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Abstract We consider a full rank deformation of the GUE WN√
N

+ AN where AN is
a full rank Hermitian matrix of size N and WN is a GUE. The empirical eigenvalue
distribution μAN of AN converges to a probability distribution ν. We identify all the
possible limiting eigenvalue statistics at the edges of the spectrum, including outliers,
edges and merging points of connected components of the limiting spectrum. The
results are stated in terms of a deterministic equivalent of the empirical eigenvalue
distribution of WN + AN , namely the free convolution of the semi-circle distribution
and the empirical eigenvalues distribution of AN .
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118 M. Capitaine, S. Péché

1 Introduction and results

1.1 Motivations

Enormous progress has been accomplished in the very recent years in the study of
asymptotic spectral properties of large randommatrices. A HermitianWigner random
matrix is a N × N matrix WN = 1√

N
(Wi j )

N
i, j=1,with i.i.d. entries off the diagonal

Wi j , i < j (modulo the symmetry assumption) and independent diagonal real entries.
The entries are standardized to be centered and of variance σ 2. The asymptotic local
properties of the spectrum of Wigner random matrices are now quite well understood
thanks to the fantastic work of Erdös–Schlein–Yau (see [13,14] and references therein)
and Tao–Vu [27]. In particular, it is known (assuming that the matrix elements admit
enough moments) that the fluctuations of eigenvalues in the bulk or at the edges of
the spectrum are universal. In particular, they coincide with those identified for a
Gaussian (GUE) matrix with variance σ 2. In other words, the limiting asymptotic
spectral properties of a Wigner matrix in the large N limit do not depend on the detail
of the distribution of the matrix elements Wi j , 1 ≤ i, j ≤ N .

In this article, we are interested in deformed randommatrix ensembles. A deformation
of a standard random matrix can be more or less understood as the modification of the
distribution of some of the entries of aWignermatrix. The set of possible deformations
is non exhaustive (one can force some of the entries to be zero such as for sparse
matrices) but we here restrict to some additive deformations. More precisely, we
consider a matrix AN of size N , which is deterministic. Our study could be extended
to the case where it is random but we do not wish to pursue this direction here. We
consider the deformed matrices

WN√
N

+ AN ,

where WN is a standard Wigner matrix. The question is to understand the asymptotic
properties of the eigenvalues and eigenvectors of the deformed matrix, knowing that
of AN and WN√

N
. Such ensembles have first been introduced by [10], and [16] when

WN is a GUE.
In the case where AN is a fixed rank (independent of the size N ) matrix, the asymp-

totic properties of the spectrum are quite clear. Finite rank perturbed ensembles have
first been considered in [4] (see also [6] and [22]). First, the global properties of
the spectrum are not impacted by AN . Indeed, denoting by λ1 ≥ λ2 ≥ · · · ≥ λN

the ordered eigenvalues of WN√
N

+ AN , the empirical eigenvalue distribution μN :=
1
N

∑N
i=1 δλi still converges (as in the case where AN = 0) to the semi-circle distribu-

tion with density σsc(x) = 1
2πσ 2

√
4σ 2 − x21|x |≤2σ . The asymptotic local eigenvalue

statistics of eigenvalues in the bulk of the spectrum are also unchanged by the deforma-
tion matrix AN . Only the local behavior of the spectrum at the edges may be impacted
by the deformation AN , as we now explain. The deformation AN may cause some
eigenvalues to separate from the bulk of the spectrum. Each eigenvalue of AN greater
than σ is called a spike. To each spike θi of AN such that |θi | > σ (if it exists) there
corresponds an eigenvalue λi satisfying
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Fluctuations at the edges of the spectrum... 119

λi →
(

θi + σ 2

θi

)

a.s. Such eigenvalues λi outside the support of the semi-circle distribution are called
outliers. Interestingly, [11] and then [23,24] have proved that the fluctuations of spikes
are not universal in general. More precisely

√
N

(

λi −
(

θi + σ 2

θi

))
d→ μ,

where the distribution μ may depend explicitly on the distribution of the matrix ele-
ments Wi j . It can be shown that eigenvectors of the matrix AN play a fundamental role
in the universality/non universality of the deformation matrix AN . On the contrary,
when there is no spike, the limiting distribution of extreme eigenvalues is the same
as in the non deformed case. In particular, extreme eigenvalues stick to the bulk of
the spectrum. The scale of their fluctuations is N−2/3 and the limiting distribution
of the largest (and smallest) eigenvalues is the Tracy–Widom distribution, provided
the matrix elements Wi j admit enough moments. A complete study of such deformed
ensembles has been achieved in [17] and [18] and we refer the reader to these articles
for a complete state of the art in finite rank deformations of Wigner matrices.

