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Abstract In this paper we show the strong existence and the pathwise uniqueness
of an infinite-dimensional stochastic differential equation (SDE) corresponding to the
bulk limit of Dyson’s Brownian Motion, for all β ≥ 1. Our construction applies to
an explicit and general class of initial conditions, including the lattice configuration
{xi } = Z and the sine process.We further show the convergence of the finite to infinite-
dimensional SDE. This convergence concludes the determinantal formula of Katori
and Tanemura (Commun Math Phys 293(2):469–497, 2010) for the solution of this
SDE at β = 2.
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1 Introduction

In this paper we study the well-posedness of the infinite-dimensional SDE,

Xi (t) = Xi (0) + Bi (t) + β

∫ t

0
φi (X(s))ds, i ∈ Z, (1.1)

where X(s) = (· · · < X0(s) < X1(s) < · · · ) describes ordered particles on R, Bi (t),
i ∈ Z, denote independent standard Brownian motions, and the interaction φi (x) takes
the form
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802 L.-C. Tsai

φi (x) := 1

2
lim
k→∞

∑
j :| j−i |≤k

1

xi − x j
, (1.2)

with β ≥ 1 measuring its strength. The interest of such SDE arises from random
matrix theory. Equation (1.1) represents the bulk limit of DBM, which describes the
evolution of the eigenvalues of the symmetric and Hermitian random matrices with
independent Brownian entries, for β = 1, 2, respectively, see [6,15].

The difficulty of establishing the well-posedness of (1.1) lies in the long-range and
singular nature of φi . Indeed, for a particle configuration x with a roughly uniform
density, we have

∑
j : j �=i

1

|xi − x j | = ∞, (1.3)

so the only way (1.2) converges is by canceling two divergent series from j < i
and j > i . Further, as we argue in Remark 2.9 in the following, unlike the case of
finite dimensions, the Bessel-type repulsion of φi alone does not prevent finite time
collisions, i.e. Xi (t) = Xi+1(t). Alternatively, under the framework of [13,14], Eq.
(1.1) formally has the logarithmic potential −β

∑
i< j log |xi − x j |. However, due the

logarithmic growth as |xi − x j | → ∞, such a potential is still ill-defined even under
a limiting procedure as in (1.2), suggesting a considerable challenge for establishing
the well-posedness of (1.1).

At β = 1, 2, 4, this challenge has been largely overcome thanks to the integrable
structure of DBM. This starts with [23] constructing the equilibrium process as an
L2 Markovian semigroup. Combining the theory of Dirichlet form and the theory
of determinantal or Pfaffian point processes, [17,18] obtain the weak existence for
near-equilibrium configurations. The recent work of [20] further shows the strong
existence and pathwise uniqueness at equilibrium. In a different direction, [12] con-
structs infinite-dimensional DBM as a determinantal (in spacetime) point process, for
general, out-of-equilibrium, configurations at β = 2. This construction, as a point
process, is not directly related to solutions of the SDE (1.1).

In this paper, we attack the problem, for all β ≥ 1, without referring to the inte-
grable structure, whereby establishing the strong existence and pathwise uniqueness
of (1.1) (see Theorem 1.2). As our techniques do not refer to a specific equilib-
rium measure, Theorem 1.2 holds for an explicit, out-of-equilibrium configuration
space X rg(α, ρ, p), which, loosely speaking, consists of particle configurations with
a roughly uniform density ρ−1 > 0. In particular, the space includes the lattice con-
figuration {xi } = Z and the sine process (see Lemma 8.2). For infinite-dimensional
interacting diffusions with C3

0 potentials, an out-of-equilibrium result is first estab-
lished in [7].With the logarithmic potential, Theorem1.2 is the first out-of-equilibrium
result on well-posedness.

Further, by establishing a finite-to-infinite-dimensional convergence, in Corol-
lary 1.6 we show that the determinantal point process constructed in [12] coincides
with the unique strong solution given by Theorem 1.2, for a class of out-of-equilibrium
configurations. This has also been obtained in the recent work of [22, Theorem 2.2]
for the equilibrium process at β = 2.
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Infinite dimensional SDE for Dyson’s model 803

The main idea here is to use themonotonicity of the gap process {Ya(t)}a∈L, where
Ya(t) := Xa+1/2(t)−Xa−1/2(t) andL := 1

2+Z, based on a certain simple observation
ofφi . Suchmonotonicity allows us to conveniently identify the long-range and singular
effect of φi on X. Although the techniques employed in this paper are standard, they
are applicable only in a careful setup that captures themonotonicity. Thismonotonicity
of {Ya(t)}a∈L is new, and in particular differs from that of [1, Lemma 4.3.6].

Remark 1.1 Forβ ≥ 1, we shows that particles stay strictly ordered, Xi (t) < Xi+1(t),
for all time, almost surely. For β ∈ (0, 1), however, one expects finite time collisions
to occur. Due to this fact, proving well-posedness, even in finite dimensions, requires
extra effort (see [2]). We do not pursuit the case β ∈ (0, 1) here.

Besides the bulk limit of DBM (1.1) considered here, the edge limit is also a related
subject of interest. The interest lies in random matrix theory and the Kardar–Parisi–
Zhang universality class (see [3]). Based on the aforementioned theory of Dirichlet
form and determinantal point processes, [19,21] obtain well-posedness results of
the corresponding SDE, and [11] constructs the corresponding determinantal point
process. A multilayer generalization of DBM, the corner process, is studied in [8,9]
and the references therein. In [4,5], the notion of Brownian–Gibbs property is intro-
duced to characterize the edge limit as a line ensemble, and is further generalized to
the corresponding property for the Kardar–Parisi–Zhang equation.

1.1 Definitions and statement of the results

Webegin by defining the spacesX (α, ρ) andX rg(α, ρ, p). This is done by considering
their corresponding gap configurations. More explicitly, let W := {x ∈ R

Z : xi <

xi+1,∀i ∈ Z} denote the Weyl chamber (of particle configurations), and let u denote
the map into gap configurations:

u : W −→ (0,∞)L, L := 1
2 + Z, u(x) := (xa+1/2 − xa−1/2)a∈L, (1.4)

which is made bijective by augmenting the zeroth particle coordinate, as

ũ : W bijective−−−−→ R × (0,∞)L, ũ(x) := (x0, u(x)). (1.5)

For α ∈ (0, 1) and ρ > 0, we consider the following space of gap configurations

Y(α, ρ) :=
{
y ∈ (0,∞)L : |y|α,ρ < ∞

}
, (1.6)

|y|α,ρ := sup
m∈Z\{0}

{∣∣ –�(0,m)(y) − ρ
∣∣ |m|α}, (1.7)

where –�I(y) denotes the average over a generic finite set I:

–�
p
I (y) := |I|−1

∑
a∈I

(ya)
p, –�I(y) := –�1

I(y), (1.8)

123



804 L.-C. Tsai

with the convention (i, j] = [ j, i) (and similarly for (i, j), [i, j], etc) and –�
p
∅ (y) := 0.

We define X (α, ρ) := u−1(Y(α, ρ)). That is, X (α, ρ) consists of particle configura-
tions whose corresponding gap processes satisfy (1.6). Similarly, for p > 1, we define
X rg(α, ρ, p) := u−1(Y(α, ρ) ∩ R(p)), where

R(p) :=
{
y ∈ (0,∞)L : sup

m∈Z
–�
p
(0,m)(y) < ∞

}
. (1.9)

We proceed to defining the process-valued analogs ofX (α, ρ) andX rg(α, ρ, p). To
simply notations, we often use x and y, instead of x(·) and y(·), to denote processes.
Let WT := {

x ∈ C([0,∞))Z : x(t) ∈ W,∀t ≥ 0
}
denote the process-valued analog

of W . By abuse of notation, we let u and ũ act on WT by u(x)(t) := u(x(t)) and by
ũ(x)(t) := ũ(x(t)). With YT (α, ρ) and RT (p) denoting the analogs of Y(α, ρ) and
R(p) as follows

YT (α, ρ) :=
{
y ∈ C+([0,∞))L : sup

s∈[0,t]
|y(s)|α,ρ < ∞, ∀t ≥ 0

}
, (1.10)

RT (p) :=
{
y ∈ C+([0,∞))L : sup

s∈[0,t],m∈Z
–�
p
(0,m)(y) < ∞,∀t ≥ 0

}
, (1.11)

where C+([0,∞)) := {y ∈ C([0,∞)) : y(t) > 0,∀t ≥ 0}, (1.12)

we define XT (α, ρ) := ũ−1(C([0,∞))×YT (α, ρ)) and X rg
T (α, ρ, p) := ũ−1(C([0,

∞)) × (YT (α, ρ) ∩ R(p))).
Recall from [10,Definition 5.2.1, 5.3.2] the notions of strong solutions and pathwise

uniqueness of SDE, which are readily generalized to infinite dimensions here. Let
B(t) := (Bi (t))i∈Z denote the driving Brownian motion, with the canonical filtration
FB

t := σ(B(s) : s ∈ [0, t]). Hereafter, we fix β ≥ 1, α ∈ (0, 1), ρ > 0 and p > 1
unless otherwise stated. The following is our main result.

Theorem 1.2 Given any xin ∈ X (α, ρ), there exists an XT (α, ρ)-valued, FB-
adapted solution X of (1.1) starting from xin. If, in addition, xin ∈ X rg(α, ρ, p),
this solution X takes value in X rg

T (α, ρ, p), and is the unique X rg
T (α, ρ, p)-valued

solution in the pathwise sense.

Remark 1.3 For any x ∈ XT (α, ρ), one easily verifies that
(
limk→∞

∑
j :|i− j |≤k

1
xi (t)−x j (t)

)
converges uniformly in t ∈ [0, t ′], for any fixed i ∈ Z and t ′ < ∞.

Further, the limit φi (x(t)) takes values in L∞
loc([0,∞)), so in particular the r.h.s. of

(1.1) is well-defined for XT (α, ρ)-valued processes.

Proceeding to the result on finite-to-infinite-dimensional convergence, we consider
the finite-dimensional version of (1.1):

Xi (t) = Xi (0) + Bi (t) + β

∫ t

0
φi (X(s))ds, i ∈ [i1, i2] ∩ Z. (1.13)
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Infinite dimensional SDE for Dyson’s model 805

Let W [i1,i2] := {
x ∈ R

[i1,i2]∩Z : xi < xi+1, i ∈ [i1, i2]
}

denote the finite-
dimensional Weyl camber. Recall from [1, Lemma 4.3.3] that, for any given xin ∈
W [i1,i2], there exists a C([0,∞))[i1,i2]∩Z-valued strong solution X of (1.13) with
P(X(t) ∈ W [i1,i2],∀t ≥ 0) = 1, which is unique in the pathwise sense. In Sect. 7 we
show

Theorem 1.4 Fixing xin ∈ X rg(α, ρ, p), we letX be theX rg(α, ρ, p)-valued solution
of (1.1) starting from xin, and for

i+n := max
{
i : xini < n

}
, i−n := min

{
i : xini > −n

}
, Ln := [i−n (x), i+n (x)],

(1.14)

we letXn be the C([0,∞))Ln∩Z-valued solution of (1.13) starting from (xini )i∈Ln . We
have the following finite-to-infinite-dimensional convergences:

(a) For any fixed t ≥ 0 and i ∈ Z,

sup
s∈[0,t]

|Xn
i (s) − Xi (s)| → 0, almost surely, as n → ∞; (1.15)

(b) For any fixed t ≥ 0, i ∈ Z and p′ ≥ 1,

E

(
sup

s∈[0,t]
|Xn

i (s) − Xi (s)|
)p′

→ 0, as n → ∞; (1.16)

(c) For any open O1, . . . ,O j∗ ⊂ R and s1, . . . , s j∗ ∈ [0,∞),

E

⎛
⎝

j∗∏
j=1

∣∣∣O j ∩ {Xn
i (s j )}i∈Ln

∣∣∣
⎞
⎠ → E

⎛
⎝

j∗∏
j=1

∣∣∣O j ∩ {Xi (s j )}i∈Z
∣∣∣
⎞
⎠ < ∞,

as n → ∞.

Remark 1.5 Hereafter, the limit n → ∞ as in Theorem 1.4(a), (b), are understood to
be for all n large enough such that In � i . The sequence {n : n ∈ Z>0} can in fact
be replaced by any sequence tending to infinity, but we focus on the former to simply
notations.

As mentioned in the preceding, for β = 2, [12] shows that {Xn
i (s) : i ∈ Ln, s ∈

(0,∞)} is determinantal with an explicit kernel function, and that, for xin ∈ KT :=
KT 1 ∩ KT 2 ∩ KT 3,

KT 1 :=
{
x ∈ W : sup

r>0

∣∣∣ ∑
i∈Lr

1

xi
1{xi �= 0}

∣∣∣ < ∞
}
,

KT 2 :=
⋃

α∈(1,2)

{
x ∈ W :

∑
i∈Z

1

|xi |α 1{xi �= 0} < ∞
}
,

KT 3 :=
⋃
α>0

⎧⎨
⎩x ∈ W : sup

i∈Z

⎧⎨
⎩(|xi | ∨ 1)α

∑
j : j �=i

1

|(x j )2 − (xi )2|

⎫⎬
⎭ < ∞

⎫⎬
⎭ ,
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806 L.-C. Tsai

as n → ∞ the kernel function converges to K
xin(·, ·; ·, ·) given as in [12, (2.3)].

Indeed, since X rg(α, ρ, p) ⊂ KT 1 ∩ KT 2, combining this result of [12] and Theo-
rem 1.4(c) we immediately obtain

Corollary 1.6 Fixing β = 2, we let X be the X rg
T (α, ρ, p)-valued solution starting

from xin ∈ X rg(α, ρ, p) ∩ KT 3. We have that {Xi (s) : i ∈ Z, s ∈ (0,∞)} is
determinantal with the kernel function K

xin(·, ·; ·, ·).
The rest of this paper is outlined as follows. In Sect. 2 we present a proof of

Theorem 1.2, which is detailed in Sects. 3, 4, 5 and 6. Among these, Sect, 3 settles
the monotonicity (2.13) and well-posedness of certain finite-dimensional SDE, and
Sects. 4, 5 and 6 handle the relevant propositions as indicated in their titles. Section 7
consists of the proof of Theorem 1.4. In Sect. 8, we prove that near-equilibrium solu-
tions (defined therein) are X rg

T (α, ρ, p)-valued, to unify the construction of [17] with
ours.

2 Proof of Theorem 1.2

Throughout this paperweuse lower-caseEnglish andGreek letters such as x, y, α, γ, u
to denote deterministic variables or functions, among which i, j, k, 	,m, n denote
integers, and a, b denote half integers. We use upper-case English letters such as
X,Y, I, J to denote random variables, use the calligraphic font (e.g. A, I) to denote
deterministic sets, and use the Fraktur font (e.g. A,I) to denote random sets. We let
c = c(t, k, . . .) denote a generic deterministic positive finite constant that depends
only on the designated variables.

The first step is to reduce the equation of particles, (1.1), to the equation of the
gaps. To this end, we consider the interaction of the gaps

ηa(y) := ηa(u(x)) := φa+1/2(x) − φa−1/2(x), (2.1)

= 1
ya

− ψa(ya, y), (2.2)

consisting of the (Bessel-type) repulsion terms 1/ya and the compression terms ψa

defined as

ψa : [0,∞) × (0,∞)L → [0,∞),

ψa(y, z) :=

⎧⎪⎨
⎪⎩

1

2

∑
i :|i−a|>1

y

z(a,i)(y + z(a,i))
, for y > 0,

0, for y = 0,

(2.3)

where zI := ∑
a∈I za and (a, i) := (i, a) (as mentioned before). We have the follow-

ing equation for (X0,Y) := u(X):

X0(t) = X0(0) + B0(t) + β

∫ t

0
φ0(Y(s))ds, (2.4)
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Infinite dimensional SDE for Dyson’s model 807

Ya(t) = Ya(0) + Wa(t) + β

∫ t

0
ηa(Y(s))ds, a ∈ L, (2.5)

where W(t) := u(B(t)), and, by abuse of notation,

φ0(y) := φ0(̃u
−1(0, y)) =

∞∑
i=1

(
1

2y(−i,0)
− 1

2y(0,i)

)
.

Clearly, (1.1) is equivalent to (2.4), (2.5) through the bijection ũ, and one easily
obtains the following

Proposition 2.1 (a) If Y is an YT (α, ρ)-valued solution of (2.5), defining X0 ∈
C([0,∞)) by (2.4), we have that ũ−1(X0,Y) is a XT (α, ρ)-valued solution
of (1.1). Further, if Y is (YT (α, ρ) ∩ RT (p))-valued, then ũ−1(X0,Y) is
X rg
T (α, ρ, p)-valued; if Y is FW-adapted, then ũ−1(X0,Y) isFB-adapted.

(b) Conversely, if X is an XT (α, ρ)-valued solution of (1.1), then u(X) is a
YT (α, ρ)-valued solution of (2.5). Further, if X is X rg

T (α, ρ, p)-valued, then
u(X) is (YT (α, ρ) ∩ RT (p))-valued; if X isFB-adapted, then so is u(X).

With this proposition, it now suffices to prove

Proposition 2.2 For any given yin ∈ YT (α, ρ), there exists aYT (α, ρ)-valued,FW-
adapted solution Y of (2.5). Moreover, if yin ∈ R(p), then Y ∈ RT (p), and Y is the
unique (YT (α, ρ) ∩ RT (p))-valued solution in the pathwise sense.

We establish Proposition 2.2 in two steps: the existence, as in Proposition 2.3, and
the uniqueness, as in Proposition 2.4. Defining the partial orders

y ≤ y′ ∈ [0,∞]L if and only if ya ≤ y′
a, ∀a ∈ L, (2.6)

y(·) ≤ y′(·) if and only if y(t) ≤ y′(t), ∀t ≥ 0, (2.7)

we call Y the greatest S-valued solution of (2.5) if, for any S-valued weak solution
Y′ defined on a common probability space with Y′(0) ≤ yin, we have Y′(·) ≤ Y(·)
almost surely.

Proposition 2.3 (existence) For any yin ∈ Y(α, ρ), there exists a YT (α, ρ)-valued,
FW-adapted solution Y of (2.5) starting form yin, which is the greatest YT (α, ρ)-
valued solution. Further, if yin ∈ R(p), then Y ∈ RT (p).

