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Abstract In this paper we establish some relations between percolation on a given
graph G and its geometry. Our main result shows that, if G has polynomial growth
and satisfies what we call the local isoperimetric inequality of dimension d > 1, then
pc(G) < 1. This gives a partial answer to a question of Benjamini and Schramm
(Electron Commun Probab 1(8):71–82 1996). As a consequence of this result and
Häggström (Adv Appl Probab 32(1):39–66 2000) we derive, that these graphs also
undergo a non-trivial phase transition for the Ising-Model, the Widom-Rowlinson
model and the beach model. Our techniques are also applied to dependent percolation
processes with long range correlations. We provide results on the uniqueness of the
infinite percolation cluster and quantitative estimates on the size of finite components.
Finally we leave some remarks and questions that arise naturally from this work.
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1 Introduction

The mathematical interest in percolation dates back to the works of Broadbent and
Hammersley [1]. This simple mathematical model was introduced on Z

d (more
generally on crystals) and has motivated intense research both in the physics and
mathematics literature, giving rise to beautiful theories and challenges. Excellent
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964 A. Teixeira

introductions to the mathematical aspects of the model in Z
d can be found in [2]

and [3].
Since its introduction, this model has found different applications besides the physi-

cal process of percolation, ranging fromnetwork analysis (electric and social networks,
internet and the world wide web), disease and rumor propagation, among others. How-
ever,when one focuses on these other applications, the original graphZ

d mayno longer
be the most natural setting to define the model.

With the seminal works [4,5], the study of percolation on more general graphs
received a much wider attention. In particular, the authors of [4] layed down several
open questions that motivated and guided the continuation of this study.

In this paper we consider the site percolation model, where each vertex of G is kept
independently with probability p and removed otherwise. One could be interested for
instance on the existence of an infinite connected component on the graphGp induced
by the remaining vertices. The main question we address here concerns the existence
of a non-trivial phase transition for site percolation on connected graphs. Define

pc = sup
{
p ∈ [0, 1]; P [there is an infinite open cluster on Gp] = 0

}
. (1.1)

Quoting Benjamini and Schramm,

“The first step in a study of percolation on other graphs (· · · ) will be to prove
that the critical probability on these graphs is smaller than one.”

In [4], the authors predicted that isoperimetric inequalities should play an important
role in this task. We say that a graph G = (V, E) has isoperimetric dimension at least
d if

for any finite A ⊆ V, we have |∂A| � c|A| d−1
d , (1.2)

for some constant c > 0 independent of A. An important example of graph satisfying
this is the Euclidean latticeZ

d , see Remark 2.3. In [4], the authors posed the following

Question 1.1 If G has isoperimetric dimension at least d > 1, then pc(G) < 1?

Benjamini and Schramm have solved the case d = ∞, that is, they have shown that
pc(G) < 1 if |∂A| � c|A| holds for all A ⊆ V , see Theorem 2 of [4]. Kozma [6],
answered this question affirmatively for planar graphs of polynomial growth with no
accumulation points. In Sect. 1.2, we are going to review this and some other results
in this direction.

Here we deal solely with connected graphs having polynomial growth. Let us intro-
duce the following definition.

Definition 1.2 We say that a graph G satisfies the volume upper bound Vu(du, cu) if

|B(x, r)| � cur
du , for all x ∈ V and r � 1. (1.3)

Note that this definition implies that G has bounded degrees.
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Percolation and local isoperimetric inequalities 965

Moreover, for our results we require a slightly modified version of the isoperimetric
inequality (1.2), resambling the definition that appears in the Appendix of [7]. Given
two sets A ⊆ B ⊆ V , we define ∂B A to be the edge boundary of A when looked as a
subset of the graph induced by B in G, see the definition in Sect. 2.

Definition 1.3 We say that a graph G satisfies the local isoperimetric inequality
L(di , ci ) if for every x ∈ V , r � 1 and A ⊆ B(x, r) =: B such that |A| � |B(x, r)|/2
we have

|∂B A| � ci |A|
di−1
di . (1.4)

Although the above definition has some similarities with (1.2), it is strictly stronger
than (1.2), as discussed in Remark 2.3. It is easy to see that Z

d satisfies the above, see
Remark 2.3.We call the above local isoperimetric inequality because we are bounding
frombelow |∂B A| instead of |∂A|. This distinction is important through our arguments,
see Remark 2.3. We can now state our main result.

Theorem 1.4 If G is connected and satisfies the local isoperimetric inequality
L(di , ci ), together with the volume bound Vu(du, cu), for arbitrary di , du > 1, then
pc < 1. More precisely, there is a p∗ = p∗(di , ci , du, cu) < 1 such that, for every
p > p∗, one has P-a.s. a unique open infinite connected component. Moreover, for
every χ > 0 and p large enough,

lim
v→∞ vχ sup

x∈V
P[v < |Cx | < ∞] = 0. (1.5)

Where Cx stands for the open connected component containing x.

It is interesting to notice that Theorem1.4 also provides the uniqueness of the infinite
connected component C∞ for large parameters p. In light of the work of Burton and
Keane [8], this uniqueness statement may sound redundant, as Theorem 1.4 supposes
that G has polynomial growth. Observe however that we are not requiring G to be
transitive as it is the case in [8]. See also [9] for a discussion on this subject.

A simple modification of our arguments, could improve the polynomial factor vχ

in (1.5) by vlog(v) for instance. It would be interesting to attempt to extract a better
decay for the tail of the finite clusters, see more on this in Remark 5.1.

Other advantages of our techniques is that they do not look much into the details of
the system. Perhaps more surprisingly, our proof can be extended to deal with highly
dependent percolation models, as we state in the next section.

1.1 Statistical mechanics models and dependent percolation

We now present a consequence of Theorem 1.4 for statistical mechanics models on
graphs. We consider the Ising model, the Widom-Rowlinson and the beach model on
G.

Definition 1.5 We say that a model undergoes a non-trivial phase transition on G if
for some parameter it presents more than one Gibbs measure. See Section 2.3 of [10]
for more details.
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966 A. Teixeira

Theorem 1.4 has the following consequence for such models.

Corollary 1.6 If G satisfies L(di , ci ) and Vu(du, cu), for arbitrary di , du > 1, then it
presents a non-trivial phase transition for the Ising, Widom-Rowlinson and the beach
models.