The study of deformed ensembles extends to the case where the matrix AN has
low rank rN << N , rN → ∞ (see [22] e.g.) or full rank i.e. when rN = O(N ). In
this case, it is natural to assume that the empirical eigenvalue distribution of AN has
a weak limit as N → ∞, which is possibly δ0. Denote by y1 ≥ y2 ≥ · · · ≥ yN the
ordered eigenvalues of AN . Let μAN = 1

N

∑N
i=1 δyi . We assume the norms of (AN )N

are uniformly bounded and that there exists a probability distribution ν onR such that

μAN

w→
N→∞ ν.

Let us diagonalize AN through AN = V diag(y1, . . . , yN )V ∗. Roughly speaking the
deformedmodel is now understood in the sense that WN√

N
+ AN is a “small” perturbation

of the matrix WN√
N

+ V A0V ∗ where A0 would be a diagonal matrix made up with
quantiles of the probability ν. The asymptotic global behavior of the spectrum is
well-known in this case. Indeed, let μN be the empirical eigenvalue distribution of
WN√

N
+ AN . Its Stieltjes transform is

m N (z) :=
∫

1

z − y
dμN (y), Imz �= 0.

According to [3,30], m N converges as N → ∞ to the Stieltjes transform mτ of a
probability distribution τ , called the free convolution of ν and the semi-circle distribu-
tion. This probability distribution τ is uniquely characterized by a fixed point equation
satisfied by mτ , as we review in Sect. 2; it has a density p. We emphasize that the
support of the probability distribution τ may have distinct connected components,
depending on ν.
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120 M. Capitaine, S. Péché

The question of the asymptotic behavior of extreme eigenvalues naturally arises in
this setting also. This question has been much less investigated actually. So far, only
the case where WN is a GUE has been investigated.
In [26], the author considers the case whereμAN concentrates quite fast to the measure
ν. In particular, there are no spikes. When WN is a GUE, she investigates the local
edge regime which deals with the behavior of the eigenvalues near any extremity point
u0 of a connected component of supp(τ ). More precisely let some ε > 0 be given and
assume that either

p(u) > 0, ∀u ∈]u0; u0 + ε[, and p(u) = 0, ∀u ∈]u0 − ε; u0], (1)

or p(u) > 0, ∀u ∈]u0 − ε; u0[, and p(u) = 0, ∀u ∈ [u0; u0 + ε[. (2)

Shcherbina [26] makes a technical assumption on the uniform convergence of the
Stieltjes transform of μAN to mν :

sup
z∈K

|mμAN
(z) − mν(z)| ≤ N−2/3−ε, (3)

where K is some compact subset of the complex plane at a positive distance of the
support of ν. This is a rather strong assumption on the rate of convergence of μAN

to ν. Shcherbina [26] proves that the joint distribution of the largest (or smallest)
eigenvalues converging to u0 have universal asymptotic behavior, characterized by
the famous Tracy–Widom distribution. We note that Shcherbina [25] also investigates
the asymptotic spacing distribution of eigenvalues in the bulk of the spectrum. The
same behavior as for non deformed ensemble is obtained (and described by the sine
kernel). The extension to a non Gaussian matrix WN has recently been obtained by
O’Rourke and Vu [21] in the case where AN is diagonal.
In [2] and [1], the authors consider the case where μAN = ν is a finite combination of
Dirac delta masses. They identify different possible limiting statistics at the edges of
the support of τ , after suitable normalization of the eigenvalues. If u0 is a point such
that p(u) = 0, u0 − ε ≤ u ≤ u0, p(u) > 0, u0 < u ≤ u0 + ε for some ε > 0, the
asymptotic distribution of eigenvalues close to u0 is the Tracy–Widom distribution.
The authors also consider the casewhereu0 is a pointwhere twoconnected components
of supp(τ )merge so that p(u) > 0,∀u ∈ (u0−ε, u0+ε)\{u0} and p(u0) = 0. In this
case, the limiting eigenvalue statistics are described by the so-called Pearcey kernel
(whose definition is reviewed hereafter).

