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Abstract Consider a family of random ordinary differential equations on a manifold
driven by vector fields of the form

∑
k Ykαk(zεt (ω)) where Yk are vector fields, ε is

a positive number, zεt is a
1
ε
L0 diffusion process taking values in possibly a different

manifold, αk are annihilators of ker(L∗
0). Under Hörmander type conditions on L0 we

prove that, as ε approaches zero, the stochastic processes yε
t
ε

converge weakly and in

theWasserstein topologies. We describe this limit and give an upper bound for the rate
of the convergence.

Mathematics Subject Classification 60H · 60J · 60F · 60D

1 Introduction

Let M and G be finite dimensional smooth manifolds. Let Yk , k = 1, . . . ,m, be C6

vector fields on M , αk real valued Cr functions on G, ε a positive number, and (zεt )
diffusions on a filtered probability space (�,F ,Ft ,P) with values in G and infinites-
imal generator Lε

0 = 1
ε
L0 which will be made precise later. The aim of this paper is

to study limit theorems associated to the system of ordinary differential equations on
M ,

ẏε
t (ω) =

m∑

k=1

Yk(y
ε
t (ω))αk(z

ε
t (ω)) (1.1)

under the assumption that αk ‘averages’ to zero. The ‘average’ is with respect to the
unique invariant probability measure of L0, in case L0 satisfies strong Hörmander’s
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660 X.-M. Li

condition, and more generally the ‘average’ is the projection to a suitable function
space. We prove that yε

t
ε

converges as ε → 0 to a Markov process whose Markov

generator has an explicit expression.
This study is motivated by problems arising from stochastic homogenization. It

turned out that in the study of randomly perturbed systems with a conserved quantity,
which does not necessarily take value in a linear space, the reduced equations for
the slow variables can sometimes be transformed into (1.5). Below, in Sect. 2 we
illustrate this by four examples including one on the orthonormal frame bundle over
a Riemannian manifold. Of these examples, the first is from [25] where we did not
know how to obtain a rate of convergence, and the last three from [26] where a family
of interpolation equations on homogeneous manifolds are introduced. An additional
example can be found in [24].

1.1 Outline of the paper

In all the examples, which we described in Sect. 2 below, the scalar functions average
to 0 with respect to a suitable probability measure on G. Bearing in mind that if a
Hamiltonian system approximates a physical system with error ε on a compact time
interval, over a time interval of size 1

ε
the physical orbits deviate visibly from that of

the Hamiltonian system unless the error is reduced by oscillations, it is natural and
a classical problem to study ODEs whose right hand sides are random and whose
averages in time are zero.

The objectives of the present article are: (1) to prove that, as ε tends to zero, the law
of (yε

s
ε
, s ≤ t) converges weakly to a probability measure μ̄ on the path space over M

and to describe the properties of the limiting Markov semigroups; (2) to estimate the
rate of convergence, especially in the Wasserstein distance. For simplicity we assume
that all the equations are complete. In Sects. 4, 5, 6 and 8 we assume that L0 is a
regularity improving Fredholm operator on a compact manifold G, see Definition 4.1.
In Theorem 6.4 we assume, in addition, that L0 has Fredholm index 0. But strong
Hörmander’s condition can be used to replace the condition ‘regularity improving
Fredholm operator of index 0’.

For simplicity, throughout the introduction,αk are bounded and belong to N⊥ where
N is the kernel of L∗

0, the adjoint of the unbounded operator L0 in L2(G) with respect
to the volume measure. In case L0 is not elliptic we assume in addition that r ≥ 3
or r ≥ max {3, n

2 + 1}, depending on the result. The growth conditions on Yk are in
terms of a control function V and a controlled function space BV,r where r indicates
the order of the derivatives to be controlled, see (5.1). For simplicity we assume both
M and G are compact.

In Sect. 3 we present two elementary lemmas, Lemmas 3.4 and 3.5, assuming L0
mixes exponentially in a weighted total variation norm with weight W : G → R. In
Sect. 4, for L0 a regularity improving Fredholm operator and f a C2 function, we
deduce a formula for f (yε

t
ε

) where the transmission of the randomness from the fast

motion (zεt ) to the slow motion (yε
t ) is manifested in a martingale. This provides a

platform for the uniform estimates over large time intervals, weak convergences, and
the study of rate of convergence in later sections.
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Limits of random differential equations on manifolds 661

In Sect. 5, we obtain uniform estimates in ε for functionals of yε
t over [0, 1

ε
]. Let

L0 be a regularity improving Fredholm operator, yε
0 = y0, and V a C2 function such

that
∑m

j=1 |LY j V | ≤ c + KV ,
∑m

i, j=1 |LYi LY j V | ≤ c + KV for some numbers c
and K . Then, Theorem 5.2, for every numbers p ≥ 1 there exists a positive number
ε0 such that sup0<ε≤ε0

E sup0≤u≤t V
p(yε

u
ε
) is finite and belongs to BV,0 as a function

of y0. This leads to convergence in the Wasserstein distance and will be used later to
prove a key lemma on averaging functions along the paths of (yε

t , z
ε
t ).

In Sect. 6, L0 is an operator on a compact manifold G satisfying Hörmander’s
condition and with Fredholm index 0; M has positive injectivity radius and other
geometric restrictions. In particular we do not make any assumption on the ergodicity
of L0. Let αiβ j denote

∑
l ul〈αiβ j , πl〉 where {ul} is a basis of the kernel of L0

and {πl} the dual basis in the kernel of L∗
0. Theorem 6.4 states that, given bounds

on Yk and its derivatives and for αk ∈ Cr where r ≥ max {3, n
2 + 1}, (yε

s
ε
, s ≤ t)

converges weakly, as ε → 0, to the Markov process with Markov generator L̄ =∑m
i, j=1 αiβ j LYi LY j . This follows from a tightness result, Proposition 6.1 where no

assumption on the Fredholm index of L0 is made, and a law of large numbers for
sub-elliptic operators on compact manifolds, Lemma 6.2. Convergences of {(yε

t
ε

, 0 ≤
t ≤ T )} in the Wasserstein p-distance are also obtained.

In Sect. 7 we study the solution flows of SDEs and their associated Kolmogorov
equations, to be applied to the limiting operator L̄ in Sect. 8. Otherwise this section is
independent of the rest of the paper. Let Yk,Y0 beC6 andC5 vector fields respectively.
If M is compact, or more generally if Yk are BC5 vector fields, the conclusions in this
section holds, trivially. Denote BV,4 the set of functions whose derivatives up to order
r are controlled by a function V , c.f. (5.1). Let �t (y) be the solution flow to

dyt =
m∑

k=1

Yk(yt ) ◦ dBk
t + Y0(yt )dt.

Let Pt f (y) = E f (�t (y)) and Z = 1
2

∑m
k=1 ∇Yk Yk + Y0. Let V ∈ C2(M,R+) and

sups≤t EV
q(φs(y)) ∈ BV,0 for every q ≥ 1. This assumption on V is implied by the

following conditions: |LYi LY j V | ≤ c + KV , |LY j V | ≤ c + KV , where C, K are

constants. Let Ṽ = 1 + ln(1 + |V |). We assume, in addition, for some number c the
following hold:

m∑

k=1

5∑

α=0

|∇(α)Yk | ∈ BV,0,

4∑

α=0

|∇(α)Y0| ∈ BV,0,

m∑

k=1

|∇Yk |2 ≤ cṼ , sup
|u|=1

〈∇u Z , u〉 ≤ cṼ .

(1.2)

Then there is a global smooth solution flow �t (y), Theorem 7.2. Furthermore for
f ∈ BV,4, L f ∈ BV,2, L2 f ∈ BV,0, and Pt f ∈ BV,4.
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662 X.-M. Li

For M = R
n , an example of the control pair is: V (x) = C(1 + |x |2) and Ṽ (x) =

ln(1+ |x |2). Our conditions are weaker than those commonly used in the probability
literature for d(Pt f ), in twoways. Firstly we allow non-bounded first order derivative,
secondly we allow one sided conditions on the drift and its first order derivatives.
In this regard, we extend a theorem of Kohler and Papanicolaou [32] where they
used estimations from Oleinik–Radkevič [31]. The estimates on the derivative flows,
obtained in this section, are often assumptions in applications of Malliavin calculus
to the study of stochastic differential equations. Results in this section might be of
independent interests.

Let Pt be the Markov semigroup generated by L̄. In Sect. 8, we prove the following
estimate: |E f (�ε

t (y0)) − Pt f (y0)| ≤ C(t)γ (y0)ε
√| log ε| where C(t) is a constant,

γ is a function in BV,0 and �ε
t (y0) the solution to (1.5) with initial value y0. The

conditions on the vector fields Yk are similar to (1.2), we also assume the conditions
of Theorem 5.2 and that L0 satisfies strong Hörmander’s condition. We incorporated
traditional techniques on time averaging with techniques from homogenization. The
homogenization techniques was developed from [23] which was inspired by the study
inHairer andPavliotis [12]. For the rate of convergencewewere particularly influenced
by the following papers: Kohler and Papanicolaou [32,36] and Papanicolaou and
Varadhan [34]. Denote P̂yε

t
ε

the probability distributions of the random variables yε
t
ε

and μ̄t the probability measure determined by Pt . The under suitable conditions,
W1(P̂yε

t
ε

, μ̄t ) ≤ Cεr , where r is any positive number less or equal to 1
4 and W1

denotes the Wasserstein 1-distance, see Sect. 9.

1.2 Main theorems

We contrive to impose as little as possible on the vector fields {Yk}, hence a few sets
of assumptions are used. For the examples we have in mind, G is a compact Lie group
acting on a manifold M , and so for simplicity G is assumed to be compact throughout
the article, with few exceptions. In a future study, it would be nice to provide some
interesting examples in which G is not compact.

If M is also compact, only the following two conditions are needed: (a)L0 satisfies
strong Hörmander’s condition; (b) {αk} ⊂ Cr ∩ N⊥ where N is the annihilator of
the kernel of L∗

0 and r is a sufficiently large number. If L0 is elliptic, ‘Cr ’ can be
replaced by ‘bounded measurable’. For the convergence condition (a) can be replaced
by ‘L0 satisfies Hörmander’s condition and has Fredholm index 0’. If L0 has a unique
invariant probability measure, no condition is needed on the Fredhom index of L0.

Theorem 6.4 and Corollary 6.5. Under the conditions of Proposition 6.1 and
Assumption 6.1, (yε

t
ε

) converges weakly to the Markov process determined by

L̄ = −
m∑

i, j=1

αiL−1
0 α j LYi LY j , αiL−1

0 α j =
n0∑

b=1

ub〈αiL−1
0 α j , πb〉,

where n0 is the dimension of the kernel of L0 which, by the assumption that L0 has
Fredholm index 0, equals the dimension of the kernel of L∗

0. The set of functions
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Limits of random differential equations on manifolds 663

{ub} is a basis of ker(L0) and {πb} ⊂ ker(L∗
0) its dual basis. In case L0 satisfies

strong Hörmander’s condition, then there is a unique invariant measure and αiL−1
0 α j

is simply the average of αiL−1
0 α j with respect to the unique invariant measure. Let

p ≥ 1 be a number and V a Lyapunov type function such that ρ p ∈ BV,0, a function
space controlled by V . If furthermore Assumption 5.1 holds, (yε·

ε
) converges, on [0, t],

in the Wasserstein p-distance.
Theorem 8.2. Denote �ε

t (·) the solution flow to (1.5) and Pt the semigroup for L̄.
If Assumption 8.1 holds then for f ∈ BV,4,

∣
∣
∣
∣E f

(

�ε
T
ε

(y0)

)

− PT f (y0)

∣
∣
∣
∣ ≤ ε| log ε| 12C(T )γ1(y0),

where γ1 ∈ BV,0 and C(T ) is a constant increasing in T . Similarly, if f ∈ BC4,

∣
∣
∣
∣E f

(

�ε
T
ε

(y0)

)

− PT f (y0)

∣
∣
∣
∣ ≤ ε| log ε| 12 C(T )γ2(y0)(1 + | f |4,∞). (1.3)

where γ2 is a function in BV,0 independent of f and C are increasing functions.
A complete connected Riemannian manifold is said to have bounded geometry if

it has strictly positive injectivity radius, and if the Riemannian curvature tensor and
its covariant derivatives are bounded.

Proposition 9.1. Suppose that M has bounded geometry, ρ2
o ∈ BV,0, and Assump-

tion 8.1 holds. Let μ̄ be the limit measure and μ̄t = (evt )∗μ̄. Then for every r < 1
4

there exists C(T ) ∈ BV,0 and ε0 > 0 s.t. for all ε ≤ ε0 and t ≤ T ,

dW
(
Law

(
yε
t
ε

)
, μ̄t

)
≤ C(T )εr .

Besides the fact thatweworkonmanifolds,where there is the inherited non-linearity
and the problem with cut locus, the following aspects of the paper are perhaps new. (a)
We do not assume there exists a unique invariant probability measure on the noise and
the effective processes are obtained by a suitable projection, accommodating one type
of degeneracy. Furthermore the noise takes value in another manifold, accommodating
‘removable’ degeneracy. For example the stochastic processes in question lives in a
Lie group, while the noise are entirely in the directions of a sub-group. (b) We used
Lyapunov functions to control the growth of the vector fields and their derivatives,
leading to estimates uniform in ε and to the conclusion on the convergence in the
Wasserstein topologies. A key step for the convergence is a law of large numbers,
with rates, for sub-elliptic operators (i.e. operators satisfying Hörmander’s sub-elliptic
estimates). (c) Instead of working with iterated time averages we use a solution to
Poisson equations to reveal the effective operator. Functionals of the processes yε

t
ε

splits naturally into the sum of a fast martingale, a finite variation term involving a
second order differential operator in Hörmander form, and a term of order ε. From this
we obtain the effective diffusion, in explicit Hörmander form. It is perhaps also new
to have an estimate for the rate of the convergence in the Wasserstein distance. Finally
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664 X.-M. Li

we improved known theorems on the existence of global smooth solutions for SDEs in
[22], c.f. Theorem 7.2 below where a criterion is given in terms of a pair of Lyapunov
functions. New estimates on the moments of higher order covariant derivatives of the
derivative flows are also given.

1.3 Classical theorems

We review, briefly, basic ideas from existing literature on random ordinary differen-
tial equations with fast oscillating vector fields. Let F(x, t, ω, ε) := F (0)(x, t, ω) +
εF (1)(x, t, ω), where F (i)(x, t, ·) are measurable functions, for which a Birkhoff
ergodic theorem holds whose limit is denoted by F̄ . The solutions to the equations
ẏε
t = F(yε

t ,
t
ε
, ω, ε) over a time interval [0, t], can be approximated by the solution

to the averaged equation driven by F̄ . If F̄ (0) = 0, we should observe the solutions
in the next time scale and study ẋε

t = 1
ε
F(xε

t ,
t
ε2

, ω, ε). See Stratonovich [42,43].

Suppose for some functions ā j,k and b̄ j the following estimates hold uniformly:

∣
∣
∣
∣
1

ε3

∫ s+ε

s

∫ r1

s
EF (0)

j

(
x,

r2
ε2

)
F (0)
k

(
x,

r1
ε2

)
dr2 dr1 − ā j,k(s, x)

∣
∣
∣
∣ dr2 dr1 ≤ o(ε),

∣
∣
∣
∣
∣

1

ε3

∫ s+ε

s

∫ r1

s

d∑

k=1

E
∂F (0)

j

∂xk

(
x,

r2
ε2

)
F (0)
k

(
x,

r1
ε2

)
dr2 dr1

+1

ε

∫ s+ε

s
EF (1)

j

(
x,

r

ε2

)
dr − b̄ j (x, s)

∣
∣
∣
∣

≤ o(ε). (1.4)

Then under a ‘strong mixing’ condition with suitable mixing rate, the solutions of
the equations ẋε

t = 1
ε
F(xε

t ,
t
ε2

, ω, ε) converge weakly on any compact interval to
a Markov process. This is a theorem of Stratonovich [43] and Khasminskii [14],
further refined and explored in Khasminskii [15] and Borodin [3]. These theorems
lay foundation for investigation beyond ordinary differential equations with a fast
oscillating right hand side.

In our case, noise comes into the system via a L0-diffusion satisfying Hörmander’s
conditions, and hence we could by pass these assumptions and also obtain conver-
gences in the Wasserstein distances. For manifold valued stochastic processes, some
difficulties are caused by the inherited non-linearity. For example, integrating a vector
field along a path makes sense only after they are parallel translated back. Parallel
transports of a vector field along a path, from time t to time 0, involves the whole
path up to time t and introduces extra difficulties; this is still an unexplored territory
wanting further investigations. For the proof of tightness, the non-linearity causes par-
ticular difficulty if the Riemannian distance function is not smooth. The advantage of
working on a manifold setting is that for some specific physical models, the noise can
be untwisted and becomes easy to deal with.

Our estimates for the rate of convergence, Sects. 8 and 9, can be considered as an
extension to that in Kohler and Papanicolaou [32,36], which were in turn developed
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Limits of random differential equations on manifolds 665

from the following sequence of remarkable papers: Coghurn and Hersh [6], Keller and
Papanicolaou [35], Hersh and Pinsky [17], Hersh and Papanicolaou [16] and Papani-
colaou and Varadhan [34]. See also Kurtz [21] and [33] by Stroock and Varadhan.

The condition F̄ = 0 needs not hold for this type of scaling and convergence. If
F(x, t, ω, ε) = F (0)(x, ζt (ω)), where ζt is a stationary process with values inRm , and
F̄ (0) = XH , the Hamiltonian vector field associated to a function H ∈ BC3(R2;R)

whose level sets are closed connected curves without intersections, then H(yε
t
ε

) con-

verge to a Markov process, under suitable mixing and technical assumptions. See
Borodin and Freidlin [4], also Freidlin and Weber [8] where a first integral replaces
the Hamiltonian, and also Li [25] where the value of a map from a manifold to another
is preserved by the unperturbed system.

In Freidlin and Wentzell [9], the following type of central limit theorem is proved:
1√
ε
(H(xε

s )−H(x̄s)) converges to aMarkov diffusion. This formulation is not suitable
when the conserved quantity takes value in a non-linear space.

For the interested reader, we also refer to the following articles on limit theorems,
averaging and Homogenization for stochastic equations on manifolds: Enriquez et al.
[7], Gargate and Ruffino [11], Ikeda and Ochi [19], Kifer [20], Liao and Wang [27],
Manade and Ochi [29], Ogura [30], Pinsky [37], and Sowers [41].