Proof UsingTheorem1.4, we conclude thatG undergoes a non-trivial phase transition
for vertex percolation. Therefore we can use Theorems 1.1 and 1.2 of [10] to conclude
that this is also the case for these other models. It is important to observe that the
condition Vu(du, cu) implies bounded degree for G. ��

Another important observation for us comes from [11], where it is proved that
pc < 1 for site percolation implies pc < 1 for bond percolation. This is the main
reason why we focus on the case of site percolation.

Besides the above described statistical mechanics models, we are able to treat
dependent percolation processes with polynomial decay of correlations. This is the
content of our next result.

To state it, we need to introduce a way to quantify the dependence of a random
environment. Intuitively speaking, the condition below requires that what happens in
two well separated regions of the graph should be approximately independent.

Let P be any probability measure on � = {0, 1}V , endowed with the σ -algebra
generated by the canonical projections Yx : � → {0, 1}, for x ∈ V , given by Yx (ω) =
ω(x).

Definition 1.7 We say that P satisfies the decoupling inequality D(α, cα) if for any
x ∈ V , r � 1 and any decreasing events G, G′ such that

G ∈ σ(Yz; z ∈ B(x, r)) and G′ ∈ σ(Yz; z /∈ B(x, 2r − 1)), (1.6)

we have
P(G|G′) � P(G) + cαr

−α. (1.7)

In analogy with the volume upper bound Vu(du, cu), we introduce the following
definition.

Definition 1.8 We say that a graph G satisfies the volume lower bound Vl(dl , cl) if

|B(x, r)| � clr
dl , for any x ∈ V and r � 1. (1.8)

Observe that every infinite connected graph satisfies Vl(1, 1).
The following theorem is a generalization of Theorem1.4 for dependent percolation

measures.

Theorem 1.9 Suppose that G satisfies the local isoperimetric inequalityL(di , ui ) and
the volume bounds Vu(du, cu) and Vl(dl , cl), for arbitrary di > 1, du, dl � 1. Assume
moreover that the random environment given by P on {0, 1}V satisfies D(α, cα) with

α >

(
1 ∨ di (du − 1)

di − 1

)
du − dl . (1.9)
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Percolation and local isoperimetric inequalities 967

Then, there is p∗ = p∗(di , ci , du, cu, dl , cl , α, cα)<1 such that, if inf x∈V P [x is open]
> p∗, there exists P-a.s. a unique infinite connected component C∞. Moreover, for
χ > 0 and p close enough to one, we have

lim
v→∞ vχ sup

x∈V
P[v < |Cx | < ∞] = 0. (1.10)

Note that when di = du = dl , the condition (1.9) on α reduces to α > di (di − 1).

Since G has bounded degree, we can use Proposition 2.4 to replace dl in (1.9) by di .

Remark 1.10 (a) Let us observe that the constant p∗ in Theorem 1.9 only depends on
the graph G and the law P through the constants di , ci , du, cu, dl , cl , α and cα . Note
the similarity between this fact and the result in Theorem 1.2 of [12], dealing with
non-amenable graphs.

(b) In Theorem 1.1 of [12], the authors prove that, for amenable graphs, one cannot
drop the dependence of p∗ on α and cα , otherwise p∗ would not be uniform over the
measures P. An interesting example of percolation process with polynomial decay of
correlations that presents no phase transition is given in [13], Proposition 5.6.

(c) The particular form or the chosen decoupling inequality in Definition 1.7 is
not essential. One could in principle choose another decoupling bound and try to
adapt Theorem 1.9 accordingly. For this to be carried out, one would need to prove an
analog of Lemma 4.2 and carefully choose the constants α, β, γ and J in the proof of
Theorem 1.9. Such changes could potentially have implications on the exact form of
the condition (1.9) and the allowed values of χ in (1.5).

1.2 Previously known results

Besides the lattice Z
d , other important examples of graphs received special attention

in the literature, such as regular trees, the complete graph, fractal-type graphs, hyper-
cubes and others. Due to their symmetry, some of these examples proved to be simpler
to analyze than the original setting Z

d .
There is also a rich literature that studies percolation on graphs under various

conditions. We now mention some works, where the question of whether pc(G) < 1
has been attacked.

If a graph has positive Cheeger’s constant, the fact that pc < 1 has been established
in Theorem 2 of [4]. The case of Cayley graphs with exponential growth has been
investigated first in [14], see also [5,12,15]. Cayley graphs of finitely presented groups
with one end, have been covered in Corollary 10 of [16]. In [17], the authors prove that
pc < 1 under several conditions, the main one is called the minimal cut-set property,
see also [18]. Question 1.1 has been answered positively for the case of planar graphs
of polynomial growth and no accumulation points, see [6].

In the aforementioned works, several ideas and techniques have been used, such
as mass transport principles, analytical tools, exploration algorithms, homology and
energy vs entropy estimations. Roughly speaking, the approachwe devise here follows
an energy vs entropy strategy, but understood from a renormalization perspective, that
we now briefly describe.
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968 A. Teixeira

1.3 Idea of the proof

Suppose we are able to find a combinatorial structure that is necessary to prevent
percolation, one could think for instance of the existence of a dual circuit surrounding
the origin in the case of Z

2. Then, the task of showing the existence of an infinite
cluster is reduced to ruling out the existence of such blocking structures. The energy
versus entropy approach consists in showing the following: for p close enough to
one, the cost of observing a given blocking structure overwhelms their combinatorial
richness.

Here we employ a similar technique, where our blocking structures are induced by
the so called separation events S(x, L), introduced in Definition 3.1. This definition
finds some inspiration in [19] and have two important features that are well suited to
this work.

First of all, they are hierarchical in nature, as proved in Lemma 3.4, allowing us to
employ a renormalization procedure to bound their probabilities. The second important
property of the separation events is that we can choose the precise way in which they
interact between scales, see Lemma 3.4. Therefore, we can adapt our arguments to
the specific isoperimetric profile of G. This way, our results apply for any di > 1 as
stated above.

The flexibility of our techniques in dealing with dependent environments contrasts
with other methods that look closely into the microscopic shape of the blocking struc-
tures, such as Peierls argument, see for instance the proof of Theorem 1.10 in [2]
p.15.

This paper is organized as follows. In Sect. 2we introduce some notation and simple
graph theoretical results needed throughout the text. The notion of separation events
and the renormalization scheme that is used throughout our proofs are presented in
Sect. 3. In Sect. 4 we provide the proofs of Theorems 1.4 and 1.9. We leave some
questions and remarks in Sect. 5.

