying ρL ≥ κ
2 − 2 and ρR ≥ 0. This condition implies that η

almost surely does not intersect ∂H after time 0 and allows us to apply the argument
from [6] with relatively minor modifications. We then reduce the more general case
that ρL , ρR > −2 to the former setting by studying the flow lines ηθ of ei(h/χ+θ)
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emanating from 0. In this case, these are also SLEκ(ρ) curves with force points at 0−
and 0+. We will prove that if θ1 < 0 < θ2, then ηθ1 almost surely lies to the right
of η which in turn almost surely lies to the right of ηθ2 . We will next show that the
conditional law of η given ηθ1, ηθ2 is an SLEκ(ρL(θ1); ρR(θ2)) process independently
in each of the connected components ofH\(ηθ1 ∪ ηθ2) which lie between ηθ1 and ηθ2 .
By adjusting θ1, θ2, we can obtain any combination of ρL(θ1), ρ

R(θ2) > −2. We then
extend this result to the setting ofmany force points by systematically studying the case
with two boundary force points which are both to the right of 0 and then employing
the absolute continuity properties of the GFF combined with an induction argument.
The idea for κ > 4 follows from a more elaborate variant of this general strategy.

By applying the same set of techniques used to prove Theorem 1.2, we also obtain
the continuity of the SLEκ(ρ) trace.

Theorem 1.3 Suppose that κ > 0. If η ∼ SLEκ(ρ) on H from 0 to ∞ then η is
almost surely a continuous path, up to and including the continuation threshold. On
the event that the continuation threshold is not hit before η reaches ∞, we have a.s.
that limt→∞ |η(t)| = ∞.

The continuity of SLEκ (with ρ = 0) was first proved by Rohde and Schramm
[24]. By invoking the Girsanov theorem, one can deduce from [24] that SLEκ(ρ)

processes are also continuous, but only up until just before the first time that a force
point is absorbed. The main idea of the proof in [24] is to control the moments of
the derivatives of the reverse SLEκ Loewner flow near the origin. These estimates
involve martingales whose corresponding PDEs become complicated when working
with SLEκ(ρ) in place of usual SLEκ . Our proof uses the Gaussian free field as a
vehicle to construct couplings which allow us to circumvent these technicalities.

Another achievement of this paper will be to show how to jointly construct all
of the flow lines emanating from a single boundary point. This turns out to give us
a flow-line based construction of SLE16/κ(ρ), κ ∈ (0, 4). That is, SLE16/κ variants
occur naturally within the same imaginary geometry as SLEκ . Note that 16/κ assumes
all possible values in (4,∞) as κ ranges over (0, 4). Imprecisely, we have that the set
of all points reachable by proceeding from the origin in a possibly varying but always
“northerly” direction (the so-called “light cone”) along SLEκ flow lines is a form of
SLE16/κ for κ ∈ (0, 4) generated in the reverse direction (see Fig. 12).

Theorem 1.4 below is stated somewhat informally. As mentioned earlier, precise
statements will appear in Proposition 5.9 and in Sect. 7.4.3.

Theorem 1.4 Suppose that h is a GFF on H with piecewise constant boundary data.
Let η′ be the counterflow line of h starting at ∞ targeted at 0. Assume that the
continuation threshold for η′ is almost surely not hit. Then the range of η′ is almost
surely equal to the set of points accessible by SLEκ trajectories of h starting at 0whose
angles are restricted to be in [−π

2 , π
2 ] but may change in time. Let ηL be the flow line

of h with angle π
2 starting at 0 and ηR the flow line of h with angle −π

2 . It is almost
surely the case that if η′ is nowhere boundary filling (i.e., η′ ∩R has empty interior),
then ηL and ηR do not hit the continuation threshold before reaching∞ and are the
left and right boundaries of η′.
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Fig. 20 Suppose that h is a GFF on H with the boundary data on the left panel. For each θ ∈ R, let ηθ be
the flow line of the GFF h + θχ . This corresponds to setting the angle of ηθ to be θ . Just as if h were a
smooth function, if θ1 < θ2 then ηθ1 lies to the right of ηθ2 . The conditional law of h given ηθ1 and ηθ2 is

a GFF onH\⋃2
i=1 ηθi whose boundary data is shown above. By applying a conformal mapping and using

the transformation rule (1.4), we can compute the conditional law of ηθ2 given the realization of ηθ1 and
vice-versa. That is, ηθ2 given ηθ1 is an SLEκ ((a − θ2χ)/λ− 1; (θ2 − θ1)χ/λ− 2) process independently
in each of the connected components of H\ηθ1 which lie to the left of ηθ1 . Moreover, ηθ1 given ηθ2 is an
SLEκ ((θ2 − θ1)χ/λ− 2; (b+ θ1χ)/λ− 1) independently in each of the connected components of H\ηθ2
which lie to the right of ηθ2 . Versions of this result also hold for flow lines which start at different points as
well as in the setting where the boundary data is piecewise constant (see Theorem 1.5)

A similar statement holds on the event that η′ is boundary filling on one or more
segments of R. In this case, ηL and ηR hit their continuation thresholds before reach-
ing∞, but they can be extended to describe the entire left and right boundaries of η′
in the manner explained in Fig. 67.

The light cone construction of SLE16/κ processes described in the statement of
Theorem 1.4 includes what is known as Duplantier duality or SLE duality—that the
outer boundary of an SLE16/κ process is equal in law to a kind of SLEκ process. This
was proven in certain cases by Zhan [39,40] and Dubédat [5]. Theorem 1.4 provides
a more general version of this duality. It shows that the law of the right boundary of
any SLE16/κ(ρ′) process η′ from∞ to 0 in H is given by the flow line of angle −π

2
in the same imaginary geometry. Analogously, the law of the left boundary of any
SLE16/κ(ρ′) process η′ is given by the flow line of angle π

2 in the same imaginary
geometry.

We can also compute the conditional law of η′ given either ηL or ηR . These results
are described in more detail in Sect. 7.4.3. (One version of this statement also appears
in [6, Section 8], where it is called “strong duality”.) We will also describe the law of
η′ conditioned on the boundaries of the portions of η′ traced before and after η′ hits
a given boundary point. This result will be of particular interest to us in a subsequent
work, in which we will prove the time reversal symmetry of SLE16/κ processes when
κ ∈ (2, 4) [so that 16/κ ∈ (4, 8)].

The final result we wish to state concerns the interaction of imaginary rays with
different angle and starting point. In contrast with the case that h is smooth, these rays
may bounce off of each other and even merge, but they have the same monotonicity
behavior in their starting point and angle as in the smooth case. This result leads to a
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Fig. 21 Numerical simulations which depict the three types of flow line interaction, as described in the
statement of Theorem 1.5. In each of the simulations, we fixed x2 < x1 in [−1 − i, 1 − i], θ1, θ2 ∈ R,
and took η

x1
θ1

(resp. ηx2θ2
) to be the flow line of a projection of a GFF on [−1, 1]2 to the space of functions

piecewise linear on the triangles of a 300× 300 grid starting at x1 (resp. x2) with angle θ1 (resp. θ2). a If
θ1 < θ2, then η

x1
θ1

stays to the right of η
x2
θ2
. b If θ1 = θ2, then η

x1
θ1

merges with η
x2
θ2

upon intersecting. c If

θ2 < θ1 < θ2 + π , then η
x1
θ1

crosses η
x2
θ2

upon interesting but does not cross back

theoretical understanding of the phenomena simulated in Figs. 2, 3, 4, 5, 7, and 8. The
following statement is somewhat imprecise (as it does not describe all the constraints on
boundary data that affect whether the distinct flow lines are certain to intersect before
getting trapped at other boundary points) but a more detailed discussion appears in
Sect. 7; see also Figs. 20 and 21.

Theorem 1.5 Suppose that h is a GFF on H with piecewise constant boundary data.
For each θ ∈ R and x ∈ ∂H we let ηx

θ be the flow line of h starting at x with angle θ .
Fix x1, x2 ∈ ∂H with x1 ≥ x2.

(i) If θ1 < θ2 then η
x1
θ1
almost surely stays to the right of ηx2

θ2
. If, in addition, θ2−θ1 <

πκ/(4− κ), then η
x1
θ1

and η
x2
θ2

can bounce off of each other; otherwise the paths
almost surely do not intersect (except possibly at their starting point).
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(ii) If θ1 = θ2, then η
x1
θ1

may intersect η
x2
θ2

and, upon intersecting, the two curves
merge and never separate.

(iii) Finally, if θ2 + π > θ1 > θ2, then η
x1
θ1

may intersect ηx2
θ2

and, upon intersecting,
crosses and then never crosses back. If, in addition, θ1 − θ2 < πκ/(4− κ), then
η
x1
θ1

and η
x2
θ2

can bounce off of each other; otherwise the paths almost surely do
not subsequently intersect.

The monotonicity component of Theorem 1.5 (i.e., the fact that η
x1
θ1

almost surely
stays to the right of ηx2

θ2
) will be first proved in settings where ηx

θ1
, ηx

θ2
almost surely do

not intersect ∂H after time 0 (and have the same starting point) in Sect. 5. In Sect. 7, we
will extend this result to the boundary intersecting regime and establish the merging
and crossing statements. We will also explain in Sects. 6 and 7 how in the setting of
Theorem 1.5 one can compute the conditional law of ηx1

θ1
given η

x2
θ2
and vice-versa (see

Fig. 20 for an important special case of this).
Note that the angle restriction θ2 < θ1 < θ2 + π is also the one that allows the

Euclidean lines to cross (i.e., would allow for ηθ2 to cross from the left side of ηθ1 to
the right side if h were constant). Although we will not explore this issue here, we
remark that it is also interesting to consider what would happen if we took θ1 ≥ θ2+π .
It turns out that in this regime extra crossings can occur at points where both paths
intersect R, which is somewhat more complicated to describe.

1.5 Outline

The remainder of this article is structured as follows. In Sect. 2, we will prove the
existence and uniqueness of solutions to the SLEκ(ρ) Eq. (1.10), even with force
points starting at 0−, 0+. We will also show that solutions to (1.10) are characterized
by a certain martingale property. Next, in Sect. 3, we will review the construction and
properties of the Gaussian free field which will be relevant for this work. The notion
of a “local set,” first introduced in [37], will be of particular importance to us. We will
also provide an independent proof of Theorem 1.1. In Sect. 4, we will give a new pre-
sentation of Dubédat’s proof of SLE-duality—that the outer boundary of an SLE16/κ
process is described by a certain SLEκ process for κ ∈ (0, 4). Following Dubédat,
we explain how this result (and a slight generalization) implies Theorem 1.2 for flow
lines which are non-boundary intersecting. The purpose of Sect. 5 is to establish the
monotonicity of flow lines in their angle and to prove Theorem 1.4—that the range of
an SLE16/κ trace can be realized as a light cone of points which are accessible by angle
restricted SLEκ trajectories, κ ∈ (0, 4)—in a certain special case. Then, in Sect. 6,
we will prove a number of technical estimates which allow us to rule out pathological
behavior in the conditional mean of the GFFwhenmultiple flow and counterflow lines
interact. This will allow us to compute the conditional law of one path given several
others. Finally, in Sect. 7 we will complete the proofs of our main theorems.

The general strategy in Sects. 4–7 is the following:

1. We first show that non-boundary intersecting flow and counterflow lines are
deterministic functions of the field and respect certain monotonicity properties
(Sects. 4, 5).
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2. We will then explain how to compute the conditional law of one non-boundary-
intersecting path given several others in Sect. 6. The conditional law will always
be an SLEκ(ρ) type process. Even though the paths we consider in Sects. 4–6 do
not intersect the boundary, they can intersect each other.

3. We will use this in Sect. 7 to derive the corresponding statements (as well as
continuity of the trajectories) for boundary intersecting paths from our results in
the case that the paths are not boundary intersecting using conditioning arguments.

2 The Schramm–Loewner evolution

2.1 Overview of SLEκ

SLEκ is a one-parameter family of conformally invariant random curves, introduced
by Schramm [27] as a candidate for (and later proved to be) the scaling limit of loop
erased random walk [16] and the interfaces in critical percolation [2,33]. Schramm’s
curves have been shown so far also to arise as the scaling limit of the macroscopic
interfaces in several othermodels from statistical physics: [3,17,34–36].More detailed
introductions to SLE can be found in many excellent survey articles of the subject,
e.g., [14,38].

An SLEκ in H from 0 to ∞ is defined by the random family of conformal maps
gt obtained by solving the Loewner ODE (1.6) with W = √

κB and B a standard
Brownian motion. Write Kt := {z ∈ H : τ(z) ≤ t} where τ(z) = sup{t ≥ 0 :
Im(gt (z)) > 0}. Then gt is the unique conformal map from Ht := H\Kt to H
satisfying lim|z|→∞ |gt (z)− z| = 0.

Rohde andSchrammshowed that there a.s. exists a curve η (the so-called SLE trace)
such that for each t ≥ 0 the domain Ht of gt is the unbounded connected component
of H\η([0, t]), in which case the (necessarily simply connected and closed) set Kt is
called the “filling” of η([0, t]) [24]. An SLEκ connecting boundary points x and y of
an arbitrary simply connected Jordan domain can be constructed as the image of an
SLEκ onH under a conformal transformation ϕ : H → D sending 0 to x and∞ to y.
(The choice of ϕ does not affect the law of this image path, since the law of SLEκ on
H is scale invariant.)

2.2 Definition of SLEκ (ρ)

The so-called SLEκ(ρ) processes are an important variant of SLEκ in which one
keeps track of additional marked points. Just as with regular SLEκ , one constructs
SLEκ(ρ) using the Loewner equation except that the driving function W is replaced
with a solution to the SDE (1.10). The purpose of this section is to construct solutions
to (1.10) in a careful and canonical way. We will not actually need to think about the
Loewner evolution on the half plane for any of the discussion in this subsection. It will
be enough for now to think about the Loewner evolution restricted to the real line.

We first recall that the Bessel process of dimension δ > 0, also written BESδ , is in
some sense a (non-negative) solution to the SDE
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dXt = dBt + δ − 1

2Xt
dt, X0 ≥ 0 (2.1)

where B is a standardBrownianmotion.Adetailed constructionof theBessel processes
appears, for example, in [26, Chapter XI]. We review a few of the basic facts here.
When δ > 1, (2.1) holds in the sense that X is a.s. instantaneously reflecting at 0 (i.e.,
the set of times for which Xt = 0 has Lebesgue measure zero) and a.s. satisfies

Xt = X0 + Bt +
∫ t

0

δ − 1

2Xs
ds, X0 ≥ 0. (2.2)

In particular, assuming δ > 1, the integral in (2.2) is finite a.s. so that Xt is a semi-
martingale. The solution is a strong solution in the sense of [26], which means that X
is adapted to the filtration generated by the Brownian motion B. The law of X is
determined by the fact that it is a solution to (2.1) away from times where Xt = 0,
instantaneously reflecting where Xt = 0, and adapted to the filtration generated by B.

Regardless of δ, standard SDE results imply that (2.2) has a unique solution up until
the first time t that Xt = 0. When δ < 1, however, (2.2) cannot hold beyond times
at which Xt = 0 without a so-called principal value correction, because the integral
in (2.2) is almost surely infinite beyond such times (see [30, Section 3.1] for additional
discussion of this point). Bessel processes can be defined for all time whenever δ > 0
but they are not semi-martingales when δ ∈ (0, 1). For this paper, it turns out not to
be necessary to consider settings that require a principal value correction. We may
always assume that either δ > 1 or that δ ≤ 1 but we only consider the process up to
the first time that X reaches zero.

Fix a value ρ > −2 and write

δ = 1+ 2(ρ + 2)

κ
,

noting that δ > 1. Let X be an instantaneously reflecting solution to (2.1) for some
X0 = x0 ≥ 0. We would like to define a pair W and V R that solves the SDE (1.10)
with W0 = 0 and some fixed initial value V R

0 = x R0 ≥ 0. To motivate the definition,
note that (1.10) formally implies that the difference V R −W solves the same SDE as√

κX , away from times where it is equal to zero. Thus it is natural to write

V R
t = x R0 +

∫ t

0

2√
κXs

ds,

Wt = V R
t −√

κXt .

(2.3)

The standard definition of (single-force-point) SLEκ(ρ) is the Loewner evolution
driven by the process W defined in (2.3).

Let us now extend the definition to the multiple-force-point setting. Although the
definition is straightforward, we have not found a construction of the law of multiple-
force-point SLE in the literature that applies in the generality we consider here. There
are some minor technicalities that arise when solving the SDE (1.10) that do not seem
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to have been fully addressed previously. One definition of SLEκ(ρ) in the case of two
force points, one left and one right, both starting at zero (constructed by continuously
rescaling so that the force points stay at 0 and 1 and using a time change to reduce the
problem to a one-dimensional diffusion) appeared in [36], and it was shown that when
κ = 4 the process defined this way is a scaling limit of discrete GFF level lines with
certain boundary conditions. However, [36] did not provide a general-κ explanation of
the sense in which the definition was canonical. One could worry that subtle changes
to the way that the process gets started, or the way the process behaves when force
points collide withWt , could lead to different but equally valid definitions of SLEκ(ρ).

Definition 2.1 Let B be a standard Brownian motion. We will say that the continuous
processes W and V i,q describe an SLEκ(ρ) evolution corresponding to B (up to
some stopping time) if B is a Brownian motion with respect to the filtration Ft =
σ(Bs,Ws, V

i,q
s : s ≤ t) and the following hold (up to that stopping time):

1. For every stopping time τ for (W, V i,q) which is almost surely a non-collision
time for W and the V i,q , we have that the processes W, V i,q , and B satisfy (1.10)
in the time interval [τ, σ ] where σ is the first time after τ thatW collides with one
of the V i,q . Moreover, (W, V i,q) in [τ, σ ] is adapted to the filtration generated by
(Wτ , V

i,q
τ ) and B|[τ,σ ].

2. We have instantaneous reflection ofW off the V i,q , i.e., it is almost surely the case
that for Lebesgue almost all times t we have Wt �= V i,q

t for each q and i .
3. We also have almost surely that V i,q

t = xi,q + ∫ t0 2
V i,q
s −Ws

ds for each q and i .

The three conditions are equivalent to the integral form of (1.10) (as explained just
below), but it will be convenient to treat them separately. The definition stated above
is motivated by but does not make any reference to Loewner evolution.

Once we are given the first two conditions, Condition 3 rules out extraneous “local
time pushes” that might be made to both W and V i,q on the set of collision times.
Condition 3 actually implies Condition 2 (since instantaneous reflection is required in
order for the integral in Condition 3 to be defined). We will use the term SLEκ(ρ) to
describe the Loewner evolution (gt ) driven by W or the corresponding trace (which
we will eventually prove to be a continuous path almost surely).

We allow for the possibility that some of the V i,L may be equal to one another
when t = 0 or that they may merge into each other at some t > 0 (and similarly for
the V i,R). We define the continuation threshold to be the infimum of the t values for
which either

∑
i :V i,L

t =Wt

ρi,L ≤ −2 or
∑

i :V i,R
t =Wt

ρi,R ≤ −2.

We will only construct SLEκ(ρ) for t below the continuation threshold.
We will now explain why Conditions 1–3 from Definition 2.1 imply that the

processes Wt and V i,q
t satisfy the integral form of (1.10).

Fix T, ε̃ > 0 and S ∈ (0, T ) (non-random). Let S̃ε be the first time t after S that
both V 1,L

t − Wt ≤ −ε̃ and V 1,R
t − Wt ≥ ε̃ and let T̃ε be the minimum of T and the

first time after S̃ε that either
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1. there are at least two force points within distance ε̃ of W or
2. W is within distance ε̃ of a force point with weight less than or equal to −2.

Note that T̃ε occurs before the continuation threshold is hit. We are going to show that
Conditions 1–3 imply that Wt and V i,q

t satisfy the integral form of (1.10) in the time
interval [S̃ε, T̃ε]. Once we have shown this, it is then clear thatWt and V

i,q
t satisfy the

integral form of (1.10) up until time T (or the continuation threshold is hit). Indeed, by
sending ε̃ → 0, we see that the integrated version of the equation is solved in the time
interval from S up until the first time after S that there is a collision of force points
(in which case the force points merge), the continuation threshold is hit, or time T is
reached. The result thus follows by inducting on the number of force points and then
taking a limit as S → 0.

Fix ε ∈ (0, ε̃). Let σ1 = inf{t ≥ S̃ε : mini,q |Wt − V i,q
t | = 0} and let i1, q1

be such that Wσ1 = V i1,q1
σ1 . Let τ1 = inf{t ≥ σ1 : |Wt − V i1,q1

t | ≥ ε} and note
by the monotonicity of the force points (i.e., the V i,L

t are decreasing in i and the
V i,R
t are increasing in i) that mini,q |Wτ1 − V i,q

τ1 | = ε > 0. Suppose that σ j , τ j
have been defined for 1 ≤ j ≤ k. We then let σk+1 = inf{t ≥ τk : mini,q |Wt −
V i,q
t | = 0} and let ik+1, qk+1 be such that Wσk+1 = V ik+1,qk+1

σk+1 . Let τk+1 = inf{t ≥
σk+1 : |Wt − V ik+1,qk+1

t | ≥ ε} and note by the monotonicity of the force points that
mini,q |Wτk+1 − V i,q

τk+1 | = ε > 0.
Condition 1 implies that there exists a standard Brownian motion B such that

∑
j

(Wσ j+1∧T̃ε −Wτ j∧T̃ε )−
∑
i, j,q

∫ σ j+1∧T̃ε

τ j∧T̃ε

ρi,q

Ws − V i,q
s

ds

=
∑
j

√
κ(Bσ j+1∧T̃ε − Bτ j∧T̃ε ). (2.4)

Let Nε̃ = min{ j ≥ 1 : τ j ≥ T̃ε}. By the definition of the stopping times, we have that

∑
j

|Wτ j∧T̃ε −Wσ j∧T̃ε | ≤ Nε̃ ε +
∑
j

|V i j ,q j
τ j∧T̃ε

− V
i j ,q j
σ j∧T̃ε

|

≤ Nε̃ ε +
∑
i, j,q

|V i,q
τ j∧T̃ε

− V i,q
σ j∧T̃ε

|. (2.5)

Condition 3 implies that the V i,q
t are absolutely continuous, hence the sum on the right

hand side of (2.5) almost surely tends to 0 as ε → 0.
We turn to explain why Nε̃ ε → 0 almost surely as ε → 0 [at least along a positive

sequence (εk) tending to 0 sufficiently quickly]. As we will explain momentarily in
more detail, this follows in the case that we have a single force point with weight
ρ > −2 because of the tail for the amount of time it takes for a Bessel process of
dimension δ > 1 to exit [0, ε̃] when starting from ε. We can reduce the case of many
force points to this case in the following manner.
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We group the intervals [τ j , σ j+1] up until time T̃ε into two different types: those
intervals in which

1. W starts at distance ε of V 1,L and
2. W starts at distance ε of V 1,R .

(By relabeling the V i,q due to merging, we call V 1,L and V 1,R the rightmost and
leftmost force point, respectively, which is to the left and right, respectively, ofW after
time S̃ε .) LetJ L (resp.J R) consist of those j of the first (resp. second) type. For each

j , we let ξ j+1 = inf{t ≥ σ j : |Wt −V
i j ,q j
t | ≥ ε̃} and let σ̃ j+1 = min(σ j+1, ξ j+1, T̃ε).

By the Girsanov theorem, the law of the sequence (Wt−τ j − V 1,L
t−τ j

: t ∈ [τ j , σ̃ j+1])
for j ∈ J L up until the first j ∈ J L with τ j ≥ T̃ε is absolutely continuous with
respect to the corresponding sequence for single-force-point SLEκ(ρ) with ρ > −2
restricted to the corresponding intervals of time (i.e., when the driving function starts
from distance ε of its force point and then is run until either hitting the force point or
reaching distance at least ε̃ from the force point).

We are now going to explain why the Radon–Nikodym derivative ZL between these
two sequences does not degenerate when we take a limit as ε → 0 (with S, T, ε̃ fixed).
This argument will likewise give that the same is true when we consider j ∈ J R in
place of j ∈ J L . Let

ML = − 1√
κ

∑
j∈J L

∫ σ̃ j+1

τ j

∑
(i,q) �=(1,L)

ρi,q

Ws − V i,q
s

dBs

and also let

〈ML〉 = 1

κ

∑
j∈J L

∫ σ̃ j+1

τ j

⎛
⎝ ∑

(i,q) �=(1,L)

ρi,q

Ws − V i,q
s

⎞
⎠

2

ds

be the quadratic variation of ML . The Girsanov theorem implies that the result of
weighting the law of (W, V i,q) by

ZL = exp(ML − 1
2 〈ML〉) (2.6)

(as a consequence of the deterministic upper bound on 〈ML〉 that we will momentarily
obtain,wewill see that there are not any integrability issueswith ZL ) is a processwhich
evolves as a single-force-point SLEκ(ρ)withρ > −2 in eachof the intervals [τ j , σ̃ j+1]
for j ∈ J L where the force point and driving function start at distance ε from each
other and the evolution is stopped once they either collide or reach distance ε̃ from
each other. Let P∗ε,̃ε denote the resulting law. That is, dP∗ε,̃ε/dP = ZL . Since in each

of the intervals [τ j , σ̃ j+1], we know that the distance of W to V i,q for (i, q) �= (1, L)

is at least ε̃, it then follows that with n given by the number of force points and
C = κ−1 maxi,q(ρi,q)2 we have the deterministic bound

〈ML〉 ≤ Cn2T ε̃−2.
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Using that exp(−ML − 1
2 〈ML〉) has mean 1 in the third step below (as a consequence

of the bound on 〈ML〉 given just above), we have that

E[(ZL)−1] ≤ eCn2T ε̃−2/2E[exp(−ML)]
≤ eCn2T ε̃−2

E[exp(−ML − 1
2 〈ML〉)] = eCn2T ε̃−2

.

We thus have that

E∗ε,̃ε[(ZL)−2] = E[(ZL)−2 · ZL ] = E[(ZL)−1] ≤ eCn2T ε̃−2
.

Then for any event A, we have that

P[A] = E∗ε,̃ε[1A(ZL)−1] ≤ (P∗[A])1/2(E∗ε,̃ε[(ZL)−2])1/2
≤ eCn2T ε̃−2/2(P∗ε,̃ε[A])1/2. (2.7)

We claim that for each fixed ζ > 0 we have that

lim sup
ε→0

P∗ε,̃ε[Nε̃ ε ≥ ζ ] = 0. (2.8)

Indeed, Eq. (2.8) follows because of the tail of the amount of time it takes for a Bessel
process of dimension δ ∈ (1, 2) starting from ε to hit either 0 or ε̃. To make this
precise, we suppose that X is a Bessel process of dimension δ ∈ (1, 2) starting from ε.
Fix α > ε. Let τ0 (resp. τα) be the first time that X hits 0 (resp. α) and let τ = τ0 ∧ τα

be the first time that X exits [0, α]. Using that X2−δ
t is a continuous local martingale,

the optional stopping theorem implies that

ε2−δ = X2−δ
0 = E[X2−δ

τ ] = α2−δP[τα < τ0]. (2.9)

Rearranging (2.9) implies that

P[τα < τ0] =
( ε

α

)2−δ

. (2.10)

Applying (2.10) for α = ε̃/2 and using that Bessel processes satisfy Brownian scaling,
it follows that the probability that X takes at least ε̃2 time to exit [0, ε̃] is at least an
ε̃-dependent constant times ε2−δ . Since 2−δ ∈ (0, 1) so that the exponent of ε2−δ is in
(0, 1), we see that (2.8) follows from Chebyshev’s inequality as one can stochastically
dominate from below the sum of the lengths of time required by the process starting
from ε to exit [0, ε̃] by a sum of independent random variables which take the value
ε̃2 with probability proportional to ε2−δ and 0 otherwise.

Combining, (2.7) and (2.8) along with the Borel–Cantelli lemma implies that
Nε̃ ε → 0 as ε → 0 almost surely (at least along a positive sequence εk tending
to 0 sufficiently quickly).
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Since Nε̃ ε → 0 almost surely as ε → 0, by combining (2.4) and (2.5) we conse-
quently have that

∑
j

(Wσ j+1∧T̃ε −Wτ j∧T̃ε )−
∑
i, j,q

∫ σ j+1∧T̃ε

τ j∧T̃ε

ρi,q

Ws − V i,q
s

ds

→ WT̃ε −WS̃ε −
∑
i,q

∫ T̃ε

S̃ε

ρi,q

Ws − V i,q
s

ds as ε → 0.

We also have that

⎛
⎝∑

j

(Bτ j∧T̃ε − Bσ j∧T̃ε )

⎞
⎠

2

=
∑
i, j

(Bτ j∧T̃ε − Bσ j∧T̃ε )(Bτi∧T̃ε − Bσi∧T̃ε )

=
∑
j

(Bτ j∧T̃ε − Bσ j∧T̃ε )
2 + 2

∑
i< j

(Bτ j∧T̃ε − Bσ j∧T̃ε )(Bτi∧T̃ε − Bσi∧T̃ε ).

The second summand above has zero expectation by the optional stopping theorem
since the stopping times are bounded by T . Since

(Bt∧T̃ε − Bσ j∧T̃ε )
2 − (t ∧ T̃ε − σ j ∧ T̃ε) for t ≥ σ j

is a martingale for each j , it follows from the optional stopping theorem that the
expectation of the first summand above is equal to

E

⎡
⎣∑

j

(
τ j ∧ T̃ε − σ j ∧ T̃ε

)
⎤
⎦ .

Note that the quantity inside of the expectation is bounded from above by theminimum
of T and the amount of time that W spends within distance ε of the V i,q . Condition 2
implies that this latter quantity tends to 0 almost surely as ε → 0. Therefore the
expectation tends to zero as ε → 0 by the dominated convergence theorem (we may
use the constant function T as our dominating function). Consequently, it follows that
the sum of the changes to B in the intervals [σ j ∧ T̃ε, τ j ∧ T̃ε] for 1 ≤ j ≤ Nε̃ tends
to 0 in probability as ε → 0. Combining, we have that

WT̃ε −WS̃ε −
∑
i,q

∫ T̃ε

S̃ε

ρi,q

Ws − V i,q
s

ds = √
κ(BT̃ε − BS̃ε )+ o(1)

where the o(1) term tends to 0 in probability as ε → 0. By passing along a subsequence
as ε → 0, we have that the o(1) term tends to 0 almost surely, hence

WT̃ε −WS̃ε −
∑
i,q

∫ T̃ε

S̃ε

ρi,q

Ws − V i,q
s

ds = √
κ(BT̃ε − BS̃ε ).
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By sending ε̃ → 0 and then repeating the argument at the successive merging times of
the force points, we thus have almost surely with τ given by the continuation threshold
that

WT∧τ −WS∧τ −
∑
i,q

∫ T∧τ

S∧τ

ρi,q

Ws − V i,q
s

ds = √
κ(BT∧τ − BS∧τ ). (2.11)

Since both sides of (2.11) are continuous, it follows that (2.11) holds almost surely
for all 0 < S < T . It therefore follows that (1.10) is satisfied in integrated form.

Theorem 2.2 Given the vector ρ and the initial values V i,q
0 , Definition 2.1 uniquely

determines a joint law for Wt , Bt , and the V i,q
t —each defined for all t up to the

continuation threshold. Under this law, the values Wt , Bt , and V
i,q
t taken together are

a continuous multidimensional Markovian process indexed by t.

Proof When there is only a single force point, Theorem2.2 follows from standard facts
about Bessel processes (see Chapter XI of [26]; recall also (2.3)) and the definition
coincides with the standard definition of SLEκ(ρ).

If there are multiple force points but all of the V i,q
0 are non-zero except for one

(without loss of generality, we may suppose that only V 1,R
0 is possibly zero) then one

can obtain existence of a process with the properties above, defined up until the first
time that oneof theother force points collideswithWt , using aGirsanov transformation
(see the discussion of Girsanov’s Theorem, e.g., in [12,26]) applied to the standard
one-force-point SLEκ(ρ) that one would obtain if V 1,R

0 were the only force point.
Girsanov’s theorem applies because the remaining force points introduce a smooth
drift to the Brownian motion, and the new process obtained is absolutely continuous
with respect to the one-force-point process (as long as one stops at a bounded stopping
time that occurs before Wt gets within some fixed constant distance of one the other
force points).

One can also reverse this procedure (starting with a process defined for multiple
force points and applying Girsanov’s theorem to produce the process corresponding to
one force point). If thereweremultiple possibilities for the joint laws of theWt , Bt , and
V i,q
t in the multiple-force-point case, then this would produce multiple possibilities

for the joint laws in the single-force-point case, contradicting what we have already
established.

This gives us existence and uniqueness of the law up until the first time that one
of the other force points (besides V 1,R

0 ) hits Wt . When this happens, one can use

this other force point in place of V 1,R
0 (or if this other point is on the right, it will

have merged with V 1,R
0 and one can subsequently treat the two force points together)

and continue until a force point other than this new one is hit. Iterating this process
uniquely defines the law all the way up to the continuation threshold. (To check this
formally, one has to rule out the possibility that infinitely many of these iterations may
occur in a finite period of time. Since there are only finitely many force points, the
number of times at which two right force points merge, or two left points merge, is
finite. Thus, one needs only to check that it takes an infinite amount of time almost
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surely for Wt to alternate between hitting a left force point and hitting a right force
point infinitely often, which is a simple exercise, given that the V i,L

t are decreasing in
time while the V i,R

t are increasing.)
The only remaining case to treat is the possibility that there are two force points

immediately to the left and right of the origin at time zero. Let us first consider the
case that these are the only two force points. We then need to construct a triple of
processes V 1,L

t ≤ Wt ≤ V 1,R
t starting at zero. The hypotheses imply that in any such

construction, we cannot have equality of all three processes at any positive time. Thus,
if we know the processes up to any positive time, then the results above imply that the
law of the continuation is uniquely determined thereafter. In a sense, the problem is
figuring out how to “get the process started”. Since both force points start at the origin,
we will be able to use scale invariance to help us deduce existence and uniqueness of
the law.

As an alternative warm-up problem, suppose we start the process off at time zero
with V 1,L

0 = −1 andW0 = 0 and V 1,R
0 = 1. The previous discussion yields existence

and uniqueness of the law in this case. Let R be the set of values r for which there
exists a t such that er = |V 1,L

t −Wt | = |Wt −V 1,R
t |. Then R is a subset of [0,∞) that

contains 0. By scale invariance and the Markovian property, R has a certain renewal
property: namely, for each fixed a, we have that conditioned on a′ = inf{R∩[a,∞)},
the conditional law of R ∩ [a′,∞) is the same as the original law of R translated by
a′ units to the right.

Moreover, we claim that R possesses an additional expectation-boundedness prop-
erty: namely, that the expectation of |a′ − a| is bounded independently of a. In fact,
we claim a stronger result: namely, given any choices for V 1,L

t and V 1,R
t and Wt at

a fixed starting time t , the expected value of log |V 1,L
τ −V 1,R

τ |
|V 1,L

t −V 1,R
t | (i.e., the amount that the

log distance between the force points changes between times t and τ ), where τ is the
smallest value greater than t satisfying |V 1,L

τ −Wτ | = |Wτ − V 1,R
τ |, is at most some

fixed constant. This follows from the fact that, no matter where the force points begin
at some fixed starting time, there is a uniformly positive probability that Wt will be
exactly between those two force points before the distance between them doubles.
It is enough to show this for the worst case in which Wt starts out equal to one of
the two force points, and this follows from absolute continuity with respect to Bessel
processes.

We remark that renewal property described above is enjoyed by other random sets
familiar to the reader: e.g., the zero set of a Brownian motion or more generally the
zero set of a Bessel process with dimension in (0, 2). However, these random sets do
not enjoy the expectation-boundedness property described above. We further recall
the well known fact that each of these random sets can be written as the range of an
increasing stable Lévy process, where the Lévy jump measure ν is an infinite measure
on (0,∞) whose density function is a power law. It is not hard to deduce from the
renewal property that the random set R is also the range of an increasing stable Lévy
process, albeit with a different (not necessarily power law) measure ν.

Given a fixed a > 0 and the largest value a′′ in (−∞, a] ∩ R, the law of a′ − a′′ is
given by the measure ν restricted to the interval (a − a′,∞), and normalized to be a
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probability measure. The finite expectation argument above implies that
∫∞
b rdν(r) <

∞ for any b > 0. Now a natural way to construct the SLEκ(ρ) process is to take a

very negative value r and start the process with V 1,L
0 = −er ,W0 = 0, and V 1,R

0 = er .
Taking the limit as r → −∞, the law of the corresponding sets R (and of the entire
triple of processes V 1,L

t ,Wt , V
1,R
t ) converges to a limit w.r.t. the Hausdorff topology

on compact subsets of R. One can show this by considering two very small values
r < r ′, generating corresponding sets R and R′, and then taking r ′′ to be the smallest
value which lies in one of the sets R and R′ and is of distance at most δ from the
other set. One can discover this point via a sort of “leapfrog” exploration. Namely,
one first explores the points in R (following the Lévy process) until the first time one
discovers a point larger than (or within δ of) r ′. One then observes the points in R′
until discovering a point larger than (or within δ of) the set of discovered points of
R, and so forth. After discovering the point r ′′, one can then couple R and R′ to be
translations of each other (by an amount less than δ) ever after; by scale invariance, one
can take the corresponding V 1,L

t ,Wt , V
1,R
t processes (after the corresponding small

times) to be rescalings of each other by a factor close to 1. If we fix some K > 0,
then Hausdorff-metric compactness implies the existence of subsequential limits of
the laws of R∩[−K , K ] and R′ ∩ [−K , K ] exist. The argument above shows that any
such limits can be coupled in such a way that they agree (up to Hausdorff distance δ)
with probability arbitrarily close to one; since δ is arbitrary, this implies that there
must be a unique limit. Since K can also be arbitrary, we obtain both the existence of
a limiting random set on R and the fact that there is a unique process satisfying the
hypotheses of Definition 2.1.

The extension from two force points (both at the origin) to many force points (two
at the origin) is the same Girsanov argument given above.

Remark 2.3 Suppose that η is an SLEκ(ρL ; ρR) process where
∑ j

i=1 ρi,q ≥ κ
2 − 2

for all 1 ≤ j ≤ |ρq | and q ∈ {L , R}. Assume further that x1,L < 0 < x1,R . Then η

is almost surely a continuous curve because its law is mutually absolutely continuous
with respect to the law of an SLEκ process (with no force points) up to every fixed
time t . The reason is that, in this case, a comparison with Bessel processes implies
that Wt �= V i,q

t for all 1 ≤ i ≤ |ρq | and q ∈ {L , R}, so one can compute the Radon–
Nikodym derivative explicitly using Girsanov’s theorem. Moreover, η is almost surely
continuous even if x1,L = 0− and x1,R = 0+, the reason being that we can apply the
sameGirsanov argument to η|[s,t] for every 0 < s < t .Wewill use this fact repeatedly,
often without reference, throughout the article.

2.3 Martingale characterization of SLEκ (ρ)

The SLEκ(ρ) processes are singled out by the following martingale characterization,
which we will use repeatedly. A version of this result for SLEκ (ρ ≡ 0) appears in [6,
Section 7.2]. The argument that we present here is similar to the one in [6].

If we are given any process Wt with W0 = 0 we can define the Loewner evolution
gt . If we are also given a set of points xi,L ≤ 0 and xi,R ≥ 0 then we can define
processes V i,q

t such that if xi,q has not yet been absorbed by the Loewner hull Kt
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then V i,q
t = gt (xi,q), and otherwise xi,L (resp., xi,R) is the gt image of the left (resp.,

right) endpoint of R ∩ Kt .

Theorem 2.4 Suppose we are given a random continuous curve η on H from 0 to∞
whose Loewner driving function Wt is almost surely continuous. Suppose that xi,q

and ρi,q values are given and that the V i,q
t are defined to be the images of the xi,q

under the corresponding Loewner evolution (as described just above). Let ht be the
corresponding harmonic function in the statement of Theorem 1.1. Then Wt and the
V i,q
t can be coupled with a standard Brownian motion Bt to describe an SLEκ(ρ)

process (up to the continuation threshold) if and only if ht (z) evolves as a continuous
local martingale in t for each fixed z ∈ H until the time z is absorbed by Kt .

The assumption that η has a continuous Loewner driving function implies that η

is non-self-tracing and does not trace ∂H and that η does not enter into the bounded
components that it draws. See Proposition 6.12.

Proof of Theorem 2.4 That ht evolves as a continuous local martingale ifWt and V
i,q
t

correspond to an SLEκ(ρ) can be seen by applying Itô’s formula. Thus, we need only
prove the reverse implication. We will assume that ht is a continuous local martingale
for each z ∈ H and verify the conditions of Definition 2.1 one at a time:

Proof of Condition 1 Let h̃t be the harmonic conjugate of ht . This is only defined a
priori up to additive constant, but since the harmonic conjugate of arg(z) is log |z|, we
can fix the additive constant by writing h∗t (z) := −h̃t (z)+ iht (z) as follows:

−
k∑

i=0

ρi,L log( ft (z)− ft (x
i,L))− log( ft (z))

+
�∑

i=0

ρi,R(iπ − log( ft (z)− ft (x
i,R))+ (iπ − log( ft (z)))− πχ

λ
log f ′t (z).

(2.12)

One can show that h̃t (z)− h̃t (y) is a local martingale for any fixed y and z by using
the fact that this quantity is a linear function of ht (representable as the integral of ht
times a test function) and applying Fubini’s theorem. Taking one of these points to
infinity, we find that in fact h̃t and hence h∗t is a local martingale.

Observe that ht (z) = Im(h∗t (z)) evolves as a continuous semi-martingale in the
intervals in which the ft (xi,q) are not colliding with Wt . Indeed, note that in the
expression (2.12) above ft (z) − ft (xi,L) = gt (z) − gt (xi,L) and f ′t (z) = g′t (z) are
both differentiable in t . Thus, the terms of the form log( ft (z) − ft (xi,L)) in (2.12)
are semi-martingales (and likewise when L is replaced by R and for log f ′t (z)). Note
also that Wt appears only in the term −2 log( ft (z)) = −2 log(gt (z)−Wt ). Since the
other terms are semi-martingales, this term is a semi-martingale, as is its exponential,
which implies that Wt is a semi-martingale.

Write

Wt = vt + mt
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where, in the non-collision intervals, vt (resp. mt ) evolves as a process of bounded
variation (resp. continuous local martingale). We will next show that mt evolves as√

κ times a Brownian motion in the non-collision intervals by proving d〈m〉t = κdt
for such t and invoking the Lévy characterization of Brownian motion. To see this, we
compute the Itô derivative of (2.12). Observe

d

dt
log f ′t (z) =

1

f ′t (z)

(
2

ft (z)

)′
= − 2

f 2t (z)
.

Consequently, the drift of the Itô derivative of (2.12) takes the form

k∑
i=0

2ρi,Ldt

ft (z) ft (xi,L)
+

�∑
j=0

2ρi,Rdt

ft (z) ft (xi,R)

+ 2χ

λ f 2t (z)
dt − 4

f 2t (z)
dt + 2

ft (z)
dvt + 1

f 2t (z)
d〈m〉t .

This has to vanish since h∗t is a local martingale. Thus if we multiply through by
f 2t (z) and evaluate at two different points [or simply consider points for which ft (z)
is extremely close to zero], we see that we must have

(
2χ

λ
− 4

)
dt + d〈m〉t = 0.

This implies d〈m〉t = κdt , as desired. Inserting this back into the formula for the drift
and solving for vt shows that vt takes on the desired form.

What we have shown so far implies that if τ is any stopping time for the driving
process (W, V i,q) which is almost surely not a collision time then we have that

Wτ+t −Wτ −
∫ τ+t

τ

∑
i,q

ρi,q

Ws − V i,q
s

ds = √
κB(τ )

t (2.13)

where B(τ ) is a standard Brownian motion, at least up until the first time t ≥ 0 such
that t + τ is a collision time of (W, V i,q). We will now argue that there is in fact a
single Brownian motion B such that

Wτ+t −Wτ −
∫ τ+t

τ

∑
i,q

ρi,q

Ws − V i,q
s

ds = √
κ(Bτ+t − Bτ ) (2.14)

for all such stopping times τ up until the first t so that τ + t is a collision time of
(W, V i,q). This will complete the proof of Condition 1. To see this, we fix ε > 0 and
inductively define stopping times σ j , τ j as follows.We let σ0 be the infimum of times t
that the distance between W and the V i,q is at least ε and let τ0 be the first time after
σ0 that W collides with one of the V i,q . Assuming that σ j , τ j have been defined for
0 ≤ j ≤ n, we let σn+1 be the first time after τn that the distance between W and the
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V i,q is at least ε and let τn+1 be the first time after σn+1 thatW collides with one of the
V i,q . We can define a Brownian motion Bε by defining Bε

t+σ j
− Bε

σ j
as in (2.13) for

t ∈ [0, τ j − σ j ] for each j and sampling the evolution of Bε as a standard Brownian
motion independently of everything else in the intervals of the form [τ j , σ j+1]. Note
that the joint law of Bε and (W, V i,q) restricted to any compact time interval [0, T ]
is tight as ε → 0 as the marginal laws of Bε and (W, V i,q) do not change with ε.
Consequently, there exists a sequence (εk) of positive numbers decreasing to 0 such
that the joint law of Bεk and (W, V i,q) converges weakly to a limit. This gives us a
coupling of a standard Brownian motion B with (W, V i,q).

We will now show that (2.14) holds (up until the first t such that τ + t is a collision
time) for the coupling of B with (W, V i,q). In what follows, it will be helpful to
introduce some extra notation. For each ε > 0, we will let (W ε, V i,q,ε) and Bε have
the same joint law as (W, V i,q) and Bε introduced just above. We suppose that τ

is a fixed stopping time as above and write τ ε for the corresponding stopping time
for (W ε, V i,q,ε). By compactness, there exists a subsequence (ε jk ) of (εk) such that
the joint law of (W ε jk , V i,q,ε jk ), τ ε jk , and Bε jk converges as k → ∞ to a triple
(W, V i,q), τ̃ , and B. Note that the joint law of (W, V i,q) and τ̃ is the same as the joint
law of (W, V i,q) and τ because it is the same as the joint law of (W ε jk , V i,q,ε jk ) and
τ ε jk for all k. This implies that τ̃ = τ is determined by (W, V i,q) (as τ is a stopping
time for (W, V i,q)). Consequently, the limiting joint law of (W, V i,q), τ̃ = τ , and
B does not depend on the choice of subsequence (ε jk ) of (εk) and therefore we have
the weak convergence of the joint law of (W εk , V i,q,εk ), τ εk , and Bεk to the joint law
of (W, V i,q), τ , and B. By the Skorohod representation theorem, we may couple the
(W εk , V i,q,εk ), τ εk , Bεk and (W, V i,q), τ, B onto a common probability space so that
the convergence is almost sure.

By the definition of Bεk , we observe that (2.14) holds for (W εk , V i,q,εk ), τ εk , and
Bεk (up until the first t such that τ εk+t is a collision time) on the event that the distance
between W εk

τ εk and the V i,q,εk
τ εk is at least εk . Using that the joint law of (W εk , V i,q,εk )

and τ εk does not depend on k, we have that the probability of this event tends to 1 as
k →∞. We will now deduce from this that (2.14) holds for (W, V i,q), τ , and B (up
until the first t such that τ + t is a collision time). For each t ≥ 0, letting

�
εk
t = W εk

τ εk+t −W εk
τ εk −

∫ τ εk+t

τ εk

∑
i,q

ρi,q

W εk
s − V i,q,εk

s

ds −√
κ(Bεk

τ εk+t − Bεk
τ εk ) and

�t = Wτ+t −Wτ −
∫ τ+t

τ

∑
i,q

ρi,q

Ws − V i,q
s

ds −√
κ(Bτ+t − Bτ ),

and, for each δ, T > 0, τδ,T be the minimum of τ + T and the first time t after τ that
the distance between Wt and the V i,q

t is at most δ, we will show this by arguing that

sup
t∈[0,τδ,T−τ ]

|�εk
t −�t | → 0 as k →∞. (2.15)

Note that on the event that the distance between Wτ and the V i,q
τ is equal to or

smaller to δ, we have τ = τδ,T . We define τ
εk
δ,T similarly with (W εk , V i,q,εk ) in place
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of (W, V i,q). By the argument explained just above (with τ
εk
δ,T and τδ,T in place of

τ εk and τ ) and recoupling the laws if necessary using the Skorohod representation
theorem, we almost surely have that τ

εk
δ,T → τδ,T as k → ∞. The almost sure local

uniform convergence of W εk , V i,q,εk , Bεk to W, V i,q , B, the convergence of τ εk to τ ,
and τ

εk
δ,T to τδ,T as k →∞ implies we have both

sup
t∈[0,τδ,T−τ ]

|(W εk
τ εk+t −W εk

τ εk )− (Wτ+t −Wτ )| → 0 as k →∞

sup
t∈[0,τδ,T−τ ]

|(Bεk
τ εk+t − Bεk

τ εk )− (Bτ+t − Bτ )| → 0 as k →∞.

Thus to finish proving (2.15), we need to prove the uniform convergence of the integral
in �

εk
t to the integral in �t . Let I

εk
s (resp. Is) denote the integrand in the integral in

the definition of �
εk
t (resp. �t ). Then we have that

∣∣∣∣∣
∫ τ εk+t

τ εk
I εk
s ds −

∫ τ+t

τ

Isds

∣∣∣∣∣ ≤
∫ τ εk∨τ

τ εk∧τ

|I εk
s | + |I εk

s+t |ds +
∫ τ+t

τ

|I εk
s − Is |ds.

(2.16)

The convergence of τ εk to τ and the uniform convergence of W ε, V i,q,εk , Bεk to
W, V i,q , B in [0, τδ,T ] implies that I εk

s converges uniformly to Is in [τ, τδ,T ] as k →
∞. Therefore second integral on the right hand side of (2.16) tends to 0 as k → ∞.
It is similarly not difficult to see that the first integral on the right side of (2.16) tends
to 0 as k →∞.

We have shown that (2.14) holds for (W, V i,q), τ , and B (up until τδ,T − τ ). Since
δ, T > 0 were arbitrary, we therefore have that (2.14) holds for (W, V i,q), τ , and B
(up until the first t that τ + t is a collision time).

We note that at this point we have constructed a coupling of a standard Brownian
motion B with (W, V i,q) so that Condition 1 holds. We will now check that B is a
Brownian motion with respect to the filtration Ft = σ(Ws, V

i,q
s , Bs : s ≤ t). To

prove this, it suffices to show that B|[τ,∞) − Bτ is a Brownian motion independently

of (Wτ , V
i,q
τ ) where τ is a stopping time as above. In order to justify this, we will

first argue that the conditional law of Bε |[τ ε ,∞) − Bε
τ ε given (W ε

τ ε , V
i,q,ε
τ ε ) is that of

a standard Brownian motion. Let σε
j , τ

ε
j be as defined above for (W ε, V i,q,ε). By

definition, we can write

Bε
t = M1,ε

t + M2,ε
t :=

∑
j

(B̃ε
t∧τ ε

j
− B̃ε

t∧σε
j
)+
∑
j

(B̂t∧σε
j+1

− B̂ε
t∧τ ε

j
) (2.17)

where B̃ε
t for t ∈ [σ ε

j , τ
ε
j ] is determined from (W ε, V i,q,ε) as in (2.13) and B̂ε is

a standard Brownian motion which is independent of (W ε, V i,q,ε). From the rep-
resentation (2.17), it is easy to see that M1,ε

τ ε+t − M1,ε
τ ε+t and M2,ε

τ ε+t − M2,ε
τ ε are

both continuous martingales with respect to the filtration generated by (W ε
s , V i,q,ε

s )

123



Imaginary geometry I: interacting SLEs 593

and B̂ε
s for s ≤ τ ε + t . Consequently, Bε

τ ε+t − Bε
τ ε is also a continuous martin-

gale with respect to the same filtration. Moreover, it is easy to see from (2.17) that
〈Bε

τ ε+· − Bε
τ ε 〉t = t for all t ≥ 0. Therefore the Lévy characterization of Brown-

ian motion implies that Bε
[τ ε ,∞) − Bε

τ ε has the law of a standard Brownian motion

conditionally on (W ε
τ ε , V

i,q,ε
τ ε ).