Proposition 2.4 (uniqueness) LetYup andYlw be (YT (α, ρ)∩RT (p))-valued weak
solutions of (2.5) defined on a common probability space, starting from a common
initial condition yin. If Ylw(·) ≤ Yup(·) almost surely, we have Ylw(·) = Yup(·)
almost surely.

Indeed, Proposition 2.2 follows by combining Propositions 2.3, 2.4. In particular, the
pathwise uniqueness follows by applying Proposition 2.4 for Yup = Y and Ylw = Y′,
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808 L.-C. Tsai

where Y is the greatest solution as in Proposition 2.3, and Y′ is an arbitrary weak
solution with Y′(0) = Y(0).

Proposition 2.3 is established in two steps: by first considering the special case
yin ∈ [γ,∞)L, γ > 0, and then the general case yin ∈ Y(α, ρ). For the former case,
we construct the solution of (2.5) by the following iteration scheme,

Y (0)
a (t) = yina + Wa(t) + β

∫ t

0

1

Y (0)
a (s)

ds, a ∈ L, (2.8a)

Y (n)
a (t) = yina + Wa(t)

+ β

∫ t

0

(
1

Y (n)
a (s)

− ψa(Y
(n)
a (s),Y(n−1)(s))

)
ds, a ∈ L, n ∈ Z>0.

(2.8b)

That is, we let Y (0)
a be the Bessel process (driven by Wa), and for n ≥ 1, we let

Y (n)
a be the solution of the following one-dimensional SDE

Y (t) = Y (0) + Wa(t) + β

∫ t

0

(
1

Y (s)
− ψa(Y (s),Z(s))

)
ds, (2.9)

for given Z = Y(n−1). Letting

Y(γ ) :=
{
y ∈ (0,∞)L : lim inf|m|→∞ –�(0,m)(y) ≥ γ

}
, (2.10)

YT (γ ) :=
{
y(·) ∈ C+([0,∞))L : lim inf|m|→∞ inf

s∈[0,t] –�(0,m)(y(s)) ≥ γ, ∀t ≥ 0
}
,

(2.11)

Y := ∪γ>0Y(γ ), YT := ∪γ>0YT (γ ), (2.12)

in Sect. 5 we prove

Proposition 2.5 Fix γ > 0. For any given yin ∈ [γ,∞)L, there exists a YT (γ )-
valued,FW-adapted sequence {Y(n)}n∈Z≥0 satisfying (2.8). Further, such a sequence
is decreasing, i.e.

Y(0)(·) ≥ Y(1)(·) ≥ Y(2)(·) ≥ · · · , (2.13)

almost surely. Defining the FW-adapted process Y (∞)
a (t) := limn→∞ Y (n)

a (t), we
have that Y(∞) is the greatest YT -valued solution of (2.5). If yin ∈ R(p), then
Y(∞) ∈ RT (p).

For the general case yin ∈ Y(α, ρ), we consider the truncated initial condition (yin ∨
γ ) := (yina ∨ γ )a∈L, γ > 0, and let Y∨γ be the YT -valued solution starting from
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Infinite dimensional SDE for Dyson’s model 809

(yin ∨γ ) given by Proposition 2.5. AsY∨γ is the greatest solution, for any decreasing
{γ1 > γ2 > · · · }, the sequence {Y∨γk }k is decreasing. In Sect. 6, we prove
Proposition 2.6 Let yin ∈ Y(α, ρ) and Y∨γ ∈ YT (γ ) be as in the preceding. Fix an
arbitrary decreasing sequence 1 ≥ γ1 > γ2 > · · · → 0. Defining the FW-adapted
process Ya(t) := limn→∞ Y∨γn

a (t), we have that Y is the greatest XT (α, ρ)-valued
solution of (2.5).

As for Proposition 2.4, letting

E(i1,i2)(t) :=
∑

a∈(i1,i2)

(
Y up
a (t) − Y lw

a (t)
)

, (2.14)

with Ylw(·) ≤ Yup(·), we have
∣∣Y up

a (t) − Y lw
a (t)

∣∣ ≤ E(i1,i2)](t) ≤ E(−∞,∞)(t),
∀a ∈ (i1, i2). With this, in Sect. 4 we prove

Proposition 2.7 For any t > 0, sups∈[0,t] E(−∞,∞)(s) = 0, almost surely,

from which Proposition 2.4 follows immediately.

2.1 Outline of the Proof of Proposition 2.5–2.7

The key step of proving Proposition 2.5 is to establish the monotonicity (2.13) of
{Y(n)}n . This, as well as many other monotonicity results (e.g. thatY(∞) as in Proposi-
tion 2.5 is the greatest solution), are consequences of the following simple observation:

ψa(y, z) ≤ ψa(y
′, z), if y ≤ y′, (2.15)

ψa(y, z) ≥ ψa(y, z′), if z ≤ z′, (2.16)

which is clear from (2.3). A basic tool we use to leverage (2.15), (2.16) into the
monotonicity of {Y(n)}n is the following comparison principle for deterministic, one-
dimensional integral equations. Let

y ≤[t ′,t ′′] y′ if and only if y(t) ≤ y(t), ∀t ∈ [t ′, t ′′]

denote the restriction of (2.7) onto [t ′, t ′′].
Lemma 2.8 Fixing t ′ ≤ t ′′ ∈ [0,∞), we let w ∈ C([t ′, t ′′]), and let f up, f lw ∈
C((0,∞) × [t ′, t ′′]) be locally Lipschitz functions in the first variable. That is, given
any compact K ⊂ (0,∞), there exists c(K) > 0 such that

∣∣ f up(y, t) − f up(y′, t)
∣∣,

∣∣∣ f lw(y, t) − f lw(y′, t)
∣∣∣ ≤ c(K)

∣∣y − y′∣∣,
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810 L.-C. Tsai

for all y, y′ ∈ K and t ∈ [t ′, t ′′]. If yup, ylw ∈ C+([t ′, t ′′]) solve the follows integral
equations

yup(t) = yup(t ′) + (w(t) − w(t ′)) +
∫ t

t ′
f up(yup(s), s)ds, ∀ t ∈ [t ′, t ′′], (2.17)

ylw(t) = ylw(t ′) + (w(t) − w(t ′)) +
∫ t

t ′
f lw(ylw(s), s)ds, ∀ t ∈ [t ′, t ′′], (2.18)

and if f lw(y, ·) ≤[t ′,t ′′] f up(y, ·), ∀y ∈ (0,∞), and ylw(t ′) ≤ yup(t ′), then

ylw ≤[t ′,t ′′] yup.

With f up(·, s) and f lw(·, s) being locally Lipschitz, Lemma 2.8 is proven by
standard ODE arguments using Gronwall’s inequality. We omit the proof. Equipped
with the monotonicity of {Y(n)}n , the next step is to take the limit n → ∞ in (2.8b),
and show that the r.h.s. converges to the appropriate limit. The major challenge here
is to control

∫ t
0

β

Y (∞)
a (s)

ds, which we achieve by showing

inf
s∈[0,t] Y

(∞)
a (s) > 0, almost surely, for all t ≥ 0. (2.19)

Remark 2.9 For any β ≥ 1, the non-existence of finite time collisions, (2.19), cannot
be achieved solely by the local Bessel-type repulsion (β/ya). To see this, rewrite the
interaction βηa(y) (as in (2.1)) as

βηa(y) = β
(

1
ya

− 1
2ya+1

− 1
2ya−1

+ (terms involving multiple gaps)
)
.

Estimating the strength of the first three terms (which dominate when particles come
close together) by their coefficients, we find that the term (β/ya) comes just enough
to balance β2−1[(ya+1)

−1 + (ya−1)
−1]. One may continue this estimation to higher

orders. By grouping terms according to the number of gaps involved, one finds that
the strength of positive and negative terms always balance. This differs from the finite-
dimensional case, where a residual term contributes positively when summing over
all gaps.

The idea of proving (2.19) is to utilize the global property of conservation of average
spacing κ(y(t)) := lim(i1,i2)→(−∞,∞) –�(i1,i2)(y(t)), assuming such a limit exists. To
see the intuition of such a quantity being conserved, note that for a generic solution X
of (1.1) we have

–�(i1,i2)(Y(s))
∣∣∣s=t

s=0
= Xi2(s) − Xi1(s)

i2 − i1

∣∣∣s=t

s=0

= Bi2(t) − Bi1(t)

i2 − i1
+ β

∫ t

0

(
φi2(X(s))

i2 − i1
− φi1(X(s))

i2 − i1

)
ds,

(2.20)
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where Y(t) := u(X(t)). Letting (i1, i2) → (−∞,∞), assuming |φi1(X(s))|,
|φi2(X(s))| � |i2 − i1|, we find that κ(Y(t)) = κ(Y(0)), ∀t > 0, i.e. the average
spacing is conserved.WithY(n) satisfying (2.8b), following the preceding type of argu-
ment, we show that κ(Y(∞)(t)) ≥ κ(Y(∞)(0)) = ρ, ∀t > 0 (see Lemmas 5.4, 5.5),
which roughly speaking implies –�(m,m′)(Y(∞)(t)) ≥ |m −m′|/c, c < ∞, outsides of
large windows. This then allows to control the strength of ψa(Y(∞)(t)) outsides of a
certain large window, whereby reducing the problem to finite dimensions.

The main step of proving Proposition 2.6 is to show Y ∈ YT (α, ρ). To this end,
in Sect. 6, we partition L into certain mesoscopic intervals Ab,k , b ∈ L, (see (6.1))
and simultaneously estimate –�Ab,k (Y

∨γn (s)), ∀n ∈ Z>0, b ∈ L. This yields that the
mesoscopic average ofY(s) overAb,k is at least

ρ
2 (see Proposition 6.3). Using this as

a ‘seed’, we estimate the global density –�(0,m)(Y(s)), |m| � 1, via (2.20) to obtain
Y ∈ YT (α, ρ).

To prove Proposition 2.7, in Sect. 4, we derive the following equation

E(i1,i2)(t) = E(i1,i2)(t
′) + β

∫ t

t ′

(
L+
i2
(s) − L−

i2
(s) − L+

i1
(s) + L−

i1
(s)

)
ds, ∀t ≥ t ′,

(2.21)

that describes E(i1,i2)(t) in terms of certain boundary interactions L±
i (s), defined as

L±
i (s) := 1

2

∑
j∈(i,±∞)

Y up
(i, j)(s) − Y lw

(i, j)(s)

Y up
(i, j)(s)Y

lw
(i, j)(s)

. (2.22)

With E(i1,i2)(0) = 0, equipped with (2.21), in Sect. 4, we prove Proposition 2.7
by showing

∫ t
0 L±

ik
(s)ds → 0, along some suitable subsequence ik → ±∞. To see

the intuition of this, note that for each j , the denominator of the j th term in (2.22) is
approximately ρ| j − i |2. As for the numerator, with Ylw,Yup ∈ Y(α, ρ), we have

∣∣∣ –�(0,m)

(
Yup(s) − Ylw(s)

)∣∣∣|m|α′ |m|→∞−−−−→ 0,

for all α′ < α, suggesting that the numerator is at most
∑

a∈(i, j) |a|−α′
. Combining

these bounds yields L±
i (s) → 0 as |i | → ±∞.

3 Comparison and monotonicity

We begin by establishing the monotonicity (2.13). Recall the definition of Y(γ ) and
YT (γ ) from (2.10), (2.11).

Proposition 3.1 Fixing yin, zin ∈ Y(γ ), γ > 0, we let {Y(i)}ni=0 and {Z(i)}ni=0 be
YT (γ )-valued sequences satisfying (2.8), with Y(i)(0) = yin and Z(i)(0) = zin,
i = 0, . . . , n.

(a) The sequence {Y(i)}ni=0 is decreasing, Y
(0)(·) ≥ · · · ≥ Y(n)(·).
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(b) If yin ≥ zin, we have Y(i)(·) ≥ Z(i)(·), for i = 0, . . . , n.

Proof We begin by showing that

y �→ ψa(y, z(s)) is uniform Lipschitz over [0,∞) × [0, t], ∀t ≥ 0, ∀z ∈ YT .

(3.1)

To this end, with ψa defined as in (2.3), we estimate the expression

ψa(y, z(s)) − ψa(y
′, z(s)) = 1

2

∑
i :|i−a|>1

y′ − y

(y + z(a,i)(s))(y′ + z(a,i)(s))
. (3.2)

With y, y′ ≥ 0, we bound the r.h.s. by 2−1|y − y′|∑i :|i−a|>1(z(a,i)(s))−2, which
converges uniformly over [0, t], for any z ∈ YT (γ ). Hence (3.1) follows.

We now prove Y(i−1)(·) ≥ Y(i)(·) by induction on i . For i = 1, by (3.1), we have
that −ψa(·,Y(0)(t)) is uniformly Lipschitz. With −ψa(ya,Y(0)(t)) ≤ 0, and Y (0)

a

and Y (1)
a solving the respective equations (2.8a) and (2.8b), applying Lemma 2.8 for

yup = Y (0)
a and ylw = Y (1)

a , we conclude Y(0)(·) ≥ Y(1)(·). Assuming Y(i−1)(·) ≥
Y(i)(·), i > 1, by (2.16) we have −ψa(y,Y(i−1)(t)) ≥ −ψa(y,Y(i)(t)). With Y (i)

a

and Y (i+1)
a solving (2.8b), applying Lemma 2.8 for yup = Y (i)

a and ylw = Y (i+1)
a we

conclude Y(i)(·) ≥ Y(i+1)(·). This completes the proof of (a).
As for (b), the case i = 0 follows directly by applying Lemma 2.8. For i > 0, by

(2.16), we have that

Z(i)(·) ≤ Y(i)(·) implies − ψa(y,Z(i)(s)) ≤ −ψa(y,Y(i)(s)),

so, by induction, the case i > 0 follows by the preceding comparison argument. ��
Next, we establish a backward lower-semicontinuouity for a generic process of the

form (3.6). To this end, we consider Qt1 := (Qt1
a )a∈L ∈ (C([t1,∞)) ∩ C+(t1,∞))L,

Qt1
a (t) = Wa(t) − Wa(t1) +

∫ t

t1

β

Qt1
a (s)

ds, t ≥ t1, (3.3)

the Bessel process starting from 0 at t1, and let Qt1,t2
a := supt∈[t1,t2] Q

t1
a (t). Indeed,

for L1 := 1
2 + 2L and L2 := 1 + L1,

{Qt1
a (·)}a∈Li , i = 1, 2, are i.i.d. collections of processes. (3.4)

Hence, by the Law of Large Numbers, we have

lim|m|→∞ –�
p
(0,m)

(
Qt1,t2

) = E
(
(Qt1,t2

1/2 )p
) := q(t2 − t1, p) < ∞. (3.5)
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Hereafter, for generic processes Y (·) and Y(·), we adopt the notations
Y (t ′, t ′′) := sup

s∈[t ′,t ′′]
Y (s), Y (t ′, t ′′) := inf

s∈[t ′,t ′′]
Y (s),

Y(t ′, t ′′) := (Ya(t ′, t ′′))a∈L and Y(t ′, t ′′) := (Ya(t
′, t ′′))a∈L.

Lemma 3.2 Let a ∈ L, Y ∗ ∈ C+([0,∞)), F ∈ L1
loc([0,∞)), {Gt }t≥0 be a filtration

such that Y ∗, F andW are G -adapted and thatW is a Brownian motion with respect
to G . If F ≥ 0 and if Y ∗ solves the equation

Y ∗(t) = Y ∗(0) + Wa(t) + β

∫ t

0

(
1

Y (s)
− F(s)

)
ds, a ∈ L, (3.6)

then, for all t ′ ≤ t ′′ ∈ [0,∞), we have

Y ∗(t ′′) − Y ∗(t ′, t ′′) = sup
s∈[t ′,t ′′]

(Y ∗(t ′′) − Y ∗(s)) ≤ Qt ′
a (t ′′), (3.7)

sup
s<t∈[t ′,t ′′]

(
Y ∗(t) − Y ∗(s)

) ≤ Qt ′,t ′′
a := sup

t∈[t ′,t ′′]
Qt ′

a (t), (3.8)

almost surely.

Proof To the end of showing (3.7), fixing s1 ∈ (t ′, t ′′), we consider the process
Y s1 ∈ C+([s1,∞)) defined as

Y s1(t) = Y ∗(s1) + Wa(t) − Wa(s1) + β

∫ t

s1

1

Y s1(s)
ds, t ≥ s1, (3.9)

which is a Bessel process starting from Y ∗(s1) at time s1. With Y ∗ and Y s1 satisfying
(3.6) and (3.9), applying Lemma 2.8 (for [t ′, t ′′] = [s1, t ′′], yup = Y s1 , ylw = Y ∗,
f up(y, s) = β/y and f lw(y, s) = β(1/y − F(s))), we obtain Y ∗(·) ≤[s1,t ′′] Y s1(·),
and therefore, with Y ∗(s1) = Y s1(s1),

Y ∗(t ′′) − Y ∗(s1) ≤ Y s1(t ′′) − Y s1(s1). (3.10)

We next compare Y s1 and Qs1
a . They solve the same equation, (3.3) and (3.9), with

different initial conditions Y s1(s1) > 0 = Qs1
a (s1). Hence, applying Lemma 2.8 for

(t ′, t ′′) = (s1 + ε, t ′′), ε > 0 (so that Y s1 , Qs1
a ∈ C+([s1 + ε, t ′′])), conditioned on

{Y s1(s1 + ε) ≥ Qs1
a (s1 + ε)}, and then sending ε → 0, we obtain Qs1

a ≤[s1,t ′′] Y s1

almost surely, thereby
∫ t ′′
s1

β
Y s1 (s)ds ≤ ∫ t ′′

s1
β

Q
s1
a (s)

ds. Plugging this in (3.3) and (3.9),

we obtain

Y s1(t ′′) − Y s1(s1) ≤ Qs1
a (t ′′) − Qs1

a (s1) = Qs1
a (t ′′). (3.11)

Next, as Qs1
a and Qt ′

a solve the same equation on [s1, t ′′] with the initial conditions
Qs1

a (s1) = 0 < Qt ′
a (s1), by the preceding comparison argument we obtain Qs1

a (t ′′) ≤
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Qt ′
a (t ′′). Combining thiswith (3.10), (3.11),we arrive atY ∗(t ′′)−Y ∗(s1) ≤ Qt ′

a (t ′′).As
this holds almost surely for each s1 ∈ (t ′, t ′′), taking the infimumover s1 ∈ (t ′, t ′′)∩Q,
using the continuity of Y ∗(·), we conclude (3.7).