2 Notation and preliminary results

In this section we establish some notation needed in the course of the article, as
well as some results on graph theory. Although some of these preliminary results are
reasonably simple, we provide their proof for the sake of completeness.

Notation Let us first comment on our use of constants. We use c for a positive and
finite constant that may change from line to line. Should a constant depend on further
parameters, such as di , ci , . . . this dependence will be indicated like in c(di , ci ). More
important constants are numbered as c0, c1, . . . and refer to their first appearance in
the text.

Throughout this article, we will write G = (V, E) for an infinite connected graph
with finite geometry, that is, we assume that every vertex has only a finite number of
neighbors.

Given a set A ⊆ V , we denote its boundary by ∂A = {{x, y} ∈ E; x ∈ A and y /∈
A
}
. For two sets A ⊆ B ⊆ V , we introduce the edge boundary of A relative to B

through the following ∂B A = {{x, y} ∈ E; x ∈ A, y ∈ B\A}.
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Percolation and local isoperimetric inequalities 969

We call σ : {0, 1, . . . , l} → V a path if {σi−1, σi } ∈ E for every i = 1, . . . , l. The
integer l above is called the length of σ . Such a path is said to be open if Yσi = 1 for
every i = 0, . . . , l.

Given x, x ′ ∈ V , we write d(x, x ′) for the smaller length among all paths starting at
x and ending at x ′. The distance between two sets d(A, A′) is given by the minimum
distance between points x ∈ A and x ′ ∈ A′ and analogously for d(A, x). For x ∈ V
and r ∈ R+ we define B(x, r) = {y ∈ V ; d(x, y) � r} and if K ⊆ V , we denote the
r -neighborhood of K by B(K , r) = {y ∈ V ; d(K , y) � r}.

A map ω ∈ � := {0, 1}V is called a site percolation configuration and we endow
the set � with the σ -algebra generated by the canonical projections (Yx )x∈V and a
probability measure P. In Theorem 1.4, P is taken to be the product measure, under
which the variables (Yx )x∈V are independent with P[Yx = 1] = p ∈ [0, 1]. Given a
configuration ω ∈ � and x ∈ V , we define Cx to be the open connected component
containing x .

Definition 2.1 Given two sets A, A′ ⊆ V , we say that a path σ = (x0, . . . , xl)
connects A and A′ if x0 ∈ B(A, 1) and xl ∈ B(A′, 1). Note that the point x0 need not
be in the set A itself, as it could be solely a neighbor of A (analogously, xl need not
to be in A′).

Isoperimetry The next lemma shows that under the condition L(di , ci ), any two sets
can be joined by a reasonable number of disjoint paths. Its proof will be a direct
consequence of the Max-flow Min-cut Theorem.

Lemma 2.2 Suppose that G satisfiesL(di , ci ) and take disjoint sets A, A′ ⊆ B(x, r),

where x ∈ V and r � 1. Then there exist at least
⌈
ci (|A| ∧ |A′|)

di−1
di
⌉
disjoint paths

contained in B(x, r), connecting A to A′.

Consider the graph GB = (VB, EB) induced by the ball B = B(x, r) in G. We say
that C ⊆ EB is a cut-set between A and A′ (subsets of B) if there is no path in GB

connecting A to A′ and avoiding all the edges in C. We say that such C is minimal if
it has minimal cardinality among all the possible cut-sets between A and A′.

Proof Throughout this proof we are going to restrict ourselves to the sub-graph
induced by B(x, r) in G. Let C ⊆ EB be a minimal cut-set between A and A′, in
this induced sub-graph. Define D to be the set of points y ∈ B(x, r) such that A can
be joined to y by a path in B(x, r), without using any edge in C. Analogously we
define D′ replacing the role of A by A′.

Clearly D ∩ D′ = ∅ since otherwise one would be able to connect A to A′ in
B(x, r) without using any edge in C. Thus, either D or D′ has volume smaller than
or equal to |B(x, r)|/2 and without loss of generality we assume it to be D. Applying
the property L(di , ci ) for the set D, we obtain that

|C| � |∂BD| � ci |D|
di−1
di � ci (|A| ∧ |A′|)

di−1
di . (2.1)

Applying the Max-flow Min-cut Theorem, we conclude the proof of the lemma. ��
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970 A. Teixeira

Let us now comment on our specific choice of isoperimetric inequalities in Defini-
tion 1.3. In particular, let us contrast it with the more traditional definition (1.2) which
is clearly weaker than Definition 1.3.

Remark 2.3 (a) It is important to mention that in the proof of Theorems 1.4 and 1.9
we do not use the condition L(di , ci ) directly. We rather use the existence of several
disjoint paths between A and A′ as stated in Lemma 2.2.

(b) We have already noticed that Z
d satisfies (1.2), as it follows for instance from

Theorem 6.37 of [5], p. 210.We now show thatZd also satisfies the local isoperimetric
inequality L(d, c). First we apply Theorem 5.3 of [20] to conclude that if K ⊆ R

d is
convex and bounded, then

Vold−1(∂S ∩ K ) � c
Vold(S)

diam(K )
, (2.2)

for every open set S ⊆ K with smooth boundary and Vold(S) � (3/4)Vol(K ), where
Vold stands for the Minkowski d-dimensional measure. If we choose S to be the
union of cubes of side length 1, centered in points of A ⊆ K ∩ Z

d , we obtain that
|∂K A| � c|A|/ diam(K ). Here we should take care to guarantee that all the cubes
composing S have a positive proportion of their volume inside K . As well as the faces
of cubes in S corresponding to edges in ∂K A. Note that the boundary of S need not
be smooth, but we can obtain (2.2) by a limiting procedure, where we approximate S
and ∂S by smooth counterparts.

To finish, we partition the ball K̄ = {(x1, . . . , xd) ∈ R
d;∑i |xi | � n} into con-

vex sets Ki such that diam(Ki ) � (100Vold(S))1/d and Vold(Ki ) � 10Vold(S),
obtaining |∂K̄ A| � cVold−1(∂S ∩ K̄ ) �

∑
i cVold−1(∂S ∩ Ki ) � c

∑
i Vold(S ∩

Ki )Vold(S)−1/d � cVold(S ∩ K )(d−1)/d � c|A|(d−1)/d . This finishes the proof that
Z
d satisfies L(d, c).
We also point out that any graph that is quasi-isometric to Z

d satisfiesL(d, c). This
is a consequence of Lemma 4.5 and the Appendix of [7].