In both cases, a strong assumption is made on the rate of convergence of μAN to
ν. We here remove this assumption. We identify all the possible limiting eigenvalue
statistics at the edges of the spectrum of the deformed GUE, namely at a spike, at
the edge of a connected component of the support or at a point where two connected
components merge. We emphasize that we do not make any assumptions on the rate
of convergence of μAN to ν. To state our results, we use a deterministic equivalent of
the empirical eigenvalue distribution of the deformed GUE. This equivalent is the free
convolution of the semi-circle distribution and μAN .
The choice of the deformed GUE is motivated by the fact that all eigenvalues sta-
tistics can be explicitly computed for this ensemble of deformed random matrices.
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Fluctuations at the edges of the spectrum... 121

We expect that one can extend these results to full rank deformations of an arbitrary
Wigner matrix, as in the fixed rank case (with universal or non universal results). We
intend to consider this general case in a forthcoming paper. The techniques needed
are completely different.

Our results shall be compared to [5]. Therein the authors consider a (random) addi-
tive perturbation of a complex compoundWishartmatrix and establish universal results
by considering mobile edges. Their model is quite comparable to the one considered
in the present article. We use the same strategy for the proof as that developed in [5],
except that we provide a free probabilistic interpretation of the mobile edges. Our
main contribution with respect to [5] is thus to provide a free probabilistic setting that
allows to fully describe the asymptotic distribution of extreme eigenvalues, without
hypotheses on rate of convergence of μAN to ν.

1.2 Model and results

We consider the following deformed GUE ensemble

MN = X N + AN ,

where

(H1) X N = 1√
N

WN where WN is a N × N GUE matrix: the random variables

(WN )i i ,
√
2(�(WN )i j )i< j ,

√
2(Im(WN )i j )i< j are i.i.d., with gaussian distribution

of variance 1 and mean 0.
(H2) AN is a deterministic Hermitian matrix whose eigenvalues yi = yi (N ),
1 ≤ i ≤ N , are such that the spectral measure μAN := 1

N

∑N
i=1 δyi converges

weakly to some probability measure ν with compact support. We assume that

∀t ∈ supp (ν), lim
ε→0

∫
dν(x)

(t − x)2 + ε2
> 1, (4)

where supp(ν) denotes the support of ν.
(H3) We also assume that there exists a fixed integer r ≥ 0 (independent from
N ) and an integer 0 ≤ J ≤ r such that the following holds. There are J fixed
real numbers θ1 > · · · > θJ independent of N which are outside the support of
ν and such that each θ j is an eigenvalue of AN with a fixed multiplicity k j (with∑J

j=1 k j = r ). The θ j ’s are called the spikes or the spiked eigenvalues of AN and
we set


 = {θ j , 1 ≤ j ≤ J }.

The remaining N − r eigenvalues of AN , denoted by β j (N ), j = 1, . . . , N − r ,
satisfy

max
1≤ j≤N−r

dist(β j (N ), supp(ν)) −→
N→∞ 0.
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122 M. Capitaine, S. Péché

Remark 1.1 The inequality (4)may not hold typically for ameasure ν having a density
whichvanishes quite fast at somepoint of the support. Thismaybe the case for instance,
for the following measures

dν(x) := α + 1

(1 + A)α+1 (1 − x)α1[−A,1](x)dx; α ≥ 3,

by suitably choosing A.

Remark 1.2 Note that we do not make any assumptions on the rate of convergence of
μAN to ν.

Denote by μsc the semicircle distribution whose density is given by

dμsc

dx
(x) = 1

2π

√
4 − x2 1 1[−2,2](x). (5)

According to [3], the spectral distribution of MN weakly converges almost surely to
the so-called free convolution μsc � ν which has a continuous density p (see [8]). We
recall some important facts about the free convolution with a semi-circular distribution
in Sect. 2.