Fix T > 0 and a bounded function f on the Cartesian product of the space of
continuous functions defined on the interval [0, T ] equippedwith the uniform topology
and Rn where n is the number of elements of the vector (W εk

τ εk , V
i,q,εk
τ εk ). This implies

that

lim
k→∞E[ f (Bεk (τ εk + ·)|[0,T ] − Bεk

τ εk ,W
εk
τ εk , V

i,q,εk
τ εk )] = E[ f (B̃,Wτ , V

i,q
τ )]

where B̃ is a standard Brownian motion on [0, T ] which is independent of Wτ , V
i,q
τ .

Since the joint law of Bεk |[τ εk ,τ εk+T ] and (W εk
τ εk , V

i,q,εk
τ εk ) converges to the joint law of

B|[τ,τ+T ] and Wτ , V
i,q
τ as k →∞ (as explained just above), we have that

E[ f (B̃,Wτ , V
i,q
τ )] = E[ f (B(τ + ·)|[0,T ] − Bτ ,Wτ , V

i,q
τ )].

The claim thus follows since f was an arbitrary bounded, continuous function.

Proof of Condition 2 To obtain instantaneous reflection, note that the set of times t at
whichWt is equal to a force point is a subset of the set of times atwhichη(t) ∈ ∂H = R.
It turns out that this set must have Lebesgue measure zero for any continuous path η

with a continuous driving function. This fact is stated and proved as Lemma 2.5 below.

Proof of Condition 3We know that V 1,L
t is a non-increasing process which, by Condi-

tion 1, evolves according to the Loewner flow driven by Wt in those intervals of time
in which V 1,L

t �= Wt . In particular, this implies that if we have any finite collection of
disjoint open intervals (a j , b j ) for 1 ≤ j ≤ k such that V 1,L

s �= Ws for all s ∈ (a j , b j )

and 1 ≤ j ≤ k then for t ≥ bk we have that

V 1,L
t ≤

k∑
j=1

(V 1,L
b j

− V 1,L
a j

) =
k∑
j=1

∫ b j

a j

2

V 1,L
s −Ws

ds.

Since this inequality holds for any finite collection of disjoint open intervals contained
in {s ∈ [0, t] : Ws �= V 1,L

s } and {s ∈ [0, t] : Ws = V 1,L
s } has Lebesgue measure zero,

by the monotone convergence theorem we have that

V 1,L
t ≤

∫ t

0

2

V 1,L
s −Ws

ds.

In particular, (V 1,L
s −Ws)

−1 ≤ 0 is integrable on bounded intervals of time in [0,∞).
The same argument implies that
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V 1,L
t − V 1,L

u ≤
∫ t

u

2

V 1,L
s −Ws

ds

for all 0 ≤ u < t . Therefore

It =
∫ t

0

2

V 1,L
s −Ws

ds − V 1,L
t

is non-decreasing.
We claim that It is almost surely zero. To prove this, consider a force point V 1,L

t
with whichWt can collide. We define an interval of time (s1, t1) such that s1 is the first
time at which V 1,L

t = Wt and t1 is the first subsequent time at which |V 1,L
t −Wt | = ε.

Inductively, we define sk to be the first time after tk−1 at which V 1,L
t = Wt and then

take tk to be the first subsequent time at which |V 1,L
t − Wt | = ε. We consider how

much the quantities V 1,L
t , It and ht (z) change during the intervals (sk, tk)with tk ≤ T

where T is a stopping time that a.s. occurs before Wt gets within some fixed distance
of V 1,L

t . Fix some z0 ∈ H and further assume that T is a.s. bounded by some fixed
constant, that T a.s. occurs before Im (gt (z0)) gets below some fixed positive value
and also before ht (z0) a.s. changes by at most some fixed constant amount.

The sum of the changes to
∫ t
0 2(V

1,L
s −Ws)

−1ds during the intervals (s j , t j ) tends
to zero as ε → 0 (simply because the integral is finite a.s. and the combined Lebesgue
measure of the intervals tends to zero with ε). Thus the overall sum of changes to
V 1,L
t during these times tends to the It change as ε → 0. We will now argue that it

is almost surely the case that the sum of the changes V 1,L
t − Wt makes during the

intervals (s j , t j ) tends to zero as ε → 0. To see this, we note that the change in each
interval is equal to ε by definition. Thus controlling the total change is equivalent to
controlling the number of such intervals before time T . This, in turn follows, from
the same argument that we used to show that Nε̃ ε → 0 as ε → 0 in the proof that
Conditions 1–3 imply that the integrated version of (1.10) given above (which we
emphasize only uses the form of the evolution of the process at times when it is not
colliding with a force point). Thus, the overall sum of the changes to Wt during these
intervals must also tend to the It change as ε → 0. Since the Lebesgue measure of the
union of the intervals tends to zero as ε → 0, it follows from Loewner evolution that
the sum of the changes made to any force point V i,q other than V 1,L

t tends to zero.
Recalling the definition of ht (in terms of Wt and the V i,q ) in Theorem 1.1 and

the fact that Im gt (z0) is bounded below (recall that we fixed z0 above), we find that
if ε is sufficiently close to zero, the sum of the net changes to ht (z0) during the
intervals is between constant non-zero-same-sign multiples of the It change (due to
the corresponding changes to the pair Wt and V 1,L

t during these intervals—the effect
from changes to other force points becomes negligible as ε → 0). Thus to prove that
the amount It changes up until time T is zero, it suffices to prove that the sum of the
net changes made to ht (z0) during these intervals tends to zero as ε → 0.

To this end, note that the expected size of the total change of ht (z0) during these
intervals is zero since ht (z0) is a local martingale that is bounded if stopped at time T
(hence a martingale if stopped at time T ).
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We claim that Conditions 1 and 2 together imply that the quadratic variation of
ht (z0) that occurs during these intervals tends to zero as ε → 0. To see this, we recall
that in the non-collision intervals (t j , s j+1) we have that the evolution of Wt − V 1,L

t
is absolutely continuous with respect to the law of

√
κ times a Bessel process with

dimension in (1, 2) where in each such interval the Bessel process starts from ε and
is then run until it first hits 0. In particular, we can weight the law of (W, V i,q) by a
Radon–Nikodym derivative Z ε which has the same form as in (2.6) so that, under the
weighted law, in the intervals of time of the form (t j , s j+1) we have that Wt − V 1,L

t
evolves as

√
κ times a Bessel process up until the stopping time T defined above.

That is, under the weighted law, we can construct a coupling between Wt − V 1,L
t

and
√

κ times a Bessel process X so that the two processes agree in the intervals of
time in which they are making excursions from ε back to 0 up until the stopping time
T defined just above. Since we are considering (W, V i,q) up until time T , just as in
the case of (2.6) in our proof that Conditions 1–3 imply that (1.10) is satisfied in
integrated form, we have that this Radon–Nikodym derivative Z ε has finite moments
of all (positive and negative) orders, each of which is bounded uniformly in ε (recall
the arguments just after (2.6)).

For each ε > 0, we let (W ε, V i,q,ε), Z ε be an instance of the processes described
just above and let T ε be the stopping which corresponds to T . Then there exists
a sequence (εk) of positive numbers decreasing to 0 so that the joint law of
(W εk , V i,q,εk ), Z εk , T εk converges weakly (with respect to the uniform topology on
compact intervals) to a limit (W, V i,q), Z , T [where the joint law of (W, V i,q) and
T is the same as just above; this follows from the argument given in the proof of
Condition 1]. By the construction, the law of the non-collision intervals of W − V 1,L

t
under the law weighted by Z agree in law with those of

√
κ times a Bessel process,

up until the stopping time T . That is, under the weighted law, we can construct a
coupling of W − V 1,L

t with
√

κ times a Bessel process so that the excursions that
each makes from 0 are the same, up time time T . Combining this with Condition 2
and [30, Proposition 3.3],5 this implies that Wt − V 1,L

t is absolutely continuous with

5 We note that [30, Proposition 3.3] states that if X is a continuous process which is adapted to the filtration
of a Brownian motion B, solves the Bessel SDE of a fixed dimension δ ∈ (0, 2) when it is not hitting
0, and is instantaneously reflecting at 0, then X has the law of a Bessel process of dimension δ. This
result holds under more generality, namely one may assume that for every stopping time τ for X such that
Xτ �= 0 almost surely with σ = inf{t ≥ τ : Xt = 0} we have that X |[τ,σ ] is adapted to the filtration
Ft = σ(Xτ , Bs : s ≤ t) and that B|[τ,∞) is a Brownian motion with respect to Ft for t ≥ τ . To see
this, we note that under these hypotheses we have that for each ε > 0 the law of the ordered collection of
excursions that X makes from ε to 0 has the same law as the corresponding collection for a Bessel process
X̃ as the Bessel SDE has a unique strong solution. Therefore we can couple the laws of X and X̃ together
so that these excursions are equal. By sending ε → 0, we get an asymptotic coupling between the laws of
X and X̃ so that the ordered collection of excursions that X makes from 0 is equal to the corresponding
collection for X̃ . Fix t > 0 and let At (resp. Ãt ) be the amount of quadratic variation accumulated by X in
{s ≤ t : Xs �= 0} (resp. X̃ in {s ≤ t : X̃s �= 0}). Then At (resp. Ãt ) is equal to the amount of time that X
(resp. X̃ ) has spent in {s : Xs �= 0} (resp. {s : X̃s �= 0}) by time t . Since both X and X̃ are instantaneously
reflecting at 0, it follows that At = Ãt = t almost surely. On the other hand, by the construction of our
coupling between X and X̃ we almost surely have for any fixed t > 0 that XAt = X̃ Ãt

. Combining, this

implies that Xt = X̃t almost surely for each fixed t > 0. Thus as both X and X̃ are continuous, we have
that Xt = X̃t for all t > 0 almost surely, as desired.
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respect to
√

κ times a Bessel process even in the intervals in which it is hitting 0.
Combining this with the argument used to prove Condition 1, we have that (W, V i,q)

is a semimartingale for all times and the quadratic variation ofW is given by κt for all
t . Consequently, we have that d〈ht (z0)〉 = κIm(1/ ft (z0))2dt for all t , which proves
the claim.

Let Tε denote absolute value of the total (cumulative) change to ht (z0) that occurs
during these intervals. On the event that the quadratic variation is less than some
value δ, the probability that Tε exceeds a constant a > 0 is bounded by the probability
that the absolute value of a Brownian motion run for time δ exceeds a.

Now, one can use theBorel–Cantelli lemma to show thatwe can take a sequence (εk )

of ε values decreasing fast enough so that the event that the quadratic variation cor-
responding to εk a.s. exceeds 2−k for at most finitely many k. On this event, one can
use the probability bound above and another application of Borel–Cantelli to show
that Tεk a.s. exceeds a for at most finitely many values of k. Since this is true for any
a, we conclude that a.s. limk→∞ Tεk = 0. Hence the sum of the changes to It during
these intervals tends to zero, and since It only changes when Wt − V 1,L

t = 0 we find
that It is almost surely constant up until time T . Repeating this procedure iteratively
(choosing new z0 values as necessary) allows us to conclude that It is almost surely
constant for all time.

We have now shown that (W, V i,q) satisfies Conditions 1–3 inDefinition 2.1, which
completes the proof. ��
Lemma 2.5 Suppose thatη is a continuous (non-random) curve onH from 0 to∞with
a continuous Loewner driving function Wt . Then the set {t : η(t) ∈ R} has Lebesgue
measure zero.

Proof First we recall a few basic facts about the half-plane capacity (which we will
denote by hcap). Let A and B and C be bounded hulls, i.e., closed subsets ofH whose
complements are simply connected. (We interpret all bounded sets X written below
as hulls by including in X the set of points that it disconnects from infinity and then
taking the closure.) We claim that the following hold:

1. hcap(A ∪ B) ≤ hcap(A)+ hcap(B).
2. hcap(A ∪ B ∪ C)− hcap(A ∪ B) ≤ hcap(A ∪ C)− hcap(A).

The first is seen by recalling one of the definitions of half-plane capacity:

hcap(A) := lim
s→∞ sE[Im Bis

τ ],

where Bis is a Brownian motion started at is and τ is the first time it hits A ∪ R.
For the second one, let gA : H\A → H be the conformal map normalized so that
limz→∞ |gA(z)− z| = 0. Recalling the additivity of capacity under compositions of
normalizing maps, the second claim above is equivalent to

hcap(gA(B ∪ C))− hcap(gA(B)) ≤ hcap(gA(C)),

which follows by applying the first claim to gA(B) and gA(C).
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Now, to prove the lemma, it suffices to show that for each R, the set of capacity times
at which the tip of the path lies in [−R, R] has Lebesgue measure zero. The capacity
of the closure Sδ of the rectangle Sδ := {x + iy : − R < x < R, 0 < y < δ} tends to
zero as δ tends to zero. By the continuity of η, the set η−1(Sδ) is a countable collection
of disjoint intervals. Let I = ∪ j (s j , t j ) be the union of those (disjoint) intervals in
η−1(Sδ) during which η hits R at some point. Now we claim that the total half-plane
capacity time elapsedduring I is atmost the capacity of Sδ . Clearly, hcap(η([0, t]∩Sδ))

is non-decreasing and bounded by hcap(Sδ). The change to hcap(η(I ∩[0, t])) during
an interval (s j , t j ) is greater than or equal to the change to hcap(η([0, t])) during that
time. This follows from the second property above if we take B = η([0, s j ]) and
A = η(I ∩ [0, s j ]) and C = η([s j , t j ]). [We note that A ∪ R is connected because
η((s j , t j )) ∪ R is connected for each j as η hits R at a time in (s j , t j ). For the same
reason, C ∪ R is connected.] Summing the changes over the (s j , t j ), we find that the
total change to hcap(η([0, t])) during such intervals is at most the capacity of Sδ . By
taking δ → 0, we find that indeed the set of capacity times at which the tip of the path
lies in [−R, R] has Lebesgue measure zero. ��

Consider an SLEκ(ρ) process (W, V i,q), let (gt ) be the Loewner flow driven by
W , and let (Kt ) be the corresponding growing family of hulls. Then we can write
gt (Kt ) = [Lt , Rt ]. It will be important for us in this article to know that L and R both
solve the Loewner equation driven by W (up until the continuation threshold is hit).
In particular, once either L or R have collided with one of the V i,q , the two processes
will continue to agree. That this holds in the case of single-force-point SLEκ(ρ) with
ρ > −2 is remarked just before the statement of [15, Lemma 8.3], however a proof of
this fact is not given in [15]. We will now explain why this is true. We first note that by
absolute continuity (i.e., the Girsanov theorem), it suffices to explain why the result
holds for single-force-point SLEκ(ρ) with ρ > −2. Indeed, this follows because W
can only interact with one force point at a time except at the times when force points
merge and the set of such times is finite (at each merging time, the number of force
points decreases by at least 1). The result in the setting of single-force-point SLEκ(ρ)

with ρ > −2 will follow from two observations.
Before making these two observations, we will first explain why the result is true

for ordinary SLE (so that ρ = 0). Let η be the SLE trace. In this case, we know that Rt

evolves according to the Loewner flow in those time intervals in which η is not hitting
∂H. This implies that Rt − Wt evolves as

√
κ times a Bessel process of dimension

1 + 4
κ
in those time intervals in which it is not hitting 0. Moreover, by Lemma 2.5

we have that Rt −Wt is instantaneously reflecting at 0. These two properties together
imply that Rt −Wt = √

κXt for all t ≥ 0 where Xt is a Bessel process of dimension
1+ 4

κ
. This proves the claim for ordinary SLE.

Now we are going to generalize the result to the setting of SLEκ(ρ) for ρ > −2.
Let (W, V 1,R) be the driving process. First, by using absolute continuity to compare to
the case of ordinary SLEκ we have that Rt evolves according to the Loewner flow up
until time τ , the first time t that Rt and V

1,R
t collide. We now claim that Rt ≥ V 1,R

t for
all t ≥ τ . To see this, we note that both Rt and V 1,R

t evolve according to the Loewner
equation when they are not colliding withWt . The claim follows because we know that
V 1,R
t does not get any extraneous pushes when it is colliding withWt (since V

1,R
t −Wt
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evolves as
√

κ times a Bessel process of dimension δ > 1), Rt is monotone increasing
(so extraneous pushes during collision times can only push Rt further to the right),
and both V 1,R

t and Rt evolve according to the Loewner flow in those intervals when
they are not colliding. In particular, if there is an interval in which Rt < V 1,R

t which
starts after time τ , then we get a contradiction because then d(Rt − V 1,R

t ) > 0 in this
interval. Since

∫ t
0 2(V

1,R
s −Ws)

−1ds exists, that Rt ≥ V 1,R
t after time τ implies that∫ t

0 2(Rs −Ws)
−1ds exists. We also have that d(Rt −V 1,R

t ) < 0 whenever Rt > V 1,R
t

as both processes evolve according to the Loewner flow driven by W at such times.
Therefore there cannot be such intervals, hence V 1,R

t ≥ Rt for t ≥ τ , and therefore
V 1,R
t = Rt for all t ≥ τ . Thus since V 1,R

t solves the Loewner equation driven by W
for t ≥ τ , so does Rt .

Although we will not use it in this paper, we remark (and sketch a proof) that it is
possible to give an alternate martingale characterization in which one only requires
ht (z) to be a local martingale for a single point z, but one requires a particular form
for its quadratic variation:

Theorem 2.6 As in Theorem 2.4, suppose we are given a random continuous η on
H from 0 → ∞ whose Loewner driving function Wt is almost surely continuous.
Suppose further that Wt describes the evolution of a random continuous path, and V i,q

t
the image of force points under the corresponding Loewner evolution, and that for
some fixed z ∈ H the correspondingly defined ht (z) is given by

√
κ times a Brownian

motion when time is parameterized by minus the log of the conformal radius. Then
these processes describe an SLEκ(ρ) evolution at least up to the first time that z is
swallowed by the path.

Proof The proof is similar to the proof of Theorem 2.4. Condition 1 follows from a
straightforward calculation (see, e.g., [31,37] for more explanation of the log confor-
mal radius point of view) and the other two follow from the arguments in the proof of
Theorem 2.4. ��

3 The Gaussian free field

3.1 Construction and basic properties

We will now describe the construction of the two-dimensional GFF as well as some
properties that will be important for us later. The reader is referred to [29] for a more
detailed introduction. Let D ⊆ C be open with harmonically non-trivial boundary.
By this, we mean that a Brownian motion started at z ∈ D almost surely hits ∂D. Let
C∞
0 (D) denote the set of C∞ functions compactly supported in D.
We let H(D) be the Hilbert-space closure of C∞

0 (D) equipped with the Dirichlet
inner product:

( f, g)∇ = 1

2π

∫
D
∇ f (x) · ∇g(x)dx for f, g ∈ C∞

0 (D).
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The GFF h on D can be expressed as a random linear combination of a (·, ·)∇ -
orthonormal basis (φn) of H(D)

h =
∑
n

αnφn, (αn) i.i.d. N (0, 1).

Although this expansion of h does not converge in H(D), it does converge almost
surely in the space of distributions or (when D is bounded) in the fractional Sobolev
space H−ε(D) for each ε > 0 (see [29, Proposition 2.7] and the discussion thereafter).
Let (·, ·)denote the standard L2(D) inner product. If f, g ∈ C∞

0 (D) then an integration
by parts gives ( f, g)∇ = −(2π)−1( f,�g). Using this, we define

(h, f )∇ = − 1

2π
(h,� f ) for f ∈ C∞

0 (D). (3.1)

Observe that (h, f )∇ is a Gaussian random variable with mean zero and variance
( f, f )∇ . Hence h induces a map C∞

0 (D) → G,G a Gaussian Hilbert space, that
preserves the Dirichlet inner product. This map extends uniquely to H(D) and allows
us to make sense of (h, f )∇ for all f ∈ H(D) and, moreover,

Cov((h, f )∇ , (h, g)∇) = ( f, g)∇ for all f, g ∈ H(D). (3.2)

More generally, if D ⊆ C is not necessarily connected, then the GFF on D is given
by taking h to be independently a GFF on each of the components of D.

Suppose that U ⊆ D with U �= D is open. There is a natural inclusion ι of H(U )

into H(D) where

ι( f )(x) =
{
f (x) if x ∈ U,

0 otherwise.

We define the following σ -algebras. For U ⊆ D open, we let Fh
U be the σ -algebra

generatedby the restrictionh|U ofh toU . In otherwords,Fh
U is theσ -algebra generated

by (h, f ) for f ∈ C∞
0 (U ). For every closed set K ⊆ D, we let Fh

K+ be the σ -algebra
generated by the projection of h onto H⊥(D\K ). Throughout this article, we often
consider conditional expectations where we condition on h|V for V ⊆ D and by this
we mean that we consider the conditional expectation given Fh

V (resp. Fh
V+ ) if V is

open (resp. closed) in D.
If f ∈ C∞

0 (U ) and g ∈ C∞
0 (D), then as ( f, g)∇ = −( f,�g) it is easy to see that

H(D) admits the (·, ·)∇ -orthogonal decomposition H(U ) ⊕ H⊥(U ) where H⊥(U )

is the set of functions in H(D) harmonic on U . Thus we can write

h = hU + hUc =
∑
n

αU
n φU

n +
∑
n

αUc

n φUc

n

where (αU
n ), (αUc

n ) are independent i.i.d. sequences of standard normal random vari-
ables and (φU

n ), (φUc

n ) are orthonormal bases of H(U ) and H⊥(U ), respectively.
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Observe that hU is a GFF on U . The distribution hUc is a random distribution that
agrees with h on Uc. The restriction of hUc to U can be interpreted as the “harmonic
extension” of h|∂U to U . Note that hU and hUc are independent. We arrive at the
following proposition:

Proposition 3.1 (Markov property) We can write h = hU + hUc where hU , hUc are
independent distributions on D, hU has the law of a zero boundary GFF on D\U and
is zero on U, and hUc is harmonic on Uc. That is, the conditional law of h|U given
h|D\U is that of the GFF on U plus the harmonic extension (in the sense described
just above) of h|∂U to U.

We emphasize that h|U in the statement of Proposition 3.1 refers to the restriction
of h to U while hU above refers to the projection of h to H(U ). We remark that the
orthogonality of H(U ) and the set of functions in H(D) which are harmonic on U is
also proved in [29, Theorem 2.17] and it is explained thereafter how this is related to
the Markov property of the GFF. The proposition allows us to make sense of the GFF
with non-zero boundary conditions: if f : ∂D → R is any function that is L1 with
respect to harmonic measure on ∂D viewed from some point (hence every point) in
D, and F is its harmonic extension from ∂D to D, then the law of the GFF on D with
boundary condition f is given by the law of F + h where h is a zero boundary GFF
on D.

Using (3.1) and (3.2), we can derive the covariance function for (h, f ), (h, g) for
f, g ∈ C∞

0 (D). Namely, we have that

Cov((h, f ), (h, g))

= (2π)2Cov((h,�−1 f )∇ , (h,�−1g)∇) = (2π)2(�−1 f,�−1g)∇

= −2π( f,�−1g) =
∫∫

f (x)G(x, y)g(y)dxdy (3.3)

where G is the Green’s function for � on D with Dirichlet boundary conditions. That
is, G solves �G(x, y) = −2πδx (y) (in the distributional sense) where δx denotes the
Dirac mass at x and G(x, y) = 0 if x or y is in ∂D. We note that the Green’s function
is monotone in D in the sense that if D ⊆ D̃ and G (resp. G̃) is the Green’s function
on D (resp. D̃) then G(x, y) ≤ G̃(x, y) for all x, y ∈ D. This can be seen because
G̃ − G is harmonic in D (viewed as a function of one of the variables with the other
fixed) and has non-negative boundary conditions on ∂D. We also note that the law of
h is determined by (h, f ) as f ranges over C∞

0 (D).
We are now going to show that Fh

K+ is given by the intersection of Fh
U over all

U ⊆ D open containing K .

Proposition 3.2 For any deterministic, closed set K ⊆ D we have that Fh
K+ =

∩U⊇KFh
U where the intersection is over all open sets U ⊆ D containing K .

Proof We will give the proof in the case that D is bounded. Upon establishing this,
the result follows for general domains D using the conformal invariance of the GFF.

Let (φn) be an orthonormal basis of H⊥(D\K ) and, for each n, let αn = (h, φn)∇ .
Then we know that Fh

K+ = σ(αn : n ∈ N). Let ψ be a radially symmetric C∞
0 bump
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function supported in D. That is, ψ(z) ≥ 0 for all z ∈ C, ψ(z) depends only on
|z|, ∫ ψ(z)dz = 1, and ψ(z) = 0 for all |z| ≥ 1. For each n and m, let

φ̃n,m(z) =
∫

φn(y)m
2ψ(m(z − y))dy.

Note that φ̃n,m ∈ C∞(D). Let φn,m be given by φ̃n,m minus the harmonic extension of
its values from ∂D to D. Since φn is harmonic in D\K and ψ is radially symmetric,
it follows that φn,m is harmonic on the set of z ∈ D with dist(z, K ∪ ∂D) ≥ 1

m .
Moreover, note that φn,m ∈ H(D) as φ̃n,m ∈ C∞(D) and

‖φn,m‖∇ ≤ ‖φ̃n,m‖∇ ≤ ‖φn‖∇ for all n,m.

Since

(φn,m, φ)∇ → (φn, φ)∇ as m →∞ for all φ ∈ C∞
0 (D)

it therefore follows that φn,m → φn as m → ∞ in H(D) [recall that if (wm) is a
sequence in a Hilbert space which converges weakly to a limit w with the property
that ‖wm‖ ≤ ‖w‖ for all m then ‖wm − w‖ → 0 as m → ∞]. Thus with αn,m =
(h, φn,m)∇ , we have that

E[(αn − αn,m)2] = ‖φn − φn,m‖2∇ → 0 as m →∞.

Suppose that U ⊆ D is an open set which contains K and a neighborhood in D
of ∂D. Then there exists m0 ∈ N depending only on K and U such that αn,m is
Fh
U -measurable for all m ≥ m0. Indeed, this follows because

αn,m = (h, φn,m)∇ = −2π(h,�φn,m)

and �φn,m(z) vanishes for z ∈ D with dist(z, K ∪ ∂D) ≥ 1
m . Therefore αn is also

Fh
U -measurable. That is, Fh

K+ ⊆ Fh
U .

We note that the σ -algebra given by ∩Fh
V , where the intersection is over all V ⊆ D

open which contain a neighborhood of ∂D in D, is trivial by Proposition 3.1. Indeed,
this follows because the variance of the integral of the projection of h onto H(D\V )

against a C∞
0 (D) test function φ increases to the variance of the integral of h against

φ as V decreases to ∂D because the Green’s function for � on D\V converges to the
Green’s function on D. This, in particular, implies that the variance of the integral of
the projection of h onto H⊥(D\V ) against φ decreases to 0 as V decreases (simply
because the sumof the two variancesmust equal the variance of the integral of h against
φ by independence). This implies the claim. We therefore have that Fh

K+ ⊆ Fh
U for

all U ⊆ D open which contain K .
Note that Fh

U ⊆ Fh
U
+ . Thus to show that Fh

K+ = ∩U⊇KFh
U , it suffices to show

that Fh
K+ = ∩U⊇KFh

U
+ . For each m ∈ N we let Um be the 1

m -neighborhood of K . It

suffices to show that for any fixedψ1, . . . , ψk ∈ C∞
0 (D), we have that the joint law of
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(h, ψ j ) for 1 ≤ j ≤ k given Fh
U
+
m
converges to the joint law of (h, ψ j ) for 1 ≤ j ≤ k

given Fh
K+ as m → ∞. Given Fh

U
+
m
, we know that the (h, ψ j ) are jointly Gaussian

with mean given by integrating the projection of h onto H⊥(D\Um) against ψ j and
covariance given by the Green’s function for � on D\Um . Their conditional law
givenFh

K+ admits an analogous description with K in place ofUm . Since the Green’s
function for� on D\Um converges asm →∞ to the Green’s function for� on D\K ,
it follows thatwe have the desired convergence of the conditional covariance functions.
To see the convergence of the conditional means, we let (φ̃n) be an orthonormal basis
of H(D\K ) consisting of C∞

0 (D\K ) functions so that (φn) and (φ̃n) together form
an orthonormal basis of H(D). Then we can write h =∑n αnφn +∑n α̃nφ̃n and we
have that the (αn) and (̃αn) are i.i.d. N (0, 1). Thus

E
[
(h, ψ j ) |Fh

U
+
m

]
=
∑
n

αn(φn, ψ j )+
∑
n

E
[
α̃n |Fh

U
+
m

]
(φ̃n, ψ j ). (3.4)

The first summation on the right hand side is equal to E[(h, ψ j ) |Fh
K+]. We note that

for any n0 fixed we have that

n0∑
n=1

E
[
α̃n |Fh

U
+
m

]
(φ̃n, ψ j ) → 0 as m →∞

since for each fixed n there exists m0 sufficiently large so that the support of φ̃n is
disjoint from Um for all m ≥ m0 and for such m we have that E[̃αn |Fh

U
+
m
] = 0.

Moreover, by Jensen’s inequality we have that

E

⎡
⎣
(∑
n>n0

E
[
α̃n |Fh

U
+
m

]
(φ̃n, ψ j )

)2⎤
⎦ = E

⎡
⎣
(
E

[∑
n>n0

α̃n(φ̃n, ψ j ) |Fh
U
+
m

])2⎤
⎦

≤
∑
n>n0

(φ̃n, ψ j )
2 = (2π)2

∑
n>n0

(φ̃n,�
−1ψ j )

2∇ .

Since�−1ψ j is in H(D), it follows that the summation on the right hand side tends to 0
as n0 →∞. Therefore the second summation in (3.4) tends to 0 in probability asm →
∞ which implies that there exists a sequence (mk) tending to∞ sufficiently quickly
along which it tends to 0 almost surely. Since it is also an L2-bounded martingale, the
martingale convergence theorem implies that it converges almost surely. Combining,
this almost sure limit must be equal to 0, and this implies the result. ��
Proposition 3.3 Assume that D is a non-trivial simply connected domain and let K
be a deterministic closed subset of D. Let h1 be the harmonic function on D\K which
agrees with the projection of h onto H⊥(D\K ), restricted to D\K. Then a.s.

lim
D\K�z→z0

h1(z) = 0 for all z0 ∈ ∂D\K .
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Proof LetU be a simply connected neighborhood of z0 such that the distance fromU
to K is positive. Then [37, Lemma 3.2] states that the projections of h onto H⊥(D\K )

and H⊥(D\U ) are almost independent, which means that their joint law is absolutely
continuous with respect to the product of their marginal laws. This implies that for
almost all instances of the former, the conditional law of the latter is absolutely con-
tinuous with respect to its unconditioned law. We note that the restriction to U of the
projection of h onto H⊥(D\U ) is equal to h|U . Therefore the conditional law of h|U
given the projection of h onto H⊥(D\K ) is absolutely continuous with respect to its
unconditioned law. Moreover, h|U given the projection of h onto H⊥(D\K ) can be
written as the sum of a function h1 which is harmonic in D\K and a zero-boundary
GFF h̃ in D\K restricted to U .

Assume that we have fixed an instance of h1. Let (zn) be a sequence in D with
zn → z0 as n → ∞. For each n ∈ N, we let ϕn : U → D be the unique conformal
map with ϕn(zn) = 0 and ϕ′n(zn) > 0. Let μn be the law of h ◦ ϕ−1

n and let μ̃n (resp.
μ̃′
n) be the law of h̃ ◦ ϕ−1

n [resp. (̃h + h1) ◦ ϕ−1
n ] with the instance of h1 fixed. Then

μn and μ̃′
n are almost surely (in the realization of h1) mutually absolutely continuous

for each n. Moreover, the Radon–Nikodym derivative Zn of μ̃′
n with respect to μn has

the following property. For every ε > 0 there exists δ > 0 (uniformly in n) such that
if A is any event with μn[A] < δ then μ̃′

n[A] =
∫
Zn1Adμn < ε. Indeed, this follows

because we can always express A in terms of an event which involves h|U and then
compute using the Radon–Nikodym derivative of the law of (̃h + h1)|U with respect
to the law of h|U .

For each ζ > 0 we let φζ be a C∞ function which is non-negative, radially sym-
metric, has integral 1, and which is supported in the annulus D\B(0, 1− ζ ). Then
we have that both (h ◦ ϕ−1

n , φζ ) and (̃h ◦ ϕ−1
n , φζ ) tend to 0 in probability as ζ → 0

and n → ∞. Indeed, this can be seen because both are mean-zero Gaussian random
variables for each ζ > 0 and n ∈ N with variance tending to 0 as ζ → 0 and n →∞.
That is, for each δ > 0 there exists ζ0 > 0 and n0 ∈ N such that ζ ∈ (0, ζ0) and
n ∈ N with n ≥ n0 implies that the variance of both (h ◦ ϕ−1

n , φζ ) and (̃h ◦ ϕ−1
n , φζ )

is at most δ. On the other hand, since h1 is harmonic in U we have that h1 ◦ ϕ−1
n is

harmonic in D, hence (h1 ◦ ϕ−1
n , φζ ) = h1 ◦ ϕ−1

n (0) = h1(zn) for all ζ ∈ (0, 1) and
n ∈ N.

Fix δ > 0 so that if μn[A] < δ then μ̃′
n[A] < 1/4. Let a > 0 be arbitrary. Assume

that we have fixed ζ0 > 0 and n0 ∈ N such that ζ ∈ (0, ζ0) and n ≥ n0 implies that
μn[|(h ◦ ϕ−1

n , φζ )| > a/2] < δ. Then μ̃′
n[|((̃h + h1) ◦ ϕ−1

n , φζ )| > a/2] < 1/4. By
possibly further decreasing the value of ζ0 > 0 and increasing the value of n0 we also
have that ζ ∈ (0, ζ0) and n ≥ n0 implies that μ̃n[|(̃h ◦ ϕ−1

n , φζ )| > a/2] < 1/4.
Using that the event |h1(z)| > a is the same as the event |((̃h + h1) ◦ ϕ−1

n , φζ )− (̃h ◦
ϕ−1
n , φζ )| > a, we have that (with a slight abuse of notation after the first equality)

1{|h1(zn)|>a} = μ̃n[|((̃h + h1) ◦ ϕ−1
n , φζ )− (̃h ◦ ϕ−1

n , φζ )| > a]
≤ μ̃′

n[|((̃h + h1) ◦ ϕ−1
n , φζ )| > a/2] + μ̃n[|(̃h ◦ ϕ−1

n , φζ )| > a/2]
≤ 1

2
.
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Since 1{|h1(zn)|>a} takes values in {0, 1}, we have that 1{|h1(zn)|>a} ≤ 1/2 implies that
|h1(zn)| ≤ a. Therefore |h1(zn)| ≤ a for n ≥ n0, hence h1(zn) → 0 as n → ∞, as
desired.

We finish this subsection with the following proposition, which describes the
absolute continuity properties of the GFF.

Proposition 3.4 (Absolute continuity) Suppose that D1, D2 are simply connected
domains with D1 ∩ D2 �= ∅. For i = 1, 2, let hi be a zero boundary GFF on Di and
Fi harmonic on Di . Fix a bounded simply connected open domain U ⊆ D1 ∩ D2.

(i) (Interior) If dist(U, ∂Di ) > 0 for i = 1, 2 then the laws of (h1 + F1)|U and
(h2 + F2)|U are mutually absolutely continuous.

(ii) (Boundary) Suppose that there is a neighborhood U ′ of the closure U of U such
that D1∩U ′ = D2∩U ′, and that F1− F2 tends to zero as one approaches points
in the sets ∂Di ∩U ′. Then the laws of (h1+ F1)|U and (h2+ F2)|U are mutually
absolutely continuous.

Although Proposition 3.4 is stated in the case thatU is bounded, an analogous result
holds when U is not bounded. We will in particular use this result in the following
setting without reference: D1 = D2 = D and there exists a conformal transforma-
tion ϕ : D → D̃ where D̃ is bounded and Ũ = ϕ(U ) satisfies the hypotheses of
Proposition 3.4 part (i) or part (ii).

We will often make use of Proposition 3.4 in the following manner. Theorem 1.1
gives the existence of a coupling of an SLEκ(ρ) (a flow line) or SLEκ ′(ρ) process (a
counterflow line) with the GFF (say, on H) provided the boundary data of the GFF
is piecewise constant and changes values a finite number of times. For more general
boundary data, one can still construct the flow and counterflow lines of the GFF
provided the boundary data near the starting point is piecewise constant. The reason
for this is that Proposition 3.4 implies that the law of the field near the starting point
is absolutely continuous with respect to the law of a GFF that does have piecewise
constant boundary data which changes a finite number of times.

More precisely, suppose that h is a GFF on H with piecewise constant boundary
data and that η is its flow or counterflow line starting from x ∈ ∂H. If h̃ is another
GFF on H whose boundary data agrees with that of h in a neighborhood of x and
U is any bounded, open subset of H which contains a neighborhood of x and with
positive distance from those boundary segments where the boundary data of h and h̃
differ, then we know that the laws of h|U and h̃|U are mutually absolutely continuous.
Let ZU denote the Radon–Nikodym derivative of the law of the latter with respect to
the former. Then weighting the law of (h|U , ηU ), ηU given by η stopped upon first
exiting U , by ZU yields a coupling where the marginal law of the first element is the
same as the law of h̃|U , the marginal law of the second element is mutually absolutely
continuous with respect to the law of ηU , and the pair satisfies the same Markov
property described in the statement of Theorem 1.1. (We will justify the Markov
property more carefully just after the proof of Lemma 3.6.)

Note that all of the almost sure properties of ηU are preserved under this change
of measure. The caveat is that by combining Theorem 1.1 and Proposition 3.4 in this
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way (with larger and larger domainsU ), the flow or counterflow line of h̃ will only be
defined up until it hits a boundary segment which does not have piecewise constant
boundary data.

One can also apply this operation in reverse. Namely, suppose that h is a GFF
on H,U ⊆ H is bounded and open such that h has piecewise constant boundary
data in ∂H ∩ U , and η is a path coupled with h which satisfies the Markov property
described in the statement of Theorem 1.1. Then Proposition 3.4 and Theorem 2.4
together imply that the joint law of (h|U , ηU ), with ηU as defined above, is mutually
absolutely continuous with respect to the joint law of a GFF with piecewise constant
boundary data on all of ∂H and its flow or counterflow line starting from the origin,
both restricted toU . In particular, all of the almost sure properties of ηU are the same
under both laws. This is useful because the Loewner driving function for ηU may not
be described by a simple SDE.

We also remark that it is possible to construct directly (without appealing to Propo-
sition 3.4) a coupling as in Theorem 1.1 with more general types of boundary data. We
will not need this in the present article because we will not need to analyze the specific
form of the driving diffusion in the more general setting. See [31, Theorem 4.5] for a
precise statement of this in the setting of a very closely related coupling of SLE with
the GFF (the so-called “reverse” coupling).

Proof of Proposition 3.4 Let Ũ ⊆ D1 ∩ D2 be such that dist(Ũ , ∂Di ) > 0 for i =
1, 2,U ⊆ Ũ , and dist(U, ∂Ũ ) > 0. By Proposition 3.1, we can write (hi + Fi )|Ũ =
hŨi + (hŨ

c

i + Fi )|Ũ where hŨi is a zero boundary GFF on Ũ and hŨ
c

i + Fi is harmonic
on Ũ , both restricted to Ũ . We assume that h1, h2 are coupled together on a common
probability space so that hŨ1 = hŨ2 and that hŨ

c

1 , hŨ
c

2 are independent. Letφ ∈ C∞
0 (Ũ )

be such that φ|U ≡ 1 and let g = φ((hŨ
c

2 + F2) − (hŨ
c

1 + F1)). Then we have that
g ∈ H(Ũ ) and (h1+F1+g)|U = (h2+F2)|U .We note that g is ameasurable function
of h1, h2 since the hŨ

c

i for i = 1, 2 are measurable functions of h1, h2 as their series
expansions can be determined by taking a (·, ·)∇ -inner product of h1, h2 with respect
to an appropriately chosen orthonormal basis. Similarly, (hŨ1 , g)∇ is a measurable
function of h1, h2 because we can represent it as

∑
j a j b j where (a j ), (b j ) are the

coordinates of hŨ1 , gwith respect to a (·, ·)∇ -orthonormal basis.We note that, although
g is a random function in H(U ), the series

∑
j a j b j converges almost surely because

g is independent of hŨ1 . [Here, we are using that this holds if g is any fixed function in

H(U ) hence also holds in the case that g is independent of hŨ1 by Fubini’s theorem.] If

we weight the law of h1, h2 by Z−1 exp((hŨ1 , g)∇) where Z = exp( 12‖g‖2∇) then the

law of hŨ1 under the weighted law is equal to the law of hŨ1 + g under the unweighted

law. As g is compactly supported in Ũ and hŨ
c

1 + F1 is harmonic in Ũ , we have

that (hŨ
c

1 + F1, g)∇ = 0, hence (hŨ1 , g)∇ = (h1 + F1, g)∇ . Therefore if we weight
the law of h1, h2 by Z−1 exp((h1 + F1, g)∇) where Z = exp( 12‖g‖2∇) then the law
of (h1 + F1)|U under the weighted law is equal to the law of (h1 + F1 + g)|U =
(h2 + F2)|U under the unweighted law. We conclude that, under the coupling that we
have constructed of h1, h2, an event for (h1 + F1)|U has zero probability if and only
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if it has zero probability for (h2 + F2)|U . That is, the law of (h1 + F1)|U is mutually
absolutely continuous with respect to the law of (h2 + F2)|U . This proves part (i).

For part (ii), we let Ũ = U ′ ∩ D1 = U ′ ∩ D2. Then we have (hi + Fi )|Ũ =
hŨi + (hŨ

c

i + Fi )|Ũ where hŨi is a zero boundary GFF on Ũ and hŨ
c

i + Fi is harmonic
in Ũ , both restricted to Ũ . We assume that h1, h2 are coupled on a common probability
space so that hŨ1 = hŨ2 and hŨ

c

1 , hŨ
c

2 are independent. Let φ be a C∞ function with

φ|U ≡ 1 andwith φ equal to 0 on a neighborhood of (U ′)c and let g = φ((hŨ
c

2 +F2)−
(hŨ

c

1 + F1)). Then we have that (h1 + F1 + g)|U = (h2 + F2)|U where g ∈ H(Ũ ).
The rest of the proof thus follows using the same argument used to prove the proof of
part (i). ��

We remark that a slight variant of Proposition 3.4 is stated and proved in [37,
Lemma 3.2] in the case that one considers the law of the GFF on disjoint closed
subsets.

Remark 3.5 Suppose that h is a GFF on a domain D, and f ∈ C∞
0 (D). As in the proof

of Proposition 3.4, we know that reweighing the law μ of h by Z−1 exp((h, f )∇)

yields the law μ f of h + f . Consequently, the Cauchy–Schwarz inequality implies

that μ(E) ≤ μ
1/2
f (E) exp(‖ f ‖2∇) for every event E . The same holds if we reverse

the roles of μ and μ f . More generally, if we apply Hölder’s inequality, we have that

μ(E) ≤ μ
1/p
f (E) exp( q2‖ f ‖2∇) where 1

p + 1
q = 1. These simple facts allow us to give

explicit bounds which relate the probabilities of events in the setting of parts (i) and (ii)
of Proposition 3.4. For example, suppose that D = D1 = D2 is a Jordan domain and
L is an interval in ∂D. Suppose that h1 and h2 are GFFs on D with h1|∂D\L = h2|∂D\L
and |h1|L | ≤ M, |h2|L | ≤ M for some constant M > 0. Let F be the function which

is harmonic in D with F |∂D\L ≡ 0 and F |L = h2|L − h1|L . Then h1 + F
d= h2. Let

U be the set of points in D which have distance at least ε > 0 from L and let G be
the function which agrees with F in U , is 0 on the set of points with distance at most
1
2ε from ∂D, and otherwise harmonic. Then there exists C > 0 depending only on
M, D, ε such that ‖G‖2∇ ≤ C . Moreover, with μG the law of h1 + G restricted to U ,
we have that h2|U ∼ μG . Thus with μ the law of h1|U , for each p > 1 there exists
a constant Cp > 0 depending only on M, D, ε such that μ(E) ≤ Cpμ

1/p
G (E) for all

events E .

3.2 Local sets

The theory of local sets, developed in [37], extends the Markovian structure of the
field (Proposition 3.1) to the setting of conditioning on the values it takes on a random
set A ⊆ D. In this section, we will give an overview of local sets which is very closely
based on the treatment given in [37, Section 3.3]. We will cite some of the results in
[37] in the proofs of the statements below.

Throughout, we shall assume for convenience that D ⊆ C is a bounded domain
and h is a GFF on D. Let � be the collection of all nonempty, closed subsets of D
which contain ∂D. We view � as a metric space endowed with theHausdorff distance.
That is, the distance between sets S1, S2 ∈ � is
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dHAUS(S1, S2) := max

{
sup
x∈S1

dist(x, S2), sup
y∈S2

dist(y, S1)

}
.

It is well known (and the reader may easily verify) that � is a compact metric space.
(In order to treat the case that D is unbounded, we can conformally map to the sphere
and use the induced Euclidean metric on the sphere.) Let G be the Borel σ -algebra on
� induced by this metric.

Suppose that (A, h) is a coupling of a GFF h on D and a random variable A taking
values in �. Then A is said to be a local set of h if there exists a law on pairs (A, h1)
where h1 is a distribution on D with h1|D\A harmonic is such that a sample with the
law (A, h) can be produced by

1. choosing the pair (h1, A),
1. then sampling an instance h2 of the zero boundary GFF on D\A and setting

h = h1 + h2.

Whenever we use the phrase “A is a local set of h,” we will always assume that
∂D ⊆ A even though we may not say this explicitly.

Deterministic closed sets are also obviously local and, by Theorem 1.1, so is the hull
Kτ of an SLEκ(ρ) process stopped at time τ at or before the continuation threshold
is reached. These are the motivating examples for the theory.

Given A ∈ �, let Aδ denote the closed set containing all points in D whose distance
from A is atmost δ. LetAδ be the smallest σ -algebra inwhich A and the restriction of h
(as a distribution) to the interior of Aδ are measurable. LetA =⋂δ>0 Aδ . Intuitively,
this is the smallest σ -algebra in which A and the values of h in an infinitesimal
neighborhood of A are measurable. Suppose that A is local for h. We let CA be the
conditional expectation of h given A. We note that we can view CA as a random
variable which takes values in the space of distributions and we can identify CA with
the harmonic function h1, and this is the perspective that we will take. Indeed, as
we will explain carefully just below, the σ -algebra generated by the values of h2
in Aδ becomes trivial as δ → 0, i.e., A = σ(h1). Hence, we can write (CA, φ) =
E[(h, φ) |A] = E[(h1, φ) |A] = (h1, φ).

Let us now explain carefully why A = σ(h1). We first note that h1 is obviously
A-measurable because it is Aδ-measurable for every δ > 0 as it is harmonic in D\A.
To show that A ⊆ σ(h1), it suffices to show that the conditional law of h2 given A
is the same as the conditional law of h2 given σ(h1). [Indeed, this will imply that the
conditional law of h given σ(h1) is the same as the conditional law of h given A.]
That is, it is a zero boundary GFF on D\A. Let Bδ = {x ∈ D : dist(x, A) > δ}.
Let Bδ be the σ -algebra generated by h1 and the projection hδ

21 of h2 onto H⊥(Bδ).
Note that Bδ contains Aδ for every δ > 0 because if φ ∈ C∞

0 (D), on the event that
the support of φ is contained in Aδ , we have (h, φ) = (h1, φ) + (hδ

21, φ). Therefore
B = ∩δ>0Bδ contains A. It suffices to show that the conditional law of h2 given B is
that of a zero-boundary GFF on D\A (because then the same will be true forA). This
follows from the backwards martingale convergence theorem. Indeed, if φ ∈ C∞

0 (D)

and Sδ is the event that the support of φ is contained in Bδ and S is the event that the
support of φ is contained in D\A, then with hδ

22 the projection of h2 onto H(Bδ) we
have that
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E[exp(iθ(h2, φ)∇) |Bδ]1Sδ = E[exp(iθ(hδ
22, φ)∇) |Bδ]1Sδ = exp(−θ2‖φ‖2∇/2)1Sδ

where the final equality follows by the Markov property of the GFF. Taking a limit
as δ → 0, the right hand side converges to exp(−θ2‖φ‖2∇/2)1S as Sδ increases to S
while the left hand side converges to

E[exp(iθ(h2, φ)∇) |B]1S

by the backwards martingale convergence theorem.
We note that in the case that A is a deterministic, closed set then Proposition 3.2

implies that A is the same as the σ -algebra generated by the projection of h onto
H⊥(D\A) so that CA is the same as the projection of h onto H⊥(D\A). The proof
of Lemma 3.6 given just below implies that A is equal to the σ -algebra generated by
(h1, A) as in the definition of a local set given above.

In many places in this article, we will consider conditional expectations where we
condition on A and h|A where A is a local set for h. By this, we mean that we consider
the conditional expectation CA of h given the σ -algebra A defined just above.

There are several other characterizations of local sets which are given in the fol-
lowing restatement of [37, Lemma 3.9].

Lemma 3.6 Suppose that (A, h) is a random variable which is a coupling of an
instance h of the GFF on D with a random element A of �. Then the following are
equivalent:

(i) For each deterministic open U ⊆ D, we have that given the projection of h onto
H⊥(U ), the event A∩U = ∅ is independent of the projection of h onto H(U ). In
other words, the conditional probability that A∩U = ∅ given h is a measurable
function of the projection of h onto H⊥(U ).

(ii) For each deterministic open U ⊆ D, we let S be the event that A intersects U
and let

Ã =
{
A on Sc,

∅ otherwise.

Then we have that given the projection of h onto H⊥(U ), the pair (S, Ã) is
independent of the projection of h onto H(U ).

(iii) Conditioned onA, (a regular version of) the conditional law of h is that of h1+h2
where h2 is the GFF with zero boundary values on D\A (extended to all of D)
and h1 is an A-measurable random distribution [i.e., as a distribution-valued
function on the space of distribution-set pairs (A, h), h1 isA-measurable]which
is almost surely harmonic on D\A.

(iv) A is a local set for h. That is, a sample with the law of (A, h) can be produced as
follows. First choose the pair (A, h1) according to some law where h1 is almost
surely harmonic on D\A. Then sample an instance h2 of the GFF on D\A and
set h = h1 + h2.

123



Imaginary geometry I: interacting SLEs 609

Proof Trivially, (ii) implies (i).
Next, suppose A satisfies (i). We will show that (iii) holds. For each δ > 0, let Dδ

be the collection of sets which can be written as D ∩ S where S is a closed square in
C of side length δ with corners in the grid δZ2 and let Âδ = ∪{S ∈ Dδ : S ∩ Aδ �= ∅}.
We claim that Âδ satisfies (i) for each δ > 0. To see this, fix U ⊆ D open and let Ûδ

be given by the interior of ∪{S ∈ Dδ : S ∩U �= ∅}. Then Âδ intersects U if and only
if Aδ intersects the intersection of D and the closure of Ûδ . For each δ′ > 0, let Ũδ,δ′
be given by the δ′-neighborhood of Ûδ in D. Then Aδ intersects the intersection of D
and the closure of Ûδ if and only if A intersects the intersection of D and the closure
of Ũδ,δ . Equivalently, Aδ intersects the intersection of D and the closure of Ûδ if and
only if A intersects ∩δ′>δŨδ,δ′ . Since A satisfies (i), we know that the conditional
probability of {A ∩ Ũδ,δ′ �= ∅} given h is a measurable function of the projection of
h onto H⊥(Ũδ,δ′). This is in turn a measurable function of the projection of h onto
H⊥(U ) (sinceU ⊆ Ũδ,δ′). Therefore the event { Âδ∩U �= ∅} = ∩δ′>δ{A∩Ũδ,δ′ �= ∅}
is a measurable function of the projection of h onto H⊥(U ) (note that we can represent
the intersection as a countable intersection so that the event in question is measurable).
Note that there are only finitely many possible choices for Âδ since we assumed D to
be bounded.