(c) We now give two examples that satisfy the standard but not the local isoperi-
metric inequality. The first example consists in the infinite regular tree, which clearly
satisfies (1.2), for any dimension. On the other hand, given two connected subsets A
and A′ of the infinite regular tree within distance at least two, there cannot exist two or
more disjoint paths connecting A and A′. Therefore the conclusion of Lemma 2.2 does
not hold, so that infinite regular trees do not satisfy the local isoperimetric inequality
of Definition 1.3. On the other hand we know that there exists a phase transition for
percolation on regular trees, using for instance a Galton–Watson type argument.

Our second example has polynomial growth and is given by two copies of Z
d

connected by a single edge. More precisely let G = (V, E), with V = V1 ∪ V2, where
V1, V2 are two disjoint copies of Z

d . The edges E are given by E1 ∪E2 ∪ {e}, where Ei
connects nearest neighbors vertices in Vi , i = 1, 2, and e links the origins of V1 and
V2. The graph G clearly satisfies (1.2) with dimension d. To see this, note that any
set A ⊂ V1 ∪ V2 has at least half of its edges in either V1 or V2, then observe that Z

d

satisfies (1.2) with dimension d. On the other hand, observe that G does not satisfy
(1.4) as one can see by taking x to be the origin in V1 and A = V1 ∩ B(x, r) (which
gives |∂B A| = 1 for every r ).
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Percolation and local isoperimetric inequalities 971

We believe it would be an interesting problem to investigate further the relation
between these two isoperimetric inequalities, see also Remark 5.1.

The next result shows that the lower bound Vl(dl , cl) on the volume of balls in
G can be obtained from the local isoperimetric inequality, given that G has bounded
degree.

Proposition 2.4 If G = (V, E) is an infinite graph satisfying L(di , ci ) (with di > 1)
and every vertex in V has degree at most 
, then G also satisfies Vl(di , c0) for some
constant c0 = c0(di , ci ,
).

In fact we only need (1.2) for the proof of the above proposition. See also
Lemma (4.13) of [21], p. 45.

Proof Denoting by S(x, r) the set {y ∈ V ; d(y, x) = r}, we get

|B(x, r)| �
�r�∑

j=1

|S(x, j)| �
�r�−1∑

j=0

|∂B(x, j)|



�
�r�−1∑

j=0

ci |B(x, j)|
di−1
di



. (2.3)

We want to show by induction that |B(x, j)| has volume at least of order jdi . Choose

c0 = 1 ∧ ci
2di di


(2.4)

and observe that |B(x, 1)| � 1 � (c0 · 1)di . We now suppose that for some j ′ � 2 we
have |B(x, j)| � (c0 j)di , for every j < j ′ and estimate, using (2.3),

|B(x, j ′)| �
j ′−1∑

j=0

ci |B(x, j)|
di−1
di



� ci

j ′−1∑

j=0

(c0 j)di−1



� ci c

di−1
0




j ′−1∑

j=0

jdi−1

� ci c
di−1
0




( j ′ − 1)di

di
� (2c0( j

′ − 1))di
j ′�2
� (c0 j

′)di . (2.5)

Finishing the proof of the lemma by induction on j ′. ��
A covering lemma The next lemma helps us cover a ball of G with not too many

balls of smaller radius. This is crucial in (4.7) to bound the number of ways in which
the separation events can propagate to smaller scales.

Lemma 2.5 Suppose that G = (V, E) satisfies Vu(du, cu) and Vl(dl , cl). Then, for
any d < dl , there exists a constant c1 = c1(dl , cl , du, cu, d) such that

for everyx ∈ V, r � 1 and s ∈ [(log r)
2

dl−d , r/6], there exists K ⊆ B
(
x, 5r

6

)

× such that |K |

� c1

rdu

sd
and B(K , s

6 ) covers B
(
x, 4r

6

)
. (2.6)
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972 A. Teixeira

The proof will make use of the probabilistic method to show the existence of K .

Proof Let us first choose p = s−d and consider (Zy)y∈B(x,5r/6) to be i.i.d. random
variables with Bernoulli distribution of parameter p.

We introduce the set K = {y ∈ B(x, 5r
6 ); Zy = 1} and observe that, given z ∈

B(x, 4r
6 ), calling c′

l = cl/6dl ,

P[z /∈ B(K, s/6)] = (1 − p)|B(z,s/6)| � (1 − p)c
′
l s
dl

� exp{−c′
l s

dl p} = exp{−c′
l s

dl−d}, (2.7)

since s � (log r)
2

dl−d , for r � c(dl , c′
l , du, cu, d), one obtains

P[∃z ∈ B(x, 4r/6); z /∈ B(K, s/6)] � cur
du exp{−c′

l log
2 r} � 1/3. (2.8)

We now turn to the bound on |K|.
Observe that E[|K|] = |B(x, 5r/6)|s−d � cu(5r/6)du s−d , so that if c1 >

c(du, cu),

P
[|K| > c1r

du s−d] � P
[|K| > 2E[|K|]] � Var(|K|)

E[|K|]2

� s−d(1 − s−d)|B(x, 5r/6)|
s−2d |B(x, 5r/6)|2 � c(cl)s

dr−dl
s�r
� c(cl)r

d−dl ,

(2.9)

which is smaller or equal to 1/3 for r > c(dl , cl , d).
Joining (2.7) and (2.9), we get that for r � c(dl , cl , du, cu, d), there exists a set

K ∈ B(x, 5r/6) such that the conditions in (2.6) hold. By possibly increasing the
constant c1 we can assure that the statement of the lemma also holds for the finitely
many values of r that have not been covered above. This finishes the proof of the
lemma. ��

3 Separation events and renormalization

In this section we give the main building blocks of the proof of Theorems 1.4 and 1.9.
We start by introducing a definition that traces back from Definition 3.1 of [19].

Definition 3.1 Given a configuration ω ∈ {0, 1}V , we define the separation event

S(x, L) =
⎡

⎣
there exist two connected sets A, B ⊆ B(x, 3L/6)

with d(A, B) > 1, having diameters at least L/100 and
such that no open path in B(x, 6L/6) connects Ato B

⎤

⎦ . (3.1)

Recall Definition 2.1 and see Fig. 1 for an illustration of this event.
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Fig. 1 The six balls
B(x, Lk+1/6), . . . , B(x, 6Lk+1/6).
The sets A and B from the
definition of S(x, Lk+1) are
pictured, together with a solid
path connecting them.
According to the definition of
S(x, Lk+1), this solid path must
pass through a closed vertex.
The gray dots in the picture
represent the set K from
Lemma 2.5, while the dashed
paths between A and B illustrate
the statement of Lemma 2.2. We
also indicate the occurrence of
the event S(y, Lk ) as in
Lemma 3.2

K

1
2

3
4

5
6

S(y, Lk)

A B

We would like to stress that the numbers 100 and 6 do not have a very important
meaning. Several other choices would lead to valid proofs as well. Another important
observation is that we write the fractions 1/6, 2/6, . . . , 6/6 without simplifying the
numerators and denominators so that the reader can readily see their order.