We are now in position to state our results. Let first consider a real number d which
is a right edge of supp(μsc � ν) that is which satisfies (2). Assume moreover that for
any θ j such that

∫ dν(s)
(θi −s)2

= 1, we have d �= θ j + mν(θ j ). We show in Proposition
3.1 that for η small enough, for all large N , there exists a unique right edge dN of
supp(μsc�μAN ) in ]d−η; d+η[.We derive the asymptotic distribution of eigenvalues
in the vicinity of dN . Before exposing our results, we need a few notations. Let Ai(u)

be the Airy function defined by

Ai(u) = 1

2π

∫

eiua+i 13 a3da (6)

where the contour is from ∞e5iπ/6 to ∞eiπ/6. The Airy kernel (see e.g. [28]) is then
given by

A(u, v) = Ai(u)Ai ′(v) − Ai ′(u)Ai(v)

u − v
=
∫ ∞

0
Ai(u + z)Ai(z + v)dz. (7)

Let Ax be the operator acting on L2((x,∞)) with kernel A(u, v). The GUE Tracy–
Widom distribution for the largest eigenvalue is [28]

F0(x) = det(1 − Ax ) = FGU E (x). (8)

We refer to [28] for the more complicated definition of the GUE distribution for the k
largest eigenvalues (k > 1).

We first prove the following result. Let k be a given fixed integer. Let λmax ≥
λmax−1 ≥ · · · λmax−k+1 denote the k largest of those eigenvalues of MN converging
to d.
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Fluctuations at the edges of the spectrum... 123

Theorem 1.1 There exists α > 0 depending on dN only such that the vector

N 2/3

α
(λmax − dN , λmax−1 − dN , . . . , λmax−k+1 − dN )

converges in distribution as N → ∞ to the so-called Tracy–Widom GUE distribution
for the k largest eigenvalues.

Remark 1.3 Condition (4) is necessary to obtain Tracy–Widom asymptotics at the
edges of the spectrum. If condition (4) fails e.g. at the top edge of the spectrum,
meaning that the density of ν vanishes too fast at the edge, the limiting eigenvalue
statistics at the edge can be proved to be Gaussian.

We now turn to the behavior of outliers. Let θi be a spiked eigenvalue with multi-
plicity ki , such that

∫ 1
(θi −x)2

dν(x) < 1. In [12], the authors prove that the spectrum
of MN exhibits ki eigenvalues in a neighborhood of

ρθi = θi +
∫

dν(x)

θi − x
. (9)

Note that such a result is obtained when the support of ν has a finite number of
connected components. However this assumption can be easily relaxed (see Remark
2.2). In Proposition 3.4, we prove that for ε > 0 small enough, for all large N ,
supp(μsc � μAN ) has a unique connected component [Li (N ); Di (N )] inside ]ρθi −
ε; ρθi + ε[.

Define

ρN (θi ) = z + 1

N

∑

y j �=θi

1

θi − y j
. (10)

It can be shown that for all large N , ρN (θi ) ∈ [Li (N ); Di (N )] and ρN (θi ) =
Li (N )+Di (N )

2 + o
(

1√
N

)
.

To define the limiting correlation function at an outlier, we consider for k =
1, 2, . . . , the distribution Gk(·) given by

Gk(x) = 1

Zk

∫ x

−∞
· · ·
∫ x

−∞

∏

1≤i< j≤k

|ξi − ξ j |2 ·
k∏

i=1

e− 1
2 ξ2i dξ1 · · · dξk . (11)

In other words, Gk is the distribution of the largest eigenvalue of k × k GUE. It has
been shown (see [19] or [3] e.g.) that

Gk(x) = det(1 − H(k)
x ), (12)

where H(k)
x is the operator acting on L2((x,∞)) defined by the Christoffel Darboux

kernel of some rescaled Hermite polynomials satisfying the orthogonality relationship
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124 M. Capitaine, S. Péché

∫∞
−∞ pm(x)pn(x)e− 1

2 x2dx = δmn . We refer the reader to [4, Section 1.2.2] for a more
complete statement of this fact.

Let us denote by λmax the largest of the ki outliers around ρN (θi ).

Theorem 1.2 There exists c > 0 depending on θi and ν only such that

lim
N→∞P

(√
Nc(λmax − ρN (θi ) ≤ x

)
= Gki (x).