1.4 Further question

(1) I am grateful to the associate editor for pointing out the paper by Liverani and Olla
[28], where random perturbed Harmiltonian system, in the context of weak interacting
particle systems, is studied. Their system is somewhat related to the completely inte-
grable equation studied in [23] leading to a new problem which we now state. Denote
X f the Hamiltonian vector field on a symplectic manifold corresponding to a function
f . If the symplectic manifold is R2n with the canonical symplectic form, X f is the
skew gradient of f . Suppose that {H1, . . . , Hn} is a completely integrable system,
i.e. they are poisson commuting at every point and their Hamiltonian vector fields are
linearly independent at almost all points. Following [23] we consider a completely
integrable SDE perturbed by a transversal Hamiltonian vector field:

dyε
t =

n∑

i=1

XHi (y
ε
t ) ◦ dWi

t + XH0(y
ε
t )dt + εXK (yε

t )dt.

Suppose that XH0 commutes with XHk for k = 1, . . . , n, then each Hi is a first
integral of the unperturbed system. Then, [23, Th 4.1], within the action angle coor-
dinates of a regular value of the energy function H = (H1, . . . , Hn), the energies
{H1(yε

t
ε2

), . . . , Hn(yε
t

ε2
)} converge weakly to a Markov process. When restricted to

the level sets of the energies, the fast motions are ellipitic. It would be desirable to
remove the ‘complete integrability’ in favour of Hormander’s type conditions. There
is a non-standard symplectic form on (R4)N with respect to which the vector fields
in [28] are Hamiltonian vector fields and when restricted to level sets of the energies
the unperturbed system in [28] satisfies Hörmander’s condition, see [28, section 5],
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666 X.-M. Li

and therefore provides a motivating example for further studies. Finally note that the
driving vector fields in (1.5) are in a special form, results here would not apply to the
systems in [23] nor that in [28], and hence it would be interesting to formulate and
develop limit theorems for more general random ODEs to include these two cases.
(2) It should be interesting to develop a theory for the ODEs below

ẏε
t (ω) =

m∑

k=1

Yk(y
ε
t (ω))αk(z

ε
t (ω), yε

t )) (1.5)

where αk depends also on the yε process.
(3) It would be nice to extend the theory to allow the noise to live in a non-compact
manifold, in which L0 should be an Ornstein–Uhlenbeck type operator whose drift
term would provide for a deformed volume measure.
Notation. Throughout this paper Bb(M; N ), Cr

K (M; N ), and BCr (M; N ) denote the
set of functions from M to N that are respectively bounded measurable, Cr with
compact supports, and bounded Cr with bounded first r derivatives. If N = R the
letter N will be suppressed. AlsoL(V1; V2) denotes the space of bounded linear maps;
Cr (�T M) denotes Cr vector fields on a manifold M .

2 Examples

Let {Wk
t } be independent real valued Brownian motions on a given filtered probability

space, ◦ denote Stratonovich integrals. In the following H0 and Ak are smooth vector
fields, and {A1, . . . , Ak} is an orthonormal basis at each point of the vertical tangent
spaces. To be brief, we do not specify the properties of the vector fields, instead refer
the interested reader to [25] for details. For any ε > 0, the stochastic differential
equations

duε
t = H0(u

ε
t )dt + 1√

ε

n(n−1)
2∑

k=1

Ak(u
ε
t ) ◦ dWk

t

are degenerate and they interpolate between the geodesic equation (ε = ∞) and
Brownian motions on the fibres (ε = 0). The fast random motion is transmitted to
the horizontal direction by the action of the Lie bracket [H0, Ak]. If H0 = 0, there
is a conserved quantity to the system which is the projection from the orthonormal
bundle to the base manifold. This allows us to separate the slow variable (yε

t ) and the
fast variable (zεt ). The reduced equation for (yε

t ), once suitable ‘coordinate maps’ are
chosen, can be written in the form of (1.5). In [25] we proved that (yε

t
ε

) converges

weakly to a rescaled horizontal Brownian motion. Recently Angst et al. gave this
a beautiful treatment, [1], using rough path analysis. By theorems in this article,
the above model can be generalised to include random perturbation by hypoelliptic
diffusions, i.e. {A1, . . . , Ak} generates all vertical directions. In [25] we did not know
how to obtain a rate for the convergence. Theorem 8.2, in this article, will apply and
indeed we have an upper bound for the rate of convergence.
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Limits of random differential equations on manifolds 667

As a second example, we consider, on the special orthogonal group SO(n), the
following equations:

dgε
t = 1√

ε

n(n−1)
2∑

k=1

gε
t Ek ◦ dWk

t + gε
t Y0dt, (2.1)

where {Ek} is an orthonormal basis of so(n − 1), as a subspace of so(n), and Y0 is a
skew symmetric matrix orthogonal to so(n−1). The above equation is closely related
to the following set of equations:

dgt = γ

n(n−1)
2∑

k=1

gt Ek ◦ dWk
t + δgtY0dt,

where γ, δ are two positive numbers. If δ = 0 and γ = 1, the solutions are Brownian
motions on SO(n − 1). If δ = 1

|Y0| and γ = 0, the solutions are unit speed geodesics
on SO(n). These equations interpolate between a Brownian motion on the sub-group
SO(n − 1) and a one parameter family of subgroup on SO(n). See [26]. Take δ = 1
and let γ = 1√

ε
→ ∞, what could be the ‘effective limit’ if it exists? The slow

components of the solutions, which we denote by (uε
t ), satisfy equations of the form

(1.5). They are ‘horizontal lifts’ of the projections of the solutions to Sn . If m is the
orthogonal complement of so(n − 1) in so(n) then m is AdH -irreducible and AdH -
invariant, noise is transmitted from h to every direction in m, and this in the uniform
way. It is therefore plausible that uε

t
ε

can be approximated by a diffusion ūt of constant

rank. The projection of ut to Sn is a scaled Brownian motion with scale λ. The scale
λ is a function of the dimension n, but is independent of Y0 and is associated to an
eigenvalue of the Laplacian on SO(n − 1), indicating the speed of propagation.

As a third example we consider the Hopf fibration π : S3 → S2. Let {X1, X2, X3}
be the Pauli matrices, they form an orthonormal basis of su(2) with respect to the
canonical bi-invariant Riemannian metric.

X1 =
(
i 0
0 −i

)

, X2 =
(

0 1
−1 0

)

, X3 =
(
0 i
i 0

)

.

Denote X∗ the left invariant vector field generated by X ∈ su(2). By declaring
{ 1√

ε
X∗
1, X

∗
2, X

∗
3} an orthonormal frame, we obtain a family of left invariant Rie-

mannian metrics mε on S3. The Berger’s spheres, (S3,mε), converge in measured
Gromov–Hausdorff topology to the lower dimensional sphere S2( 12 ). For further dis-
cussions see Fukaya [10] and Cheeger and Gromov [5]. Let Wt be a one dimensional
Brownian motion and take Y from m := 〈X2, X3〉. The infinitesimal generator of the
equation dgε

t = 1√
ε
X∗
1(g

ε
t ) ◦ dWt + Y ∗(gε

t ) dt satisfies weak Hörmander’s condi-
tions. The ‘slowmotions’, suitably scaled, converge to a ‘horizontal’ Brownianmotion
whose generator is 1

2ctracem∇d, where the trace is taken inm. A slightly different, ad
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668 X.-M. Li

hoc, example on the Hopf fibration is discussed in [24]. An analogous equations can
be considered on SU (n) where the diffusion coefficients come from a maximal torus.

Finally we give an example where the noise (zεt ) in the reduced equation is not
elliptic. Let M = SO(4) and let Ei, j be the elementary 4 × 4 matrices and Ai, j =
1√
2
(Ei j − E ji ). For k = 1, 2 and 3, we consider the equations

dgε
t = 1√

ε
A∗
1,2(g

ε
t ) ◦ db1t + 1√

ε
A∗
1,3(g

ε
t ) ◦ db2t + A∗

k4(g
ε
t )dt.

The slow components of the solutions of these equations again satisfy an equation of
the form (1.5).

3 Preliminary estimates

Let L0 be a diffusion operator on a manifold G and Qt its transition semigroup and
transition probabilities. Let ‖ · ‖T V denote the total variation norm of a measure,
normalized so that the total variation norm between two probability measures is less
or equal to 2. By the duality formulation for the total variation norm,

‖μ‖T V = sup
| f |≤1, f ∈Bb(G;R)

∣
∣
∣
∣

∫

G
f dμ

∣
∣
∣
∣ .

For W ∈ B(G; [1,∞)) denote ‖ f ‖W the weighted supremum norm and ‖μ‖T V,W

the weighted total variation norm:

‖ f ‖W = sup
x∈G

| f (x)|
W (x)

, ‖μ‖T V,W = sup
{‖ f ‖W≤1}

∣
∣
∣
∣

∫

G
f dμ

∣
∣
∣
∣ .

Assumption 3.1 There is an invariant probability measure π for L0, a real valued
function W ∈ L1(G, π) with W ≥ 1, numbers δ > 0 and a > 0 such that

sup
x∈G

‖Qt (x, ·) − π‖T V,W

W (x)
≤ ae−δt .

If G is compact we take W ≡ 1.
In the following lemmawe collect some elementary estimates, whichwill be used to

prove Lemmas 3.4 and 3.5, for completeness their proofs are given in the “Appendix”.
Write W̄ = ∫

G Wdπ .

Lemma 3.1 Assume Assumption 3.1. Let f, g : G → R be bounded measurable
functions and let c∞ = | f |∞‖g‖W . Then the following statements hold for all s, t ≥ 0.
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(1) Let (zt ) be an L0 diffusion. If
∫
G gdπ = 0,

∣
∣
∣
∣

1

t − s

∫ t

s

∫ s1

s

(

E
{
f (zs2)g(zs1)

∣
∣
∣Fs

}
−
∫

G
f Qs1−s2gdπ

)

ds2ds1

∣
∣
∣
∣

≤ a2c∞
(t − s)δ2

W (zs).

(2) Let (zt ) be an L0 diffusion. If
∫
G gdπ = 0 then

∣
∣
∣
∣

1

t − s

∫ t

s

∫ s1

s
E
{
f (zs2)g(zs1)

∣
∣
∣Fs

}
ds2 ds1 −

∫

G

∫ ∞

0
f Qr g dr dπ

∣
∣
∣
∣

≤ c∞
(t − s)δ2

(a2W (zs) + aW̄ ) + c∞a

δ
W̄ .

(3) Suppose that either
∫
G f dπ = 0 or

∫
G g dπ = 0. Let

C1 = a

δ2
(aW + W̄ )| f |∞‖g‖W , C2 = 2a

δ
| f |∞‖g‖W W̄ + a

δ
|ḡ| ‖ f ‖WW.

Let (zεt ) be an Lε
0 diffusion. Then for every ε > 0,

∣
∣
∣
∣
∣

∫ t
ε

s
ε

∫ s1

s
ε

E
{
f (zεs2)g(z

ε
s1)

∣
∣
∣F s

ε

}
ds2 ds1

∣
∣
∣
∣
∣
≤ C1(z

ε
s
ε
)ε2 + C2(z

ε
s
ε
)(t − s).

To put Assumption 3.1 into context, we consider Hörmander type operators. Let
LX denote Lie differentiation in the direction of a vector field X and [X,Y ] the Lie
bracket of two vector fields X and Y . Let {Xi , i = 0, 1, . . . ,m′} be a family of smooth
vector fields on a compact smooth manifold G and L0 = 1

2

∑m′
i=1 LXi L Xi + LX0 . If

{Xi , i = 1, . . . ,m′} and their Lie brackets generate the tangent space TxG at each
point x we say that the operator L0 satisfies the strong Hörmander’s condition.

Lemma 3.2 Suppose that L0 satisfies the strong Hörmander condition on a compact
manifold G and let Qt (x, ·) be its family of transition probabilities. Then Assumption
3.1 holds with W identically 1. Furthermore the invariant probability measure π has
a strictly positive smooth density w.r.t. the Lebesgue measure and

‖Qt (x, ·) − π(·)‖T V ≤ Ce−δt

for all x in G and for all t > 0.

Proof By Hörmander’s theorem there are smooth functions qt (x, y) such that
Qt (x, dy) = qt (x, y)dy. Furthermore qt (x, y) is strictly positive, see Bony [2] and
Sanchez-Calle [39]. Let a = infx,y∈M qt (x, y) > 0. Thus Döeblin’s condition holds:
if vol(A) denotes the volume of a Borel set A, Qt (x, A) ≥ a vol(A). ��
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670 X.-M. Li

We say that W is a C3 Lyapunov function for the ergodicity problem if there are
constant c �= 0 and C > 0 s.t. L0W ≤ C − c2W . If such a function exists, the Lε

0
diffusions are conservative. Suppose that the Lyapunov function V satisfies in addition
the following conditions: there exists a number α ∈ (0, 1) and t0 > 0 s.t. for every
R > 0,

sup
{(x,y):V (x)+V (y)≤R}

‖Qt0(x, ·) − Qt0(y, ·)‖T V ≤ 2(1 − α),

Then there exists a unique invariant measure π such that Assumption 3.1 holds, see
e.g. Hairer and Mattingly [13]. We mention the following standard estimates which
helps to understand the estimates in Lemma 3.3.

Lemma 3.3 Let W be a C3 Lyapunov function for the ergodicity problem of L0,
EW (zε0) is uniformly bounded in ε for ε sufficiently small. Then there exist numbers
ε0 > 0 and c s.t. for all t > 0,

sup
s≤t

sup
ε≤ε0

EW (zεs
ε
) ≤ c.

Proof By localizing (zεt ) if necessary, we see thatW (zεt )−W (zε0)− 1
ε

∫ t
0 L0W (zεr )dr

is a martingale. Let c �= 0 and C > 0 be constant s.t. L0W ≤ C − c2W . Then

EW (zεs
ε
) ≤ (EW (zε0) + 1

ε
Ct)e− c2

ε
t .

As an application we see that, under the assumption of Lemma 3.3, the functions
Ci in part (3) of Lemma 3.1 satisfy that supε≤ε0

ECi (zεs
ε
) < ∞.

Definition 3.1 We say that a stochastic differential equation (SDE) on M is complete
or conservative if for each initial point y ∈ M any solution with initial value y exists
for all t ≥ 0. Let �t (x) be its solution starting from x . The SDE is strongly complete
if it has a unique strong solution and that (t, x) �→ �t (x, ω) is continuous for a.s. ω.

From now on, by a solution we always mean a globally defined solution. For ε ∈
(0, 1) we define Lε

0 = 1
ε
L0. Let Qε

t denote their transition semigroups and transition
probabilities. For each ε > 0, let (zεt ) be an Lε

0 diffusion. Let αk ∈ Bb(G;R) and (yε
t )

solutions to the equations

ẏε
t =

m∑

k=1

Yk(y
ε
t )αk(z

ε
t ). (3.1)

Let �ε
s,t be the solution flow to (3.1) with �ε

s,s(y) = y. We denote by ḡ the average
of an integrable function g : G → R with respect to π . Let

c0(a, δ) = a2 + a

δ2
+ 3a

δ
, cW = c(a, δ)(W + W̄ ). (3.2)
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Limits of random differential equations on manifolds 671

Lemma 3.4 Suppose that Assumption 3.1 holds. Let f, g ∈ Bb(G;R) and ḡ = 0.
Suppose that αk are bounded. Then for any F ∈ C1(M;R), 0 ≤ s ≤ t and 0 < ε < 1,

∣
∣
∣
∣
∣
ε

∫ t
ε

s
ε

∫ s1

s
ε

E
{
F(yε

s2)g(z
ε
s2) f (z

ε
s1)
∣
∣F s

ε

}
ds2 ds1

∣
∣
∣
∣
∣

≤ 2γε |g|∞| f |∞(ε2 + (t − s)2).

Here

γε =
(

|F(yε
s
ε
)| cW (zεs

ε
) +

m∑

l=1

|αl |∞ ε

t − s

∫ t
ε

s
ε

E
{∣
∣(LYl F)(yε

r )
∣
∣ cW (zεr )

∣
∣ F s

ε

}
dr

)

.

Proof We first expand F(yε
s2) at

s
ε
:

ε

∫ t
ε

s
ε

∫ s1

s
ε

E
{
F(yε

s2)g(z
ε
s2) f (z

ε
s1)
∣
∣F s

ε

}
ds2 ds1

= εF(yε
s
ε
)

∫ t
ε

s
ε

∫ s1

s
ε

E
{
g(zεs2) f (z

ε
s1)
∣
∣F s

ε

}
ds2 ds1

+
m∑

l=1

ε

∫ t
ε

s
ε

∫ s1

s
ε

∫ s2

s
ε

E
{
(dF)(Yl(y

ε
s3))αl(z

ε
s3)g(z

ε
s2) f (z

ε
s1)
∣
∣F s

ε

}
ds3 ds2 ds1

By part (3) of lemma 3.1

∣
∣
∣
∣
∣
εF(yε

s
ε
)

∫ t
ε

s
ε

∫ s1

s
ε

E
{
g(zεs2) f (z

ε
s1)
∣
∣F s

ε

}
ds2 ds1

∣
∣
∣
∣
∣

≤ |F(yε
s
ε
)|| f |∞|g|∞cW (zεs

ε
)(ε3 + (t − s)ε).

It remain to estimate the summands in the second term, whose absolute value is
bounded by the following

Al :=
∣
∣
∣
∣
∣
ε

∫ t
ε

s
ε

∫ s1

s
ε

∫ s2

s
ε

E
{
(dF)(Yl(y

ε
s3))αl(z

ε
s3)g(z

ε
s2) f (z

ε
s1)
∣
∣F s

ε

}
ds3 ds2 ds1

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
ε

∫ t
ε

s
ε

E

{

(dF)(Yl(y
ε
s3))αl(z

ε
s3)

∫ t
ε

s3

∫ t
ε

s2
E
{
g(zεs2) f (z

ε
s1)
∣
∣Fs3

}
ds1 ds2

∣
∣
∣F s

ε

}

ds3

∣
∣
∣
∣
∣
.