We will now show that Âδ satisfies (iii). Let D∪
δ be the collection of all sets which

can be expressed as a finite union of elements in Dδ . Fix C ∈ D∪
δ and assume that

P[ Âδ ⊆ C] > 0. Since Âδ satisfies (i), we have that the conditional law of h in
D\C given both Âδ ⊆ C and the projection of h onto H⊥(D\C) is the same as the
conditional law of h in D\C given just the projection of h onto H⊥(D\C). That Âδ

satisfies (iii) thus follows from Proposition 3.1.
We are now going to use a limiting procedure to deduce that A satisfies (iii) from

the fact that Âδ satisfies (iii). Assume that δ = 2− j for some j ∈ N. Let Âδ be defined
analogously toAδ butwith Âδ in place of Aδ and let Ãδ be the smallestσ -algebrawhich
contains Âδ and with respect to which A is measurable. As we will see momentarily,
the σ -algebras Ãδ will be useful to consider because they decrease as δ decreases.
We claim that the conditional law of h given Âδ is the same as the conditional law
of h given Ãδ . To see that this is the case, fix k ≥ j , let δ′ = 2−k , and let Ãδ,δ′
be the smallest σ -algebra which contains both Âδ and Âδ′ . By the argument in the
previous paragraph, it follows that the conditional law of h given Âδ is the same as the
conditional law of h given Ãδ,δ′ . The claim then follows because Ãδ = ∩∞k= j Ãδ,2−k .

Since the σ -algebras Ã2− j are decreasing, the conditional law of h given Â2− j

is the same as the conditional law of h given Ã2− j , and ∩∞j=1Ã2− j = A, the reverse
martingale convergence theorem implies the almost sure convergenceC Â2− j

as j →∞
in the weak sense, i.e., for each fixed φ, we have a.s. that

(C Â2− j
, φ) → E[(h, φ) |A] as j →∞. (3.5)

In order to finish the proof that (iii) holds for A, we need to show that E[(h, φ) |A]
defines a distribution on D and that the conditional law of φ → (h, φ)−E[(h, φ) |A]
givenA is that of a GFF on D\A with zero boundary conditions. Since (iii) holds for
each Âδ , we have that
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E[exp(iθ(h, φ)) | Â2− j ] = exp(iθ(C Â2− j
, φ)− θ2σ 2

D\ Â2− j
(φ)/2) (3.6)

where σ 2
D\ Â2− j

(φ) = ∫∫ φ(x)GD\ Â2− j
(x, y)φ(y)dxdy and GD\ Â2− j

is the Green’s

function for � on D\ Â2− j . Thus sending j → ∞, by combining (3.5) and (3.6) we
have a.s. that

E[exp(iθ(h, φ)) |A] = exp(iθE[(h, φ) |A] − θ2σ 2
D\A(φ)/2)

where σ 2
D\A(φ) = ∫∫ φ(x)GD\A(x, y)φ(y)dxdy and GD\A is the Green’s function

for � on D\A. That is, for each fixed φ we have that the conditional law of (h, φ)−
E[(h, φ) |A] givenA is equal to that of (̃h, φ)where, givenA, h̃ has the law of a zero-
boundary GFF on D\A. This implies that we can find a coupling of h̃ and h, A so that
for each φ ∈ C∞

0 (D) we almost surely have that (̃h, φ) = (h, φ)− E[(h, φ) |A]. By
letting (φ j ) be a suitably chosen family in C∞

0 (D), it is easy to see that the family of
random variables (h, φ j ) − E[(h, φ j ) |A] a.s. determines h̃. Thus using this, we set
(CA, φ) = (h, φ)− (̃h, φ) and see that this a.s. defines a distribution on D since h, h̃
are a.s. distributions on D. Therefore (iii) holds for A.

Now (iv) is immediate from (iii) when we set h1 = CA.
To obtain (ii) from (iv), if suffices to show that given the projection of h onto

H⊥(U ) and the pair (S, Ã), the conditional law of the projection of h onto H(U ) is
the same as its a priori law (or its law conditioned on only the projection of h onto
H⊥(U )), namely the law of the zero boundary GFF on U . Assuming (iv), we can
write h = h1 + h2 where, conditional onA, we have that h1 is harmonic in D\A and
h2 has the law of a zero-boundary GFF in D\A. On the event that A ⊆ D\U (which
we emphasize isA-measurable), we can apply the Markov property to the GFF h2 so
that, given the σ -algebra F1 generated by A and Fh2

((D\A)\U )+ we have that

h2 = h21 + h22

where h21 is harmonic on U and h22 has the law of a GFF on U with zero boundary
conditions. We claim that F1 is the same as the σ -algebra F2 generated by A and
Fh

(D\U )+ . (It is intuitively obvious that this should be true because both σ -algebras
depend on the values of the GFF in the same way, we can build h from h1 and h2, and
we can also build h2 from h1 and h. As we will see below, this intuition is what leads
to the proof.) Upon showing this, we will have (on A ⊆ D\U ) that the conditional
law of h given A and Fh

(D\U )+ can be written as

h = h1 + h21 + h22

where h1 is a distribution on D which is harmonic on D\A, h21 is a distribution on
D\A which is harmonic on U , and h22 is a zero-boundary GFF on U and h1, h21 are
determined by A and Fh

(D\U )+ . This, in particular will imply that the conditional law

of the projection of h onto H(U ) given A and Fh
(D\U )+ , on the event that A ⊆ D\U ,

is that of a zero-boundary GFF on U .
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To see the claim, one simply has to note that, on A ⊆ D\U , conditioning on either
F1 or F2 is equivalent to conditioning on σ(h1, h21). Indeed, we note that this is
obviously true in the case of F1 from how it is defined. To see that conditioning on
F2 is equivalent to conditioning on σ(h1, h21) on A ⊆ D\U , we first note that h1 is
obviously F2-measurable. Let G2,δ be the σ -algebra generated by A and the values
of h2 in ((D\A)\U )δ . That is, G2,δ is the σ -algebra generated by h1 and, with Sδ(φ)

the event that the support of φ is contained in ((D\A)\U )δ , the random variables
(h2, φ)1Sδ(φ) for φ ∈ C∞

0 (D). Then we have that G2,δ is contained in the σ -algebra
generated by h1 and Fh

(D\U )δ
because (D\U )δ contains ((D\A)\U )δ and, for any

φ ∈ C∞ with support contained in ((D\A)\U )δ we have that (h2, φ) is determined
by (h, φ) and (h1, φ). Thus, by taking an intersection over δ > 0, by Proposition 3.2
applied to the conditional law of h given A = σ(h1), this implies that (on A ⊆
D\U ) σ(h1, h21) ⊆ F2. For the reverse inclusion, we have that h1 is σ(h1, h21)-
measurable.Moreover, (D\U )δ ⊆ Aδ∪((D\A)\U )δ . ThereforeFh

(D\U )δ
is contained

in the σ -algebra generated by A and (h2, φ)1Tδ(φ) = ((h, φ) − (h1, φ))1Tδ(φ) for
φ ∈ C∞

0 (D) where Tδ(φ) is the event that the support of φ is contained either in Aδ

or in ((D\A)\U )δ . Recall that the conditional law of h2 given A is that of a GFF on
D\A with zero boundary conditions. Therefore, as δ → 0, the σ -algebra generated
by A and the values of h2 in Aδ (defined analogously to the case of G2,δ) decreases
to the σ -algebra generated by A. Moreover, it follows from Proposition 3.2 that G2,δ
decreases to the σ -algebra generated by A and σ(h21). By sending δ → 0, we thus
see that F2 ⊆ σ(h1, h21).

Now, we know from the Markov property (Proposition 3.1) for the GFF h by itself
that we can also write

h = ĥ1 + ĥ2

where ĥ1 is a distribution which is harmonic onU and the conditional law of ĥ2 given
F(D\U )+ is that of a GFF on U . Combining our two expressions tells us that further
conditioning on A tells us nothing about the projection of h onto H(U ) on the event
that A ⊆ D\U . In other words, the conditional law of the projection of h onto H(U )

given F(D\U )+ ,A, and A ⊆ D\U is equal to the conditional law of the projection of
h onto H(U ) given F(D\U )+ . This implies (ii). ��

Since Kτ is local for h, we can write h = h1 + h2 where h1 is harmonic in H\Kτ

and the conditional law of h2 given h1 is that of a zero-boundary GFF on H\Kτ .
Equivalently, we can write h = h̃ ◦ fτ + h1 where h1 is harmonic in H\Kτ and h̃
is a zero-boundary GFF on H independently of fτ and h1. Theorem 1.1 also implies
that on H\Kτ , we have that h = h̃ ◦ fτ + hτ where h̃ is a zero-boundary GFF given
fτ . Combining, it is not difficult to see that h1 = hτ on H\Kτ . (We will see later
in Lemma 3.10 that under certain weak hypotheses which are satisfied by SLEκ for
κ ∈ (0, 8) [24] we have that h1 is determined by its restriction to H\Kτ . That is, h1
is determined by hτ .)

Let us now elaborate further on the remark made just after the proof of Proposi-
tion 3.4 regarding the Markov property when one performs a change of measure to the
GFF which corresponds to changing its boundary data away from the starting point

123



612 J. Miller, S. Sheffield

of the SLE. We will use the same notation introduced just after Proposition 3.4 and
write Kt for the hull of η([0, t]).

Suppose that φ ∈ H(H). Then the Radon–Nikodym derivative of the law of h + φ

with respect to the law of h is given by a normalizing constant times exp((h, φ)∇)

[this is the infinite dimensional analog of the fact that if Z ∼ N (0, 1) and μ ∈ R then
the Radon–Nikodym derivative of the law of Z + μ with respect to the law of Z is
given by a normalizing constant times eμx ]. Let τ be any stopping time for ηU . Then
we have that h = h1 + h2 where h2 = h̃ ◦ fτ and h̃ has the law of a zero-boundary
GFF on H which is independent of the pair h1, fτ and h1 is a distribution defined on
all of H which is harmonic in H\Kτ . As the Dirichlet inner product is conformally
invariant, we have that

‖φ ◦ f −1
τ ‖∇ = ‖φ|H\Kτ ‖∇ ≤ ‖φ‖∇ < ∞.

This implies that it makes sense to take the (·, ·)∇ -inner product of the partial sums in
the series expansion of h̃ with φ◦ f −1

τ and that these partial sums converge as n →∞.
Moreover, using the conformal invariance of the Dirichlet inner product, we also have
that (̃h ◦ fτ , φ)∇ = (̃h, φ ◦ f −1

τ )∇ as this equality holds when one replaces h̃ with the
partial sums in the series expansion for h̃. If φ ∈ C∞

0 (H), then we can define (h1, φ)∇
by taking it to be equal to − 1

2π (h1,�φ), using that this integral is defined as h1 is a
distribution on all ofH. With this definition, we have that (h1, φ)∇ = (h− h̃ ◦ fτ , φ)∇
for all φ ∈ C∞

0 (H). If φ ∈ H(H), then we can find a sequence (φn) in C∞
0 (H)

which converges to φ in H(H). Since (h − h̃ ◦ fτ , φn)∇ → (h − h̃ ◦ fτ , φ)∇ almost
surely (at least along a subsequence) we can define (h1, φ)∇ by taking it to be equal
to (h− h̃ ◦ fτ , φ)∇ . This gives a definition of (h1, φ)∇ for all φ ∈ H(H) (which, as in
the case of the GFF, is defined for each φ up to a set of measure zero which a priori
depends on φ). We can write

exp((h, φ)∇) = exp((̃h ◦ fτ + h1, φ)∇)

= exp((̃h, φ ◦ f −1
τ )∇)× exp((h1, φ)∇).

Note that (̃h, φ ◦ f −1
τ )∇ is equal to the (·, ·)∇ -inner product of h̃ and the (·, ·)∇ -

orthogonal projection φ̃τ of φ ◦ f −1
τ onto H(H) as the series expansion for h̃ is given

in terms of an orthonormal basis of H(H). Equivalently, φ̃τ is given by subtracting
from φ ◦ f −1

τ the harmonic extension of its values from ∂H to H. For x ∈ ∂H, we
note that φ ◦ f −1

τ (x) can only be non-zero provided x ∈ fτ (ηU ([0, τ ])) as φ ∈ H(H).
Therefore the conditional law of h̃ given fτ , h1 under the weighted law is equal to
that of a zero-boundary GFF on H plus φ̃τ . This implies that under the weighted law
we have that

h = ĥ ◦ fτ + φ̃τ ◦ fτ + h1 (3.7)

where ĥ has the law of a zero-boundary GFF on H given fτ , φ̃τ , and h1.
Suppose that h is a function which is harmonic in H with zero boundary values

on a neighborhood of ∂U ∩ ∂H. We then take φ̂ ∈ C∞(H) so that φ̂ ≡ 1 on U and
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Fig. 22 Proposition 3.7 allows us to extend Theorem 1.1 to the setting of multiple SLE-related paths
by taking their conditionally independent union. The illustration depicts a zero-boundary GFF plus an
unspecified harmonic function ψ coupled with two SLE processes η, η̃ (possibly with different κ values)
emanating from distinct points x, x̃ ∈ ∂H. If τ, τ̃ are η, η̃ stopping times, respectively, then the field given
η([0, τ ]), η̃([0, τ̃ ]) is the sum of a zero boundary GFF and a harmonic function, whose boundary values
are given above. One can also change the angle of one or both paths by adding a constant to the boundary
conditions along that path. It is not obvious a priori what the boundary conditions should be at locations
where the paths intersect (we will treat this issue systematically in Sect. 6)

φ̂ ≡ 0 on a small enough neighborhood of U so that φ = hφ̂ vanishes on ∂H. Thus
φ ∈ H(H) so that we may apply the above for this choice of φ. As mentioned earlier,
we have that h1 = hτ in H\Kτ . Observe that φ̃τ ◦ fτ + hτ (for this choice of φ)
restricted to U is equal to the restriction to U of the function ĥτ which is harmonic in
H\Kτ with boundary values given by those of hτ onH∩ ∂Kτ and those of hτ + h on
∂H\Kτ . That is, we have that

h = ĥ ◦ fτ + ĥτ (3.8)

inH\Kτ . This proves the claimed Markov property because we can always transform
the law of the field restricted toU to the law of the field restricted toU with boundary
values which differ outside of U by adding such a function to the field.

One important property of local sets is that given local sets A1 and A2, the con-
ditionally independent union A1∪̃A2 (defined in the proposition statement below) is
also local. This result is contained in the following restatement of [37, Lemma 3.10];
see also Fig. 22.

Proposition 3.7 Suppose h is aGFFon D, A1, A2 are randomvariables taking values
in �, and that (A1, h) and (A2, h) are couplings for which A1 and A2 are local. Let
A = A1∪̃A2 denote the random variable taking values in � which is given by first
sampling h, then sampling A1, A2 independently from their conditional laws given h,
and then taking the union of A1 and A2. Then A is also a local set of h. Moreover,
givenA and the pair (A1, A2), the conditional law of h is given by the sum of CA plus
an instance of the GFF on D\A.
Proof We use characterization (ii) for locality as given in Lemma 3.6 and observe
that [37, Lemma 3.5] implies the analogous result holds for the quadruple (S1, Ã1, S2,
Ã2)—namely, that for each deterministic open U ⊆ D, we have that given the pro-
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jection of h onto H⊥(U ) and the quadruple (S1, Ã1, S2, Ã2), the conditional law of
the projection of h onto H(U ) is the law of the GFF on U .

The proof that this analog of (ii) implies the corresponding analog of (iii) in the
statement of Proposition 3.7 is essentially the same as the proof of the equivalence
of (ii) and (iii). ��
We say that a local set A of h is almost surely determined by h if there exists a
modification of Awhich is σ(h)-measurable. Many of the local sets we will work with
in this article will be almost surely determined by the corresponding GFF, in which
case the conditionally independent union is almost surely the same as an ordinary
union.

The following proposition (see [37, Lemma 3.11]) allows us to estimate CA1∪̃A2
near connected components of A1\A2 and A1∩A2 which consist of more than a single
point in terms of CA2 .

Proposition 3.8 Assume that D is a bounded, simply connected domain. Let A1, A2
be connected local sets. Then CA1∪̃A2

− CA2 is almost surely a harmonic function in
D\(A1∪̃A2) that tends to zero on all sequences of points in D\(A1∪̃A2) that tend to
a limit in either:

(i) a connected component of A2\A1 (consisting of more than a single point) or
(ii) a connected component of A1 ∩ A2 (consisting of more than a single point) at a

point that has positive distance from either A1\A2 or A2\A1.

Proof We are going to give the argument for (i); the argument for (ii) is analogous.
By Proposition 3.7, the union A1∪̃A2 is itself a local set, so CA1∪̃A2

is well defined.
Now, conditioned onA1 the law of the field in D\A1 is given by a GFF in D\A1 plus
CA1 . We next claim that A2\A1 is a local subset of D\A1, with respect to this GFF on
D\A1. To see this, note that characterization (iii) for locality from Lemma 3.6 follows
from the latter statement in Proposition 3.7.

By replacing D with D\A1 and subtracting CA1 , we may thus reduce to the case
that A1 is deterministically empty and CA1 = 0. What remains to show is that if A
is any local set on D then CA (when viewed as a harmonic function on D\A) tends
to zero almost surely along all sequences of points in D\A that approach a point x
that lies in a connected component of ∂D\ Ã, Ã given by the closure of A ∩ D, that
consists of more than a single point.

If we fix a neighborhood U1 of x and another neighborhood U2 whose distance
fromU1 is positive, then the fact that the statement holds on the event A ∩ D ⊆ U2 is
immediate from Proposition 3.3.

In the setting of Proposition 3.8, we note that a given point in A2\A1 [corresponding
to part (i)] or in A1 ∩ A2 [corresponding to part (ii)] may be associated with multiple
prime ends. Proposition 3.8 implies that CA1∪̃A2

has the same boundary behavior
as CA2 near each such prime end because we can always choose the sequence so that
it approaches the given prime end.

Propositions 3.7 and 3.8 allow us to extend Theorem 1.1 to the setting of coupling
multiple SLEs with the free field by taking their conditionally independent union
(once Theorem 1.2 is established, we can replace the conditionally independent union

123



Imaginary geometry I: interacting SLEs 615

with a usual union). Figure 22 contains an illustration of this result in the case of
two (counter)flow lines of the same field emanating from different points. See [6,
Lemma 6.1, Theorem 6.4] for another approach to constructing couplings with mul-
tiple SLEs.

The argument described after the proof of Lemma 3.6 implies that if we have a path
η coupled with a GFF h on H as a flow line (or counterflow line), then weighting the
law of the field/path pair h, η restricted to a subdomainU in a way that produces a GFF
with boundary conditions which agree with those of h on ∂H∩∂U (but possibly differ
elsewhere) yields a flow line (or counterflow line) of the new GFF which is defined at
least up untilwhen it first exitsU .Moreover, Theorem2.4 allows one to identify the law
of this flow line. We will now explain a variant of this in which the domains on which
the GFFs are defined are different. Specifically, we suppose that h is a GFF onH with
piecewise constant boundary data which changes only finitely many times and that η
is a flow line of h starting from 0. Suppose that D ⊆ H is a simply connected domain
whose boundary contains a segment of ∂Hwhich is a neighborhood of 0. Fix a simply
connected domain U ⊆ D whose boundary also contains a segment of ∂H which is a
neighborhood of 0 and satisfies dist(∂U\∂H, ∂D\∂H) > 0. Let τU be the first time
that η exits U and let τ be a stopping time for η such that P[τ ≤ τU ] = 1. Note that
both ∂D and η([0, τ ]) are local for h. Since the former is deterministic, we therefore
have by Proposition 3.7 that ∂D ∪ η([0, τ ]) is local for h and by Proposition 3.8 that
the conditional law of h given η|[0,τ ] and its values on ∂D is given by that of the sum
of a zero-boundary GFF h̃ on D\η([0, τ ]) plus the function gτ which is harmonic in
D\η([0, τ ]) with boundary values agreeing with those of h on ∂D and with hτ (as in
Theorem 1.1) on η([0, τ ]).

We will now argue that the boundary data for gτ in the conditional law of h just
above is correct for η to be a flow line. To this end, we fix x ∈ ∂D\∂H and let
ϕ : D → H be a conformal transformation which fixes 0 and sends x to ∞. Let h̃τ

be as in the statement of Theorem 1.1 for ϕ(η([0, τ ])) (in what follows, it will not
matter how we choose the boundary data for h̃τ on ∂H). Then it suffices to show that
the boundary values of hτ along η([0, τ ]) agree with those of h̃τ ◦ ϕ − χ argϕ′. To
see this, we let fτ (resp. f̃τ ) be the centered Loewner map associated with η [resp.
ϕ(η)] at time τ so that fτ (resp. f̃τ ) takes η(τ) [resp. ϕ(η(τ))] to 0. Let m be the
function which is harmonic in H with boundary values given by −λ (resp. λ) on R−
(resp. R+). By definition, hτ has the same boundary behavior along η([0, τ ]) as the
harmonic function

m ◦ fτ − χ arg f ′τ

and likewise, by definition, h̃τ has the same boundary behavior along ϕ(η([0, τ ])) as
the harmonic function

m ◦ f̃τ − χ arg f̃ ′τ .

Note that the function m ◦ f̃τ ◦ ϕ is harmonic in H\η([0, τ ]) with boundary values
along the left (resp. right) side of η([0, τ ]) and R− (resp. R+) given by −λ (resp. λ).
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These are the same as the boundary values ofm ◦ fτ and thereforem ◦ fτ = m ◦ f̃τ ◦ϕ.
We will next show that

lim
z→z0

z∈D\η([0,τ ])
(arg f ′τ (z)−(arg( f̃ ′τ ◦ ϕ(z))+argϕ′(z)))=0 for z0∈η([0, τ ]). (3.9)

Let Iτ = fτ (η([0, τ ])) ⊆ ∂H and Dτ = fτ (D\η([0, τ ])). By precomposing both
sides of (3.9) with f −1

τ it suffices to show that

lim
z→z0
z∈Dτ

(arg( f ′τ ◦ f −1
τ (z))− (arg( f̃ ′τ ◦ ϕ ◦ f −1

τ (z))+ arg(ϕ′ ◦ f −1
τ (z)))) = 0

for z0 ∈ Iτ .

(3.10)

By adding and subtracting arg( f −1
τ )′ to the left side of (3.10) and using that

arg( f ′τ ◦ f −1
τ )+ arg( f −1

τ )′ = arg( fτ ◦ f −1
τ )′ = 0 and

arg( f̃ ′τ ◦ ϕ ◦ f −1
τ )+ arg

(
ϕ′ ◦ f −1

τ

)+ arg( f −1
τ )′ = arg( f̃τ ◦ ϕ ◦ f −1

τ )′,

we see that (3.10) is equivalent to showing that

lim
z→z0
z∈Dτ

arg( f̃τ ◦ ϕ ◦ f −1
τ )′(z) = 0 for z0 ∈ Iτ . (3.11)

We conclude that (3.11) holds because f̃τ ◦ ϕ ◦ f −1
τ is conformal map from Dτ into

H which takes the interval Iτ of ∂H corresponding to fτ (η([0, τ ])) to an interval of
H and is orientation preserving. This proves (3.9), which completes the proof of the
claim.

In summary, we have argued that the conditional law of (h|D, η|[0,τU ]) given the
values of h on ∂D is given by a pair consisting of:

• a GFF on D whose boundary values agree with those of h along ∂D and
• a path in D with the property that if τ is any stopping time which a.s. occurs before

τU we have that the conditional law of the field given η|[0,τ ] is that of a GFF on
D\η([0, τ ]) with the same boundary values as h on ∂D and the correct boundary
values along η([0, τ ]) so that it is a flow line.

In other words, conditionally on the values of h on ∂D, we have that the coupling
(h|D, η|[0,τU ]) is that of a GFF on D and a flow line of h|D stopped upon exiting U .

Suppose that h̃ is a GFF on D with boundary values which agree with those of h
on a neighborhood of 0 in ∂H. Then, conditionally on the values of h on ∂D, we have
that both h|D and h̃ are GFFs on the same domain D with boundary data that agrees
on a neighborhood of 0 in ∂H. Since we can transform from the conditional law of
h|D given its values on ∂D to the law of h̃ by adding to the former a function which is
harmonic in D with zero boundary values on ∂D ∩ ∂H, it follows from the procedure
described just after Lemma 3.6 that the result of weighting the law of the field/path
pair h, η in such way so that the restriction of the field toU agrees with the law of h̃|U
yields a flow line of h̃ which is defined up until the first time it exits U .
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Proposition 3.9 Suppose that D is a bounded, simply connected domain and that
A1, A2 are connected local sets which are conditionally independent given h. Suppose
that C is a σ(A1)-measurable open subset of D\A1 which can be written as a union
of components of D\A1 such that C ∩ A2 = ∅ almost surely. Then CA1∪A2 |C = CA1 |C
almost surely. In particular, h|C is independent of the pair (h|D\C , A2) given A1.

Proof This follows from the argument used to prove Proposition 3.8. ��
A simple example of the type of application we have in mind for Proposition 3.9

is the following. Suppose that h is a GFF on H and η1, η2 are flow lines of h starting
from 0 which intersect ∂H only at {0}. Suppose further that η2 almost surely lies to
the left of η1. Then Proposition 3.9 implies that the restriction of h to the left side of
H\η2 is independent of the pair consisting of the restriction of h to the right side of
H\η2 and η1, conditionally on η2.

We end this subsection with a lemma which gives a simple condition under which
h is determined by its restriction to D\A for a local set A. When this condition
holds, it will in particular imply that h is determined by the restriction of CA to D\A
and the projection of h onto H(D\A). Informally, this means that there is no “extra
information” which is only contained in CA on A itself.

Lemma 3.10 Suppose that A is a local set for h such that for every compact set
K ⊆ D there exists a sequence (δk) of positive numbers with δk → 0 as k →∞ such
that we almost surely have that the number of squares with corners in δkZ2 required
to cover A ∩ K is o(δ−2

k (log δ−1
k )−1) as k →∞. Then h is almost surely determined

by the restriction h̃ of h to D\A.
Proof Fix a compact square K ⊆ D and φ ∈ C∞

0 (D) with supp(φ) ⊆ K . For each
δ > 0, we let Dδ be the collection of half-open squares (a, b] × (c, d] of side length
δ contained in K with corners in δZ2. We also let φδ be the function on K whose
common value on each S ⊆ Dδ is given by the average of φ on S. By bounding the
variance of (h, φ − φδ), it is easy to see that we almost surely have

(h, φδ) → (h, φ) as δ → 0, (3.12)

at least if the limit is taken along a subsequence of (δk) which tends to 0 sufficiently
quickly. Let Aδ be the union of the set of squares in Dδ which intersect A. Then it
suffices to show that we almost surely have

|(̃h, φδ1Ac
δ
)− (h, φδ)| = |(h, φδ1Ac

δ
)− (h, φδ)| → 0 as δ → 0, (3.13)

at least if the limit is taken along a subsequence of (δk) which tends to 0 sufficiently
quickly. An argument analogous to the proof of [4, Proposition 3.2] implies that the
variance of (h, δ−21S) for S ∈ Dδ is O(log δ−1)where the implicit constant is uniform
in δ > 0. It therefore follows from the Gaussian tail bound

P[Z ≥ λ] ∼ 1√
2πλ

e−λ2/2 as λ →∞
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for Z ∼ N (0, 1) (see, e.g., [9, Lemma A.4]) and the Borel–Cantelli lemma that there
exists a constant c > 0 such that the average of h on each S ∈ Dδ is at most c log δ−1,
at least along a subsequence of (δk) tending to 0 sufficiently quickly. Consequently,
with Nδ equal to the number of squares in Dδ which A intersects we almost surely
have that

|(h, φδ1Ac
δ
)−(h, φδ)| ≤ ‖φ‖∞×Nδ × δ2 × c log δ−1 = o(1) as δ → 0, (3.14)

at least along a subsequence of (δk) tending to 0 sufficiently quickly. The equality
in (3.14) follows because we have assumed that we almost surely have that Nδk is
o(δ−2

k (log δ−1
k )−1) as k → ∞. The result thus follows by combining (3.12), (3.13),

and (3.14). ��

3.3 Proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1. As we mentioned before, many
of the steps in the proof given below are slight generalizations of those from [31,
Section 4]. Let W and V i,q be a solution to the SLEκ(ρ) SDE as in Definition 2.1
stopped upon hitting the continuation threshold, let (gt ) be the chordal Loewner
evolution driven by W , and let ft = gt − Wt . We let (Ft ) be the filtration gen-
erated by (W, V i,q) and B as in Definition 2.1. Then (Ft ) is right-continuous, i.e.
Ft = ∩s>tFs for each t ≥ 0. This property will be important for us later on. We
also let (Kt ) be the corresponding family of hulls. In what follows, it is impor-
tant that the SDEs for our SLEκ(ρ) driving process make sense in integrated form
(as defined in Sect. 2) so that all of the SDEs written below make sense in inte-
grated form. We begin by writing down the Itô derivatives of the four processes
ft (z), log ft (z), f ′t (z), and log f ′t (z). Here, f ′t (z) denotes the spatial derivative ∂

∂z ft .
For z ∈ H and t < τ(z) = sup{t ≥ 0 : Im(gt (z)) > 0}, we have that

d ft (z) =
⎛
⎝ 2

ft (z)
−
∑

q∈{L ,R}

∑
i

ρi,q

Wt − V i,q
t

⎞
⎠ dt −√

κdBt ,

d log ft (z) =
⎛
⎝ (4− κ)

2 ft (z)2
−
∑

q∈{L ,R}

∑
i

ρi,q

ft (z)(Wt − V i,q
t )

⎞
⎠ dt −

√
κ

ft (z)
dBt ,

d f ′t (z) =
−2 f ′t (z)
ft (z)2

dt, and

d log f ′t (z) =
−2

ft (z)2
dt.

We next define the martingale ht and compute its stochastic derivatives. The calcu-
lations below will show that it is a local martingale (and the fact it is a martingale will
be proved later). Let χ = 2/

√
κ −√

κ/2 as in the statement of Theorem 1.1. We also
let h∗t (z) be given by 1/

√
κ times the expression in (2.12) where ft (xi,q) = V i,q

t −Wt .
Then it is not hard to see that
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dh∗t (z) =
2

ft (z)
dBt , ht (z) := Im

(
h∗t (z)

)
, and

dht (z) = Im

(
2

ft (z)

)
dBt . (3.15)

See [31, Remarks 4.1, 4.2] for some additional interpretation.
Since ht (z) is a continuous local martingale for each fixed z, it is thus a Brownian

motion under the quadratic variation parameterization, which we can give explicitly:

d〈ht (z), ht (z)〉 = −dCt (z) and Ct (z) := log Im( ft (z))− Re(log f ′t (z)).

If z is a point in a simply connected domain D, and φ conformally maps the unit disk
to D, with φ(0) = z, then we refer to the quantity |φ′(0)| as the conformal radius of
D viewed from z. If, in the above definition of conformal radius, we replaced the unit
disk with H and 0 with i , this would only change the definition by a multiplicative
constant. Thus, Ct (z) is (up to an additive constant) the log of the conformal radius of
H\Kt viewed from z. If the time parameter−Ct (z) (which is increasing as a function
of t) then ht (z) is a Brownian motion. The fact that d〈ht (z), ht (z)〉 = −dCt (z) may
be computed directly via Itô’s formula but it is also easy to see by taking y → z in
the formulas for 〈ht (y), ht (z)〉 and the formulas we will give below.

We will now show that weighted averages of ht over multiple points in H are also
continuous local martingales (and hence Brownian motions when properly parame-
terized). The calculation will make use of the function

G(y, z) := log |y − z̄| − log |y − z|,

which is the Dirichlet Green’s function for � on H. That is, G is the distributional
solution of �G(y, ·) = −2πδy(·) with zero boundary conditions where δy denotes
the Dirac mass at y.

We let Gt (y, z) = G( ft (y), ft (z))when y and z are both in the infinite component
of H\Kt ; it is otherwise equal to zero. Observe for t < τ(y) ∧ τ(z) that

dGt (y, z) = −Im

(
2

ft (y)

)
Im

(
2

ft (z)

)
dt and (3.16)

d〈ht (y), ht (z)〉 = −dGt (y, z). (3.17)

The details of (3.16) in the case of SLEκ (with no ρ values) is worked out explicitly
in [31, Section 4]. The case with ρ values follows from a similar calculation. It is then
immediate from (3.15) that (3.17) holds.

Now we let φ be a smooth compactly supported function on H, fix U ⊆ H open
which contains the support supp(φ) of φ, and let

τU = inf{t ≥ 0 : Kt ∩U �= ∅}. (3.18)
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We let

Et (φ) :=
∫∫

H×H
φ(y)Gt (y, z)φ(z)dydz

and we will show that

d〈(ht , φ), (ht , φ)〉 = −dEt (φ) for t < τU . (3.19)

A Fubini type calculation gives (3.19) but it requires some justification. First, we
claim that the (ht , φ) is a continuous martingale. We first note that 〈(ht , φ)〉|[0,τU ] is
characterized by the fact that

(ht , φ)2 − 〈(ht , φ)〉 for t < τU

is a continuous local martingale. Thus it suffices to show that

(ht , φ)2 + Et (φ) for t < τU (3.20)

is a continuous local martingale. We know from the above calculations that

ht (y)ht (z)+ Gt (y, z) for t < τU

is a continuous local martingale for fixed y, z ∈ supp(φ). For each M < ∞, we let

τU,φ,M = inf

{
t ≥ 0 : sup

z∈supp(φ)

|ht (z)| ≥ M

}
∧ τU .

Since Gt (y, z) is non-increasing and supz∈supp(φ) |ht (z)| ≤ M for t ≤ τU,φ,M , we can
use Fubini’s theorem to conclude that (3.20) is a continuous martingale up to time
τU,φ,M . Since τU,φ,M → τU as M → ∞, it follows that (3.20) is a continuous local
martingale.

Wewill now combine the above calculations to establish the following intermediate
step in the proof of Theorem 1.1.

Lemma 3.11 Fix U ⊆ H open, let τU be as in (3.18), and let τ be any Ft -stopping
time such thatP[τ ≤ τU ] = 1. Consider the randomfield hU,τ onU which is generated
by:

1. sampling Kτ ,
2. sampling a zero boundary GFF h0 on H\Kτ and adding it to hτ , and then
3. restricting the sum to U.

Then hU,τ
d= h|U where h = h̃ + h0 and h̃ is a zero-boundary GFF on H.
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Proof Since h|U is a Gaussian field, it suffices to show that (hU,τ , φ)
d= (h, φ) for

each φ ∈ C∞
0 (H) with supp(φ) ⊆ U . Note that hτ is measurable with respect to Fτ

and that Var((h0, φ)) = Eτ (φ). Consequently, for each θ ∈ R, we have that

E[exp(iθ(hU,τ , φ))] = E[E[exp(iθ(h0, φ)|Fτ ] exp(iθ(hτ , φ))]

= E
[
exp

(
iθ(hτ , φ)− θ2Eτ (φ)

2

)]

= E
[
exp

(
iθ(h0, φ)− θ2E0(φ)

2

)]
(by (3.19))

= E[exp(iθ(h, φ))].

This proves the lemma. ��
In order to work towards completing the proof of Theorem 1.1, we will explain

how to generalize Lemma 3.11 to the setting in which it holds for multiple stopping
times and open sets. We begin with the setting of a finite number of stopping times.

Lemma 3.12 Assume that we have the setup of Lemma 3.11 for a given open set
U ⊆ H. Assume that n ∈ N and τ1, . . . , τn areFt -stopping times withP[τi ≤ τU ] = 1
for each 1 ≤ i ≤ n. For each 1 ≤ i ≤ n, let hU,τi have the law as defined in
Lemma 3.11. There exists a coupling of the laws hU,τi for 1 ≤ i ≤ n so that they
are all generated using the same instance (W, V i,q) of the SLEκ(ρ) driving process

such that for h = h̃ + h0, h̃ a zero-boundary GFF on H, we almost surely have that
hU,τi = h|U . Moreover, we have that the conditional law of the projection of h onto
H(U ) given Fτi and the projection of h onto H⊥(U ) is that of a zero-boundary GFF
on H(U ) for each 1 ≤ i ≤ n.

Proof For simplicity, we will first explain the proof in the case that n = 2 and then
later explain how to generalize it to arbitrary values of n ∈ N. Lemma 3.11 implies
that there exists a coupling of the law of the pair (hU,τ , (Wt∧τU , V i,q

t∧τU
)) [where the

latter element is the driving SLEκ(ρ) process stopped at time τU ] with h such that
hU,τ = h|U almost surely.

Suppose that τ1, τ2 are Ft -stopping times with P[τi ≤ τU ] = 1 for i = 1, 2. By
applying the above first with the stopping time σ1 = τ1∧τ2 and then with σ2 = τ1∨τ2
[using the conformal Markov property of SLEκ(ρ)], it is easy to see that we can

construct a coupling of the law of the triple (hU,σ1 , hU,σ2 , (Wt∧τU , V i,q
t∧τU

)) with h
such that hU,σi = h|U almost surely for i = 1, 2. In particular, on the event that
τ1 = σ1, we have almost surely that

hU,τ1 = hU,σ1 = h|U . (3.21)

On the event that τ1 = σ2, we almost surely have that

hU,τ1 = hU,σ2 = h|U . (3.22)
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Since one of the two events τ1 = σ1 or τ1 = σ2 must hold, we conclude from (3.21)
and (3.22) that hU,τ1 = h|U almost surely. Similarly, we have that hU,τ2 = h|U almost
surely.

By construction, we have that

hU,σi = (hσi ◦ fσi + hσi )|U
where hσi for i = 1, 2 has the law of a zero-boundary GFF on H given Fσi . We let

hτi = hσ11{σ1=τi } + hσ21{σ2=τi }.

Then we have that

hU,τi = (hτi ◦ fτi + hτi )|U .

To finish the proof of the first assertion of the lemma for n = 2, we need to show
that hτi for i = 1, 2 has the law of a zero-boundary GFF on H given Fτi . We will
explain the proof for i = 1 (as the proof for i = 2 is analogous). Fix a test function
φ ∈ C∞

0 (H) and θ ∈ R. Using that both of the events {σ1 = τ1} and {σ2 = τ1} are
Fτ1 -measurable, we have that

E[exp(iθ(hτ1 , φ)) |Fτ1 ]
= E[exp(iθ(hτ1 , φ)) |Fτ1 ]1{σ1=τ1} + E[exp(iθ(hτ1 , φ)) |Fτ1 ]1{σ2=τ1}
= E[exp(iθ(hσ1 , φ)) |Fσ1 ]1{σ1=τ1} + E[exp(iθ(hσ2 , φ)) |Fσ2 ]1{σ2=τ1}

= exp

(
−θ2E0(φ)

2

)

where the last equality follows becauseweknow that hσi has the lawof a zero-boundary
GFF on H given Fσi for i = 1, 2.

Suppose now that n ∈ N. We can iterate the same argument above with a finite
collection of stopping times τ1, . . . , τn with P[τi ≤ τU ] = 1 for all i = 1, . . . , n to
obtain a coupling such that hU,τi = h|U almost surely for all i = 1, . . . , n. Indeed, to
do so for each 1 ≤ j ≤ n we let σ j be the first time t that at least j of the stopping
times τi have occurred at or before time t . Then each σ j is a stopping time and we have
that σ1 ≤ σ2 ≤ · · · ≤ σn . Thus we can construct the coupling iteratively as described
above in the case that n = 2. Under this coupling, we have that hU,σ j = h|U almost
surely for each 1 ≤ j ≤ n. Since for each 1 ≤ i ≤ n there exists 1 ≤ j ≤ n such that
τi = σ j , we then have that hU,τi = h|U almost surely for each 1 ≤ i ≤ n. The result
follows because a simple elaboration of the argument given just above implies that we
can write hU,τi as (hτi ◦ fτi + hτi )|U where hτi has the law of a zero-boundary GFF
on H given Fτi .

In the construction of the coupling given above, it is not immediately clear that
the conditional law of the projection of h onto H(U ) given both its projection onto
H⊥(U ) and Fτi is that of a zero-boundary GFF in U for each 1 ≤ i ≤ n even though
it is immediate from the construction that this holds if we condition on either the

123



Imaginary geometry I: interacting SLEs 623

projection onto H⊥(U ) orFτi . We can modify the coupling so that it has this property
by, given both H⊥(U ) and FτU , resampling the projection of h onto H(U ) from the
law of a zero-boundary GFF on U . Note that performing this resampling operation
leaves the marginal law of h unchanged [since the law of the projection of h onto
H⊥(U ) is unchanged as is the conditional law of the projection of h onto H(U ) given
its projection onto H⊥(U )]. This resampling operation also preserves the conditional
law of h|U given Fτi for each 1 ≤ i ≤ n. Indeed, this follows because this resampling
operation preserves the restriction of the projection of h onto H⊥(U ) toU . Moreover,
by the Markov property for hU,τi given Fτi (which is the restriction of a GFF on
H\Kτi to U ), we know that the conditional law of the projection of h onto H(U )

given both Fτi and the restriction of the projection of h onto H⊥(U ) to U is that of a
zero boundary GFF on U . This proves the claim. ��

We are now going to extend Lemma 3.11 to the setting of both a finite number of
stopping times and open sets.

Lemma 3.13 Suppose that n ∈ N,U1, . . . ,Un ⊆ H are open sets, and that τ1, . . . , τn
are Ft -stopping times such that P[τi ≤ τUi ] = 1 for each 1 ≤ i ≤ n. For each
1 ≤ i ≤ n, let hUi ,τi have the law as defined in Lemma 3.11 with U = Ui . There exists
a coupling of the laws hUi ,τi for 1 ≤ i ≤ n so that they are all generated using the
same instance (W, V i,q) of the SLEκ(ρ) driving process such that for h = h̃ + h0, h̃
a zero-boundary GFF on H, we almost surely have that hUi ,τi = h|Ui . Moreover,
we have that the conditional law of the projection of h onto H(Ui ) given Fτi and
the projection of h onto H⊥(Ui ) is that of a zero-boundary GFF on H(Ui ) for each
1 ≤ i ≤ n.

Proof As in the proof of Lemma 3.12, we begin with the argument in the case of two
open sets U1,U2 ⊆ H; define τU1 , τU2 accordingly and suppose that P[τi ≤ τUi ] = 1
for i = 1, 2. We let σ1 = τ1∧ τ2 and let σ2 = τ1∨ τ2. Let V1 = U1∪U2. Then we can
find a coupling of the laws of (hV1,σ1 , (Wt∧σ1 , V

i,q
t∧σ1

)) and h such that hV1,σ1 = h|V1
almost surely and such that the conditional law of the projection of h onto H(V1)
given both its projection onto H⊥(V1) and Fσ1 is that of a zero-boundary GFF on V1.
Conditionally on (W, V i,q) up to time σ1, we know whether τ1 or τ2 occurred first.
On the event that τ1 occurred first, it is easy to see by the Markov property of the
GFF that we can take our coupling so that h|U1 = hU1,τ1 almost surely. We can also
repeat the same argument [using the conformal Markov property of SLEκ(ρ)] so that
we also have that h|U2 = hU2,τ2 almost surely. Similarly, on the event that τ2 occurred
first, it is easy to see by the Markov property of the GFF that we can take our coupling
so that h|U2 = hU2,τ2 almost surely. We can also repeat the same argument [using
the conformal Markov property of SLEκ(ρ)] so that we also have that h|U1 = hU1,τ1

almost surely.
In summary, at this point we have a coupling such that the following hold:

• h|Uj = hUj ,τ j for j = 1, 2 and h|V1 = hV1,σ1 almost surely.
• The conditional law of the projection of h onto H(V1) given its projection onto

H⊥(V1) and Fσ1 is that of a zero boundary GFF on V1.

We will now explain how to modify h so that it satisfies the above properties and so
that the conditional law of the projection of h onto H(Uj ) given its projection onto
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H⊥(Uj ) and Fτ j for j = 1, 2 is that of a GFF on Uj with zero boundary conditions.
To this end, we let hUc

j
for j = 1, 2 be the projection of h onto H⊥(Uj ). We then take

h̃ = (̃hU2 + hUc
2
)1{τ1<τ2} + (̃hU1 + hUc

1
)1{τ2≤τ1}

where h̃U1 (resp. h̃U2 ) has the law of a GFF on U1 (resp. U2) with zero boundary
conditions where we take h̃U1, h̃U2 to be independent of each other and independent
of everything else. The Markov property of the GFF implies that the coupling of h̃
with (W, V i,q) satisfies all of the desired properties. In particular, the conditional law
of the projection of h̃ onto H(Uj ) given its projection onto H⊥(Uj ) and Fτ j is that
of a zero boundary GFF on Uj for j = 1, 2.

We can iterate this argument with any finite collection of stopping times τ1, . . . , τn
and open sets U1, . . . ,Un with P[τi ≤ τUi ] = 1 for each i = 1, . . . , n to obtain a
coupling such that hUi ,τi = h|Ui for each i = 1, . . . , n almost surely and so that the
conditional law of the projection of h onto H(Ui ) given its projection onto H⊥(Ui )

and Fτi is that of a zero-boundary GFF on Ui . To do so, we let σ j be the first time t
that at least j of the τi have occurred at or before time t . Then we know that we can
construct a coupling so that with V1 = ∪n

i=1Ui we have that hV1,σ1 = h|V1 almost
surely and the conditional law of the projection of h onto H(V1) given its projection
onto H⊥(V1) and Fσ1 is that of a zero-boundary GFF on V1. At time σ1, we know
which of the τi have occurred. Assume for simplicity that the τi are almost surely
distinct and that τi1 is the first to occur. Then we can repeat the same argument [using
the conformal Markov property of SLEκ(ρ)] with V2 = ∪i �=i1Ui and σ2 to obtain a
coupling such that we have hVj ,σ j = h|Vj almost surely and the conditional law of
the projection of h onto H(Vj ) given its projection onto H⊥(Vj ) and Fσ j is that of a
zero-boundary GFF on Vj for j = 1, 2. After iterating this n times, we get a coupling
with hVj ,σ j = h|Vj almost surely and such that the conditional law of the projection
of h onto H(Vj ) given its projection onto H⊥(Vj ) and Fσ j is that of a zero-boundary
GFF on Vj for j = 1, . . . , n . If we let i j be such that τi j = σ j , then we have that
Ui j ⊆ Vj . Therefore hUi j ,τi j

= h|Ui j
almost surely for each j hence hUi ,τi = h|Ui

for each i . Likewise, the conditional law of the projection of h onto H(Ui ) for each i
given its projection onto H⊥(Ui ) and Fτi is that of a zero-boundary GFF on Ui . ��

We now turn to extend Lemma 3.11 to the setting of a countable collection of
stopping times and open sets.

Lemma 3.14 Suppose that (Ui ) and (τi ) are respectively sequences of open sets inH
and Ft -stopping times such that P[τi ≤ τUi ] = 1 for all i ∈ N. For each i ∈ N, let
hUi ,τi have the law as defined in Lemma 3.11 with U = Ui . There exists a coupling of
the laws hU,τi for i ∈ N so that they are all generated with the same instance (W, V i,q)

of the SLEκ(ρ) driving process such that for h = h̃ + h0, h̃ a zero-boundary GFF on
H, we almost surely have that hUi ,τi = h|Ui . Moreover, we have that the conditional
law of the projection of h onto H(Ui ) given Fτi and the projection of h onto H⊥(Ui )

is that of a zero-boundary GFF on H(Ui ).
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Proof Fixn ∈ N. Lemma3.13 implies that there exists a couplingofhU1,τ1 , . . . , hUn ,τn

and h, (W, V i,q)) which satisfies the property that hUi ,τi = h|Ui and that the condi-
tional law of the projection of h onto H(Ui ) given the projection of h onto H⊥(Ui )

and Fτi is that of a zero-boundary GFF on Ui for each 1 ≤ i ≤ n. Let μn denote
the law of this coupling. Let k be the number of force points for the SLEκ(ρ) driving

process. We view μn as a law on (RN)n+1 × C([0,∞))k+1 by expressing each of
the hUi ,τi as well as h in terms of coordinates by integrating each against a count-
able subset of C∞

0 (H) which is dense in L2(H), say. We note that for m ≥ n we
have the μm marginal law of (hU1,τ1 , . . . , hUn ,τn , h, (W, V i,q)) is tight in m since
the marginal of each of the coordinates does not depend on m. It therefore follows
that for each n ∈ N there exists a subsequence (μnmk

) of (μn) such that the marginal

law of (hU1,τ1 , . . . , hUm ,τm , h, (W, V i,q)) under μn converges weakly to a limiting
law as k → ∞. By passing to a further diagonal subsequence if necessary, we can
find a subsequence (μnk ) of (μn) such that for every m ∈ N the marginal law of
(hU1,τ1 , . . . , hUm ,τm , h, (W, V i,q)) under μnk converges weakly to a limiting law as
k → ∞. Letting μm denote this law for a given value of m, we observe that the
μm are consistent in the sense that for every j ≤ n,m we have that the μm mar-
ginal law of (hU1,τ1 , . . . , hUj ,τ j , h, (W, V i,q)) is the same as the μn marginal law
of the same vector. Therefore by the Kolmogorov extension theorem, there exists
a law μ on (RN)N × C([0,∞))k+1 whose marginals agree with the μm . By con-
struction, this law μ clearly satisfies the property that hUi ,τi = h|Ui almost surely
for every i ∈ N and that the conditional law of the projection of h onto H(Ui )

given the projection of h onto H⊥(Ui ) and Fτi is that of a zero-boundary GFF
on Ui . ��

We now complete the proof of Theorem 1.1.

Proof of Theorem 1.1 To complete the proof of the theorem, we need to extend
Lemma 3.14 so that it holds simultaneously for all Ft -stopping times. We can choose
our τi and Ui so that every pair of the form (U, r ∧ τU ) where U is a finite union of
balls which are centered at a point with rational coordinates and with rational radii
and r ∈ Q+ appears in the sequence (Ui , τi ).

Suppose that τ is anyFt -stopping time.GivenFτ , we fix a test functionφ ∈ C∞
0 (H)

whose support is disjoint from Kτ . We then let σn = τ jn be the smallest element of
τ1, . . . , τn which is larger than τ such that the support of φ is contained in Ujn (on
the event that there is no such τ j we take σn = ∞). Fix θ ∈ R. Note that for each
1 ≤ j ≤ n, the event {σn = τ j } is Fτ j -measurable. On the event that {σn < ∞}, we
have that

E[exp(iθ(h, φ)) |Fσn ] =
n∑
j=1

E[exp(iθ(h, φ)) |Fσn ]1{σn=τ j }

=
n∑
j=1

E[exp(iθ(h, φ)) |Fτ j ]1{σn=τ j }
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=
n∑
j=1

exp

(
iθ(hτ j , φ)− θ2Eτ j (φ)

2

)
1{σn=τ j }

= exp

(
iθ(hσn , φ)− θ2Eσn (φ)

2

)
.

This proves that the conditional law of (h, φ) given Fσn is equal to the law of (hσn ◦
fσn + hσn , φ) where hσn given Fσn has the law of a zero-boundary GFF on H. Note
that the sequence of stopping times (σn) almost surely decreases to τ as n →∞. The
backwards martingale convergence theorem and the right-continuity of the filtration
(Ft ) together imply that we almost surely have

lim
n→∞E[exp(iθ(h, φ)) |Fσn ] = E[exp(iθ(h, φ)) |Fτ ]. (3.23)

Moreover, the continuity of the SLEκ(ρ) driving process implies that we almost surely
have

lim
n→∞ exp

(
iθ(hσn , φ)− θ2Eσn (φ)

2

)
= exp

(
iθ(hτ , φ)− θ2Eτ (φ)

2

)
. (3.24)

Combining (3.23) and (3.24) implies that the conditional law of (h, φ) given Fτ is
equal to the law of (hτ ◦ fτ +hτ , φ)where hτ givenFτ has the law of a zero-boundary
GFF on H.