As for (3.8), taking the supremumover t ′′ ∈ [t ′, t̃ ′′]∩Q in (3.7), using the continuity
of Y ∗(·), we obtain

sup
t ′′∈[t ′ ,̃t ′′]

(
Y ∗(t ′′) − inf

s∈[t ′ ,̃t ′′]
Y ∗(s)

)
= sup

s<t∈[t ′ ,̃t ′′]

(
Y ∗(t) − Y ∗(s)

)

≤ sup
t ′′∈[t ′ ,̃t ′′]

Qt ′
a (t ′′) = Qt ′ ,̃t ′′

a .

��
For the rest of this section, we establish the the well-posedness of certain finite-

dimensional SDE.Webeginwith the one-dimensional equation (3.12) in the following,
which is a generalization of (2.9).

Lemma 3.3 Let t ′ ≥ 0 and F : [0,∞) × [t ′,∞) → R be random, such that

s �→ F(y, s) is C([t ′,∞), R)-valued and FW-adapted for all y ∈ [0,∞),
y �→ F(y, s) is Lipschitz, uniformly over (y, s) ∈ [0,∞) × [t ′, t], for all t ≥ t ′,
F(0, t) = 0, for all t ≥ t ′.

Given any (0,∞)-valued, FW
t ′ -measurable Y

in, the equation

Y (t) = Y in + (
Wa(t) − Wa(t

′)
) +

∫ t

t ′

(
β

Y (s)
+ F(Y (s), s)

)
ds (3.12)

has a C+([t ′,∞))-valued,FW-adapted solution starting from Y in at t ′, which is the
unique C+([t ′,∞))-valued solution in the pathwise sense.

Remark 3.4 Equation (3.12) for F = 0 describes the Bessel process of dimension
(β + 1). At the critical dimension β + 1 = 2, it seems that any F < 0, even if
uniformly bounded, may be strong enough to drive the solution Y to 0 within a finite
time. However, for the type of F we consider here, with F(0, s) = 0 and F(·, s)
being uniformly Lipschitz, we have

sup
s∈[t ′,t]

sup
y≥0

|y−1F(y, s)| = sup
s∈[t ′,t]

sup
y≥0

∣∣∣∣ F(y, s) − F(0, s)

y − 0

∣∣∣∣ < ∞, ∀t > 0. (3.13)

This in particular implies that |F(y, s)| → 0 linearly (in y) as y → 0, which
suffices for Y ∈ C+([t ′,∞)). The same applies for (3.19) in the following.

Proof To show the uniqueness, with F(·, s) being uniformly Lipschitz, the only
problem is β/y not being Lipschitz at y = 0. This problem is solved by the stan-
dard localization argument: by first considering the localized process Y (t ∧ T δ),

123



Infinite dimensional SDE for Dyson’s model 815

T δ := inf{t : Y (t) > δ}, proving the uniqueness for t ∈ [0, T δ] (by Gron-
wall’s inequality), and letting δ → 0, (whence T δ → ∞ by the assumption
Y ∈ C+([t ′,∞))).

As for existence, following the standard argument (c.f. [1, Lemma 4.3.3]), we
construct a solution Y δ up to the first hitting time Sδ of any given level δ > 0. With
pathwise uniqueness, Y δ , δ > 0, are consistent for different values of δ, so it suffices
to show Sδ → ∞ as δ → 0. If F ≥ 0, this is easily achieved by comparing Y δ

and Qt ′ on [t ′, Sδ]. Indeed, if F ≥ 0, by Lemma 2.8 we have Qt ′ ≤[t ′,Sδ] Y δ . With

Qt ′ ∈ C+((t ′,∞)), this implies Sδ → ∞.
For the general case, F � 0,we show Sδ → ∞ by themethod of Lyapunov function

(c.f. [1, Lemma 4.3.3]). Applying Ito’s formula to the semimartingale log(Y δ( ·∧Sδ)),
we obtain

log
(
Y δ(t ∧ Sδ)

) = log yin + MG +
∫ t∧Sδ

0

(
β − 1(
Y δ(s)

)2 +(Y δ(s))−1F(Y δ(s), s)

)
ds,

(3.14)

where MG is a martingale with zero mean. Further localizing (3.14) w.r.t. T r
1 ∧ T r

2 ,
where T r

1 := inf{t ≥ 0 : Y δ(t) > r} and T r
2 := inf{t ≥ 0 : supy≥0{|y−1F(y, t)|} >

r}, and taking expectation of both sides, with β ≥ 1, we arrive at

log r + (log δ)P(Sδ < t ∧ T r
1 ∧ T r

2 ) ≥ log yin − tr.

From this, P(limδ→0 Sδ = ∞) = 1 follows by letting δ → 0, t → ∞ and r → ∞
in order, provided P

(
limr→∞ T r

1 = ∞) = 1 and P
(
limr→∞ T r

2 = ∞) = 1. The
latter follows immediately from (3.13). To show the former, we apply the preceding
construction for the case F ≥ 0 to obtain the C+([t ′,∞))-valued process Y ′ such that

Y ′(t) = Y in + Wa(t) − Wa(t
′) +

∫ t

t ′

(
β

Y ′(s)
+ F(Y ′(s), s)+++

)
ds,

where F(y, s)+++ denote the positive part of F(y, s). Note that F(y, s)+++ indeed meets
the prescribed conditions of this Lemma, and is in particular uniformly Lipschitz
because

sup
y �=y′≥0

|F(y, s)+++ − F(y′, s)+++|
|y − y′| ≤ sup

y �=y′≥0

|F(y, s) − F(y′, s)|
|y − y′| .

With F(y, s) ≤ F(y, s)+++, by Lemma 2.8 we have Y δ(·) ≤[t ′,Sδ] Y ′(·), thereby
concluding P(limr→∞ T r

1 = ∞) = 1. ��
We next consider the Eq. (3.19) as follows, which is a finite-dimensional version

of (2.5) with external forces. For A ⊂ R, we let ψA
a (y, z) and ηAa (y) denote the

restriction of ψa(y, z) and ηa(y) onto [0,∞) × (0,∞)A∩L,
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ψA
a (y, z) := 1

2

∑
i∈A,|i−a|>1

y

z(a,i)(y + z(a,i))
, (3.15)

ηAa (y) := 1
ya

− ψA
a (ya, y), (3.16)

which indeed satisfy the following analog of (2.15), (2.16),

ψA
a (y, z) ≤ ψA

a (y′, z), for y ≤ y′, (3.17)

ψA
a (y, z) ≥ ψA

a (y, z′), for z ≤ z′. (3.18)

By abuse of notation, we let u and ũ, defined as in (1.4), (1.5), act on the space
W [i1,i2], whereby ũ : W [i1,i2] → (0,∞) × (0,∞)(i1,i2)∩L is also a bijection.

Lemma 3.5 Let i1 ≤ i2 ∈ Z, I := (i1, i2) ∩ L, t ′ ≥ 0, Z∗ ∈ C+([t ′,∞))I be
FW-adapted. For any FW

t ′ -measurable Y
in ∈ (0,∞)I , the equation

Ya(t) = Y in
a (t ′) + (Wa(t) − Wa(t

′)) + β

∫ t

t ′

(
ηIa (Y(s)) + Ya(s)Z

∗
a(s)

)
ds,

t ≥ t ′, a ∈ I (3.19)

has a C+([t ′,∞))I -valued, FW-adapted solution starting from Yin, which is the
unique C+([t ′,∞))I -valued solution in the pathwise sense.

Proof The uniqueness follows by the same argument as in the proof of Lemma 3.3. As
for the existence, following the proof of Lemma 3.3, we construct the solutionYδ up to
the first hitting time Sδ := inf{t ≥ 0 : Y δ

a (t) < δ, for some a ∈ I}, and then using the
methodofLyapunov function to show Sδ → ∞. Recall that y(i, j) := ∑

a∈(i, j) ya .With
ξ(y) := ∑

(i, j)⊂(i1,i2) log y(i, j) being the Lyapunov function, applying Ito’s formula

to the semimartingale ξ(Yδ( · ∧ Sδ)), we obtain

ξ(Yδ(t ∧ Sδ)) = ξ(yin) + MG +
∫ t∧Sδ

0

(
f1(Yδ(s)) + f2(Yδ(s),Z∗(s))

)
ds,

where MG is a martingale with zero mean, and

f1(y) :=
∑

(i, j)⊂(i1,i2)

⎛
⎝ 1

y(i, j)

∑
a∈(i, j)

βηIa (y) − 1

(y(i, j))2

⎞
⎠ ,

f2(y, z) :=
∑

(i, j)⊂(i1,i2)

β

y(i, j)

∑
a∈(i, j)

yaza .

Following [1, p 252], one obtains f1(y) = (β − 1)2−1 ∑
i, j :i �= j (x j − xi )−2 > 0,

where x := ũ−1(0, y). Let T r
1 := inf{t ≥ 0 : Y δ

a (t) > r, for some a ∈ I}, and
T r
2 := inf{t ≥ 0 : f2(Yδ(t),Z∗(t)) > r}. With f1(y) > 0, similar to the proof of
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Lemma 3.3, it now suffices to show P(limr→∞ T r
1 = ∞) = 1 and P(limr→∞ T r

2 =
∞) = 1. The former, similar to the proof of Lemma 3.3, is proven by comparing Yδ

to the process Y′, defined as the unique solution (given by Lemma 3.3) of

Y ′
a(t) = Y ′

a(t
′) + (Wa(t) − Wa(t

′)) + β

∫ t

t ′

[(
Y ′
a(s)

)−1 + Y ′
a(s)Z

∗
a(s)

]
ds, a ∈ I.

As for the latter, with 1
y(i, j)

ya ≤ 1, ∀a ∈ (i, j), we have | f2(y, z)| ≤
β|I|3 ∑a∈(i, j) |za |. From this, P(limr→∞ T r

2 = ∞) = 1 follows since Z∗ ∈
C([t ′,∞))I . ��
Remark 3.6 The preceding proof of pathwise uniqueness depends only on Gronwall’s
inequality, so the uniqueness in fact holds more generally for random I = I, where
I is not necessarily independent of W.

Next, we establish a comparison principle for the equation (3.19). To this end, for
I ⊂ L, we let

y ≤I y′ if and only if ya ≤ y′
a, ∀a ∈ I,

y ≤I
[t ′,t ′′] y

′ if and only if ya(t) ≤ y′
a(t), ∀a ∈ I, t ∈ [t ′, t ′′]

denote the restriction of (2.6), (2.7) onto I and [t ′, t ′′].
Lemma 3.7 Fixing t ′ < t ′′ ∈ [0,∞), I1 < I2 ∈ Z (possibly random), we let I :=
(I1, I2) ∩ L, Zup and Zlw ∈ C([t ′, t ′′])I, and Yup, Ylw be the C+([t ′, t ′′])I-valued
solutions of (3.19) with the respective external forces Zup and Zlw, i.e.

Y up
a (t) = Yup

a (t ′) + (
Wa(t) − Wa(t

′)
)

+ β

∫ t

t ′

(
ηIa (Yup(s)) + Yup

a (s)Zup
a (s)

)
ds, t ∈ [t ′, t ′′], a ∈ I, (3.20)

Y lw
a (t) = Y lw

a (t ′) + (
Wa(t) − Wa(t

′)
)

+ β

∫ t

t ′

(
ηIa (Ylw(s)) + Y lw

a (s)Zlw
a (s)

)
ds, t ∈ [t ′, t ′′], a ∈ I. (3.21)

If Zlw ≤I
[t ′,t ′′] Z

up, and Ylw(t ′) ≤I Yup(t ′), then

Ylw ≤I
[t ′,t ′′] Y

up, almost surely. (3.22)

Remark 3.8 Note that here we do not assume Wa(·) conditioned on (I1, I2) is a
Brownian motion or even a martingale.

Proof For each finite, deterministic interval I := (i1, i2)∩L, we consider the iteration
sequence {Y(n),I}Z≥0 ⊂ C+([t ′,∞))I as follows, which is the analog of (2.8) for
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818 L.-C. Tsai

(3.20):

Y (0),I
a (t) = Y up

a (t ′) + (Wa(t) − Wa(t
′)) + β

∫ t

t ′
1

Y (0),I
a (s)

ds, a ∈ I, (3.23a)

Y (n),I
a (t) = Y up

a (t ′) + (Wa(t) − Wa(t
′))

+ β

∫ t

t ′

(
1

Y (n),I
a (s)

− ψI
a (Y (n),I

a (s),Y(n−1),I(s)) + Y (n),I
a (s)Zup

a (s)

)
ds, a∈I.

(3.23b)

Such a sequence is constructed inductively by applying Lemma 3.3 for F(y, s) = 0
(when n = 0), and for F(y, s) = ψI

a (y,Y(n−1),I(s)) + yZup
a (s) (when n > 0). In

particular, such F(y, s) indeed satisfies F(0, s) = 0, and by the same calculation as
in (3.1), y �→ F(y, y′(s)) is uniform Lipschtiz continuity for y′ ∈ C+([t ′,∞))I .

With Y(n),I solving (3.23) and Ylw solving (3.21), following the comparison argu-
ment as in the proof of Proposition 3.1, we obtain that

Y(0),I(·) ≥I
[t ′,t ′′] Y

(1),I(·) ≥I
[t ′,t ′′] · · · ≥I

[t ′,t ′′] Y
lw(·). (3.24)

With this, defining the limiting process Y∗(t) := limn→∞ Y(n),I(t), we have

Y∗ ≥I
[t ′,t ′′] Y

lw. (3.25)

In (3.23b), letting n → ∞, by the dominated convergence theorem we obtain

∫ t

t ′

(
1

Y (n),I
a (s)

− ψI
a (Y (n),I

a (s),Y(n−1),I(s)) + Y (n),I
a (s)Zup

a (s)

)
ds

−→
∫ t

t ′

(
ηIa (Y∗(s)) − Y ∗

a (s)Zup
a (s)

)
ds, ∀a ∈ I.

Hence Y∗ solves (3.20). This automatically implies that Y∗ is C([t ′,∞))-valued,
and with (3.25), we actually have Y∗ ∈ C+([t ′,∞)). As the C+([t ′,∞))-valued
solution of (3.20) is unique (by Lemma 3.5 and Remark 3.6), wemust haveY∗ = Yup.
Combining this with (3.25), we conclude (3.22). ��

4 Uniqueness, Proof of Proposition 2.7

Fix yin ∈ Y((α, ρ) ∩ R(p)) and Ylw(·) ≤ Yup(·) ∈ (YT (α, ρ) ∩ RT (p)) as in
Proposition 2.7. Recall that EI(s) := ∑

a∈I(Y up
a (s) − Y lw

a (s)) and that L±
i (t) is

defined as in (2.22). We begin by proving (2.21).
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Infinite dimensional SDE for Dyson’s model 819

Proof of 2.21 By abuse of notation, we let φi (y) := φi (̃u−1(0, y)). Summing (2.5)
over a ∈ (i1, i2), and using (2.1), we obtain the equation

∑
a∈(i1,i2)

Ya(s)
∣∣∣s=t

s=t ′
= (Bi2(s) − Bi2(s))

∣∣∣s=t

s=t ′
+ β

∫ t

t ′

(
φi2(Y(s)) − φi1(Y(s))

)
ds,

(4.1)

for a generic YT (α, ρ)-valued solution Y of (2.5). Now, substitute Y for Yup and for
Ylw in (4.1), and take the difference of the results. With φi (Yup(s)) − φi (Ylw(s)) =
L+
i (s) − L−

i (s), we conclude (2.21). ��
Fixingm ∈ Z>0 (which will be sent to∞ later), for i ∈ [±m,±2m]we decompose

L±
i (s) into the long-range interaction

L̃±
i,m(s) := 1

2

∑
j∈(±3m,±∞)

Y up
(i, j)(s) − Y lw

(i, j)(s)

Y up
(i, j)(s)Y

lw
(i, j)(s)

, (4.2)

and the short-range interaction

L±
i,m(s) := 1

2

∑
j∈(i,±3m]

Y up
(i, j)(s) − Y lw

(i, j)(s)

Y up
(i, j)(s)Y

lw
(i, j)(s)

. (4.3)

The main step of the proving Proposition 2.7 is the following estimates. Recall the
definition of q(t, 1) from (3.5).

Lemma 4.1 (a) For any t ≥ 0, we have

L̃±
m := sup

s∈[0,t]
sup

i∈[±m,±2m]

{
L̃±
i,m(s)

}
→ 0, almost surely. (4.4)

(b) For any t ′ < t ′′ ∈ [0,∞) such that q(t ′′ − t ′, 1) <
ρ
2 , we have

lim
m→∞ inf

i∈[±m,±2m]

∫ t ′′

t ′
L±
i,m(s)ds = 0, almost surely. (4.5)

Proof of Part (a) Fix arbitrary i ∈ [±m,±2m] and s ∈ [0, t]. With Yup, Ylw ∈
YT (α, ρ), we have

sup
s∈[0,t], j∈Z

{
–�(0, j)(Yup(s) − Ylw(s))| j |α} =: N < ∞, (4.6)

and –�(0, j)(Ylw(s)) → ρ, uniformly in s ∈ [t ′, t ′′], as | j | → ∞. Combining the latter
with Y lw

(±2m, j)(s) = Y lw
(0, j)(s) − Y lw

(0,±2m)(s), we obtain

lim inf
m→∞ inf

j∈(±3m,±∞)

{| j |−1Y lw
(±2m, j)(0, t)

} ≥ ρ
3 .
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As Y lw
a ∈ C+([0,∞)), ∀a ∈ Z, from this we further deduce

inf
m∈Z>0

inf
j∈(±3m,±∞)

{| j |−1Y lw
(±2m, j)(0, t)

} =: D > 0.

Inserting this and (4.6) into (4.2), we conclude L̃±
i,m(s) ≤ N

D2

∑
j>3m j−1−α, from

which (4.4) follows. ��
We proceed to proving Part (b). The preceding argument yields a bound on L̃±

i,m(s)
which is uniform over i ∈ [±m,±2m]. Such a uniform bound cannot be achieved for
the short-range interaction L±

i,m(s), because, for example, Ylw ∈ YT (α, ρ) does not

imply Ylw
(i, j)(s) > | j − i |/c for small | j − i |. Instead, we proceed by constructing

certain ‘good’ index set G±
m,k �= ∅, such that L±

i,m(s) is controlled for i ∈ G±
m,k .