For s3 ∈ [ s
ε
, t

ε
], we apply part (3) of Lemma 3.1 to bound the inner iterated integral,

∣
∣
∣
∣
∣

∫ t
ε

s3

∫ t
ε

s2
E
{
g(zεs2) f (z

ε
s1)
∣
∣Fs3

}
ds1 ds2

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

∫ t
ε

s3

∫ s1

s3
E
{
g(zεs2) f (z

ε
s1)
∣
∣Fs3

}
ds2 ds1

∣
∣
∣
∣
∣

≤ (ε2 + t − εs3)cW (zεs3)| f |∞|g|∞.
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We bring this back to the previous line, the notation LYl F = dF(Yl) will be used,

Al ≤ ε

∫ t
ε

s
ε

E
{∣
∣
∣(dF)(Yl(y

ε
s3))cW (zεs3)αl(z

ε
s3)

∣
∣
∣F s

ε

}∣
∣
∣ (ε2 + (t − εs3))| f |∞|g|∞ ds3

≤ | f |∞|g|∞|αl |∞(t − s)(ε2 + (t − s))
ε

t − s

∫ t
ε

s
ε

E
{∣
∣(LYl F)(yε

s3)
∣
∣ cW (zεs3)

∣
∣
∣F s

ε

}
ds3.

Putting everything together we see that, for γε given in the Lemma, ε < 1,

∣
∣
∣
∣
∣
ε

∫ t
ε

s
ε

∫ s1

s
ε

E
{
F(yε

s2)g(z
ε
s2) f (z

ε
s1)
∣
∣F s

ε

}
ds2 ds1

∣
∣
∣
∣
∣
≤ 2γε |g|∞| f |∞(ε2 + (t − s)2).

The proof is complete. ��

In Sect. 5 we will estimate γε and give uniform, in ε, moment estimates of func-
tionals of (yε

t ) on [0, T
ε
].

Lemma 3.5 Assume that (zεt ) satisfies Assumption 3.1 and α j are bounded. If F ∈
C2(M;R) and f ∈ Bb(G;R), then for all s ≤ t ,

∣
∣
∣
∣
∣

ε

t − s

∫ t
ε

s
ε

E
{
F(yε

r ) f (z
ε
r )
∣
∣F s

ε

}
dr − f̄ F(yε

s
ε
)

∣
∣
∣
∣
∣

≤ 2a

δ
| f |∞

⎛

⎝W (zεs
ε
)|F |(yε

s
ε
) +

m∑

j=1

γ j
ε |α j |∞

⎞

⎠
(

ε2

t − s
+ (t − s)

)

where

γ j
ε (y) = cW (zεs

ε
) |LY j F(yε

s
ε
)|

+
m∑

l=1

|αl |∞ ε

t − s

∫ t
ε

s
ε

E
{∣
∣LYl LY j F(yε

r )
∣
∣ cW (zεr )

∣
∣ F s

ε

}
dr.

Proof We note that,

ε

t − s

∫ t
ε

s
ε

F(yε
r ) f (z

ε
r )dr = F(yε

s
ε
)

ε

t − s

∫ t
ε

s
ε

f (zεr )dr

+
m∑

j=1

ε

t − s

∫ t
ε

s
ε

∫ s1

s
ε

dF(Y j (y
ε
s2))α j (z

ε
s2) f (z

ε
s1)ds2ds1.
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Letting ψ(r) = ae−δr , it is clear that for k ≥ 2,

∣
∣
∣
∣
∣
E

{(

F(yε
s
ε
)

ε

t − s

∫ t
ε

s
ε

f (zεr )dr − f̄ F(y s
ε
)

)
∣
∣ F s

ε

}∣
∣
∣
∣
∣

≤ ‖ f ‖WW (zεs
ε
)

∣
∣
∣F(yε

s
ε
)

∣
∣
∣

ε2

t − s

∫ t
ε2

s
ε2

ψ
(
r − s

ε2

)
dr

≤ a

δ
‖ f ‖WW (zεs

ε
)

∣
∣
∣F(yε

s
ε
)

∣
∣
∣

ε2

t − s
.

To the second term we apply Lemma 3.4 and obtain the bound

∣
∣
∣
∣
∣
∣
E

⎧
⎨

⎩

m∑

j=1

ε

t − s

∫ t
ε

s
ε

∫ s1

s
ε

dF(Y j (y
ε
s2))α j (z

ε
s2) f (z

ε
s1)ds2ds1

∣
∣ F s

ε

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣

≤ 2
m∑

j=1

γ̃ j
ε |α j |∞| f |∞

(
ε2

t − s
+ (t − s)

)

where

γ j
ε = |LY j F |(yε

s
ε
)| cW (zεs

ε
)

+
m∑

l=1

|αl |∞ ε

t − s

∫ t
ε

s
ε

E
{∣
∣(LYl LY j F)(yε

r )
∣
∣ cW (zεr )

∣
∣ F s

ε

}
dr.

Adding the error estimates together we conclude the proof. ��
It is worth noticing that if φ : R → R is a concave function φ(W ) is again a

Lyapunov function. Thus by using logW if necessary, wemay assume uniform bounds
on EW p(zεs

ε
) and further estimates on the conditional expectation in the error term are

expected from Cauchy-Schwartz inequality. If G is compact then cW is bounded. In
Corollary 5.3, we will give uniform estimates on moments of γ

j
ε .

4 A reduction

Let G be a smooth manifold of dimension n with volume measure dx . Let Hs ≡
Hs(G) denote the Sobolev space of real valued functions over a manifoldG and ‖−‖s
the Sobolev norm. The norm (‖u‖s)2 := (2π)−n

∫ |û(ξ)|2(1+|ξ |2)sdξ extends from
domains inRn to compact manifolds, e.g. by taking supremum over ‖u‖s on charts. If
s ∈ N , Hs is the completion ofC∞(M)with the norm ‖u‖s = ∑s

j=0

∫
(|∇ j u|)2dx) 1

2

where∇ is usually taken as the Levi-Civita connection; when the manifold is compact
this is independent of the Riemannian metric. And u ∈ Hs if and only if for any
function φ ∈ C∞

K , φu in any chart belongs to Hs .
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Let {Xi , i = 0, 1, . . . ,m′} be a family of smooth vector fields on G and let us
consider the Hörmander form operator L0 = 1

2

∑m′
i=1 LXi L Xi + LX0 . Let

� := {Xi1 , [Xi1 , Xi2 ], [Xi1 , [Xi2 , Xi3 ]], i j = 0, 1, . . . ,m′}.

If the vector fields in � generate TxG at each x ∈ G, we say that Hörmander’s
condition is satisfied. By the proof in a theorem of Hörmander [18, Theorem 1.1], if
L0 satisfies the Hörmander condition then u is a C∞ function in every open set where
L0u is a C∞ function. There is a number δ > 0 such that there is an δ improvement
in the Sobolev regularity: if u is a distribution such that L0u ∈ Hs

loc, then u ∈ Hs+δ
loc .

Suppose that G is compact. Then ‖u‖δ ≤ C(‖u‖L2 + ‖L0u‖L2), the resolvents
(L0 + λI )−1 as operators from L2(G; dx) to L2(G; dx) are compact, and L0 is
Fredholm on L2(dx), by which we mean that L0 is a bounded linear operator from
Dom(L0) to L2(dx) and has the Fredholm property: its range is closed and of finite co-
dimension, the dimension of its kernel, ker(L0) is finite. The domain ofL0 is endowed
with the norm |u|Dom(L0) = |u|L2 + |L0u|L2 . Let L∗

0 denote the adjoint of L0. Then
the kernel N of L∗

0 is finite dimensional and its elements are measures on M with
smooth densities in L2(dx). Denote N⊥ the annihilator of N , g ∈ L2(dx) is in N⊥
if and only if 〈g, π〉 = 0 for all π ∈ ker(L∗

0). Since L0 has closed range, (ker(L∗
0))

⊥
can be identified with the range of L0, and the set of g such that the Poisson equation
L0u = g is solvable is exactly N⊥. We denote byL−1

0 g a solution. FurthermoreL−1
0 g

is Cr whenever g is Cr . Denote by index(L0), dimkerL0 − dim CokerL0, the index
of a Fredholm operator L0, where Coker = L2(dx)/range(L0). If L0 is self-adjoint,
index(L0) = 0.

Definition 4.1 We say that L0 is a regularity improving Fredholm operator, if it is a
Fredholm operator and L−1

0 α is Cr whenever α ∈ Cr ∩ N⊥.

Let {Wk
t , k = 1, . . . ,m′} be a family of independent real valued Brownianmotions.

We may and will often represent Lε
0-diffusions (zεt ) as solutions to the following

stochastic differential equations, in Stratonovich form,

dzεt = 1√
ε

m′
∑

k=1

Xk(z
ε
t ) ◦ dWk

t + 1

ε
X0(z

ε
t )dt.

Lemma 4.1 Let L0 be a regularity improving Fredholm operator on a compact man-
ifold G, αk ∈ C3 ∩ N⊥, and β j = L−1

0 α j . Let (yε
r ) be global solutions of (3.1) on M.

Then for all 0 ≤ s < t , ε > 0 and f ∈ C2(M;R),

f (yε
t
ε

) = f (yε
s
ε
) + ε

m∑

j=1

(d f (Y j (y
ε
t
ε

))β j (z
ε
t
ε

) − d f (Y j (y
ε
s
ε
))β j (z

ε
s
ε
))

−ε

m∑

i, j=1

∫ t
ε

s
ε

LYi LY j f (y
ε
r ))αi (z

ε
r ) β j (z

ε
r ) dr (4.1)
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−√
ε

m∑

j=1

m′
∑

k=1

∫ t
ε

s
ε

d f (Y j (y
ε
r )) dβ j (Xk(z

ε
r )) dW

k
r .

Suppose that, furthermore, for each ε > 0, j, k = 1, . . . ,m,
∫ t

ε
s
ε
E|d f (Y j (yε

r ))|2|(dβ j

(Xk)(zεr )|2 dr is finite. Then,

E
{
f (yε

t
ε

)
∣
∣F s

ε

}
− f (yε

s
ε
)

= ε

m∑

j=1

(E
{
d f (Y j (y

ε
t
ε

))β j (z
ε
t
ε

)
∣
∣F s

ε

}
− d f (Y j (y

ε
s
ε
))β j (z

ε
s
ε
))

−ε

m∑

i, j=1

∫ t
ε

s
ε

E
{
LYi LY j f (y

ε
r ))αi (z

ε
r ) β j (z

ε
r )
∣
∣F s

ε

}
dr. (4.2)

Proof Firstly, for any C2 function f : M → R,

f (yε
t
ε

) − f (yε
s
ε
) =

m∑

j=1

∫ t
ε

s
ε

d f (Y j (y
ε
s1))α j (zs1)ds1.

Since the α j ’s are C2 so are β j , following from the regularity improving property of
L0. We apply Itô’s formula to the functions (LY j f )β j : M × G → R. To avoid extra
regularity conditions, we apply Itô’s formula to the function d f (Y j ), which is C1, and
the C3 functions β j separately and follow it with the product rule. This gives:

d f (Y j (y
ε
t
ε

))β j (z
ε
t
ε

) = d f (Y j (y
ε
s
ε
))β j

(
zεs

ε

)

+
m∑

j=1

∫ t
ε

s
ε

LYi LY j f (y
ε
r ) αi (z

ε
r ) β j (z

ε
r ) dr

+ 1√
ε

m′
∑

k=1

∫ t
ε

s
ε

LY j f (y
ε
r ) dβ j (Xk(z

ε
r ))dW

k
r

+1

ε

∫ t
ε

s
ε

LY j f (y
ε
r )L0β j (z

ε
r )dr.

Substitute this into the earlier equation, we obtain (4.1). Part (4.2) is obvious, as we
note that

E

⎛

⎝
m′
∑

k=1

∫ t
ε

s
ε

d f (Y j (y
ε
r ))(dβ j )(Xk(z

ε
r )) dW

k
r

⎞

⎠

2
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≤
m′
∑

k=1

E
∫ t

ε

s
ε

d f (Y j (y
ε
r ))|2|dβ(Xk(z

ε
r ))|2| dr < ∞

and the stochastic integrals are L2-martingales, so (4.2) follows. ��

When G is compact, dβ(Xk) is bounded and the condition becomes: E
∫ t

ε
s
ε
d f (Y j

(yε
r ))|2 dr is finite, which we discuss below. Otherwise, assumptions on E|dβ(Xk

(zεr ))|2+ is needed.

5 Uniform estimates

If V : M → R+ is a locally bounded function such that limy→∞ V (y) = ∞ we
say that V is a pre-Lyapunov function. Let αk ∈ Bb(G;R). Let {Yk} be C1 smooth
vector fields on M such that: either (a) each Yk grows at most linearly; or (b) there
exist a pre-Lyapunov function V ∈ C1(M;R+), positive constants c and K such
that

∑m
k=1 |LYk V | ≤ c + KV then the equations (3.1) are complete. In case (a) let

o ∈ M and a be a constant such that |Yk(x)| ≤ a(1 + ρ(o, x)) where ρ denotes
the Riemannian distance function on M . For x fixed, denote ρx = ρ(x, ·). By the
definition of the Riemannian distance function,

ρ(yε
t , y0) ≤

∫ t

0
|ẏε

s |ds =
m∑

k=1

∫ t

0
|Yk(yε

s )αk(z
ε
s )|ds ≤

m∑

k=1

|αk |∞
∫ t

0
|Yk(yε

s )|ds.

This together with the inequality ρ(yε
t , o) ≤ ρ(yε

t , y0) + ρ(o, yε
0) implies that for all

p ≥ 1, there exist constants C1,C2 depending on p such that

sup
s≤t

ρ p(yε
s , o) ≤ (C1ρ

p(o, yε
0) + C2t)e

C2t p

where C2 = a pC2
1 (
∑m

k=1 |αk |∞)p. When restricted to {t < τε}, the first time yε
t

reaches the cut locus, the bounded is simple CeCt . In case (b), for any q ≥ 1,

sup
s≤t

(V (yε
s ))

q ≤
(

V q(yε
0) + ctq

m∑

k=1

|αk |∞
)

exp

(

q
m∑

k=1

|αk |∞(K + c)t

)

,

which followed easily from the bound

|dV q(αkYk)| = |qV q−1dV (αkYk)| ≤ q|αk |∞(c + (c + K )Vq).

For the convenience of comparing the above estimates, which are standard and
expected, with the uniform estimates of (yε

t ) in Theorem 5.2 below in the time scale
1
ε
, we record this in the following Lemma.

Lemma 5.1 Let αk ∈ Bb(G;R). Let ε ∈ (0, 1), 0 ≤ s ≤ t , ω ∈ �.
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Limits of random differential equations on manifolds 677

1. If {Yk} grow at most linearly then (3.1) is complete and there exists C,C(t) s.t.

sup
0≤s≤t

ρ p(yε
s (ω), o) ≤ (Cρ p(o, yε

0(ω)) + C(t))eC(t).

2. If there exist a pre-Lyapunov function V ∈ C1(M;R+), positive constants c and
K such that

∑m
j=1 |LY j V | ≤ c + KV , then (3.1) is complete.

3. If (3.1) is complete and there exists V ∈ C1(M;R+) such that
∑m

j=1 |LY j V | ≤
c + KV then there exists a constant C, s.t.

sup
0≤s≤t

(V (yε
s (ω)))q ≤ ((V (yε

0(ω)))q + Ct)eCt .

If V ∈ B(M;R) is a positive function, denote by BV,r the following classes of
functions:

BV,r =
⎧
⎨

⎩
f ∈ Cr (M;R) :

r∑

j=0

|d j f | ≤ c + cV q for some numbers c, q

⎫
⎬

⎭
. (5.1)

In particular, BV,0 is the class of continuous functions bounded by a function of the
form c + cV q . In R

n , the constant functions and the function V (x) = 1 + |x |2 are
potential ‘control’ functions.

Assumption 5.1 Assume that (i) (3.1) are complete for every ε ∈ (0, 1), (ii)
supε E

(
V (yε

0)
)q is finite for every q ≥ 1; and (iii) there exist a function V ∈

C2(M;R+), positive constants c and K such that

m∑

j=1

|LY j V | ≤ c + KV,

m∑

i, j=1

|LYi LY j V | ≤ c + KV .

Below we assume that L0 satisfies Hörmander’s condition. We do not make
any assumption on the mixing rate. Let β j = L−1

0 α j , a1 = ∑m
j=1 |β j |∞, a2 =

∑m
i, j=1 |αi |∞|β j |∞, a3 = ∑m

j=1 |dβ j |∞, and a4 = ∑m
k=1 |Xk |2∞. We recall that if αk

and L0 satisfy Assumption 6.1 then L0 is a regularity improving Fredholm operator.

Theorem 5.2 Let L0 be a regularity improving Fredholm operator on a compact
manifold G, and αk ∈ C3(G;R) ∩ N⊥. Assume that Yk satisfy Assumption 5.1. Then
for all p ≥ 1, there exists a constant C = C(c, K , ai , p) s.t. for any 0 ≤ s ≤ t and
all ε ≤ ε0,

E
{

sup
s≤u≤t

(V (yε
u
ε
))2p

∣
∣ F s

ε

}

≤ (4V 2p(yε
s
ε
) + C(t − s)2 + C)eC(t−s+1)t . (5.2)

Here ε0 ≤ 1 depends on c, K , p, a1 and V,Yi ,Y j .
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Proof Let 0 ≤ s ≤ t . We apply (4.1) to f = V p:

V p(yε
t
ε

) = V p(yε
s
ε
) + ε

m∑

j=1

dV p(Y j (y
ε
t
ε

))β j (z
ε
t
ε

) − ε

m∑

j=1

dV p(Y j (y
ε
s
ε
))β j (z

ε
s
ε
)

−ε

m∑

i, j=1

∫ t
ε

s
ε

LYi LY j V
p(yε

r )αi (z
ε
r ) β j (z

ε
r ) dr

−√
ε

p∑

k=1

∫ t
ε

s
ε

m∑

j=1

dV p(Y j (y
ε
r ))(dβ j )(Xk(z

ε
r )) dW

k
r .

In the following estimates, wemay first assume that
∑m

j=1 |LY j V | and∑m
i, j=1 |LY j

LYi V | are bounded.Wemay then replace t by t∧τn where τn is the first time that either
quantity is greater or equal to n. We take this point of view for proofs of inequalities
and may not repeat it each time.