FixU ⊆ H open. A similar argument using the backwards martingale convergence
theorem implies that the conditional law of the projection of h onto H(U ) given its
projection onto H⊥(U ) and Fτ is that of a zero-boundary GFF on U on the event
that τ ≤ τU . Indeed, by our choice of τi ,Ui we can find a sequence ( jn) such that
Ujn ⊆ U,Ujn ⊆ Ujn+1 , and τ jn = τUjn

for every n and such that∪nU jn = U . We then
take σn = τ jn for each n. Fix φ ∈ C∞

0 (U ). Then we have that supp(φ) ⊆ Ujn for all n
large enough. For each n, we let hUjn

(resp. hUc
jn
) be the projection of h onto H(Ujn )

[resp. H⊥(Ujn )]. We similarly let hU (resp. hUc ) be the projection of h onto H(U )

[resp. H⊥(U )]. Proposition 3.2 and the backwards martingale convergence theorem
together imply that

(hUc
jn
, φ) = E[(h, φ) |Fh

(H\Ujn )+] → E[(h, φ) |Fh
(H\U )+] = (hUc , φ)

almost surely as n →∞. Therefore

(hUjn
, φ) = (h, φ)− (hUc

jn
, φ) → (h, φ)− (hUc , φ) = (hU , φ) (3.25)

almost surely as n →∞. Let σ 2
Ujn

(φ) = ∫∫ φ(x)GUjn
(x, y)φ(y)dxdy whereGUjn

is

theGreen’s function for� onUjn .We define σ 2
U (φ) similarly and note that σ 2

Ujn
(φ) →

σ 2
U (φ) as n →∞. By the construction of the coupling, for each n ∈ N we have that
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E[exp(iθ(hUjn
, φ)) |Fσn ,Fh

(H\Ujn )+] = exp

(
−

θ2σ 2
Ujn

(φ)

2

)
. (3.26)

As n → ∞, the right hand side of (3.26) converges to exp(−θ2σ 2
U (φ)/2) while,

by (3.25) and the backwards martingale convergence theorem, the left hand side
of (3.26) converges to E[exp(iθ(hU , φ)) |FτU ,Fh

(H\U )+]. Since φ ∈ C∞
0 (U ) was

arbitrary, it therefore follows that the conditional law of hU given hUc and FτU is that
of a GFF onU with zero boundary conditions. It therefore follows that the conditional
law of hU given hUc and Fτ on τ ≤ τU is that of a GFF on U with zero boundary
conditions. That is, characterization (i) of Lemma 3.6 implies that Kτ is local for h.

��

4 Dubédat’s argument

This section will present the argument from [5,6] to establish Theorem 1.2 for κ < 4
with some particular boundary conditions. One of its nice features is that it simul-
taneously establishes a particular case of so-called Duplantier duality: that the outer
boundary of a certain SLE16/κ(ρ) process is equal in law to a certain SLEκ(ρ) process.
Indeed, we find that the left and right boundaries of a counterflow line corresponding
to a given h are almost surely flow lines for the same h. Our exposition (the inter-
pretations, illustrations, and geometric point of view) is rather different from what
appears in [5,6], but the basic argument is the same. We will also explain how duality
implies the transience (continuity upon exiting) of certain non-boundary intersecting
flow lines (see [24] for an alternative approach to proving the transience of SLE).

When following the illustrations, it will be useful to keep in mind a few definitions
and identities:

λ := π√
κ

, κ ′ := 16

κ
, λ′ := π√

κ ′
= π

√
κ

4
= κ

4
λ < λ, χ := 2√

κ
−
√

κ

2
(4.1)

2πχ = 4(λ− λ′), λ′ = λ− π

2
χ (4.2)

2πχ = (4− κ)λ = (κ ′ − 4)λ′. (4.3)

Throughout, we shall assume that κ ∈ (0, 4) so that κ ′ ∈ (4,∞). Each of λ, λ′, and
χ is determined by κ through (4.1) and is positive. We will frequently go back and
forth between these four values using the identities above. To interpret (4.2), recall that
an angle change of θ corresponds to a change of θχ in the value of the field. Thus (4.2)
says that the difference λ− λ′ corresponds to “a ninety-degree turn to the left” in the
imaginary geometry, which will frequently be useful. (This fact was already illustrated
in Fig. 9.) Recall also from Theorem 1.1 that a force point of weight ρ corresponds to
a jump of size ρλ in the boundary values. Thus (4.3) implies that a gap of size 2πχ (a
“full revolution” gap) corresponds to a ρ value of (4− κ). More generally, a θχ gap
in boundary values corresponds to ρ = θ

2π (4− κ).
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4.1 Critical heights for boundary intersection, path continuation

We begin by observing some basic facts about SLEκ(ρ) processes, which tell us
what kinds of boundary segments the flow and counterflow lines of Theorem 1.1 can
intersect. Throughout, we let S = R × (0, 1) ⊆ C be an infinite horizontal strip
and we decompose ∂S into its lower and upper boundaries ∂LS = (−∞,∞) and
∂US = (−∞,∞)+ i , respectively.

Remark 4.1 Throughout this and the next subsection, we will often make the assump-
tion that the boundary data of h on ∂LS is at most−λ+πχ to the left of 0 and at least
λ − πχ to the right of 0. The significance of this assumption is that, by Remark 2.3
and absolute continuity (the Girsanov theorem), it implies that the flow line η of h is
almost surely a continuous path, at least until it accumulates in ∂US. Moreover, by [5,
Lemma 15], it implies that η must accumulate either in ∂US or at ±∞ before accu-
mulating in ∂LS after time 0 (and upon proving Theorem 1.3, we will later be able to
show that it actually never accumulates in ∂LS after time 0). This will be important for
the results explained in this section because [5, Lemma 15] only gives us information
regarding the first force point disconnected by η.

Remark 4.2 All of the results of this subsection are applicable both to η ∼ SLEκ(ρ)

and η′ ∼ SLEκ ′(ρ). In the case of the latter, the boundary data is given as in the
statement of Theorem 1.1 (the boundary data is−λ′ to the left of η′ and λ′ to its right)
to make the lemma statements consistent for SLEκ and SLEκ ′ processes. In this case,
the condition that implies that η′ does not hit ∂LS is that the boundary data for h
should be at most −λ′ − πχ to the left of 0 and at least λ′ + πχ to the right of 0. In
Sect. 4.2, we will apply these results to η′ ∼ SLEκ ′ where η′ is coupled with−h as in
the statement of Theorem 1.1, so the boundary data is reversed.

Lemma 4.3 Suppose that h is aGFFon the stripS whose boundary data is as depicted
in Figs. 23, 24 and 25 and let η be the flow line of h starting at 0. If a ≥ λ, then η

almost surely accumulates at −∞ and if a ≤ −λ, then η almost surely accumulates
at+∞. In both cases, η almost surely does not hit ∂US. If a ∈ (−λ, λ), then η almost
surely accumulates in ∂US. If, moreover, a > −λ + χπ (resp. a < λ− πχ), then η

can be continued when it is targeted toward −∞ (resp. +∞)—i.e., the continuation
threshold is not reached in this case when η first accumulates in ∂US. This holds more
generally when the boundary data on ∂LS is piecewise constant, changes only a finite
number of times, and is at most −λ+ πχ to the left of 0 and is at least λ− πχ to the
right of 0 (see Remark 4.1). Furthermore, the analogous statement holds for SLEκ ′
processes when λ is replaced by λ′ and χ is replaced by −χ (see Remark 4.2).

Remark 4.4 If it happens that −λ+ πχ < a < λ− πχ , then, after the path first hits
∂US, it is possible to branch the path and continue it in both directions (both toward
−∞ and toward +∞). Since

−λ+ χπ = −λ+ (4− κ)
λ

2
= λ
(
1− κ

2

)
,

there exists a values for which this is possible whenever κ > 2.
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Imaginary geometry I: interacting SLEs 629

Fig. 23 Suppose that h is a GFF on S whose boundary data is as depicted on the right side. Then the flow
line η of h shown has the law of an SLEκ (ρ) process in S from 0 to +∞ where the force point is located
at −∞. To see this, let ψ : S → H be the conformal map which fixes 0, sends −∞ to −1, and +∞ to
∞. Then h ◦ ψ−1 − χ arg(ψ−1)′ is a GFF on H whose boundary data is depicted on the left side. Given
the path, the expectation of the field (in the Theorem 1.1 coupling) is the harmonic extension of the given
values on R and±λ′ + χ ·winding on the curve, as in Fig. 9. The critical ρ for ψ(η) to be able to intersect
(−∞,−1) before reaching∞ is ρ0 = κ/2−2. This implies that η accumulates in the upper boundary ∂US
or at−∞ before+∞ if and only if ρ < κ/2− 2, i.e., a > −(1+ρ0)λ−πχ = −(κ/2− 1)λ−πχ = −λ,
and otherwise it accumulates at +∞ without hitting ∂US. [Recall that 2πχ = (4 − κ)λ.] Symmetrically,
it accumulates in ∂US or at +∞ before −∞ if and only if a < λ, and otherwise it accumulates at −∞
without hitting ∂US. The same result also holds when the boundary data on ∂LS is piecewise constant,
changes values a finite number of times, and is at most −λ+ πχ to the left of 0 and at least λ− πχ to the
right of 0 (see Remark 4.1). Furthermore, the analogous statement holds when η is replaced by an SLEκ ′
counterflow line, λ is replaced by λ′, and χ is replaced by −χ

Fig. 24 In the setting of Fig. 23, the flow line behavior depends on a. Curves shown represent a.s. behaviors
corresponding to the three different regimes of a (indicated by the closed boxes). From Fig. 23, the path
hits the upper boundary of the strip a.s. if and only if a ∈ (−λ, λ). When a ≥ λ, it tends to−∞ (left end of
the strip) and when a ≤ −λ it tends to∞ (right end of the strip) without hitting the upper boundary. These
facts also hold whenever the boundary data of h on ∂LS is piecewise constant, changes only a finite number
of times, and is at most −λ + πχ to the left of 0 and at least λ − πχ to the right of 0 (see Remark 4.1).
The same statement holds when η is replaced by an SLEκ ′ process, λ is replaced by λ′ and χ is replaced
by −χ (see Remark 4.2)

Proof of Lemma 4.3 Let ρ ∈ R be such that a = −(1+ρ)λ−πχ and letψ : S → H
be the conformal transformation which sends 0 to 0,−∞ to−1, and+∞ to∞. Then
the transformation rule (1.4) implies that ψ(η) is an SLEκ(ρ) process in H from 0 to
∞ where the force point of weight ρ is located at −1. We will prove the lemma by
checking the criterion of [5, Lemma 15].

We first suppose that a ≥ λ. This holds if and only if ρ ≤ κ
2 − 4. Consequently,

[5, Lemma 15] implies that ψ(η) almost surely hits ∂H for the first time (after its
initial point) at −1, which translates into η tending to −∞ without hitting ∂US. On
the other hand, if a ≤ −λ then ρ ≥ κ

2 − 2. Applying [5, Lemma 15] analogously
implies ψ(η) tends to ∞ without exiting H so that η tends to +∞ without hitting
∂US. The case where a ∈ (−λ, λ) so that ρ ∈ ( κ

2 − 4, κ
2 − 2) is similar. Finally, we
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630 J. Miller, S. Sheffield

Fig. 25 Take a ∈ (−λ, λ). Consider Fig. 23 with ρ = −2, the critical value of ρ for the path being able to
continue after the force point is absorbed. Conformally mapping to the strip S, we find that the path may
be continued to the left when a ∈ (−λ+ πχ, λ) and to the right when a ∈ (−λ, λ− πχ). In the extreme
case a = λ− πχ(ρ = −2), the path on the right “merges into” the upper line. (When the path turns right
and runs parallel to R, the height on its lower side is λ− πχ . The merging phenomenon will be developed
in Sect. 7.2.) A similar statement holds in the setting of SLEκ ′ processes when λ is replaced by λ′ and χ is
replaced by −χ (see Remark 4.2)

Fig. 26 If the left interval has height a ≤ −λ and the right has height b ≥ λ, then the first accumulating
point of the path on the upper line will be at z0. The same result holds if the boundary data is piecewise
constant and changes at most a finite number of times, is at most −λ to the left of z0, at least λ to the right
of z1, at most −λ+ πχ to the left of 0, and at least λ− πχ to the right of 0 (see Remark 4.1). The same
statement holds for SLEκ ′ processes provided λ is replaced by λ′ and χ is replaced by−χ (see Remark 4.2)

note that a < λ − χπ (resp. a > −λ + χπ ) translates into ρ > −2 which means
that the continuation threshold for the path targeted at+∞ (resp.−∞) is not reached
when it hits ∂US. This observation implies that we have the behavior described in the
statement of the lemma for these ranges of a values. ��
Lemma 4.5 Suppose that h is a GFF on S whose boundary data is as depicted in
Fig. 26. Let z0 be the point of ∂US which separates ∂US into the segments where the
boundary data changes from a to b. Then the flow line η of h starting at 0 almost
surely exits S at z0 without otherwise hitting ∂US. This result holds more generally
when the boundary data of h on ∂US is piecewise constant, changes a finite number
of times, and is at most −λ to the left of z0, at least λ to the right of z0, and on ∂LS is
piecewise constant, changes a finite number of times, and is at most −λ+ πχ to the
left of 0 and at least λ− πχ to the right of 0 (see Remark 4.1). Moreover, this result
holds in the setting of SLEκ ′ processes when λ is replaced by λ′ and χ is replaced by
−χ (see Remark 4.2).

Proof Let ψ : S → H be the conformal transformation which sends 0 to 0,−∞ to
−1, and z0 to −2. Applying the transformation rule (and analogously to Fig. 23), we
see thatψ(η) ∼ SLEκ(ρ1, ρ2)where the weights ρ1, ρ2 are located at the force points
−1,−2, respectively, and are determined from a, b by the equations
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Fig. 27 In the same setting as Fig. 26 but with an additional interval of height c ∈ (−λ, λ), the path first
hits the upper boundary in this middle interval. The same result holds when the constants a, b are replaced
by piecewise constant functions which each take on a finite number of values which do not exceed −λ and
are at least λ in their respective intervals and the boundary data on ∂LS is piecewise constant, changes a
finite number of times, and is at most −λ+ πχ to the left of 0 and is at least λ− πχ to the right of 0 (see
Remark 4.1). The same statement holds in the setting of counterflow lines provided λ is replaced by λ′ and
χ is replaced by −χ (see Remark 4.2)

a = −(1+ ρ1)λ− χπ, b = −(1+ ρ1 + ρ2)λ− χπ.

The condition a ≤ −λ implies ρ1 ≥ κ
2 − 2 and that b ≥ λ gives ρ1 + ρ2 ≤ κ

2 − 4.
Consequently, it follows from [5, Lemma 15] that ψ(η) first exits H at −2, which is
to say that η first exits S at z0. ��

Lemma 4.6 Suppose that h is a GFF on S whose boundary data is as depicted in
Fig. 27. Let z0, z1 be the points which separate ∂US into the segments where the
boundary data changes from a to c and c to b, respectively. Then the flow line η of
h almost surely exits S in [z0, z1] without otherwise hitting ∂US. This holds more
generally when the boundary data of h is piecewise constant, changes a finite number
of times, is at most −λ to the left of z0, at least λ to the right of z0, at most −λ+ πχ

to the left of 0, and at least λ− πχ to the right of 0 (see Remark 4.1). Moreover, this
result holds when η is replaced by a counterflow line provided λ is replaced by λ′ and
χ is replaced by −χ (see Remark 4.2).

Proof Let ψ : S → H be the conformal transformation which sends 0 to 0,−∞ to
−1, z0 to −2, and let y1 = ψ(z1) < −2. Applying the transformation rule (analo-
gously to Fig. 23), we see thatψ(η) ∼ SLEκ(ρ1, ρ2, ρ3)where the weights ρ1, ρ2, ρ3
are located at the force points−1,−2, y1, respectively, and are determined from a, b, c
by the equations

a = −(1+ ρ1)λ− χπ, b = −(1+ ρ1 + ρ2)λ− χπ,

c = −(1+ ρ1 + ρ2 + ρ3)λ− χπ.

As in the proof of the previous lemma, the hypothesis on a implies ρ1 ≥ κ
2 − 2, and

that b ≥ λ gives ρ1 + ρ2 + ρ3 ≤ κ
2 − 4. Finally, that c ∈ (−λ, λ) gives ρ1 + ρ2 ∈

( κ
2 − 4, κ

2 − 2). Consequently, it is easy to see from [5, Lemma 15] that ψ(η) first
exits H in [y1,−2], which is to say that η first exits S in [z0, z1]. ��
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(a) (b)

Fig. 28 The path η represents a flow line and η′ a counterflow line in the reverse direction, once we subtract
π
2 χ from the field. The boundary data on the vertical segment of η matches that of the left of the vertical
segment of η′, suggesting that η could “merge into” the left boundary of η′. Since −λ′ + π

2 χ ∈ (−λ, λ),
Fig. 24 shows η must hit the upper boundary of the strip somewhere on the left (not the right) semi-infinite
interval. Using Fig. 26, we see that η′ must first hit the lower boundary of the strip at the lower dot. This is
because (subtracting π

2 χ from everything) we find that since−λ− π
2 χ ≤ −λ′ (left side) and λ− π

2 χ = λ′
(right side). If we grow η and η′ (up to some time before they intersect) then after a coordinate change, we
can map the complement of these paths back to the original strip so that the boundary conditions are the
same as they originally were (though the locations of the dots may be translated). Thus η′ a.s. hits each of a
countable dense set of points along η (up until the first time it hits the upper interval) and η always first hits
to the left of the tip of η′([0, t]) (for some countable dense set of t values). a The boundary data for a flow
line and counterflow line. b Subtracting π

2 χ from the boundary data on the left makes the upper boundary
conditions symmetric

4.2 A special case of Theorem 1.2

In this subsection, we will prove Theorem 1.2 for a certain class of boundary data in
which the flow line is non-boundary intersecting.

Lemma 4.7 Suppose we are in the setting of Fig. 28. That is, we fix κ ∈ (0, 4), let h
be a GFF on S whose boundary data is as depicted in Fig. 28a, η the flow line of h
starting at 0, η′ the counterflow line of h− π

2 χ starting at z0, and assume that η, η′, h
are coupled together so that η and η′ are conditionally independent given h. Let τ

be any stopping time for η. Then η′ almost surely first hits ∂LS ∪ η([0, τ ]) at η(τ).
In particular, η′ contains η and hits the points of η in reverse chronological order: if
s < t then η′ hits η(t) before η(s).

Proof Conditional on the realization of η|[0,τ ], the field is equal in distribution to
a GFF whose boundary data is −λ′ + χ · winding on the left side of η([0, τ ]) and
λ′ + χ ·winding on the right side of η([0, τ ]) (see Fig. 11). We note that η′ viewed as
a path in S\η([0, τ ]) has a continuous Loewner driving function up until it first hits
η([0, τ ]) (see, for example Proposition 6.12). On the event that t occurs before the
first time that η′ accumulates in ∂LS ∪η([0, τ ]), Propositions 3.7 and 3.8 together tell
us that the boundary data for the conditional law of h given both η|[0,τ ] and η′|[0,t]
in the unbounded component of S\(η([0, τ ]) ∪ η′([0, t])) is that of a GFF whose
boundary conditions along ∂LS ∪ η([0, τ ]) (resp. ∂US ∪ η′([0, t])) agree with those
of the conditional law of h given just η|[0,τ ] (resp. η′|[0,t]) alone. This allows us to
use Theorem 2.4 to compute the conditional law of η′ given η([0, τ ]). In particular,
we see that conformally mapping S\η([0, τ ]) back to S with η(τ) sent to 0 and
±∞ fixed leaves us in the setting of the lemma with τ = 0. Thus we just need to
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argue that η′ first hits ∂LS at 0. The boundary data for η′ on ∂LS is (as described
in Fig. 28b)

−λ− π

2
χ ≤ −λ′ on (−∞, 0) and λ− π

2 χ = λ′ on (0,∞);

recall (4.2). Consequently, Lemma 4.5 implies η′ almost surely first hits ∂LS at 0, as
desired. Since η up until the first time it hits ∂US is almost surely continuous (recall
Remark 2.3), it follows that η′ almost surely contains η by applying this argument to
a countable dense set of stopping times (e.g., the positive rationals). It is also easy to
see from this that η′ hits the points of η in reverse chronological order (recall Fig. 28).

��
Remark 4.8 The proof of Lemma 4.7 has two inputs:

(a) the continuity of η up until it first accumulates in ∂US and that
(b) for every η stopping time τ, η′ almost surely first exits S\η([0, τ ]) at η(τ).

Condition (a) holds more generally when the boundary data on ∂LS is piecewise
constant, changes a finite number of times, and is at most −λ + πχ to the left of
0 and at least λ − πχ to the right of zero. This ensures that η almost surely does
not hit ∂LS after starting, so is almost surely continuous since its law is mutually
absolutely continuous with respect to SLEκ(ρ ≡ 0) by the Girsanov theorem (recall
Remark 2.3). Condition (b) holds when the boundary data of h − π

2 χ on ∂US is
piecewise constant, changes a finite number of times, and is at most −λ′ − πχ to
the left of z0 and at least λ′ + πχ to the right of z0 [or we have −λ′, λ′ boundary
data as in the statement of Lemma 4.7; note that the reason for the sign is that χ =
χ(κ) = −χ(κ ′)]. This also implies the continuity of η′ up until it hits ∂LS, arguing
using absolute continuity as before (this will be important for a more general version
of Proposition 4.9). Additionally, we need that the boundary data of h− π

2 χ on ∂LS is
piecewise constant, changes a finite number of times, is not more than −λ′ to the left
of 0, and is at least λ′ to the right of 0. In short, Lemma 4.7 holds when the boundary
data of h is “large and negative” to the left of 0 and z0 and “large and positive” to the
right of 0 and z0.

Proposition 4.9 Suppose we are in the setting of Fig. 28. That is, we fix κ ∈ (0, 4),
let h be a GFF on S whose boundary data is as depicted in Fig. 28a, let η be the flow
line of h starting at 0, η′ the counterflow line of h − π

2 χ starting at z0, and assume
that η, η′, h are coupled together so that η, η′ are conditionally independent given h.
Almost surely, η is equal to the left boundary η′.

Proof Lemma 4.7 implies that the range of η′ contains η. To complete the proof, we
just need to show that η is to the left of η′. To see this, fix any stopping time τ ′ for η′
such that η′ almost surely has not hit ∂LS. Then η almost surely exits S\η′([0, τ ′]) on
the left side of η′([0, τ ′]) or to the left of z0 on ∂US. Indeed, arguing as in the proof
of Lemma 4.7, we can conformally map the picture back to S to see that it suffices to
show that η almost surely first hits ∂US to the left of z0. This, in turn, is a consequence
of Lemma 4.6.
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Fig. 29 Suppose that we have the same setup as Fig. 28. Fix an η′ stopping time τ ′. Then it must be that
η′(τ ′) is to the right of η. Indeed, if this were not the case, then after hitting the left side of η′([0, τ ′]), say
at time τ, η would have to wrap around η′(τ ′) and then hit the right side of η′([0, τ ′]), say at time σ . This is
a contradiction since η′ hits all of the points in η in reverse chronological order. In particular, we have that
η(τ), η(σ ) ∈ η′([0, τ ′]) while there exists s ∈ (τ, σ ) such that η(s) /∈ η′([0, τ ′]). We conclude that η′ lies
to the right of η applying this result to a dense collection of stopping times τ ′ (e.g., the positive rationals)
and using the continuity of η′

We will now argue that η′(τ ′) is to the right of η. Let τ be the first time η exits
S\η′([0, τ ′]). There are two possibilities: η(τ) is either in ∂US or in η′([0, τ ′]). In
the former case we are done, so we shall assume that we are in the latter. Now, the
only way that η′(τ ′) could be strictly to the left of η is if after τ, η wraps around
η′([0, τ ′]) and hits its right side. This implies the existence of times t1 < t2 < t3 such
that η(t1), η(t3) ∈ η′([0, τ ′]) but η(t2) /∈ η′([0, τ ′]). This is a contradiction since η′
absorbs the points of η in reverse chronological order by Lemma 4.7. The result now
follows by taking a countable dense collection of stopping times τ ′ (e.g., the positive
rationals) and invoking the almost sure continuity of η′ up until when it first hits ∂LS
(Fig. 29). ��
Remark 4.10 In addition to the hypotheses described in Remark 4.8 (which imply the
almost sure continuity of η′ up until when it first accumulates in ∂LS), Proposition 4.9
requires the boundary data of h to be such that η almost surely first accumulates in
∂US to the left of z0. By Lemma 4.5, this means that the boundary data for h on ∂US
should be piecewise constant, change only a finite number of times, and be less than
λ to the left of z0 and be at least λ to the right of z0.

By combining Remarks 4.8 and 4.10, we obtain the following extension of Propo-
sition 4.9.

Proposition 4.11 Suppose we are in the setting of Fig. 28 where the boundary data
on ∂LS is replaced by any piecewise constant function which changes a finite number
of times, does not exceed −λ + πχ to the left of 0, and is at least λ to the right
of 0. Assume furthermore that the boundary data of h on ∂US is piecewise constant,
changes a finite number of times, and does not exceed−λ to the left of z0 and is at least
λ+ πχ to the right of z0. Almost surely, the flow line η starting from 0 is equal to the
left boundary of the counterflow line η′ of the field minus π

2 χ starting from z0. Here,
we assume that η, η′, h are coupled together so that η is conditionally independent of
η′ given h.
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Using Proposition 4.11, we obtain Theorem 1.2 in the special case we have only
boundary force points with weights ρ = (ρL , ρR) with |ρL | = k and |ρR | = �

satisfying:

j∑
i=1

ρi,L ≥ κ
2 − 2 for all 1 ≤ j ≤ k and

j∑
i=1

ρi,R ≥ 0 for all 1 ≤ j ≤ �.

(4.4)

Proof of Theorem 1.2 for κ ∈ (0, 4) assuming (4.4) We suppose that we are in the
setting of Fig. 28 but with boundary data satisfying Remarks 4.8 and 4.10. That is, we
consider the Gaussian free field h on the stripS with piecewise constant boundary data
on ∂LS which changes a finite number of times, is at most−λ+ πχ on (−∞, 0) and
at least λ on (0,∞). Moreover, we assume that the boundary data of h on ∂US is at
most−λ to the left of z0 and at least λ+ πχ to the right of z0. Then Proposition 4.11
implies that the flow line η of h starting at 0 is equal to the left boundary of the
counterflow line η′ starting at z0 of h − π

2 χ , where η, η′, h are coupled together so
that η is conditionally independent of η′ given h. Since η and η′ are conditionally
independent given h, it follows that η is almost surely determined by h. The result
follows since by adjusting the boundary data of h, we can arrange so that η ∼ SLEκ(ρ)

with any choice of weights ρ satisfying (4.4). ��
At this point in the article, it follows that the flow lines thus considered (almost

surely non-boundary intersecting) are deterministic functions of the GFF.We have not
yet shown that the counterflow lines in any setting are deterministic functions of the
GFF; this will be shown in Sect. 5.

We finish this section with the following proposition, which gives an alternative
proof of the transience of certain non-boundary intersecting SLEκ(ρ) processes using
duality (see [24] for another approach for ordinary SLE).

Proposition 4.12 Suppose that η ∼ SLEκ(ρ), κ ∈ (0, 4), from 0 to∞ in H with the
weights ρ satisfying (4.4). Then limt→∞ η(t) = ∞ almost surely.

Proof This is similar to the proof of Theorem 1.2 for κ ∈ (0, 4) assuming that the
weights ρ satisfy (4.4). Indeed, we can choose the boundary data of a GFF h on S so
that the flow line η of h starting at 0 is an SLEκ(ρ) process for any choice of weights
ρ satisfying (4.4). Let η′ be the counterflow line of h − π

2 χ starting at z0, taken to be
conditionally independent of η given h. Let τ be any positive stopping time for η such
that η almost surely has not hit z0 by time τ . We know from the proof of Lemma 4.7
that η′ almost surely first exits S\η([0, τ ]) at η(τ), say at time τ ′. Moreover, it follows
from Proposition 4.11 that η|[τ,∞) is equal to the left boundary of η′([0, τ ′]) (we know
that η lies to the left of η′([0, τ ′]) and that η′ hits the points of η in reverse chronological
order). ByRemark 2.3,we know thatη′|[0,τ ′] is almost surely continuouswhich implies
that the left boundary of η′([0, τ ′]) is locally connected. Therefore the range of η is
locally connected (we know that η|[0,τ ) is locally connected by Remark 2.3), hence η

123



636 J. Miller, S. Sheffield

is continuous even when it hits z0. Applying a conformal map ψ : S → H completes
the proof of the proposition. ��

Part of Theorem 1.3, which will be proved in Sect. 7.3 for κ ∈ (0, 4) and in Sect. 7.4
for κ ′ ∈ (4,∞), is the continuity of general SLEκ(ρ) and SLEκ ′(ρ) processes upon
hitting their terminal point. This is equivalent to transience when the terminal point is
∞.

5 The non-boundary-intersecting regime

This section contains two main results. First, we will show that the flow lines of the
GFF h enjoy the samemonotonicity properties as if h were a smooth function: namely,
if θ1 < θ2 and ηθi is the flow line of h with angle θi for i = 1, 2 started at a given
boundary point then ηθ1 almost surely lies to the right of ηθ2 (Proposition 5.5). Second,
we will show that SLE16/κ for κ ∈ (0, 4) can be realized as a so-called “light cone”
of angle-varying SLEκ flow lines (Proposition 5.9). The proofs of this section will
apply to a certain class of boundary data in which the flow lines are non-boundary-
intersecting. In Sect. 7, we will extend these results to the setting of general piecewise
constant boundary data, in particular in the setting in which the paths may hit the
boundary.

5.1 Monotonicity of flow and counterflow lines

In order to prove our first version of the monotonicity result, it will be more convenient
for us to work on the strip S = R×(0, 1). Throughout, we let ∂US and ∂LS denote the
upper and lower boundaries of S, respectively. This puts us into a setting in which we
canmake use of the SLEduality theory from the previous section.Assume that θ1 < θ2.
Then we know from Proposition 4.11 that ηθ1 is almost surely the left boundary of
the counterflow line η′θ1 of h + (θ1 − π

2 )χ emanating from the upper boundary ∂US
of S, provided the boundary data of h is chosen appropriately (we will spell out the
restrictions on the boundary data in the statements of the results below). Thus to show
that ηθ2 passes to the left of ηθ1 it suffices to show that ηθ2 passes to the left of η′θ1 .
This in turn is a consequence of the following proposition, which gives us the range
of angles in which a flow line passes either to the left or to the right of a counterflow
line:

Proposition 5.1 Suppose that h is a GFF on S with boundary data as described in
Fig. 30. Assume a′, b′ ≥ λ′ + πχ and a, b ≥ λ′. Let η′ be the counterflow line of h
starting at z0. Fix θ such that

λ− πχ − b

χ
≤ θ ≤ a + πχ − λ

χ
(5.1)

and let ηθ be the flow line of h + θχ starting from 0. If θ > 1
χ
(λ − λ′) = π

2 , then

ηθ almost surely passes to the left of η′ and if θ < 1
χ
(λ′ − λ) = −π

2 then ηθ almost
surely passes to the right of η′.
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(a) (b)

Fig. 30 Consider a GFF on the infinite strip S with boundary data as described in the illustrations above.
Let ηθ be the flow line starting at 0 with initial angle θ (which corresponds to adding θχ to the boundary
data) and η′ the counterflow line starting at z0. We assume that a, b are chosen sufficiently large so that
both η′ and ηθ almost surely do not intersect the lower boundary ∂LS of S except at 0 and a′, b′ are
sufficiently large so that η′ almost surely does not intersect the upper boundary ∂US of S except at z0. We
will show in Proposition 5.1 that if θ > 1

χ (λ− λ′) = π
2 , then ηθ almost surely passes to the left of η′ and

if θ < 1
χ (λ′ − λ) = −π

2 , then ηθ almost surely passes to the right of η′. By SLE duality, this implies the

monotonicity of ηθ in θ . a On the left θ > 1
χ (λ− λ′) = π

2 . b On the right θ < 1
χ (λ′ − λ) = −π

2

The hypothesis (5.1) implies that ηθ almost surely accumulates in ∂US or tends to
±∞ before hitting ∂LS (see Remark 4.1; upon proving Theorem 1.3, we in fact will be
able to prove that ηθ almost surely does not hit ∂LS after time 0). The reasonwe assume
a′, b′ ≥ λ′ + πχ and a, b ≥ λ′ is that the former implies that η′ almost surely does
not intersect ∂US except at z0 and the latter implies that η′ intersects ∂LS only when
it terminates at 0. Consequently, η′ is almost surely continuous (recall Remark 2.3).
Moreover, it implies that if θ < 1

χ
(λ′ − λ) = −π

2 then −a′ + θχ < −λ so that ηθ

does not hit the side of ∂US which is to the left of z0 and if θ > 1
χ
(λ− λ′) = π

2 then
b′ + θχ > λ so that ηθ does not hit the side of ∂US which is to the right of z0 (see
Fig. 27).

We are nowgoing to give an overview of the proof of Proposition 5.1, which is based
on an extension of the proof of Proposition 4.9. We assume without loss of generality
that θ > 1

χ
(λ − λ′) = π

2 . We begin by fixing an η′-stopping time τ ′ and then show
that η′(τ ′) almost surely lies to the right of ηθ . As in the proof of Proposition 4.9, we
will first show that ηθ almost surely first exits S\η′([0, τ ′]) on either the left side of
η′([0, τ ′]) or the side of ∂US which is to the left of z0 (see Fig. 32, which also contains
an explanation of the critical angles). If we are in the latter situation, then we have the
desired monotonicity. If not, we suppose for contradiction that η′(τ ′) is to the left of
ηθ . Then after ηθ hits η′([0, τ ′]), it must be that ηθ wraps around η′(τ ′) and hits the
right side of η′([0, τ ′]) since ηθ cannot exit S on the part of ∂US which lies to the right
of z0. This, however, cannot happen because the evolution of ηθ near the right side
of η′([0, τ ′]) looks like (up to conformal transformation and a mutually absolutely
continuous change of measures) an SLE process on the strip S starting from 0 which
cannot hit its upper boundary ∂US (see Fig. 23). We begin by proving the following
extension of Lemma 4.3, which serves to make this last point precise.

Lemma 5.2 Suppose that h is a GFF on S whose boundary data is as described in
Fig. 31 and let η be the flow line of h starting at 0. If η|[0,T0] is almost surely continuous
for some η-stopping time 0 < T0 < ∞, then η([0, T0]) ∩ J = ∅ almost surely.
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Fig. 31 Suppose that h is a GFF on the strip S and let J ⊆ ∂US be open. Write J = ∪k Jk where the
Jk are disjoint open intervals and assume that h|Jk ≡ ck for given constants ck /∈ (−λ, λ). Assume that
0 < T0 < ∞ is an η-stopping time such that η|[0,T0] is almost surely continuous. Then η cannot hit J
by time T0. To see this, fix w0 in the interior of any Jk and pick ε > 0 such that ∂B(w0, ε) ∩ ∂US is
contained in the interior of Jk . Fix ε′ ∈ (0, ε). The evolution of η after it hits ∂B(w0, ε

′) for the first
time up until when it subsequently exits B(w0, ε) is (after applying a conformal transformation) mutually
absolutely continuous with respect to the setup described in Fig. 23 by Proposition 3.4, consequently η

almost surely exits B(w0, ε) before hitting B(w0, ε)∩ Jk . The result follows by considering the collection
of balls centered at some countable dense set of points in Jk with rational radii and invoking the continuity
of η|[0,T0]

In order for Lemma 5.2 to be meaningful, there must exist a non-zero η-stopping time
T0 such that η|[0,T0] is continuous. This will be clear for the application we have in
mind in this section. Upon establishing Theorem 1.3 in Sect. 7, wewill be able to apply
Lemma 5.2 to the flow lines of a GFF with piecewise constant boundary conditions.

Proof of Lemma 5.2 Write J = ∪k Jk where the Jk are pairwise disjoint intervals in
∂US. Fix k ∈ N and w0 in the interior of Jk . Let ε > 0 be such that ∂B(w0, ε)∩ ∂US,
where ∂US is the upper boundary of S, is contained in the interior of Jk and fix
ε′ ∈ (0, ε). Let τ be the first time t that η hits ∂B(w0, ε

′) and σ the first time t after τ

that η is not in B(w0, ε). Assume that η(τ) /∈ ∂US. Let D be the connected component
of S\η([0, τ ])which containsw0. By Proposition 3.4, the law of h|B(w0,ε) conditional
on the realization of η|[0,τ ] is mutually absolutely continuous with respect to the law

of the restriction of a GFF h̃ on D to B(w0, ε)whose boundary data is λ′ −χ ·winding
(resp. −λ′ − χ · winding) on the right (resp. left) side of η([0, τ ]), the same as h on
∂LS, the lower boundary of S, and identically ck on all of ∂US. Let η̃ be the flow
line of h̃ starting at η(τ). Then Lemma 4.3 implies that η̃ almost surely does not hit
∂US and, in particular, exits B(w0, ε) before hitting ∂US. Applying Proposition 3.4 a
second time implies that with E(w0, ε

′, ε) the event {η([τ, σ ])∩ ∂US �= ∅, σ ≤ T0}
we have P[E(w0, ε

′, ε) | η(τ) /∈ ∂US] = 0.
Let (w j ) be a countable dense set in J and letD be the set of all triples of the form

(w j , r ′, r)where 0 < r ′ < r are rational. If η hits ∂US with positive probability before
time T0, the almost sure continuity of η|[0,T0] implies there exists (w j , r ′, r) ∈ D such
thatP[E(w j , r ′, r) | η(τ) /∈ ∂US] > 0where τ ≤ T0 is the first time η hits ∂B(w j , r ′).
This is a contradiction, which proves the lemma. ��
Remark 5.3 By changing coordinates from S toH, Lemma 5.2 implies the following.
Suppose that η is an SLEκ(ρ) process on H with weights ρ = (ρL ; ρR) placed
at force points (x L ; x R). Assume that η|[0,T0] is almost surely continuous for some
η stopping time 0 < T0 < ∞. Then η([0, T0]) almost surely does not intersect
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(a) (b)

Fig. 32 Suppose that we have the same setup as in Fig. 30 and let τ ′ be a stopping time for η′. We assume θ

is chosen so that ηθ almost surely does not hit ∂LS after time 0. If θ > 1
χ (λ−λ′) = π

2 so that λ′ + θχ > λ

and b′ + θχ > λ then by Fig. 27, ηθ exits S\η′([0, τ ′]) on either the left side of η′([0, τ ′]) or on the left
side of ∂US, almost surely. If θ < 1

χ (λ′ −λ) = −π
2 so that−λ′ + θχ < −λ and−a′ + θχ < −λ, ηθ first

exits on the right side of η′([0, τ ′]) or the right side of ∂US, almost surely. a The evolution of η′ up to time
τ ′ and ηθ up until the first time it hits η′([0, τ ′]). b The boundary data for ηθ after conformally mapping
the picture on the left hand side back to the strip with ±∞ and 0 fixed, w0 the image of z0

any interval (xi+1,L , xi,L) [resp. (xi,R, xi+1,R)] such that
∑i

s=1 ρs,L ≥ κ
2 − 2 or∑i

s=1 ρs,L ≤ κ
2 − 4 (resp.

∑i
s=1 ρs,R ≥ κ

2 − 2 or
∑i

s=1 ρs,R ≤ κ
2 − 4).

Lemma 5.4 Suppose that we have the same hypotheses as Proposition 5.1 with θ >
1
χ
(λ−λ′) = π

2 fixed. Let τ ′ be an η′ stopping time such that, almost surely, η′ has not
hit 0 by time τ ′. For each t > 0, let K ′

t be the hull of η
′([0, t]), i.e. the complement of

the unbounded connected component of S\η′([0, t]). Let τ be any stopping time for
the filtration Ft = σ(η(s) : s ≤ t, η′([0, τ ′])) and let E = {dist(η(τ ), K ′

τ ′) > 0}.
Then on E, η|[τ,∞) intersects neither the right side of η′([0, τ ′]) nor the part of ∂US
which lies to the right of z0 before hitting either the left side of η′([0, τ ′]) or the part
of ∂US which lies to the left of z0.

Proof If η([0, τ ])∩K ′
τ ′ = ∅, then the result is immediate from the argument described

in Fig. 32. Thus for the rest of the proof, we shall assume that η([0, τ ]) ∩ K ′
τ ′ �= ∅.

Since η is almost surely a simple path, there exists a unique connected component D
of S\(η([0, τ ]) ∪ K ′

τ ′) such that for some ε0 > 0, η(τ + ε) ∈ D for all ε ∈ (0, ε0).
We consider two cases. First, suppose that ∂D has non-empty intersection with the

part of ∂US which is to the left of z0. Then there is nothing to prove since a simple
topological argument implies that η|[τ,∞) can only exit D either on the left side of
η′([0, τ ′]) or on the part of ∂US which lies to the left of z0 (since η([0, τ ]) must have
an intersection with either the left side of η′([0, τ ′]) or the part of ∂US which is to
the left of z0; see Fig. 27). Second, suppose that ∂D has non-empty intersection with
the part of ∂US which is to the right of z0 or the right side of η′([0, τ ′]). Observe that
D is simply connected. Let τ0 be the largest time t ≤ τ such that η(t) ∈ K ′

τ ′ . Let
ψ : D → S be the conformal transformation which sends η(τ) to 0, and the left and
right boundaries of η([τ0, τ ]) to (−∞, 0) and (0,∞), respectively. Since η|[0,τ ] and
η′|[0,τ ′] are continuous paths, it follows that ψ extends as a homeomorphism to D.
Let h̃ = h ◦ ψ−1 − χ arg(ψ−1)′. Then h̃ is a GFF on S by Proposition 3.7 since K ′

τ ′
is local for h and η([0, τ ]) is local for h given K ′

τ ′ . By Proposition 3.8, we know the
boundary data of h̃ on ∂LS as well as the parts of ∂US whose preimage underψ lies in
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(a) (b)

Fig. 33 Suppose we have the same setup as Fig. 32 with θ > 1
χ (λ − λ′) = π

2 so that ηθ first exits

S\η′([0, τ ′]) on the left side of η′([0, τ ′]). The only way that η′(τ ′) can be to the left of ηθ is if, after
hitting the left side of η′([0, τ ′]), ηθ wraps around η′(τ ′) and then hits the right side of η′([0, τ ′]). Let
K ′
t be the hull of η′([0, t]). This implies that with τδ the first time t after τ for which η(t) is in the right

connected component of S\(η′([0, τ ′]) ∪ η([0, τ ])) and dist(η(t), K ′
τ ′ ) ≥ δ we have that P[τδ < ∞] > 0

provided δ > 0 is small enough. Let D be the connected component of S\(η([0, τδ] ∪ K ′
τ ′ ) which, for

some ε > 0, contains η([τδ, τδ + ε]). Let ψ : D → S be a conformal transformation sending the left side
of η from the largest time t < τδ that η(t) ∈ ∂(S\K ′

τ ′ ) to τδ to (−∞, 0) and the corresponding right side
of η to (0,∞). Then the boundary data for the coordinate change of the GFF h|D + θχ by ψ in S is shown
on the right hand side. The intervals Jk are the images of the segments in ∂D which also lie on the right
side of η′([0, τ ′]). By Fig. 31, we know in this case η cannot hit any of the Jk in finite time. This leads
to a contradiction. a In order for η′(τ ′) to be to the left of ηθ , ηθ must wrap around η′(τ ′) after hitting on
the left side of η′([0, τ ′]). b The boundary data for the flow line ηθ as it approaches the right side of η′,
conformally mapped back to the strip

either η([0, τ ]) or in η′([0, τ ′]) but (at this point) we cannot determine the boundary
behavior of h near points in η([0, τ ])∩ η′([0, τ ′]). This is indicated in the right panel
of Fig. 33. The result now follows from Lemma 5.2 (see Fig. 33). ��

Proof of Proposition 5.1 We assume θ > 1
χ
(λ− λ′) = π

2 ; the argument for the other
case is the same. Let τ ′ be any stopping time for η′ such that η′ has almost surely
not yet hit 0 by time τ ′. Conditioning h on η′([0, τ ′]) and conformally mapping
S\K ′

τ ′ (recall that K
′
t is the hull of η′([0, t])) back to S, the boundary data of the

corresponding field plus θχ is given in Fig. 32b. That θ > 1
χ
(λ − λ′) = π

2 implies
−λ′ + θχ > −λ, λ′ + θχ > λ, and b′ + θχ > λ. Consequently, it follows from that
ηθ almost surely exits S\η′([0, τ ′]) on the left side of η′([0, τ ′]) or on the part of ∂US
which lies to the left of z0, say at time τ , or does not hit ∂US (Figs. 24, 27).

We will now argue that η′(τ ′) is almost surely to the right of ηθ . If this is not the
case, then after time τ, η must wrap around (but not hit) η′(τ ′) and then hit the right
side of η′([0, τ ′]) (recall that η almost surely does not hit the side of ∂US which lies
to the right of z0). Let τδ be the first time t after τ that η(t) is in the right connected
component of S\(η([0, τ ]) ∪ η′([0, τ ′])) and dist(η(τδ), K ′

τ ′) ≥ δ (we take τδ = ∞
if this never happens). Then it must be that limδ→0+ P[τδ < ∞] > 0, for otherwise
η′(τ ′) is contained in the range of η since we have assumed that η′(τ ′) is to the left
of η. This leads to a contradiction since Lemma 5.4 implies that η cannot hit the right
side of η′([0, τ ′]) or the part of ∂US which lies to the right of z0 before it hits the left
side of η′([0, τ ′]), the part of ∂US which lies to the left of z0, or tends to∞ after time
τδ , any δ > 0. ��
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Proposition 5.5 Suppose that h is a GFF on S whose boundary data is as in Fig. 30.
Fix θ1, θ2 such that

λ− b

χ
≤ θ1 < θ2 ≤ a + πχ − λ

χ
. (5.2)

Let ηθi , for i = 1, 2, be the flow line of h+ θiχ starting at 0 and let τi be the first time
that ηθi accumulates in ∂US. Then ηθ2 |[0,τ2] almost surely lies to the left of ηθ1 |[0,τ1].
The same result holds if ηθ1 , ηθ2 are flow lines of a GFF h on H from 0 to ∞ with
boundary data −a on (−∞, 0) and b on (0,∞).

The reason for the asymmetry in the hypothesis (5.2) is to allow for “enough space”
so that we can fit a counterflow line η′θ1 whose left boundary is ηθ1 which does not
intersect ∂LS. We note that it is not necessary to make any hypotheses about the
boundary data of h on ∂US. The reason is that the lemma is only applicable for the
paths up until when they first accumulate in ∂US. This means that we can prove the
result with a convenient choice and then use Proposition 3.4.

Proof of Proposition 5.5 Fix ε > 0. For i = 1, 2, let τ ε
i be the first time t that ηθi

gets within distance ε of ∂US. It suffices to show that η
x2
θ2
|[0,τ ε

2 ] almost surely lies
to the left of η

x1
θ1
|[0,τ ε

1 ] for every ε > 0. We assume that a′ ≥ λ′ + (θ1 + π
2 )χ and

b′ ≥ λ′ + ( 32π − θ1)χ (by Proposition 3.4, it suffices to prove this result with any
choice of a′, b′). This implies that the boundary data of h+ (θ1− π

2 )χ on ∂US which
lies to the left of z0 is at most −λ′ − πχ and to the right of z0 is at least λ′ + πχ .
Moreover, the hypothesis (5.2) implies that the boundary data of h+(θ1− π

2 )χ on ∂LS
which lies to the left of 0 is at most−λ′ and to the right of 0 is at least λ′. Consequently,
Proposition5.1 is applicable to the counterflow lineη′θ1 ofh+(θ1−π

2 )χ . Sinceηθ2 |[0,τ ε
2 ]

is the flow line of h+ (θ1− π
2 )χ with angle θ2− θ1+ π

2 > π
2 , Proposition 5.1 implies

that ηθ2 |[0,τ ε
2 ] is to the left of η

′
θ1
. The result then follows since Proposition 4.11 implies

that ηθ1 |[0,τ ε
1 ] is contained in the left boundary of η

′
θ1
. The result when the ηθi , i = 1, 2,

are flow lines of a GFF on H follows from the result on S and Proposition 3.4. ��

5.2 Light cone construction of counterflow lines

In this section, we will prove Proposition 5.9, our first version of Theorem 1.4. Along
the way, we will explain the inputs we need in order to prove the result in its full gen-
erality (the technical ingredients for the general version will be developed in Sect. 7).
Suppose that h is a GFF on S with boundary data as depicted in Fig. 34. Throughout,
we will make the same hypotheses on the boundary data of h as in Proposition 5.1.
That is, we shall assume that a, b ≥ λ − π

2 χ = λ′; the reason for this choice is that
it implies that the counterflow line η′ of h starting at z0 almost surely hits ∂LS, the
bottom of ∂S, only when it exits at 0. We also assume that a′, b′ ≥ λ′ +πχ so that η′
almost surely does not intersect ∂US, the top of ∂S, except at z0 (recall Fig. 26).

Fix angles θ1, . . . , θ�. Let ηθ1 be the flow line of h starting at 0 with angle θ1,
let τ1 be an ηθ1 stopping time, and let η

τ1
θ1
= ηθ1 |[0,τ1] (i.e., ηθ1 stopped at time τ1).

For each 2 ≤ j ≤ �, we inductively let η
τ1···τ j−1
θ1···θ j be the flow line of h conditional
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on η
τ1···τ j−1
θ1···θ j−1

|[0,τ j−1] starting at η
τ1···τ j−1
θ1···θ j−1

(τ j−1) with angle θ j and let τ j be an ηθ1···θ j
stopping time, as depicted in Fig. 34.We call η

τ1···τ j
θ1···θ�

= η
τ1···τ j−1
θ1···θ�

|[0,τ j ] an angle-varying
flow line with angles θ1, . . . , θ� with respect to the stopping times τ1, . . . , τ�. Note
that

τ1 ≤ τ2 ≤ · · · ≤ τ� and η
τ1
θ1
⊆ η

τ1τ2
θ1θ2

⊆ · · · ⊆ η
τ1···τ�

θ1···θ�
.

Weemphasize thatη
τ1···τ j
θ1···θ j is defined on [0, τ j ] andη

τ1···τ j
θ1···θ j |[0,τ j−1] = η

τ1···τ j−1
θ1···θ j−1

. The light
cone L of h starting at 0 is the closure of the set of points accessible by angle-varying
flow lines with rational angles θ restricted by

− π

2
= 1

χ
(λ′ − λ) ≤ θ ≤ 1

χ
(λ− λ′) = π

2
, (5.3)

i.e. always pointing in a northerly direction, and with positive rational angle change
times. More generally, if η

σ1···σk
φ1···φk is any angle-varying flow line and σ is an η

σ1···σk
φ1···φk

stopping time, the light cone L(ηφ1···φk , σ ) starting at ησ1···σk
φ1···φk (σ ) is the closure of the

set of points accessible by angle-varying flow lines starting at ησ1···σk
φ1···φk (σ )with rational

angles restricted by (5.3) andwith positive rational angle change times. Themain result
of this subsection (Proposition 5.9) states that the range of η′ stopped when it hits the
tip η

σ1···σk
φ1···φk (σ ) of η

σ1···σk
φ1···φk |[0,σ ] is almost surely equal to L(η

σ1···σk
φ1···φk , σ ). The first step in

its proof is Lemma 5.7, which states that any angle-varying flow line η
τ1···τ�

θ1···θ�
whose

angles are restricted by (5.3) is almost surely contained in the range of η′ and that η′
hits the points of η

τ1···τ�

θ1···θ�
in reverse chronological order. Before we prove Lemma 5.7,

we record the following technical result which gives that non-boundary intersecting
angle-varying flow lines with relative angles which are not larger than π in magnitude
are almost surely simple and determined by h.

Lemma 5.6 Let ητ1···τ�

θ1···θ�
be an angle-varying flow line of h with angles θi , 1 ≤ i ≤ �,

with |θi − θ j | ≤ π for all pairs 1 ≤ i, j ≤ �. Assume, moreover, that η
τ1···τ�

θ1···θ�
is

non-boundary-intersecting. Then η
τ1···τ�

θ1···θ�
is almost surely simple and continuous. If we

assume further that the boundary data for h + θ1χ is at least λ on (0,∞) and at
most −λ+ πχ on (−∞, 0), then η

τ1···τ�

θ1···θ�
is almost surely determined by h. The same

likewise holds if the boundary data for h + θ1χ is at least λ − πχ on (0,∞) and at
most −λ on (−∞, 0).