To construct G±
m,k , letting p′ ∈ (1,∞) denote the Hölder conjugates of p, i.e.

1/p + 1/p′ = 1, for fixed s ∈ [0,∞) and m ∈ Z>0, we consider the set

Am(s) :=
{
a ∈ L : |Y up

a (s) − Y lw
a (s)| ≥ |m|−α/(3p′)

}
(4.7)

of ‘bad’ indices, where the corresponding terms in the numerator of (4.3) may be large
at time s. For A ⊂ L, i, i ′ ∈ Z, let

g(i,i ′)(A) := sup
j∈(i,i ′]

|(i, j) ∩ A|
| j − i |

denote the maximal cumulative occurrence frequency ofAwhen searching to the right
(when i ′ > i) or left (when i ′ < i) over the interval (i, i ′), starting from i . Consider
the set

I±
m(s) :=

{
i ∈ [±m,±3m] ∩ Z : g(i,±3m)(Am(s)) > m−α/3

}
(4.8)

of ‘bad’ indices, where the occurrence of Am(s) may be large over the interval
(±m,±3m). The sets Am(s) and I±

m(s) are constructed for a fixed s. We now fix

t ′ < t ′′ as in Lemma 4.1, let Tk := {t ′ + (t ′′−t ′)	
k }k	=1, and consider the set

N±
m,k :=

⎧⎨
⎩i ∈ Z : 1

k

∑
s∈Tk

1
{
i ∈ I±

m(s)
} ≤ m−α/(3p′)

⎫⎬
⎭, (4.9)

consisting of ‘good’ indices i such that {I±
m(s) � i} occurs rarely alone the discrete

samples s ∈ Tk of time. The set N±
m,k is constructed for bounding the numerator in

the expression (4.3). As for the denominator, we consider

h(i, j)(y) := inf
i ′∈(i, j]∩Z –�(i,i ′)(y), (4.10)
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and define

G±
m,k :=

{
i ∈ [±m,±2m] ∩ Z : i ∈ N±

m,k, h(i,±3m)(Ylw(t ′, t ′′)) ≥ ρ
3

}
. (4.11)

Let L±,k
i,m := t ′′−t ′

k

∑
s∈Tk L

±
i,m(s) denote the k-th discrete approximation of∫ t ′′

t ′ L±
i,m(s)ds. Having constructedG±

m,k , we proceed to establishing a bound on L±,k
i,m

for i ∈ G±
m,k . Let P := supm∈Z –�

p
(0,m)(Y

up
(t ′, t ′′)), which is almost surely finite as

Yup ∈ RT (p).

Lemma 4.2 For all m, k ∈ Z>0, there exists c = c(t ′′ − t ′, ρ, p) < ∞ such that

L±,k
i∗,m ≤ (1 + P1/p)

c logm

mα/(3p′) , ∀i∗ ∈ G±
m,k . (4.12)

Proof Fixing k,m ∈ Z>0 and i∗ ∈ N±
m,k , we let c < ∞ denote a generic constant

depending only on t ′′ − t ′, ρ, p. We begin by bounding the expression L±
i∗,m(s), for

s ∈ Tk , to which end we consider separately the two cases (i) {I±
m(s) �� i∗}; and (ii)

{I±
m(s) � i∗}.
(i) In (4.3), using Ylw(s) ≤ Yup(s) and h(i∗,±3m)(Ylw(t ′, t ′′)) ≥ ρ

3 , we bound
the denominator from below by (| j − i∗|ρ/3)2. As for the numerator, we divide
Y up

(i∗, j)(s) − Y lw
(i∗, j)(s) = ∑

a∈(i, j)(Y
up
a (s) − Y lw

a (s)) into two sums subject to the
constraints {a /∈ Am(s)} and {a ∈ Am(s)}. The former sum, by (4.7), is bounded by
m−α/(3p′)| j − i∗|. As for the latter, we apply the Hölder inequality to obtain

∑
a∈(i∗, j)

(
|Y up

a (s) − Y lw
a (s)|

)
(1{a ∈ Am(s)})

≤
( ∑
a∈(i∗, j)

Y up
a (s)p

)1/p( ∑
a∈(i∗, j)

1{a ∈ Am(s)}
)1/p′

≤ (| j − i∗|P)1/p
(
g(i∗,±3m)(Am(s)) | j − i∗|

)1/p′
.

With i∗ /∈ I±
m(s), we have g(i∗,±3m)(Am(s)) ≤ m−α/3, so the last expression is

further bounded by cP1/pm−α/(3p′)| j − i∗|. Combining the preceding bounds yields

L±
i∗,m(s)≤c(1+P1/p)m−α/(3p′) ∑

j∈(i∗,±3m]

| j − i∗|
| j − i∗|2 ≤ c(1 + P1/p)m−α/(3p′) logm.

(4.13)

(ii) Using Yup(s) ≥ Ylw(s) in (4.3), we bound the j th term by 1/Y lw
(i∗, j)(s). This,

with h(i∗,±3m)(Ylw(t ′, t ′′)) ≥ ρ
3 , is further bounded by (| j− i∗|ρ/3)−1. Consequently,

L±
i∗,m(s) ≤ c log(m + 1). (4.14)
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Although the bound (4.14) is undesired (→ ∞ as m → ∞), the corresponding
case {s ∈ Tk : I±

m(s) � i∗} occurs at low frequency ≤ m−α/(3p′). Hence

t ′′ − t ′

k

∑
s∈Tk

1
{
I±
m(s) � i∗

}
L±
i∗,m(s) ≤ c log(m + 1)m−α/(3p′). (4.15)

Averaging (4.13) over s ∈ Tk for {s ∈ Tk : I±
m(s) �� i∗}, and combining the result

with (4.15), we conclude (4.12). ��
Next, we show that G±

m,k is nonempty for all large enough m.

Lemma 4.3 We have lim inf
m→∞

(
inf

k∈Z>0

|G±
m,k |

) ≥ 1, almost surely.

With G±
m,k defined as in (4.11), proving |G±

m,k | ≥ 1 requires finding i ∈ [±m,±2m)

such that h(i,±3m)(y) ≥ ρ
3 for y = Ylw(t ′, t ′′). This is conveniently reduced to esti-

mating –�[±m, j)(y), j ∈ [±2m,±3m], by the following Lemma.

Lemma 4.4 Let y ∈ [0,∞]L, i+1 < i+2 ≤ i+3 and i−3 ≤ i−2 < i−1 , where i
±
1 , i±2 ∈ Z

and i±3 ∈ Z ∪ {±∞}. If, for some γ ∈ (0,∞),

–�(i±1 ,i)(y) > γ, ∀ i ∈ [i±2 , i±3 ] ∩ Z, (4.16)

then there exists i±∗ ∈ [i±1 , i±2 ) ∩ L such that h(i±∗ ,i±3 )(y) ≥ γ .

Proof Without lost of generality we consider only the + case. Let f be the counting
function f : Z → R, i �→ ∑

a∈(i+1 ,i) ya , and letL := {(x, γ (x− i+1 )) : x ∈ R} denote
the straight line of slope γ passing through (i+1 , 0). By (4.16), the graph of f is above
L for all i ∈ [i+2 , i+3 ] ∩ Z. Hence, letting

i+∗ := sup
{
i ∈ [i+1 , i+2 ] ∩ Z : (i, f (i)) is not above L

} ≥ i+1 ,

we clearly have f (i)− f (i+∗ )

i−i+∗
≥ γ , for all i ∈ [i+2 , i+3 ] ∩ Z, which is equivalent to

h(i+∗ ,i+3 )(y) ≥ γ . ��

Proof of Lemma 4.3 Fixingm, k ∈ Z>0, to simply notations, we omit the dependence
onm, k of the index sets (e.g.N± := N±

m,k) and let Ỹ
±
a := Y lw

a (t ′, t ′′)1{a ∈ N± ± 1
2 }.

We show

–�(±m,± j)(Ỹ±) >
ρ
3 , ∀ j ∈ [±2m,±3m], ∀ large enough m. (4.17)

This, by Lemma 4.4 for (i±1 , i±2 , i±3 ) = (±m,±2m,±3m), implies the existence
of I± ∈ [±m,±2m) ∩ Z such that h(I±,±3m)(Ỹ±) ≥ ρ

3 . For such I±, we have
h(I±,±3m)(Y

lw(t ′, t ′′)) ≥ ρ
3 and Ỹ(I±,I±±1) ≥ ρ

3 > 0. The later implies I± ∈ N±,
and therefore I± ∈ G±. Hence, it suffices to prove (4.17).
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To the end of showing (4.17), with Ỹ± defined as in the preceding, we begin by
estimating |(N±)c|. To this end, asN± is defined in terms of A(s) and I±(s), we first
establish bounds on |A(s) ∩ (±m,±3m)| and |I±(s)|. Fixing s ∈ [t ′, t ′′], with N as
in (4.6) and A(s) as in (4.7), we have

|A(s) ∩ (±m,±3m)| ≤ |A(s) ∩ (0,±3m)| ≤ (3m)1−αN
m−α/(3p′) ≤ (3m)1−

2α
3 N . (4.18)

Proceeding to bounding |I±
m(s)|, we require the following inequality: for any finite

A ⊂ L, n ∈ Z>0, we have

|I±
n | ≤ n|A|, where I±

n :=
{
i ∈ Z : g(i,±∞)(A) > n−1

}
⊂ L. (4.19)

To prove this inequality, we image a pile of n particles at each site ofA, and topple
the particles to the left (for +) or right (for −) in any order, so that each sites of L

contains at most one particle. Letting A±
n ⊂ L denote the resulting set of particles,

we clearly have I±
n ⊂ (A±

n ∓ 1
2 ) and |A±

n | = n|A|, thereby concluding (4.19). Now,
with I±(s) as in (4.8), combining (4.18) and (4.19) for A = A(s) ∩ (±m,±3m) and
n = �mα/3�, we arrive at

|I±(s)| ≤ �mα/3�|A(s) ∩ (±m,±3m)| ≤ 6Nm1− α
3 .

Now, with N± as in (4.9), we have 1{i /∈ N±} ≤ m
α
3p′ 1

k

∑
s∈Tk 1{i ∈ I±(s)}.

Summing both sides over i ∈ Z, we arrive at

|(N±)c| ≤ 1

k

∑
s∈Tk

|I±(s)|m α
3p′ ≤ 6Nm1−α′

, (4.20)

where α′ := α
3

(
1 − 1

p′
)

> 0.

We proceed to proving (4.17). Fix j ∈ [±2m,±3m]. With Ỹ± defined as in the
proceeding, we have

–�(±m, j)(Ỹ±)= –�(±m, j)(Ylw(t ′, t ′′))− 1

| j ∓ m|
∑

(±m, j)

Y lw
a (t ′, t ′′)1

{
a ∈ (N±)c ± 1

2

}
.

For the last term, with 1
| j∓m| |(N±)c| ≤ 6Nm−α′

(by (4.20)) and Ylw ∈ RT (p),
we have

1

| j ± m|
∑

(±m, j)

Y lw
a (t ′, t ′′)1

{
a ∈ (N±)c ± 1

2

} m→∞−−−−→ 0,

uniformly in j ∈ [±2m,±3m].
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Consequently, to prove (4.17),wemay and shall replace Ỹ± withYlw(t ′, t ′′). Apply-
ing the continuity estimate (3.7) for Y ∗ = Y lw

a , we have

–�(±m, j)(Ylw(t ′, t ′′)) ≥ –�(±m, j)(Ylw(t ′′)) − –�(±m, j)(Qt ′(t ′′)).

With Ylw ∈ YT (α, ρ), the first term on the r.h.s. converges to ρ as m → ∞,
uniformly in j ∈ [±2m,±3m]. With q(t ′′ − t ′, 1) ≤ ρ

2 , by (3.5), the last term
contributes ≥ −ρ

2 as m → ∞. Combining the preceding we conclude (4.17). ��
Based on Lemmas 4.2, 4.3, we now prove Lemma 4.1(b).

Proof of Lemma 4.1(b) By Lemmas 4.2, 4.3, we have that

inf
i∈[±m,±2m] L

±,k
i,m ≤ (1 + P1/p)cm−α/(3p′) log(1 + m).

Since the constant c does not depend on k, upon letting k → ∞, by the continuity

of Y up
a (·) and Y lw

a (·), the l.h.s. tends to (inf i∈[±m,±2m]
∫ t ′′
t ′ L±

m,i (s)ds). Consequently,
further letting m → ∞, we complete the proof. ��
Proof of Proposition 2.7 Fixing arbitrary t > 0, we partition [0, t] into j∗ equally
spaced subintervals [t j−1, t j ], j = 1, . . . , j∗, so that q(t/j∗, 1) <

ρ
2 (for q(t, 1) as in

(3.5)). By (2.21), we have

E(i1,i2)(t j−1, t j ) ≤ E(i1,i2)(t j−1) + β

∫ t j

t j−1

(
L+
i2
(s) + L−

i1
(s)

)
ds,

where E(i1,i2)(t j−1, t j ) := sups∈[t j−1,t j ] E(i1,i2)(s) by our convention. Letting
(i1, i2) → (−∞,∞) and combining the result for j = 1, . . . , j∗, we obtain

E(−∞,∞)(0, t) ≤ β

j∗∑
j=1

lim inf
i→∞

∫ t j

t j−1

(
L+
i (s) + L−

−i (s)
)
ds. (4.21)

Now, with L±
i (s) = L±

i,m(s) + L̃±
i,m(s), we have

inf
i∈[±m,±2m]

∫ t j

t j−1

L±
i (s)ds ≤ inf

i∈[±m,±2m]

∫ t j

t j−1

L±
i,m(s)ds+ sup

i∈[±m,±2m]

∫ t j

t j−1

L̃±
i,m(s)ds.

Applying Lemma 4.1 to bound the r.h.s., letting m → ∞, and plugging the result
in (4.21), we thus conclude E(−∞,∞)(0, t) = 0. ��

5 Existence, Proof of Proposition 2.5

Fix γ > 0 and yin ∈ [γ,∞)L as in Proposition 2.5. We consider first the special
case of equally spaced initial condition, zin := γ = (. . . , γ, γ, . . .), and construct
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the corresponding iteration sequence {Z(n)}n∈Z≥0 . For n = 0, Z(0) is theFW-adapted
Bessel process (as in (2.8a)) starting at γ . Recalling Y(γ ) and YT (γ ) are defined as
in (2.10), (2.11), we check that Z(0) is YT (γ )-valued.

Lemma 5.1 We have Z(0) ∈ YT (γ ).

Proof Fix arbitrary t ≥ 0. With Z (0)
a satisfying (2.8a) and Z (0)

a (0) = γ , averaging
(2.8a) over a ∈ (0,m) using Wa(t) = Ba+1/2(t) − Ba−1/2(t), we obtain

inf
s∈[0,t]

{
–�(0,m)

(
Z(0)(s)

)}
− γ ≥ − sup

s∈[0,t]
|m|−1|Bm(s) − B0(s)|.

Upon letting |m| → ∞, the r.h.s. tends to zero, whereby Z(0) ∈ YT (γ ) follows.
��

For n > 0, we construct theFW-adapted,YT (γ )-valued processZ(n) by induction

on n, using Lemma 3.3. That is, fixing n > 0, for each a ∈ L, we let Z (n)
a be the

unique solution of (3.12) for F(y, s) = −ψa(y,Z(n−1)(s)), assuming Z(n−1) is the
FW-adapted, YT (γ )-valued process satisfying (2.8). For Lemma 3.3 to apply, we
indeed have that F(0, s) = 0, that F(y, s) is FW-adapted (since Z(n−1)(s) is), and
that F(·, s) is uniformly Lipschitz, by (3.1). This yields the unique FW-adapted,
C+([0,∞))L-valued process Z(n).

To complete the construction, we show that Z(n) is also YT (γ )-valued. To this
end, we first establish the shift-invariance of Z(n). We say Z : [0,∞) → [0,∞)L is

shift-invariant if Z(·) distr= (Za+i (·))a∈L := θi (Z(·)), ∀i ∈ Z.

Lemma 5.2 The processes Z(0), . . . ,Z(n), constructed in the preceding, are shift-
invariant.

Proof We prove by induction on j the stronger statement

(
Z( j)(·),W(·)) distr=

(
θiZ( j)(·), θiW(·)), ∀i ∈ Z. (5.1)

This is clear for j = 0. For j > 0, with ψa(y, z) as in (2.3), we have ψa+i (y, z) =
ψa(y, θi (z(s))). Using this in (2.8b), we obtain

Z ( j)
a+i (t) = γ + Wa+i (t) + β

∫ t

0

(
1

Z ( j)
a+i (s)

− ψa

(
Z ( j)
a+i (s), θi

(
Z( j−1)(s)

)))
ds.

Combining this with the induction hypothesis, we then deduce that Z := θi (Z( j))

solves

Za(t) = γ + W ′
a(t) + β

∫ t

0

(
1

Za(s)
− ψa(Za(s),Z′(s))

)
ds, a ∈ L,

for (Z′,W′) distr= (Z(i−1),W). (5.2)
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826 L.-C. Tsai

Indeed, Z( j) also solves (5.2). By Lemma 3.3, for each a ∈ L, the solution of (5.2)
is unique in the pathwise sense, so the system of SDE (5.2) must also enjoy pathwise
uniqueness. Since pathwise uniqueness implies uniqueness in law in finite dimensions
(e.g. [10, Proposition 5.3.20]), by first considering a ∈ I := (i1, i2) ∈ L and letting
(i1, i2) → (−∞,∞), we obtain the uniqueness in law of (5.2). This completes the
induction. ��

Equipped with Lemma 5.2, we proceed to showing Z(n) ∈ YT (γ ). To this end,
letting η(i1,i2)(y) := ∑

a∈(i1,i2) ηa(y) (where ηa(y) is defined as in (2.2)), we will use
the following readily verified identity (c.f. (2.1)) in the proof of Lemma 5.3:

η(i1,i2)(y) = η
up
(i1,i2)

(y) − ηlw(i1,i2)(y), (5.3)

where i− := (i1 ∧ i2) < i+ := (i1 ∨ i2) and

η
up
(i1,i2)

(y) :=
∑

i∈(i1,i2]

1

2y(i1,i)
+

∑
i∈(i2,i1]

1

2y(i2,i)
, (5.4)

ηlw(i1,i2)(y) := η̃
lw,+
(i1,i2)

(y(i1,i2), y) + η̃
lw,−
(i1,i2)

(y(i1,i2), y), (5.5)

η̃
lw,±
(i1,i2)

(z, y) :=
∑

i ′∈(i±,±∞)

z

2(z + y(i,i ′))y(i,i ′)
. (5.6)

Note that the expressions η(i1,i2)(y), η
up
(i1,i2)

(y) and ηlw(i1,i2)
(y) are well-defined for

all y ∈ Y(γ ).