We take the supremum over [s, t] followed by conditional expectation of both sides
of the inequality:

E
{

sup
s≤u≤t

V p(yε
u
ε
)
∣
∣ F s

ε

}

≤ V p(yε
s
ε
) + εE

⎧
⎨

⎩
sup

s≤u≤t

m∑

j=1

dV p(Y j (y
ε
u
ε
))β j (z

ε
u
ε
)
∣
∣ F s

ε

⎫
⎬

⎭

−
m∑

j=1

dV p(Y j (y
ε
s
ε
))β j (z

ε
s
ε
)

+ εE

⎧
⎨

⎩
sup

s≤u≤t

∣
∣
∣
∣
∣
∣

∫ u
ε

s
ε

m∑

i, j=1

LYi LY j V
p (yε

r

)
αi (z

ε
r ) β j (z

ε
r ) dr

∣
∣
∣
∣
∣
∣

∣
∣ F s

ε

⎫
⎬

⎭

+√
εE

⎧
⎨

⎩
sup

s≤u≤t

∣
∣
∣
∣
∣
∣

m′
∑

k=1

∫ u
ε

s
ε

m∑

j=1

dV p(Y j (y
ε
r ))(dβ j )(Xk(z

ε
r ))dW

k
r

∣
∣
∣
∣
∣
∣

∣
∣ F s

ε

⎫
⎬

⎭
.

By the conditional Jensen inequality and the conditional Doob’s inequality, there exists
a universal constant C̃ depending only on p s.t.,

E
{

sup
s≤u≤t

V 2p(yε
u
ε
)
∣
∣ F s

ε

}

≤ 4V 2p(yε
s
ε
) + 4ε2E

⎛

⎝

⎧
⎨

⎩

m∑

j=1

|β j |∞ sup
s≤u≤t

|dV p(Y j (y
ε
u
ε
))| ∣∣ F s

ε

⎫
⎬

⎭

⎞

⎠

2

+ 4ε2

⎛

⎝
m∑

j=1

|β j |∞|dV p(Y j (y
ε
s
ε
))|
⎞

⎠

2
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+8ε(t − s)E

⎧
⎪⎨

⎪⎩

⎛

⎝
∫ t

ε

s
ε

m∑

i, j=1

|αi |∞|β j |∞
∣
∣LYi LY j V

p (yε
r

)∣
∣ dr

⎞

⎠

2
∣
∣ F s

ε

⎫
⎪⎬

⎪⎭

+C̃
p∑

k=1

E

⎧
⎪⎨

⎪⎩
ε

∫ t
ε

s
ε

∣
∣
∣
∣
∣
∣

m∑

j=1

dV p(Y j (y
ε
r ))(dβ j )

(
Xk(z

ε
r )
)
∣
∣
∣
∣
∣
∣

2

dr
∣
∣ F s

ε

⎫
⎪⎬

⎪⎭
.

Since
∑

j |LY j V | ≤ c + KV and
∑p

i, j=1 |LYi LY j V | ≤ c + KV , there
are constants c1 and K1 such that max j=1,...,m |LY j V

p| ≤ c1 + K1V p and
maxi, j=1,...,m |LYi LY j V

p| ≤ c1 + K1V p. This leads to the following estimate:

E
{

sup
s≤u≤t

V 2p(yε
u
ε
)
∣
∣ F s

ε

}

≤ 4V 2p(yε
s
ε
) + 8ε2(a1)

2
(

2(c1)
2 + (K1)

2E
{

sup
s≤u≤t

V 2p(yε
u
ε
)
∣
∣ F s

ε

}

+ (K1)
2V 2p(yε

s
ε
)

)

+16(a2)
2(t − s)ε

∫ t
ε

s
ε

(
(c1)

2 + (K1)
2E

{
V 2p(yε

r )
∣
∣ F s

ε

})
dr

+C̃(a3a4)
2ε

∫ t
ε

s
ε

E
{(
c1 + K1V

p((yε
r ))

)2 ∣
∣ F s

ε

}
dr.

Let ε0 = min{ 1
8a1K1

, 1}. For ε ≤ ε0,

1

2
E
{

sup
s≤u≤t

V 2p(yε
u
ε
)
∣
∣ F s

ε

}

≤ 4V 2p(yε
s
ε
) + 16ε2(a1c1)

2 + 16(t − s)2(a2c1)
2 + 4C̃(a3a4c1)

2(t − s)

+(16(a2K1)
2(t − s) + 4C̃(a3a4K1)

2)ε

∫ t
ε

s
ε

E
{
V 2p(yε

r )
∣
∣ F s

ε

}
dr.

It follows that there exists a constant C such that for ε ≤ ε0,

E
{

sup
s≤u≤t

V 2p(yε
u
ε
)
∣
∣ F s

ε

}

≤ (4V 2p(yε
s
ε
) + C(t − s)2 + C)eC(t−s+1)t .

��

Remark If M = R
n , Yi are vector fields with bounded first order derivatives, then ρ2

0
is a pre-Lyapunov function satisfying the conditions of Theorem 5.2, hence Theorem
5.2 holds. Let us recall that BV,r is defined in (5.1).

We return to Lemma 3.5 in Sect. 3 to obtain a key estimation for the estimation in
Sect. 8. Let us recall that BV,r is defined in (5.1).
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680 X.-M. Li

Corollary 5.3 Assume (3.1) is complete, for every ε ∈ (0, 1), and conditions of
Assumption 3.1. Let V ∈ B(M;R+) be a locally bounded function and ε0 a posi-
tive number s.t. for all q ≥ 1 and T > 0, there exists a locally bounded function
Cq : R+ → R+, a real valued polynomial λq such that for 0 ≤ s ≤ t ≤ T and for all
ε ≤ ε0

sup
s≤u≤t

E
{
Vq(yε

u
ε
)
∣
∣F s

ε

}
≤ Cq(t) + Cq(t)λq(V (yε

s
ε
)), sup

0<ε≤ε0

E(V q(yε
0)) < ∞.

(5.3)
Let h ∈ Bb(G;R). If f ∈ BV,0 is a function s.t. LY j f ∈ BV,0 and LYl LY j f ∈ BV,0
for all j, l = 1, . . . ,m, then for all 0 ≤ s ≤ t ,

∣
∣
∣
∣
∣

ε

t − s

∫ t
ε

s
ε

E
{
f (yε

r )h(zεr )
∣
∣F s

ε

}
dr − h̄ f (yε

s
ε
)

∣
∣
∣
∣
∣
≤ c̃|h|∞γε(y

ε
s
ε
)

(
ε2

t − s
+ (t − s)

)

.

Here c̃ is a constant, see (5.4) below, and

γε = | f | +
m∑

j=1

|LY j f | +
m∑

j,l=1

ε

t − s

∫ t
ε

s
ε

E
{
|LYl LY j f (y

ε
r )|

∣
∣ F s

ε

}
dr.

For all s < t and p ≥ 1,

sup
s≤u≤t

sup
ε≤ε0

E(γε(y
ε
u
ε
))p < ∞.

More explicitly, if
∑m

j=1
∑m

l=1 |LYl LY j f | ≤ K + KVq where K , q are constants,
then there exists a constant C(t) depending only on the differential equation (3.1) s.t.

γε ≤ | f | +
m∑

j=1

|LY j f | + K + C(t)Vq .

Proof By Lemma 3.5,

∣
∣
∣
∣
∣

ε

t − s

∫ t
ε

s
ε

E
{
f (yε

r )h(zεr )
∣
∣F s

ε

}
dr − h̄ f (yε

s
ε
)

∣
∣
∣
∣
∣

≤ 2a

δ
|h|∞

⎛

⎝W (zεs
ε
)

∣
∣
∣ f (yε

s
ε
)

∣
∣
∣+

m∑

j=1

γ j
ε |α j |∞

⎞

⎠
(

ε2

t − s
+ (t − s)

)

,
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where

γ j
ε (y) = cW (zεs

ε
) |LY j f (y

ε
s
ε
)|

+
m∑

l=1

|αl |∞ ε

t − s

∫ t
ε

s
ε

E
{∣
∣LYl LY j f (y

ε
r )
∣
∣ cW (zεr )

∣
∣ F s

ε

}
dr.

Since W is bounded so is cW , which is bounded by 2c(a, δ)|W |∞. Furthermore

E
{
|LYl LY j f (y

ε
r )|cW (zεr )

∣
∣ F s

ε

}
dr ≤ 2c(a, δ)|W |∞E

{
|LYl LY j f (y

ε
r )|

∣
∣ F s

ε

}
dr.

We gather all constant together,

c̃ = 2a

δ
|W |∞ + 2c(a, δ)|W |∞

m∑

j,l=1

|α j |∞ + 2

⎛

⎝
m∑

j=1

|α j |∞
⎞

⎠

2

. (5.4)

It is clear that,

∣
∣
∣
∣
∣

ε

t − s

∫ t
ε

s
ε

E
{
f (yε

r )h(zεr )
∣
∣F s

ε

}
dr − h̄ f (yε

s
ε
)

∣
∣
∣
∣
∣
≤ c̃ γε |h|∞

(
ε2

t − s
+ (t − s)

)

.

Since f , LY j and LYl LY j f ∈ BV,0, by (5.3), the following quantities are finite for all
p ≥ 1:

sup
ε≤ε0

sup
s≤u≤t

E|(LYl LY j f )(y
ε
u
ε
)|p, sup

ε≤ε0

sup
s≤u≤t

E|LY j f (y
ε
u
ε
)|p, sup

ε≤ε0

sup
s≤u≤t

E| f (yε
u
ε
)|p.

Furthermore since
∑m

j=1
∑m

l=1 |LYl LY j f | ≤ K + KVq ,

m∑

j=1

m∑

l=1

ε

t − s

∫ t
ε

s
ε

E
{
|LYl LY j f (y

ε
r )|

∣
∣ F s

ε

}
dr ≤ K + C(t)Vq(yε

s
ε
).

Consequently, γε ≤ | f | +∑m
j=1 |LY j f | + K + C(t)Vq , completing the proof. ��

6 Convergence under Hörmander’s conditions

Below inj(M) denotes the injectivity radius of M and ρy = ρ(y, ·) is the Riemannian
distance function on M from a point y. Let o denote a point in M . The following
proposition applies to an operatorL0, on a compact manifold, satisfying Hörmander’s
condition.

Proposition 6.1 Let M be a manifold with positive injectivity radius and ε0 > 0.
Suppose conditions (1–5) below or conditions (1–3), (4’) and (5).
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(1) L0 is a regularity improving Fredholm operator on L2(G) for a compact manifold
G;

(2) {αk} ⊂ C3 ∩ N⊥;
(3) Suppose that for ε ∈ (0, ε0), (3.1) is complete and supε≤ε0

Eρ(yε
0 , o) < ∞;

(4) Suppose that there exists a locally bounded function V s.t. for all ε ≤ ε0 and for
any 0 ≤ s ≤ u ≤ t , and for all p ≥ 1,

EV p(yε
0) ≤ c0, sup

s≤u≤t
E
{
(V (yε

u
ε
))p

∣
∣ F s

ε

}
≤ K + KV p′

(yε
s
ε
)

where c0 = c0(p), K = K (p, t), and p′ = p′(p, t) is a natural number; K , p′
are locally bounded in t.

(4’) There exist a function V ∈ C2(M;R+), positive constants c and K such that

m∑

j=1

|LY j V | ≤ c + KV,

m∑

i, j=1

|LYi LY j V | ≤ c + KV .

(5) For V in part (4) or in part (4’), suppose that for some number δ > 0,

|Y j | ∈ BV,0 sup
ρ(y,·)≤δ

|LYi LY j ρy(·)| ∈ BV,0.

Then there exists a distance function ρ̃ on M that is compatible with the topology of
M and there exists a number α > 0 such that

sup
ε≤ε0

E sup
s �=t

(
ρ̃(yε

s
ε
, yε

t
ε

)

|t − s|α
)

< ∞,

and for any T > 0, {(yε
t
ε

, t ≤ T ), 0 < ε ≤ 1} is tight.

Proof By Theorem 5.2, conditions (1–3) and (4’) imply condition (4). (a) Let δ <

min(1, 1
2 inj(M)). Let f : R+ → R+ be a smooth convex function such that f (r) = r

when r ≤ δ
2 and f (r) = 1 when r ≥ δ. Then ρ̃(x, y) = f ◦ ρ is a distance function

with ρ̃ ≤ 1. Its open sets generate the same topology on M as that by ρ. Let β j be a
solution toL0β j = α j . For any y0 ∈ M , |LY j ρ̃

2(y0, ·)| ≤ 2|Y j (·)|. Since |Y j | ∈ BV,0,
∫ t

ε

0 E|LY j ρ̃|(yε
r )|2dr < ∞. We may apply (4.2) in Lemma 4.1,

E
{
ρ̃2(yε

s
ε
, yε

t
ε

)
∣
∣ F s

ε

}

= ε

m∑

j=1

(
E
{
(LY j ρ̃

2(yε
s
ε
, yε

t
ε

)) β j (z
ε
t
ε

)
∣
∣ F s

ε

}
− (LY j ρ̃

2(yε
s
ε
, ·))(yε

s
ε
) β j (z

ε
s
ε
)
)

−ε

m∑

i, j=1

∫ t
ε

s
ε

E
{
(LYi LY j ρ̃

2(yε
s
ε
, yε

r )) αi (z
ε
r ) β j (z

ε
r )
∣
∣ F s

ε

}
dr.
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In the above equation, differentiation of (ρ̃)2 is w.r.t. to the second variable. By con-
struction ρ̃ is bounded by 1 and |∇ρ̃| ≤ |∇ρ| ≤ 1. Furthermore since α j are C3

functions on a compact manifold, so β j and |β j | are bounded. For any y0 ∈ M ,
LY j ρ̃(y0, ·) = γ ′(ρy0)LY j ρy0 . Thus

∣
∣
∣E
{
(LY j ρ̃

2(yε
s
ε
, yε

t
ε

)) β j (z
ε
t
ε

)
∣
∣ F s

ε

}∣
∣
∣ ≤ |β j |∞E

{
ρ̃(yε

s
ε
, yε

t
ε

)|Y j (y
ε
t
ε

)| ∣∣ F s
ε

}
.

Recall ρ̃ ≤ 1 and there are numbers K1 and p1 s.t. |Y j | ≤ K1 + K1V p1 , so

E
{
|Y j (y

ε
t
ε

)| ∣∣ F s
ε

}
≤ K1 + K1E

{
V p1(yε

t
ε

)
∣
∣ F s

ε

}
≤ K1 + K1K (p1, t)V

p′(p1,t)(yε
s
ε
).

Let g1 = K1 + K1K (p1)V p′(p1,t), it is clear that g1 ∈ BV,0. We remark that,

LYi LY j (ρ̃
2) = ( f 2)′′(ρ)(LYi ρ)(LY j ρ) + ( f 2)′(ρ)LYi LY j ρ.

By the assumption, there exists a function g2 ∈ BV,0 s.t.

E
{
ρ̃2(yε

s
ε
, yε

t
ε

)
∣
∣F s

ε

}
≤ g2(y s

ε
)ε + g2(y s

ε
)(t − s).

For ε ≥ √
t − s, it is better to estimate directly from (3.1):

E
{
ρ̃2(yε

s
ε
, yε

t
ε

)
∣
∣ F s

ε

}
=

m∑

k=1

∫ t
ε

s
ε

E
{
2ρ̃(yε

s
ε
, yε

t
ε

)LYk ρ̃(yε
s
ε
, yε

t
ε

)αk(z
ε
r )
∣
∣ F s

ε

}

≤ 2|αk |∞
m∑

k=1

∫ t
ε

s
ε

E
{
|Yk(yε

r )|
∣
∣ F s

ε

}
dr ≤ g3(y

ε
s
ε
)

(
t − s

ε

)

where g3 ∈ BV,0. We interpolate these estimates and conclude that for some function
g4 ∈ BV,0 and a constant c the following holds: E{ρ̃2(yε

t
ε

, yε
s
ε
)
∣
∣ F s

ε
} ≤ (t − s)g4(yε

s
ε
).

There is a function g5 ∈ BV,0 s.t.

Eρ̃2(yε
t
ε

, yε
s
ε
) ≤ Eg5(yε

0)(t − s) ≤ c(t − s).

In the last step we use Assumption (4) on the initial value. By Kolmogorov’s criterion,
there exists α > 0 such that

sup
ε

E sup
s �=t

⎛

⎝
ρ̃2(yε

s
ε
, yε

t
ε

)

|t − s|α

⎞

⎠ < ∞,

and the processes (yε
s
ε
) are equi uniformly Hölder continuous on any compact time

interval. Consequently the family of stochastic processes {yε
t
ε

, 0 < ε ≤ 1} is tight. ��
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IfL0 is the Laplace–Beltrami operator on a compact Riemannianmanifold andπ its
invariant probability measure then for any Lipschitz continuous function f : G → R,

√

E
(
1

t

∫ t

0
f (zs)ds −

∫

f dπ

)2

≤ C(‖ f ‖Osc)
1√
t
. (6.1)

where ‖ f ‖Osc denotes the oscillation of f . If L0 is not elliptic we suppose it satisfies
Hörmander’s conditions and has index 0. The dimension of the kernel of L∗

0 equals
the dimension of the kernel of L0. Let {ui , i = 1, . . . , n0} be a basis in ker(L0) and
{πi i = 1, . . . , n0} the dual basis for the null space of L∗

0. For f ∈ L2(G;R) we
define f̄ = ∑n0

i=1 ui 〈 f, πi 〉 where the bracket denotes the dual pairing between L2

and (L2)∗.

Lemma 6.2 Suppose that (zt ) is a Markov process on a compact manifold G with
generator L0 satisfying Hörmander’s condition and having Fredholm index 0. Then
for any function f ∈ Cr (G;R), where r ≥ max {3, n

2 + 1}, there is a constant C
depending on | f | n

2+1, s.t.

√

E
(

1

t − s

∫ t

s
f (zr )dr − f̄

)2

≤ C(‖ f − f̄ ‖ n
2+1)

1√
t − s

. (6.2)

Proof Since 〈 f, π j 〉 = 〈 f, π j 〉, f − f̄ ∈ N⊥. By working with f − f̄ wemay assume
that f ∈ N⊥ and let g be a solution toL0g = f . By Hörmander’s theorem, [18], there
is a positive number δ, such that for all u ∈ C∞(M),

‖u‖s+δ ≤ C(‖L0u‖s + ‖u‖L2).

The number δ = 21−k where k ∈ N is related to the number of brackets needed to
generate the tangent spaces.