We actually prove that the ki outliers around ρN (θi ) fluctuate as the eigenvalues of
a ki × ki GUE.

Finally, we turn to the fluctuations in a neighborhood of an isolated point of vanish-
ing density. Let u0 ∈ R be such that p(u0) = 0 and that there exists ε > 0 such that,
∀u ∈]u0 − ε; u0 + ε[\{u0}, p(u) > 0 . Assume that for any θi such that

∫ dν(s)
(θi −s)2

= 1,

we have θi + mν(θi ) �= u0. Set t0 = �−1
ν (u0) where �ν is defined in Theorem 2.1

below. We make the following assumption:

(H4) The equation
∫ dμAN (x)

(t−x)2
− 1 = 0 admits a unique solution t ∈ C in a

neighborhood of t0.

We prove in Proposition 3.3, that for η small enough, for all large N, there exists uN in
]u0 − η; u0 + η[ such that pN (uN ) = 0 and ∀u ∈]u0 − η; u0 + η[\{uN }, pN (u) > 0,
where pN denotes the density of μsc � μAN .
Last we derive the asymptotic behavior of eigenvalues at the vicinity of uN . Consider
the Pearcey kernel defined by

K P (x, y) := 1

2iπ

∫

�0

dt
∫ i∞

−i∞
dse−t4+xt+s4−sy 1

s − t
. (13)

The contour �0 is formed by two curves lying respectively to the right and left of 0:
one goes from ∞ei π

4 to ∞e−i π
4 and the other from −∞ei± π

4 to −∞e−i π
4 . See Fig. 1

below. The Pearcey distribution has been defined in [1,2,29]. Let k be a fixed integer
and f : Rk → R be a symmetric bounded function with compact support.

Theorem 1.3 There exists κ > 0 such that

E

∑

1≤i1<i2<···<ik≤N

f (κ N
3
4 (λi1 − uN ), κ N

3
4 (λi2 − uN ), . . . , κ N

3
4 (λik − uN ))

→
N→∞

∫

Rk

1

k! f (x1, . . . , xk) det(K P (xi , x j ))
k
i, j=1

k∏

i=1

dxi .

The article is organized as follows. In Sect. 2, we review the fundamental properties
of the free convolution that we later need in the proof. Section 3 gives fine estimates on
the comparison of the support of the spectral distribution of MN on the one hand and
that of μsc � ν on the other hand. These are the fundamental tools for the asymptotic
analysis of eigenvalue statistics in Sect. 4. Therein the basic tool is a saddle point
analysis of the correlation functions of the deformed GUE.
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γ0Γ0

Fig. 1 Contours defining the Pearcey kernel

2 Free convolution by a semicircular distribution

2.1 The free convolution

We recall here an analytic definition of the free convolution of two probability mea-
sures. Let τ be a probability measure on R. Its Stieltjes transform mτ is defined by

mτ (z) :=
∫

1

z − y
dτ(y).

mτ is analytic on the complex upper half-plane C+. There exists a domain

Dα,β = {u + iv ∈ C, |u| < αv, v > β}

on which mτ is univalent. Let Kτ be its inverse function, defined on mτ (Dα,β), and

Rτ (z) = Kτ (z) − 1

z
.

Definition 2.1 Given two probability measures τ and ν, there exists a unique proba-
bility measure λ such that

Rλ = Rτ + Rν

on a domain where these functions are defined. The probability measure λ is called
the free convolution of τ and ν and denoted by τ � ν.

We refer the reader to [15,20,32,33] for an introduction to free probability theory. The
free convolution of probability measures has an important property, called subordina-
tion, which can be stated as follows: let τ and ν be two probability measures on R;
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126 M. Capitaine, S. Péché

there exists an analytic map ω : C+ → C
+ such that ω(z)/z → 1 as z → ∞ with

z ∈ Dα,β , for every such domain, and such that

∀z ∈ C
+, mτ�ν(z) = mν(ω(z)).

This phenomenon was first observed by Voiculescu under a genericity assumption in
[31], and then proved in generality in [9, Theorem 3.1]. Later, a new proof of this
result was given in [7], using a fixed point theorem for analytic self-maps of the upper
half-plane.
In [8], Biane provides a deep study of the free convolution by a semicircular distribu-
tion, based on this subordination property.