Lemma 5.3 Let Z(0), . . . ,Z(n), with {Z(i)}n−1
i=0 ⊂ YT (γ ) and Z(n) ∈ C+([0,∞))L,

be as in the proceeding, we have Z(n) ∈ YT (γ ).

Proof Let V n
(i1,i2)

(s) := –�(i1,i2)(Z
(n)(s)). With Z(n) ∈ C+([0,∞))L, fixing t ≥ 0,

it suffices to show (lim inf |m|→∞ V n
(0,m)(0, t)) ≥ γ . We achieve this in two steps by

showing

(i) lim|m|→∞ V n
(0,m)(s

′) ≥ γ almost surely, for each fixed s′ ∈ [0, t];
(ii) lim inf|m|→∞ V n

(0,m)(t) ≥ γ almost surely.

(i) Fixing s′ ∈ [0, t], we begin by deriving a lower bound on V n
(0,m)(s

′). With

Z(n−1)(·) ≥ Z(n)(·) (by Proposition 3.1), by (2.15) we have

1
Z (n)
a (s)

− ψa(Z
(n)
a (s), Z(n−1)

a (s)) ≥ 1
Z (n−1)
a (s)

− ψa(Z
(n−1)
a (s),

Z(n−1)
a (s)) = ηa(Z(n−1)(s)).

Inserting this into (2.8b), summing the result over a ∈ (0,m), and dividing both
sides by |m|, with ∑

a∈(0,m) Wa(s′) = Bm(s′) − B0(s′), Z (n)
a (0) = γ and (5.3), we

have
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V n
(0,m)(s

′) ≥ γ + |m|−1(Bm(s′) − B0(s
′)) − β

|m|
∫ s′

0
ηlw(0,m)(Z

(n−1)(s))ds. (5.7)

As lim|m|→∞(|m|−1(Bm(s′) − B0(s′))) = 0 almost surely, it clearly suffices to
show

∫ s′

0
|m|−1ηlw(0,m)(Z

(n−1)(s))ds −→ 0 almost surely, as |m| → ∞. (5.8)

With {Z (n)
a (s′)}a∈L being shift-invariant (by Lemma 5.2) and having a finite first

moment (since Z(n)(s′) ≤ Z(0)(s′)), by the Birkhoff–Khinchin ergodic theorem, we
have that V n

(0,m)(s
′) converges almost surely (to a possibly random limit) as |m| → ∞.

Using this, we further reduce showing (5.8) to showing

∫ s′

0
|m|−1ηlw(0,m)(Z

(n−1)(s))ds �⇒ 0, as |m| → ∞, (5.9)

where ⇒ denotes convergence in law.
We proceed to showing (5.9). This, with (5.5), amounts to estimating η

lw,±
I (y) :=

η̃
lw,±
I (yI , y), for I := (0,m) and y = Z(n−1)(s). With Z (n−1)

a satisfying (2.8b), by

(3.8) we have that Z (n−1)
a (s′) ≤ Z (n−1)

a (0)+ Q0,s′
a = γ + Q0,s′

a . Combining this with
(3.5), we have

N := sup
{
V n−1

(0,m)(0, s
′) : m ∈ Z

}
< ∞.

With Z(n−1) ∈ YT (γ ), we have D := inf
{
V n−1

(i,0)

(
0, s′), i �= 0

}
> 0.

With

η
lw,−
(0,|m|)(y) =

∞∑
i=1

y(0,|m|)
y(−i,|m|)y(−i,0)

, η
lw,+
(0,−|m|)(y) =

∞∑
i=1

y(−|m|,0)
y(0,i)y(−|m|,i)

,

so by the preceding bounds we then have

∫ s′

0
|m|−1η

lw,∓
(0,±|m|)

(
Z(n−1)(s)

)
ds ≤ s′

∞∑
i=1

N

2(i D + |m|N )i D
a.s.−→ 0, as |m| → ∞.

(5.10)

Next, using the shift-invariance of Z(n−1), we have

η
lw,∓
(0,±|m|)

(
Z(n−1)(s)

)
distr= η

lw,∓
(0,±|m|)

(
θ∓|m|(Z(n−1)(s))

)
= η

lw,∓
(0,∓|m|)

(
Z(n−1)(s)

)
.
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828 L.-C. Tsai

Combining this with (5.10) yields

∫ s′

0
|m|−1η

lw,∓
(0,∓|m|)

(
Z(n−1)(s)

)
ds �⇒ 0, as |m| → ∞.

From this and (5.10) we conclude (5.9), thereby completing the proof of (i).
(ii) With (i), this is achieved by a continuity estimate based on (3.7). To this end,

partition [0, t] into j∗ equally spaced subintervals 0 = t0 < · · · < t j∗ = t . For each

a ∈ L, with Z (n)
a satisfying (2.8b), we apply (3.7) for Y ∗ = Z (n)

a . Averaging the result
over a ∈ (0,m), we obtain

V n
(0,m)(t j−1, t j ) ≥ V n

(0,m)(t j ) − –�(0,m)

(
Qt j (t j−1)

)
. (5.11)

Letting |m| → ∞, by (i) and (3.5), we have

lim inf|m|→∞ V n
(0,m)(t j−1, t j ) ≥ γ − q(t/j∗, 1).

Combining this for j = 1, . . . , j∗, using the readily verified inequality

lim inf|m|→∞ fm(0, t) ≥
j∗

min
j=1

{
lim inf|m|→∞ fm(t j−1, t j )

}
, fm(·) : [0,∞) → R,

we thus conclude (lim inf |m|→∞ V n
(0,m)(0, t)) ≥ γ − q(t/j∗, 1), almost surely. With

j∗ being arbitrary, the proof is completed upon letting j∗ → ∞, (whence q(t/j∗, 1)
→ 0). ��

Having constructed the iteration sequence {Z(n)}n for zin = γ , with Z(n)(·) ≥
Z(n+1)(·) (by Proposition 3.1), we let Z (∞)

a (t) := limn→∞ Z (n)
a (t) ≥ 0 denote the

limiting process. We next establish a lower bound on the average spacing of Z(∞).

Lemma 5.4 We have Z(∞) ∈ Y ′
T (γ ) almost surely, where

Y ′
T (γ ) :=

{
y(·) : [0,∞) → [0,∞)L : lim inf|m|→∞ inf

s∈[0,t] –�(0,m)(y(s)) ≥ γ,∀t ≥ 0
}
.

(5.12)

Proof Fixing t ≥ 0, we let V∞
I (s) := –�I(Z(∞)(s)), and recall that V n

I (s) :=
–�I(Z(n)(s)). As already mentioned in the proof of Lemma 5.3, since Z(n) is shift-
invariant for n ∈ Z>0 and (hence) for n = ∞, and since each Z (n)

a as a finite mean
for n ∈ Z>0 ∪ {∞} (because Z(∞)(s) ≤ Z(0)(s)), by the Birkhoff–Khinchin ergodic
theorem, the limits

V n(s) := lim|m|→∞ V n
(0,m)(s), V∞(s) := lim|m|→∞ V∞

(0,m)(s),

exists almost surely.
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As in the proof of Lemma 5.3, we proceed by first proving V∞(s) ≥ γ almost
surely, for any fixed s ∈ [0, t]. With Z (∞)

a (s) ≤ Z (n)
a (s) ≤ Z (0)

a (s) ≤ γ + Q0,s
a , we

have that {V n
(0,m)(s)}m∈Z is uniformly integrable, for n ∈ Z≥0 ∪ {∞}. Consequently,

we have

E(V n(s)) = lim|m|→∞ E

(
V n

(0,m)(s)
)

= lim|m|→∞ E

(
–�(0,m)(Z(n)(s))

)

= E(Z (n)
1/2(s)), ∀n ∈ Z≥0 ∪ {∞}.

With Z (n)
1/2(s) ↘ Z (∞)

1/2 (s), we thus conclude E(V n(s)) → E(V∞(s)). Combin-

ing this with V n(s) ≥ V∞(s) ≥ 0 (as Z(n)(s) ≥ Z∞(s) ≥ 0), we further obtain
that V n(s) → V∞(s) almost surely. By Lemma 5.3, V∞(s) ≥ γ almost surely, so
V∞(s) ≥ γ almost surely.

Now, letting n → ∞ in (5.11), we obtain

V∞
(0,m)(t j−1, t j ) ≥ V∞

(0,m)(t j ) − –�(0,m)(Qti (t j−1)).

With this and V∞(t j ) ≥ γ , the proof is completed by following the same continuity
argument as in the proof of Lemma 5.3(ii). ��

Now,we turn to the initial condition yin ∈ [γ,∞)L and construct the corresponding
iteration sequence and limiting process.

Lemma 5.5 Let yin ∈ [γ,∞)L be as in the preceding. There exists a YT (γ )-
valued, FW-adapted, decreasing sequence {Yn}n∈Z≥0 satisfying (2.8). Further, with

Y (∞)
a (t) := limn→∞ Y (n)

a (t) ≥ 0 denoting the limiting process, we have Y(∞) ∈
Y ′
T (γ ).

Proof To construct such a sequence {Yn}n , as seen from the proceeding construction of
{Zn}n , it suffices to showY(n) ∈ YT (γ ). This follows directly by induction on n using
Proposition 3.1, which assures Y(n)(·) ≥ Z(n)(·). Letting n → ∞ in the previous
inequality, we obtain Y(∞)(·) ≥ Z(∞)(·), thereby concluding Y(∞) ∈ Y ′

T (γ ). ��

With Y(∞) constructed as in the preceding, we proceed to showing that Y(∞) is
in fact a YT (γ )-valued solution. This is done in a slightly more general context as
follows.

Proposition 5.6 Let {Y[n]}n∈Z>0 be a nonnegative decreasing sequence such that
either

(i) (2.8b) holds; or
(ii) Y[n] solves (2.5) for all n.

Let Y [∞]
a (t) := limn→∞ Y [n]

a (t) denote the limiting process. IfY[∞] ∈ Y ′
T (γ ), γ > 0,

and Y[∞](0) ∈ (0,∞)L, then Y[∞] is a YT (γ )-valued solution of (2.5).
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Proof Fixing t ≥ 0 and a∗ ∈ L, we begin by showing

Y [∞]
a∗ (0, t) > 0, almost surely. (5.13)

This is achieved by first showing that there exists J± ∈ (a∗,±∞) ∩ Z such that

h(J±,±∞)(Y
[∞](0, t)) ≥ γ

2 , (5.14)

(where hI(y) is as in (4.10)), and then, using (5.14) to reduce the problem to finite
dimensions, whereby showing that Y [∞]

a (0, t) > 0, ∀a ∈ (J−, J+). Without lost of
generality, we assume t is small enough such that q(t, 1) < γ/2, since the general
case follows by partition [0, t] into small enough subintervals. With Y [n]

a solving an
equation of the type (3.6), applying (3.7) for Y ∗ = Y [n]

a , we obtain

–�(a∗,m)(Y[n](0, t)) ≥ –�(a∗,m)(Y[n](t)) − –�(a∗,m)(Q0(t)).

Sending n → ∞ and |m| → ∞ in order, with Y[∞](t) ∈ Y ′
T (γ ) and (3.5), we

obtain

lim inf|m|→∞

{
–�(a∗,m)(Y[∞](0, t))

}
≥ γ − q(t, 1) >

γ
2 .

From this we obtain some random I± ∈ (a∗,±∞)∩Z such that –�[a∗,i)(Y
[∞](0, t)) >

γ
2 , ∀i ∈ (−∞, I−] ∪ [I+,∞). Combining this with Lemma 4.4 for (i±1 , i±2 , i±3 ) =
(a∗ ± 1

2 , I
±,±∞) we obtain the desired J± ∈ (a∗,±∞) ∩ Z satisfying (5.14).

Equipped with (5.14), we proceed to truncating the equation of Y[n], (2.8b) or
(2.5), at the finite window J := (J−, J+). To this end, we express (2.8b) and (2.5) as
a system of finite-dimensional equations with external forces (i.e. (3.19)), as

Y [n]
a (t) = Y [n]

a (0) + Wa(t)

+ β

∫ t

0

(
ηIa (Y [n]

a (s),Y[n](s)) + Y [n]
a (s)Z∗∗

a (s)
)
ds, ∀ a ∈ J, (5.15)

where the external force Z∗∗
a (s) := z∗∗,I

a (Y[n](s),Y[n−1]
a (s)) takes the form

z∗∗,A
a (y, y′) :=

{
z1,Aa (y, y′) := 1

y

(
ψA
a (y, y)−ψA

a (y, y′)−ψAc

a (y, y′)
)
, for (2.8b),

z2,Aa (y) := − 1
yψ

Ic
a (y, y), for (2.5).

With {Y[n]} being decreasing, by (3.18) we have

ψA
a (y,Y[n](s)) − ψA

a (y,Y[n−1](s)) ≥ 0, ψAc

a (y,Y[n−1](s)) ≤ ψAc

a (y,Y[n](s)),
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so z1,Aa (Y[n]
a (s),Y[n−1](s)) ≥ z2,Aa (Y[n](s)). Further, with ψIc

a (y, y) as in (3.15), we
have z2,Ia (y) ≥ − 1

2

∑
σ=±

∑∞
i=1(y(Jσ ,Jσ +σ i))

−2. Using (5.14), we thus conclude

Z∗∗
a (s) ≥ z2,Ia (Y[n](s)) ≥ −

∞∑
i=1

(iγ /2)−2 =: c∗ > −∞.

With this, letting Y(i1,i2) be the C+([0,∞))(i1,i2)∩L-valued solution of (3.19) for
Z∗
a(s) = c∗, by Lemma 3.7 we have Y[n] ≥I[0,t] YI ∈ C+([0,∞))I. As a∗ ∈ I,

letting n → ∞, we conclude (5.13).
By (5.13), we now have

Y[∞] ∈ Y ′
T ∩

{
y : [0,∞) → R : y(0, t) > 0,∀t > 0

}L
. (5.16)

With this, we now let n → ∞ in the equation for Y[n], (2.8b) or (2.5). By the
dominated convergence theorem, we have

lim
n→∞

∫ t

0

1

Y [n]
a (s)

ds =
∫ t

0

1

Y [∞]
a (s)

ds < ∞,

lim
n→∞

∫ t

0
ψa(Y

[n]
a ,Y[n−1](s))ds =

∫ t

0
ψa(Y

[∞]
a ,Y[∞](s))ds < ∞,

lim
n→∞

∫ t

0
ψa(Y

[n]
a ,Y[n](s))ds =

∫ t

0
ψa(Y

[∞]
a ,Y[∞](s))ds < ∞,

soY[∞] solves (2.5). This automatically implies thatY[∞] ∈ C([0,∞))L.With (5.16),
we thus conclude that Y[∞] ∈ YT (γ ). ��
Proof Combining Lemma 5.5 and Proposition 5.6, we conclude thatY(∞) is aYT (γ )-
valued solution of (2.5). To show that it is the greatest solution, we consider a generic
a YT -valued solution Y′ with Y′(0) ≤ yin. With Y′ and Y(n) solving the respective
equations, (2.5) and (2.8), following the comparison argument as in the proof of
Proposition 3.1, we obtain that Y′(·) ≤ Y(n)(·), ∀n ∈ Z≥0. Upon letting n → ∞
we obtain Y′(·) ≤ Y(∞)(·). Next, assuming yin ∈ RT (p), with Y (∞)

a solving (2.5),
applying (3.8) for Y ∗ = Y (∞)

a , we have (Y (∞)
a (t))p ≤ (yina + Q0,t

a )p ≤ 2p((yina )p +
(Q0,t

a )p). From this and (3.5), we conclude Y(∞) ∈ RT (p). ��

6 Existence: Proof of Proposition 2.6

Fixing yin ∈ Y(α, ρ) and a sequence 1 ≥ γ1 ≥ γ2 ≥ · · · → 0, we let Y∨γn be as in
Proposition 2.6. Let mi := �i1/α�, for i ≥ 0, and mi := −m|i | for i < 0. For any
fixed k ∈ Z>0, we construct a partition {AL

b,k}b∈L of L by letting m̃k
i := mki ,

Ab,k := (m̃k
b−1/2, m̃

k
b+1/2), AL

b,k := Ab,k ∩ L. (6.1)

123



832 L.-C. Tsai

This partition is constructed so that |AL

k,b| ∼ k(m̃k
|b|+1/2)

1−α . More precisely, with

|AL

b,k | = m̃k
|b|+1/2−m̃k

|b|−1/2 and �y − x� ≤ �y�−�x� ≤ �y − x�, ∀x ≤ y ∈ [0,∞),
we have

|AL

b,k | ≥ � k
1
α

2α |b| 1−α
α � ≥ � k

α21/α
(mk(|b|+1/2))

1−α�, (6.2)

|AL

b,k | ≤ � k
1
α

α
(|b| + 1

2 )
1−α
α � ≤ � k

α21/α
(mk(|b|+1/2) + 1)1−α�. (6.3)

With (6.2), (6.3) and –�Ab,k (y) = 1
|AL

b,k |
∣∣∑

a∈(0,m̃k
b+1/2)

(y) − ∑
a∈(0,m̃k

b−1/2)
(y)

∣∣, we
have

∣∣ –�(0,m)(y) − ρ
∣∣ ≤ 1

|AL

b,k |
|y|α,ρ

(
|m̃k

b+1/2|1−α + |m̃k
b−1/2|1−α

)
≤ c

k |y|α,ρ, (6.4)

where |y|α,ρ is defined as in (1.7). Hereafter, we assume k ∈ Z>0 is large enough so
that {Ab,k}b is nondegenerated: i.e. Ab,k �= ∅, ∀b ∈ L.

Recall that Y(t) := limn→∞ Y∨γn (t). The main step of the proof is to establish
lower bound on –�Ab,k (Y(s)), uniform in s ∈ [0, t]. To this end, we will repeatedly
use the following inequalities (6.5), (6.6). Recall η

up
I (y) and ηlwI (y) are defined as in

(5.4), (5.5).