Furthermore every u such that ‖L0u‖s < ∞ must be in Hs . If s > n
2 + 1, Hs is

embedded in C1 and for some constant ci ,

|g|C1(M) ≤ c1 ‖g‖ n
2+1+ε ≤ c2 (‖ f ‖ n

2+1 + |g|L2) ≤ c3 ‖ f ‖ n
2+1.

Recall that L0 = ∑m′
i=1 LXi L Xi + LX0 . Let {W j

t , j = 1, . . . ,m′} be independent one
dimensional Brownian motions. Let (zt ) be solutions of dzt = ∑m′

j=1 X j (zt ) ◦ dW j
t .

Since f is C2,

1

t − s

∫ t

s
f (zr )dr = 1

t − s
(g(zt ) − g(zs)) − 1

t − s

⎛

⎝
m′
∑

j=1

∫ t

s
(dg(X j ))(zr )dW

j
r

⎞

⎠ .
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We apply the Sobolev estimates to g and use Doob’s L2 inequality to see that for t ≥ 1
there is a constant C such that,

E
(

1

t − s

∫ t

s
f (zr )dr

)2

≤ 4

t2
|g|2∞ + 8

(t − s)2

m′
∑

j=1

∫ t

s
(E|dg(zr )|2|X j (zr )|2)dr

≤ 4

(t − s)2
(|g|∞)2 + 8m′

t − s
(|dg|)2∞

m′
∑

j=1

|X j |2∞ ≤ C(‖ f ‖ n
2+1)

2 1

t − s
.

��
We remark that a self-adjoint operator satisfying Hörmander’s condition has index

zero.

Lemma 6.3 Suppose thatL0 satisfies Hörmander’s condition. In addition it has Fred-
holm index 0 or it has a unique invariant probability measure. Let r ≥ max {3, n

2 + 1}.
Let h : M × G → R be such that h(y, ·) ∈ Cr for each y and that |h|∞ +
supz |h(·, z)|Lip + supy |h(y, ·)|Cr < ∞. Let s ≤ t be a pair of positive numbers,
and F ∈ BC(C([0, s]; M) → R). For any equi -uniformly continuous subsequence,
ỹnt := (yεn

t
εn

), of (yε
t
ε

) that converges weakly to a continuous process ȳ· as n → ∞, the

following convergence holds weakly:

F(yεn·
εn

)

∫ t

s
h(yεn

u
εn

, zεnu
εn

)du → F(ȳ·)
∫ t

s
h(ȳu, ·)du

where h(y, ·) = ∑n0
i=1 ui 〈h(y, ·), πi 〉.

Proof For simplicity we omit the subscript n. The required convergence follows from
Lemma 4.3 in [25] where it was assumed that (6.1) holds andL0 has a unique invariant
measure for μ. It is easy to check that the proof there is valid. We take care to replace∫
G h(y, z)dμ(z) in Lemma 4.3 there by

∑n0
i=1 ui 〈h(y, ·), πi 〉. We remark that by the

regularity improving property each ui is smooth and therefore bounded. In the first part
of the proof, we divide [s, t] into sub-intervals of size ε, freeze the slow variable (yε

u
ε
)

on [tk, tk+1], and approximate h(yε
u
ε
, zεu

ε
) by h(yε

tk
ε

, zεu
ε
) on each sub-interval [tk, tk+1].

This approximation is clear: the computation is exactly as in Lemma 4.3 of [25] and
we use the uniform continuity of (yε

t ), the fact that |h|∞ and supz |h(·, z)|Lip are finite.
The convergence of

∫ tk−1
ε

tk−1
ε

h(yε
tk
ε

, zεu
ε
)du → �tk

n0∑

i=1

ui 〈h(yε
tk−1

ε

, ·), πi 〉

follows from the law of large numbers in Lemma 6.2. The convergence of

∑

k

�tk

n0∑

i=1

ui 〈h(yε
tk−1

ε

, ·), πi 〉 →
n0∑

i=1

ui

∫ t

s
〈h(yε

u
ε
, ·), πi 〉du
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686 X.-M. Li

is also clear and follows from the Lipschitz continuity of h in the first variable and the
equi continuity of the yε path. Finally denote by yε[0,s] the restriction of the path yε·
to the interval [0, s], the weak convergence of∑n0

i=1 ui F(yε[0,s])
∫ t
s 〈h(yε

u
ε
, ·), πi 〉du to

the required limit is trivial, as explained in Lemma 4.3 of [25]. ��
Assumption 6.1 The generatorL0 satisfies Hörmander’s condition and has Fredholm
index 0 (or has a unique invariant probability measure). For k = 1, . . . ,m, αk ∈
Cr (G;R) ∩ N⊥ for some r ≥ max{3, n

2 + 1}.
If L0 is elliptic, it is sufficient to assume αk ∈ Bb(G;R), instead of αk ∈ Cr .

Theorem 6.4 If L0, αk , (yε
0) and |Y j | satisfy the conditions of Proposition 6.1 and

Assumption 6.1, then (yε
t
ε

) converge weakly to the Markov process determined by the

Markov generator

L̄ = −
m∑

i, j=1

αiβ j LYi LY j , αiβ j =
n0∑

b=1

ub〈αiβ j , πb〉.

Proof By Proposition 6.1, {(yε
t
ε

, t ≥ 0)} is tight. We prove that any convergent

sub-sequence converges to the same limit. Let εn → 0 be a a monotone sequence
converging to zero such that the probability distributions of (yεn

t
εn

) converge weakly,

on [0, T ], to a measure μ̄. For notational simplicity we may assume that {(yε
t
ε

, t ≥ 0)}
converges to μ̄.

Let s < t , {Bs} the canonical filtration, (Ys) the canonical process, and Y[0,s] its
restriction to [0, s]. By the Stroock–Varadhan martingale method, it is sufficient to
prove f (Yt ) − f (Ys) − ∫ t

s L̄ f (Yr ) dr is a local martingale for any f ∈ C∞
K (M). By

(4.1), the following is a local martingale,

f (yε
t
ε

) − f (yε
s
ε
) − ε

m∑

j=1

(d f (Y j (y
ε
t
ε

))β j (z
ε
t
ε

) + d f (Y j (y
ε
s
ε
))β j (z

ε
s
ε
))

+ ε

m∑

i, j=1

∫ t
ε

s
ε

LYi LY j f (y
ε
r ))αi (z

ε
r ) β j (z

ε
r ) dr.

Since the third term converges to zero as ε tends to zero, it is sufficient to prove

lim
ε→0

E

⎧
⎨

⎩
ε

m∑

i, j=1

∫ t
ε

s
ε

LYi LY j f (y
ε
r ))αi (z

ε
r ) β j (z

ε
r ) dr −

∫ t

s
L̄ f (yε

r
ε
) dr

∣
∣F s

ε

⎫
⎬

⎭
= 0.

This follows from Lemma 6.3, completing the proof. ��
Corollary 6.5 Let p ≥ 1 be a number and suppose that ρ p ∈ BV,0. Then, under
the conditions of Theorem 6.4 and Assumption 5.1, (yε·

ε
) converges in the Wasserstein

p-distance on C([0, t]; M).
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Proof By Theorem 5.2, supε≤ε0
E sups≤t ρ

p(o, yε
s
ε
) < ∞. LetWp denote theWasser-

stein p distance:

Wp(μ1, μ2) =
(

inf
∫

M×M
sup
s≤t

ρ(σ1(s), σ2(s))dμ(σ1, σ2)

) 1
p

.

Here the infimum is taken over all probabilitymeasures on the path spacesC([0, t]; M)

with marginals μ1 and μ2. Note that C([0, t]; M) is a Banach space, a family of
probability measures μn converges to μ in Wp, if and only if the following holds: (1)
it converges weakly and (2) supn

∫
sups≤t ρ

p(o, σ2(s))dμn(σ2) < ∞. The conclusion
follows. ��

7 A study of the semigroups

The primary aim of the section is to study the properties of Pt f for f ∈ BV,r where
Pt is the semigroup for a generic stochastic differential equation. These results will
be applied to the limit equation, to provide the necessary a priori estimates. Theorem
7.2 should be of independent interest, it also lead to Lemma 7.5, which will be used
in Sect. 8.

Throughout this section M is a complete smooth Riemannian manifold. Let Y0
be C5 and {Yk, k = 1, . . . ,m} be C6 smooth vector fields on M , {Bk

t } independent
real valued Brownian motions. Let (�t (y), t < ζ(y)) be the maximal solution to the
following equation

dyt =
m∑

k=1

Yk(yt ) ◦ dBk
t + Y0(yt )dt (7.1)

with initial value y. Its Markov generator is L f = 1
2

∑m
k=1 LYk LYk f + LY0 f . Let

Z = 1
2

∑m
k=1 ∇Yk Yk + Y0 be the drift vector field, so

L f = 1

2

m∑

k=1

∇d f (Yk,Yk) + d f (Z). (7.2)

If there exists a C3 pre-Lyapunov function V , constants c and K such that LV ≤
c + KV then (7.1) is complete. However we do not limit ourselves to Lyapunov
test for the completeness of the SDE. Let us denote | f |r = ∑r

k=1 |∇(k−1)d f | and
| f |r,∞ = ∑r

k=1 |∇(k−1)d f |∞. The following observation is useful.

Lemma 7.1 Let V ∈ B(M;R) be locally bounded.

• Suppose that
∑m

j=1 |Y j | ∈ BV,0 and |Z | ∈ BV,0. Then if f ∈ BV,2, L f ∈ BV,0.

If f ∈ BC2, |L f | ≤ | f |2,∞F1 where F1 ∈ BV,0, not depending on f .
• Suppose that

m∑

j=1

(|Y j | + |∇Y j | + |∇(2)Y j |) ∈ BV,0, |Z | + |∇Z | + |∇(2)Z | ∈ BV,0.
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688 X.-M. Li

If f ∈ BV,4, L2 f ∈ BV,0. If f ∈ BC4, |L2 f | ≤ | f |4,∞F2 where F2 is a function
in BV,0, not dependent of f .

Proof That L f belongs to BV,0 follows from (7.2). If f ∈ BC2, |L f | ≤
(| f |2)∞(

∑m
k=1 |Yk |2 + |Z |). For the second part we observe that L2 f involves at

most four derivatives of f and two derivatives of Y j and Z where j = 1, . . . ,m. ��
Let d�t (v) denote the derivative flow in the direction of v ∈ TyM . It is the deriv-

ative of the function y �→ �t (y, ω), in probability. Moreover, it solves the following
stochastic covariant differential equation along the solutions yt := �t (y0),

Dvt =
m∑

k=1

∇vt Yk ◦ dBk
t + ∇vt Y0dt.

Here DVt := //t (y·)d(//−1
t (y·)Vt )where //t (y·) : Ty0M → Tyt M is the stochastic par-

allel transport map along the path y·. Denote |d�t |y0 the norm of d�t (y0) : Ty0M →
Tyt M . For p > 0, y ∈ M and v ∈ TyM , we define Hp(y) ∈ L(TyM × TyM;R) by

Hp(y)(v, v) =
m∑

k=1

|∇Yk(v)|2 + (p − 2)
m∑

k=1

〈∇Yk(v), v〉2
|v|2 + 2〈∇Z(v), v〉.

Let h p(y) = sup|v|=1} Hp(y)(v, v). Its upper bound will be used to control |d�t |y .
Assumption 7.1 The Eq. (7.1) is complete. (i’) and (ii), below hold.

(i) There exists a locally bounded function V ∈ B(M;R+), s.t. for all q ≥ 1 and
t ≤ T , there exists a number Cq(t) and a polynomial λq such that

sup
s≤t

E(|V (�s(y))|q) ≤ Cq(t) + Cq(t)λq(V (y)). (7.3)

(i’) There exists V ∈ C3(M;R+) and constants c and K such that

LV ≤ c + KV, |LY j V | ≤ c + KV, j = 1, . . . ,m,

(ii) Let Ṽ = 1 + ln(1 + |V |). For some constant c,

m∑

k=1

|∇Yk |2 ≤ cṼ , sup
|v|=1

〈∇Z(v), v〉 ≤ cṼ . (7.4)

Remark Suppose that (7.1) is complete. Since LVq = qV q−1LV + q(q −
1)Vq−2|LY j V |2, (i’) implies (i). In fact, E sups≤t (V (ys))q ≤ (

EV (y0)q + cq2t
)

e(c+K )q2t .

Recall that (7.1) is strongly complete if (t, y) �→ �t (y) is continuous almost surely
on [0, t] × M for ant t > 0.
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Theorem 7.2 Under Assumption 7.1, the following statements hold.

1. The SDE (7.1) is strongly complete and for every t ≤ T , �t (·) is C4. Furthermore
for all p ≥ 1, there exists a positive number C(t, p) such that

E
(

sup
s≤t

|d�s(y)|p
)

≤ C(t, p) + C(t, p)VC(t,p)(y). (7.5)

2. Let f ∈ BV,1. Define δPt (d f )) = Ed f (d�t (·)). Then d(Pt f ) = δPt (d f ) and
|d(Pt f )| ∈ BV,0. Furthermore for a constant C(t, p) independent of f ,

|d(Pt f )| ≤
√

E
(|d f |�ε

t (y)
)2
√

C(t, p)(1 + VC(t,p)(y)).

3. Suppose furthermore that

m∑

j=1

3∑

α=0

|∇(α)Y j | ∈ BV,0,

2∑

α=0

|∇(α)Y0| ∈ BV,0.

Then, (a) E sups≤t |∇d�s |2(y) ∈ BV,0; (b) If f ∈ BV,2, then Pt f ∈ BV,2, and

(∇dPt f )(u1, u2) = E∇d f (d�t (u1), d�t (u2)) + Ed f (∇u1d�t (u2)).

Furthermore, (c) dPt f
dt = PtL f , and L(Pt f ) = Pt (L f ).

4. Let r ≥ 2. Suppose furthermore that

r∑

α=0

|∇(α)Y0| ∈ BV,0,

r+1∑

α=0

m∑

k=1

|∇(α)Yk | ∈ BV,0.

Then E sups≤t (|∇(r−1)d�s |y)2 belongs to BV,0. If f ∈ BV,r , then Pt f ∈ BV,r .

Proof The statement on strong completeness follows from the following theorem, see
Theorem 5.1 in [22]. Suppose that (7.1) is complete. If Ṽ is a function and c0 a number
such that for all t > 0, K compact, and all constants λ,

sup
y∈K

E exp

(

λ

∫ t

0
Ṽ (�s(y))ds

)

< ∞,

m∑

k=1

|∇Yk |2 ≤ c0Ṽ , h p ≤ 6pc0Ṽ , (7.6)

then (7.1) is strongly complete. Furthermore for every p ≥ 1 there exists a constant
c(p) such that

E
(

sup
s≤t

|d�s(y)|p
)

≤ c(p)E
(

exp

(

6p2
∫ t

0
Ṽ (�s(y))ds

))

. (7.7)
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Since Y j are C6, then for every t , �t (·) is C4. It is easy to verify that condition (7.6)
is satisfied. In fact, by the assumption h p ≤ 6pcṼ . Take Ṽ = 1 + ln(1 + |V |) then
for p ≥ 1,

E
(

exp

(

6p2
∫ t

0
Ṽ (�s(y))ds

))

≤ C(t, p) + C(t, p)(VC(t,p)(y)) < ∞.

This proves part (1).
For part (2) let f ∈ C1. Then y �→ f (�t (y, ω)) is differentiable for almost every

ω. Let σ : [0, t0] → M be a geodesic segment with σ(0) = y. Then

f (�t (σs, ω)) − f (�t (y, ω))

s
= 1

s

∫ s

0

d

dr
f (�t (σr , ω)) dr.

Since E|d�t (y)|2 is locally bounded in y, r �→ E|d�t (σr , ω)| is continuous and
the expectation of the right hand side converges to Ed f (d�t (σ̇ (0)). The left hand
side clearly converges almost surely. Since E|d f (d�t (y))|2 is locally bounded the
convergence is in L1. We proved that d(Pt f ) = δPt (d f ). Furthermore, suppose that
|d f | ≤ K + KVq ,

|d(Pt f )|y ≤
√
E(|d f |�ε

t (y))
2
√
E|d�ε

t |2y
≤
√
2K 2 + 2K 2EV 2q(�ε

t (y))
√

c(p)C(t, p) + c(p)C(t, p)(VC(t,p)(y)).

The latter, as a function of y, belongs to BV,0.
We proceed to part (3a). Let v,w ∈ TyM andUt := ∇d�t (w, v). ThenUt satisfies

the following equation:

DUt =
m∑

k=1

∇(2)Yk(d�t (v), d�t (w)) ◦ dBk
t +

m∑

k=1

∇Yk(Ut ) ◦ dBk
t

+∇(2)Y0(d�t (v), d�t (w))dt + ∇Y0(Ut )dt.

It follows that,

d|Ut |2 = 2
m∑

k=1

〈∇(2)Yk(d�t (v), d�t (w)) ◦ dBk
t + ∇(2)Y0(d�t (v), d�t (w))dt,Ut 〉

+
〈

m∑

k=1

∇Yk(Ut ) ◦ dBk
t + ∇Y0(Ut )dt,Ut

〉

.

To the first term on the right hand side we apply Cauchy Schwartz inequality to split
the first term in the inner product and the second term in the inner product. This gives:
C |Ut |2 and other terms that does not involve Ut . The Stratonovich corrections will
throw out the extra derivative ∇(3)Yk which does not involve Ut . The second term
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on the right hand side is a sum of the form
∑m

k=1〈∇Yk(Ut ),Ut 〉dBk
t for which only

bound on |∇Yk | is required, and
〈

m∑

k=1

∇(2)Yk(Yk,Ut ) + ∇Y0(Ut ),Ut

〉

= 〈∇Z(Ut ),Ut 〉 −
〈

m∑

k=1

∇Yk(∇Ut Yk),Ut

〉

.

The second term is bounded by

∣
∣
∣
∣
∣

m∑

k=1

〈∇Yk(∇Ut Yk),Ut
〉
∣
∣
∣
∣
∣
≤

m∑

k=1

|∇Yk |2|Ut |2.

By the assumption, there exist c > 0, q ≥ 1 such that, for every k = 1, . . . ,m,

|∇Yk | ≤ Ṽ , |∇2Y j | ≤ c + cV q , |∇(3)Yk | ≤ c + cV q , 〈∇u Z , u〉 ≤ (c + KV )|u|2.

There is a stochastic process Is , which does not involve Ut , and constants C, q such
that

E|Ut |2 ≤ E|U0|2 +
∫ t

0
EIr dr +

∫ t

0
CEṼ q(yε

r )|Ur |2dr.