We intend to analyze the probability of the separation events S(x, L) as L grows
and we do this through a renormalization argument. For this, fix γ > 1 and let us
introduce

L0 = 10,000 and Lk+1 = Lγ

k , for k � 0. (3.2)

Let us observe that the value of L0 is not important in what follows and that the

sequence Lk grows much faster than exponential, in fact Lk = Lγ k

0 .
A very important property of the separation events defined above is that they behave

well with respect to scale change. More precisely, in the next lemma we will show
that the occurrence of the event S(x, Lk+1) implies the occurrence of similar events
in the previous scale Lk .

Let us pick c2 large enough so that for k � c2 we have

Lk < Lk+1/2000. (3.3)

This constant will be useful in the next lemma.

Lemma 3.2 Fix x ∈ V and k � c2 and assume the occurrence of the separation
event S(x, Lk+1). Consider a set K ⊆ B(x, 5Lk+1/6) such that B(K , Lk/6) covers
B(x, 4Lk+1/6) and a pair A, B such that

(a) A and B are connected and contained in B(x, 3Lk+1/6),
(b) their diameters are greater than or equal to Lk+1/1000 and
(c) no open path in B(x, 6Lk/6) connects A and B.

Then, for every path σ in B(x, 4Lk+1/6) connecting A and B, there exists y ∈ K
such that
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(i) σ intersects B(y, Lk/6) and
(ii) the event S(y, Lk) holds.

See Fig. 1 for an illustration of the above lemma.

Remark 3.3 Note the similarity between the conditions a), b) and c) above and the
ones in Definition 3.1.

Observe also that we ask the diameters of A and B to be at least Lk+1/1000, which
is a weaker requirement than that of the definition of S(x, Lk+1). The need for this
will become clear in (3.12), see the proof of Lemma 3.4.

Proof We define the following modification of the original configuration ω

ω̄(x) =
{
0 if x /∈ B(x, 6Lk+1/6),

ω(x) otherwise.
(3.4)

We define C̄z to be the open component containing z under the configuration ω̄. We
also define

C̄A = A ∪
⋃

z∈A

C̄z . (3.5)

Note that C̄A\A is open.
For a path σ as in the statement of the lemma, we denote its points by x0, x1, . . . , xl ,

where x0 ∈ B(A, 1) and xl ∈ B(B, 1). Let us introduce

io = min{i = 0, . . . , l; B(xi , Lk/6) ∩ C̄A = ∅}, (3.6)

where we take io = l if the above set is empty.
Since xio ∈ B(x, 4Lk+1/6) ⊆ B(K , Lk/6), there exists some y ∈ K such that

xio ∈ B(y, Lk/6). In particular σ intersects B(y, Lk/6).
All we have to show now is that the event S(y, Lk) holds and we will do this

splitting the proof in two distinct cases.

Case 1 B(xi , Lk/6) ∩ C̄A �= ∅, for every i = 1, . . . , l.
In this case by our definition, io = l so that xio ∈ B(B, 1). This implies that

1. B(y, 2Lk/6) intersects C̄A (since this ball contains B(xl , Lk/6)) and
2. B(y, 2Lk/6) intersects B (via xl ).

Denote by xa (respectively xb) an arbitrary point in the intersection of B(y, 2Lk/6)
and C̄A (respectively B(y, 2Lk/6) ∩ B).

We will now define the sets A′ and B ′ that confirm the occurrence of the event
S(y, Lk). For this, consider the modified percolation configuration restricted to
B(y, 3Lk/6) and declared open in A ∪ B, that is

ω′(z) =

⎧
⎪⎨

⎪⎩

0, if z /∈ B(y, 3Lk/6),

1, if z ∈ B(y, 3Lk/6) ∩ (A ∪ B) and

ω(z), if z ∈ B(y, 3Lk/6)\(A ∪ B).

(3.7)
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We then let A′ and B ′ be the open connected components under ω′ containing xa and
xb respectively.

To finish this case, all we need to show is that

A′ and B ′ are connected, have diameter at least Lk/100 and (3.8)

no path in B(y, 6Lk/6), connecting A′ to B ′ is open. (3.9)

To verify (3.8), observe first that A′ and B ′ are clearly connected and contained
in B(y, 3Lk/6), according to the definition of ω′. Note as well that both A′ and B ′
contain a point in B(y, 2Lk/6), namely xa and xb respectively. Now, since the diameter
of both B and C̄A are larger or equal to Lk+1/1000 by hypothesis, they must not be
contained in B(y, 3Lk/6) by (3.3). That means that both A′ and B ′ must touch the
internal boundary of B(y, 3Lk/6), so that their diameters are at least Lk/6, proving
(3.8).

We now turn to the proof of (3.9). For this, let σ ′ denote a path in B(y, 6Lk/6)
connecting A′ and B ′. By the definition of A′ and B ′, we can extend σ ′ to a path σ ′′
connecting B and C̄A without leaving B(y, 6Lk/6) and only adding sites which are
open in the ω configuration. Since σ ′′ is contained in B(y, Lk) ⊆ B(x, Lk+1), we
know by S(x, Lk+1) that σ ′′ cannot be open. This means that σ ′ was not open to start
with. This proves (3.9), finishing the proof that S(y, Lk) holds in this Case 1.

Case 2 B(xio , Lk/6) ∩ C̄A = ∅.
In this case, we know that i0 � 1 (since x0 ∈ B(A, 1) and A ⊆ C̄A). Moreover, by
the minimality of io, we have B(xio−1, Lk/6)∩ C̄A �= ∅, implying that B(y, 2Lk/6+
1) ∩ C̄A �= ∅. We pick xa to be an arbitrary point in this intersection.

As in the previous case, we need to define the sets A′ and B ′ that guarantee the
occurrence of S(y, Lk). For this we define the modified percolation configuration
restricted to B(y, 3Lk/6) and open in A, that is

ω′(z) =

⎧
⎪⎨

⎪⎩

0, if z /∈ B(y, 3Lk/6),

1, if z ∈ B(y, 3Lk/6) ∩ A and

ω(z), if z ∈ B(y, 3Lk/6)\A.