2.2 The free convolution μsc � ν

We first recall here some of Biane’s results that will be useful in this paper.
Let ν be a probability measure on R. Biane [8] introduces the set

�ν := {u + iv ∈ C
+, v > vν(u)},

where the function vν : R → R
+ is defined by

vν(u) = inf

{

v ≥ 0,
∫

R

dν(x)

(u − x)2 + v2
≤ 1

}

,

and proves the following

Proposition 2.1 [8] The map

Hν : z −→ z + mν(z)

is a homeomorphism from �ν to C
+ ∪ R which is conformal from �ν onto C

+. Let
ων : C+ ∪ R → �ν be the inverse function of Hν . One has,

∀z ∈ C
+, mμsc�ν(z) = mν(ων(z))

and then
ων(z) = z − mμsc�ν(z). (14)

The previous results of [8] allows to conclude that μsc � ν is absolutely continuous
with respect to the Lebesgue measure and to obtain the following description of the
support.

Theorem 2.1 [8] Define �ν : R → R by:

�ν(t) = Hν(t + ivν(t)) = t +
∫

R

(t − x)dν(x)

(t − x)2 + vν(t)2
.
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�ν is a homeomorphism and, at the point �ν(t), the measure μsc � ν has a density
given by

pν(�ν(t)) = vν(t)

π
. (15)

Define the set
Uν := {t ∈ R, vν(t) > 0}. (16)

The support of the measure μsc � ν is the image of the closure of the open set Uν by
the homeomorphism �ν . �ν is strictly increasing on Uν .

Hence,

R\supp(μsc � ν) = �ν(R\Uν).

One has �ν = Hν on R\Uν and �−1
ν = ων on R\supp(μsc � ν). In particular, we

have the following description of the complement of the support:

R\supp(μsc � ν) = Hν(R\Uν). (17)

The following result will be useful later on.

Lemma 2.1 [8] If t0 is a point in the complement of the support of ν where two
components of the set Uν merge into one, then

∫
dν(x)

(t0 − x)2
= 1,

∫
dν(x)

(t0 − x)3
= 0.

In [12], when ν is a compactly supported probability measure, the authors establish
the following results.

Proposition 2.2 [12]

Uν = supp(ν) ∪
{

t ∈ R\supp(ν),

∫

R

dν(x)

(t − x)2
≥ 1

}

. (18)

Each connected component of Uν contains at least one connected component of
supp(ν).

We also need the following additional basic results.

Lemma 2.2 Let ]a; b[⊂ R\{Uν ∪ supp(ν)}. Then, �ν is strictly increasing on ]a; b[.
Proof Since ∀t ∈ R\Uν, vν(t) = 0, we have �ν = Hν on ]a; b[. Moreover ∀t ∈
]a; b[, H

′
ν(t) = 1 − ∫ dν(x)

(t−x)2
≥ 0. The result readily follows since moreover �ν is

one to one. ��
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Lemma 2.3 If t /∈ supp(ν) is such that there exists δ > 0 such that

]t − δ; t[⊂ Uν and [t; t + δ[⊂ R\Uν . (19)

Then, one has that

(i) :
∫

dν(x)

(t − x)2
= 1, and (ii) :

∫
dν(x)

(t − x)3
> 0.

If t ′ /∈ supp(ν) is such that there exists δ > 0 such that

]t ′ − δ; t ′] ⊂ R\Uν and ]t ′; t ′ + δ[⊂ Uν. (20)

Then, one has that

(iii) :
∫

dν(x)

(t ′ − x)2
= 1 and (iv) :

∫
dν(x)

(t ′ − x)3
< 0.

Proof Since t and t ′ are in Uν\Uν , (18) readily implies (i) and (iii). Let us establish
(ii). Let ε > 0 be such that ]t − ε; t + ε[⊂ R\supp(ν). Set

f :
]t − ε; t + ε[→ R

s →
∫

dν(x)

(s − x)2
.

Note that f
′′
(s) = 6

∫ dν(x)

(s−x)4
> 0 so that f

′
is strictly increasing on ]t − ε; t + ε[.