Lemma 6.1 Let Y∗ be a YT -valued solution of (2.5), K ⊂ I ⊂ K′ ⊂ L be nested
intervals, and s′ < s′′ ∈ [0, t]. We have that

–�K(Y∗(s′′)) ≥ –�K(Y∗(s′)) − β

|K ∩ L|
∫ s′′

s′
ηlwI (Y∗(s))ds − B̂K′

K (t) − λK
′

K (Qs′,s′′),

(6.5)

–�K(Y∗(s′′)) ≤ –�K(Y∗(s′)) + β

|K ∩ L|
∫ s′′

s′
η
up
I (Y∗(s))ds + B̂K′

K (t) + λK
′

K (Y∗(s′)),

(6.6)

where

B̂K′
K (t) := 4

|K ∩ Z| sup
j∈K′\K

|Bj |(0, t), λK
′

K (y) := 1

|K ∩ Z|
∑

a∈K′\K
ya,

and K′ denotes the closure of K′.

Proof Let I := (i1, i2) ∩ L. With Y∗ satisfying (2.5), we have

∑
a∈I

Y ∗
a (s)

∣∣∣s=s′′

s=s′
= β

∫ s′′

s′
ηI(Y∗(s))ds + (Bi2(s) − Bi1(s))

∣∣∣s=s′′

s=s′
. (6.7)
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Expressing the l.h.s. as

∑
a∈K

Y ∗
a (s′′) −

∑
a∈K

Y ∗
a (s′) +

∑
a∈I\K

Y ∗
a (s)

∣∣∣s=s′′

s=s′
.

By (3.8) we have
∑

a∈I\K Y ∗
a (s)|s=s′′

s=s′ ≤ ∑
a∈K′\K Qs′,s′′

a , and with Y ∗
a (s′′) > 0,

we clearly have
∑

a∈I\K Y ∗
a (s)|s=s′′

s=s′ ≥ −∑
a∈K′\K Y ∗

a (s′). Combining these with
(6.7), and dividing both sides by |K ∩ Z|, with (5.3), we conclude (6.5), (6.6). ��

Recalling the definition of q(t, 1) from (3.5), we begin by establishing the following
preliminary estimate.

Proposition 6.2 Fix t < ∞ and let τ < ∞ be such that q(τ, 1) = ρ
400 . For any

t∗ ∈ [0, t − τ ], if there exists K∗ ∈ Z>0 such that

–�Ab,k (Y(t∗)) >
3ρ
4 , ∀b ∈ L, k ≥ K∗, (6.8)

then there exists some K ∈ Z>0, satisfying the tail bound

P(K ≥ k) ≤ exp
(
−k1/α/c

)
, where c = c(yin, α, ρ, t, β) < ∞, (6.9)

such that

–�Ab,k (Y(s)) ≥ ρ
2 , ∀s ∈ [t∗, t∗ + τ ], b ∈ L, k ≥ K∗ ∨ K . (6.10)

Proof Throughout this proof we let c < ∞ denote a generic finite constant depending
only on yin, α, ρ, t, β.

Fixing arbitrary n ∈ Z>0, we let Sb,k := inf{s ≥ t∗ : –�Ab,k (Y
∨γn (s)) <

ρ
2 }

and Tk := (t∗ + τ) ∧ (infb∈L Sb,k). With Y(t) := limn→∞ Y∨γn (t), proving (6.10)
amount to proving Tk = t∗ + τ , for all k ≥ K , where K ∈ Z>0 satisfies (6.9).
However, as Tk involves infinitely many Ab,k , b ∈ L, it is not even clear, a-priori,
whether Tk > t∗. We circumvent this problem by truncating Tk as follows. Consider
theYT (γn)-valued solutionZ of (2.5) starting from (. . . , γn, γn, . . .), given by Propo-
sition 2.5.WithZbeing shift-invariant (byLemma5.2), fixing arbitrary 	 ∈ Z>0, by the
Birkhoff–Khinchin ergodic theorem, we have limm→∞ –�(±	,±m)

(
Z(0, t)

) = Z > 0,
so –�(±	,±m)

(
Z(0, t)

)
> Z

2 := Z ′ for all |m| large enough, |m| ≥ M0.With this, apply-
ing Lemma 4.4 for (i±1 , i±2 , i±3 ) = (±	,±M0,±∞), we obtain M± ∈ [±	,±∞)∩ Z

such that

h(M±,±∞)(Y∨γn (0, t)) ≥ h(M±,±∞)(Z(0, t)) ≥ Z ′ > 0. (6.11)

Having constructed M±, we set

{b ∈ L : Ab,k ⊂ (M−, M+)} =: (J−, J+) ∩ L, J− ≤ J+ ∈ Z,
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834 L.-C. Tsai

and define the truncation of Tk as T̃k := (t∗ + τ) ∧ (infb∈(J−,J+) Sb,k). Instead of
proving Tk = t∗ + τ , we prove T̃k = t∗ + τ for all large enough 	 (which yields
Tk = t∗ + τ upon letting 	 → ∞), or equivalently

–�Ab,k (Y
∨γn (T̃k)) ≥ ρ

2 , ∀b ∈ (J−, J+), k ≥ K , large enough 	, (6.12)

where K satisfies the tail bound (6.9).
To the end of proving (6.12), fixing arbitrary b ∈ (J−, J+), we let Ã := (Ab−1,k ∪

Ab,k ∪ Ab+1,k) denote the union of three consecutive intervals, and apply (6.5), for
arbitrary fixed I := (i1, i2) ∩ L satisfying Ab,k ⊂ (i1, i2) ⊂ Ã, to obtain

–�Ab,k (Y
∨γn (T̃k)) >

3ρ

4
− β

∫ T̃k

t∗

ηlwI (Y∨γn (s))

|AL

b,k |
ds − B̂Ã

Ab,k
(t) − λÃAb,k

(Qt∗,t∗+τ ).

(6.13)

With B̂Ã
Ab,k

(t) defined as in Lemma 6.1, letting

B̃k
b (t) := sup

{
|Bj |(0, t) : j ∈ [m̃k

b−1/2, m̃
k
b+1/2]

}
, (6.14)

we clearly have

B̂Ã
Ab,k

(t) ≤ 2
|AL

b,k |
(B̃k

b−1(t) + B̃k
b+1(t)). (6.15)

Further, by (6.2), (6.3), we have

|AL

b±1,k |/|AL

b,k | ≤ 16, ∀b ∈ L, k ∈ Z>0, (6.16)

so

λÃAb,k
(Qt∗,t∗+τ ) ≤ 16( –�Ab+1,k (Q

t∗,t∗+τ ) + –�Ab−1,k (Q
t∗,t∗+τ )). (6.17)

As {Bi (·)}i is i.i.d., following standard arguments we show that, there exists K0 ∈
Z>0, satisfying the tail bound (6.9), such that

B̃k
b (t) ≤ |AL

b,k |
1
2 , –�Ab,k

(
Qt∗,t∗+τ

) ≤ 2q(τ, 1) = ρ
200 , (6.18)

–�Ab,k (Y
∨γn

(0, t)) ≤ 2 + ρ + 2q(t, 1) = c(ρ, t), ∀b ∈ L, k ≥ K0. (6.19)

Deferring the proof of (6.18), (6.19) until after this proof, we proceed to bounding
the interaction term 1

|AL

k,b|
ηlwI (Y∨γn (s)) for the suitable I. The endpoints of such I

will be chosen from certain ‘seeds’ I±
b , which we now construct. Fix k ≥ K∗ ∨ K0.

By the continuity estimate (3.7) and the bound (6.18), we have –�Ab,k (Y
∨γn (t∗, T̃k)) ≥
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Infinite dimensional SDE for Dyson’s model 835

–�Ab,k (Y
∨γn (T̃k)) − ρ

200 . Further, as s �→ –�Ab,k (Y
∨γn (s)) is continuous, by (6.8) we

have –�Ab,k (Y
∨γn (T̃k)) ≥ ρ

2 , so –�Ab,k (Y
∨γn (t∗, T̃k)) ≥ ρ

2 − ρ
200 >

ρ
3 . With this,

applying Lemma 4.4 for (i±1 , i±2 , i±3 ) = (m̃k
b∓1/2, m̃

k
b±1/2, m̃

k
J±), we obtain I±

b ∈
[m̃k

b∓1/2, m̃
k
b±1/2) ∩ Z such that

h(I±
b ,m̃k

J± )(Y
∨γn (t∗, T̃k)) ≥ ρ

3 . (6.20)

Having constructed I±
b , we set I = I := (I−, I+), where

I+ :=
{
I+
b+1, if b + 2 < J+,

M+, otherwise,
I− :=

{
I−
b−1, if b − 2 > J−,

M−, otherwise,
(6.21)

and proceed to bounding 1
|AL

k,b|
ηlwI (Y∨γn (s)).

Letting Y∗ := Y∨γn (t∗, T̃k) and Y
∗ := Y

∨γn
(t∗, T̃k), with ηlwI (y) and η̃

lw,±
I (z, y)

defined as in (5.5), (5.6), we have ηlwI (Y∨γn (s)) ≤ ∑
σ=± η̃

lw,σ
I (Y

∗
I,Y

∗). Further, by
(6.19) and (6.16) we have Y

∗
I ≤ Y

∗̃
A ≤ c|Ã ∩ L| ≤ c|AL

b,k |. Using this to bound

η̃
lw,σ
I (Y

∗
I,Y

∗), we obtain

ηlwI (Y∨γn (s))

|AL

b,k |
≤

∑
σ=±

η̃
lw,σ
I

(
c|AL

b,k |,Y∗
)

|AL

b,k |
=

∑
σ=±

∑
i∈(Iσ ,σ∞)

c

(|AL

b,k | + Y ∗
(Iσ ,i))Y

∗
(Iσ ,i)

.

(6.22)

With (6.11) and (6.20), we have

Y ∗
(I±,i) ≥ ρ

3

(
(i − I±)±±± ∧ (m̃k

J± − I±)±±±
)

+ (i − M±)±±±Z ′, (6.23)

where (. . .)±±± denote the partitive/negative part. By (6.21), AL

J±∓1/2,k ⊂ (I±, m̃k
J±) if

I± �= M±, and by (6.16) we have |AL

J±±1/2,k | ≤ c|AL

J±∓1/2,k |, so
(
(i − I±)±±± ∧ (m̃k

J± − I±)±±±
)

≥ 1
c

(
(i − I±)±±± ∧ (m̃k

J±±1 − I±)±±±
)

≥ 1
c

(
(i − I±)±±± ∧ (M± − I±)±±±

)
.

Combining this with (6.23), and inserting the result into (6.22), using the readily
verified inequality

∞∑
i=1

1

(x + (i ∧ μ) + (i − μ)+++z)((i ∧ μ) + (i − μ)+++z)

≤ c

x
log(x + 1) + c

xz
log

(1 + μ+x
z

1 + μ
z

)
,
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for x = c|AL

b,k | > 0, μ = |M± − I±| ≥ 0 and z = cZ ′ > 0, we arrive at

1
|AL

b,k |
ηlwJ (Y∨γn (s)) ≤ c

|AL

b,k |
log(|AL

b,k |) + cR+
b + cR−

b ,

where R±
b := (|AL

b,k |Z ′)−1 log(U±
b ) and U±

b := 1+(|AL

b,k |+ 1
c |M±−I±|)/Z ′

1+ 1
c |M±−I±|/Z ′ . With U±

b ≤
1 + c

|AL

b,k |
|M±−I±| and U

±
b ≤ 1 + |AL

b,k |/Z ′, we have

R±
b ≤ c min

{ 1

|M± − I±|Z ′ ,
log(1 + |AL

b,k |/Z ′)
|AL

b,k |Z ′
}
. (6.24)

Further, by (6.2) and (6.21), we have that |AL

b,k | ≥ 1
c |AL

b±2,k | ≥ 1
c k(|I±| + 1)1−α .

Using this to replace |AL

b,k |with (|I±|+1)1−α in (6.24), and letting 	 → ∞ (whereby

|M±| → ∞), we find that sup{R±
b : b ∈ (J−, J+), k ∈ Z>0} → 0, as 	 → ∞.

Consequently,

β

∫ T̃k

t∗

1
|AL

b,k |
ηlwI (Y∨γn (s))ds ≤ c

|AL

b,k |
log(|AL

b,k |) + ρ

100
, (6.25)

for all large enough 	 (i.e. 	 ≥ L , L = L(Z ′) < ∞).
Now, inserting the preceding bounds, (6.15), (6.17)–(6.19) and (6.25), into the

estimate (6.13), we arrive at

–�Ab,k (Y
∨γn (T̃k))>

3ρ

4
−c

log(|AL

b,k |)
|AL

b,k |
− ρ

100
− 2(|AL

b−1,k |1/2 + |AL

b+1,k |1/2)
|AL

b,k |
− 2ρ

25
,

for all k ≥ K∗ ∨ K0 and large enough 	. By (6.16), we have
|AL

b−1,k |1/2+|AL

b+1,k |1/2
|AL

b,k |
≤

8|AL

b,k |−1/2. Hence, with |AL

b,k | ≥ |AL

1/2,k | ≥ 1
c k

1/α , the r.h.s. is indeed ≥ ρ
2 for all

large enough k, i.e. k ≥ k0, where k0 = k0(ρ) < ∞. From this we conclude (6.12)
for K := K0 ∨ k0. ��
Proof of (6.18), (6.19) We let c = c(yin, α, ρ, t, β) < ∞ denote a generic finite
constant and

KB := inf
{
k ∈ Z>0 : B̃k′

b ≤ |AL

b,k′ | 12 , ∀b ∈ L, k′ ≥ k
}
,

KQ := inf
{
k ∈ Z>0 : –�Ak′

b
(Qt∗,t∗+τ ) ≤ 2q(τ, 1), ∀b ∈ L, k′ ≥ k

}
.

Indeed, P(|Bj |(0, t) ≥ |AL

b,k′ |1/2) ≤ exp(− 1
c |AL

b,k′ |). Summing this inequality
over

{
( j, b, k′) : j ∈ [m̃k′

b−1/2, m̃
k′
b+1/2], b ∈ L, k′ ≥ k

}
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Infinite dimensional SDE for Dyson’s model 837

using (6.2), we obtain P(KB ≥ k) ≤ c exp
(− 1

c k
1/α

)
. As for KQ , with (3.4) and

E(Qt∗,t∗+τ
1/2 ) = q(τ, 1), we have the large deviation upper bound P( –�Ab,k′ (Q

t∗,t∗+τ ) ≥
2q(τ, 1)) ≤ exp

(
1
c |AL

b,k′ |
)
. Summing this inequality over all b ∈ L and k′ ≥ k as in

the preceding, we conclude P(KQ ≥ k) ≤ c exp
( 1
c k

1/α
)
.

Turning to establishing (6.19), following the preceding argument we have P(K ′
Q ≥

k)≤c exp( 1c k
1/α),where K ′

Q := inf
{
k∈Z>0 : –�Ab,k (Q

0,t )≤2q(t, 1),∀b∈L, k′ ≥k
}
.

Combining thiswith (3.8), we obtain –�Ab,k (Y
∨γn

(0, t)) ≤ –�Ab,k (Y
∨γn (0))+2q(t, 1),

∀b ∈ L, k ≥ K ′
Q . Further, with Y∨γn (0) ≤ γ n + yin, by (6.4) we have

–�Ab,k (Y
∨γn (0)) ≤ γn + ρ + ck−1 ≤ 1 + ρ + ck−1. From this, we obtain kin ∈ Z>0

such that –�Ab,k (Y
∨γn

(0, t)) ≤ 2 + ρ + 2q(t, 1), ∀k ≥ K ′
Q ∨ kin. This completes the

proof of (6.18), (6.19) for K0 := KB ∨ KQ ∨ K ′
Q ∨ kin. ��

EquippedwithProposition 6.2,weproceed to proving the followinguniformdensity
estimate.

Proposition 6.3 For any t ≥ 0, there exists some K ∈ Z>0, satisfying the tail bound
(6.9), such that

–�Ab,k (Y(s)) ≥ ρ
2 , ∀s ∈ [0, t], b ∈ L, n ∈ Z>0, k ≥ K . (6.26)

Proof By (6.4) we have –�Ab,k (Y(0)) ≥ ρ − ck−1. Hence for all large enough k:

k ≥ k0 = k0(ρ, yin), we have –�Ab,k (Y(0)) >
3ρ
4 , ∀b ∈ L. With this and τ as in

Proposition 6.2, applying Proposition 6.2 for t∗ = 0 and K∗ = k0, we conclude (6.26)
if t ≤ τ . To progress to t > τ , we show that, actually, –�Ab,k	 (Y(τ )) >

3ρ
4 , for k further

chosen large enough. This is achieved by improving the estimation following (6.13).
In this estimation, the contribution the interaction term and B̃k

b are made arbitrarily
small by choosing large enough k, but the term Q̃k

b stays bounded away from zero. This
problem is resolvedby changing k �→ k	,which corresponds to grouping 	 consecutive
intervals of {Ab,k}b to form a new, coarser, partition {Ab,k	}b. Fixing arbitraryAb,k	,
we let A± := A	(b±1/2)±1/2,k denote the neighboring ‘small’ intervals, and form the
spliced interval Ã′ := A− ∪ Ab,k	 ∪ A+. Let I ′ be such that Ab,k	 ⊂ I ′ ⊂ Ã′. With
such interval I ′ replacing I as in (6.13), we obtain

λÃ
′

Ab,k	
(Q0,τ ) ≤ |AL+|

|AL

b,k	|
–�A+

(
Q0,τ

)
+ |AL−|

|AL

b,k	|
–�A−

(
Q0,τ

)
, (6.27)

where AL± := A± ∩ L. By (6.2), (6.3), we have that |AL±|/|AL

b,k	| → 0 as 	 →
∞, uniformly in b ∈ L, so, the term (6.27) is made arbitrarily small by choosing
	 large enough. With this improvement of the estimation of (6.13), we obtain that
–�Ab,k	1

(Y(τ )) >
3ρ
4 , for all n ∈ Z>0, k ≥ k0 ∨ K and some 	1 = 	1(ρ), which then

allows us to apply Proposition 6.2 for K∗ = 	1(k0 ∨ K ) and t∗ = τ . Iterating the
preceding procedure i∗ := �t/τ� times, we conclude (6.26). ��

Recall the definition ofY ′
T (γ ) from (5.12). Indeed, the uniform lower bound (6.26)

implies that Y ∈ Y ′
T (ρ/2). Combining this with Proposition 5.6 for Y[n] = Y∨γn ,
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we obtain that Y is a YT (ρ/2)-valued solution of (2.5). We next show that the bound
(6.26) actually implies Y ∈ YT (α, ρ).