By induction Ir has moments of all order which are bounded on compact intervals.
By Gronwall’s inequality, for t ≤ T ,

E|Ut |2 ≤
(

E|U0|2 +
∫ T

0
EIr dr

)

exp

(

C
∫ t

0
Ṽ q(yε

r )dr

)

.

To obtain the supremum inside the expectation, we simply use Doob’s L p inequality
before taking expectations. With the argument in the proof of part (1) we conclude
that E sups≤t |∇d�s |2(y) is finite and belongs to BV,0.

Part (3b). Let f ∈ BV,2. By part (1), d(Pt f ) = Ed f (d�t (y)). Let u1, u2 ∈ TyM .
By an argument analogous to part (3), we may differentiate the right hand side under
the expectation to obtain that

(∇dPt f )(u1, u2) = E∇d f (d�t (u1), d�t (u2)) + Ed f (∇u1d�t (u2)).

Hence Pt f ∈ BV,2. This procedure can be iterated.
Part (3c). By Itô’s formula,

f (yt ) = f (ys) +
m∑

k=1

∫ t

s
d f (Yk(yr ))dB

k
r +

∫ t

s
L f (yr )dr.

Since d f (Yk) ∈ BV,0, the expectations of the stochastic integrals with respect to the
Brownian motions vanish. Since L f ∈ BV,0 by part (3), L f (yr ) is bounded in L2. It
follows that the function r �→ EL f (yr ) is continuous,
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lim
t→s

E f (yt ) − E f (ys)

t − s
= EL f (ys)

and we obtain Kolmogorov’s backward equation, ∂
∂s Ps f = Ps(L f ). Since Ps f ∈

BV,2, we apply the above argument to Ps f , and take t to zero in Pt (Ps f )−Ps f
t and

obtain that ∂
∂s Ps f = L(Ps f ). This leads to the required statement LPs f = PsL f .

Part (4). For higher order derivatives of �t we simply iterate the above procedure
and note that the linear terms in the equation for d

dt |∇k−1d�t (u1, . . . , uk)|2 are always
of the same form. ��
Remark 7.3 With the assumption of part (3), we can show that for all integer p,
E sups≤t |∇d�s |py ∈ BV,0.

If we assume the additional conditions that

|∇Y0| ≤ cṼ ,

m∑

k=1

|∇(2)Yk ||Yk | ≤ cṼ ,

the conclusion of the remark follows more easily. With the assumptions of part (5) we
need to work a bit more which we illustrate below. Let Ut = ∇d�t (w, v). Instead of
writing down all term in |Ut |p we classify the terms in |Ut |p into two classes: those
involving Ut and those not. For the first class we must assume that they are bounded
by cṼ for some c. For the second class we may use induction and hence it is sufficient
to assume that they belong to BV,0. The terms that involving Ut are:

∇Yk(Ut ),

m∑

k=1

∇(2)Yk(Yk,Ut ) + ∇Y0(Ut ).

The essential identity to use is:

m∑

k=1

∇(2)Yk(Yk,Ut ) + ∇Y0(Ut ) = ∇Z(Ut ) −
m∑

k=1

∇Yk(∇Yk(Ut )).

We do not need to assume that the second order derivatives |∇(2)Yk ||Yk | ≤ cṼ , it is
sufficient to assume that for |∇Yk |2 and ∇Z for all k = 1, . . . ,m. With a bit of care,
we check that only one sided derivatives of Z are involved.

For example we can convert it to the p = 2 case,

d|Ut |p = p

2
(|Ut |p−2) ◦ d|Ut |2 = p

2
|Ut |p−2d|Ut |p + 1

4
p(p − 1)|Ut |p−4〈d|Ut |2〉.

By the first term p
2 |Ut |p−2d|Ut |p we mean that in place of d|Ut |p plug in all terms on

the right hand side of the equation for d|Ut |2, after formally converting the integrals
to Itô form. By 〈d|Ut |2〉 we mean the bracket of the martingale term on the right hand
side of d|Ut |2. It is now easy to check that in all the terms that involving Ut , higher
order derivatives of Yk does not appear, except in the form of |Ut |p−2〈∇Ut Z ,Ut 〉.
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Remark 7.4 Assume the SDE is complete. Suppose that for some positive number C ,

m∑

k=1

5∑

k=0

|∇(k)Yk | ≤ C,

4∑

k′=0

|∇(k′)Y0| ≤ C.

Then for all p ≥ 1, there exists a constant C(t, p) such that

E
(

sup
s≤t

|d�s(x)|p
)

≤ C(t, p).

Furthermore the statements in Theorem 7.2 hold for r ≤ 4.

Recall that | f |r = ∑r
k=1 |∇(k−1)d f | and | f |r,∞ = ∑r

k=1 |∇(k−1)d f |∞.

Lemma 7.5 Assume Assumption 7.1 and

4∑

α=0

|∇(α)Y0| ∈ BV,0,

5∑

α=0

m∑

k=1

|∇(α)Yk | ∈ BV,0.

Then there exist constants q1, q2 ≥ 1, c1 and c2 depending on t and f and locally
bounded in t, also functions γi ∈ BV,0, λqi polynomials, such that for s ≤ t ,

|Pt f (y0) − Ps f (y0)| ≤ (t − s)c1(1 + λq1(V (y0))), f ∈ BV,2

|Pt f (y0) − Ps f (y0) − (t − s)Ps(L f )(y0)| ≤ (t − s)2c2(1 + λq2(V (y0))), f ∈ BV,4

|Pt f (y0) − Ps f (y0)| ≤ (t − s)(1 + | f |2,∞)γ1(y0), ∀ f ∈ BC2

|Pt f (y0) − Ps f (y0) − (t − s)Ps(L f )(y0)| ≤ (t − s)2(1 + | f |4,∞)γ2(y0), ∀ f ∈ BC4.

Proof Denote yt = �t (y0), the solution to (7.1). Then for f ∈ C2,

Pt f (y0) = Ps f (y0) +
∫ t

s
Pr (L f )(y0)dr +

m∑

k=1

E
(∫ t

s
d f (Yk(yr ))dB

k
r

)

.

Since |LYk f | ≤ |d f |∞|Yk | and |d f |, Yk belong to BV,0, by Assumption 7.1(i),
∫ t
0 E|LYk f |2yr dr is finite and the last term vanishes. Hence |Pt f (y0) − Ps f (y0)| ≤
∫ t
s Ps2(L f )(y0)ds2. By Lemma 7.1, L f ∈ BV,0 if f ∈ BV,2. Let K , q1 be s.t.

|L f | ≤ K + KVq1 .

∫ r

s
|Ps2(L f )(y0)|ds2 ≤

∫ r

0
(K + KEV q1(�s2(y0)))ds2.

By the assumption, we see easily that
∑3

k=0 |∇(α)Z | ∈ BV,0. By Assumption 7.1,
sups≤t E(|V (�s(y0))|q1) ≤ Cq1(t)+Cq1(t)λq1(V (y0)) and the first conclusion holds.
We repeat this procedure for f ∈ C4 to obtain:
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Pt f (y0) − Ps f (y0)

=
∫ t

s

(

Ps(L f )(y0) +
∫ r

s
Ps2(L2 f )(y0)ds2 +

m∑

k=1

E
∫ t

s
(LYk (L f ))(ys2))dB

k
s2

)

ds1.

The last term also vanishes, as every term in LYkL f belongs to BV,0. Indeed

LYkL f =
∑

i

∇(2)d f (Yk,Yi ,Yi ) + 2
∑

i

∇d f (∇Yk Yi ,Yi ) + ∇d f (Yk, Z)

+
∑

i

d f (∇(2)Yi (Yk,Yi ) + ∇Yi (∇Yk Yi + ∇Yk Y0)).

This gives, for all f ∈ BV,4,

|Pt f (y0) − Ps f (y0) − (t − s)Ps(L f )(y0)| ≤
∣
∣
∣
∣

∫ t

s

∫ s1

s
Ps2(L2 f )(y0)ds2ds1

∣
∣
∣
∣ .

(7.8)
Let q2, K be numbers such that |L2 f | ≤ K + KVq2 . Then,

sup
s≤t

Ps(L2 f )(y0) ≤ K + KE (V (ys))
q2 ≤ K + Cq2(t) + KCq2(t)λ̃q2(V (y0)).

Consequently, there exist a constant c2(t) s.t.

|Pt f (y0) − Ps f (y0) − (t − s)Ps(L f )(y0)| ≤ (t − s)2c2(t, K , q2)(1 + λq2(V (y0))).

completing the proof for f ∈ BV,2 and BV,4. Next suppose that f ∈ BC2. By Lemma
7.1, |L f | ≤ | f |2,∞F1, and |L2 f | ≤ | f |4,∞F2 if f ∈ BC4. Here F1, F2 ∈ BV,0
and do not depend on f . We iterate the argument above to complete the proof for
f ∈ BC4. ��

8 Rate of convergence

If L0 has a unique invariant probability measure π and f ∈ L1(G, dπ) denote f̄ =∫
G f dπ . Let L̄ = −∑m

i, j=1 αiβ j LYi LY j . Let {σ i
k , i, k = 1, . . . ,m} be the entries in

a square root of the matrix (−αiβ j ). They satisfy
∑m

k=1 σ i
kσ

j
k = (−αiβ j ) and are

constants. Let us consider the SDE:

dyt =
m∑

k=1

(
m∑

i=1

σ i
kYi (yt )

)

◦ dBk
t , (8.1)

where {Bk
t } are independent one dimensional Brownian motions. Let

Ỹk =
m∑

i=1

σ i
kYi (yt ), Z̃ =

m∑

i, j=1

−αiβ j∇Yi Y j .
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The results from Sect. 7 apply. Recall that L0 = 1
2

∑p
i=1 LXi L Xi + LX0 and (zεt )

are Lε = 1
ε
L0 diffusions. Let �ε

t (y) be the solution to the SDE (1.5): ẏε
t =∑m

k=1 αk(zεt )Yk(y
ε
t ) with initial value y.

Assumption 8.1 G is compact, Y0 ∈ C5(�T M), and Yk ∈ C6(�T M) for k =
1, . . . ,m. Conditions (1)–(5) below hold or Conditions (1), (2’) and (3–5) hold.

(1) The SDEs (3.1) and (8.1) are complete.
(2) V ∈ B(M;R+) is a locally bounded function and ε0 a positive number s.t. for all

q ≥ 1 and T > 0, there exists a locally bounded function Cq : R+ → R+, a real
valued polynomial λq such that for 0 ≤ s ≤ t ≤ T and for all ε ≤ ε0

sup
s≤u≤t

E
{
Vq(�ε

u
ε
(y))

∣
∣F s

ε

}
≤ Cq(t) + Cq(t)λq(V (�ε

s
ε
(y)). (8.2)

(2’) There exists a function V ∈ C3(M;R+) s.t. for all i, j ∈ {1, . . . ,m},
|LYi LY j V | ≤ c + KV and |LY j V | ≤ c + KV .

(3) For V defined above, let Ṽ = 1 + ln(1 + |V |). Suppose that

4∑

α=0

|∇(α)Y0| ∈ BV,0,

5∑

α=0

m∑

k=1

|∇(α)Yk | ∈ BV,0,

m∑

j=1

|∇Y j |2 ≤ cṼ , sup
|u|=1

〈∇ Z̃(u), u〉 ≤ cṼ

(4) L0 satisfies Hörmander’s conditions and has a unique invariant measure π satis-
fying Assumption 3.1.

(5) αk ∈ C3(G;R) ∩ N⊥.

We emphasize the following:

Remark 8.1 (a) If V in (2’) is a pre-Lyapunov function, then (3.1) is complete. Fur-
thermore |L̄V | ≤ c + KV and so (8.1) is complete.

(b) Under conditions (1), (2’) and (4–5), (2) holds. See Theorem 5.2. Also Corollary
5.3 holds. Conditions (1–5) implies the conclusions of Theorem 7.2.

(c) If L0 satisfies strong Hörmander’s condition, condition (4) is satisfied.

Let Pε
t be the probability semigroup associated with (yε

t ) and Pt the Markov semi-
group for L̄. Recall that | f |r,∞ = ∑r

j=1 |∇( j−1)d f |∞. We recall that operator L0 on
a compact manifold G satisfying strong Hörmander’s condition has an exponential
mixing rate, so L0 satisfy Assumption 3.1.

Theorem 8.2 Assume that Yk, αk andL0 satisfy Assumption 8.1. For every f ∈ BV,4,

|E f (�ε
T
ε

(y0)) − PT f (y0)| ≤ ε| log ε| 12C(T )γ1(y0),
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where γ1 ∈ BV,0 and C(T ) are constant increasing in T . Similarly, if f ∈ BC4,

|E f (�ε
T
ε

(y0)) − PT f (y0)| ≤ ε| log ε| 12 C(T )γ2(y0)(1 + | f |4,∞).

where γ2 is a function in BV,0 that does not depend on f and C(T ) are constants
increasing in T .

Proof Step 1. To obtain optimal estimates we work on intervals of order ε, c.f. Lemma
3.4. Let t0 = 0 < t1 < · · · < tN = T be a partition of [0, T ]with�tk = tk − tk−1 = ε

for k < N and t1 ≤ ε. Write yε
t = �ε

t (y0). Then,

f (yε
t
ε

) − PT f (y0) =
N∑

k=1

(PT−tk f (y
ε
tk
ε

) − PT−tk−1 f (y
ε
tk−1

ε

))

=
N∑

k=1

(PT−tk f (y
ε
tk
ε

) − PT−tk f (y
ε
t k−1

ε

) + �tk(PT−tk−1L̄ f (yε
t k−1

ε

)))

+
N∑

k=1

(PT−tk f (y
ε
t k−1

ε

) − PT−tk−1 f (y
ε
tk−1

ε

) − �tk(PT−tk−1L̄ f )(yε
t k−1

ε

)).

Define

I ε
k = PT−tk f (y

ε
tk
ε

) − PT−tk f (y
ε
t k−1

ε

) + �tk(PT−tk−1L̄ f (yε
t k−1

ε

)),

J ε
k = PT−tk f − PT−tk−1 f − �tk PT−tk−1L̄ f.

Since f ∈ BV,4, Lemma 7.5 applies and obtain the desired estimate on the second
term:

|J ε
k (yε

t k−1
ε

)| ≤ (�tk)
2c̃2(T, f )(1 + (λq2(V (yε

t k−1
ε

)))

where c̃2(T, f ) is a constant and λq2 a polynomial.
Let K , q be constants such that λq2(V ) ≤ K +KVq . We apply (8.2) fromAssump-

tion 8.1 to see that for some constant Cq(T ) depending on λq2(V ),

E
(

λq2(V (yε
t k−1

ε

))

)

≤ K + KCq(T ) + KCq(T )λq(V (y0)).

Since �tk ≤ ε and N ∼ 1
ε
,

N∑

k=1

E|J ε
k (yε

t k−1
ε

)| ≤ εc̃2(T, f )(K + 1)(1 + Cq(T ) + Cq(T )λq(V (y0))). (8.3)
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If f belongs to BC4, we apply Lemma 7.5 to see that there exists a function
F ∈ BV,0, independent of f s.t.

∣
∣
∣
∣J

ε
k (yε

t k−1
ε

)

∣
∣
∣
∣ ≤ (�tk)

2(1 + | f |4,∞)

(

F(yε
t k−1

ε

)

)

.

Hence
N∑

k=1

E

∣
∣
∣
∣J

ε
k (yε

t k−1
ε

)

∣
∣
∣
∣ ≤ ε(1 + | f |4,∞)E

(

F(yε
t k−1

ε

)

)

. (8.4)

The rest of the proof is just as for the case of f ∈ BV,4.
Step 2. Let 0 ≤ s < t . By part (3) of Theorem 7.2, L̄Pt f = Pt L̄ f for any t > 0 and

PT−tk L̄ f = L̄PT−tk f . We will approximate PT−tk−1L̄ f by PT−tk L̄ f and estimate
the error

N∑

k=1

�tk(PT−tk L̄ f − PT−tk−1L̄ f )(yε
t k−1

ε

).

By Lemma 7.1, L f ∈ BV,2, and we may apply Lemma 7.5 to L̄ f . We have,

|PT−tk L̄ f (y0) − PT−tk−1L̄ f (y0)| ≤ �tk c̃1(T )(1 + λq1(V (y0))).

Recall that λq1(V ) ∈ BV,0. Summing over k and take the expectation of the above
inequality we obtain that

N∑

k=1

�tk |PT−tk L̄ f (yε
t k−1

ε

) − PT−tk−1L̄ f (yε
t k−1

ε

)| ≤ εc1(T )(1 + λq1(V (y0))). (8.5)

If f ∈ BC2, L f ∈ BC2. By Lemma 7.5,

|PT−tk L̄ f (y0) − PT−tk−1L̄ f (y0)| ≤ �tk c̃1(T )(1 + λq1(V (y0))).

there exist constant C(T ) and a function γ1 ∈ BV,0, independent of f , s.t.

|Pt f (y0) − Ps f (y0)| ≤ (t − s)(1 + | f |2,∞)γ1(y0).

Here γ1 ∈ BV,0. Thus for f ∈ BC2,

N∑

k=1

�tk |PT−tk L̄ f (yε
t k−1

ε

) − PT−tk−1L̄ f (yε
t k−1

ε

)| ≤ 2ε| f |2,∞(1 + γ1(y0)). (8.6)

Finally instead of estimating I ε
k , we estimate

Dε
k := PT−tk f (y

ε
tk
ε

) − PT−tk f (y
ε
t k−1

ε

) + �tk PT−tk L̄ f (yε
t k−1

ε

).
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Step 3. If f ∈ BV,4, by Theorem 7.2, Pt f ∈ BV,4 for any t . Since αk ∈ N⊥ ∩ C3,
we may apply Lemma 4.1 to PT−tk f and obtain the following formula for Dε

k .

Dε
k = PT−tk f (y

ε
tk
ε

) − PT−tk f (y
ε
tk−1

ε

) + �tk PT−tk L̄ f (yε
t k−1

ε

)

= ε

m∑

j=1

(dPT−tk f (Y j (y
ε
tk
ε

))β j (z
ε
tk
ε

) − dPT−tk f (Y j (y
ε
tk−1

ε

))β j (z
ε
tk−1

ε

))

+�tk PT−tk L̄ f (yε
t k−1

ε

) − ε

m∑

i, j=1

∫ tk
ε

tk−1
ε

(LYi LY j PT−tk f (y
ε
r ))αi (z

ε
r ) β j (z

ε
r ) dr

−√
ε

m∑

j=1

m′
∑

k=1

∫ t
ε

s
ε

dPT−tk f (Y j (y
ε
r )) dβ j (Xk(z

ε
r )) dW

k
r .