(3.10)

We then define A′ to be the connected component under ω′ containing xa and B ′ =
B(xio , Lk/6 − 1). It is clear that the diameters of both A′ and B ′ are at least Lk/100
[here for A′ we use the same argument as in (3.8)]. Therefore, all we need to show is
(3.9) and for this we consider any path σ ′ in B(y, Lk) connecting A′ and B ′. Should
σ ′ be open, then we would have C̄A neighboring B ′, which contradicts the assumption
defining Case 2. This shows that S(y, Lk) holds.

Joining the two cases, we have shown that S(y, Lk) holds, finishing the proof of
the lemma. ��

We now use the isoperimetry of the graph G, together with the above lemma to
show that the separation eventS(x, Lk+1) induces the occurrence of several separation
events at the smaller scale k. This cascading property is the main ingredient in the
recursion inequalities leading to our main results.
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Lemma 3.4 For a graph G satisfying L(di , ci ) and Vu(du, cu), fix x ∈ V , k > c2

and assume that S(x, Lk+1) holds. Let us also fix a set K ⊆ B(x, 5Lk+1/6) such that
B(K , Lk/6) covers B(x, 4Lk+1/6). Then, there exist at least

N :=
⌊
c3L

γ
( di−1

di

)
−(du−1)

k

⌋
many points y j ∈ K such that S(y j , Lk) holds. (3.11)

Where c3 = c3(di , ci , du, cu). Moreover we can assume that d(y j , y j ′) � 3Lk for
every 1 � j < j ′ � N.

It is important to observe that the above lemma is useless unless di > 1, which
encompasses the intuition that the dimension of G should be larger than one for
percolation to take place.

Proof Since S(x, Lk+1) holds, there exist A, B ⊆ B(x, 3Lk+1/6) which are con-
nected, have diameter at least Lk+1/100 and are separated in B(x, 6Lk+1/6). Note
that the distance between A and B could be as small as 2, which would in fact weaken
our arguments. As a first step in the proof we show that

there exist A′, B ′ ⊆ B(x, 3Lk+1/6) which are connected, have diameters

at least Lk+1/1000, are separated in B(x, 6Lk+1/6) and d(A′, B ′) � Lk+1/750.
(3.12)

To see why this is the case, take any a ∈ A and observe that, since the diameter
of B is at least Lk+1/100, it cannot be contained in B(a, Lk+1/300). This way, let
us pick an arbitrary b ∈ B\B(a, Lk+1/300). Since A and B are connected and have
diameter at least Lk+1/100, we can find connected sets A′ ⊆ A and B ′ ⊆ B, contained
respectively in B(a, Lk+1/300) and B(b, Lk+1/300) satisfying (3.12).

Given A′ and B ′ as in (3.12), we note that their volumes are bounded from below
by their diameters, so that we can use Lemma 2.2 to obtain that

there exist N ′ =
⌈
ci (Lk+1/1000)

di−1
di

⌉
many disjoint paths σ1, . . . , σN ′ ,

contained in B(x, 4Lk+1/6) and connecting A′ to B ′. (3.13)

We now use Lemma 3.2 to conclude that there exist points y′
1, . . . , y

′
N ′ ∈ K , such

that

(a) σi intersects B(y′
i , Lk/6) and

(b) the event S(y′
i , Lk) holds,

for every i � N ′. Note that the points y′
1, . . . , y

′
N ′ need not be distinct, only the paths

σ ′
i ’s need be disjoint.

We now have to verify that we can extract from {y′
i }N

′
i=1 a subset of N points which

aremutually far apart. For this, recall that the distance from A′ to B ′ is at least Lk+1/750
(see (3.12)). This means that the diameter of each σi must be at least Lk+1/750, which
is larger than Lk by (3.3). This way we conclude that whenever a path σ j intersects
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B(yi , 4Lk) it must intersect at least Lk points in B(yi , 5Lk). Since all the paths σi are
disjoint,

the number of paths (σ j ) j�N ′ that can intersect a given B(yi , 4Lk) is at most

cu(5Lk)
du

Lk
� c(du, cu)L

du−1
k . (3.14)

This way, a simple counting argument shows that we can choose c3(di , ci , du, cu),
such that there must be at least N points (yi )i�N chosen within the y′

i ’s such that
d(yi , yi ′) � 3Lk , as required in the statement. ��

In the next section we prove the main results of this article.

4 Proofs of the main results

We start by proving Theorem 1.4. Although this result can be derived directly from
Theorem 1.9, we understood that giving its proof separately is a good warm up for the
dependent case.

Proof of Theorem 1.4 Observe that G satisfies Vl(dl , cl) for some pair cl , dl � 1 (in
the worst case cl , dl = 1). For the proof, we fix an arbitrary d ∈ (0, dl). Since di > 1,
we can pick γ > 1 such that

γ

(
di − 1

di

)
> du − 1, (4.1)

which is then used in the definition of Lk in (3.2).
The main step of the proof is to prove a fast decay for

pk = sup
x∈V

P[S(x, Lk)], (4.2)

which is done by induction.
Given k � 1 and x ∈ V we are going to explore the consequences of S(x, Lk+1).

We first apply Lemma 2.5 with r = Lk+1 and s = Lk . For k � c4 = c4(γ, dl , d),
we have s ∈ [(log r)2/(dl−d), r/6]. Lemma 2.5 gives us the existence of a set K ⊆
B(x, 5Lk+1/6) such that

(a) |K | � c1

Ldu
k+1

Ld
k

= c1L
γ du−d
k and

(b) B(x, 4Lk+1/6) ⊆ B(K , Lk/6).