Lemma 6.4 Let Y∗ be a YT (γ )-valued solution of (2.5), γ > 0, starting from yin ∈
YT (α, ρ). If, for each t ≥ 0, there exists K ′ ∈ Z>0 such that (6.26) holds forY∗, then
in fact Y∗ ∈ YT (α, ρ).

Proof Fixing arbitrary t ≥ 0, as yin ∈ YT (α, ρ), proving Y∗ ∈ YT (α, ρ) amounts to
proving

sup
s∈[0,t]

{
sup
m∈Z

∣∣ –�(0,m)

(
Y∗(s) − yin

)∣∣ |m|α
}

< ∞. (6.28)

To this end, we assume without lost of generality |m| ≥ m̃K
1 . Let K0 be as in (6.18),

(6.19) and let K := K ′ ∨ K0. Set K := (0,m), let ∪b+
b=b−Ab,K , b− < b+, be the

smallest such interval that contains K and let K′ :=
(
m̃K

b−−1/2, m̃
K
b++1/2

)
. Partition

[0, t] into j equally spaced subintervals [t j−1, t j ], j = 1, . . . , j∗, each with length
t/j∗ ≤ τ , where τ is as in Proposition 6.2. Applying (6.5), (6.6) for [s′, s′′] = [t j−1, t j ]
and I j , I ′

j ⊂ R such that K ⊂ I j , I ′
j ⊂ K′, we obtain

inf
s∈[t j−1,t j ]

–�(0,m)(Y∗(s)) ≥ –�(0,m)(Y∗(t j−1)) − β

|m|
∫ t j

t j−1

ηlwI j
(Y∗(s))ds − Rm,

(6.29)

sup
s∈[t j−1,t j ]

–�(0,m)(Y∗(s)) ≤ –�(0,m)(Y∗(t j−1)) + β

|m|
∫ t j

t j−1

η
up
I ′
j
(Y∗(s))ds + Rm,

(6.30)

where Rm := 1
|m|

(
B̂K′
K (t) + λK

′
K (Qt j−1,t j ) + λK

′
K (Y∗(t j−1))

)
. With B̂K′

K (t), λK
′

K (y)

defined as in Lemma 6.1, B̃K
b (t) as in (6.14), andK,K′ as in the preceding, we clearly

have that

Rm ≤ 1

|m|
∑

b:|b−b±|≤1

(
B̃K
b (t) + |AL

b,k | –�Ab,k (Q
t j−1,t j ) + |AL

b,k | –�Ab,k (Y
∗(t j−1))

)
.

Further applying (6.18), (6.19), we have that Rm ≤ c
|m| (|m̃K

b++3/2|1−α +
|m̃K

b−−3/2|1−α) ≤ c|m|−α . Plugging this in (6.29), (6.30), and combining the result
for j = 1, . . . , j∗, we arrive at

inf
s∈[0,t] –�(0,m)(Y∗(s)) ≥ –�(0,m)(yin) −

j∗∑
j=1

β

∫ t j

t j−1

1

|m|η
lw
I j

(Y∗(s))ds − c(t)|m|−α,

(6.31)
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sup
s∈[0,t]

–�(0,m)(Y∗(s)) ≤ –�(0,m)(yin) +
j∗∑
j=1

β

∫ t j

t j−1

1

|m|η
up
I ′
j
(Y∗(s))ds + c(t)|m|−α.

(6.32)

Proceeding to bounding the interaction terms, we fix j ∈ {1, . . . , j∗}. With
–�AK

b
(Y∗(t j )) ≥ ρ

2 , ∀b ∈ L, and q(t j − t j−1, 1) ≤ q(τ, 1), following the same
procedure of obtaining (6.20), we obtain

I±
b, j ∈ [m̃K

b∓1/2, m̃
K
b±1/2) ∩ Z such that h(I±

b, j ,±∞)(Y
∗(t j−1, t j )) ≥ ρ

3 , ∀b ∈ L.

(6.33)

Now, set I j = I := (I−
b−−1, j , I

+
b++1, j ) and I ′

j = I′ := (I+
b−−1, j , I

−
b++1, j ). Using

(6.33) to bound η
up
I′ (Y∗(s)) (as in (5.4)), we obtain

1
|m|η

up
I′ (Y∗(s)) ≤ c

|m| log
(
|m̃K

b−−3/2| + |m̃K
b++3/2|

)
≤ c

|m| log |m|, ∀s ∈ [t j−1, t j ].
(6.34)

Next, by (3.8) we have Y
∗
I(0, t) ≤ yinI + Q0,t

I . With ηlwI (y) and η̃
lw,±
I (z, y) as in

(5.5), (5.6), we have

ηlwJ (Y∗(s))≤ η̃
lw,+
I (yinI + Q0,t

I ,Y∗(s)) + η̃
lw,−
I (yinI +Q0,t

I ,Y∗(s)), ∀s ∈ [t j−1, t j ].
(6.35)

Further, by I j ⊂ K′, yin ∈ Y(α, ρ) and (6.19), we have yinI + Q0,t
I ≤ c(ρ +

q(t, 1))|K′ ∩ L| ≤ c(ρ + q(t, 1))|m|. Using this and (6.33) to bound η
lw,±
I (yinI +

Q0,t
I ,Y∗(s)), we obtain

1
|m| η̃

lw,±
I

(
yinI + Q0,t

I ,Y∗(s)
)

≤ c
|m| log |m|, ∀s ∈ [t j−1, t j ]. (6.36)

Combining the preceding bounds (6.34), (6.35) and (6.36) on the interaction terms,
and inserting the result into (6.31), (6.32), we conclude (6.28). ��

Proof of Proposition 2.6 As stated in the preceding, Y is a YT (ρ/2)-valued solution
of (2.5). With this, combining Proposition 6.3 and Lemma 6.4 we obtain that Y ∈
YT (α, ρ). To show thatY is the greatest solution, letY′ be aYT (α, ρ)-valued solution
with Y′(0) ≤ yin. By Proposition 2.5, Y∨γn the greatest YT -valued solution, so, with
Y′(0) ≤ (yin ∨ γ n) = Y∨γn (0), we must have Y′(·) ≤ Y∨γn (·). Letting n → ∞ we
conclude Y′(·) ≤ Y(·). ��
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7 Proof of Theorem 1.4

7.1 Proof of Part (a)

Fixing xin ∈ X rg(α, ρ, p), we let i±n ,Ln ,X ∈ X rg
T (α, ρ, p) andXn ∈ C([0,∞))Ln∩Z

be as in Theorem 1.4. We consider the corresponding gap processes: yin := u(xin) ∈
(Y(α, ρ)∩R(p)),Y := u(X) ∈ (Y(α, ρ)∩R(p)),Yn := u(Xn) ∈ C+([0,∞))Ln∩L
and let

Y
�n(t) :=

(
Y

�n
a (t)

)
a∈L ∈ [0,∞]L, Y

�n
a (t) := Yn

a (t)1{a ∈ Ln} + ∞1{a /∈ Ln}.

That is, Y
�n is constructed from Yn by declaring all gaps to be ∞ outsides of Ln .

Hereafter we adapt the convention 1
∞ := 0, so in particular

Xn
i (t) = x ini + Bi (t) + β

∫ t

0
φi (Y

�n(s))ds, ∀i ∈ Ln, (7.1)

where, recall that (by abuse of notation) φi (y) := φi (̃u−1(0, y)).We begin by showing
that Y

�n is decreasing.

Lemma 7.1 We have that, almost surely, Y
�1(·) ≥ Y

�2(·) ≥ · · · ≥ Y(·).
Proof For the gap process Yn , by (7.1), we have

Yn
a (t) = yini + Wa(t) + β

∫ t

0
ηLn
a (Yn(s))ds, ∀a ∈ Ln, (7.2)

where η
Ln
a (y) is defined as in (3.16). With this, applying Lemma 3.7 for I = Ln ∩ L,

Yup = Yn , Zup = 0, Ylw = Yn+1, Z lw
a (s) = −(Yn+1

a (s))−1ψ
Ln+1\Ln
a (Yn+1

a ,Yn+1),
we conclude Yn(·) ≥Ln Yn+1(·), whereby Y�n(·) ≥ Y

�n+1(·). Similarly, Y
�n(·) ≥

Y(·) follows by applying Lemma 3.7, for I = Ln ∩ L. ��
An immediate consequence of Lemma 7.1 is the following convergence of the gap

process.

Lemma 7.2 For any fixed t ≥ 0, a ∈ L and p′ ≥ 1, we have

sup
s∈[0,t]

|Y �n
a (s) − Ya(s)| a.s.−→ 0, (7.3)

E

(
sup

s∈[0,t]
|Y �n

a (s) − Ya(s)|
)p′

→ 0, (7.4)

as n → ∞.

Proof By Lemma 7.1, the limiting process Y∞(t) := Y
�n(t) exists, and satisfies

Y∞(·) ≥ Y(·) ∈ YT (ρ). With this, letting n → ∞ in (7.2) for any fixed a ∈ L,
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Infinite dimensional SDE for Dyson’s model 841

using the dominated convergence theorem, one easily sees that the terms on the r.h.s.
converges to the corresponding terms (for Y∞), whereby concluding that Y∞ is in
fact a YT (ρ)-valued solution of (2.5), (c.f. Proof of Proposition 5.6). However, by
Proposition 2.5, Y is the greatest such solution, so we must have Y∞ = Y. For any
fixed a ∈ L, this implies P(limn→∞ Y

�n
a (s) = Ya(s)) = 1, ∀s ≥ 0. As {Y �n

a }n ⊂
C([0,∞)) is decreasing, by Dini’s theorem, this further implies the desired uniform
convergence of (7.3). Fixing arbitrary large enough n′ ∈ Z>0 such that Ln′ � a,
we have Y �n

a (0, t) ≤ Y �n′
a (0, t), ∀n ≥ n′. With this and (7.3), by the dominated

convergence theorem we conclude (7.4). ��
By (7.3), it suffices to prove (1.15) for the special case i = 0. To this end, we rewrite

(2.4) and (7.1) for i = 0 as

X0(s
′) − X0(s) = B0(s

′) − B0(s) + β

∫ s′

s
φI
0 (Y(s))ds + β

∫ s′

s
φIc

0 (Y(s))ds,

(7.5)

Xn
0 (s

′) − Xn
0 (s) = B0(s

′) − B0(s) + β

∫ s′

s
φI
0 (Y

�n(s))ds + β

∫ s′

s
φIc

0 (Y
�n(s))ds,

(7.6)

for s < s′ and generic I := [i−, i+] � 0, where φI
0 (y) := ∑

i∈I\{0}
− sign(i)
2y(0,i)

and

φIc

0 (y) := φ0(y)−φI
0 (y) denote the interaction within and outside of I, respectively.

Now, fixing t > 0, K ∈ Z>0 be as in Proposition 6.3, and I±
b, j be as in (6.33) for

Y∗ = Y, where j = 1, . . . , j∗ indexes the equally spaced partition 0 = t0 < · · · <

t j∗ = t with t/j∗ ≤ τ and τ is as in Proposition 6.2. Taking the difference of (7.5),
(7.6) for (s, s′) = (t j−1, t j ) and I = Ib, j := [I−

b, j , I
+
b, j ], and combing the result for

j = 1, . . . , j∗, we arrive at

sup
s∈[0,t]

|X0(s) − Xn
0 (s)| ≤ β

j∗∑
j=1

∫ t j

t j−1

∣∣φIb, j
0 (Y(s)) − φ

Ib, j
0 (Y

�n(s))
∣∣ds

+ β

j∗∑
j=1

∫ t j

t j−1

(∣∣φ(Ib, j )c

0 (Y(s))
∣∣ + ∣∣φ(Ib, j )c

0 (Y
�n(s))|

)
ds. (7.7)

By (7.3), the first term on the r.h.s. of (7.7) tends to 0 as n → ∞, for each fixed
b < ∞. With this, it suffices to estimate the last term in (7.3).

Lemma 7.3 Let t > 0, K ∈ Z>0, I
±
b, j and Ib, j := [I−

b, j , J
+
b, j ] be as in the preceding.

There exists c = c(t, yin, ρ) such that

sup
s∈[t j−1,t j ]

∣∣φ(Ib, j )c

0 (Y(s))
∣∣ ≤ c(m̃K

b−1/2)
−α + c(b − 1/2)−α, (7.8)

sup
s∈[t j−1,t j ]

∣∣φ(Ib, j )c

0 (Y
�n(s))

∣∣ ≤ c(m̃K
b−1/2)

−α + c(b − 1/2)−α, (7.9)

for all b ∈ L ∩ (2,∞), j = 1, . . . , j∗, n ∈ Z>0.
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Assuming the estimates (7.8), (7.9), we proceed to completing the proof of (1.15).
Inserting (7.8), (7.9) into (7.7) and letting n → ∞ yields

lim sup
n→∞

{
sup

s∈[0,t]
|X0(s) − Xn

0 (s)|
}

≤ c(m̃K
b−1/2)

−α,

for any fixed b ∈ (2,∞) ∩ L. From this, further letting b → ∞, we conclude (1.15)
for i = 0 and hence for all i ∈ Z.

Proof of Lemma 7.3 Fixing such b, n, j and s ∈ [t j−1, t j ], we let I := Ib, j and
c = c(t, yin, ρ) < ∞ denote a generic finite constant. To prove (7.8), we express Jc

as (I∨)c∪B, where I∨ is the ‘symmetrized’ interval andB is the ‘boundary’ interval,
defined as

I∨ := [−I∨, I∨], where I∨ := (I+
b, j ∨ |I−

−b, j |), B := I∨\I.

With this, we similarly decompose φIc (Y(s)) as

φIc
0 (Y(s)) = φ

(I∨)c

0 (Y(s)) + φB
0 (Y(s)). (7.10)

Proceeding to bounding the interactions on the r.h.s., we clearly have

φ
(I∨)c

0 (Y(s)) =
∑
I∨≤m

Y(−m,0)(s) − Y(0,m)(s)

2Y(0,m)(s)Y(−m,0)(s)
, |φB

0 (Y(s))| ≤
∑

I∧≤|m|≤I∨

1

2Y(0,m)(s)
.

(7.11)

By (6.33), we have

Y(0,m)(s) ≥ ρ
3

(
|m| − |I±

±1/2, j |
)

≥ 1
c |m|, ∀|m| ≥ I∧, (7.12)

where the last inequality follows since b > 2. With Y ∈ YT (α, ρ), we have
|Y(−m,0)(s) − Y(0,m)(s)| ≤ c|m|1−α . Using this and (7.12) in (7.11), we obtain

|φ(I∨)c

0 (Y(s))| ≤ c
∑
I∨≤m

m1−α

m2 ≤ c(I∨)−α ≤ c(m̃K
b−1/2)

−α,

|φB
0 (y)| ≤

∑
I∧≤|m|≤I∨

c

|m| ≤ c log
(
I∨/I∧)

. (7.13)

With m̃K
i := �(Ki)1/α�, we have

1 ≤ (I∨/I∧) ≤ (m̃K
b+1/2/m̃

K
b−1/2) ≤ 1 + c(b − 1/2)−α. (7.14)

Inserting (7.14) into (7.13) then yields |φB
0 (y)| ≤ c(b−1/2)−α , from which (7.8).
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Infinite dimensional SDE for Dyson’s model 843

Turning to proving (7.9), recalling Ln := [i−n , i+n ], we let L∧ := (−i∧, i∧),

where i∧ := (i+n ∧ |i−n |). With φIc
0 (Y

�n(s)) = φ
Ln\I
0 (Y

�n(s)), similar to (7.10), we

decompose φIc
0 (Y

�n(s)) as φIc
0 (Y

�n(s)) = φ
L∧\I∨
0 (Y

�n(s)) + φB′
0 (Y

�n(s)), where
B′ := (Ln\I)\(L∧\I∨), is the boundary interval. To further bound the interactions
on the r.h.s., similar to (7.11) we have

φ
L∧\I∨
0 (Y

�n(s)) =
∑

I∨≤m≤i∧

Y
�n
(−m,0)(s) − Y

�n
(0,m)(s)

2Y
�n
(−m,0)(s)Y

�n
(0,m)(s)

,

|φB
0 (Y

�n(s))| ≤
∑

(i∧∨I∧)≤|m|≤i∨

1

2Y
�n
(0,m)(s)

+
∑

I∧≤|m|≤I∨

1

2Y
�n
(0,m)(s)

,

where i∨n := (i+n ∨ |i−n |). With Y
�n(s) ≥ Y(s), from (7.12) we further obtain

|φL∧\I∨
0 (Y

�n(s))| ≤ c
∑

I∨≤m≤i∧

1

m2 |Y �n
(−m,0)(s) − Y

�n
(0,m)(s)|, (7.15)

|φB
0 (Y

�n(s))| ≤
∑

(i∧∨I∧)≤|m|≤i∨

c

|m| +
∑

I∧≤|m|≤I∨

c

|m|
≤ c1{I∧<i∨} log

(
i∨/ i∧

) + c log
(
I∨/I∧)

. (7.16)

With xin ∈ X rg(α, ρ, p) and i±n as in (1.14), we have 1 ≤ i∨/ i∧ ≤ 1 + c(i∨)−α .
Using this and (7.14) in (7.16), we conclude |φB

0 (Y
�n(s))| ≤ c(m̃K

b−1/2)
−α + c(b −

1/2)−α .
It remains only to bound the expression (7.15). To this end, we fix I∨ ≤ m ≤ i∧.