The exact conditions on the θ j for η
τ1···τ�

θ1···θ�
to be non-boundary-intersecting are as

follows. In order for the path not to ∂LS, we need both

a − θ jχ

λ
− 1 ≥ κ

2
− 2 and

b + θ jχ

λ
− 1 ≥ κ

2
− 2. (5.4)

In order for the path not to hit ∂US other than at z0, we need both

a′ − (θ j + π)χ

λ
− 1 ≥ κ

2
− 2 and

b + (θ j − π)χ

λ
− 1 ≥ κ

2
− 2. (5.5)
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Fig. 34 Suppose that h is a GFF on S with the boundary data depicted above. We assume that a, b ≥
λ − π

2 χ = λ′ and a′, b′ ≥ λ′ + πχ . The reason for these choices is that the former implies that the
counterflow line η′ of h starting at z0 almost surely first exits ∂LS at 0 and the latter implies that η′
intersects ∂US only at z0. Fix angles θ1, . . . , θ�. Let ηθ1 be the flow line of h + θ1χ , let τ1 be an ηθ1

stopping time, and let η
τ1
θ1
= ηθ1 |[0,τ1]. For j ≥ 2, inductively let η

τ1···τ j−1
θ1···θ j be the flow line of h + θ jχ

conditional on η
τ1···τ j−1
θ1···θ j−1

|[0,τ j−1] starting at η
τ1···τ j−1
θ1···θ j−1

(τ j−1), let τ j be any η
τ1···τ j−1
θ1···θ j stopping time, and let

η
τ1···τ j
θ1···θ j = η

τ1···τ j−1
θ1···θ j |[0,τ j−1]. The random subset of S one obtains by taking the closure of the union of the

ranges of ηθ1···θ� where the stopping times τi and angles θi with−π
2 = 1

χ (λ′ −λ) ≤ θ j ≤ 1
χ (λ−λ′) = π

2
for all 1 ≤ j ≤ k vary among appropriate countable dense collections is equal in distribution to the range
of the counterflow line starting at z0. The picture on the right side shows the boundary data of the GFF
(� = 2) after applying a conformal transformation ψ : S\ητ1···τk

θ1···θk ([0, τk ]) → S which sends η
τ1···τk
θ1···θk (τk ) to

0 and fixes ±∞;w0 = ψ(z0) ∈ ∂US

Indeed, these two conditions together with the condition that |θi − θ j | ≤ π for all
pairs 1 ≤ i, j ≤ � imply that all of the partial sums of the force points which are to the
left and right of the driving function exceed κ

2 − 2. Note that for any fixed choice of
θ j for 1 ≤ j ≤ �, we can always pick a, b, a′, b′ large enough so that (5.4) and (5.5)
hold.

Proof of Lemma 5.6 The proof is by induction on � ≥ 1. Suppose � = 1. That the
path is simple and continuous in this case follows from the mutual absolute continuity
of the path to usual SLEκ , κ ∈ (0, 4) (see Sect. 2, Remark 2.3). Suppose the result
holds for angle-varying paths with � − 1 ≥ 0 angle changes. To see it holds when
there are � angle changes, we condition on the realization of the path until the (�−1)st
angle change and conformally map back to S as in Fig. 34. Due to the restriction
|θi − θ j | ≤ π , it follows that the image of the path after the (�− 1)st angle change is
a non-boundary intersecting SLEκ(ρ), so the induction step clearly follows. The final
claim of the lemma for � = 1 follows from the special case of Theorem 1.2 we proved
in Sect. 4.2. That it holds for larger � also follows by induction and Proposition 3.4.

��
Lemma 5.7 Let ητ1···τ�

θ1···θ�
be an angle-varying flow line of h with angles θi , 1 ≤ i ≤ �,

satisfying (5.3). The counterflow line η′ of h starting at z0 almost surely contains
η

τ1···τ�

θ1···θ�
and, moreover, hits the points of ητ1···τ�

θ1···θ�
in reverse chronological order.

Proof We first note that η
τ1···τ�

θ1···θ�
is almost surely continuous by Lemma 5.6. Fix an

η
τ1···τ�

θ1···θ�
stopping time σ such that ητ1···τ�

θ1···θ�
([0, σ ]) almost surely does not contain z0. We

apply a conformal transformation ψ : S\ητ1···τ�

θ1···θ�
([0, σ ]) → S which fixes ±∞ and

sends η
τ1···τ�

θ1···θ�
(σ ) to 0; the boundary data for the GFF which describes the evolution of
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ψ(η′) is as in the right panel of Fig. 34 (with the obvious generalization from � = 2
to other values of �). Let w0 = ψ(z0). Our hypotheses on θi imply

−λ− θiχ ≤ −λ′ and λ− θiχ ≥ λ′ for all 1 ≤ i ≤ �.

Lemma4.5 (see also Fig. 26) thus implies thatψ(η′) does not hit ∂LS\{0} and exitsS at
0. This implies that η′ almost surely exitsS\ητ1···τ�

θ1···θ�
([0, σ ]) at ητ1···τ�

θ1···θ�
(σ ). By choosing a

dense collection of stopping times (e.g., the positive rationals) and using the continuity
of η′ and η

τ1···τ�

θ1···θ�
we conclude that the range of η′ contains η

τ1···τ�

θ1···θ�
. Moreover, the proof

clearly also implies that the points of η
τ1···τ�

θ1···θ�
are hit by η′ in reverse chronological

order. ��
Remark 5.8 The proof of Lemma 5.7 requires two inputs:

(i) η′ almost surely exits S at 0 and
(ii) η

τ1···τ�

θ1···θ�
and η′ are almost surely continuous paths.

The reason that we chose our boundary data so that η′ does not intersect ∂LS\{0} was
to ensure the continuity of η′. Upon proving Theorem 1.3 in Sects. 7.3 and 7.4, we
will have shown that (i) and (ii) hold whenever η′ and η

τ1···τ�

θ1···θ�
make sense (the SDE for

the driving functions of these processes has a solution), so that Lemma 5.7 also holds
in the same generality.

Lemma 5.7 implies that η′ almost surely contains L(η
σ1···σk
φ1···φk , σ ) for any φ1, . . . , φk

satisfying (5.3). We now turn to prove the reverse inclusion.

Proposition 5.9 Let η
σ1···σk
φ1···φk be an angle-varying flow line of h with angles φi sat-

isfying (5.3) and let σ be any η
σ1···σk
φ1···φk stopping time. The random set L(η

σ1···σk
φ1···φk , σ )

obtained by taking the closure of the union of η
σ1···σkτ1···τ�

φ1···φkθ1···θ�
([0, τ�]) as � ranges over

N and θ1, . . . , θ� range over any countable dense set of angles satisfying (5.3), and
σ < τ1 < · · · < τ� range over any dense subset of (σ,∞) is almost surely equal
to the range of the counterflow line η′ of h starting at z0 stopped upon first hitting
η

σ1···σk
φ1···φk (σ ) (which is the same time that it hits η

σ1···σk
φ1···φk ([0, σ ])).

We pause to give an overview of the proof of Proposition 5.9. Fix an η′ stopping
time τ ′. We will prove for every ε > 0 there exists an angle-varying flow line with
angles restricted by (5.3) whose range comes within distance ε of η′(τ ′) (see Fig. 35
for an illustration). By conformally mapping the unbounded connected component of
S\η′([0, τ ′]) to H with η′(τ ′) mapped to∞ and 0 fixed, it suffices to show for every
R > 0 there exists an angle-varying flow line with angles restricted by (5.3) of the
corresponding field on H whose diameter is at least R. By rescaling, we may assume
that the images of the left and right sides of z0 are contained in R\(−3, 3). Consider
the path η̃1 which begins by flowing at angle π

2 , i.e. maximally to the left. By the
choice of boundary data, η̃1 first hits R after time 0 in (−∞,−3]. We let η̃2 be the
path which starts at the tip of η̃1 when it gets close to (−∞,−3] and then flows at angle
−π

2 , i.e. maximally to the right. Again by the choice of boundary data, η̃2 first hits R
in [3,∞). We inductively let η̃ j be the path which flows at angle (−1) j+1 π

2 starting at
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Fig. 35 Consider theGFFwith the boundary data depicted in the illustration abovewitha, b ≥ λ− π
2 χ = λ′

and a′, b′ ≥ λ′ + πχ and let η′ be the counterflow line starting at z0. Fix any η′ stopping time τ ′. To show
that the random set described in Fig. 34 almost surely contains η′(τ ′), we consider flow lines of the form

η
τ1···τ j
θ1···θ j where θ j = (−1) j+1 1

χ (λ − λ′) = (−1) j+1 π
2 . With this choice, η

τ1···τ j
θ1···θ j can hit the left but not

the right side of η′ when j is odd and vice-versa when j is even. We choose the stopping times τ j so that

η
τ1···τ j
θ1···θ j gets progressively closer to the left side if j is odd and to the right side if j is even. Taking a limit

as the number of angles tends to∞, the corresponding curves almost surely accumulate at η′(τ ′)

Fig. 36 In order to prove that the construction in Fig. 35 accumulates at η′(τ ′), we apply a conformal map
ψ which takes the unbounded connected component of S\η′([0, τ ′]) toH and which sends η′(τ ′) to∞ and

fixes 0. Then it suffices to show that η̃ j := ψ(η
τ1···τ j
θ1···θ j ) is almost surely unbounded as j → ∞. To prove

this, it suffices so show that the amount of capacity time it takes η̃ j to traverse from left to right (resp. right
to left) if j is even (resp. odd) is stochastically bounded from below by a non-negative random variable
whose law has positive mean

the tip of η̃ j−1 when it gets close to (−1) j [3,∞). This is depicted in Fig. 36. To show
that the paths η̃ j are unbounded as j → ∞, it suffices to show that the amount of
capacity time it takes for η̃ j to traverse from left to right (resp. right to left) if j is even
(resp. odd) is stochastically bounded from below by a non-negative random variable
with positive mean (Lemma 5.10 serves to make this point precise). The challenge in
showing this is that each change of angle leads to the creation of two additional force
points. The amount of force applied to the driving function, nevertheless, remains
bounded because the force alternates in sign but has the same magnitude with each
angle change.

Lemma 5.10 Suppose that (Wt , V
i,q
t ) is an SLEκ(ρL ; ρR) process with W0 = 0 and

force points located (x L ; x R). Let τ be the first time that W exits the interval [−1, 1].
Assume there exists C > 0 such that

∣∣∣∣∣
k∑

i=1

ρi,L

Wt − V i,L
t

∣∣∣∣∣+
∣∣∣∣∣

�∑
i=2

ρi,R

Wt − V i,R
t

∣∣∣∣∣ ≤ C for all t ∈ [0, τ ]
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where k = |ρL | and � = |ρR |. Then P[τ ≥ 1] ≥ ρ0 > 0 where ρ0 depends only on

C, κ , and ρ1,R.

Proof Let P̂x be the law under which (Wt , V
1,R
t ) evolves as an SLEκ(ρ1,R) process

with a single force point of weight ρ1,R with initial position x = V 1,R
0 . Let ζ =

τ ∧ 1, A = {τ ≥ 1}, and

Ut =
k∑

i=1

ρi,L

Wt − V i,L
t

+
�∑

i=2

ρi,R

Wt − V i,R
t

and Mt = 1√
κ

∫ t

0
UsdBs

where B is the standardBrownianmotion drivingW .We denote by 〈M〉t = 1
κ

∫ t
0 U

2
s ds

the quadratic variation of M at time t . By the Girsanov theorem [12,26] and the
Cauchy–Schwarz inequality, we have that

P̂x [A] =E[1A exp(Mζ − 1
2 〈M〉ζ )] ≤ (P[A]E[exp(2Mζ − 〈M〉ζ )])1/2. (5.6)

The optional stopping theorem implies that E[exp(aMζ − 1
2a

2〈M〉ζ )] = 1 for all
a ∈ R. Since 〈M〉ζ ≤ C2/κ , it consequently follows that

E[exp(aMζ )] ≤ exp( 1
2κC

2a2) for a ∈ R.

Hence, E[exp(2Mζ −〈M〉ζ )] ≤ C0 for some constant C0 depending only on C and κ .
Thus rearranging (5.6), we obtain P[A] ≥ C−1

0 (P̂x [A])2. To finish the proof, we just
have to argue that P̂x [A] is uniformly positive in x . This is clear when x ≥ 2 since
then the total amount of force V 1,R

t applies toW in the time interval [0, ζ ] is bounded
by |ρ1,R |. The result then follows since P̂x [A] is both continuous and positive for
x ∈ [0, 2]. ��
Proof of Proposition 5.9 We have already shown in Lemma 5.7 that η′ stopped at
the first time σ ′ it hits η

σ1···σk
φ1···φk (σ ) almost surely contains L(η

σ1···σk
φ1···φk , σ ), so we need

to show that L(η
σ1···σk
φ1···φk , σ ) almost surely contains η′([0, σ ′]). To this end, fix any

η′ stopping time τ ′ such that τ ′ < σ ′ almost surely; we will show that P[η′(τ ′) ∈
L(η

σ1···σk
φ1···φk , σ )] = 1. This completes the proof since, by the continuity of η′, it suffices

to have this result for a countable collection of stopping times (τ ′j ) such that {η′(τ ′j )}
is dense in η′([0, σ ′]).

Let K ′
t denote the hull of η′ at time t , i.e. the complement of the unbounded

connected component of S\η′([0, t]). We begin by applying a conformal map
ψ : S\(ησ1···σk

φ1···φk ([0, σ ]) ∪ K ′
τ ′) → H which takes η

σ1···σk
φ1···φk (σ ) to 0 and η′(τ ′) to ∞.

The boundary data for the corresponding GFF h̃ := h ◦ ψ−1 − χ arg(ψ−1)′ on H is
shown in Fig. 36 in the special case k = 0. Let z− and z+ be the images of the left
and right sides of K ′

τ ′ ∩ ∂US, respectively. We may assume without loss of generality
that τ ′ > 0 almost surely, which in turn implies that z− < 0 < z+. We have only
specified ψ up to rescaling since we have only fixed the image of the two boundary
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points η
σ1···σk
φ1···φk (σ ) and η′(τ ′). Thus by choosing the scaling factor to be large enough,

we may assume without loss of generality that z− ≤ −3 and z+ ≥ 3.
It suffices to exhibit angles θ j satisfying (5.3) and stopping times (̃τ j ) such that the

flow line η̃ of the GFF h̃ with angles θ1, . . . , θ� and angle-change times τ1, . . . , τ�−1
is unbounded as � →∞. To this end, we let

θ j = (−1) j+1 1

χ
(λ− λ′) = (−1) j+1π

2
.

Note that this particular choice may not lie in our fixed dense set of angles satis-
fying (5.3). It will be clear from the proof, however, that we can achieve the same
effect by approximating the θ j by elements of this set. Indeed, to see this, we just
have to explain why an angle-varying flow line with angles contained in {−π

2 , π
2 } can

be approximated arbitrarily well by an angle-varying flow line with angles in a dense
subset of [−π

2 , π
2 ]. It suffices to explain why if (θ̃n) is a sequence of angles in [−π

2 , π
2 ]

which decrease to−π
2 as n →∞ then the sequence of flow lines with angles θ̃n con-

verge to the flow line of angle −π
2 . Note that the SDE which describes the driving

function for a flow line of angle θ̃n is that of an SLEκ(ρ
n
) process which, for large n,

has weights which are close to those which correspond to the driving function of the
flow line with angle −π

2 . It is thus a simple matter using the Girsanov theorem to see
that the laws of the driving functions of the flow lines with θ̃n converge to that of the
driving function of the −π

2 angle flow line as n → ∞. Moreover, by monotonicity,
the flow lines themselves each drawn up to a fixed time t convergence almost surely
(say, with respect to the Hausdorff topology after conformally mapping to a bounded
domain) to a limiting hull. This gives a coupling of two growing families of hulls
whose Loewner driving functions have the same law but with one almost surely to the
left of the other. This can only be the case if the two processes are equal. Our stopping
times will also not necessarily lie in our fixed dense subset of (0,∞), however, it
will also be clear from the proof that the path we construct will still be contained in
L(η

σ1···σk
φ1···φk , σ ) by the continuity of our angle varying trajectories.

We now turn to the construction of η̃. Let η̃1 be the flow line of h̃ + θ1χ which
starts at 0 and let W̃ 1 be its Loewner driving function. By Lemma 4.6, it follows that
η̃1 must hit R to the left of z− ≤ −3 in finite time. Let τ̃1 be the first time t that
W̃ 1

t ≤ −2. Inductively let η̃ j be the curve which traces along η̃ j−1 and then flows at
angle θ j starting at η̃ j−1(̃τ j−1) and W̃ j its Loewner driving function. Let τ̃ j be the

first time t after τ̃ j−1 that W̃
j
t enters (−∞,−2] (resp. [2,∞)) if j is odd (resp. j is

even). Then W̃ j |t≥τ̃ j−1 is a solution to the SLEκ(ρ) SDE with N +1, N := k+ j +2,
force points on each side of 0 (this can be seen by reading off the boundary data for the
GFF after mapping back and applying the change of coordinates formula). The first
k + j arise from the k + j angle changes and the last 3 come from the initial choice
of boundary data. Let Ṽ i,q, j

t , t ≥ τ̃ j−1 for q ∈ {L , R} and 1 ≤ i ≤ N + 1, denote the
time evolution of the force points associated with W̃ j |t≥τ̃ j−1 .

To complete the proof, it suffices to show there exists i.i.d. non-negative random
variables (Z j ) with E[Z1] > 0 such that, almost surely, τ̃2 j − τ̃2 j−1 ≥ Z j for all j .
Indeed, the strong law of large numbers then implies
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Fig. 37 The boundary data for g̃τ j−1 (̃η j ) in the special case � = 2 and k = 1

τ̃2 j ≥
j∑

i=1

Zi →∞ almost surely as j →∞,

hence the result follows from the diameter-capacity lower bound

diam(̃η j ([0, τ̃ j ]) ≥ c
√
hcap(̃η j ([0, τ̃ j ])) = c

√
τ̃ j

(the inequality is [14, Equation 3.8] and the equality follows since our curve is para-
meterized by capacity).

Note that Ṽ 1,L , j
τ̃ j−1

= [(−1) j+12]−, Ṽ 1,R, j
τ̃ j−1

= [(−1) j+12]+ [the left and right sides

of (−1) j+12, respectively], and Ṽ i,q, j
τ̃ j−1

= Ṽ i−1,q, j−1
τ̃ j−1

for q ∈ {L , R}. Assume that j

is even. By the monotonicity of the evolution of the Ṽ i,q, j
t (Ṽ i,L , j

t is decreasing in t

and Ṽ i,R, j
t is increasing in t), it follows that Ṽ i,L , j

t ≤ −2 for all i and t ≥ τ̃ j−1 and

Ṽ i,R, j
t ≥ 2 for all i ≥ 2 and t ≥ τ̃ j−1. In particular, Ṽ 1,R, j

t is the only force point

which can bounce off of W̃ j
t for t ≥ τ̃ j−1 when W̃ j

t is in [−1, 1] and all other force

points have distance at least 1 to W̃ j
t . Let ξ j be the first time t after τ̃ j−1 that W̃

j
t = 0

and

ζ j = inf{t ≥ ξ j : W̃ j
t = 1} ∧ (ξ j + 1).

We are now going to check that W̃ j
t , t ≥ ξ j , satisfies the hypotheses of Lemma 5.10.

Let ρ = (ρL ; ρR) denote the weights of the force points of W̃ j
t , t ≥ τ̃ j−1. For

1 ≤ i ≤ j − 1, note that

ρi,R = (θ j−i+1 − θ j−i )
χ

λ
and ρi,L = −ρi,R

(see Fig. 37 for an example of this when � = 2 and k = 1). In particular, by our choice
of θi , the weights ρ1,q , . . . , ρ j−1,q , q ∈ {L , R}, only alternate in sign but have the
same magnitude. Let C0 = |ρ1,L |. We have |W̃ j

t − Ṽ i,q, j
t |−1 ≤ 1 for t ≥ τ̃ j−1 when

W̃ j
t ∈ [−1, 1] for all 1 ≤ i ≤ j − 1 for q = L and all 2 ≤ i ≤ j for q = R. Thus

since |W̃ j
t − Ṽ i,q, j

t |−1 is decreasing in i for t, j fixed, when W̃ j
t ∈ [−1, 1] we have

∣∣∣∣∣∣
j−1∑
i=1

ρi,L

W̃ j
t − Ṽ i,L , j

t

∣∣∣∣∣∣ ≤ C0 and

∣∣∣∣∣∣
j−1∑
i=2

ρi,R

W̃ j
t − Ṽ i,R, j

t

∣∣∣∣∣∣ ≤ C0 for t ≥ τ̃ j−1. (5.7)

Moreover, there exists C1 > 0 depending only on k, κ, a, b, a′, b′, in particular not
growing with j , such that
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∣∣∣∣∣∣
N+1∑
i= j

ρi,L

W̃ j
t − Ṽ i,L , j

t

∣∣∣∣∣∣+
∣∣∣∣∣∣
N+1∑
i= j

ρi,R

W̃ j
t − Ṽ i,R, j

t

∣∣∣∣∣∣ ≤ C1 for t ≥ τ̃ j−1 (5.8)

when W̃ j
t ∈ [−1, 1]. Let F j

t = σ (̃η j (s) : s ≤ t). Applying Lemma 5.10, we see

that P[ζ j − ξ j ≥ 1 |F j
ξ j
] ≥ ρ0 > 0 for ρ0 depending only on C0,C1, ρ

1,R, κ which

implies P[̃τ2 j − τ̃2 j−1 ≥ 1 |F j
ξ j
] ≥ ρ0 > 0. This completes the proof. ��

Remark 5.11 The proof of Proposition 5.9 requires two inputs:

(i) η′ is almost surely a continuous path,
(ii) η

σ1···σkτ1···τ�

φ1···φkθ1···θ�
almost surely hits the left side of η′([0, τ ′]) or the side of ∂US to the

left of z0 when θ� = π
2 and almost surely hits the right side of η′([0, τ ′]) or the

side of ∂US to the right of z0 when θ� = −π
2 .

We will show in Sect. 7 that (i)–(ii) hold whenever the counterflow line η′ and angle-
varying flow line η

σ1···σk
φ1···φk make sense (the SDEs for the Loewner driving processes have

solutions). Combining this with Remark 5.8 implies that the light cone construction
holds whenever η′ makes sense [i.e., is an SLEκ(ρL ; ρR) process with

∑ j
i=1 ρi,q >

−2 for all 1 ≤ j ≤ |ρq | and q ∈ {L , R}].
Taking σ ≡ 0 in Proposition 5.9 allows us to construct the range of the entire

counterflow line. We consider the result sufficiently important that we restate it as the
following corollary.

Corollary 5.12 The random set obtained by taking the closure of η
τ1···τ�

θ1···θ�
([0, τ�]) as

θ1, . . . , θ� range over any countable dense subset of the interval (5.3) and τ1, . . . , τ�

over any countable dense subset of (0,∞) is almost surely equal to the range of the
counterflow line η′ starting at z0.

We will now show that the entire path of the counterflow line η′ is determined by
the light cone, not just its range.

Proposition 5.13 Almost surely, η′ is determined by h.

Proof The proof of Proposition 5.9 implies that if η is any angle varying flow line
with angles satisfying (5.3) and σ is an η stopping time then η(σ ) is almost surely
contained in the range of η′. Moreover, we can realize the entire range of η′ by taking
the closure of �′ := {η(σ ) : (η, σ ) ∈ D × Q+} where D is the set of angle varying
flow lines with rational angles satisfying (5.3) and rational angle change times and
Q+ = Q∩ (0,∞). Proposition 5.9 also allows us to order �′ according to the order in
which η(σ ), (η, σ ) ∈ D×Q+, is traced by η′. Indeed, we can associate with the pair
(η, σ ) ∈ D × Q+ the light cone L(η, σ ) of angle varying flow lines starting at η(σ )

with angles restricted by (5.3).We know thatL(η, σ ) is equal to the range of η′ stopped
when it first hits η([0, σ ]) (the point of intersection is always η(σ )). This implies that
if (η, σ ), (̃η, σ̃ ) ∈ D×Q+, then we almost surely have that either L(η, σ ) ⊆ L(̃η, σ̃ )

or L(̃η, σ̃ ) ⊆ L(η, σ ). That is, the sets L(η, σ ) are ordered by inclusion—which in
turn orders η′. ��
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We finish this section by making two remarks. Our first remark is that we only
needed tomake use ofmaximal angles in the proof of Proposition 5.9, though the range
of η′ still of course contains those angle varying flow lines in which the angles take on
intermediate values. If η

τ1···τk
θ1···θk is an angle varying flow line with angle change times

τ1, . . . , τk−1 where the θi satisfy (5.3) and θi = 1
χ
(λ− λ′) = π

2 , then η
τ1···τk
θ1···θk |[τi−1,τi ]

traces the left boundary of η′ stopped at the time σ ′ it first hits η
τ1···τk
θ1···θk ([0, τi−1]) starting

from η′(σ ′). The same is also true if θi = 1
χ
(λ′ − λ) = −π

2 but with left replaced
by right. Thus we can view the light cone construction of η′ as a refinement of SLE
duality, as described in Sect. 4. (We remark that the simulations in Figs. 13, 14, 15,
16, 17 and 18 were generated using maximal angle changes). A flow line with an
intermediate angle θ can be thought of as an angle-varying flow line which only takes
maximal angles, but oscillates between going maximally left and right at infinitesimal
scales, with the rate of oscillation depending on the particular value of θ .

Second, suppose that θ ≤ θ are fixed angles. Then we define L(θ, θ) to be the
closure of the set of points which are accessible by angle-restricted trajectories with
rational angles which lie in the interval [θ, θ ] and with positive rational angle change
times. Lemma 5.7 implies that if θ ≥ −π

2 and θ ≤ π
2 , then L(θ, θ) is almost surely

contained in the counterflow line η′. We are now going to argue that, in this case,
L(θ, θ) is actually almost surely determined by η′ when κ ∈ (2, 4). In particular, if
θ ∈ [−π

2 , π
2 ], then the flow line ηθ with angle θ is almost surely determined by η′.

To see this, we first note that since κ ∈ (2, 4) it follows that κ ′ = 16/κ ∈ (4, 8). This
implies that the range of η′ almost surely satisfies the hypothesis of Lemma 3.10 (see
[24, Theorem 8.1]), which in turn implies that the law of h given η′ is the same as the
law of h given both η′ and h|η′ . (We emphasize here that we are conditioning h on η′ as
a curve as opposed to the range of η′ as a set.) SinceL(θ, θ) is almost surely contained
in η′, Proposition 3.9 implies that the law of h given η′ is equal to the law of h given
both η′ and L(θ, θ). This implies that h and L(θ, θ) are conditionally independent
given η′. Since L(θ, θ) is almost surely determined by h (Lemma 5.6), this, in turn,
implies that L(θ, θ) is almost surely determined by η′. (If h and a function of h are
conditionally independent given η′, then that function of h must be determined by η′.)

Proposition 5.14 Suppose that κ ∈ (2, 4) so that κ ′ ∈ (4, 8). For any −π
2 ≤ θ ≤

θ ≤ π
2 , η′ almost surely determinesL(θ, θ). In particular, η′ almost surely determines

ηθ for any −π
2 ≤ θ ≤ π

2 and η′ almost surely determines F where F is the closure of
∪θηθ where the union is over any fixed, countable dense subset of [−π

2 , π
2 ].

6 Interacting flow lines

Suppose that h is a GFF on H with boundary data as in Fig. 38. For each θ , let ηθ be
the flow line of h with angle θ , i.e. the flow line of h + θχ from 0 to∞. Fix θ1 < θ2
and assume a, b > 0 are large enough so that Proposition 5.5 is applicable to ηθ1 and
ηθ2 (the exact values of a, b will not be important for the applications we have in mind
in Sect. 7). We know from Proposition 5.5 that ηθ1 almost surely is to the right of ηθ2 .
It may be that ηθ1 intersects ηθ2 , depending on the choice of θ1, θ2. The purpose of this
section is to rule out pathological behavior in the conditional mean of h given ηθ1, ηθ2
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(a) (b)

Fig. 38 Suppose that θ1 < θ2 and ηθi is the flow line of a GFF on H with the boundary data depicted
above with angle θi . Assume θ1, θ2 and the boundary data of h are chosen so that Proposition 5.5 applies to
ηθ1 , ηθ2 . Since ηθ1 ∪ηθ2 is a local set for h, Proposition 3.9 implies that the boundary behavior of Cηθ1∪ηθ2
agrees with that of Cηθ2

to the left of ηθ2 and with that of Cηθ1
to the right of ηθ1 . Proposition 3.8 implies

the same in the connected components of H\(ηθ1 ∪ ηθ2 ) which lie between ηθ1 and ηθ2 , except at those
points where ηθ1 intersects ηθ2 . (There can only be two such points on the boundary of such a component,
as illustrated.) In Proposition 6.1, we will show that these intersection points do not introduce pathological
behavior into the conditional mean. The same result also holds when we consider multiple flow lines (see
the right panel for the case θ1 < 0 < θ2 and η := η0), as explained in Remark 6.7. a The boundary data
for the conditional mean of h given flow lines ηθ1 , ηθ2 . b The boundary data for the conditional mean of h
given flow lines ηθ1 , η := η0, ηθ2 for θ1 < 0 < θ2

(Sect. 6.1), in particular when they intersect, and to show that the Loewner driving
function of ηθ1 viewed as a path in the right connected component of H\ηθ2 exists
and is continuous (Sect. 6.2) and likewise when the roles of ηθ1 and ηθ2 are swapped.
We will also explain how similar results can be obtained in the setting of multiple
flow lines as well as counterflow lines. We will use these results in Sect. 7 to compute
the conditional law of one path given the realization of a configuration of other paths,
even if they intersect.

We emphasize that, throughout this section, the results we will state and prove will
be for paths which do not intersect the boundary. The reason for this restriction is that
this is the class of boundary data for which we have the almost sure continuity of flow
and counterflow lines at this point in the article (recall Remark 2.3 and [24]) as well
as the results of Sects. 4 and 5. Upon establishing Theorems 1.2–1.5 in Sect. 7, the
arguments we present here will imply that the conditional mean of the field given any
configuration of flow and counterflow lines does not exhibit pathological behavior and
that the Loewner driving function of one path given the realization of a configuration
of other paths exists and is continuous, at least until there is a crossing.

6.1 The conditional mean

By Proposition 3.7, we know that ηθ1 ∪ ηθ2 (as a slight abuse of notation, throughout
we will use ηθi to denote both the path and its range) is a local set for h. Indeed,
as a consequence of the special case of Theorem 1.2 we proved in Sect. 4.2, the
conditionally independent union of ηθ1 and ηθ2 given h is almost surely the same as
the usual union since ηθ1 and ηθ2 are both almost surely determined by h. Recall that
if A is a local set for h, then CA is equal to the conditional mean of h given A (see
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Sect. 3.2). By the continuity of ηθ1 and ηθ2 (recall Remark 2.3), we know that all
of the connected components of ηθ1\ηθ2 and ηθ2\ηθ1 are larger than a single point.
Consequently, by Proposition 3.8, we know the boundary behavior of Cηθ1∪ηθ2

away
from ηθ1 ∩ ηθ2 : if z ∈ ηθ1\ηθ2 and (zk) is a sequence in H\(ηθ1 ∪ ηθ2) converging to
z then

Cηθ1∪ηθ2
(zk)− Cηθ1

(zk) → 0 as k →∞ almost surely

and vice-versa when the roles of ηθ1 and ηθ2 are swapped. Proposition 3.8 implies
the same is true at those points z which are at a positive distance from either ηθ1\ηθ2

or ηθ2\ηθ1 and are contained in a connected component of ηθ1 ∩ ηθ2 which consists
of more than one point. Also, Proposition 3.9 gives us that the boundary behavior of
Cηθ1∪ηθ2

agrees with that of Cηθ1
(resp. Cηθ2

) to the right (resp. left) of ηθ1 (resp. ηθ2 ).
This leaves us to determine the boundary behavior of Cηθ1∪ηθ2

in between ηθ1 and
ηθ2 at intersection points of ηθ1 and ηθ2 . This is the purpose of the next proposition.
Throughout, we let

A(t) = ηθ1([0, t]) ∪ ηθ2 and Ft = σ(ηθ1(s) : s ≤ t, ηθ2). (6.1)

Proposition 6.1 Fix an Ft -stopping time τ . Let h̃ be distributed according to the
conditional law of h given A(τ ) and let C be any connected component of H\A(τ )

which is to the right of ηθ2 . Let ∂Ci,L (resp. ∂Ci,R) be the part of ∂C which is contained
in the left (resp. right) side of ηθi . Let x0 (resp. y0) be the point on ∂C which is visited
first (resp. last) by ηθ2 and let ϕ : C → H be a conformal transformation which takes
x0 (resp. y0) to 0 (resp. ∞). Let gC be the function which is harmonic in H with
boundary values

−λ− θiχ on ϕ(∂Ci,R), λ+ θiχ on ϕ(∂Ci,L), and b on ϕ((0,∞))

and let hC = gC ◦ ϕ − χ argϕ′ (where the branch of argϕ′ is chosen so that the
boundary values of hC agree with those of the conditional law of h given either ηθ1

or ηθ2 on a segment of ∂C which agrees with either ηθ1 or ηθ2 ). Then the law of h̃|C
is equal to that of the sum of a zero boundary GFF in C plus hC . In particular, there
is no singular contribution to hC coming from the intersection points of the paths.

We note that the choice of the branch of the argument of argϕ′ in the statement
of Proposition 6.1 is well-defined because Proposition 3.8 implies that the boundary
behavior of h̃|C agrees with that of h given ηθ1 (resp. ηθ2 ) along the part of ∂C which
agrees with ηθ1 (resp. ηθ2 ), except possibly at two exceptional points. (In fact, the
proof of Proposition 6.1 will in fact rule out such exceptional behavior.)

See Fig. 38 for an illustration of the boundary data described in the statement of
Proposition 6.1. The main step in the proof is to show for z ∈ H\ηθ2 that CA(t)(z) has
a modification which is continuous in t up until the first time ηθ1 hits z. Roughly, this
suffices since pathological behavior in Cηθ1∪ηθ2

at a point z0 = ηθ1(t0) for a time t0
when ηθ1 intersects ηθ2 would correspond to a discontinuity in CA(t)(z) at t0. We begin
by proving the following lemma, which implies that A(τ ) is a local set for h for every
Ft -stopping time τ .
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Lemma 6.2 Suppose that η1, . . . , ηk are continuous paths such that for each 1 ≤ i ≤
k, we have that

1. ηi ([0, τ ]) is a local set for h for every ηi -stopping time τ and
2. ηi is almost surely determined by h.

Suppose that τ1 is a stopping time for η1 and, for each 2 ≤ j ≤ k, inductively let τ j

be a stopping time for the filtration F j
t generated by η1|[0,τ1], . . . , η j−1|[0,τ j−1] and

η j (s) for s ≤ t . Then ∪k
i=1ηi ([0, τi ]) is a local set for h.

Proof Let A j = ∪ j
i=1ηi ([0, τi ]). Fix U ⊆ H open. We are going to prove that A j ∩

U = ∅ is almost surely determined by the projection hUc of h onto H⊥(U ) and that,
on the event A j ∩U = ∅, A j is itself almost surely determined by hUc . This suffices
by characterization (i) of local sets given in Lemma 3.6, which we will in turn check
by induction on the number of paths. The hypotheses of the lemma imply this is true
for j = 1. Suppose the result holds for j − 1 paths for j ≥ 2 fixed. We will now show
that it holds for j paths. Let τUj be the infimum of times in which η j is inU . We claim

that the hypotheses of the lemma imply that η j ([0, τUj ]) is almost surely determined

by hUc . Indeed, this follows because η j ([0, τUj ]) is both almost surely determined by
h and local for h. In particular, since the projections hU and hUc of h onto H(U ) and
H⊥(U ) together determine h, it follows that hU , hUc together almost surely determine
η j ([0, τUj ]). On the other hand, since η j ([0, τUj ]) is local for h and almost surely does
not intersect U , it follows that the conditional law of hU given hUc is equal to the
conditional law of hU given both hUc and η j ([0, τUj ]). That is, hU and η j ([0, τUj ])
are conditionally independent given hUc . Combining these two observations proves
the claim.

Observe

{A j ∩U = ∅} = {A j−1 ∩U = ∅} ∩ {τ j ≤ τUj }

and that {τ j ≤ τUj } is almost surely determined by A j−1 and hUc . Thus on the event

{A j−1∩U = ∅}, we have that {τ j ≤ τUj } is almost surely determined by hUc so that the
event {A j ∩U = ∅} is almost surely determined by hUc . Moreover, on {A j ∩U = ∅},
we have that A j is almost surely determined by hUc . This completes the proof of the
induction step. ��

Wenext prove the following simple lemma,which says that if X,Y are independent,
Y is Gaussian, and X + Y is Gaussian, then X is Gaussian as well.

Lemma 6.3 Suppose that X,Y are independent random variables such that Y ∼
N (μY , σ 2

Y ) and Z := X + Y ∼ N (μZ , σ 2
Z ). Then X ∼ N (μX , σ 2

X ) where μX =
μZ − μY and σ 2

X = σ 2
Z − σ 2

Y .

Proof The proof follows from the calculus of characteristic functions. Indeed, we
know that

E[eiλY ] = eiλμY−λ2σ 2
Y /2 and E[eiλZ ] = eiλμZ−λ2σ 2

Z /2.
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Since X is independent of Y , we have

E[eiλZ ] = E[eiλX ]E[eiλY ],

which allows us to solve for E[eiλX ] to see that

E[eiλX ] = eiλ(μZ−μY )−λ2(σ 2
Z−σ 2

Y )/2.

��
Suppose that D ⊆ C is a non-trivial simply connected domain and that z ∈ D is

fixed. Recall that the conformal radius C(z; D) is the quantity |ϕ′(0)| where ϕ is a
conformal transformation which takes the unit disk D to D with ϕ(0) = z. By the
Koebe-1/4 theorem [14, Theorem 3.16], the ratio between the conformal radius of z
and the distance of z to ∂D is contained in [ 14 , 4]. Suppose that h is a GFF on D (with
boundary conditions which are not necessarily equal to 0) and let C be the function
which is harmonic in D and has the same boundary data as h. The following lemma
gives us the law of CA(z) for a local set A in terms of C(z; D),C(z; D\A), and C(z).

Lemma 6.4 Suppose that D ⊆ C is a non-trivial, simply connected domain. Let
h be a GFF on D and fix z ∈ D. Suppose that A is a local set for h such that
D\A is simply connected and C(z; D\A) is almost surely constant and positive. Then
CA(z) is distributed as a Gaussian random variable with mean C(z) and variance
logC(z; D)− logC(z; D\A).

Proof The Koebe 1/4 theorem [14, Theorem 3.16] implies there exists non-random
ε > 0 such that, almost surely, B(z, 2ε) ⊆ D\A. Let hε denote the average
of h on ∂B(z, ε) (the construction and properties of the circle average process
are explained in detail in [4, Section 3]). By [4, Proposition 3.2], we know that
hε(z) ∼ N (C(z),− log ε + logC(z; D)). Since A is a local set for h, we can write
h = h1 + h2 where h1 is harmonic on D\A and the conditional law of h2 given
h1 is that of a zero-boundary GFF on D\A. Since h1 is harmonic in D\A, we note
that h1(z) is equal to the average of its values on ∂B(z, ε). Moreover, we have that
E[hε(z) |A] = h1(z). Consequently, we have that hε(z) − E[hε(z) |A] is equal to
the average of h2 on ∂B(z, ε). Therefore it follows that hε(z)−E[hε(z) |A] givenA
follows the N (0,− log ε + logC(z; D\A)) distribution. This implies that

hε(z)− E[hε(z) |A] ∼ N (0,− log ε + logC(z; D\A))

[no longer conditioning onA; recall that C(z; D\A) is almost surely constant]. Since
E[hε(z) |A] is independent of hε(z) − E[hε(z) |A] (as the former is determined by
A and the latter is independent of A), Lemma 6.3 implies that

E[hε(z) |A] ∼ N (C(z), logC(z; D)− logC(z; D\A)).

Since CA(z) is harmonic in D\A, we know that CA(z) = E[hε(z) |A] almost surely,
which proves the lemma. ��
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From Lemma 6.4 we obtain the following, which roughly says that the conditional
mean at a fixed point given an increasing family of local sets evolves as a Brownian
motion when it is parameterized by the log conformal radius:

Proposition 6.5 Suppose that D ⊆ C is a non-trivial simply connected domain. Let
h be a GFF on D and suppose that (Z(t) : t ≥ 0) is an increasing family of closed
sets such that

(i) D\Z(t) is simply connected for each t ≥ 0 and
(ii) Z(τ ) is local for h for every Z-stopping time τ .

Suppose that z ∈ D is such that C(z; D\Z(t)) is almost surely continuous and strictly
decreasing in t. ThenCZ(t)(z)−CZ(0)(z)has amodificationwhich is aBrownianmotion
when parameterized by logC(z; D\Z(0)) − logC(z; D\Z(t)) up until the first time
τ(z) that Z(t) accumulates at z. Moreover, with S = {(t, z) : C(z; D\Z(t)) > 0}
we have that the map (t, z) → CZ(t)(z) has a modification which is almost surely
continuous.

Proof For each s > 0 let

τs(z) = inf{t ≥ 0 : logC(z; D\Z(0))− logC(z; D\Z(t)) = s}.

Fix s1 < s2. Then Lemma 6.4 implies that

CZ(τs2 (z))(z)− CZ(τs1 (z))(z) ∼ N (0, s2 − s1).

Since CZ(τs2 (z))(z) − CZ(τs1 (z))(z) is independent of CZ(τs1 (z))(z), the first part of the
proposition follows since CZ(τs (z))(z) has the same finite dimensional distributions as a
standard Brownian motion. This, in particular, implies that CZ(t)(z) has a modification
which is continuous in t .

That CZ(t)(z) has a modification which is jointly continuous in t and z is a conse-
quence of the proof given in [4, Section 3] that the circle average process hε(z) has a
modification which is jointly continuous in ε and z. Fix T > 0 and w ∈ B(z, 1

16e
−T )

and ε ∈ (0, 1
16e

−T ). Then for s, t ∈ [0, T ] and p ≥ 2, we have for some constants
c1, c2 > 0 that

E[|CZ(τs (z))(z)− CZ(τt (z))(w)|p]
≤ c1(E[|CZ(τs(z))(z)− CZ(τt (z))(z)|p] + E[|CZ(τt (z))(z)− CZ(τt (z))(w)|p])
≤ c2(|t − s|p/2 + E[|E[hε(z)− hε(w) |At ]|p])

whereAt is as in Sect. 3.2 for the local set Z(τt (z)). By Jensen’s inequality, the second
term is bounded from above by c2E[|hε(z)− hε(w)|p]. The moments of this type are
bounded in the proof of [4, Proposition 3.1] (see also [4, Proposition 3.2]). The final
claim of the proposition then follows from the Kolmogorov–C̆entsov theorem. ��

We now have all of the ingredients to complete the proof of Proposition 6.1.
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(a) (b)

Fig. 39 Suppose that we have the same setup as in Fig. 38 and that C is a connected component of
H\(ηθ1 ∪ ηθ2 ) which lies between ηθ1 and ηθ2 . By the discussion in Fig. 38, we know the behavior of
Cηθ1∪ηθ2

in C away from x0 and y0, the first and last points of ∂C traced by ηθ1 , respectively. To rule out
pathological behavior near x0, y0, with A(t) = ηθ1 ([0, t])∪ηθ2 , we first prove that CA(t) has amodification
which is continuous in t .We argue that the conditionalmean does not behave pathologically at y0 (illustrated
in the left panel above) by taking a limit as t increases to the time ηθ1 closes the pocket C opened at x0 and
invoking the continuity of CA(t). At the pocket opening point x0, we can rule out pathological behavior by
using that ηθ1 is almost surely the left boundary of a counterflow line η′θ1 (see the right panel) so that x0 is a
pocket closing point of η′θ1 and an analogous continuity argument. a Pocket closing time. b Pocket opening

time; this is the same as a pocket closing time for a counterflow line η′θ1 whose left boundary is ηθ1

Proof of Proposition 6.1 See Fig. 39 for an illustration of the argument. We first
assume we are in the setting of Proposition 5.5, so that h is a GFF on the strip S
rather than H. The result for the GFF on H follows from absolute continuity (Propo-
sition 3.4). Note that A(τ ) (recall the definition of A(t) from (6.1)) is a local set for h
by Lemma 6.2 applied for the case k = 2.

We start by working in the special case τ = ∞ and we let A = A(∞) = ηθ1 ∪ ηθ2 .
First of all, since ηθ1 and ηθ2 are almost surely continuous, the connected compo-
nents of ηθ1\ηθ2 and ηθ2\ηθ1 consist of more than a single point. Consequently, by
Propositions 3.7 and 3.8, we know that CA − Cηθ1

tends to zero along any sequence of
points (zk) which converges to a point that is contained in ηθ1\ηθ2 or to a point in a
connected component of ηθ1 ∩ ηθ2 which contains more than a single point and is at
a positive distance from either ηθ1\ηθ2 or ηθ2\ηθ1 . Proposition 3.9 implies the same if
(zk) converges to a point on the right side of ηθ1 |[0,τ ]. Likewise, CA − Cηθ2

converges
to zero along any sequence of points (zk) which converges to a point in either ηθ2\ηθ1

or to the left side of ηθ2 . Fix a component C ofH\A. Then this implies that CA agrees
with hC if C is either the unbounded connected component which lies to the right of
ηθ1 or to the left of ηθ2 .

Suppose that C is a bounded and connected component of S\A. Then ∂C has two
special points, say x0, y0 which are contained in both the ranges of ηθ1 and ηθ2 . To
complete the proof for τ = ∞ in this case, we just need to show that the boundary
behavior of CA agrees with hC at x0 and y0. Assume x0 = ηθ1(s0) and y0 = ηθ1(t0)
for s0 < t0. Proposition 6.5 implies CA(t)(z) has a modification which is continuous
in both t and z since we know that A(σ ) is local for any Ft -stopping time σ and ηθ1

is continuous (recall Remark 2.3).
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We can express CA(t)(z) explicitly as follows. For each t , we letCt be the component
of H\A(t) which contains C . We note that x0 corresponds to two prime ends on
∂Ct . We shall abuse notation in what follows and write x0 for the prime end on ∂Ct

which corresponds to the boundary point of ∂C (as opposed to the prime end which
corresponds to a boundary point of the component of H\ηθ1 which is to the right
of ηθ1 ). Let ϕt be the conformal map from Ct to H which takes x0 to 0, y0 to∞, and
a given point w0 on ∂C ∩ ηθ2 which is distinct from x0, y0 to −1. We assume that w0
does not change with t . Let gt be the function which is harmonic in H with boundary
values given by λ− θ2χ on R−,−λ− θ1χ on the image of the left side of ηθ1([0, t])
under ϕt , λ − θ1χ on the image of the right side of ηθ1([0, t]) under ϕt , and b on
ϕt (R+). Then gt ◦ ϕt − χ argϕ′t is harmonic in Ct .

We claim that gt ◦ ϕt − χ argϕ′t has the same boundary behavior as CA(t) except
possibly at x0 (as we have not yet ruled out pathological boundary behavior at x0).
That is, CA(t) − (gt ◦ ϕt − χ argϕ′t ) is harmonic in Ct with zero boundary values
on ∂Ct\{x0}. To see this, we note that Proposition 3.8 implies that this is the case at
points on ∂Ct\{x0}which are also contained in the ranges of ηθ1 and ηθ2 after the paths
have visited x0. Moreover, Proposition 3.8 implies that CA(t) has the same boundary
behavior as CA at points on the right side of ηθ1([0, t]) and Proposition 3.9 implies that
CA restricted to the component of H\ηθ1 which is to the right of ηθ1 is equal to Cηθ1

.
Combining implies the claim.

As t ↑ t0, we note that gt converges locally uniformly to the function which is
harmonic in H with boundary values given by λ− θ2χ on R− and −λ− θ1χ on R+.
Moreover, ϕt converges locally uniformly to the unique conformal transformation
C → H which takes x0 to 0, y0 to ∞, and w0 to −1. Therefore gt ◦ ϕt − χ argϕ′t
converges locally uniformly to hC as t ↑ t0. Combining, we see that, as t ↑ t0, CA(t)−
hC converges to a functionwhich is harmonic inC whose boundary values on ∂C\{x0}
are equal to 0. By the continuity of CA(t) in t and z, this implies that CA−hC is harmonic
in C with boundary values on ∂C\{x0} are equal to 0. This leaves us to deal with the
boundary behavior near x0.

Let η′θ1 be the counterflow line as in the proof of Proposition 5.5whose left boundary
is almost surely ηθ1 . Note that C is a bounded and connected component of S\A if
and only if it is a bounded connected component of S\(η′θ1 ∪ ηθ2) whose boundary
contains arcs from both η′θ1 and ηθ2 . Since ηθ1 is almost surely the left boundary of η′θ1 ,
it follows from Proposition 3.9 that Cη′θ1∪ηθ2

(z) = CA(z) for all z ∈ C . An analogous

continuity argument implies Cη′θ1∪ηθ2
has the same boundary behavior as hC near x0.

Consequently, CA also has the same boundary behavior as hC near x0. This completes
the proof for τ = ∞.

The case τ < ∞ follows from the τ = ∞ case. Indeed, we know that A(τ ) and A
are both local, so we can apply Proposition 3.8 to get that CA(τ ) has the same boundary
behavior as hC near x0, y0 since CA(τ ) has the same boundary behavior as CA near
x0, y0. ��

There are a number of other situations in which statements very similar to Propo-
sition 6.1 also hold. We will describe these informally in the following remarks. In
each case, the justification is nearly the same as the proof of Proposition 6.1 and we
are careful to point out any differences in the proof. Roughly speaking, the content
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is that the conditional mean of h does not exhibit pathological behavior, even when
many different types of flow and counterflow lines interact with each other. The rest
of this subsection may be skipped on a first reading.

Remark 6.6 All of the results that we state and prove here will be restricted to the
regime of boundary data in which the flow and counterflow lines do not intersect the
boundary. The reason for this is that, at this point in the article, this is the setting
in which we have the continuity of these curves (recall Remark 2.3 as well as [24])
and that they are determined by the field in the coupling of Theorem 1.1 (Sect. 4.2).
Moreover, our results thus far regarding the interaction of flow and counterflow lines
are also restricted to this setting (Sect. 5). In Sect. 7, we will complete the proof
of Theorems 1.2–1.5, which together provide the missing ingredients to extend the
arguments from this section to the setting of general piecewise constant boundary data
without further modification.

Remark 6.7 (Three flow lines) Suppose that θ1 < 0 < θ2 and η := η0. Assume that
the boundary data of h is chosen so that Proposition 5.5 applies to ηθ1, η, ηθ2 . Then
we know that ηθ1 lies to the right of η which in turn lies to the right of ηθ2 , as in
Fig. 38. Let C be any connected component of H\(ηθ1 ∪ ηθ2). A statement analogous
to Proposition 6.1 also holds for the conditional law of h given ηθ1, ηθ2 , and η|[0,τ ]
where τ is any stopping time for the filtration Ft = σ(η(s) : s ≤ t, ηθ1 , ηθ2). This is
depicted in the right panel of Fig. 38. Let A(τ ) = ηθ1 ∪ η([0, τ ]) ∪ ηθ2 . Just as in
the proof of Proposition 5.5, the general theory of local sets allows us to determine
the boundary behavior of CA(τ ) at all points with the exception of those points where
some pair of η|[0,τ ], ηθ1 , ηθ2 intersect. We can, however, reduce the three flow line
case to the two flow line case as follows. Proposition 3.8 allows us to compare CA(τ )

with CA where A = ηθ1 ∪ η ∪ ηθ2 . The latter does not exhibit pathological behavior
at intersection points because Proposition 6.1 applies to both Cη∪ηθ1

and Cηθ2∪η and
Propositions 3.8 and 3.9 together imply that CA has the same boundary behavior as
Cη∪ηθ1

to the right of η and the same as Cηθ2∪η to the left of η.