Since Y0,Yk ∈ BV,0, LYi LY j PT−tk f ∈ BV,0, which follows the same argument as
for Lemma 7.1. In particular, for each 0 < ε ≤ ε0,

∫ t
ε

0
E(|LYi LY j PT−tk f (y

ε
r )|)2dr < ∞.

The expectation of the martingale term in the above formula vanishes. For j =
1, . . . ,m and k = 1, . . . , N , let

Aε
jk = dPT−tk f (Y j (y

ε
tk
ε

))β j (z
ε
tk
ε

) − dPT−tk f (Y j (y
ε
tk−1

ε

))β j (z
ε
tk−1

ε

),

Bε
k = �tk(PT−tk L̄ f )(yε

t k−1
ε

) − ε

m∑

i, j=1

∫ tk
ε

tk−1
ε

(LYi LY j PT−tk f )(y
ε
r )αi (z

ε
r ) β j (z

ε
r ) dr.

Step 4. We recall that L̄PT−tk f = ∑m
i, j=1 αiβ j LYi LY j PT−tk f . By Theorem 7.2,

LYi LY j PT−tk f isC
2. Furthermore byAssumption 3.1, the (zεt ) diffusion has exponen-

tial mixing rate. We apply Corollary 5.3 to each function of the form LYi LY j PT−tk f
and take h = αiβ j There exist a constant c̃ and a function γi, j,,k,ε ∈ BV,0 such that

|Bε
k | ≤ �tk

m∑

i, j=1

∣
∣
∣
∣αiβ j LYi LY j PT−tk f (y

ε
tk−1

ε

)

− ε

�tk

∫ tk
ε

tk−1
ε

E
{
LYi LY j PT−tk f (y

ε
r )(αiβ j )(z

ε
r )
∣
∣F tk−1

ε

}
dr

∣
∣
∣
∣
∣

≤
m∑

i, j=1

c̃|αiβ j |∞γi, j,k,ε(y
ε
tk−1

ε

)(ε2 + (�tk)
2),
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where denoting Gk
i, j := LYi LY j PT−tk f ,

γi, j,k,ε = |Gk
i, j | +

m∑

l ′=1

|LYl′G
k
i, j | +

m∑

l,l ′=1

ε

�tk

∫ tk
ε

tk−1
ε

E
{
|LYl LYl′G

k
i, j (y

ε
r )|

∣
∣ F s

ε

}
dr.

By Theorem 7.2,Gk
i, j = LYi LY j PT−tk f belong to BV,2. FurthermoreGk

i, j and its first
two derivatives are bounded by a function in BV,0 which depends on f only through
∑4

k=0 PT−tk (|∇(k)d f |p), for some p. Thus there are numbers c, q such that for all
k, maxi, j |γi, j,k,ε | ≤ c + cV q , for some c, q. Since �tk ≤ ε ≤ 1, N ∼ O( 1

ε
), we

summing over k,

N∑

k=1

E|Bε
k | ≤ 2ε · c · c̃

m∑

i, j=1

|αiβ j |∞Cq(T ) sup
k

E(1 + V q(yε
tk−1

ε

)) ≤ εC(T )γ̃ (y0),

(8.7)
for some constant C(T ) and some function γ̃ in BV,0. If f ∈ BC4, it is easy to see
that there is a function g ∈ BV,0, not depending on f , s.t. maxi, j,k Eγi, j,k,ε(yε

tk−1
ε

) ≤
C(T )g(y0)| f |4,∞.

Step 5. Finally, by Lemma 8.4 below, for ε ≤ s ≤ t ≤ T and f ∈ BV,3, there is a
constant C and function γ̃ ∈ BV,0, depending on T, f s.t. for 0 ≤ s < t ≤ T ,

∣
∣
∣
∣
∣
∣

m∑

j=1

Ed f (Y j (y
ε
t
ε

))β j (z
ε
t
ε

) − Ed f (Y j (y
ε
s
ε
))β j (z

ε
s
ε
)

∣
∣
∣
∣
∣
∣

≤ Cγ (y0)ε
√| log ε| + Cγ (y0)(t − s). (8.8)

For the partition t0 < t1 < · · · < tN , we assumed that t1 − t0 ≤ ε and �tk = ε

for k ≥ 1. Let k ≥ 2. Since dPT−tk f (Y j ) ∈ BV,3, estimate (8.8) holds also with f
replaced by dPT−tk f (Y j ), and we have:

∣
∣
∣
∣
∣
∣

m∑

j=1

εEAε
jk

∣
∣
∣
∣
∣
∣
≤ C γ̃ (y0)ε

2
√| log ε|, k ≥ 2 (8.9)

Since β j are bounded and by Theorem 7.2 dPT−tk f is bounded by a function in BV,0
that does not depend on k, for ε ≤ ε0, each term E|Aε

jk | is bounded by a function in
BV,0 and sup0<ε≤ε0

|EAε
jk | is of order εγ̃ (y0) for some function γ̃ ∈ BV,0. We ignore

a finite number of terms in the summation. In particular we will not need to worry
about the terms with k = 1. Since the sum over k involves O( 1

ε
) terms the following

bound follows from (8.9):

N∑

k=1

∣
∣
∣
∣
∣
∣

m∑

j=1

εEAε
jk

∣
∣
∣
∣
∣
∣
≤ C γ̃ (y0)ε

√| log ε|. (8.10)
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Here γ̃ ∈ BV,0 and may depend on f . The case of f ∈ BC4 can be treated similarly.
The estimate is of the form γ̃ (ε) = (1+ | f |4,∞)γ0 where γ0 ∈ BV,0 does not depend
on f . We putting together (8.3), (8.5), (8.7) and (8.10)to see that if f ∈ BV,4,

|E f (�ε
t
ε

(y0)) − Pt f (y0)| ≤ C(T )γ (y0)ε
√| log ε|,

where γ ∈ BV,0. If f ∈ BC4, collecting the estimates together, we see that there is a
constant C(T ) s.t.

|E f (�ε
t
ε

(y0)) − Pt f (y0)| ≤ ε
√| log ε|C(T )

(

1 +
4∑

k=1

|∇(k−1)d f |∞
)

γ̃ (y0)

where γ̃ is a function in BV,0 that does not depend on f . By induction the finite
dimensional distributions converge and hence the required weak convergence. The
proof is complete. ��
Lemma 8.3 Assume that (3.1) are complete for all ε ∈ (0, ε0), some ε0 > 0.

(1) L0 is a regularity improving Fredholm operator on a compact manifold G, αk ∈
C3 ∩ N⊥.

(2) There exists V ∈ C2(M;R+), constants c, K, s.t.

m∑

j=1

|LY j V | ≤ c + KV,

m∑

j=1

|LYi LY j V | ≤ c + KV .

(2’) There exists a locally bounded V : M → R+ such that for all q ≥ 2 and t > 0
there are constants C(t) and q ′, with the property that

sup
s≤u≤t

E
{
(V (yε

u))
q
∣
∣ F s

ε

}
≤ CVq ′

(yε
s
ε
) + C. (8.11)

(3) For V in part (2) or in part (2’), supε EV
q(yε

0) < ∞ for all q ≥ 2.

For f ∈ C2 with the property that LY j f, LYi LY j f ∈ BV,0 for all i, j , there exists a
number ε0 > 0 s.t. for every 0 < ε ≤ ε0,

|E{ f (yε
t
ε

)
∣
∣ F s

ε
} − f (yε

s
ε
)| ≤ γ1(y

ε
s
ε
)max

j
|β j |∞ ε

+ (t − s)γ2(y
ε
s
ε
)max

i
|αi |∞ max

j
|β j |∞.

Here γ1, γ2 ∈ BV,0 and depend on | f | only through |LY j f | and |LY j LYi f |. In par-
ticular there exists γ ∈ BV,0 s.t. for all 0 < ε ≤ ε0,

|E f (yε
t
ε

) − E f (yε
s
ε
)| ≤ sup

0<ε≤ε0

Eγ (yε
0)(t − s + ε).

Furthermore, sup0<ε≤ε0
E| f (yε

t
ε

) − f (yε
s
ε
)| ≤ (ε + √

t − s))Eγ (yε
0).
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Proof Since the hypothesis of Theorem 5.2 holds, if V is as defined in (2), it satisfies
(2’). Since LY j f ∈ BV,0, sups≤t E|LY j f (y

ε
s
ε
)|2 is finite. We apply Lemma 4.1:

E
{
f (yε

t
ε

)
∣
∣ F s

ε

}
= f (yε

s
ε
)

+ ε

m∑

j=1

E
{
(d f (Y j (y

ε
t
ε

))β j (z
ε
t
ε

) − d f (Y j (y
ε
s
ε
))β j (z

ε
s
ε
))
∣
∣ F s

ε

}

− ε

m∑

i, j=1

E

{∫ t
ε

s
ε

LYi LY j f (y
ε
r ))αi (z

ε
r ) β j (z

ε
r ) dr

∣
∣ F s

ε

}

.

Let

γ1(y
ε
s
ε
) = 2 sup

s≤r≤t

m∑

j=1

E
{
|LY j f (y

ε
r
ε
)| ∣∣ F s

ε

}
,

γ2(y
ε
s
ε
) = sup

s≤r≤t

m∑

i, j=1

E
{
|LYi LY j f (y

ε
s
ε
)| ∣∣ F s

ε

}
.

Since LY j f and LYi LY j f ∈ BV,0, γ1, γ2 ∈ BV,0. The required conclusion follows
for there conditioned inequality, and hence the estimate for |E f (yε

t
ε

) − E f (yε
s
ε
)|. To

estimate E| f (yε
t
ε

) − f (yε
s
ε
)|, we need to involve the diffusion term in (4.1) and hence

√
t − s appears. ��

Lemma 8.4 Assume the conditions of Lemma 8.3 and Assumption 3.1. Let yε
0 = y0.

If f ∈ C3 is s.t. |LY j f |, |LYi LY j f |, |LYl LYi LY j f | belong to BV,0 for all i, j, k, then
for some ε0 and all 0 < ε ≤ ε0 and for all 0 ≤ ε ≤ s < t ≤ T where T > 0,

∣
∣
∣
∣
∣

m∑

l=1

Ed f (Yl(yε
t
ε

))βl(z
ε
t
ε

) − Ed f (Yl(yε
s
ε
))βl(z

ε
s
ε
)

∣
∣
∣
∣
∣

≤ C(T )γ (y0)ε
√| log ε| + C(T )γ (y0)(t − s),

where γ ∈ BV,0 and C(T ) is a constant. If the assumptions of Theorem 8.2 holds, the
above estimate holds for any f ∈ BV,3; if f ∈ BC3, we may take γ = (| f |3,∞ + 1)γ̃
where γ̃ ∈ BV,0.

Proof Let t ≤ T . Since βl(zεt
ε

) is the highly oscillating term, we expect that averaging

in the oscillation in βl gains an ε in the estimation. We first split the sums:

(d f (Yl(y
ε
t
ε

))βl(z
ε
t
ε

)) − (d f (Yl(y
ε
s
ε
))βl(z

ε
s
ε
))

= d f (Yl(y
ε
s
ε
))(βl(z

ε
t
ε

) − βl(z
ε
s
ε
))

+(d f (Yl(y
ε
t
ε

)) − d f (Yl(y
ε
s
ε
)))βl(z

ε
t
ε

) = Il + I Il . (8.12)
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By Assumption 3.1, L0 has mixing rate ψ(r) = ae−δr . Let s′ < s ≤ t ,

|Ed f (Yl(yε
s′
ε

))(βl(z
ε
t
ε

) − βl(z
ε
s
ε
))|

≤ E

(∣
∣
∣
∣d f (Yl(y

ε
s′
ε

))

∣
∣
∣
∣ ·
∣
∣
∣
∣
∣

1

ε

∫ t
ε

s
ε

E
{
αl(z

ε
r )
∣
∣F s′

ε

}
dr

∣
∣
∣
∣
∣

)

≤ E|d f (Yl(yε
s′
ε

))|1
ε

∫ t−s
ε

0
ψ

(
r + s−s′

ε

ε

)

dr

≤ a2

δ
e
− δ(s−s′)

ε2 E|d f (Yl(yε
s′
ε

))|.

If s − s′ = δ0ε
2| log ε|, exp(− δ(s−s′)

ε2
) = εδδ0 . We apply Theorem 5.2 to the functions

LYl f ∈ BV,0. For a constant ε0 > 0,

a2

δ
sup

0<ε≤ε0

sup
0≤s′≤t

E|(d f (Yl(yε
s′
ε

)))| ≤ γ̃l(y0)

where γ̃l is a function in BV,0, depending on T . Thus for s′ < s < t ,

|E(d f (Yl(y
ε
s′
ε

))(βl(z
ε
t
ε

) − βl(z
ε
s
ε
)))| ≤ γ̃l(y0)

a2

δ
exp

(

−δ(s − s′)
ε2

)

. (8.13)

Let us split the first term on the right hand side of (8.12). Denoting s′ = s− 1
δ
ε2| log ε|,

Il = Ed f (Yl(yε
s
ε
))(βl(z

ε
t
ε

) − βl(z
ε
s
ε
))

= Ed f (Yl(yε
s′
ε

))(βl(z
ε
t
ε

) − βl(z
ε
s
ε
))

+E((d f (Yl(y
ε
s
ε
)) − d f (Yl(y

ε
s′
ε

)))(βl(z
ε
t
ε

) − βl(z
ε
s
ε
))).

The first term on the right hand side is estimated by (8.13). To the second term we
take the supremum norm of βl and use Lemma 8.3. For some C̃(T ) and γ ∈ BV,0,

E|d f (Yl(yε
s
ε
)) − d f (Yl(y

ε
s′
ε

))| ≤ C̃(T )γ (y0)

(

ε + 1√
δ
ε| log ε| 12

)

. (8.14)

Then for some number C(T ),

∑

l

Il ≤ 1√
δ
ε
√| log ε|C(T )γ (y0) (8.15)
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where γ ∈ BV,0. Let us treat the second term on the right hand side of (8.12). Let
t ′ = t − 1

δ
ε2| log ε|. Then

I Il = E(d f (Yl(y
ε
t
ε

)) − d f (Yl(y
ε
s
ε
)))βl(z

ε
t
ε

)

= E(d f (Yl(y
ε
t
ε

)) − d f (Yl(y
ε
t ′
ε

)))βl(z
ε
t
ε

)

+E(d f (Yl(y
ε
t ′
ε

)) − d f (Yl(y
ε
s
ε
)))βl(z

ε
t
ε

).

To the first term we apply (8.14) and obtain a rate 1√
δ
ε
√| log ε|. We could assume that

βl averages to zero. Subtracting the term β̄l does not change Il . Alternatively Lemma
8.3 provides an estimate of order ε for |E(d f (Yl(yε

t
ε

)) − d f (Yl(yε
s
ε
)))|. Finally, since

∫
βdπ = 0,

|E(d f (Yl(y
ε
t ′
ε

)) − d f (Yl(y
ε
s
ε
)))βl(z

ε
t
ε

)|

=
∣
∣
∣
∣E(d f (Yl(y

ε
t ′
ε

)) − d f (Yl(y
ε
s
ε
)))E

{
βl(z

ε
t
ε

)
∣
∣F t ′

ε

}∣∣
∣
∣

≤ E|d f (Yl(yε
t ′
ε

)) − d f (Yl(y
ε
s
ε
))||βl |∞ae

−δ t−t ′
ε2 ≤ γl(y0)|βl |∞aε.

In the last step we used condition (2’) and γl is a function in BV,0. We have proved
the first assertion.

If the assumptions of Theorem 8.2 holds, for any f ∈ BV,3, the following func-
tions belong to BV,0: |LY j f |, |LYi LY j f |, and |LYl LYi LY j f |. If f ∈ BC3, the above
mentioned functions can be obviously controlled by | f |3,∞ multiplied by a function
in BV,0, thus completing the proof. ��

9 Rate of convergence in Wasserstein distance

Let B(M) denotes the collection of Borel sets in a Ck smooth Riemannian manifold
M with the Riemannian distance function ρ; let P(M) be the space of probability
measures on M . Let ε ∈ (0, ε0) where ε0 is a positive number. If Pε → P weakly,
we may use either the total variation distance or the Wasserstein distance, both imply
weak convergence, to measure the rate of the convergence of Pε to P . Let ρ denotes
the Riemannian distance function. The Wasserstein 1-distance is

dW (P, Q) = inf
(π1)∗μ=P,(π2)∗μ=Q

∫

M×M
ρ(x, y)dμ(x, y).

Here πi : M×M → M are projections to the first and the second factors respectively,
and the infimum are taken over probability measures on M × M that couples Q and
P . If the diameter, diam(M), of M is finite, then theWasserstein distance is controlled
by the total variation distance, dW (P, Q) ≤ diam(M)‖P − Q‖T V . See Villani [44].
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Let us assume that themanifold has bounded geometry; i.e. it has positive injectivity
radius, inj(M), the curvature tensor and the covariant derivatives of the curvature tensor
are bounded. The exponential map from a ball of radius r , r < inj(M), at a point x
defines a chart, through a fixed orthonormal frame at x . Coordinates that consists of the
above mentioned exponential charts are said to be canonical. In canonical coordinates,
all transitions functions have bounded derivatives of all order. That f is bounded in
Ck can be formulated as below: for any canonical coordinates and for any integer
k, |∂λ f | is bounded for any multi-index λ up to order k. The following types of
manifolds have bounded geometry: Lie groups, homogeneous spaces with invariant
metrics, Riemannian covering spaces of compact manifolds.

In the lemma below we deduce from the convergence rate of Pε to P in the (Ck)∗
norm a rate in the Wasserstein distance. Let ρ be the Riemannian distance with refer-
ence to which we speak of Lipschitz continuity of a real valued function on M and the
Wasserstein distance on P(M). If ξ is a random variable we denote by P̂ξ its probabil-
ity distribution. Denote by | f |Lip the Lipschitz constant of the function f . Let p ∈ M .
Let | f |Ck = | f |∞ +∑k−1

j=0 |∇ j d f |∞.