With Yn solving (7.2), similar to (6.31), (6.32), we have

inf
s∈[0,t] –�(0,±m)(Yn(s)) ≥ –�(0,±m)(yin) −

j∗∑
j=1

β

∫ t j

t j−1

1

m
ηlwI j

(Y
�n(s))ds − cm−α,

sup
s∈[0,t]

–�(0,±m)(Yn(s)) ≤ –�(0,±m)(yin) +
j∗∑
j=1

β

∫ t j

t j−1

1

m
η
up
I ′
j
(Y

�n(s))ds + cm−α,

for any I j , I ′
j such that (0,±m) ⊂ I j , I ′

j ⊂ Ln . Hence, with yin ∈ Y(α, ρ),

sup
s∈[0,t]

|Yn
(0,±m)(s) − mρ| ≤ cm1−α +

j∗∑
j=1

β

∫ t j

t j−1

ηlwI j
(Y

�n(s))ds

+
j∗∑
j=1

β

∫ t j

t j−1

η
up
I ′
j
(Y

�n(s))ds.
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Proceeding to bounding the interaction terms, by (3.8) we have Y
�n
I j

(0, t) ≤ yinI j
+

Q0,t
I j
, so

ηlwI j
(Y

�n(s)) ≤ η̃
lw,±
I j

(yinI j
+ Q0,t

I j
,Y

�n(s)), ∀s ∈ [t j−1, t j ],

where η̃
lw,±
I j

(z, y) is defined as in (5.6). With Y(·) ≤ Y
�n(·), we further obtain

η̃
lw,±
I j

(yinI j
+ Q0,t

I j
,Y

�n(s)) ≤ η̃
lw,±
I j

(yinI j
+ Q0,t

I j
,Y(s)), η

up
I ′
j
(Y

�n(s)) ≤ η
up
I ′
j
(Y(s)).

With this, applying the bounds (6.34) and (6.36) for Y∗ = Y on the interaction
terms, we obtain

sup
s∈[0,t]

|Yn
(0,±m)(s) − ρm| ≤ cm1−α, ∀m ≥ m̃K

1 . (7.17)

Inserting this into (7.15) yields |φL∧\I∨
0 (Y

�n(s))| ≤ c/(I∨)α ≤ c(m̃K
b−1/2)

−α ,
whereby completing the proof. ��

7.2 Proof of Part (b)

By (7.4), it suffices to prove (1.16) for i = 0. This, by (1.15) for i = 0, is further
reduced to showing the boundedness of {E(|Xn

0 |(0, t))p
′ }n∈Z>0 , for all p

′ ≥ 1. To this
end, fixing arbitrary p′ ≥ 1 and t ≥ 0, we combine (7.6) and Lemma 7.3 for b = 5/2
to get

|Xn
0 |(0, t) ≤ |B0|(0, t) + c(1 + (m̃K

2 )−α) + β

j∗∑
j=1

∫ t j

t j−1

φ
Lj
0 (Y

�n(s))ds, (7.18)

for L j := [I−
−5/2, j , I

+
5/2, j ] and c = c(t, yin, ρ) < ∞. We proceed to establishing a

bound on the last term.

Lemma 7.4 Let L j := [I−
−5/2, j , I

+
5/2, j ]. There exists c = c(t) < ∞ such that

β

∫ t j

t j−1

|φLj
0 (Y

�n(s))|ds ≤ cm̃K
3

(
B∗ + (1 + ρ)m̃K

3

)
, ∀n ∈ Z>0, j = 1, . . . , j∗.

(7.19)

where B∗ := ∑
i∈[m̃K−3,m̃

K
3 ] |Bi |(0, t).

Proof To simply notations, fixing j = 1, . . . , j∗, we let I± := I±
±5/2, j and L :=

[I−, I+]. Letting φL
i (y) := ∑

j∈L\{i}
sign(i− j)
2y(i, j)

denote the restriction of φi (y) onto L,
we define
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Infinite dimensional SDE for Dyson’s model 845

φ̃L
i∗(y) :=

∑
	∈[I−,i∗]

∑
	′∈(i∗,I+]

1

2y(	,	′)
= −

∑
i∈[I−,i∗]

φL
i∗(y), (7.20)

where the last equality is easily verified by substituting in the preceding definition of
φL
i (y).
With φ̃L

i∗(y) defined as in (7.20), we indeed have |φL
0 (y)| ≤ φ̃L

0 (y) + φ̃L−1(y), so,

instead of proving (7.19), we establish the corresponding bound on β
∫ t j
t j−1

φ̃L
i∗(Y

�n(s))

ds for i∗ = 0,−1. Fix i∗ = 0,−1 and i ∈ [I−, i∗]. With Xn satisfying (7.1), we have

Yn
(i,I+)

(s)
∣∣∣s=t j

s=t j−1
= (BI+(s) − Bi (s))

∣∣∣s=t j

s=t j−1
+ β

∫ t j

t j−1

η(i,I+)(Y
�n(s))ds,

where, recall that η(i,I+)(y) := ∑
i∈(i,I+) ηa(y).With ηa(y) = φa+1/2(y)−φa−1/2(y),

we have η(i,I+)(y) = φI+(y)−φi (y), for all y ∈ Y(α, ρ). Further decompose the last
expression as φL

I+(y) − φL
i (y) + η′

(i,I+)
(y), where

η′
(i,I+)

(y) := −
∑
	>I+

y(i,I+)

y(I+,	)(y(i,I+) + y(I+,	))
+

∑
	<I−

y(i,I+)

y(	,I−)(y(i,I+) + y(	,I−))
.

With φL
I+(y) > 0, we then obtain

2Y
n
L(0, t) + 2B∗ + β

∫ t j

t j−1

|η′
(i,I+)

(Y
�n(s))|ds ≥ β

∫ t j

t j−1

(
−φL

i (Y
�n(s))

)
ds.

(7.21)

For the integral term on the l.h.s., using h(I±,±∞)(Y
�n(s)) ≥ h(I±,±∞)(Y(t j−1, t j ))

≥ ρ
3 , ∀s ∈ [t j−1, t j ], we obtain

|η′
(i,I+)

(Y
�n(s))| ≤ c log

(
Yn

(i,I+)
(s) + 1

)
.

Plugging this in (7.21) yields

β

∫ t j

t j−1

(
−φL

i (Y
�n(s))

)
ds ≤ 2B∗ + c(Y

n
L(t j−1, t j ) + 1)

≤ c
(
B∗ + (m̃K

3 )1−α + m̃K
3 ρ

)
,

where the last inequality follows by (7.17). Summing this over i = I−, . . . , i∗, using
(7.20), we conclude the desired bound β

∫ t j
t j−1

φ̃L
i∗(Y

�n(s))ds ≤ cm̃K
3 (B̂+ (m̃K

3 )1−α +
ρ). ��

Now, inserting (7.19) into (7.18), and taking the p′th moment of both sides, we

arrive at E(|Xn
0 |(0, t))p

′ ≤ c+ cE(m̃K
3 )2p

′ + cE((B∗)2p′
). With m̃K

i := �(i K )
1
α �, by

(6.9), we have E(m̃K
3 )2p

′
< ∞. As for E((B∗)p′

), applying
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E

∣∣∣ ∑
j∈[m̃K−i ,m̃

K
i ]

Fj

∣∣∣ ≤ E

⎛
⎝∑

m≥0

1
{
m̃K

i = m
} ∑

j∈[−m,m]
|Fj |

⎞
⎠

≤
∑
m≥0

⎛
⎜⎝P

(
m̃K

i ≥ m
)
E

⎛
⎝ ∑

j∈[−m,m]
|Fi |

⎞
⎠

2
⎞
⎟⎠

1/2

(7.22)

for Fj = |Bj |(0, t) and i = 3, we obtain E((B∗)p′
) ≤ c

∑
m≥0(2m +

1)
(
P(m̃K

3 ≥ m)
)1/2

, which, by (6.9), is finite. From this, we conclude the desired
bound

E(|Xn
0 |(0, t))p

′ ≤ c(t, p′), ∀Ln � 0. (7.23)

7.3 Proof of Part (c)

Fixing s1, . . . , s j∗ ∈ [0, t] and open sets O1, . . . ,O j∗ ⊂ [−r, r ], we let Ln :=
sup{|i | : i ∈ Z such that Xn

i (s) ∈ [−r, r ], for some s ∈ [0, t]} denote the maxi-
mal relevant index and similarly define L∞ := sup{|i | : i ∈ Z such that Xi (s) ∈
[−r, r ], for some s ∈ [0, t]}. We begin by establishing the following tail bound on
Ln and L .

Lemma 7.5 For any fixed p′ ≥ 1, there exists c = c(t, r, ρ, p′) < ∞ such that

P(Ln ≥ 	) ≤ c	−p′
,

for all 	 ∈ Z>0 and n ∈ Z>0 ∪ {∞}.
Proof We prove only the tail bound for Ln , n < ∞, as the one for L∞ is proven
similarly. Fixing p′ ≥ 1 and n, 	 ∈ Z>0, we let c = c(t, r, ρ, p′) < ∞ denote
a generic finite constant. Indeed, Ln ≥ 	 only if |Xn

i |(0, t) ≤ r for i = 	 or −	,
whereby

P(Ln ≥ 	) ≤ P

(
|Xn

	 |(0, t) ≤ r
)

+ P

(
|Xn

−	|(0, t) ≤ r
)
.

As Xn
i (s) = Xn

0 (s) + Yn
(0,i)(s), letting Y ∗

i := infs∈[0,t] Yn
(0,i)(s), we have

P(|Xn
±	|(0, t) ≤ r) ≤ P(Y ∗±	 ≤ r + |Xn

0 |(0, t)). Next, by (7.17) we have

Y ∗±	 ≥ (	ρ − c	1−α)1
{
m̃K

1 ≤ 	
}

≥ 	ρ − c	1−α − cm̃K
1 .

From this we conclude

P

(
|Xn

±	|(0, t) ≤ r
)

≤ P

(
	 − c	1−α − r ≤ cm̃K

1 + |Xn
0 |(0, t)

)

≤ c	−p′(
E(m̃K

1 )p
′ + E(|Xn

0 |(0, t))p
′)

.
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By (7.23), E(|Xn
0 |(0, t))p

′
< ∞, and, with m̃K

1 := �K 1/α� and (7.22), we have
E(m̃K

1 )p
′
< ∞, thereby completing the proof. ��

For any 	 ∈ Z>0 ∪ {∞}, we let f	(x) := ∏ j∗
j=1 |O j ∩ {xi }|i |≤	|. Our goal is to

show E( f∞(Xn)) → E( f∞(X)) and E( f∞(X)) < ∞. The latter follows directly
from Lemma 7.5:

E( f∞(Xn)) ≤ E(2Ln + 1) ≤ c(t, r, ρ) < ∞.

To prove the former, we write

E( f∞(Xn)) − E( f∞(X)) = f ′
1 + (

E( f	(Xn)) − E( f	(X))
) + f ′

2, (7.24)

where f ′
1 := E( f∞(Xn)) − E( f	(Xn)) and f ′

2 := E( f	(X)) − E( f∞(X)). For any
fixed 	 < ∞, by (1.15), we clearly have E( f	(Xn)) − E( f	(X)) → 0, as n → ∞.
Further, by Lemma 7.5 we have

E| f∞(Xn) − f	(Xn)| ≤ E((2Ln + 1)1{Ln ≥ 	}) ≤ 1
2	+1E(2Ln + 1)2 ≤ c(t, r, ρ) 1

	
,

E| f∞(X) − f	(X)| ≤ E((2L∞ + 1)1{L ≥ 	}) ≤ 1
2	+1E(2L∞ + 1)2 ≤ c(t, r, ρ) 1

	
.

Hence letting n → ∞ and 	 → ∞ in (7.24) in order, we conclude the desired
result.

8 Regularity of near-equilibrium solutions

We begin by defining near-equilibrium solutions. Let U denote the space of all simple
point processes on R. That is, the space of all Z≥0-valued Radon measure χ such that
χ({x}) ≤ 1 for all x ∈ R. Fixing β = 1, 2, 4 hereafter, let N ∈ U denote the sine
process (see, e.g. [17, (2.17), (9.3)] for the definition). With v : W → U , (xi )i∈Z �→∑

i∈Z δxi denoting the map from labeled configurations to unlabeled configurations,
we say aweak solutionX of (1.1) is near-equilibrium if there existsSsine ⊂ U such that
P(N ∈ Ssine) = 1 and that P(v(X(t)) ∈ Ssine) = 1, for all t ≥ 0. The motivation is to
relate the solutions constructed in [17] to that of this paper. In [17], a near-equilibrium
solution is constructed for each initial condition xin ∈ Ssine.

Remark 8.1 In [17], the interaction φi (x) is defined slightly different as φ′
i (x) :=

limr→∞
∑

|x j−xi |<r,i �= j
1

2(xi−x j )
, which is clearly equivalent to (1.2) for al x ∈

X (α, ρ).

We first show that the sine process is v(X rg(α, 1, p))-valued.

Lemma 8.2 We have P(N ∈ v(X rg(α, 1, p))) = 1, for α ∈ (0, 1/2) and p > 1.

Remark 8.3 Neither the determinantal or Pfaffian structure is directly used in the proof
of Lemma 8.2. More precisely, letting

Gx := (
inf

{
x ′ : N ([x ′, x]) = 0

}
, sup

{
x ′ : N ([x, x ′]) = 0

}) ⊂ R
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denoting the gap around x , and |Gx | denoting the length of Gx , in the following proof
of Lemma 8.2, we use only the translation invariance and the following two properties
of N :

E(N ([x1, x2]) − (x2 − x1))
2 ≤ c log(2 + |x2 − x1|), ∀x1 ≤ x2 ∈ R, (8.1)

Eeγ |Gx | < ∞, ∀γ ∈ R, (8.2)

which are proven in [16, Section A.38] and [24, Theorem 5], respectively.

Proof Throughout this proof, we let c = c(α, p) < ∞ denote a generic finite con-
stant. Our goal is to prove N ∈ v(X (α, 1)) and N ∈ v(R(p)) almost surely. These
conditions, by the duality relation

{χ([0, r ]) < n} = {xn+i∗ > r}, where x ∈ W, xi∗ < 0 ≤ xi∗+1, χ := v(x),

are equivalent to

sup
r∈R

∣∣N ([0, r ]) − |r |∣∣|r |α−1 < ∞, (8.3)

sup
m∈Z

⎧⎨
⎩

1

|Gm |
∑
I∈Gm

|I|p
⎫⎬
⎭ < ∞, (8.4)

where Gm := {(γ, γ ′) = Gx : x ∈ R,Gx ⊂ [0,m]} denote the set of all gaps
contained in [0,m].

We begin by proving (8.3). Let I j := [( j − 1)1/α, j1/α) for j ∈ Z>0 and I j :=
−I− j for j ∈ Z<0. Combining (8.1) and the Chebyshev’s inequality, we obtain

P
(∣∣N (I j )

∣∣ ≥ 2|I j |
) ≤ c|I j |−2 log |I j | ≤ c| j |2(1−α)/α log | j |,

P
(∣∣N ([0, j]) − | j |∣∣ ≥ | j |1−α

) ≤ c| j |−2+2α log | j |.

With α < 1/2, the r.h.s. are finite when being summed over j ∈ Z\{0}. Conse-
quently, by the first Borel-Cantelli lemma have

sup
j∈Z\{0}

N (I j )
∣∣I j

∣∣−1
< ∞, sup

j∈Z\{0}

∣∣∣N ([0, j]) − | j |
∣∣∣| j |1−α < ∞, (8.5)

almost surely. Now, fixing arbitrary r ∈ R, we let j∗ ∈ Z>0 be such that r ∈ I j∗ , and
let k∗ ∈ I j∗ ∩ Z be arbitrary. With N ([0, r ]) ≤ N ([0, k∗]) + N (I j∗), we obtain

|N ([0, r ]) − r |rα−1 ≤ ∣∣N ([0, k∗]) − k∗
∣∣rα−1 + |k∗ − r |rα−1 + N (I j∗)r

α−1.

Further using |r | ≥ (| j∗| − 1)1/α and (8.5), we conclude (8.3).
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Turning to (8.4), letting G′
m denote the set of all gaps in [0,m] with length greater

than 1, we have

sup
m∈Z

⎧⎨
⎩

1

|Gm |
∑
I∈Gm

|I|p
⎫⎬
⎭ ≤ 1 + 1

|Gm |
∑
I∈G′

m

|I|p.

Further, for eachI ∈ G′
m , wemust haveI∩Z �= ∅, so∑

I∈G′
m
(|I|p) ≤ ∑m

i=1 |Gi |.
With N ([0,m])−1 ≤ |Gm | ≤ N ([0,m]), by (8.3)we have lim|m|→∞ |m|

|Gm | = 1 almost
surely. Consequently, letting G := (Gi )i∈Z, we have

sup
m∈Z

⎧⎨
⎩

1

|Gm |
∑
I∈Gm

|I|p
⎫⎬
⎭ ≤ C + C sup

m∈Z
{ –� p

[0,m](G)}, (8.6)

for some C < ∞ almost surely. As the sine process is translation invariant,G is shift-
invariant. With this, by (8.2) and the Birkhoff–Khinchin ergodic theorem, we obtain
that lim|m|→∞{ –� p

[0,m](G)} = G < ∞ almost surely, so in particular the r.h.s. of (8.6)
is finite almost surely. ��
Lemma 8.4 Any WT -valued weak solution X of (1.1) such that P(X(t) ∈
X rg(α, ρ, p)) = 1, for all t ≥ 0, actually takes value in X rg(α, ρ, p). In particular,
any near-equilibrium solution of (1.1) is actually the X rg

T (α, 1, p)-valued solution
given by Theorem 1.2.

Proof LetY := u(X). Fixing arbitrary t ≥ 0, by (3.8) we haveY(0, t) ≤ Y(0)+Q0,t .
With this and Y(0) ∈ RT (p), by (3.5) we obtain Y ∈ RT (p).

It now suffices to prove Y ∈ YT (α, ρ). This, by Lemma 6.4, amounts to proving
the bound (6.26) and Y ∈ YT (ρ). The latter, with Y being a weak solution of (2.5)
satisfying P(Y(t) ∈ Y(ρ)), ∀t ≥ 0, is proven by the continuity argument in proof of
Lemma 5.3(ii). Turning to proving the bound (6.26) (recall that Ab,k is defined as in
(6.1)), we partition [0, t] into equally spaced subintervals [t j−1, t j ], j = 1, . . . , j∗,
each with length t/j∗ ≤ τ , where τ is as in Proposition 6.2. Similar to (6.4), here we
have

–�Ak
b
(Y(t j )) ≥ ρ − 2

|AL

b,k |
|Y(t j )|α,ρ |m̃k

|b|+1/2|1−α.

WithX(t j ) ∈ X rg(α, ρ, p), by (6.2), the last term tends to zero as k → ∞, so there
exists K ∈ Z>0 such that –�Ab,k (Y(t j )) ≥ 3ρ

4 , ∀ j = 1, . . . , j∗, b ∈ L and k ≥ K .
Combining this with Y(t j−1, t j ) ≥ Y(t j ) − Qt j−1,t j (by (3.7)), and (6.18) (choosing
K larger if necessary), we obtain (6.26). ��
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