Remark 6.8 (One flow line and one angle varying flow line) The next analog of
Proposition 6.1 which we will describe is when we have a flow line η and an angle
varying flow line η

τ1···τk
θ1···θk with angles θ1, . . . , θk and with respect to the stopping times

τ1, . . . , τk . We assume that |θi − θ j | ≤ π for all pairs i, j . This implies that η
τ1···τk
θ1···θk

is simple, almost surely determined by h, and continuous (Lemma 5.6; in Sect. 7,
we will be able to relax this to the case that |θi − θ j | < 2λ/χ , which is the condi-
tion which implies that η

τ1···τk
θ1···θk does not cross itself). We assume that η

τ1···τk
θ1···θk almost

surely stays to the right of η (in Proposition 7.11 we will prove that θ1, . . . , θk < 0
is a sufficient condition for this to be true). Let A(t) = η([0, t]) ∪ η

τ1···τk
θ1···θk and

Ft = σ(η(s) : s ≤ t, η
τ1···τk
θ1···θk ). Lemma 6.2 implies that A(τ ) is a local set of h

for every Ft -stopping time τ . The boundary data for CA(τ ) is described in Fig. 40 in
the special case k = 2. The proof of this result is exactly the same as for the non-angle
varying case: we rule out pathological behavior at pocket opening times using the
continuity of CA(t) in t and at pocket closing times by using the analogous quantity
with η replaced by the counterflow line η′ whose right boundary is the range of η.
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Fig. 40 Suppose that h is a GFF onHwith boundary data as on the left side; assume a, b > 0 are large. Let
η be the zero angle flow line of h. Fix angles θ1, θ2 and let η

τ1τ2
θ1θ2

be an angle-varying flow line with angles

θ1, θ2. Assume |θ1 − θ2| ≤ π so that ητ1τ2
θ1θ2

is simple (Lemma 5.6; we will relax this to |θ1 − θ2| < 2λ/χ

in Sect. 7) and that η
τ1τ2
θ1θ2

passes to the right of η (we will show in Proposition 7.11 that θ1, θ2 < 0 is a

sufficient condition for this to be true). The boundary data for CA(τ ) for A(t) = η([0, t]) ∪ η
τ1τ2
θ1θ2

and τ an
Ft = σ(η(s) : s ≤ t, ηθ1θ2 )-stopping time is depicted in the left panel. Changing the coordinates of the

left side of H\ητ1τ2
θ1θ2

to H by a conformal map ψ which preserves 0 and∞ yields a GFF whose boundary
data is as on the right side

Fig. 41 Assume that h is a GFF on the strip S whose boundary data is depicted in the left panel. Let
θ1 < 1

χ (λ′ − λ) = −π
2 and θ2 > 1

χ (λ − λ′) = π
2 . Assume that the boundary data of h is such that

Proposition 5.1 applies. Then we know that ηθ1 and ηθ2 pass to the right and left, respectively, of the
counterflow line η′ of h starting at z0. Let C be any connected component of S\(ηθ1 ∪ ηθ2 ) which lies
between ηθ1 and ηθ2 and let τ ′ be a stopping time for the filtration Ft = σ(η′(s) : s ≤ t, ηθ1 , ηθ2 ) such
that η′(τ ′) ∈ C almost surely. Then Cηθ1∪η′([0,τ ′])∪ηθ2

in C has the boundary behavior depicted on the

left side. Let ψ be the conformal map which takes the connected component C0(τ
′) of C\η′([0, τ ′]) which

contains x0 to S where x0 is sent to 0 and the left and right sides of C0(τ
′) which are contained in ηθ2 and

ηθ1 , respectively, are sent to (−∞, 0) and (0,∞), respectively; w0 = ψ(η′(τ ′)). The boundary data for

the GFF h ◦ ψ−1 − χ arg(ψ−1)′ is depicted in the right panel

Remark 6.9 (Counterflow line between two flow lines)We will now describe a version
of Proposition 6.1 which holds for counterflow lines (see Fig. 41). This result is easier
to describe on the strip S. Assume h is a GFF on S whose boundary data is as in the
left side of Fig. 41 where the constants a, b, a′, b′ are chosen so that Proposition 5.1
applies. Let ηθ1, ηθ2 be the flow lines of h emanating from 0 with angles

θ1 < −π

2
= 1

χ
(λ′ − λ) <

1

χ
(λ− λ′) = π

2
< θ2,
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respectively, and let η′ be the counterflow line emanating from z0. For any stopping
time τ ′ for the filtration Ft = σ(η′(s) : s ≤ t, ηθ1, ηθ2), we let A(τ ′) = ηθ1 ∪
η′([0, τ ′]) ∪ ηθ2 , which is local by Lemma 6.2, and A = ηθ1 ∪ η′ ∪ ηθ2 . Suppose
that C is any connected component of S\(ηθ1 ∪ ηθ2) which lies between ηθ1 and ηθ2 .
Then C\η′ consists of three different types of connected components: those whose
boundary does not intersect the outer boundary of η′, those whose boundary intersects
ηθ1 , and those whose boundary intersects ηθ2 . Proposition 3.9 implies that CA in C
has the same boundary behavior as Cη′ in the former case. The connected components
which intersect ηθ1 are the same as the connected components of S\(ηθ1 ∪ ηR) which
intersect C and ηθ1 , where ηR is the flow line of angle 1

χ
(λ′ − λ) = −π

2 , since
ηR is the right boundary of η′. Propositions 3.8 and 3.9 thus imply CA agrees with
CηR∪ηθ1

in these connected components, so we have the desired boundary behavior
here (Proposition 6.1). The same is likewise true for those which intersect ηθ2 . The
case where τ ′ < ∞ follows from the τ ′ = ∞ case by Proposition 3.8 using the same
argument as in the proof of Proposition 6.1.

Remark 6.10 (Counterflow line which contains flow lines) Assume that we have the
same setup as Remark 6.9. Let I := [−π

2 , π
2 ]. If θi ∈ I , then by Lemma 5.7 we

know that ηθi is almost surely contained in the range of η′. Results analogous to those
described in Remark 6.9 also hold in the case that one or both of θ1 < θ2 are contained
in I . We will describe this in a bit more detail in the case θ1, θ2 ∈ I . Fix any connected
component C of S\(ηθ1 ∪ ηθ2) which lies between ηθ1, ηθ2 . Since η′ hits the points
of ηθ1 , ηθ2 in reverse chronological order (Lemma 5.7), the connected components of
C\η′ are all completely surrounded by η′. Thus the boundary behavior of CA in the
connected components of C\η′ agrees with that of Cη′ by Propositions 3.8 and 3.9.
Fix a stopping time τ ′ < ∞ for the filtration Ft = σ(η′(s) : s ≤ t, ηθ1 , ηθ2) and
assume that C is a connected component of S\(ηθ1 ∪ηθ2) such that η

′(τ ′) ∈ C almost
surely. Proposition 3.9 implies that CA(τ ′) has the same boundary behavior as Cη′ in
the connected components of C\η′([0, τ ′]) which are surrounded by η′([0, τ ′]). This
leaves us to deal with the boundary behavior of CA(τ ′) in the connected component
C0(τ

′) of C\η′([0, τ ′]) which contains x0, the first point in ∂C traced by both ηθ1 and
ηθ2 . This is depicted in Fig. 42.

We can rule out pathological behavior at points where η′ intersects either ηθ1 or
ηθ2 in C0(τ

′) as follows. First, we assume that τ ′ is a rational time. Then we can
sample C0(τ

′) by first picking η′|[0,τ ′] then, conditional on η′([0, τ ′]), sample ηθ1 and
ηθ2 up until the first time they hit η′([0, τ ′]). It is easy to see by the continuity of
the conditional mean (Proposition 6.5) that CA(τ ′) has the desired boundary behavior
where η′([0, τ ′]) intersects ηθ1 , ηθ2 . We now generalize toFt -stopping times τ ′ which
are not necessarily rational. First assume that η′(τ ′) /∈ ηθ1 ∪ηθ2 . Suppose that r is any
rational time. Then on the event that neither A(τ ′)\A(r) nor A(r)\A(τ ′) intersects
ηθ1 ∪ ηθ2 , we know that the points in ∂C0(τ

′) where η′([0, τ ′]) intersects ηθ1 ∪ ηθ2

are the same as those in ∂C0(r). Proposition 3.8 thus implies that CA(r) has the same
boundary behavior as CA(τ ′) near these points. This covers the case that η′(τ ′) is not in
ηθ1 ∪ ηθ2 because the continuity of η′ implies there almost surely always exists such a
rational. If, on the other hand, η′(τ ′) is in ηθ1∪ηθ2 , then the desired result follows from
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Fig. 42 Assume that h is a GFF on the strip S whose boundary data is depicted in the left panel where the
constants are chosen so that Proposition 5.1 applies. Let 1

χ (λ′ − λ) = −π
2 ≤ θ1 < θ2 ≤ π

2 = 1
χ (λ− λ′).

Then ηθ1 and ηθ2 are both contained in the counterflow line η′ starting at z0. Let C be any connected
component of S\(ηθ1 ∪ ηθ2 ) which lies between ηθ1 and ηθ2 and let τ ′ be a stopping time for the filtration
Ft = σ(η′(s) : s ≤ t, ηθ1 , ηθ2 ) such that η′(τ ′) ∈ C almost surely. Then Cηθ1∪η′([0,τ ′])∪ηθ2

in C has

the boundary behavior depicted on the left side. Let C0(τ
′) be the connected component of C\η′([0, τ ′])

which contains x0 and let ψ : C0(τ
′) → S be the conformal map which sends x0 to 0 and the left and right

sides of C0(τ
′) which are contained in ηθ2 and ηθ1 , respectively, to (−∞, 0) and (0,∞); w0 = ψ(η′(τ ′)).

The boundary data for the GFF h ◦ψ−1−χ arg(ψ−1)′ on S is depicted in the right panel. A similar result
also holds when only one of the ηθi is contained in η′

the continuity of the conditional mean (Proposition 6.5) by first sampling ηθ1 ∪ ηθ2

and taking a limit of CA(t) as t ↑ τ ′.

Remark 6.11 (Counterflow line and an angle varying flow line) Suppose that we have
the same setup as in Remarks 6.9 and 6.10, except now we replace the flow lines
ηθ1, ηθ2 by a single angle varying flow line with angles θ1, θ2 which satisfy |θ1 −
θ2| ≤ π [so that η

τ1τ2
θ1θ2

is simple, almost surely determined by h, and continuous
(Lemma 5.6); we will relax this to |θ1 − θ2| < 2λ/χ in Sect. 7] and such that η

τ1τ2
θ1θ2

almost surely does not intersect ∂S except at its starting point. We further assume
that η

τ1τ2
θ1θ2

almost surely lies to the right of the left boundary of η′ (we will prove
in Proposition 7.11 that θ1, θ2 < π

2 is a sufficient condition for this to hold). Let
A(t) = η′([0, t])∪ η

τ1τ2
θ1θ2

and Ft = σ(η′(s) : s ≤ t, η
τ1τ2
θ1θ2

). By Lemma 6.2, know that
A(τ ) is a local set for h for every Ft -stopping time τ . The boundary data for CA(τ ) is
described in the left panel of Fig. 43 in the special case that η′ contains part of η

τ1τ2
θ1θ2

.
The justification of this follows from exactly the same argument as in Remark 6.10.
The case when η

τ1τ2
θ1θ2

is disjoint from η′ is analogous and follows from the argument
in Remark 6.9.

One other case that will be especially important for us is when we have two angle
varying flow lines η1, η2 which actually cross each other along with a counterflow line
η′. Since we have not yet discussed crossing of flow lines, we will defer the discussion
of the case until Sect. 7. (As we will explain later, flows lines of fixed angle can cross
each other only when they start at distinct points x1 < x2 with respective angles
θ1 < θ2.)
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Fig. 43 Assume that h is a GFF on the strip S whose boundary data is depicted in the left panel. Let
η
τ1τ2
θ1θ2

be an angle varying flow line of h with angles θ1, θ2 satisfying |θ1 − θ2| ≤ π so that ητ1τ2
θ1θ2

is simple

(Lemma 5.6; we will relax this to |θ1 − θ2| < 2λ/χ in Sect. 7). Let η′ be the counterflow line of h starting
at z0 and assume that η

τ1τ2
θ1θ2

almost surely lies to the right of the left boundary of η′ (we will prove in

Proposition 7.11 that θ1, θ2 < π
2 is a sufficient condition for this to hold). With A(t) = η′([0, t]) ∪ η

τ1τ2
θ1θ2

and τ ′ any Ft = σ(η′(s) : s ≤ t, η
τ1τ2
θ1θ2

)-stopping time, we know that A(τ ′) is a local set for h. The

boundary data for CA(τ ′) is depicted on the left hand side above in the special case η′ contains part of ητ1τ2
θ1θ2

.

LetC be the connected component ofS\ητ1τ2
θ1θ2

which lies to the left of ητ1τ2
θ1θ2

and letC0(τ
′) be the connected

component of C\η′([0, τ ′]) which contains 0. With ψ : C0(τ
′) → S the conformal map sending 0 to 0,

the part of ∂C0(τ
′) contained in η

τ1τ2
θ1θ2

to (0,∞) and (−∞, 0) to (−∞, 0), the boundary data for the field

h ◦ψ−1−χ arg(ψ−1)′ is depicted on the right side (w0 = ψ(η′(τ ′))). Analogous results hold when η
τ1τ2
θ1θ2

does not intersect or enter the hull of η′ or we have more angles θ1, . . . , θk

6.2 Existence and continuity of Loewner driving functions

The purpose of this subsection is to establish the existence and continuity of the
Loewner driving function of ηθ1 , viewed as a path in the right connected component
of H\ηθ2 . We will also describe related results which hold in the setting of multiple
flow lines and counterflow lines.We begin with the following proposition, which gives
criteria which imply that a continuous curve η in H starting from 0 has a continuous
Loewner driving function.

Proposition 6.12 Suppose that T ∈ (0,∞]. Let η : [0, T ) → H be a continuous, non-
crossing curve with η(0) = 0. Assume η satisfies the following: for every t ∈ (0, T ),

(a) η((t, T )) is contained in the closure of the unbounded connected component of
H\η((0, t)) and

(b) η−1(η([0, t]) ∪ R) has empty interior in (t, T ).

For each t > 0, let gt be the conformal map which takes the unbounded connected
component ofH\η([0, t]) toHwith limz→∞ |gt (z)−z| = 0. After reparameterization,
(gt ) solves the Loewner equation

∂t gt (z) = 2

gt (z)−Ut
, g0(z) = 0,

with continuous driving function Ut .
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Fig. 44 The set of times I that ηθ1 (t) is contained in ηθ2 almost surely cannot contain an open interval.
Indeed, the contrary would imply that (Cηθ1∪ηθ2

− χ ·winding) converges to both λ′ − θ1χ and λ′ − θ2χ

as zk converges to a point in an interval of intersection on the right side of ηθ1 ∩ ηθ2 . This is the key step
to showing that ηθ1 has a continuous Loewner driving function viewed as a path in the right connected
component of H\ηθ2

Roughly speaking, the first hypothesis states that η never enters a loop consisting of
either its own range or part of ∂H upon closing it. The second condition intuitively
means that η traces neither ∂H nor itself.

Proof The proof is essentially the same as that of [14, Proposition 4.3], though the
statement of [14, Proposition 4.3] contains the stronger hypothesis that η is simple.

��
The main step in our proof that ηθ1 admits a continuous Loewner driving function

as a continuous path in the right connected component ofH\ηθ2 is that the set of times
t that ηθ1(t) is contained in the range of ηθ2 is nowhere dense in [0,∞). The reason
this holds is explained in Fig. 44 and is proved rigorously in Lemma 6.13.

Lemma 6.13 Let ψ be a conformal map which takes the right connected component
ofH\ηθ2 toHwithψ(0) = 0 andψ(∞) = ∞. Thenψ(ηθ1) has a continuous Loewner
driving function viewed as a path in H from 0 to∞.

Proof Since ηθ2 is almost surely continuous (recall Remark 2.3), the right connected
component C of H\ηθ2 is almost surely a Jordan domain. Thus ψ extends as a home-
omorphism C → H, so that ψ(ηθ2) is almost surely a continuous path in H from 0
to∞.

We will now argue that the first criterion of Proposition 6.12 holds in this case.
The reason is that the only way this could fail to be true is if the following occurs.
After intersecting ηθ2 , say at time t0, ηθ1 enters a bounded connected component C0
ofH\(ηθ1([0, t0])∪ηθ2). Since ηθ1 lies to the right of ηθ2 , this would force ηθ1 to have
a self intersection upon exiting C0. This is a contradiction since ηθ1 is a simple path.

To check the second criterion of Proposition 6.12, it suffices to show that the set
I of times t ∈ [0,∞) such that ηθ1(t) is contained in the range of ηθ2 is nowhere
dense in [0,∞) almost surely. Indeed, we note that we do not need to check that
ψ(ηθ1) does not trace itself because we know that ηθ1 does not trace itself. Since I is
closed, it suffices to show the event E that I contains an open interval has probability
zero. Suppose for sake of contradiction that P[E] > 0. Let F = σ(ηθ1 , ηθ2). Fix an
open interval I0 ⊆ I and let T0 be an F-measurable random variable taking values in
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[0,∞) such that P[T0 ∈ I0 | E] = 1. Since ηθ1 and ηθ2 are both simple paths, on E we
can find a sequence of points (zk) contained in the right component of H\(ηθ1 ∪ ηθ2)

converging to ηθ1(T0). Note that we can apply Proposition 3.8 to Cηθ1∪ηθ2
evaluated at

ηθ1(T0) since ηθ1(I0) is connected and contains more than one point. This leads to a
contradiction since Proposition 3.8 thus implies (Cηθ1∪ηθ2

(zk)−χ ·winding) converges
to both

λ′ − θ1χ and λ′ − θ2χ;

(see Fig. 44). ��
In the following series of remarks,wewill describe results analogous toLemma6.13

which hold for a number of different configurations of flow and counterflow lines. In
each case, the proof is roughly the same asLemma6.13, except forminormodifications
which we are careful to point out (we will in particular not explain in each case why
the relevant path does not trace itself). Although this might seem pedantic, we felt
obliged to treat each case separately for the sake of completeness. The reader should
feel free to skip the remainder of this section on a first reading. Remark 6.6 also applies
here: the subsequent remarks will prove the continuity of the Loewner driving function
of one path given several others, restricted to the regime of boundary data in which
the paths do not intersect the boundary. Once Theorems 1.2–1.5 have been proven
in Sect. 7, the arguments we present here will also work without modification in the
regime of general piecewise constant boundary data.

Remark 6.14 The result of Lemma 6.13 extends to the setting of multiple flow lines.
Suppose that θ1 < 0 < θ2 and η := η0 is the flow line with angle 0. Let C be any
connected component of H\(ηθ1 ∪ ηθ2) which lies between ηθ1 and ηθ2 and let x0, y0
be the first and last points on ∂C traced by ηθ1 . Let ψ : C → H a conformal map with
ψ(x0) = 0 and ψ(y0) = ∞. Then ψ(η) has a continuous Loewner driving function
as a curve in H. The justification that the first criterion of Proposition 6.12 holds is
exactly the same as in the setting of two flow lines. As before, we also know that ψ

extends as a homeomorphism C → H since C is a Jordan domain by the continuity
of ηθ1 and ηθ2 . The proof of Lemma 6.13 implies that the set of times t that η(t) is
contained in the range of either ηθ1 or ηθ2 is nowhere dense in [0,∞). Therefore the
second criterion of Proposition 6.12 also holds.

Remark 6.15 A version of Lemma 6.13 also holds in the setting of angle varying flow
lines. In particular, we suppose that θ1, . . . , θk ∈ R and that ητ1···τk

θ1···θk is an angle varying
flow line with these angles starting at 0. We assume θ1, . . . , θk are chosen so that
η

τ1···τk
θ1···θk almost surely stays to the right of η, the zero angle flow line of h (we will prove

in Proposition 7.11 that θ1, . . . , θk < 0 is a sufficient condition for this to hold). We
moreover assume that |θi−θ j | ≤ π for all pairs 1 ≤ i, j ≤ k so that by Lemma 5.6 we
know that ητ1···τk

θ1···θk is almost surely continuous and determined by h (we will relax this
to |θi − θ j | < 2λ/χ in Sect. 7). Let C be the left connected component of H\ητ1···τk

θ1···θk
and letψ : C → H be a conformal map which preserves 0 and∞. Since C is a Jordan
domain,ψ extends as a homeomorphism to ∂C . Thenψ(η) has a continuous Loewner
driving function as a path from 0 to∞. The proof is the same as Lemma 6.13.
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Fig. 45 Suppose that h is a GFF on the strip S, ηθ1 , ηθ2 are flow lines with angles 1
χ (λ′ − λ) = −π

2 <

θ1 < θ2 < 1
χ (λ−λ′) = π

2 so that ηθ1 , ηθ2 are almost surely contained in the range of the counterflow line

η′. Fix any bounded connected component C of S\(ηθ1 ∪ ηθ2 ) and let x0 be the first point on ∂C traced by
ηθ1 and let y0 be the last. The boundary data for Cηθ1∪η′∪ηθ2

is depicted above. For every pair of rationals

r < s, we almost surely have that η′((r, s)) does not contain a non-trivial interval of and stay to the right
of ηθ1 or a non-trivial interval and stay to the left of ηθ2 . Indeed, this would lead to the contradiction that
Cηθ1∪η′∪ηθ2

takes on two different values on η′((r, s)) ∩ ∂C . This is the analog of Fig. 44 for boundary

filling counterflow lines and is the key observation for showing that η′ viewed as a continuous path in C
admits a continuous Loewner driving function

Remark 6.16 We will now describe an analog of Lemma 6.13 which holds in the
setting of counterflow lines. In order to state this result, we will for convenience work
with the GFF h on the strip S rather than H. We assume the boundary data for h is
as in Fig. 45, let η′ be the counterflow line starting at z0, and ηθ1 , ηθ2 be the flow
lines of h starting at 0 with angles θ1, θ2. We assume that a, b, a′, b′ are sufficiently
large so that Proposition 5.1 applies to ηθ1, ηθ2 , and η′. We first consider the case
θ1 < 1

χ
(λ′−λ) = −π

2 and θ2 > 1
χ
(λ−λ′) = π

2 so that by Proposition 5.1we have that
ηθ1 passes to the right of η

′ and ηθ2 passes to its left. LetC be any connected component
of S\(ηθ1 ∪ ηθ2) which lies between ηθ1 and ηθ2 and x0 the first point on ∂C traced by
ηθ1 and y0 the last. Let ψ : C → H be a conformal transformation with ψ(x0) = ∞
and ψ(y0) = 0. Since ηθ1 and ηθ2 are continuous, C is a Jordan domain so that ψ

extends as a homeomorphismC → H. As inRemark 6.14, the set I of times t that η′(t)
is contained in ηθ1 ∪ηθ2 is nowhere dense in [0,∞). The reason for this is that the left
(resp. right) boundary of η′ is ηL (resp. ηR), the flow line of hwith angle 1

χ
(λ−λ′) = π

2

[resp. 1
χ
(λ′ − λ) = −π

2 ] (recall Proposition 5.9) and we know from the proof of
Lemma6.13 that ηL∩ηθi (resp. ηR∩ηθi ) is nowhere dense in ηθi for i = 1, 2. Therefore
the second criterion of Proposition 6.12 holds. In order to see that the first criterion
holds, suppose that η′(t0) is contained in the range of ηθ1 . Then η′(t0) is also in the right
outer boundary ηR of η′. This implies that it is impossible for η′ to turn into a connected
component of C\η′([0, t0]) which does not contain x0 because it would contradict
Lemma 5.7 (see also Lemma 4.7), that η′ hits points in ηR in reverse chronological
order. A symmetrical argument applies in the case η′(t0) is contained in the range of
ηθ2 . Therefore ψ(η′) has a continuous Loewner driving function as a path in H.

Remark 6.17 This is a continuation of the previous remark, in which we now consider
the case that both θ1 < θ2 lie in the interval I = [−π

2 , π
2 ] (the case that only one of the
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θi are in I follows from an analogous argument). LetC, x0, y0, ψ be as in the previous
remark. We will first argue that the part of η′ which traces through C is a continuous
path inC . To see this, let τ = inf{t ≥ 0 : η′(t) = y0} and σ = inf{t ≥ 0 : η′(t) = x0}.
Lemma 5.7 (see also Lemma 4.7) implies that η′ hits the points in ηθ1 in reverse
chronological order. This implies σ ≥ τ almost surely. Let η′C be the path with
η′C |[0,τ ] = y0, η′C |[σ,∞) = x0. We will now describe η′C |[τ,σ ]. Let D = S\C . Since
D is open and η′ is continuous, J = (η′)−1(D) ⊆ (0,∞) is open. We can write
J = ∪k Jk where the Jk = (ak, bk) are pairwise disjoint open intervals in (0,∞).
Suppose that Jk ⊆ (τ, σ ). Since η′ hits the points of ηθ1 , ηθ2 in reverse chronological
order (Lemmas 4.7, 5.7), it must be that xk := η′(ak) = η′(bk). We set η′C |[ak ,bk ] ≡ xk
and η′C |[τ,σ ]\J ≡ η′|[τ,σ ]\J . Then η′C is clearly a continuous path in C which agrees
with η′ at times when it is in C .

Wewill now argue thatψ(η′C ) has a continuous Loewner driving function by check-
ing the criterion of Proposition 6.12. In order to check the first part of the proposition, it
suffices to show thatη′C ((t,∞)) is contained in the closure of the connected component
ofC\η′C ((0, t))which contains x0. This is true because η′C ((t,∞)) = η′((t,∞))∩C .
Since η′ cannot cross itself and hits the points of ηθ1 and ηθ2 in reverse chronological
order, it is obvious that η′((t,∞))∩C has this property. We now turn to check the sec-
ond hypothesis of the proposition. Suppose that 0 < r < q are rational. If η′C ((r, q))

contains a non-trivial interval of and is contained in ∂C , then η′((r, q)) also contains
a non-trivial interval of ∂C and is contained in D. This leads to a contradiction as
described in Fig. 45. Thus, almost surely, η′C does not contain a non-trivial interval of
ηθ1 or ηθ2 in any rational time interval. This completes the proof that η′ satisfies the
second criterion of Proposition 6.12.

Remark 6.18 This is a continuation of the previous remark. Let η
τ1···τk
θ1···θk be an angle

varying flow line of h with angles θ1, . . . , θk . We assume that the boundary data of h
is such that both η′ and η

τ1···τk
θ1···θk almost surely intersect ∂S only at 0 and z0. Assume

that |θi − θ j | ≤ π for all i, j so that η
τ1···τk
θ1···θk is simple, continuous, and almost surely

determined by h by Lemma 5.6. (This can be relaxed to |θi−θ j | < 2λ/χ upon proving
that such angle varying paths are almost surely continuous and determined by h. This
will be accomplished in Sect. 7.) Moreover, assume that η

τ1···τk
θ1···θk stays to the right of

the left boundary of η′ (we will prove in Proposition 7.11 that θ1, . . . , θk < π
2 is a

sufficient criterion for this). Then η′, viewed as a path in the left connected component
of S\ητ1···τk

θ1···θk almost surely has a continuous Loewner driving function. The proof of
this is the same as that given in Remarks 6.16 and 6.17.

There is one more configuration of paths that will be important for us: two angle
varying flow lines η1, η2 and a counterflow line η′ where η1 and η2 actually cross each
other. We defer this case until after we study the crossing phenomenon of flow lines
in Sect. 7.2.

7 Proofs of main theorems

In this section, we will complete the proof of Theorems 1.2–1.5. We will start in
Sect. 7.1 by proving Theorems 1.2 and 1.3 for κ ∈ (0, 4] in the special case of two
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force points x L = 0− and x R = 0+ with weights ρL , ρR > −2, respectively. Then
by an induction argument, we will deduce Theorem 1.2 for κ ∈ (0, 4] in complete
generality from the two force point case. The proof of these results will also imply
that the monotonicity result for flow lines established in Sect. 5 holds in the regime
of boundary data which is constant on (−∞, 0) and on (0,∞). Next, in Sect. 7.2,
we will extend the monotonicity result further to cover the case of flow lines of GFFs
with general piecewise constant boundary data and then, from this, we will extract
the monotonicity of angle varying flow lines. This is one of the key tools that we will
use in Sect. 7.3 to prove Theorem 1.3 for κ ∈ (0, 4] in the setting of multiple force
points, at least up until just before the continuation threshold is hit. We also prove
Theorem 1.5 in Sect. 7.2, that flow lines with the same angle almost surely merge
upon intersecting and never separate and that flow lines with different angles may
cross upon intersecting (depending on their relative angle and their starting points),
after which they may bounce off of each other but never cross again. The latter will
then allow us to prove Theorem 1.3 for κ ∈ (0, 4], even up to and including when the
continuation threshold is hit. We continue in Sect. 7.4 by explaining the modifications
necessary to prove Theorems 1.2 and 1.3 for κ ′ > 4. We will also extend the light
cone construction of Sect. 5 to the setting in which the counterflow line can intersect
the boundary. Finally, in Sect. 7.5, we will combine all of the machinery we have
developed in this article to show that the fan F—the set of points accessible by flow
lines of different (but constant) angles starting from an initial boundary point x (recall
Figs. 2, 3, 4, 5, and 16)—almost surely has zero Lebesgue measure for κ ∈ (0, 4).
(We remark that this follows for κ ∈ (2, 4) since, as suggested by the discussion at
the end of Sect. 5, F is contained in a counterflow line which is an SLEκ ′ type curve
with κ ′ = 16/κ ∈ (4, 8). New arguments will be needed for κ ∈ (0, 2].)

7.1 Two boundary force points

Setup Fix a, b > 0 and let h be a GFF on H with boundary data as in the left side
of Fig. 46. Fix θ1 < 0 < θ2 and let ηθi be the flow line of h with angle θi , i = 1, 2.

Fig. 46 Suppose that h is a GFF on H with boundary data as shown in the illustration on the left hand
side. Suppose θ1 < 0 < θ2 and let ηθi be the flow line of h starting from 0 with angle θi , i.e. the flow
line of h + θiχ . Assume a, b are chosen sufficiently large so that Proposition 5.5 applies to ηθ1 , ηθ2 , and
η, the zero angle flow line of h. Then ηθ1 almost surely lies to the right of η which in turn almost surely
lies to the right of ηθ2 . We will prove in Lemmas 7.1 and 7.2 that, conditionally on ηθ1 , ηθ2 , the law of η

in every connected component C of H\(ηθ1 ∪ ηθ2 ) which lies between ηθ1 and ηθ2 is independently that

of an SLEκ (ρL ; ρR) process with ρL = θ2
χ
λ
− 2 and ρR = −θ1

χ
λ
− 2 and, moreover, is almost surely

determined by h|C
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That is, ηθi is the flow line of h+ θiχ , for i = 1, 2. Let η be the (zero angle) flow line
of h. Assume that a, b are chosen sufficiently large so that Proposition 5.5 applies to
ηθ1, η, and ηθ2 . Thus we know that ηθ1 lies to the right of η which in turn lies to the
right of ηθ2 . By Theorem 1.2, in a certain non-boundary-intersecting regime, which
we proved in Sect. 4.2, we know that ηθ1, η, and ηθ2 are all almost surely determined
by h. Fix a connected component C of H\(ηθ1 ∪ ηθ2) which lies between ηθ1 and
ηθ2 . [The particular way that we select C will ultimately be unimportant since what
we will argue holds for all such C simultaneously. One example of an explicit rule
for selecting C would be to fix a positive integer k and a countable, dense sequence
(rn) of points in C and consider the subsequence containing those ri that lie between
ηθ1 and ηθ2 ; we may then let C be the component containing the kth element in the
subsequence.] Let x0 be the first point in ∂C traced by ηθ1 and y0 the last. Let hC
be the restriction of h to C and ηC the restriction of η to the time interval in which
it takes values in C . Let ψ : C → H be a conformal transformation which sends x0
to 0 and y0 to ∞ (the scale factor can be determined by an arbitrary rule—e.g., by
requiring the kth element in the subsequence discussed above to map to a point on
the unit circle) and let hψ = h ◦ ψ−1 − χ arg(ψ−1)′ be the GFF on H given by the
coordinate change (1.4) of hC under ψ and let ηψ be the flow line of hψ starting from
0 and targeted at∞.

To complete the proof of Theorem1.2 for κ ∈ (0, 4]with two force pointsρL , ρR >

−2, we will show the following:

1. ηψ is almost surely determined by hψ .
2. ηψ ∼ SLEκ(ρL ; ρR), and by adjusting θ1, θ2 we can obtain any pair of weights

ρL , ρR > −2.

Theorem 1.3 for κ ∈ (0, 4] with two force points ρL , ρR > −2 then follows by
showing that ηψ is almost surely continuous. We will accomplish these two steps in
the following lemmas.

Lemma 7.1 Conditional on ηθ1 , ηθ2 and η up until the first time that it hits ∂C, we
have that ηψ ∼ SLEκ(ρL ; ρR) where the weights ρR, ρL are given by

ρR = −θ1χ

λ
− 2 and ρL = θ2χ

λ
− 2

and correspond to force points at 0+ and 0−, respectively. Moreover, ηψ is almost
surely continuous with limt→∞ ηψ(t) = ∞ and (ηψ, hψ) are coupled as in Theo-
rem 1.1.

Note that Lemma 7.1 implies that (ηψ, hψ) is independent of (ηθ1 , ηθ2). This fact
will be important for us in the proof of Lemma 7.2.

Proof of Lemma 7.1 By Remark 6.14, the uniformizing conformal maps (gt ) of the
unbounded connected component ofH\ηψ([0, t])with limz→∞ |gt (z)−z| = 0 satisfy
the Loewner equation with continuous driving function Wt . For a local set A of hψ ,

let Cψ
A be as in Sect. 3.2. That η, ηθ1 , ηθ2 are almost surely determined by h and are

local sets for h combined with Lemma 6.2 implies that ηψ([0, τ ]) is a local set for
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hψ for every η stopping time τ . Moreover, Remark 6.7 implies that Cψ

ηψ([0,τ ]) is the
harmonic function in H\ηψ([0, τ ]) whose boundary values are described in the right

hand side of Fig. 46. Proposition 6.5 implies that Cψ

ηψ([0,t])(z) has amodification which

is continuous in t and z. Consequently, Theorem 2.4 implies ηψ ∼ SLEκ(ρL ; ρR) in
H from 0 to∞where the values of ρL , ρR are as in the statement of the lemma (recall
Fig. 11). The continuity of ηψ follows since η is almost surely continuous [recall
Remark 2.3 and Proposition 4.12, which gives the continuity of ηψ(t) as t →∞] and,
as explained in Remark 6.14, ψ extends as a homeomorphism from C to H. ��

We now turn to show that ηψ is almost surely determined by hψ .

Lemma 7.2 Almost surely, hψ determines ηψ .

Proof We remark again that η lies to the left of ηθ1 and to the right of ηθ2 by
Proposition 5.5. Moreover, ηθ1, η, and ηθ2 are almost surely determined by h by the
non-boundary-intersecting version of Theorem 1.2, which was proved in Sect. 4.2.
Let h′ be the restriction of h to H\C and Q = (ηθ1, ηθ2 , h

′). Since Q determines C
hence ψ , it follows from Lemma 3.10 and [24, Theorem 8.1] that the pair (Q, hψ)

determines the entire GFF h, hence also ηψ . Thus to show that ηψ is determined by hψ ,
it suffices to show that the pair (ηψ, hψ) is independent of Q since hψ is independent
of Q. It in turn suffices to show that h′ is independent of (ηψ, hψ) given ηθ1 , ηθ2 . The
reason is that the previous lemma implies (ηψ, hψ) is independent of (ηθ1 , ηθ2) since
its law conditionally on (ηθ1 , ηθ2) does not depend on ηθ1, ηθ2 .

Let h′1 and h′2 be the restrictions of h′ to the right and left sides of ηθ1 and ηθ2 ,
respectively. LetU be the set of points inH\(ηθ1 ∪ηθ2)which lie between ηθ1 and ηθ2 .
We can put an ordering on the set of connected components U of U by saying that
A < B for A, B ∈ U if and only if η intersects A before B. Let h′3, h′4 be the restrictions
of h to those components which come strictly before and after C in this ordering,
respectively. By Lemma 3.10 and [24, Theorem 8.1], we have that h′ is determined
by (h′1, . . . , h′4). Proposition 3.9 [with A1 given by ηθ1 ∪ ηθ2 , A2 = η, and C given
by the components of H\(ηθ1 ∪ ηθ2) which are to the right of ηθ1 and to the left of
ηθ2 ] implies that the pair (h′1, h′2) is independent of (ηψ, hψ) given (h′3, h′4, ηθ1 , ηθ2).
Another application of Proposition 3.9 [with A1 given by ηθ1 ∪ ηθ2 , A2 given by η

stopped upon the last time it hits ∂C , and C given by the components ofH\(ηθ1 ∪ηθ2)

which come after C] implies that h′4 is independent of (ηψ, hψ) given (ηθ1, ηθ2 , h
′
3).

Finally, Proposition 3.9 [with A1 = ηθ1 ∪ ηθ2 , A2 given by the union ηθ1 , ηθ2 , and
the restriction of η to the interval of time in which it is in C , and C given by those
components of H\(ηθ1 ∪ ηθ2) which come before C ; we note that A2 is local for h by
Lemma 7.1 because it implies that the conditional law of η inC does not depend on its
realization up until first hitting ∂C when ηθ1, ηθ2 are fixed] (ηψ, hψ) is independent
of h′3 given (ηθ1 , ηθ2). This completes the proof. ��

The important ingredients in the proof of Lemma 7.2 are that:

1. the conditional law of h given ηθ1 , ηθ2 , and η restricted to the left and right con-
nected components ofH\(ηθ1∪ηθ2)does not depend either onη or on the restriction
of h to the connected components which lie between ηθ1 and ηθ2 ,
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2. the conditional law of η in C given ηθ1 , ηθ2 does not depend on h restricted to the
connected components whose boundaries are traced by ηθ1 and ηθ2 before C ,

3. the conditional law of h given ηθ1 , ηθ2 restricted to the connected components
whose boundaries are traced by ηθ1 and ηθ2 after C does not depend on η stopped
upon exiting C , and that

4. η, ηθ1 , and ηθ2 are all determined by h.

By the same argument, an analogous result holds in the setting of counterflow lines
(see Sect. 7.4).

By combining Lemmas 7.1 and 7.2, we have obtained Theorems 1.2 and 1.3 in the
special case of two boundary force points, one to the left and one to the right of the
SLE seed. We will record this result in the following proposition.

Proposition 7.3 Suppose thatη is an SLEκ(ρL ; ρR)process inH from0 to∞with κ ∈
(0, 4] and with weights ρL , ρR > −2 located at the force points 0−, 0+, respectively.
Then η is almost surely continuous and limt→∞ η(t) = ∞. Moreover, in the coupling
of η with a GFF h as in Theorem 1.1, η is almost surely determined by h.

Proposition 7.3 implies that the flow lines of the GFF on H starting at 0 with
boundary data which is constant on (−∞, 0) and on (0,∞) are almost surely defined
as path valued functionals of the underlying GFF. The technique we used to prove
Proposition 7.3 can be applied to multiple flow lines simultaneously. We obtain as
a consequence the following extension of Proposition 5.5 to the regime of boundary
data which is constant on (−∞, 0) and constant on (0,∞).

Proposition 7.4 Suppose that h is a GFF onH with boundary data as in the left side
of Fig. 46 (though we do not restrict the values of a and b). Assume θ1 < θ2 satisfy

θ1 > −λ+ b

χ
and θ2 <

a + λ

χ
.

With ηθi the flow line of h with angle θi for i = 1, 2, we have that ηθ2 almost surely
lies to the left of ηθ1 . The conditional law of ηθ1 given ηθ2 is that of an SLEκ((θ2 −
θ1)χ/λ − 2; (b + θ1χ)/λ − 1) independently in each of the connected components
of H\ηθ2 which lie to the right of ηθ2 . Similarly, the conditional law of ηθ2 given ηθ1

is that of an SLEκ((a − θ2χ)/λ− 1; (θ2 − θ1)χ/λ− 2) independently in each of the
connected components of H\ηθ1 which lie to the left of ηθ1 .

The hypothesis on θ1, θ2 is to ensure that the values of the weights of the force points
associated with ηθ1 , ηθ2 exceed −2.

We are now able to complete the proof of Theorem 1.2 for κ ∈ (0, 4]. This
follows from an induction argument, the absolute continuity properties of the field
(Proposition 3.4), and the two force point case (Lemma 7.2, Proposition 7.3), and is
accomplished in the following lemma.

Lemma 7.5 In the setting of Theorem 1.1 for κ ∈ (0, 4], the SLEκ(ρL ; ρR) flow line
η of h is almost surely determined by h.
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Proof Write ρL = (ρ1,L , . . . , ρk,L) and ρR = (ρ1,R, . . . , ρ�,R). We are going to
prove the result by induction on k, �. For simplicity of notation, we are going to
assume without loss of generality that x1,L = 0− and x1,R = 0+ by possibly adding 0
weight force points. Lemma 7.2 gives the desired result when k, � ≤ 1. Let Kt denote
the hull of η at time t and let ft : H\Kt → H be the corresponding centered Loewner
map. Assume that the statement of the lemma holds for some fixed k, � ≥ 1. We are
going to prove that the result holds for k + 1 force points to the left of 0 and � to the
right of 0 (and vice-versa by symmetry). There are two possibilities: either Kt does or
does not accumulate in (−∞, xk+1,L ]. In the latter case, we are done because we can
invoke Proposition 3.4 to deduce the result from the induction hypothesis. Suppose
that we are in the former case. Let τ be the first time Kt accumulates in (−∞, xk+1,L ].
Note that K |[0,τ ] is almost surely determined by h by Proposition 3.4 and the induction
hypothesis (we can apply these results to K |[0,τε ] where τε is the first time that Kt

gets within distance ε > 0 of (−∞, xk+1,L ] and then send ε → 0). If τ is at the
continuation threshold, then we are done. If not, we just need to show that K |(τ,∞) is
almost surely determined by h. Assume that the rightmost point of Kτ is contained
in [x j0,R, x j0+1,R). Then the conditional law of fτ (Kt ) for t ≥ τ given K |[0,τ ] is an
SLEκ(ρL ; ρ̃R) process in H from 0 to∞ where

ρL =
k+1∑
s=1

ρs,L and ρ̃1,R =
j0∑

s=1

ρs,R, ρ̃2,R = ρ j0+1,R, . . . , ρ̃�− j0+1,R = ρ�,R .

By the induction hypothesis, it thus follows that ( fτ (Kt ) : t ≥ τ) is almost surely
determined by h ◦ fτ − χ arg f ′τ , hence also by h|H\Kτ given Kτ . The result now
follows. ��

The proof of Lemma 7.5 is not specific to SLEκ(ρ) processes when κ ∈ (0, 4]. In
particular, upon proving that SLEκ ′(ρL ; ρR) processes are almost surely determined
by h for ρL , ρR > −2 in the coupling of Theorem 1.1 in Sect. 7.4, we will have
completed the proof of Theorem 1.2.

7.2 Monotonicity, merging, and crossing

Up until now, the only type of interaction between flow lines that we have considered
has been when the paths have the same seed. In this subsection, we will expand on this
to complete the proof of Theorem 1.5 (contingent on a continuity assumption which
will be removed upon proving Theorem 1.3 for flow lines in Sect. 7.3). This gives a
complete description of the manner in which flow lines can interact with each other
and makes the phenomena observed in the simulations from the introduction (Figs. 2,
3, 4, 5, 7, 8, 21) precise. In particular, we will consider the following setup: we have
two flow lines η

x1
θ1
and η

x2
θ2
of a GFF onHwith piecewise constant boundary data which

changes a finite number of times with angles θ1 and θ2 starting at boundary points x1
and x2, respectively. We will show that if x1 > x2 and θ1 < θ2, then η

x1
θ1

stays to the
right of ηx2

θ2
. This is a generalization of Proposition 7.4, the monotonicity statement for
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(a) (b)

Fig. 47 Suppose that h is a GFF on H with piecewise constant boundary data which changes a finite
number of times. For each x ∈ R and angle θ , let ηxθ be the flow line of h starting at x with angle θ . If

x1 > x2 and θ1 = θ2 = θ , then η
x1
θ1

will almost surely merge with η
x2
θ2

upon intersecting (left panel). If

θ2 < θ1 < θ2 + π , then η
x1
θ1

will cross η
x2
θ2

upon intersecting but will never cross back (right) panel. If

θ1 < θ2, then η
x1
θ1

will almost surely stay to the right of η
x2
θ2
. a If θ1 = θ2 = θ , then the flow lines almost

surely merge upon intersecting and then never separate. b If θ2 < θ1 < θ2 + π , then the flow lines almost
surely cross upon intersecting. Afterwards, they may bounce off of each other but will never cross again

boundary data which is constant on (−∞, 0) and on (0,∞), to the setting of general
piecewise constant boundary data and where the initial points of the flow lines can be
different. The more interesting behavior occurs when θ1 = θ2 or θ2 < θ1 < θ2+π . In
the former case, the flow lines will actually almost surely merge upon intersecting and
then never separate (in obvious contrast with a Euclidean geometry). In the latter case,
upon intersecting, the flow lines will almost surely cross exactly once. Afterwards,
they may continue to intersect and bounce off of one another, but will never cross
again (Fig. 47).

The first step to proving these results is Lemma 7.7, which says that the set K which
consists of those points of η

x1
θ1

until the first time τ1 that η
x1
θ1

intersects η
x2
θ2

and those
points of η

x2
θ2

until the first time τ2 that η
x2
θ2

hits η
x1
θ1

is a local set for h. We will in
particular show that if τ1, τ2 < ∞, then η

x1
θ1

(τ1) = η
x2
θ2

(τ2) (which is of course not in
general true for continuous paths). This is a particularly interesting example of a local
set because it cannot be generated using a “local algorithm” that explores the values of
the field along the flow lines until stopping times (without ever looking at the field off
of those flow lines). Once Lemma 7.7 is established, we will then prove Lemma 7.8
which gives that the conditional mean CK of h given K (where K plays the same role
for K as A from Sect. 3.2) does not exhibit pathological behavior in the unbounded
connected component D of H\K , even at the first intersection point of η

x1
θ1

and η
x2
θ2
.

This in turn allows us to show that ηxi
θi
|[τi ,∞), i = 1, 2, is the flow line of the conditional

field h|D given K with angle θi starting at η
x1
θ1

(τ1) = η
x2
θ2

(τ2) provided τ1, τ2 < ∞.
We then prove Proposition 7.10, which is our most general monotonicity statement,
followed by Proposition 7.11, which gives the monotonicity of angle varying flow
lines. The merging and crossing behavior are proved in Proposition 7.12 and follows
by using Lemmas 7.7 and 7.8 to reduce the results to Proposition 7.10. Before we
prove Lemma 7.7, we need to record the following technical lemma.

Lemma 7.6 Suppose that h is a GFF on H with piecewise constant boundary data
which changes a finite number of times. Suppose that x1, x2 ∈ R with x2 < x1 and
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Fig. 48 Suppose that h is a GFF on H with piecewise constant boundary data which changes a finite
number of times. Suppose that x1, x2 ∈ R with x2 < x1 and fix θ1, θ2 ∈ R with θ1 < θ2 + π . Let Ti
be a stopping time for η

xi
θi

, i = 1, 2, such that η
xi
θi
|[0,Ti ] is almost surely continuous. Let τ̃1 ≤ T1 be any

stopping time for η
x1
θ1
. We show in Lemma 7.6 that the following is true. Suppose that τ̃2 ≤ T2 is any

stopping time for the filtration Ft = σ(η
x2
θ2

(s) : s ≤ t, η
x1
θ1

([0, τ̃1])) such that if ξ2 is the largest time

t ∈ [0, τ̃2] so that ηx2θ2 (t) ∈ η
x1
θ1

([0, τ̃1]) then η
x2
θ2

(̃τ2) is contained in the unbounded connected component

of H\(ηx1θ1 ([0, τ̃1])∪ η
x2
θ2

([0, ξ2])). Let ξ1 be the smallest time t ∈ [0, τ̃1] that ηx1θ1 (t) ∈ η
x2
θ2

([0, τ̃2]). Then
η
x2
θ2
|[̃τ2,T2] does not exit the unbounded connected component D of H\(ηx1θ1 ([0, τ̃1])∪ η

x2
θ2

([0, τ̃2])) in the
right side of η

x1
θ1

([0, ξ1]). To see this, we let ψ be the conformal from D to S which takes η
x2
θ2

(̃τ2) to 0,

and the left and right sides of η
x2
θ2

((ξ2, τ̃2)) to (−∞, 0) and (0,∞), respectively. The boundary data for the

GFF h̃ + θ2χ where h̃ = h|D ◦ψ−1 − χ arg(ψ−1)′ is shown on the right side. Note that θ2 − θ1 + π ≥ 0
so that with I = ψ(η

x1
θ1

([0, ξ1))) we have that (̃h + θ2χ)|I ≥ λ. Since ψ(η
x2
θ2
|[̃τ2,T2]) is the flow line of

h̃ + θ2χ starting from 0, the result then follows from Lemma 5.2

fix angles θ1, θ2 ∈ R with θ1 < θ2 + π . Let Ti be a stopping time for η
xi
θi

, i = 1, 2,
such that η

xi
θi
|[0,Ti ] is almost surely continuous. Let τ̃1 ≤ T1 be any stopping time for

η
x1
θ1
. Then the following is true. Suppose that τ̃2 ≤ T2 is any stopping time for the

filtration Ft = σ(η
x2
θ2

(s) : s ≤ t, η
x1
θ1

([0, τ̃1])) such that with ξ2 the largest time t ∈
[0, τ̃2] with η

x2
θ2

(t) ∈ η
x1
θ1

([0, τ̃1]) we have that ηx2
θ2

(̃τ2) is contained in the unbounded
connected component of H\(ηx1

θ1
([0, τ̃1]) ∪ η

x2
θ2

([0, ξ2])). Let ξ1 be the smallest time t
that η

x1
θ1

(t) ∈ η
x2
θ2

([0, τ̃2]). Then η
x2
θ2
|[̃τ2,T2] either hits ∂H or η

x1
θ1

([ξ1, τ̃1]) or escapes
to∞ before hitting η

x1
θ1

([0, ξ1)). The analogous result holds when the roles of ηx1
θ1

, η
x2
θ2

are swapped.

We note that in the case that either θ1 or θ2 is outside of the range of values necessary
for the flow line to be defined (i.e., there is a force point of weight less than or equal to
−2 immediately to the left or to the right of the starting point of the path), the statement
of Lemma 7.6 trivially holds as we can view such a flow line to be the path which
is always equal to its starting point. Lemma 7.6 is a consequence of Lemma 5.2; see
Fig. 48 for the setup of the proof. Its proof is also very similar to that of Proposition 5.1.

Proof of Lemma 7.6 Note that η
x1
θ1

([0, τ̃1]) ∪ η
x2
θ2

([0, τ̃2]) is a local set for h by
Lemma 6.2. Let D be the unbounded connected component of H\(ηx1

θ1
([0, τ̃1]) ∪

η
x2
θ2

([0, τ̃2])). Let ψ : D → S be the conformal map which takes η
x2
θ2

(̃τ2) to 0,

the left side of η
x2
θ2

((ξ2, τ̃2)) to (−∞, 0), and the right side to (0,∞). Let h̃ =
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h|D ◦ ψ−1 − χ arg(ψ−1)′. Then h̃ is a GFF on S; the boundary data for h̃ + θ2χ

is depicted in the right side of Fig. 48. Here, we are using Proposition 3.8 to get the
boundary data for h̃ on the image I under ψ of the right side of η

x1
θ1

([0, ξ1)) as well
as on the lower boundary ∂LS (in particular, we do not try to rule out pathological
behavior in the conditional mean of h at intersection points of η

x1
θ1

and η
x2
θ2
). Since

η
x2
θ2
|[0,T2] is almost surely continuous, we know that the image of η

x2
θ2
|[̃τ2,T2] under ψ is

also continuous. Since the boundary data of h̃+ θ2χ on I is λ+ (θ2− θ1+π)χ ≥ λ,
Lemma 5.2 implies that ψ(η

x2
θ2
|[̃τ2,T2]) must exit S in ∂US\I (or does not exit before

time T2). This corresponds to η
x2
θ2

exiting D either in ∂H or in η
x1
θ1
|[ξ1 ,̃τ1] (or not exiting

at all). This completes the proof. ��
Lemma 7.7 Suppose that h is a GFF on H with piecewise constant boundary data
which changes a finite number of times. Fix x1, x2 ∈ ∂H with x2 < x1 and angles
θ1, θ2 with θ1 < θ2 + π . For i = 1, 2, let Ti be a stopping time for η

xi
θi

such that

η
xi
θi
|[0,Ti ] is almost surely continuous. Let τ2 be the first time that η

x2
θ2
|[0,T2] intersects

η
x1
θ1
|[0,T1] and let τ1 be the first time that η

x1
θ1
|[0,T1] intersects η

x2
θ2
|[0,T2]. Let K =

η
x1
θ1

([0, τ1 ∧ T1])∪ η
x2
θ2

([0, τ2 ∧ T2]). Then K is a local set for h. Moreover, if τi ≤ Ti
and τi < ∞ for i = 1, 2 then η

x1
θ1

(τ1) = η
x2
θ2

(τ2) and η
xi
θi
|[τi ,Ti ], for i = 1, 2, is almost

surely contained in the unbounded connected component of H\K.