Our induction will rely on the cascading property of the separation events
S(x, Lk+1), as described in Lemma 3.4. More precisely, we will use that S(x, Lk+1)

implies the occurrence of J separation events at the smaller scale k. To choose J , pick
some β such that

β > (γ du − d) ∨ γ (1 + χ) (4.3)
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then let J � 2 be an integer such that

J >
γβ

β − (γ du − d)
. (4.4)

We can now choose c1 = c1(di , ci , du, cu, γ, β, J ) > c4 such that for k � c5 we have

⌊
c3L

γ
( di−1

di

)
−(du−1)

k

⌋
> J. (4.5)

We know by Lemma 3.4 that

P[S(x, Lk+1)] � P

[ there exist y1, . . . , yJ ∈ K , within distance 3Lk

and such that S(yi , Lk) holds for all i = 1, . . . , J

]
, (4.6)

so that
pk+1 � |K |J pJ

k �
(
c1L

γ du−d
k

)J
pJ
k . (4.7)

We are going to show that

pk � L−β
k for k large enough. (4.8)

Suppose first that pk � L−β
k and use (4.7) to estimate

pk+1

L−β
k+1

� cJ1 L
J (γ du−d)−Jβ+γβ

k � cJ1 L
−(J (β−(γ du−d))−γβ)
k . (4.9)

By the choice of β in (4.3) and J in (4.4), we see that the above is smaller or equal to
one for k � c6 = c6(J, γ, β, di , ci , du, cu, dl , cl).

This means that if (4.8) holds for a given k′ � c6, then it must also hold for all
k > k′. It is clear that as the percolation parameter p converges to one, the probability of
S(x, Lk′) converges to zero uniformly over x (since B(x, Lk′)will likely be completely
open). Therefore, we know that for some p close enough to one (4.8) holds.

To finish the proof of the theorem, one should simply observe that β > γ (1 + χ)

and employ the Lemma 4.1 below. ��
The renormalization scheme that we have employed above gives us the decay of the

probabilities pk of the separation events. The next lemma shows that this is enough to
show the existence of an infinite connected component.

Lemma 4.1 If for some choice of γ > 1 and β > γ (1 + χ), we have pk � L−β
k for

all k � k̄, then

P
[
there exists a unique infinite open cluster C∞

] = 1. (4.10)

Moreover, for every x ∈ V ,

P
[
L � diam(Cx ) < ∞] � c(γ, χ, k̄)L−χ . (4.11)

123



Percolation and local isoperimetric inequalities 979

Proof We start by fixing a path σ : N → V satisfying the so-called half-axis property,
that is d(σ (i), σ ( j)) = |i − j | for all i, j ∈ N. To see why such a path exists, fix
a point x ∈ V and consider geodesic paths σx,y from x to all vertices y ∈ V . Then
construct σ step by step, starting from x and only following edges that have been
used by infinitely many geodesics σx,y . A more detailed proof of this and stronger
statements is provided for instance by Theorem 3.1 of [22].

Given σ , we now fix the following collection of points

xk,i = σ(i Lk/6), for k � 1 and i = 0, . . . , Lk+1/Lk . (4.12)

Now we claim that

on the event Gko = ⋂

k�ko

Lk+1/Lk⋂

i=0
S(xk,i , Lk)

c, there exists a unique,

infinite connected component C∞. Moreover, either x ∈ C∞ or diam(Cx ) � Lko .

(4.13)

Before proving the above statement, let us see why this is enough to establish
Lemma 4.1.

Let us first estimate the probability of Gc
ko
, for ko � k̄, by

P[Gc
ko ] = P

[ ⋃

k�ko

Lk+1/Lk⋃

i=1
S(xk,i , Lk)

]
�
∑

k�ko

Lk+1/Lk∑

i=0
pk

�
∑

k�ko

Lγ−1−β

k

β>γ (1+χ)−1
�

∑

k�ko

L−γχ

k = L−γχ

ko

∑

k�0

(L−γχ
0 )γ

ko (γ k−1)

� L−γχ

ko

∑

k�0

(L−γχ
0 )γ

k−1 � c(γ, χ)L−γχ

ko
(4.14)

With the above bound and assuming (4.13), one gets (4.10) directly. Moreover, given
L � c(γ, k̄), we fix ko � k̄ such that Lko � L < Lko+1 to estimate

P
[
L < diam(Cx ) < ∞] � P

[
Lko < diam(Cx ) < ∞] (4.13)� c(γ, χ)L−γχ

ko

� c(γ, χ)L−χ , (4.15)

as claimed in the statement of the lemma. To cover the finite values of L not covered
above, we can increase the constant c(γ, χ) to some c(γ, χ, k̄).

All we need to prove now is (4.13). We claim that for this it is enough to show that

on Gko , there exists an infinite connected component that touches B(x, Lko/30).
(4.16)

To see why this is enough, we start by observing that the uniqueness of the infinite
cluster follows directly from Gko , since the existence of two or more infinite connected
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σ

σk,0

xk,0

σk,1

xk,1

σk,2

xk,2

γk,6 γk,7

γk,8 γk,9

σ0

B(x, L0
30 )

σ1

B(x, L1
30 )

σ2

B(x, L2
30 )

Fig. 2 Above we see the paths σk,i (for a fixed k) and the paths γk,i that join them. Below we can see the
paths σk that were constructed in (4.18)

components would trigger the occurrence ofS(xk,0, Lk) = S(x, Lk) for all but a finite
number of k’s. Moreover it is also a trivial consequence of Gko that either x ∈ C∞
or diam(Cx ) � Lko . Otherwise, we would have two separated components touching
B(x, Lko/30), with diameters at least Lko , contradicting the fact that S(x, Lko) did
not occur.

Let us now turn to the proof of (4.16), which will be done by constructing several
small paths and joining them using the absence of separation events.

For now, fix k � ko. Given any i = 0, . . . , (Lk+1/Lk) − 1, we can use the fact
that we are on S(xk,i , Lk)

c to obtain an open path σk,i ⊆ B(xk,i , 6Lk/6) connecting
B(xk,i , Lk/30) to B(xk,i+1, Lk/30), see Fig. 2.

We would like to join the paths σk,i into a single connected component (recall that
the balls B(xk,i , Lk/30) that link them are not necessarily open). For this we will use
the absence of separation again, but first we need to estimate their diameters

diam(σk,i ) � d(B(xk,i , Lk/30), B(xk,i+1, Lk/30)) � d(xk,i , xk,i+1)− Lk
15 −2 � Lk

20 .

(4.17)
Therefore, we are sure that before σk,i has a chance to exit B(xk,i , 3Lk/6), it already
has diameter at least Lk/30. This way, we can now obtain (again using that we are in
S(xk,i , Lk)

c) open paths γk,i joining σk,i to σk,i+1, for i = 0, . . . , (Lk+1/Lk) − 2.
Consider now an open path σk that visits the ranges of all σk,i and γk,i , for i �

Lk+1/Lk − 1. It is clear that

σk has diameter at least d(xk,0, xk,Lk+1/Lk ) − Lk/15 − 2 � Lk+1/30,

moreover we can assume that σk starts from the ball B(x, Lk/30). (4.18)

The last step of the proof is to join all the paths (σk)k�ko to build an infinite connected
component. An important remark here is that we could not have attempted to join all
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the paths (σk,0)k�ko before building the σk’s. The reason is that the diameter of the
path σk,0 is comparable to Lk and not Lk+1 as the path σk .