Lemma 9.1 Let ξ1 and ξ2 be randomvariables on aCk manifold M,where k ≥ 1, with
bounded geometry. Suppose that for a reference point p ∈ M, c0 := ∑2

i=1 Eρ2(ξi , p)
is finite. Suppose that there exist numbers c ≥ 0, α ∈ (0, 1), ε ∈ (0, 1] s.t. for
g ∈ BCk,

|Eg(ξ1) − Eg(ξ2)| ≤ cεα(1 + |g|Ck ).

Then there is a constant C, depending only on the geometry of the manifold, s.t.

dW (P̂ξ1 , P̂ξ2) ≤ C(c0 + c)ε
α
k .

Proof If k = 1, this is clear. Let us take k ≥ 2 and let f : M → R be a Lipschitz
continuous function with Lipschitz constant 1. Since we are concerned only with
the difference of the values of f at two points, |E f (ξ1) − E f (ξ2)|, we first shift
f so that its value at the reference point is zero. By the Lipschitz continuity of f ,
| f (x)| ≤ | f |Lip ρ(x, p). We may also assume that f is bounded; if not we define a
family of functions fn = ( f ∧ n) ∨ (−n). Then fn is Lipschitz continuous with its
Lipschitz constant bounded by | f |Lip. Let i = 1, 2. The correction term ( f − fn)(ξi )
can be easily controlled by the second moment of ρ(p, ξi ):

E|( f − fn)(ξi )| ≤ E| f (ξi )|1{| f (ξi )|>n} ≤ 1

n
E f (ξi )

2 ≤ 1

n
Eρ2(p, ξi ).

Let η : Rn → R be a function supported in the ball B(x0, 1) with |η|L1 = 1 and
ηδ = δ−nη( x

δ
), where δ is a positive number and n is the dimension of the manifold.

If M = R
n ,
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|E f (ξ1) − E f (ξ2)|

≤ |E( f ∗ ηδ)(ξ1) − E( f ∗ ηδ)(ξ2)| +
2∑

i=1

|E( f ∗ ηδ)(ξi ) − E f (ξi )|

≤ cεα(1 + | f ∗ ηδ|Ck ) + 2δ| f |Lip.

In the last step we used the assumption on E| f ∗ ηδ(ξ1) − f ∗ ηδ(ξ2)| for the BCk

function f ∗ ηδ . By distributing the derivatives to ηδ we see that the norm of the first
k derivatives of f ∗ ηδ are controlled by | f |Lip. If f is bounded,

cεα(1 + | f ∗ ηδ|Ck ) ≤ cεα(1 + | f |∞ + c1δ
−k+1| f |Lip),

where c1 is a combinatorial constant. To summarize, for all Lipschitz continuous f
with | f |Lip = 1,

|E f (ξ1) − E f (ξ2)| ≤ 2δ| f |Lip + cεα(1 + | fn ∗ ηδ|Ck ) + c0
n

≤ 2δ + cεα + cεαn + c1cε
αδ−k+1 + c0

n
.

Let δ = ε
α
k . Since k ≥ 2, we choose n with the property ε− α

k ≤ n ≤ 2ε−α+ α
k , then

for f with | f |Lip = 1,

|E f (ξ1) − E f (ξ2)| ≤ (2 + 2c + c1c + 2c0)ε
α
k .

Let δ be a positive number with 4δ < inj(M). Let Bx (r) denotes the geodesic ball
centred at x with radius r , whose Riemannian volume is denoted by V (x, r). There is
a countable sequence {xi } in M with the following property: (1) {Bxi (δ)} covers M ;
(2) There is a natural number N such that any point y belongs to at most N balls from
{Bxi (3δ)}; i.e. the cover {Bxi (3δ)} has finite multiplicity. Moreover this number N is
independent of δ. See Shubin [40]. To see the independence of N on δ, let us choose a
sequence {xi , i ≥ 1} in M with the property that {Bxi (δ)} covers M and {Bxi (

δ
2 )} are

pairwise disjoint. Since the curvature tensors and their derivatives are bounded, there
is a positive number C such that

1

C
≤ V (x, r)

V (y, r)
≤ C, x, y ∈ M, r ∈ (0, 4δ).

Let y ∈ M be a fixed point that belongs to N balls of the form Bxi (
δ
2 ). Since Bxi (

δ
2 ) ⊂

B(y, 4δ), the sum of the volume satisfies:
∑

V (xi ,
δ
2 ) ≤ V (y, 4δ) and N

C V (y, δ
2 ) ≤

V (y, 4δ). The ratio supy
V (y,4δ)
V (y, δ

2 )
depends only on the dimension of the manifold.

Let us take a Ck smooth partition of unity {αi , i ∈ �} that is subordinated to
{Bxi (2δ)}: 1 = ∑

i∈� φi , φi ≥ 0, φi is supported in Bxi (2δ), and for any point x there
are only a finite number of non-zero summands in

∑
i∈� αi (x). The partition of unity

satisfies the additional property: supi |∂λαi | ≤ Cλ, αi ≥ 0.
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Let (Bxi (inj(M)), φi ) be the geodesic charts. Let fi = f αi and let g̃ = g ◦ φi

denote the representation of a function g in a chart.

|E f (ξ1) − E f (ξ2)| =
∣
∣
∣
∣
∣

∑

i∈�

E f̃i (φ
−1
i (ξ1)) −

∑

i∈�

E f̃i (φ
−1
i (ξ2))

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∑

i∈�

E f̃i ∗ ηδ(φ
−1
i (ξ1)) −

∑

i∈�

E f̃i ∗ ηδ(φ
−1
i (ξ2))

∣
∣
∣
∣
∣

+
2∑

j=1

∣
∣
∣
∣
∣

∑

i∈�

E f̃i ∗ ηδ(φ
−1
i (ξ j )) −

∑

i∈�

E f̃i (φ
−1
i (ξ j ))

∣
∣
∣
∣
∣
.

It is crucial to note that there are at most N non-zero terms in the summation. By the
assumption, for each i ,

|E f̃i ∗ ηδ(φ
−1
i (ξ1)) − E f̃i ∗ ηδ(φ

−1
i (ξ2))| ≤ cεα| f̃i ∗ ηδ ◦ φ−1

i |Ck .

By construction, supi |αi |Ck is bounded. There is a constant c′ that depends only on
the partition of unity, such that

| f̃i ∗ ηδ ◦ φ−1
i |Ck ≤ c′| f̃i ∗ ηδ|Ck ≤ c′| f̃ |∞ + c′c1δ1−k | f̃ |Lip

Similarly for the second summation, we work with the representatives of fi ,

| f̃i ∗ ηδ(φ
−1
i (y)) − f̃i (φ

−1
i (y))| ≤ δ| f̃i |Lip ≤ c′δ.

Since we work in the geodesic charts the Lipschitz constant of f̃i are comparable to
that of | f |Lip. Let | f |Lip = 1. If f is bounded,

|E f (ξ1) − E f (ξ2)| ≤ Ncεα(1 + c′| f |∞ + c′δ1−k) + 2c′δN

Let δ = ε
α
k ,

|E f (ξ1) − E f (ξ2)| ≤ Ncεα(c′| f |∞ + 1) + Nc′ε
α
k + 2c′Nε

α
k .

On a compact manifold, | f |∞ can be controlled by | f |Lip; otherwise we use the cut
off function fn in place of f and the estimate E|( f − fn)(ξi )| ≤ c0

n . Choose n

sufficiently large, as before, to see that |E f (ξ1) − E f (ξ2)| ≤ Cε
α
k . Finally we apply

the Kantorovich–Rubinstein duality theorem,

dW (P̂ξ1 , P̂ξ2) = sup
f :| f |Lip≤1

{|E f (ξ1) − E f (ξ2)|} ≤ Cε
α
k ,

to obtain the required estimate on theWasserstein 1-distance and concluding the proof.
��
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Let evt : C([0, T ]; M) → M denote the evaluation map at time t : ev(σ ) = σ(t).
Let P̂ξ denote the probability distribution of a random variable ξ . Let o ∈ M .

Proposition 9.2 Assume the conditions and notations of Theorem 8.2. Suppose that M
has bounded geometry and ρ2

o ∈ BV,0. Let μ̄ be the limit measure and μ̄t = (evt )∗μ̄.
Then for every r < 1

4 there exists C(T ) ∈ BV,0 and ε0 > 0 s.t. for all ε ≤ ε0 and
t ≤ T ,

dW (P̂yε
t
ε

, μ̄t ) ≤ C(T )εr .

Proof By Theorem 8.2, for f ∈ BC4,

|E f (�ε
t
ε

(y0)) − Pt f (y0)| ≤ C(T )(y0)ε
√| log ε|,

where C(T )(y0) ≤ C̃(T )(y0)(1 + | f |C4) for some function C̃(T ) ∈ BV,0. Since by
Theorem 5.2, there exists ε0 > 0 such that supε≤ε0

Eρ2
o (�

ε
t (y0)) is finite, we take α

in Lemma 9.1 to be any number less than 1 to conclude the proposition. ��

Appendix

We began with the proof of Lemma 3.1, follow it with a discussion on conditional
inequalities without assuming conditions on the σ -algebra concerned.

Proof of Lemma 3.1

Step 1. Denote ψ(t) = ae−δt . Firstly, if f ∈ Bb(G;R) and z ∈ G,

|Qt f (z) − π f | ≤ ‖ f ‖W · ψ(t) · W (z).

Next, by the Markov property of (zt ) and the assumption that
∫
gdπ = 0:

∣
∣
∣
∣E{ f (zs2)g(zs1)|Fs} −

∫

G
f Qs1−s2gdπ

∣
∣
∣
∣

=
∣
∣
∣
∣E
{
( f Qs1−s2g)(zs2)

∣
∣
∣Fs

}
−
∫

G
f Qs1−s2gdπ

∣
∣
∣
∣

≤ ψ(s2−s) ‖ f Qs1−s2g‖W W (zs) ≤ ψ(s2 − s) sup
z∈G

( | f (z)||Qs1−s2g(z)|
W (z)

)

W (zs)

≤ ψ(s2 − s)ψ(s1 − s2)| f |∞ ‖g‖WW (zs) ≤ aψ(s1 − s)| f |∞‖g‖WW (zs).

123



708 X.-M. Li

From this we see that,

∣
∣
∣
∣

1

t − s

∫ t

s

∫ s1

s

(

E
{
f (zs2)g(zs1)

∣
∣
∣Fs

}
−
∫

G
f Qs1−s2gdπ

)

ds2ds1

∣
∣
∣
∣

≤ a| f |∞ ‖g‖WW (zs)
1

t − s

∫ t

s

∫ s1

s
ψ (s1 − s) ds2 ds1

≤ a2

δ2(t − s)
| f |∞ ‖g‖WW (zs)

∫ (t−s)δ

0
re−r dr ≤ a2

δ2(t − s)
| f |∞ ‖g‖WW (zs).

This concludes (1). Step 2. For (2), we compute the following:

1

t − s

∫ t

s

∫ s1

s

∫

G
f Qs1−s2g dπ ds2 ds1 =

∫

G

1

t − s

∫ t−s

0
f Qr g(t − s − r) drdπ

=
∫

G

∫ ∞

0
( f Qr g) dr dπ −

∫

G

∫ ∞

t−s
f Qr g dr dπ− 1

t − s

∫

G

∫ t−s

0
r f Qr g drdπ.

We estimate the last two terms. Firstly,

∣
∣
∣
∣

∫

G

∫ ∞

t−s
f (z)Qrg(z) dr dπ(z)

∣
∣
∣
∣ ≤ | f |∞

∣
∣
∣
∣

∫

G

∫ ∞

t−s
|Qrg(z)| dr dπ(z)

∣
∣
∣
∣∞

≤ | f |∞‖g‖W
∫

G
W (z)π(dz)

∫ ∞

t−s
ψ(r)dr ≤ 1

δ
| f |∞‖g‖W W̄

∫ ∞

(t−s)δ
ae−r dr

≤ a

δ
| f |∞‖g‖W W̄ .

It remains to calculate the following:

∣
∣
∣
∣

1

t − s

∫

G

∫ t−s

0
r f Qr g drdπ

∣
∣
∣
∣ ≤ 1

t − s
| f |∞‖g‖W W̄

∫ t−s

0
rψ(r) dr

≤ a

(t − s)δ2
| f |∞‖g‖W W̄ .

Gathering the estimates together we obtain the bound:

∣
∣
∣
∣

1

t − s

∫ t

s

∫ s1

s

∫

G
f Qs1−s2g dπ ds2 ds1 −

∫

G

∫ ∞

0
( f Qr g) dr dπ

∣
∣
∣
∣

≤ a

δ
| f |∞‖g‖W W̄ + a

(t − s)δ2
| f |∞‖g‖W W̄ .
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By adding this estimate to that in part (1), we conclude part (2):

∣
∣
∣
∣

1

t − s

∫ t

s

∫ s1

s
E
{
f (zs2)g(zs1)

∣
∣
∣Fs

}
−
∫

G

∫ ∞

0
( f Qr g) dr dπ

∣
∣
∣
∣

≤ a

δ
| f |∞‖g‖W W̄ + a

(t − s)δ2
| f |∞‖g‖W W̄ + a2

δ2(t − s)
| f |∞‖g‖WW (zs).

(9.1)

We conclude part (2). Step 3. We first assume that ḡ = 0, then,

∣
∣
∣
∣
∣

ε

t − s

∫ t
ε

s
ε

∫ s1

s
ε

E
{
f (zεs2)g(z

ε
s1)

∣
∣
∣F s

ε

}
ds2 ds1

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

ε

t − s

∫ t
ε

s
ε

∫ s1

s
ε

E
{
f (zεs2)g(z

ε
s1)

∣
∣
∣F s

ε

}
ds2 ds1 −

∫

G

∫ ∞

0
f Qε

r g dr dπ

∣
∣
∣
∣
∣

+
∣
∣
∣
∣

∫

G

∫ ∞

0
f Qε

r g dr dπ

∣
∣
∣
∣ .

We note that for every x ∈ G, ‖Qε
r (x, ·) − π‖T V,W ≤ ψ( r

ε
)W (x). In line (9.1) we

replace s, t , δ by s
ε
, t

ε
, and δ

ε
respectively to see the first term on the right hand side is

bounded by

aε3

δ2(t − s)
(aW (zεs

ε
) + W̄ )| f |∞‖g‖W + aε

δ
| f |∞‖g‖W W̄ .

Next we observe that

∫ ∞

0
f (z)Qε

s g(z) ds =
∫ ∞

0
f (z)Q s

ε
(z) ds = ε

∫ ∞

0
f (z)Qsg(z) ds

∣
∣
∣
∣

∫

G

∫ ∞

0
f (z)Qε

s g(z) ds dπ(z)

∣
∣
∣
∣ ≤ ε | f |∞‖g‖W W̄

∫ ∞

0
ψ(s) ds = aε

δ
| f |∞‖g‖W W̄ .

This gives the estimate for the case of ḡ = 0:

∣
∣
∣
∣
∣

ε

t − s

∫ t
ε

s
ε

∫ s1

s
ε

E
{
f (zεs2)g(z

ε
s1)

∣
∣
∣F s

ε

}
ds2 ds1

∣
∣
∣
∣
∣
≤ C1(z

ε
s
ε
)

ε3

t − s
+ C ′

2(z
ε
s
ε
)ε.

where

C1 = a

δ2
(aW (·) + W̄ )| f |∞‖g‖W , C ′

2 = 2a

δ
| f |∞‖g‖W W̄ .
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If
∫
g dπ �= 0, we split g = g − ḡ + ḡ and estimate the remaining term. We use the

fact that π f = 0,

∣
∣
∣
∣
∣

ε

t − s

∫ t
ε

s
ε

∫ s1

s
ε

E
{
f (zεs2)ḡ

∣
∣F s

ε

}
ds2 ds1

∣
∣
∣
∣
∣

≤ |ḡ|
∣
∣
∣
∣
∣

ε

t − s

∫ t−s
ε

0

∫ s1

0

∣
∣
∣Qε

s2 f Spa(z s
ε
)

∣
∣
∣ ds2 ds1

∣
∣
∣
∣
∣

≤ |ḡ‖| f ‖WW (zεs
ε
) sup
s1>0

{∣
∣
∣
∣

∫ s1

0
ψ
( s2

ε

)
ds2

∣
∣
∣
∣

}

≤ |ḡ| ‖| f ‖WW (zεs
ε
)ε

∫ ∞

0
ψ(r)dr

= aε

δ
|ḡ| ‖ f ‖WW (zεs

ε
).

Finally we obtain the required estimate in part (3):

∣
∣
∣
∣
∣

ε

t − s

∫ t
ε

s
ε

∫ s1

s
ε

E
{
f (zεs2)g(z

ε
s1)

∣
∣
∣F s

ε

}
ds2 ds1

∣
∣
∣
∣
∣

≤ C1(z
ε
s
ε
)

(
ε3

t − s

)

+ C ′
2(z

ε
s
ε
)ε + ε

a

δ
|ḡ| ‖ f ‖WW (zεs

ε
),

thus concluding part (3).
The following conditional inequalities are elementary. We include a proof for a

partial conditional Burkholder–Davis–Gundy inequality for completeness. We do not
assume the existence of regular conditional probabilities.

Lemma 10.1 Let (Mt ) be a continuous L2 martingale vanishing at 0. Let (Ht ) be an
adapted stochastic process with left continuous sample paths and right limits. If for
stopping times s < t , E

∫ t
s (Hr )

2d〈M〉r < ∞. Then

E

{(∫ t

s
HrdMr

)2 ∣
∣
∣Fs

}

= E
{∫ t

s
(Hr )

2d〈M〉r
∣
∣
∣Fs

}

.

Lemma 10.2 Let p > 1 and (Mt ) is a right continuous (Ft ) martingale or a right
continuous positive sub-martingale index by an interval I of R+. Then,

E
{

sup
s∈I

|Mt |p
∣
∣
∣ Fs

}

≤
(

p

p − 1

)p

sup
s∈I

E
{
|Ms |p

∣
∣
∣ Fs

}
.

If (Mu, s ≤ u ≤ t) is a right continuous (Ft ) martingale and p ≥ 2, there exists a
constant c(p) > 0 s.t.

E
{

sup
s≤u≤t

|Mu |p
∣
∣
∣Fs

}

≤ cpE
{

〈M〉
p
2
t

∣
∣
∣Fs

}

.
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This proof is the same as the proof for Fs the trivial σ -algebra, c.f. Revuz and Yor
[38].
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