We note that in the statement of Lemma 7.7, the stopping times τi , i = 1, 2,
may actually be infinite in the case that η

x1
θ1
|[0,T1] does not touch η

x2
θ2
|[0,T2]. This can

happen, for example, if one of the η
xi
θi
|[0,Ti ] hits a segment of ∂H after which it is not

able to continue, i.e. the boundary data of h + θiχ is at least λ on the left side of the
intersection point or is not more than −λ on the right side. On the other hand, the
statement is vacuous in the setting in which the boundary of h is such that either η

x1
θ1

or η
x2
θ2

immediately hits the continuation threshold (i.e., the ρ value immediately to
the left or right of one of the paths is not larger than −2).

Proof of Lemma 7.7 Let η̃
xi
θi

(t) = η
xi
θi

(t ∧ Ti ) for i = 1, 2. Assume that τi < ∞ for
i = 1, 2 for otherwise the result is trivial. We are now going to prove that η̃

x1
θ1

(τ1) =
η̃
x2
θ2

(τ2). To see this, we apply Lemma 7.6 for the stopping time τ̃1 = T1 for η̃
x1
θ1
and for

any stopping time τ2 ≤ τ̃2 ≤ T2 for the filtrationFt = σ (̃η
x2
θ2

(s) : s ≤ t, η̃
x1
θ1

([0, T1]))
so that the criteria of Lemma 7.6 hold. Let ξ1 be the first time t that η̃

x1
θ1
|[0,T1] hits

η̃
x2
θ2

([0, τ̃2]). Lemma 7.6 implies that η̃x2
θ2
|[̃τ2,T2] cannot hit the right side of η̃x1

θ1
([0, ξ1))

before hitting either η̃
x1
θ1

([ξ1, T1]) or ∂H. By applying this to a countable collection
of stopping times which is dense among admissible times in [τ2, T2] (i.e, stopping
times τ̃2 so that the criteria of Lemma 7.6 apply), we see that η̃

x2
θ2

([τ2, T2]) cannot
hit the right side of η̃

x1
θ1

([0, σ1)) where σ1 is the first time that η̃
x1
θ1

hits η̃
x2
θ2

(τ2). An
analogous argument with the roles of η

x1
θ1

and η
x2
θ2

reversed implies that η̃
x1
θ1

([τ1, T1])
cannot hit the left side of η̃

x2
θ2

([0, σ2)) where σ2 is the first time that η̃
x2
θ2

hits η̃
x1
θ1

(τ1).
It thus follows that σ1 = τ1, which proves the claim.

Recall that we assumed that τi < ∞ for i = 1, 2. Let K = η̃
x1
θ1

([0, τ1]) ∪
η̃
x2
θ2

([0, τ2]). The above argument also implies that η̃
xi
θi
|[τi ,Ti ] is contained in the
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Fig. 49 Suppose that h is a GFF on H with piecewise constant boundary data which changes a finite
number of times. Suppose that x1, x2 ∈ ∂H with x2 < x1 and fix θ1, θ2 ∈ R with θ1 < θ2 + π . For
i = 1, 2, let Ti be a stopping time for η

xi
θi

such that η
xi
θi
|[0,Ti ] is almost surely continuous. Let τ1 be the first

time that ηx1θ1
|[0,T1] hits η

x2
θ2
|[0,T2] and let τ2 be the first time that ηx2θ2

|[0,T2] hits η
x1
θ1
|[0,T1]. In Lemma 7.7,

we show that K = η
x1
θ1

([0, τ1 ∧ T1]) ∪ η
x2
θ2

([0, τ2 ∧ T2]) is a local set for h and, if τ1, τ2 < ∞, then

w0 = η
x1
θ1

(τ1) = η
x2
θ2

(τ2). Let D be the unbounded connected component ofH\K . In Lemma 7.8, we show
that h|D given K (where K plays the role for K of A from Sect. 3.2) is a GFF in D whose boundary data
is as depicted above and that η

xi
θi
|[τi ,Ti ] is the flow line of h|D starting at w0 of angle θi for i = 1, 2

unbounded connected component ofH\K for i = 1, 2 (i.e., if η̃x1
θ1
|[τ1,T1] is in a bounded

connected component, then η̃
x2
θ2

hits η̃
x1
θ1

on its right side first). We are now going to
prove that K is local by checking characterization (i) of Lemma 3.6. Fix U ⊆ H
open. For i = 1, 2, let τUi = inf{t ≥ 0 : η̃

xi
θi

(t) ∈ U }. Then η̃
xi
θi

([0, τUi ]), i = 1, 2,

is almost surely determined by the projection of h onto H⊥(U ) as a consequence of
Theorem 1.2 and that η̃

xi
θi

([0, τUi ]), i = 1, 2, is a local set for h. Since the event that

{K∩U �= ∅} is determined by η̃
x1
θ1

([0, τU1 ]) and η̃
x2
θ2

([0, τU2 ]), it is therefore determined

by the projection of h onto H⊥(U ). ��
Lemma 7.8 Assume that we have the same setup as Lemma 7.7. Let D be the
unbounded connected component ofH\K and let ϕ : D → H be a conformal transfor-
mation which fixes∞ and let g be the function which is harmonic inH with boundary
conditions given by −λ− θiχ (resp. λ− θiχ ) on the ϕ image of the left (resp. right)
side of ηi |[0,τi∧Ti ] for i = 1, 2 and the same as h ◦ϕ−1 on ϕ(∂H). Then the conditional
mean CK of h given K (where K plays the role for K of A as in Sect. 3.2) restricted
to D is g ◦ ϕ − χ argϕ′ (see Fig. 49). Moreover, if τi < ∞ for i = 1, 2 then η

xi
θi
|[τi ,Ti ]

is the flow line of the conditional field h givenK restricted to D with angle θi starting
at w0 = η

x1
θ1

(τ1) = η
x2
θ2

(τ2).

Proof Lemma 7.7 implies that K = η
x1
θ1

([0, τ1])∪η
x2
θ2

([0, τ2]) is a local set for h. The
claim regarding CK is clear if w0 ∈ ∂H by Proposition 6.5 or if τ1, τ2 = ∞. To see
this in the case that w0 ∈ H, we note that with Kr,s = η

x1
θ1

([0, r ]) ∪ η
x2
θ2

([0, s]) we
have that CKr,s does not exhibit pathological behavior whenever s > τ2 and r < τ1
by Propositions 3.7 and 3.8. The claim then follows by using Proposition 6.5 and that
CK = lims↓τ2 limr↑τ1 CKr,s almost surely.

To see the second claim, we first note that ηxi
θi
|[τi ,Ti ], for i = 1, 2, has a continuous

Loewner driving function viewed as a path in D. The reason is that η
xi
θi

cannot trace
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itself or ∂H since it has a continuous Loewner driving function viewed as a path in H
and it cannot trace or create loops with K because the proof of Lemma 7.7 implies that
η
xi
θi
|[τi ,Ti ] almost surely does not hit K after time τi . Thus the claim follows by applying

Proposition 6.12. Combining Theorems 1.2, 2.4, and Proposition 6.5 completes the
proof of the result. ��

The proofs of Lemmas 7.7 and 7.8 also apply in the following slightly more general
situation.

Lemma 7.9 Assume that we have the same setup as Lemma 7.7. Suppose that σ2 ≤ T2
is a stopping time for η

x2
θ2
such that, almost surely, ηx1

θ1
|[0,T1] lies to the right of ηx2

θ2
|[0,σ2].

Let τ1 be the first time that η
x1
θ1
|[0,T1] hits η

x2
θ2
|[σ2,T2] and let τ2 be the first time that

η
x2
θ2
|[σ2,T2] hits η

x1
θ1
|[0,T1]. Let K = η

x1
θ1

([0, τ1 ∧ T1]) ∪ η
x2
θ2

([0, τ2 ∧ T2]). Then K is a
local set for h. If, in addition, τ1, τ2 < ∞ then w0 = η

x1
θ1

(τ1) = η
x2
θ2

(τ2). Let D be the

unbounded connected component ofH\K. Then η
xi
θi
|[τi ,Ti ] for i = 1, 2 is the flow line

of the conditional field h|D given K (where K plays the same role for K as A from
Sect. 3.2) with angle θi starting at w0.

Proof This follows from the same argument used to establish Lemmas 7.7 and 7.8.We
note that the intersection points of η

x1
θ1

([0, τ1)) and η
x2
θ2

([0, τ2)) (i.e., before η
x1
θ1
|[0,T1]

hits η
x2
θ2
|[σ2,T2] and vice-versa) do not lead to singularities in the conditional mean CK

of h given K in D by Proposition 3.9. ��
By combining Lemma 7.9 with Proposition 7.4, we can now prove our general

monotonicity statement for flow lines.

Proposition 7.10 Suppose that h is a GFF on H with piecewise constant boundary
data which changes a finite number of times, x1, x2 ∈ ∂H, and fix angles θ1, θ2. For
i = 1, 2, let Ti be a stopping time for η

xi
θi
such that ηxi

θi
|[0,Ti ] is almost surely continuous.

If θ1 < θ2 and x1 > x2, then η
x1
θ1
|[0,T1] almost surely lies to the right of ηx2

θ2
|[0,T2].

Proof Let y
2
= (yk22 < · · · < y12 ≤ y02 = x2) and y1 = (yk11 > · · · > y11 ≥ y01 = x1).

Assume that the boundary data for h in [y12 , y02 ) is −λ− θ2χ , in [y01 , y11) is λ− θ1χ ,
and otherwise changes to the left of x2 only at the points of y2 and changes to the right
of x1 only at the points of y

1
[note that we are not careful to restrict or specify the

places where the boundary data for h changes in (x2, x1)]. We are going to prove the
result by induction on k1, k2 (see Fig. 50 for an illustration of the setup and the proof).

We first assume that k1, k2 ≤ 1. Let τ1 be the first time that ηx1
θ1
|[0,T1] hits η

x2
θ2
|[0,T2]

and τ2 the first time that η
x2
θ2
|[0,T2] hits η

x1
θ1
|[0,T1]. If τ1 = τ2 = ∞, then the result

is trivial, so we shall assume that τ1, τ2 < ∞. Let D be the unbounded connected
component of H\K where K = η

x1
θ1

([0, τ1]) ∪ η
x2
θ2

([0, τ2]). Lemma 7.8 implies that
η
xi
θi
|[τi ,Ti ] for i = 1, 2 is the flow line of h|D given K (where K plays the same role

for K asA from Sect. 3.2) starting at w0 = η
x1
θ1

(τ1) = η
x2
θ2

(τ2) with angle θi . Thus the
case k1, k2 ≤ 1 follows by Proposition 7.4.

Suppose that the result holds for ki = ji , some j1, j2 ≥ 1. We are now going to
show that it holds for k1 = j1 and k2 = j2 + 1 (the argument to show that it holds for
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Fig. 50 Suppose that h is a GFF onHwith piecewise constant boundary data which changes a finite number

of times, x1, x2 ∈ ∂H with x1 > x2, and fix angles θ1 < θ2. Let y2 = (y
k2
2 < · · · < y12 ≤ y02 = x2)

and y
1
= (y

k1
1 > · · · > y11 ≥ y01 = x1). Assume that the boundary data for h changes to the left of x2

only at the points of y2 and to the right of x1 only at the points of y1. Moreover, assume that the boundary

data for h in [y12 , y02 ) is −λ − θ2χ and in [y01 , y11 ) is λ − θ1χ . For i = 1, 2, let Ti be a stopping time

for η
xi
θi

such that η
xi
θi
|[0,Ti ] is almost surely continuous. We prove in Proposition 7.10 that η

x1
θ1
|[0,T1] lies

to the right of η
x2
θ2
|[0,T2] by induction on k1, k2. The result for the case k1, k2 ≤ 1 is a consequence of

Proposition 7.4 and Lemma 7.7 (to justify growing the paths until they first hit each other). Suppose the
result holds for k1 = j1 and k2 = j2, some j1, j2 ≥ 1 and that k2 = j2 + 1 and k1 = j1. Letting σ2 be the

first time t that ηx2θ2
|[0,T2] hits (−∞, y

k2
2 ], it follows from the induction hypothesis and absolute continuity

(Proposition 3.4) that ηx2θ2
|[0,σ2∧T2] lies to the left of η

x1
θ1
|[0,T1]. Let τ1 be the first time t that ηx1θ1

|[0,T1] hits
η
x2
θ2
|[σ2,T2] and τ2 the first time t after σ2 that ηx2θ2

|[0,T2] hits η
x1
θ1
|[0,T1]. If τ1 = τ2 = ∞, there is nothing

to prove. If τ1, τ2 < ∞, then Lemma 7.9 implies that K = η
x1
θ1

([0, τ1]) ∪ η
x2
θ2

([0, τ2]) is a local set for
h and that η

xi
θi
|[τi ,Ti ], i = 1, 2, is the flow line of h|D, D the unbounded connected component of H\K ,

conditional onK (whereK plays the role for K ofA from Sect. 3.2) starting fromw0 = η
x1
θ1

(τ1) = η
x2
θ2

(τ2).
The result then follows from the induction hypothesis. We note that it could be that w0 ∈ ∂H, though the
case w0 ∈ H is depicted above

k1 = j1 + 1 and k2 = j2 is the same). For i = 1, 2 and ε ≥ 0, let σε
i be the first time

that ηxi
θi
|[0,Ti ] gets within distance ε of (−∞, yk22 ]. The induction hypothesis combined

with Proposition 3.4 implies that ηx2
θ2
|[0,σ ε

2∧T2] lies to the left of η
x1
θ1
|[0,σ ε

1∧T1] for each
ε > 0. Taking a limit as ε ↓ 0, we see that ηx2

θ2
|[0,σ2∧T2] stays to the left of ηx1

θ1
|[0,σ1∧T1]

where σi = σ 0
i for i = 1, 2. Since η

x1
θ1
is targeted at∞ and η

x1
θ1
|[0,T1] is simple, we also

know that ηx1
θ1
|[σ1,T1] does not hit ηx2

θ2
|[0,σ2∧T2]. Therefore η

x1
θ1
|[0,T1] lies to the right of

η
x2
θ2
|[0,σ2∧T2]. Let τ1 be the first time that ηx1

θ1
|[0,T1] hits η

x2
θ2
|[σ2,T2] and let τ2 be the first

time that η
x2
θ2
|[σ2,T2] hits η

x1
θ1
|[0,T1]. If τ1 = τ2 = ∞, then there is nothing to prove. If

τ1, τ2 < ∞, Lemma 7.9 implies that K = η
x1
θ1

([0, τ1]) ∪ η
x2
θ2

([0, τ2]) is a local set for
h and that ηxi

θi
|[τi ,Ti ] is the flow line of h|D, D the unbounded connected component of

H\K , of angle θi starting from w0 = η
x1
θ1

(τ1) = η
x2
θ2

(τ2) for i = 1, 2. Let ψ : D → H
be a conformal map which fixes∞ and takes w0 to 0. Then ψ(η

xi
θi
|[τi ,Ti ]) for i = 1, 2

is the flow line of the GFF h ◦ψ−1−χ arg(ψ−1)′ onH with angle θi . The result now
follows from the induction hypothesis. ��

Next, we will extend the result of Proposition 7.10 to the setting of angle varying
flow lines.
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Proposition 7.11 Suppose that h is a GFF on H with piecewise constant boundary
data which changes a finite number of times. Fix angles θ1, . . . , θk and θ̃ with θ̃ >

maxi θi . Assume

|θi − θ j | < 2λ

χ
for all 1 ≤ i, j ≤ k. (7.1)

Let η := η
τ1···τk
θ1···θk be an angle varying flow line of h starting at 0 and let τ1, . . . , τk−1

be the corresponding angle change times (recall the definition from the beginning of
Sect. 5.2). Let η̃ be the flow line of h starting at 0 with angle θ̃ . Assume that T, T̃ are
stopping times for η, η̃, respectively, such that η|[0,T ], η̃[0,T̃ ] are both almost surely
continuous. Then η|[0,T ] almost surely lies to the right of η̃|[0,T̃ ].

The hypothesis that the angles θi satisfy (7.1) implies that η never crosses itself,
though η may hit itself (it turns out that if |θi − θ j | ≤ π , then η never hits itself).

Proof of Proposition 7.11 We will prove the result by induction on the number of
times that η changes angles. Proposition 7.10 implies the result for k = 1 (the fixed
angle case). Suppose k ≥ 2 and the result holds for k − 1 (which corresponds to
k−2 angle changes). The induction hypothesis implies that η|[0,τk−1∧T ] almost surely
stays to the right of η̃|[0,T̃ ]. Let τ̃ be the first time that η̃|[0,T̃ ] hits η|[τk−1,T ] and let
τ be the first time that η|[0,T ] hits η̃|[0,T̃ ] after time τk−1. If τ = τ̃ = ∞, then the
desired result is trivial, so we shall assume that τ, τ̃ < ∞. The argument of Lemma 7.9
implies that K = η([0, τ ])∪ η̃([0, τ̃ ]) is a local set for h and that w0 = η(τ) = η̃(̃τ ).
Let D be the unbounded connected component of H\K . Moreover, the argument of
Lemma 7.9 also implies that η̃|[̃τ ,T̃ ] is the flow line of h|D conditional on K (where
K plays the same role for K asA from Sect. 3.2) with angle θ̃ in D starting at w0 and
that η|[τ,T ] is the flow line of h|D conditional on K with angle θk < θ̃ , also starting at
w0. Consequently, the result follows from Proposition 7.10. ��

Proposition 7.11 immediately implies the following. Suppose that θ̃1, . . . , θ̃� is
another collection of angles and η̃ = η

τ̃1···̃τ�

θ̃1···θ̃�
is the angle varying flow line with corre-

sponding angle change times τ̃1, . . . , τ̃�−1. If mini θ̃i > maxi θi and T, T̃ are stopping
times for η, η̃, respectively, such that η|[0,T ] and η̃[0,T̃ ] are both almost surely contin-
uous then η|[0,T ] almost surely lies to the right of η̃|[0,T̃ ].

Next, wewill complete the proof of Theorem1.5 (contingent on continuity hypothe-
ses which will be removed in the next subsection) in the following proposition:

Proposition 7.12 Suppose that h is a GFF on H with piecewise constant boundary
data which changes a finite number of times. Fix x1 > x2 and angles θ1, θ2. For
i = 1, 2 let Ti be a stopping time for η

xi
θi
such that ηxi

θi
|[0,Ti ] is almost surely continuous.

If θ2 < θ1 < θ2 + π , then η
x1
θ1
|[0,T1] almost surely crosses η

x2
θ2
|[0,T2] upon intersecting.

After crossing,ηx1
θ1
|[0,T1] andη

x2
θ2
|[0,T2]may continue to bounce off of each other, but will

never cross again. If θ1 = θ2, then η
x1
θ1
|[0,T1] merges with η

x2
θ2
|[0,T2] upon intersecting.

The statement of the proposition implies that ηx1
θ1
|[0,T1] almost surely crosses η

x2
θ2
|[0,T2]

upon intersecting, but it is not necessarily true that ηx1
θ1
|[0,T1] intersects η

x2
θ2
|[0,T2] since

one of the flow lines may get stuck upon hitting the continuation threshold.
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Proof Let τ1 be the first time that ηx1
θ1
|[0,T1] intersects η

x2
θ2
|[0,T2] and τ2 the first time that

η
x2
θ2
|[0,T2] intersects η

x1
θ1
|[0,T1]. If τ1 = τ2 = ∞, then the desired result is trivial, so we

shall assume that τ1, τ2 < ∞. Lemma 7.7 implies that K = η
x1
θ1

([0, τ1])∪η
x2
θ2

([0, τ2])
is a local set for h and that η

xi
θi
|[τi ,Ti ], i = 1, 2, is almost surely contained in the

unbounded connected component D ofH\K . By Lemma 7.8, we know that ηxi
θi
|[τi ,Ti ]

is the flow line of h|D givenK (whereK plays the same role for K asA from Sect. 3.2)
starting at η

x1
θ1

(τ1) = η
x2
θ2

(τ2) with angle θi for i = 1, 2. If θ2 < θ1 < θ2 + π , then
Proposition 7.10 implies that η

x1
θ1
|[τ1,T1] stays to the left of η

x2
θ2
|[τ2,T2]. The merging

claim comes as a consequence of Theorem 1.2, which implies that there is a unique
flow line for each given angle. ��
Remark 7.13 We remark that it is straightforward in the setting of Proposition 7.12 to
compute the conditional law of η

x1
θ1

given η
x2
θ2

before η
x1
θ1

crosses η
x2
θ2
. For simplicity,

we assume that the boundary data of h is given by some constant, say c (note that
Proposition 7.3 implies that η

xi
θi

is almost surely continuous for all time, i = 1, 2).

In this case, the conditional law is that of an SLEκ(ρ1,L , ρ2,L ; ρ1,R) process in the
connected component of H\ηx2

θ2
which contains x1 where

ρ1,L = −θ1χ + c

λ
− 1, ρ1,L + ρ2,L = − (θ1 − θ2)χ

λ
− 2, ρ1,R = θ1χ + c

λ
− 1.

In particular, since θ1 ≥ θ2, we have that ρ1,L + ρ2,L ≤ −2. This implies that in
this case, ηx1

θ1
almost surely intersects (hence crosses) η

x2
θ2
. This holds more generally

whenever we have boundary data which is piecewise constant and is such that ηx1
θ1

and
η
x2
θ2

can be continued upon intersecting ∂H. The facts summarized here will be useful
for us in Sect. 7.3 because we will employ them in order to prove the almost sure
continuity of SLEκ(ρ) processes right up to when the continuation threshold is hit.

Remark 7.14 It is also straightforward in the setting of Proposition 7.12 to compute
the conditional law of the segment of the path η

x1
θ1

after it has crossed η
x2
θ2
|[0,T2]. For

example, in the special case that h has constant boundary data c (as before, we already
know that both paths are continuous from Proposition 7.3), the conditional law of the
segment of η

x1
θ1

after it has crossed η
x2
θ2

given both

1. its realization up until hitting η
x2
θ2

and
2. the entire realization of η

x2
θ2

viewed as a path in the component of H\ηx2
θ2

in which it immediately enters after

crossing is that of an SLEκ(ρ1,L , ρ2,L ; ρ1,R) where

ρ1,L = (θ2 − θ1)χ

λ
, ρ1,L + ρ2,L = −θ1χ + c

λ
− 1, ρ1,R = (θ1 − θ2)χ

λ
− 2.

Remark 7.15 Both themerging and crossing phenomena described in Proposition 7.12
can also be seen as a consequence of the light cone construction of counter flow lines
described in Sect. 5.2. The former is explained in Fig. 51 and the latter is in Fig. 52.
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Fig. 51 The merging phenomenon of Fig. 47 and Proposition 7.12 can also be seen through the light cone
perspective of SLE16/κ . To see this, fix a GFF h on the strip S with the boundary data above. Assume for
simplicity that a′, b′ ≥ λ′ + πχ so that η′ almost surely does not intersect ∂US except at z0. Let ηθ be the
flow line of h of angle θ ∈ (−π

2 , π
2 ) starting at 0. Let τ1 < τ2 be stopping times for ηθ . Then we know

by Proposition 5.9 that the flow lines ηi , i = 1, 2, which run along ηθ until time τi and then flow at angle
1
χ (λ − λ′) = π

2 are almost surely the left boundary of the counterflow line η′ starting at z0 upon hitting

ηθ (τi ). This implies that η1, η2 almost surely merge and then never separate since η′ does not cross itself.
This gives the merging result with constant boundary data since the conditional law of h given ηθ in the
left connected component of S\ηθ close to ηθ (τ1), ηθ (τ2) looks like a GFF with constant boundary data,
provided τ1 and τ2 are chosen to be very close to each other

Fig. 52 (Continuation of Fig. 51.) It is also possible to see the crossing phenomenon of Fig. 47 and
Proposition 7.12 through light cones and duality. Indeed, assume we have the same setup as Fig. 52 except
we take the angle of η1 at ηθ (τ1) to be an intermediate value in the range (θ, π

2 ) (orange curve). Then
η1 has to cross η2 since η′ swallows η1 (Lemma 5.7) and η2 contains the left boundary of η′ when it hits
ηθ (τ2) (Proposition 5.9). It is impossible for η1 to cross η2 subsequently since η′ swallows the points in η1
in reverse chronological order (Lemma 5.7) (color figure online)

7.3 Continuity for many boundary force points

Wewill now complete the proof of Theorem 1.3 for κ ∈ (0, 4] by extending the special
case proved in Proposition 7.3 to the setting of many boundary force points. We begin
by noting that absolute continuity (Proposition 3.4) along with the two force point case
implies that in this more general setting, η ∼ SLEκ(ρ) is almost surely a continuous
curve when it hits ∂H between force points before the continuation threshold is hit.
Indeed, in this case absolute continuity implies that η locally evolves like an SLEκ(ρ)

process with just one force point with weight ρ > −2. Thus to get the continuity
of a general SLEκ(ρ) process, we need to rule out pathological behavior when η

interacts with a force point or hits the boundary at the continuation threshold. We
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Fig. 53 Suppose that h is a GFF on H whose boundary data is as depicted above where a, b are very
large. Fix ρL > −2 and ρR ∈ (−2, κ

2 − 2). Choose angles θ1 < · · · < θn and, for each i , let ηθi be the

flow line of h with angle θi . Assume that ηθ1 ∼ SLEκ (ρL
1 ; ρR) and that the angles θ2, . . . , θn are such

that, for each k ∈ {2, . . . , n}, the conditional law of ηθk given ηθk−1 is an SLEκ (ρL
k ; ρR) process in the

left connected component of H\ηθk−1 . By scale invariance, the probability that ηθk conditional on ηθk−1

hits a particular point x �= 0 in ηθk−1 is a function of ρL
k , say p(ρL

k ), but not x . This implies that the

probability that ηθn hits x ∈ R+ is p = p(ρL
1 ) · · · p(ρL

n ). By choosing n large enough, we can arrange so

that ηθn ∼ SLEκ (ρL
n ; ρR

n ) with ρR
n ≥ κ

2 − 2. This implies that p = 0, so there exists 1 ≤ k0 ≤ n such

that p(ρL
k0

) = 0. From this, it is possible to see that the probability that an SLEκ (ρL ; ρR) process hits a
particular point on R+ is zero (see Lemma 7.16)

will accomplish the former in the next series of lemmas, in which we systematically
study the behavior of SLEκ(ρ1,R, ρ2,R) processes in H from 0 to ∞ with two force
points located to the right of 0. We will show that if ρ1,R, ρ1,R + ρ2,R > −2, then
η almost surely does not hit its force points. We will prove the continuity right at the
continuation threshold in Lemma 7.21. At the continuation threshold, it turns out that
whether or not η hits a particular force point depends on the sum of the weights. This
is natural to expect in view of Lemma 4.5.

The first lemma of the subsection is a simple technical result which states that
the set which consists of those points where an SLEκ(ρ) process with a single force
point of weight ρ > −2 is in ∂H almost surely has zero Lebesgue measure. This will
be employed in Lemma 7.18, which handles the regime of ρ1,R, ρ2,R where either
|ρ2,R | < 2 or ρ1,R ∈ (−2, κ

2 − 2). In Lemma 7.20, we will weaken the hypothesis
to ρ1,R, ρ1,R + ρ2,R > −2. The reason that we need to make the stronger hypothesis
in Lemma 7.18 is that its proof will proceed in analogy with the argument given in
Sect. 7.1, except rather than conditioning on flow lines with angles θ1 < 0 < θ2, we
will condition on an angle-varying flow line. The hypothesis that |ρ2,R | < 2 implies
that the angle-varying flow line does not cross itself.

Lemma 7.16 Suppose that η ∼ SLEκ(ρL ; ρR) in H from 0 to∞ with ρL > −2 and
ρR ∈ (−2, κ

2 − 2) where the force points are located at 0− and 0+, respectively. The
Lebesgue measure of η∩ ∂H is almost surely zero. In particular, for any x ∈ ∂H\{0},
the probability that η hits x is zero.

Proof Suppose that h is a GFF onHwhose boundary data is as in Fig. 53. By choosing
a, b very large, we can pick angles θ1 < · · · < θn such that ηθ1 is an SLEκ(ρL

1 ; ρR)

process inH from 0 to∞ and, for each k ∈ {2, . . . , n}, the law of ηθk given ηθk−1 is an
SLEκ(ρL

k ; ρR) process in the left connected component of H\ηθk−1 (Proposition 7.4)
and that ρL

k ≥ 0 for all k ∈ {1, . . . , n}. By the scale invariance of SLEκ(ρL
k ; ρR)

processes with force points at 0−, 0+, there exists p(ρL
k ) such that the probability that
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682 J. Miller, S. Sheffield

Fig. 54 Suppose that h is a GFF onH whose boundary data is as depicted above. Assume that |θ1− θ2| <
2λ/χ . Let ητ1τ2

θ1θ2
be the angle varying flow line of h starting at 0 with angle change time τ1 > 0 and angles

θ1, θ2. We can see that ητ1τ2
θ1θ2

is continuous by taking θ (resp. θ̃ ) to be such that λ− θχ = −λ− θ1χ (resp.

−λ − θ̃χ = λ − θ1χ ) and let ηθ (resp. ηθ̃ ) be the flow line of h starting at 0 with angle θ (resp. θ̃). The

conditional law of η
τ1τ2
θ1θ2

|[τ1,∞) given ηθ1θ2 ([0, τ1]) and ηθ and ηθ̃ is that of an SLEκ ((θ1− θ2)χ/λ; (θ2−
θ1)χ/λ) process (justified in the proof of Lemma 7.17). Therefore Proposition 7.3 implies that η

τ1τ2
θ1θ2

is
almost surely continuous

ηθk hits any particular point x �= 0 in ηθk−1 is p(ρ
L
k ). By choosing n large enough, we

can arrange that ηθn ∼ SLEκ(ρL
n ; ρR

n ) with ρR
n ≥ κ

2 − 2. Fix x ∈ R+. This implies
that P[x ∈ ηθn ] = 0 (see Lemma 5.2). On the other hand, we also have that

P[x ∈ ηθn ] = p(ρL
1 ) · · · p(ρL

n ).

This implies there exists 1 ≤ k0 ≤ n such that p(ρL
k0

) = 0, i.e. so that the probability

that an SLEκ(ρL
k0
; ρR) process hits any particular point x ∈ R+ is 0.

To get the result for general choices of ρL , we fix ρ̃L > max(ρL ; ρL
k0

)+ 2 and let
h be a GFF onH whose boundary data is such that the zero angle flow line η of h is an
SLEκ(ρ̃L ; ρR) process. Then by choosing θ1 = λ(ρL + 2)/χ and θ2 = λ(ρL

k0
+ 2)/χ

and letting ηθi be the flow line of h with angle θi , i = 1, 2, Proposition 7.4 implies
that the conditional law of η given ηθ1 is an SLEκ(ρL ; ρR) process and the conditional
law of η given ηθ2 is an SLEκ(ρL

k0
; ρR) process. Since the probability that the latter

hits any particular point x ∈ R+ is zero, it follows the same is true for the former. ��

Lemma 7.17 Suppose that h is a GFF on H whose boundary data is as depicted in
Fig. 54. Fix angles θ1, θ2 such that |θ1 − θ2| < 2λ/χ and such that b + θiχ > −λ

and −a + θiχ < λ for i = 1, 2. Let ητ1τ2
θ1θ2

be the angle varying flow line of h starting
from 0 with angles θ1, θ2 and angle change time τ1 > 0. Then η

τ1τ2
θ1θ2

is almost surely
continuous.

Proof See Fig. 54 for an illustration of the argument. We pick θ (resp. θ̃ ) so that
λ − θχ = −λ − θ1χ , i.e. θχ = 2λ + θ1χ (resp. −λ − θ̃χ = λ − θ1χ , i.e. θ̃χ =
−2λ+ θ1χ ) and let ηθ (resp. ηθ̃ ) be the flow line of h with angle θ (resp. θ̃ ) starting
at 0. Note that θ̃ < θ1, θ2 < θ . We first assume that a, b are sufficiently large so that
ηθ and ηθ̃ almost surely do not intersect ∂H after time 0. Fix ε > 0 and let Tε be
the first time t ≥ τ1 that η

τ1τ2
θ1θ2

|[τ1,∞) comes within distance ε of ∂H. Proposition 7.3
implies that η

τ1τ2
θ1θ2

|[0,τ1], ηθ , and ηθ̃ are almost surely continuous and Proposition 3.4
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implies that ητ1τ2
θ1θ2

|[τ1,Tε ] is almost surely continuous since its law ismutually absolutely

continuous with respect to that of an SLEκ(ρ̃L ; ρ̃R) process in H\ητ1τ2
θ1θ2

([0, τ1]) with
ρ̃L = (θ1 − θ2)χ/λ and ρ̃R = (θ2 − θ1)χ/λ. Consequently, Proposition 7.11 implies
thatητ1τ2

θ1θ2
|[τ1,Tε ] stays to the right ofηθ and to the left ofηθ̃ . The argument ofRemark 6.8

implies that the conditional expectation of h given η
τ1τ2
θ1θ2

, ηθ , and ηθ̃ does not have
singularities at points where η

τ1τ2
θ1θ2

intersects one of ηθ or ηθ̃ (and the same holds when
we run η

τ1τ2
θ1θ2

|[0,Tε ] up to a stopping time by Proposition 3.8). Moreover, the argument
of Remark 6.15 implies that η

τ1τ2
θ1θ2

|[τ1,Tε ] has a continuous Loewner driving function
viewed as a path in the connected component of H\(ηθ ∪ ηθ̃ ∪ η

τ1τ2
θ1θ1

([0, τ1])) which
lies between ηθ and ηθ̃ . Consequently, Theorem 2.4 combined with Proposition 6.5
together imply that the conditional law of η

τ1τ2
θ1θ2

|[τ1,Tε ] given η
τ1τ2
θ1θ2

([0, τ1]), ηθ , and ηθ̃

is an SLEκ(ρ̃L ; ρ̃R) process with the same weights ρ̃L , ρ̃R as before. Lemma 7.16
implies that the distance η

τ1τ2
θ1θ2

|[τ1,Tε ] comes within 0 remains strictly positive as ε → 0
(since η

τ1τ2
θ1θ2

|[τ1,Tε ] is continuous and almost surely does not hit 0+ or 0−). Since ηθ

and ηθ̃ otherwise do not intersect ∂H (since we picked a, b > 0 large), it follows that
Tε → ∞ as ε → 0 almost surely. Therefore η

τ1τ2
θ1θ2

is almost surely continuous. To
see the result for general choices of a, b, we apply the same argument used to prove
Proposition 7.3 (we condition on flow lines with appropriately chosen angles and use
the continuity of η

τ1τ2
θ1θ2

for large a, b). ��

Lemma 7.18 Suppose ρ1,R, ρ1,R + ρ2,R > −2. Additionally, assume that either

|ρ2,R | < 2 or ρ1,R <
κ

2
− 2.

Let η be an SLEκ(ρ1,R, ρ2,R) process inH from 0 to∞ where the force points corre-
sponding to the weights ρ1,R and ρ2,R are located at 0+ and 1, respectively. Then η

almost surely does not hit 1 and is generated by a continuous curve.

Proof Assume |ρ2,R | < 2. Let

θ1 = − λ

χ
(2+ ρ1,R) and θ2 = − λ

χ
(2+ ρ1,R + ρ2,R).

Suppose that h is a GFF with boundary data as in Fig. 46 where a = λ and b > 0 is
sufficiently large so that the angle-varying flow line η

τ1τ2
θ1θ2

with angles θ1, θ2 and angle
change time τ1 = 1 starting at 0 almost surely does not hit ∂H after time 0. Note
that |ρ2,R | < 2 implies |θ1 − θ2| < 2λ/χ , which is the condition necessary for η

τ1τ2
θ1θ2

not to cross itself. Let η be the zero angle flow line of h starting at 0. Proposition 7.3
implies that η is continuous and Lemma 7.17 implies that ητ1τ2

θ1θ2
is continuous. Thus by

Proposition 7.11, we know that η is almost surely to the left of ητ1τ2
θ1θ2

because θ1, θ2 < 0.
Lemma7.17 implies that the left connected componentC ofH\ητ1τ2

θ1θ2
is almost surely

a Jordan domain. Let ψ : C → H be a conformal map which fixes 0 and ∞. Then
ψ extends continuously to ∂C . Therefore ψ(η) is a continuous path in H. Moreover,
ψ(η) has a continuous Loewner driving function by Remark 6.15. (Remark 6.15
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assumed |θ1− θ2| ≤ π to ensure the continuity of η
τ1τ2
θ1θ2

and that ητ1τ2
θ1θ2

is almost surely
determined by h. We have now proved both of these facts in the setting we consider
here.) The boundary data for the conditional law of h given η

τ1τ2
θ1θ2

is shown in Fig. 40.
Consequently, it follows fromProposition 6.5 andTheorem2.4 that the conditional law
of η given η

τ1τ2
θ1θ2

is that of an SLEκ(ρ1,R, ρ2,R) process. Therefore SLEκ(ρ1,R, ρ2,R)

processes are continuous provided |ρ2,R | < 2.
To see the second claim of the lemma when |ρ2,R | < 2, we take max(θ1, θ2) <

θ < 0. Then ηθ lies to the left of η
τ1τ2
θ1θ2

and to the right of η. Let z0 be the leftmost point
of the intersection of η

τ1τ2
θ1θ2

([τ1,∞)) with η
τ1τ2
θ1θ2

([0, τ1]). If ηθ does not hit z0, then the
desired claim follows. If ηθ does hit z0, then we know that η almost surely does not hit
z0 because the conditional law of η given ηθ and η

τ1τ2
θ1θ2

is that of an SLEκ(−θχ/λ−2)
process in the left connected component of H\ηθ (Proposition 7.3), hence we can
apply Lemma 7.16.

Alternatively, suppose ρ1,R < κ
2 − 2. There are two possibilities. If ρ1,R + ρ2,R ∈

(−2, κ
2 − 2) then |ρ2,R | < 2 so that the result in this case follows as before. Suppose

ρ1,R + ρ2,R ≥ κ
2 − 2. Assume that η is coupled with a GFF h so that η is its flow line

starting from 0. We claim that η almost surely does not hit [1,∞), in which case we
are done because then Proposition 3.4 implies that the law of η (stopped upon exiting
a ball of any finite size) is mutually absolutely continuous with respect to the law of
an SLEκ(ρ1,R, ρ̃2,R) process, ρ̃2,R such that ρ1,R + ρ̃2,R = κ

2 − 2, (stopped upon
exiting a ball of the same finite size) and we know from the previous argument that
such processes are continuous.

To see that η does not hit [1,∞), we let η1 be the flow line of h (with angle 0)
starting at 1. Let Tε (resp. T 1

ε ) be the first time t that η (resp. η1) gets within distance
ε of [1,∞) (resp. (−∞, 0]) and let T = limε→0 Tε (resp. T 1 = limε→0 T 1

ε ). On the
event {T < ∞} ∪ {T 1 < ∞}, we have that η|[0,T ) and η1|[0,T 1) intersect. Since both
of the (restricted) paths are continuous by Propositions 3.4 and 7.3, Proposition 7.12
then implies that η1 and η merge. Let τ be the first time η hits η1 and τ 1 be the first
time η1 hits η and let K = η([0, τ ]) ∪ η1([0, τ 1]). The conditional law of η given K
is that of an SLEκ(ρ1,R + ρ2,R) process in the unbounded connected component of
H\K (Proposition 7.12). Therefore Lemma 4.3 implies that η almost surely does not
hit [1,∞), which is a contradiction (see Fig. 55). ��

Remark 7.19 A slight modification of the proof of Lemma 7.18 implies the continuity
of SLEκ(ρ1,L ; ρ1,R, ρ2,R) processes where ρ1,L > −2 and the same hypotheses are
made on ρ1,R, ρ2,R . Indeed, this is accomplished by conditioning on the flow line
with angle (2+ ρ1,L) λ

χ
> 0.

Lemma 7.18 requires that if ρ1,R ≥ κ
2 − 2 then ρ1,R + ρ2,R is larger than both

ρ1,R − 2 and −2. The purpose of the next lemma is to remove this restriction.

Lemma 7.20 Suppose

ρ1,R ≥ κ

2
− 2 and ρ1,R + ρ2,R > −2.
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Fig. 55 Suppose that h is aGFFwhose boundary data is as depicted on the right sidewith b ∈ (−λ, λ−πχ)

and c ≥ λ−πχ .We can see that the flow line η of h does not intersect [1,∞) by noting that, if it did, it would
have to intersect hence merge with the flow line η1 of h starting at 1 (Proposition 7.12). Letting τ be the first
time η hits η1 and τ1 the first time η1 hits η, the conditional law of η given K = η([0, τ ])∪η1([0, τ1]) is that
of an SLEκ (ρ) process with ρ ≥ κ

2 − 2 in the unbounded connected component of H\K . By Lemma 4.3,
we know that such processes do not hit the boundary, which implies that η cannot hit [1,∞)

Let η be an SLEκ(ρ1,R, ρ2,R) process in H where the force points corresponding to
the weights ρ1,R and ρ2,R are located at 0+ and 1, respectively. Then η almost surely
does not hit 1 and is generated by a continuous curve.

Proof We may assume without loss of generality that ρ1,R + ρ2,R ∈ (−2, κ
2 − 2)

since if ρ1,R + ρ2,R ≥ κ
2 − 2, we know by Remark 2.3 that η almost surely does not

hit ∂H after time 0 and is almost surely continuous. Assume that η is coupled with a
GFF h as in Theorem 1.1. By Propositions 3.4 and 7.3 we know that η is continuous,
at least up until just before the first time τ it accumulates in [1,∞). Thus, we just need
to show that η is continuous at time τ , that η is a continuous curve for t ≥ τ , and that
η(τ) �= 1.

To see that η does not accumulate at 1, we apply a conformal map ψ taking H to
the strip S as in Fig. 23 with 0 fixed, 1 going to +∞, and ∞ going to −∞. Then
Fig. 24 implies ψ(η) almost surely hits ∂S after time 0 when it accumulates on the
upper boundary of S, which in turn implies that η almost surely does not accumulate
at 1. This implies that, by Proposition 3.4 and Theorem 1.2, for any fixed t0 > 0
the law of η|[t0,∞) conditional on η([0, t0]) is absolutely continuous with respect to
that of an SLEκ(ρ1,R + ρ2,R) process. Therefore the continuity of η up to time τ

follows from Proposition 7.3. After time τ , we know that η is a continuous curve since
conditional on η([0, τ ]), η evolves as an SLEκ(ρ1,R+ρ2,R) process in the unbounded
connected component C of H\η([0, τ ]). We know that such processes are generated
by continuous curves by Proposition 7.3 inH. SinceC is a Jordan domain, the Loewner
map fτ extends as a homeomorphism to ∂(H\Kτ ), hence we see that η for t ≥ τ is
also a continuous curve. ��

Lemma 7.21 Let η be an SLEκ(ρ1,R, ρ2,R) process in H starting at 0 where the
force points corresponding to the weights ρ1,R and ρ2,R are located at 0 < x1,R <
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Fig. 56 Suppose that h is a GFF on H whose boundary data is as depicted on the left side where c ∈
(−λ, λ− πχ ]. Let η2θ be the flow line of h starting at 2 with angle θ ∈ [0, π). Note that c+ θχ ∈ (−λ, λ)

and −λ + θχ ≤ −λ + πχ . Thus η2θ exists (does not immediately hit the continuation threshold) and the

event E that η2θ is continuous for all time and does not hit (−∞, x) has positive probability (Proposition 3.4,

Remarks 5.3, 7.19). Condition on η2θ , E and let C be the connected component of H\η2θ which contains

0. Let ψ : C → H be the conformal map which fixes 0, sends the leftmost intersection point z of η2θ with

(0,∞) to x2,R , and fixes ∞. We let x1,R = ψ(x). Note that once we have conditioned on η2θ , we can

adjust x between 0 and z to obtain any value of x1,R between 0 and x2,R we like. The boundary data for
the GFF h ◦ ψ−1 − χ arg(ψ−1)′ is depicted on the right side and ψ(η) is an SLEκ (ρ1,R , ρ2,R) process
with ρ1,R = c/λ− 1 and ρ1,R + ρ2,R = −θχ/λ− 2. Since η and η2θ are almost surely continuous given

E , so is ψ(η). By adjusting θ ∈ [0, π), we can achieve any value of ρ1,R + ρ2,R ∈ ( κ
2 − 4,−2] we like.

Likewise, by adjusting c, we can obtain any value of ρ1,R ∈ (−2, κ
2 − 2] we like. Finally, we note that by

either conditioning on an additional flow line starting at 0 of positive angle or changing the boundary data
to the left of 0 to be smaller than −λ, we can also get the continuity of SLEκ (ρ1,L ; ρ1,R , ρ2,R) processes
with ρ1,R , ρ2,R as before and any ρ1,L > −2

Fig. 57 Suppose that h is a GFF onH whose boundary data is as depicted on the left side. We assume that
a > −λ and b ≤ −λ − πχ . Then the flow line η of h is an SLEκ (ρ1,R , ρ2,R) process with ρ1,R > −2
and ρ1,R + ρ2,R ≤ κ

2 − 4. Let ψ : H → H be a conformal map which fixes 0 and takes x2,R to ∞.

The boundary data for the GFF h ◦ ψ−1 − χ arg(ψ−1)′ is depicted on the right side. Hence ψ(η) is an
SLEκ (ρ1,L ; ρ1,R) process with ρ1,L ≥ κ

2 −2 and ρ1,R > −2 and therefore continuous by Proposition 7.3.

This implies the continuity of η and that η almost surely terminates at x2,R [because ψ(η) almost surely
tends to∞ by Proposition 7.3]. If a ∈ (−λ−πχ,−λ], then we can apply the same conformal map and then
get the continuity from the argument described at the end of Fig. 56 [the process one gets after applying the
conformal map is an SLEκ (ρ1,L ; ρ1,R) with ρ1,L ≥ κ

2 − 2 and ρ1,R > κ
2 − 4]. If a ≤ −λ − πχ , then

we can apply a conformal map which sends both x1,R and x2,R to (−∞, 0) and get the continuity from
the fact that ψ(η) ∼ SLEκ (ρ̃1,L , ρ̃2,L ) with ρ̃1,L ≥ κ

2 − 2 and ρ̃1,L + ρ̃2,L ≥ κ
2 − 2

x2,R < ∞, respectively. If ρ1,R ≤ −2 or ρ1,R + ρ2,R ≤ −2, then η is almost surely
a continuous curve.

In order to prove Lemma 7.21, we will need to consider several different cases.
These are described in Fig. 56 (ρ1,R > −2, ρ1,R + ρ2,R ∈ ( κ

2 − 4,−2]), Fig. 57
(ρ1,R ∈ R, ρ1,R + ρ2,R ≤ κ

2 − 4), and Fig. 58 (ρ1,R ≤ −2, ρ1,R + ρ2,R > κ
2 − 4).
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Fig. 58 Suppose that h is a GFF onH whose boundary data is as depicted above. We assume that a ≤ −λ

and b > −λ − πχ . Then the flow line η of h is an SLEκ (ρ1,R , ρ2,R) process with ρ1,R ≤ −2 and

ρ1,R + ρ2,R > κ
2 − 4. Let ηx

2,R
π be the flow line of h starting at x2,R with angle π . Then ηx

2,R
π is an

SLEκ (ρ1,L , ρ2,L , ρ3,L ; ρ1,R)processwithρ1,L ≥ κ
2−2, ρ1,L+ρ2,L ≤ −2, ρ1,L+ρ2,L+ρ3,L = κ

2−2

and ρ1,R > −2. There are two possibilities: either ηx
2,R

π hits the continuation threshold upon accumulating
in [0, x1,R ] or it does not hit the continuation threshold. In the former case, the conditional law of η

given ηx
2,R

π in the leftmost connected component of H\ηx2,Rπ is that of an SLEκ (ρ̃1,R , ρ̃2,R) process

with ρ̃1,R = κ
2 − 2 and ρ̃1,R + ρ̃2,R = ρ1,R + ρ2,R . In this case, η does not hit ηx

2,R
π (Lemma 4.6)

and is continuous by the first part of the proof of Lemma 7.21 (recall Fig. 56). If ηx
2,R

π does not hit
the continuation threshold, then its law is absolutely continuous (Proposition 3.4) with respect to that of
an SLEκ ( κ

2 − 2; ρ̃1,R) process with ρ̃1,R > −2, hence continuous (Proposition 7.3). In this case, the

conditional law of η given ηx
2,R

π up until intersects ηx
2,R

π is that of an SLEκ (ρ̃1,R , ρ̃2,R) process with
ρ̃1,R = ρ1,R and ρ̃1,R + ρ̃2,R = κ

2 − 4. This implies that η is continuous in this case by the argument of

Fig. 57 [we note that on this event, η exits H in (x1,R , x2,R)]

Proof of Lemma 7.21 The proof of the first claim in the special case ρ1,R ∈ (−2, κ
2 −

2] and ρ1,R + ρ2,R ∈ ( κ
2 − 4,−2] is described in Fig. 56. For ρ1,R ≥ κ

2 − 2,
Lemma 4.3 implies that η first hits ∂H after time 0 in (x2,R,∞). Therefore the laws
of the paths when ρ1,R = κ

2 −2 and ρ1,R > κ
2 −2 are mutually absolutely continuous

(Proposition 3.4) upon hitting the continuation threshold (this is the same argument
used in the proof of Lemma 7.20), which completes the proof for ρ1,R > κ

2 − 2 and
ρ1,R+ρ2,R ∈ ( κ

2 −4, 2]. Note that these results hold if η has an additional force point
at 0− of weight ρ1,L > −2, as explained in Fig. 56.