To finish the proof of (4.16), note that on Gko , for any k � ko, the ranges of σk
and σk+1 must be on the same connected component. Indeed, since we are outside the
event S(x, Lk+1), before these paths have a chance to exit B(x, 3Lk+1/6) they must
have already covered a diameter larger or equal to Lk+1/100. This finishes the proof
of (4.16) and consequently of the lemma. ��

We now turn to the proof of Theorem 1.9, which deals with dependent percolation
models. But before, we will need a very basic consequence of Definition 1.7.

Lemma 4.2 Suppose that P on {0, 1}V satisfies the decoupling inequality D(α, cα).
Fix any choice of r � 1, an integer J � 1 and points x1, . . . , xJ ∈ V such that

min
1�i<i ′�J

d(xi , xi ′) � 3r. (4.19)

Then

P(G1 ∩ . . . ∩ GJ ) �
(
P(G1) + cαr

−α
) · · · (P(GJ ) + cαr

−α
)
, (4.20)

for any decreasing events G1, . . . ,GJ such that Gi ∈ σ(Yy; y ∈ B(xi , r)).

Proof The result follows from the simple estimate

P(G1 ∩ . . . ∩ GJ ) = P(G1 ∩ . . . ∩ GJ−1)P(GJ |G1 ∩ . . . ∩ GJ−1)

D(α,cα)

� P(G1 ∩ . . . ∩ GJ−1)
(
P(GJ ) + cαr

−α
)

� . . . �
(
P(G1) + cαr

−α
) · · · (P(GJ ) + cαr

−α
)
. (4.21)

Establishing the desired inequality. ��
We now turn to the case of dependent percolation.

Proof of Theorem 1.9 Recall our assumption on the decay exponent

α >

(
1 ∨ di (du − 1)

di − 1

)
du − dl . (4.22)

We can clearly find γ > 1 ∨ (di (du − 1)/(di − 1)
)
and d < di such that

α > γ du − d. (4.23)

We now use this γ in the definition of Lk in (3.2).
Given such γ , pick any β > α∨γ (1+χ) (recall Lemma 4.1) and choose an integer

J = J (α, γ, β, du, d) � 2 such that

J
(
α − (γ du − d)

)
> γβ. (4.24)
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As before, we intend to establish a fast decay for

pk = sup
x∈V

P[S(x, Lk)], (4.25)

which will be done by induction.
Given x ∈ V , for k � c7(γ, dl , d), we can use Lemma 2.5 (with s = Lk , r = Lk+1)

to obtain a set K ⊆ B(x, 5Lk+1/6) such that

(a) |K | � c1

Ldu
k+1

Ld
k

= c1L
γ du−d
k and

(b) B(x, 4Lk+1/6) ⊆ B(K , Lk/6).

Our induction will rely on the cascading property of the separation events S(x, Lk).
We now fix c8 = c8(di , ci , du, cu, d, γ, α, β, J ) > c7 such that for k � c8 we have

⌊
c3L

γ
( di−1

di

)
−(du−1)

k

⌋
> J. (4.26)

Again by Lemma 3.4, we have

P[S(x, Lk+1)] � P

[ there exist y1, . . . , yJ ∈ K ,within distance 3Lk

and such that S(yi , Lk) holds for all i = 1, . . . , J

]
, (4.27)

and using Lemma 4.2 one obtains

pk+1 �
(
c1L

γ du−d
k

)J
(pk + cαL

−α
k )J . (4.28)

Again, our aim is to use induction to show that

pk � L−β
k for k large enough. (4.29)

Suppose first that pk � L−β
k and use (4.28) to estimate

pk+1

L−β
k+1

� (2c1)
J (cα ∨ 1)J L J (γ du−d)+γβ−J (β∧α)

k

β�α

� (2c1)
J (cα ∨ 1)J L−J (α−(γ du−d))+γβ

k . (4.30)

using (4.24), we conclude that the above is smaller than or equal to one for any k � c9,
where the constant c9 is allowed to depend on di , ci , du, cu, d, α, cα, γ, β and J .

This means that if (4.29) holds for a given ko � c9, then it must also hold for
all k � ko. It is important to notice that the dependence of c9 on P is made explicit
through the constants α and cα . This allows us to conclude that there exists a p∗ =
p∗(di , ci , du, cu, α, cα, J, γ, β) < 1 such that, if inf x∈V P[x is open] > p∗, then
(4.29) holds for ko and therefore for every k � ko.

To finish the proof one should simply recall that we have chosen β > γ (1+χ) and
employ the Lemma 4.1 again. For the simple existence and uniqueness of the infinite
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open cluster, we can drop the dependence of p∗ on J, γ and β as in the statement of
the theorem, since we can fix their values. ��

5 Open questions and remarks

In writing this paper, we have tried to balance between generality and simplicity. In
particular, we believe that there should be plenty of room for improvements in the
presented results. Below we point out some interesting directions and questions to
pursue.

Remark 5.1 (a) The decay in (1.5) is not sharp, as we briefly commented below The-
orem 1.4. It would be interesting to obtain better tails for the size of finite percolation
clusters and compare them with lower bounds obtained by explicit examples.

(b) The relation between isoperimetric inequalities and heat kernel estimates for
simple random walks on graphs is very well established and has resulted in extensive
research, see for instance [21,23,24]. We believe that the same should be tried in
the context of percolation, both improving the results of this article and providing
examples of graphs satisfying local isoperimetric inequalities.

(c) In Remark 2.3 we have exhibited two examples of graphs satisfying (1.2) but
not Definition 1.3. However we have not been able to find an example of a transitive,
amenable graph that lies in between these two definitions. This raises the question of
how (1.2) and Definition 1.3 relate to each other when one imposes further conditions
on the graph. Answering this question would of course have direct consequences to
Question 1.1 and to the classes of graphs covered by Corollary 1.6.

(d)A trivial consequence of Theorem 1.4 is the following. If for some graphG there
is percolation at pc, then no infinite critical cluster can contain a sub-graph satisfying
the hypothesis of Theorem 1.4. However, proving the existence of such a sub-graph,
only assuming that there is percolation at criticality, seems to be a very difficult task.
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