We now suppose that ρ1,R + ρ2,R ≤ κ
2 − 4. If ρ1,R > κ

2 − 4, by applying a
conformal map ψ : H → H which fixes 0, sends x1,R to∞, and x2,R to −1, we see
that ψ(η) ∼ SLEκ(ρ̃1,L ; ρ1,R) where ρ̃1,L ≥ κ

2 − 2 (this argument is described in
Fig. 57). This puts us into the setting of the case considered in the previous paragraph.
Therefore ψ(η) is continuous, hence also η. If ρ1,R ≤ κ

2 − 4, then we can apply a
conformal map ψ : H → H which fixes 0 and sends both x1,R and x2,R to (−∞, 0).
Then ψ(η) is an SLEκ(ρ1,L .ρ2,L) process with ρ1,L ≥ κ

2 − 2 and ρ1,L + ρ2,L ≥ κ
2 ,

so the continuity in this case follows as well.
The final possibility is when ρ1,R ≤ −2 and ρ1,R + ρ2,R > κ

2 − 4. The proof in
this case is explained in the caption of Fig. 58. ��
Lemma 7.22 Suppose that η is an SLEκ(ρ) process in H from 0 targeted at∞, k =
|ρL | and � = |ρR |, with∑k

i=1 ρi,L > κ
2 − 4 and

∑�
i=1 ρi,R > κ

2 − 4. Assume that
|x1,L |, |x1,R | ≥ 1. Fix M > 0 such that the locations of the force points x = (x L ; x R)
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Fig. 59 Suppose that h is aGFFonHwhose boundary data is as depicted above and let η be the flow line of h
starting at 0 targeted at∞. Then η ∼ SLEκ (ρ), |ρR | = � and |ρL | = k, with

∑k
i=1 ρi,L = a/λ−1 > κ

2−4

and
∑�

i=1 ρi,R = b/λ− 1 > κ
2 − 4. Let U ⊆ H consist of those points z whose distance to [x1,R , x�,R ]

and [xk,L , x1,L ] is at least 1
2 . Then the law of h|U is mutually absolutely continuous with respect to the

law of h̃|U where h̃ is a GFF on H whose boundary data agrees with h in (−∞, xk,L ) ∪ (x�,R ,∞), is
−λ in [xk,L , 0] and λ in [0, x�,R ]. Proposition 7.3 and Lemmas 7.18–7.21 imply that the flow line η̃ of h̃
from 0 targeted at ∞ either reaches ∞ or hits (−∞, xk,L ) ∪ (x�,R ,∞) without leaving U with positive
probability. Consequently, it follows from Proposition 3.4 that the same is likewise true for η. Moreover,
from the discussion in Remark 3.5 it is easy to see that this probability admits a positive lower bound which
depends only on |xk,L |, |x�,R |, and ‖h|[xk,L ,x1,L ]‖∞ and ‖h|[x1,R ,x�,R ]‖∞

satisfy xi,R/x1,R ≤ M for all 1 ≤ i ≤ � and xi,L/x1,L ≤ M for all 1 ≤ i ≤ k and
the weights ρ satisfy |ρi,q | ≤ M for all 1 ≤ i ≤ |ρq | and q ∈ {L , R}. Let E1 be the

event that either limt→∞ η(t) = ∞ or η disconnects x�,R or xk,L . Let E2 be the event
that dist(η([0,∞)), [x1,R, x�,R]) ≥ 1

2 and dist(η([0,∞)), [xk,L , x1,L ]) ≥ 1
2 . With

E = E1 ∩ E2, we have that P[E] ≥ ρ0 where ρ0 > 0 depends only on M,
∑k

i=1 ρi,L ,
and
∑�

i=1 ρi,R.

Proof This follows from Proposition 3.4 and Remark 3.5; see Fig. 59 for an explana-
tion of the proof. ��
Proof of Theorem 1.3 for κ ∈ (0, 4) We are going to prove the result by induction on
the number of force points. Proposition 7.3 and Lemmas 7.18–7.21 imply the result
for SLEκ(ρ) processes with two force points. Suppose that the result holds for all
SLEκ(ρ) processes with at most n force points, some n ≥ 2, and that η ∼ SLEκ(ρ)

in H from 0 to ∞ with n + 1 force points. If η immediately hits the continuation
threshold upon starting, there is nothing to prove. Otherwise, running η for a small
amount of time and then applying a conformal mapping, we may assume that all of
the force points are to the right of 0; we denote their locations by x R .

Suppose that there exists j0 ≥ 2 such that
∑ j0−1

i=1 ρi,R > κ
2 − 4 and

∑ j0
i=1 ρi,R <

κ
2 − 2 (if we couple η with a GFF h as in Theorem 1.1 on H, this corresponds
to the boundary data of h in [x j0−1,R, x j0,R) being larger than −λ − πχ and in
[x j0,R, x j0+1,R) being less than λ − πχ ). Let ψ : H → H be the conformal map
which sends x1,R to 1, x j0,R to∞, and∞ to −1 (see Fig. 60).

Let η̃ = ψ(η) and let x̃ = (̃x L ; x̃ R) denote the locations of the force points of η̃. Let
k̃ = |̃x L | and note that |̃x R | = j0 − 1 by construction. Let W̃t be the Loewner driving
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Fig. 60 Let h be a GFF onH whose boundary data is as depicted on the left side. Let η ∼ SLEκ (ρ) be the

flow line of h starting at 0. Suppose that j0 is such that
∑ j0−1

i=1 ρi,R > κ
2 −4 and

∑ j0
i=1 ρi,R < κ

2 −2. This

particular choice implies that η can hit (x j0−1,R , x j0+1,R). Let ψ : H → H be the conformal map which
takes∞ to−1, x1,R to 1, and x j0,R to∞. Then it is possible for η̃ = ψ(η) to hit (−∞, x̃k,L )∪ (̃x j0−1,∞)

or reach∞ before hitting [̃xk,L , x̃1,L ] ∪ [̃x1,R , x̃ j0−1,R ] where x̃ denotes the locations of the force points
of η̃

function of η̃, g̃t the corresponding family of conformal maps, and let Ṽ i,q
t = g̃t (̃xi,q)

denote the time evolution of the force points of η̃ under g̃t . We define stopping times
as follows. We let ξ̃1 be the first time t that W̃t = 0 and let ζ̃1 be the first time t after

ξ̃1 that η̃ comes within distance 1
2 of either [Ṽ k̃,L

0 , Ṽ 1,L
0 ] or [Ṽ 1,R

0 , Ṽ j0−1,R
0 ]. For each

k ≥ 2, we inductively let ξ̃k be the first time t after ζ̃k−1 that W̃t = 0 and ζ̃k the

first time t after ξ̃k that g̃̃ξk
(̃η(t)) comes within distance 1

2 of either [Ṽ k̃,L
ξ̃k

, Ṽ 1,L
ξ̃k

] or
[Ṽ 1,R

ξ̃k
, Ṽ j0−1,R

ξ̃k
]. Let τ̃ be the first time t that η̃ hits (−∞, Ṽ 2,L

0 ], [Ṽ 2,R
0 ,∞), escapes

to∞, or hits the continuation threshold.
We are now going to show that η̃|[0,̃τ∧ξ̃k ] is almost surely continuous for every k.

We will argue that this holds by induction on k. It holds for k = 1 as a consequence
of the induction hypothesis: if W̃t is to the left or right of 0, then the evolution of η̃

is absolutely continuous with respect to the evolution of an SLEκ(ρ) process with at
most n force points by the Girsanov theorem. Suppose that η̃|[0,̃τ∧ξ̃k ] is continuous for
some k ≥ 1; we will argue that the same holds with k+1 in place of k. For t ∈ (̃ξk, ζ̃k],
the desired continuity follows from Proposition 3.4 and the two force point case. For
t ∈ (̃ζk, ξ̃k+1], the claim follows by applying the Girsanov theorem and the induction
hypothesis in the same manner we used to handle the case that k = 1.

Let E = ∪k {̃τ ≤ ξ̃k}. Then on E we know that η̃|[0,̃τ ] is continuous. Moreover, the
conditional law of η̃|[̃τ ,∞) given η̃|[0,̃τ ] in the connected component C ofH\η̃([0, τ̃ ])
which contains ψ(∞) = −1 is that of an SLEκ(ρ) process with at most n force
points. Thus since C is a Jordan domain, the desired result follows from the induction
hypothesis. We will complete the proof by showing that P[Ec] = 0. Since ∂t (Ṽ

j,R
t −

Ṽ i,R
t ) < 0 if j > i and ∂t Ṽ

i,R
t > 0 for all i (these facts come directly from the

Loewner evolution and analogously hold when R is replaced with L), Lemma 7.22
implies the existence of ρ0 > 0 such that P[̃τ < ξ̃k+1 | τ̃ > ξ̃k] ≥ ρ0 for all k.
Therefore P[Ec] = 0, as desired.

In order to complete the proof, we need to argue continuity in the case that there
exists J so that

∑ j
i=1 ρi,R ≤ κ

2 − 4 for all 1 ≤ j ≤ J and
∑ j

i=1 ρi,R ≥ κ
2 − 2 for all

J + 1 ≤ j ≤ n + 1. If J = n + 1, we can see the continuity by applying a conformal
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map ψ which fixes 0 and sends all of the force points to the other side. Indeed, then
ψ(η) ∼ SLEκ(ρ) where the partial sums of the weights are all at least κ

2 − 2, so we
can use Remark 2.3. If 1 ≤ J ≤ n, we can use the same argument described in Fig. 58
(condition on an auxiliary flow line at angle π starting from x J+1,R). This completes
the proof. ��

Now that we have established Theorem 1.3 for κ ≤ 4, we can prove the almost sure
continuity of angle varying flow lines.

Proposition 7.23 Suppose that we have the same setup as Proposition 7.11 (without
the a priori assumption of continuity). Let θ1, . . . , θk be angles satisfying (7.1). The
angle varying flow line ηθ1···θk is almost surely a continuous path.

Proof We prove the result by induction on k. Theorem 1.3, which we have now proven
for κ ∈ (0, 4], states that this result holds for k = 1 (which corresponds to the constant
angle case). Suppose that k ≥ 2 and the result holds for k − 1. Let τ1, . . . , τk−1 be
the angle change times (and take τk = ∞). By assumption, η

τ1···τk
θ1···θk |[τk−2,τk−1] given

η
τ1···τk
θ1···θk ([0, τk−2]) evolves as an SLEκ(ρL ; ρR) process. By induction, η

τ1···τk
θ1···θk |[0,τk−2]

is continuous so that a conformal map ψ which takes the unbounded connected com-
ponent of H\ηθ1···θk ([0, τk−2]) to H with η

τ1···τk
θ1···θk (τk−2) mapped to 0 extends as a

homeomorphism to the boundary. Thus the continuity of η
τ1···τk
θ1···θk follows from Theo-

rem 1.3 for κ ∈ (0, 4], which completes the proof of the induction step. ��

7.4 Counterflow lines

We will now explain how to modify the proofs from the previous subsections to
complete the proof of Theorems 1.2 and 1.3 for κ ′ > 4. Throughout this subsection,
we will often work with a GFF h on the strip S in order to make the setting compatible
with SLE duality (recall Sect. 4). We assume that the boundary data for h is as in the
left side of Figs. 61 and 62, where a, b, a′, b′ are taken to be sufficiently large so that
the configuration of flow and counterflow lines we consider almost surely does not
interact with ∂S.

We let η′ be the counterflow line of h starting at z0. The proof follows a strategy
similar to but more involved than what we employed for κ ∈ (0, 4]. In Sect. 7.4.1,
we will focus on the case with two boundary force points. It turns out that in order
to generate an SLEκ ′(ρL ; ρR) process for arbitrary choices of ρL , ρR > −2 by con-
ditioning on auxiliary flow lines in a manner similar to that used for κ ∈ (0, 4], we
are already led to consider the law of η′ conditional on two angle varying flow lines
(for κ ∈ (0, 4], we only had to consider angle varying trajectories when generaliz-
ing the two force point case to the many force point case). Extending these results
from two force points to many force points also follows a similar but more elabo-
rate version of the strategy we used for κ ∈ (0, 4], since we will need to consider
four different cases as opposed to three. This is carried out in Sect. 7.4.2. Finally,
in Sect. 7.4.3, we will explain how to extend the light cone construction to the set-
ting of general SLEκ ′(ρL ; ρR) processes and, in particular, obtain general forms of
SLE duality.
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Fig. 61 Let h be a GFF on the strip S whose boundary data is depicted in the left panel. Fix θ1 < θ2
and let ηθi be the flow line of h starting at 0 with angle θi . Suppose that C is any connected component of
S\(ηθ1 ∪ ηθ2 ) which lies between ηθ1 and ηθ2 . We assume that both θ1 < π

2 and θ2 > −π
2 ; this choice

implies that η′ almost surely intersects C . Let x0 be the first point on ∂C to be traced by ηθ1 , ηθ2 and y0
the last. Fix a stopping time τ ′ for Ft = σ(η′(s) : s ≤ t, ηθ1 , ηθ2 ) such that η

′(τ ′) ∈ C almost surely. The
boundary data for the conditional law of h given ηθ1 , ηθ2 and η′([0, τ ′]) inC is depicted in the left panel. Let
ψ be a conformal map which takes the connected component of C\η′([0, τ ′]) which contains x0 to S with
η′(τ ′) taken to z0 and x0 taken to 0. The boundary data for the GFF h ◦ψ−1−χ arg(ψ−1)′ onS is depicted
on the right side. From this, we can read off the conditional law of η′ viewed as a path inC given ηθ1 , ηθ2 : it

is an SLEκ ′ (ρL ; ρR) processwhereρL = (1/2+θ2/π)(κ ′/2−2)−2 andρR = (1/2−θ1/π)(κ ′/2−2)−2

7.4.1 Two boundary force points

We are now going to prove Theorems 1.2 and 1.3 for counterflow lines with two
boundary force points. The proof is a bit more elaborate than what we employed for
flow lines because we will need to consider different types of configurations of flow
and counterflow lines depending on the values of ρL , ρR . In the first step, we will
handle the case that ρL > −2 and ρR ≥ κ ′

2 − 4 (and vice-versa)—recall that κ ′
2 − 4

is the threshold at which η′ becomes boundary filling. This will be accomplished in
Lemma 7.24 by considering a configuration consisting of two flow lines in addition to
η′ (see Fig. 61). In the second step, accomplished in Lemma 7.25 (see Fig. 62), we will
take care of the case that ρL , ρR ∈ (−2, κ ′

2 −4) using a configurationwhich consists of
two angle varying flow lines in addition to η′. Combining these two lemmas completes
the proof of Theorem 1.2 for κ ′ > 4 with many boundary force points (recall that the
proof of Lemma 7.5 was not flow line specific) and Theorem 1.3 for κ ′ > 4 with two
boundary force points with weight exceeding−2, one on each side of the counterflow
line seed.

Lemma 7.24 Suppose that ρL > −2 and ρR ≥ κ ′
2 −4 or ρL ≥ κ ′

2 −4 and ρR > −2.
In the coupling of an SLEκ ′(ρL ; ρR) process η′0 with a GFF h0 as in Theorem 1.1, η′0
is almost surely determined by h0. Moreover, η′0 is almost surely a continuous path.

The reason that we used the notation η′0 and h0 in the statement of Lemma 7.24 is to
avoid confusing η′0 with η′ and h0 with h. Recall also fromRemark 2.3 that by absolute
continuity (the Girsanov theorem) we know that non-boundary intersecting SLEκ ′(ρ)

processes are almost surely continuous, at least up until just before terminating (or
tending to ∞ if the terminal point is at ∞). The proof of Lemma 7.24 allows us to
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deduce the continuity of such processes even upon terminating by reducing the result
to the transience of SLEκ ′ processes established in [24]. This is accomplished by
picking angles θ1, θ2 so that the conditional law of η′ is an SLEκ ′ process given flow
lines ηθ1 , ηθ2 in each of the connected components ofH\(ηθ1 ∪ηθ2)which lie between
ηθ1 and ηθ2 .

Proof of Lemma 7.24 We suppose that we have the setup described in Fig. 61. That
is, we fix θ1 < θ2 and let ηθi be the flow line of h with angle θi starting from 0 and
let η′ be the counterflow line starting from z0. We assume that a, a′, b, b′ are large
enough so that ηθ1, ηθ2 , and η′ almost surely do not intersect ∂S except at their initial
and terminal points. We also assume that θ1 < π

2 and θ2 > −π
2 . This implies that ηθ1

lies to the right of the left boundary of η′ and likewise that ηθ2 lies to the left of the
right boundary of η′ (recall Propositions 5.1, 5.5). Figure 61 describes the conditional
mean CA(τ ′) of h given A(τ ′) where A(t) = ηθ1 ∪ η′([0, t])∪ ηθ2 and where τ ′ is any
stopping time for the filtration Ft = σ(η′(s) : s ≤ t, ηθ1 , ηθ2). Indeed, we know that
A(τ ′) is a local set for h by Lemma 6.2. Moreover, Remarks 6.9 and 6.10 imply that
CA(τ ′) does not exhibit pathological behavior at points where any pair of ηθ1, η

′, ηθ2

intersect.
Recall also Remarks 6.16 and 6.17, which imply that η′ has a continuous Loewner

driving function viewed as a path in each of the connected components ofS\(ηθ1∪ηθ2)

which lie between ηθ1 , ηθ2 . Note that if either θ1 > −π
2 or θ2 < π

2 so that one of the
ηθi is actually contained in the range of η′ (Lemma 5.7), we need to interpret what
it means for η′ to be a path in one of these complementary connected components.
This is explained in complete detail in Remark 6.17. Applying Theorem 2.4 and
Proposition 6.5, we find that the conditional law of η′ given ηθ1 and ηθ2 in each of the
connected components ofS\(ηθ1∪ηθ2)which lie between ηθ1 and ηθ2 is independently
an SLEκ(ρL ; ρR) process where

ρL =
(
1

2
+ θ2

π

)(
κ ′

2
− 2

)
− 2 and ρR =

(
1

2
− θ1

π

)(
κ ′

2
− 2

)
− 2. (7.2)

Indeed, the values of ρL , ρR are determined by solving the equations:

−λ′(1+ ρL) = λ− (θ2 + π)χ and λ′(1+ ρR) = −λ+ (−θ1 + π)χ

(see Fig. 61 and recall Fig. 11). The continuity statement of the lemma follows by
adjusting θ1, θ2 appropriately and noting that each complementary component is
almost surely a Jordan domain by the almost sure continuity of ηθ1 and ηθ2 . The first
statement of the lemma follows from the same argument as in the proof of Lemma 7.2.

��
Note that in (7.2), as θ2 ↓ −π

2—which corresponds to ηθ2 approaching the right
boundary of η′—we have that ρL ↓ −2. Likewise, as θ1 ↑ π

2—which corresponds
to ηθ1 approaching the left boundary of η′—we have that ρR ↓ −2. The constraint
θ1 < θ2 means that it is not possible to obtain the full range of ρL , ρR > −2 values
by computing the conditional law of η′ given configurations of flow lines of this type.
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In the next lemma, we are going to explain how to extend this method to the case
that ρL , ρR ∈ (−2, κ ′

2 − 4), which corresponds to an SLEκ ′ with both weights below
the critical boundary filling threshold.

Lemma 7.25 Suppose that ρL , ρR ∈ (−2, κ ′
2 − 4). Then in the coupling of an

SLEκ ′(ρL ; ρR) process η′0 with a GFF h0 as in Theorem 1.1, we have that η′0 is
almost surely determined by h0. Moreover, η′0 is almost surely continuous.
Proof In order to prove the lemma, we first need to understand the conditional mean
of h given η′ and two angle varying flow lines (which have the possibility of crossing
each other). Specifically, we let θL = π

2 and θR = −θL = −π
2 . Suppose that θ1, θ2

are such that |θ1 − θR | ≤ π and |θ2 − θL | ≤ π . Let η1 := η
τ 11 τ 12
θRθ1

be an angle varying

flow line with angles θR, θ1 and η2 := η
τ 21 τ 22
θLθ2

be an angle varying flow line with angles
θL , θ2. We take the angle change time for both η1, η2 to be when the curves first reach
unit capacity (the actual choice here is not important). Our hypotheses on θ1, θ2 imply
that η1, η2 are simple (but may cross each other). We assume a, b, a′, b′ are large
enough so that η1, η2, η′ almost surely do not intersect ∂S except at their starting and
terminal points.

It follows from Proposition 7.12 that if η1, η2 do cross, they cross precisely once,
after which they may bounce off of one another. Let A(t) = η1 ∪ η′([0, t]) ∪ η2 and
Ft = σ(η′(s) : s ≤ t, η1, η2). By Lemma 6.2, we know that A(τ ′) is a local set for
h for every Ft stopping time τ ′. The boundary data for CA(τ ′) is described in the left
panel of Fig. 62, depicted in the case that η1, η2 actually do cross. The justification
of this follows from exactly the same argument as in Remark 6.11. Let C be the
connected component of S\(η1 ∪ η2) which lies between η1 and η2 such that the
last point on ∂C traced by η1 is the point where η1, η2 first intersect after changing
angles. It follows from the same argument as Remark 6.18 that η′ viewed as a path in
C from y0 to x0 (recall Remark 6.17), the last and first points on ∂C traced by η1 and
η2, respectively, has a continuous Loewner driving function. Consequently, it follows
from Theorem 2.4 and Proposition 6.5 that the conditional law of η′ in C given η1, η2
is an SLEκ ′(ρL ; ρR), with the weights given by

ρ1,L =
(
1

2
+ θ2

π

)(
κ ′

2
− 2

)
− 2, ρ1,R =

(
1

2
− θ1

π

)(
κ ′

2
− 2

)
− 2,

ρ1,q + ρ2,q = κ ′

2
− 4 for q ∈ {L , R}. (7.3)

(see the right panel of Fig. 62, the values of ρ follow from the same argument explained
in Fig. 61; recall also Fig. 23). For the final expression, we used θL = 1

χ
(λ − λ′) so

that

(π + θL)χ

λ′
− λ

λ′
− 1 = κ ′

2
− 1− 1 = κ ′

2
− 4.

By choosing θ2 ∈ (θR, θL) we can obtain any value of ρ1,L ∈ (−2, κ ′
2 − 4) we like.

Likewise, by choosing θ1 ∈ (θR, θL) we can obtain any value of ρ1,R ∈ (−2, κ ′
2 − 4)
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Fig. 62 Assume that h is a GFF on the strip S whose boundary data is depicted in the left panel. Let

θL = π
2 and θR = −π

2 . Suppose that |θ1− θR | ≤ π and |θ2− θL | ≤ π . Let η1 := η
τ11 τ12
θRθ1

and η2 := η
τ21 τ22
θL θ2

be angle varying flow lines of h with the aforementioned angles. We take the angle change times for both
η1 and η2 to be when they first hit unit capacity as seen from z0. If θ1 > θR , then η′ will cross η1 and
likewise if θ2 < θL then η′ will cross η2. We assume that the boundary data of h is large enough so that
η1, η2, η

′ intersect ∂S only at their initial and terminal points. Let y0 be the first point where η1 and η2
intersect after both η1 and η2 change directions and are traveling with angles θ1 and θ2, respectively. Let
C be the connected component of S\(η1 ∪ η2) which lies between η1 and η2 such that y0 is the last point
on ∂C to be traced by η1, η2; let x0 be the first. Fix a stopping time τ ′ for Ft = σ(η′(s) : s ≤ t, η1, η2)

such that η′(τ ′) ∈ C almost surely. The boundary data for the conditional law of h given η1, η2, and
η′([0, τ ′]) is depicted in the left panel. Let ψ be a conformal map which takes the connected component of
C\η′([0, τ ′]) which contains x0 to S with η′(τ ′) taken to z0 and x0 taken to 0. The boundary data for the
GFF h ◦ψ−1 − χ arg(ψ−1)′ on S is depicted on the right side. From this, we can read off the conditional
law of η′ viewed as a path in C given η1, η2. It is an SLEκ ′ (ρ1,L , ρ2,L ; ρ1,R , ρ2,R) process where the
weights of the force points are given in (7.3)

we desire. Therefore the continuity statement of the lemma follows by adjusting θ1, θ2
appropriately, using the almost sure continuity of η1, η2 to get thatC is almost surely a
Jordan domain, and then applying the absolute continuity of the field (Proposition 3.4).
The first statement of the lemma follows from the same argument as the proof of
Lemma 7.2 along with another application of Proposition 3.4. ��

7.4.2 Many boundary force points

The reduction of the statement of Theorem 1.2 for counterflow lines to the two bound-
ary force point case is exactly the same as the analogous reduction for flow lines, which
was given in the proof of Lemma 7.5. This means that Theorem 1.2 for κ ′ > 4 follows
from Lemmas 7.24 and 7.25. Thus we are left to complete the proof of Theorem 1.3
for counterflow lines with many boundary force points. Just as in the case of flow
lines, it suffices to prove the continuity of counterflow lines with two boundary force
points on the same side of 0 (recall that the proof of Lemma 7.22 and Theorem 1.3
for κ ∈ (0, 4] was not flow line specific). The proof in this setting is more involved,
though. The reason is that for certain ranges of ρ values, a counterflow line will almost
surely hit a force point even before the continuation threshold is reached (flow and
counterflow lines only hit force points with positive probability when the partial sum
of the weights is at most κ

2 − 4 ≤ −2 and κ ′
2 − 4 > −2, respectively). This leads us

to consider four different types of local behavior:
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1. ρ1,R > −2, ρ1,R + ρ2,R > −2 with |ρ2,R | < κ ′
2 (Lemma 7.26),

2. ρ1,R ∈ (−2, κ ′
2 − 2), ρ1,R + ρ2,R ≥ κ ′

2 − 2 (Lemma 7.27),

3. ρ1,R ≥ κ ′
2 − 2, ρ1,R + ρ2,R ∈ (−2, κ ′

2 − 2) (Lemma 7.28), and
4. at least one of ρ1,R ≤ −2 or ρ1,R + ρ2,R ≤ −2 (Lemma 7.29).

In the following sequence of lemmas, it may appear to the reader that the roles of
the superscripts “L” and “R” have been reversed. The reason is that the results will
be stated for a counterflow line growing from the bottom of H as opposed to the top
of the strip S, so everything is rotated by 180◦.

Lemma 7.26 Suppose that η′0 is an SLEκ ′(ρ1,R, ρ2,R) process inH from 0 to∞ with
force points located at −1 and −2 with weights satisfying ρ1,R, ρ1,R + ρ2,R > −2
and |ρ2,R | < κ ′

2 . Then η′0 is almost surely continuous.

Proof Suppose that h is a GFF on the stripS with the same boundary data as in Fig. 62.
Let ητ1τ2

θ1θ2
be an angle varying flow line with angles θ1, θ2 such that |θ1− θ2| < 2λ

χ
. We

assume that θ1, θ2 < π
2 so that ητ1τ2

θ1θ2
almost surely stays to the right of the left boundary

of the counterflow line η′ (recall Proposition 7.11 as well as Proposition 5.1). Assume
that a, b, a′, b′ are sufficiently large so that η′ and η

τ1τ2
θ1θ2

intersect ∂S only at 0 and z0.
Arguing as in the proof of Lemma 7.25, the conditional law of η′ viewed as a path in
the left connected component C of S\ητ1τ2

θ1θ2
is that of an SLEκ(ρL ; ρR) where

ρ1,R =
(
1

2
− θ2

π

)(
κ ′

2
− 2

)
− 2 and ρ1,R + ρ2,R =

(
1

2
− θ1

π

)(
κ ′

2
− 2

)
− 2.

Consequently, it is not difficult to see that by adjusting the angles θ1, θ2, we can obtain
any combination of values of ρ1,R, ρ2,R such that ρ1,R > −2, ρ1,R + ρ2,R > −2,
and |ρ2,R | < κ ′

2 (the restriction on |ρ2,R | comes from the restriction |θ1 − θ2| < 2λ
χ
).

This completes the proof because we know that η′ viewed as a path in C is almost
surely continuous and, in particular, is continuous when it interacts with the force
points corresponding to the weights ρ1,R, ρ2,R . ��

Lemma 7.27 Suppose that η′0 is an SLEκ ′(ρ1,R, ρ2,R) process with force points

located at−1 and−2 satisfying ρ1,R ∈ (−2, κ ′
2 −2) and ρ1,R+ρ2,R ≥ κ ′

2 −2. Then
η′0 is almost surely continuous.

Proof See Fig. 63 for an explanation of the proof. The one aspect of the proof which
was skipped in the caption is that we did not explainwhy the conditional law of η′ given
ηθ is actually an SLEκ ′(ρ̃1,R, ρ̃2,R) process with ρ̃1,R = ρ1,R and ρ̃1,R + ρ̃2,R =
κ ′
2 − 2. This follows from an application of Theorem 2.4. In order to justify the usage
of this result, we just need to explain why the conditional mean CA(t) of h given
A(t) = ηθ ([0, τ ]) ∪ η′([0, t]), τ the first time that ηθ hits [−2,∞), does not exhibit
pathological behavior and is continuous in t > 0 as well as why η′ has a continuous
Loewner driving function viewed as a path in the unbounded connected component
C of H\ηθ ([0, τ ]). The latter holds up until the first time τ ′ that η′ hits ηθ\∂H since
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Fig. 63 The configuration of paths used to prove the continuity of an SLEκ ′ (ρ1,R , ρ2,R) process with

ρ1,R ∈ (−2, κ ′
2 − 2) and ρ1,R + ρ2,R ≥ κ ′

2 − 2 (the roles of “R” and “L” are flipped since we are
growing the counterflow line from the bottom of H rather than the top of S, so everything is rotated
by 180◦). We suppose that h is a GFF on H with the boundary data depicted above. We assume that
a = λ′(1 + ρ1,R) ∈ (−λ′, λ′ + πχ) and b = λ′(1 + ρ1,R + ρ2,R) ≥ λ′ + πχ . We let η′ be the
counterflow line of h starting at 0 and ηθ be the flow line of h starting at∞ with angle θ . Taking θ so that
−λ−θχ = λ′ +πχ , we see that the conditional law of η′ given ηθ in the unbounded connected component
C of H\ηθ ([0, τ ]), τ the first time ηθ hits [−2,∞), is an SLEκ ′ (ρ̃1,R , ρ̃2,R) process with ρ̃1,R = ρ1,R

and ρ̃1,R + ρ̃2,R = κ ′
2 − 2. Since ηθ is continuous, C is a Jordan domain, so the continuity of η′ follows

from the case |ρ2,R | < κ ′
2 . We note that the precise location that ηθ hits [−2,−1] depends on the choice of

a. There are choices of a for which ηθ almost surely hits−2 first, which is the case shown in the illustration,
and there are choices of a for which ηθ hits somewhere in (−2,−1) first

η′ itself has a continuous Loewner driving function. The former also holds up until
time τ ′ by Lemma 6.2 and Proposition 3.8. Since we know that SLEκ ′(ρ̃1,R, ρ̃2,R)

processes are almost surely continuous by Lemma 7.26, we thus have the continuity
of η′ up until either τ ′. Lemma 5.2 (see also Remark 5.3) implies that τ ′ = ∞ almost
surely. ��

Lemma 7.28 Suppose that η′ is an SLEκ ′(ρ1,R, ρ2,R) process with ρ1,R ≥ κ ′
2 − 2

and ρ1,R + ρ2,R ∈ (−2, κ ′
2 − 2). Then η′ is almost surely continuous.

Proof See Fig. 64 for an explanation of the proof. As in the proof of Lemma 7.27,
we did not explain in the caption why the conditional law of η′ given ηθ is an
SLEκ ′(ρ̃1,R, ρ̃2,R) process with ρ̃1,R = ρ1,R and ρ̃1,R + ρ̃2,R = κ ′

2 − 2. This
follows from Theorem 2.4 using an argument similar to what we employed for
Lemma 7.27. Indeed, we need to explain why the conditional mean CA(t) of h given
A(t) = ηθ ([0, τ ]) ∪ η′([0, t]), τ the first time that ηθ hits [−1,∞), does not exhibit
pathological behavior and is continuous in t aswell aswhyη′ has a continuousLoewner
driving function viewed as a path in the unbounded connected component C ofH\ηθ .
The latter holds up until the first time τ ′ that η′ hits ηθ\∂H since η′ has a continuous
Loewner driving function. The former also holds up until time τ ′ by Lemma 6.2 and
Proposition 3.8. Since we know that SLEκ ′(ρ̃1,R, ρ̃2,R) processes are almost surely
continuous by Lemma 7.26, we thus have the continuity of η′ up until τ ′. This allows
us to apply Lemma 5.2 to η′|[0,τ ′), which in turn implies that P[τ ′ = ∞] = 1. ��
Lemma 7.29 Suppose that η′ is an SLEκ ′(ρ1,L , ρ2,L) process with either ρ1,L ≤ −2
or ρ1,L + ρ2,L ≤ −2 with force points located at 0 < x1,L < x2,L . Then η′ is almost
surely continuous.
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Fig. 64 The configuration of paths used to prove the continuity of an SLEκ ′ (ρ1,R , ρ2,R) counterflow line

with ρ1,R ≥ κ ′
2 − 2 and ρ1,R +ρ2,R ∈ (−2, κ ′

2 − 2). We suppose that h is a GFF onH with the boundary

data depicted above. Here, we assume that a = λ′(1+ ρ1,R) ≥ λ′ + πχ and b = λ′(1+ ρ1,R + ρ2,R) ∈
(−λ′, λ′ + πχ). We let η′ be the counterflow line of h starting at 0 and let ηθ be the flow line of h starting
at −2 with angle θ . Taking θ so that −λ − θχ = λ′ + πχ , we see that the conditional law of η′ given
ηθ in the unbounded connected component C of H\ηθ ([0, τ ]), τ the first time ηθ hits [−1,∞), is an

SLEκ ′ (ρ̃1,R , ρ̃2,R) process with ρ̃1,R = κ ′
2 − 2 and ρ̃1,R + ρ̃2,R = ρ1,R +ρ2,R . Since ηθ is continuous,

C is a Jordan domain, so the continuity of η′ follows from the case |ρ2,R | < κ ′
2

Fig. 65 Suppose that h is a GFF onH whose boundary data is as depicted on the left side. We assume that
at least one of a ≥ λ′ or b ≥ λ′. Then the counterflow line η′ of h is an SLEκ ′ (ρ1,L , ρ2,L ) process with
at least one of ρ1,L ≤ −2 or ρ2,L ≤ −2. Assume, for example, that ρ1,L > −2 and ρ1,L + ρ2,L ≤ −2.
We can see that η′ is almost surely continuous by applying the conformal map ψ : H → H which fixes 0,
takes x2,L to∞, and∞ to −1. The boundary data for the GFF h ◦ψ−1 − χ arg(ψ−1)′ is depicted on the
right side. Hence ψ(η′) is an SLEκ ′ (ρ1,L ; ρ1,R) process with ρ1,R > κ ′ − 4 > −2 and ρ1,L > −2 and
therefore continuous by Lemma 7.24. This implies the continuity of η′ and that η′ almost surely terminates
at 1 becauseψ(η′) is almost surely transient. If both ρ1,L ≤ −2 and ρ1,L+ρ2,L ≤ −2, the same argument
works except we apply a conformal map which switches the sides of both x1,L and x2,L (as opposed to
just x2,L )

Proof The proof is explained in Figs. 65 and 66. ��
Proof of Theorem 1.3 for κ > 4 Exactly the same as the proof for κ ∈ (0, 4] (recall
Lemma 7.22). ��

7.4.3 Light cones with general boundary data

We are now going to explain how the light cone construction extends to the setting
of general piecewise constant boundary data. Recall that Remarks 5.8 and 5.11 from
Sect. 5.2 imply that the missing ingredients to prove that the light cone construction
for counterflow lines is applicable in this general setting are:

1. the continuity of SLEκ ′(ρ) processes for general weights ρ and
2. the continuity of angle varying flow lines.

123



698 J. Miller, S. Sheffield

Fig. 66 (Continuation of Fig. 65.) Suppose that H is a GFF whose boundary data is as depicted on the
left side where a ≤ λ′ and b > λ′. Then η′ is an SLEκ ′ (ρ1,L , ρ2,L ) process with ρ1,L ≤ −2 and
ρ1,L + ρ2,L > −2. Let η be the flow line of h starting at x1,L with angle θ . Taking θ = − 3

2π , we know
that ηθ lies to the right of η′ and that ηθ is almost surely continuous. There are two possibilities. Either
ηθ first hits (−∞, 0) or (x2,L ,∞), say at the time τ . In the former case, the conditional law of η′ given
ηθ ([0, τ ]) is that of an SLEκ ′ ( κ ′

2 − 4) process, hence continuous. In the latter case, the conditional law of

η′ given ηθ ([0, τ ]) is that of an SLEκ ′ ( κ ′
2 − 4, ρ̃2,L ) process where κ ′

2 − 4+ ρ̃2,L = ρ1,L + ρ2,L > −2,
hence continuous

(a) (b)

Fig. 67 Suppose that h is a GFF on a Jordan domain D and x, y ∈ ∂D are distinct. Let η′ be the counterflow
line of h starting at x aimed at y. Let K = KL ∪ KR be the outer boundary of η′, KL and KR its left and
right sides, respectively, and let I be the interior of KL ∩ ∂D. We suppose that the event E = {I �= ∅} that
η′ fills a segment of the left side of ∂D has positive probability, though we emphasize that this does not
mean that η′ traces a segment of ∂D—which would yield a discontinuous Loewner driving function—with
positive probability. In the illustrations above, η′ fills parts of S1, . . . , S5 with positive probability (but with
positive probability does not hit any of S1, . . . , S5). The connected component of KL\I which contains
x is given by the flow line ηL of h with angle π

2 starting at x (left panel). On E, ηL hits the continuation
threshold before hitting y (in the illustration above, this happens when ηL hits S2). On E it is possible
to describe KL completely in terms of flow lines using the following algorithm. First, we flow along ηL
starting at x until the continuation threshold is reached, say at time τ1, and let z1 = ηL (τ1). Second, we
trace along ∂D in the clockwise direction until the first point w1 where it is possible to flow starting at
w1 with angle

π
2 without immediately hitting the continuation threshold. Third, we flow from w1 until the

continuation threshold is hit again. We then repeat this until y is eventually hit. This is depicted in the right
panel above, where three iterations of this algorithm are needed to reach y and are indicated by the colors
red, yellow, and purple, respectively (color figure online)

We have at this point in the article established both of these results, which completes
the proof of Theorem 1.4. We remark that the light cone is a bit different if η′ fills
some segment of the boundary, say on its left side (see Fig. 67); let KL be the left
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boundary of η′. The reason is that, in this case, KL is no longer a flow line, though it is
still possible to express KL as a union of flow lines with angle θL = π

2 and boundary
segments. In particular, if η′ does not fill the boundary all of the way until it hits its
terminal point, say x , then the connected component of the closure of KL\∂D which
contains x is given by the flow line starting from x with angle θL = π

2 . The same is
likewise true if the roles of left and right are swapped.

Suppose that η′ is non-boundary filling, i.e.
∑ j

i=1 ρi,q > κ ′
2 −4 for all 1 ≤ j ≤ |ρq |

and q ∈ {L , R}, so that the left and right boundaries ηL and ηR of η′ are given by flow
lines with angles π

2 and −π
2 , respectively. Then we can write down the conditional

law of η′ given ηL and ηR . (This is referred to as “strong duality” in [6]; see also [6,
Section 8] for related results).

Proposition 7.30 Suppose that η′ is an SLEκ ′(ρL ; ρR) process on a Jordan domain D

from y to x with x, y ∈ ∂D distinct. Assume
∑ j

i=1 ρi,q > κ ′
2 − 4 for all 1 ≤ j ≤ |ρq |

and q ∈ {L , R}. Then the conditional law of η′ given its left and right boundaries
ηL and ηR is that of an SLEκ ′(

κ ′
2 − 4; κ ′

2 − 4) process independently in each of the
connected components of D\(ηL ∪ ηR) which lie between ηL and ηR.

Proof This follows from the same proof used to establish the continuity of
SLEκ ′(ρL ; ρR) processes for ρL , ρR ≥ κ ′

2 − 4 and is given explicitly in Lemma 7.24.
The only difference is that the proof of Lemma 7.24 required η′ not to hit the boundary
(with the exception of its initial and terminal points). The reason for this is that, at
that point in the article, we had not yet established the continuity of general bound-
ary hitting counterflow lines. Now that this has been proved, we can repeat the same
argument again to get the proposition. ��

If there exists a boundary point z which η′ almost surely hits, then we can use
the light cone construction to describe the outer boundary η1z of η′ upon hitting z as
well as compute the conditional law of η′ given η1z before and after hitting z. This is
formulated in the following proposition (see also Figs. 68, 69).

Proposition 7.31 Suppose that h is a GFF on a Jordan domain D and x, y ∈ ∂D
are distinct. Let η′ be the counterflow line of h from y to x. Suppose that z ∈ ∂D is
such that the first time τ ′z that η′ hits z is finite almost surely. If z is on the right side
of ∂D, then the outer boundary of η′([0, τ ′z]) is given by the flow line η1z of h starting
at z with angle θL = π

2 . Let C be a connected component of D\η1z which lies to the
right of η1z . Then η′|[0,τ ′z ] given η1z in C is equal to the counterflow line of the GFF

given by conditioning h on η1z and restricting to C starting from the point where η′
first enters C. Let Cx be the connected component of D\η1z which contains x. Then
η′|[τ ′z ,∞) given η1z is equal to the counterflow line of the GFF starting at z given by

conditioning h on η1z and restricting to Cx . Analogous results hold when the roles of
left and right are swapped.

Proof The statement regarding the law of the outer boundary of η′ upon hitting z
follows from Theorem 1.4 by viewing η′ as a counterflow line from y to z. Thus, to
complete the proof of the proposition, we just need to deduce the conditional law of
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Fig. 68 Suppose that h is a GFF on S whose boundary data is depicted above and fix z in the lower

boundary ∂LS of S. Then the counterflow line η′ ∼ SLEκ ′ ( κ ′
2 − 4; κ ′

2 − 4) of h from∞ to −∞ almost

surely hits z, say at time τ ′z . The left boundary of η′([0, τ ′z ]) is almost surely equal to the flow line η1z of h
starting at z with angle θL = π

2 stopped at time τ1z , the first time it hits the upper boundary ∂US of S. The
connected components of S\η1z ([0, τ1z ]) which lie to the right of η1z ([0, τ1z ]) are visited by η′ in the reverse
order that their boundaries are traced by η1z (recall Lemma 5.7 and Remark 5.8). The right and left most
points where the boundary of such a component intersects ∂LS are the entrance and exit points of η′. The
conditional law of h given η1z ([0, τ1z ]) in each such component is (independently) the same as h itself, up
to a conformal change of coordinates which preserves the entrance and exit points of η′ and the conditional
law of η′ is (independently) an SLEκ ′ ( κ ′

2 − 4; κ ′
2 − 4) process

Fig. 69 (Continuation of Fig. 68.) Moreover, η′([τ ′z ,∞)) almost surely stays to the left of η1z ([0, τ1z ]) and
is the counterflow line of h given η1z ([0, τ1z ]) starting at z and running to−∞. Let w = η1z (τ

1
z ). Since η′ is

boundary filling and cannot enter into the loops it creates with itself and the boundary, the first point on ∂US
that η′ hits after τ ′z isw. The left boundary of η′|[τ ′z ,∞) is given by the flow line η2z of h given η1z ([0, τ1z ]) in
the left connected component of S\η1z ([0, τ1z ]) stopped at the time τ2z that it first hits z (Proposition 7.31,
Theorem 1.4). The order in which η′ hits those connected components which lie to the left of η2z ([0, τ2z ]) is
determined by the reverse chronological order that η2z traces their boundary (Lemma 5.7, Remark 5.8) and

the conditional law of η′ in each is independently an SLEκ ′ ( κ ′
2 − 4; κ ′

2 − 4) process

η′ given η1z . This follows the same strategy we used to compute the conditional law
of a counterflow line given a flow line used in Sects. 7.4.1 and 7.4.2. In particular, we
know that η′ has a continuous Loewner driving function viewed as a path in each of
the complementary connected components of η1z using the same argument described
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in Remarks 6.16 and 6.17. Moreover, the conditional mean of h given η′([0, τ ]) and
η1z , τ any stopping time for the filtration generated by η′(s) for s ≤ t and η1z , does
not exhibit pathological behavior at intersection points of η1z and η′ using the same
technique as described in Remark 6.9. The desired result then follows by invoking
Theorem 2.4 and Proposition 6.5. ��

We chose not to write down the precise law of η′ given η1z in the statement of
Proposition 7.31, though in general this is very easy to do. One special case of this
result that will be especially important for us in a subsequent work is illustrated in
Figs. 68 and 69 and stated precisely in the following proposition:

Proposition 7.32 Suppose that D is a Jordan domain and x, y ∈ ∂D are distinct.
Let η′ ∼ SLEκ ′(

κ ′
2 − 4; κ ′

2 − 4) from y to x in D. Suppose that z ∈ ∂D is in the
right boundary of D. Then the conditional law of η′ given its left boundary η1z upon

hitting z is an SLEκ ′(
κ ′
2 − 4; κ ′

2 − 4) process independently in each of the connected
components of D\η1z which lie to the right of η1z . Let Cx be the connected component
of D\η1z which contains x. Then η′ restricted to Cx is equal to the counterflow line of
the conditional GFF h|Cx given η1z . Let η

2
z be the flow line of h|Cx starting at the first

point w where η1z hits the left side of ∂D with angle π
2 . Then η2z is the left boundary of

η′ restricted to Cx . Moreover, the conditional law of η′ in Cx given η2z is independently

that of an SLEκ ′(
κ ′
2 −4; κ ′

2 −4) process in each of the connected components of Cx\η2z
which lie to the left of η2z . Analogous results likewise hold when the roles of left and
right are swapped and the angle π

2 is replaced with −π
2 .

Proof This is a special case of Proposition 7.31. See Figs. 68 and 69 for further
explanation as to why these are the correct weights for the conditional law of η′. ��

7.5 The fan is not space filling

Suppose that h is a GFF on the infinite stripS with boundary data as in Fig. 70.Wewill
first assume that a, b ≥ λ− π

2 χ = λ′ and that a′, b′ ≥ λ′ +πχ so that the counterflow
line η′ of h starting from z0 almost surely hits ∂LS only when it exits at 0 and does not
hit ∂US except where it starts at z0. Recall from Sect. 5.2 that the fan F is the closure
of the union of the ranges of any collection of flow lines ηθ of h where θ ranges over
a countable, dense subset of [−π

2 , π
2 ] (recall also the simulations from Figs. 2, 3, 4,

5). By Lemma 5.7, we know that the range of η′ almost surely contains F. The main
purpose of this subsection is to establish the following proposition, which implies that
F almost surely has zero Lebesgue measure for all κ ∈ (0, 4) (recall Fig. 16):

Proposition 7.33 Suppose that we have a GFF h on S whose boundary data is as in
Fig. 70 with a, b ≥ λ − π

2 χ = λ′ and a′, b′ ≥ λ′ + πχ . Let τ ′ be any η′ stopping
time such that η′(τ ′) �= 0 almost surely. Then we have that P[η′(τ ′) ∈ F] = 0. In
particular, the Lebesgue measure of F is almost surely zero.

Before we proceed to the proof of Proposition 7.33, we need to record the following
simple fact about SLEκ(ρL ; ρR) processes. In what follows, | · | is used to denote
counting measure.

123



702 J. Miller, S. Sheffield

Fig. 70 The setup for Proposition 7.33. Suppose that h is a GFF on the strip S with the boundary data
depicted in the left hand side above. We assume that a, b ≥ λ− π

2 χ = λ′ and that a′, b′ ≥ λ′ +πχ so that
the counterflow line η′ of h starting at z0 intersects ∂S only at z0 and 0, its starting and terminal points,
respsectively. Let τ ′ be any stopping time for the counterflow line η′ of h starting at z0 such that η′(τ ′) �= 0
almost surely. We will prove that η′(τ ′) almost surely is not contained F. To prove this, we let ψ be the
conformal map which takes the unbounded connected component of S\η′([0, τ ′]) back to S which fixes
±∞ and 0. Let w0 = ψ(η′(τ ′)) ∈ ∂US. The boundary data for the GFF h̃ := h ◦ ψ−1 − χ arg(ψ−1)′ is
depicted on the right side. We show that the fan of h̃ almost surely does not contain w0

Lemma 7.34 Suppose that η is an SLEκ(ρL ; ρR) process in H with ρL , ρR ∈
(−2, κ

2 −2) and with the force points located at 0−, 0+, respectively. For every t > 0,
we have that both |η([0, t]) ∩ R−| = ∞ and |η([0, t]) ∩ R+| = ∞ almost surely.

Proof It is obvious that |η([0, t])∩R−| = ∞ for all t > 0 almost surely when ρR = 0
because in this caseWt −V L

t evolves as a positive multiple of a boundary intersecting
Bessel process (Sect. 2). This remains true for ρR ∈ (−2, κ

2 − 2) because we can
couple η with a GFF h so that η is the flow line of h. As in Sect. 7.1, we can condition
on a flow line ηθ of h with θ chosen so that ρR = −θχ/λ − 2. Then the law of η

conditional on ηθ is an SLEκ(ρL ; ρR) process, which proves our claim. Reversing the
roles of ρL and ρR gives that |η([0, t]) ∩ R+| = ∞ for all t > 0 almost surely, as
well. ��

We can now proceed to the proof of Proposition 7.33. The idea is to construct a
“shield” consisting of a finite number of flow lines at w0, the image of η′(τ ′) under
the conformal map of the unbounded connected component of S\η′([0, τ ′]) back to
S which fixes ±∞ and 0. This is described in Fig. 71.

Proof of Proposition 7.33 Fix any stopping time τ ′ for η′ such that η′(τ ′) �= 0 almost
surely. Letψ be the conformal map which takes the unbounded connected component
of S\η′([0, τ ′]) back to S and fixes ±∞ and 0. Let w0 = ψ(η′(τ ′)) and note that
w0 ∈ ∂US. Then the boundary data for theGFF h̃ = h◦ψ−1−χ arg(ψ−1)′ is depicted
in the right panel of Fig. 70. Fix r > 0 such that B(w0, r)∩∂S is contained in the image
of the outer boundary of η′([0, τ ′]) under ψ in ∂US. By Proposition 3.4, h̃|B(w0,r) is
mutually absolutely continuous with respect to a GFF on S whose boundary data is
constant −λ′ on the part of ∂US which lies to the left of w0 and constant λ′ on the
part of ∂US which lies to the right of w0. Therefore there exists n = n(κ) ∈ N and
angles θ1, . . . , θn such that with η̃

w0
θi

the flow line of h̃ starting from w0 with angle θi ,
we have that η̃w0

θi
almost surely intersects both η̃

w0
θi−1

and η̃
w0
θi+1

at infinitely many points

for each i . For each i , let τ̃i be the first time t that η̃
w0
θi

first exits B(w0, r). Note that
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(a) (b)

Fig. 71 Suppose we have the same setup as the right panel of Fig. 70. We take n = n(κ) ∈ N flow lines
η̃
w0
θ1

, . . . , η̃
w0
θn

with angles θ1, . . . , θn so that η̃w0
θi

almost surely intersects both of its neighbors (or ∂US if
i = 1 or i = n). Fix r > 0 such that B(w0, r)∩ ∂S is almost surely contained in the part of ∂US where the
boundary data of h̃ is either λ′ or −λ′. For each i , we let τ̃i be the first time that η̃

w0
θi

first exits B(w0, r).

Lemma 7.34 implies that each of the η̃
w0
θi

intersects its neighbors almost surely infinitely many times in

every neighborhood ofw0. Take any flow line η̃θ of h̃ starting at 0 with initial angle θ . By Propositions 7.10
and 7.12, η̃θ can only intersect at most one pocket between each pair η̃

w0
θi

, η̃
w0
θi+1

. Thus the set of points

that η̃θ can access is contained in the set of pockets between pairs η̃
w0
θi

, η̃
w0
θi+1

which are connected to the

unbounded connected component of S\∪ni=1 η̃
w0
θi

by a chain of at most n such pockets. Therefore F almost
surely does not contain w0. a The shielding fan. b Since flow lines can only cross each other at most one
time, it follows that η̃θ can only intersect at most one pocket between each pair η̃

w0
i , η̃

w0
i+1

∪n
i=1η̃

w0
θi

([0, τ̃i ]) is a local set for h̃ by Proposition 3.7 since each η̃
w0
θi

([0, τ̃i ]) is local
and almost surely determined by h̃ (Theorem 1.2).

Let U1 be the union of the set of connected components of U0 = (B(w0, r) ∩
S)\ ∪n

i=1 η̃
w0
θi

([0, τi ]) whose boundary intersects ∂B(w0, r). Inductively let Uk for
k ≥ 2 be the union of those connected components of U0 whose boundary intersects
the boundary of Uk−1. Finally, let U = ∪n

i=1Ui . Lemma 7.34 implies that U does not
contain w0.

We next claim that, almost surely, η̃θ = ψ(ηθ ) for each θ ∈ [−π
2 , π

2 ] cannot
traverse U and, therefore, cannot hit w0. Once we have established this, the proof of
the proposition will be complete. Fix θ ∈ [−π

2 , π
2 ]. Note that η̃θ can hit only one

side of each η̃θi ([0, τ̃i ]) and, upon hitting η̃
w0
θi

([0, τ̃i ]) will cross but cannot cross back
(see Fig. 71, Proposition 7.12). Since η̃θ must cross one of the η̃

w0
θi

([0, τ̃i ]) when it
passes from Uk to Uk+1, it follows that η̃θ cannot enter Un+1 and therefore cannot
traverse U . ��
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