Therefore if − f
′
(t) = 2

∫ dν(x)

(t−x)3
≤ 0 then f

′
> 0 on ]t; t + ε[ and ∫ dν(x)

(s−x)2
> 1 for

s ∈]t; t + ε[ which leads to a contradiction with (19). Similarly, one can prove (iv). ��
Remark 2.1 In the rest of the article, since we deal with a measure ν satisfying (4),
we have supp(ν) ⊂ Uν .

2.3 The free convolution μsc � μAN and the localization of the spectrum of MN

In [12], the authors prove that a precise localization of the spectrum of MN can be
described thanks to the support of the free convolution μsc � μAN . In this section, we
recall some of their results that we need afterwards.

Theorem 2.2 [12] One has that ∀ε > 0,

P (For all large N ,Spect(MN ) ⊂ {x, dist(x, supp(μsc � μAN )) ≤ ε}) = 1.

An outlier in the spectrum of MN is an eigenvalue of MN lying outside the support of
μsc � ν. As we now explain, it is possible to describe outliers thanks to the support
of μsc � μAN .

Notations and definitions Throughout the rest of the article, we denote Uν , Hν , �ν ,
vν and pν by U , H , �, v and p respectively. We also denote UμAN

, HμAN
, �μAN

,

123



Fluctuations at the edges of the spectrum... 129

vμAN
, pμAN

by UN , HN , �N , vN and pN respectively. Last, we define the probability
measure ν̂N by

ν̂N = 1

N − r

N−r∑

i=1

δβi (N ).

It is easy to see that ν̂N weakly converges to ν. We define


ν = 
 ∩ (R\U ).

Furthermore, for any θ j ∈ 
ν , we set

ρθ j := H(θ j ) = θ j + mν(θ j ). (21)

Note that ρθ j lies outside of the support of μsc � ν according to (17). Define also

Kν(θ1, . . . , θJ ) := supp(μsc � ν)
⋃

{ρθ j , θ j ∈ 
ν}. (22)

In [12], the authors obtain moreover the following inclusion of the support of μsc �
μAN .

Theorem 2.3 For any ε > 0,

supp(μsc � μAN ) ⊂ Kν(θ1, . . . , θJ ) + (−ε, ε),

when N is large enough.

In [12], the authors proved this theorem when the supp(ν) has a finite number of
connected components. Nevertheless, it is still true in our more general setting as we
prove in the following lines. We will use the following lemma in [12] which proof
does not care about the number of connected components of the supports.

Lemma 2.4 [12] For any ε > 0,

UN ⊂ {x, dist(x, U ) < ε} ∪ {x, dist(x,
ν) < ε}, (23)

for all large N.

Proof of Theorem 2.3 First, one can readily observe that if x satisfies dist(x, supp(ν))

≥ 1 then −m′
ν(x) ≤ 1. This implies that the open set U is included in the com-

pact set {x, dist(x, supp(ν)) ≤ 1}. Then we can choose K large enough such that
{x, dist(x, U ∪ 
ν) ≤ 1} ⊂ [−K ; K ] and, since limy→±∞ �(y) = ±∞ and
(supp(μAN � μsc))N are uniformly bounded,

supp(μAN � μsc) ⊂ [�(−(K − 1);�(K − 1)]. (24)
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Let ε > 0. Since � is uniformly continuous on [−K ; K ], there exists 0 < α < 1 such
that

�({x, dist(x, U ∪ 
ν) < α}) ⊂ {y, dist(y, Kν(θ1, . . . , θJ )) < ε}. (25)

Since according to Lemma 2.4, UN ⊂ {x, dist(x, U ∪
ν) < α/2} for all large N , we
have

�N

(
[−K ; K ] ∩

{
x, dist(x, U ∪ 
ν) ≥ α

2

})
⊂ �N (R\UN ) = R\supp(μAN �μsc).

(26)
Denote by Aα,K the set [−K ; K ] ∩ {x, dist(x, U ∪ 
ν) ≥ α}. Note that for all large
N , Aα/2,K ⊂ R\UN . Moreover,

⋃

x∈Aα,K−1

]
x − α

2
; x + α

2

[
⊂ Aα/2,K .

Thus, using Lemma 2.2 for �N , we get that

⋃

x∈Aα,K−1

]
�N

(
x − α

2

)
;�N

(
x + α

2

)[
⊂ �N (Aα/2,K ).

Now, using the assumptions (H3) on the spectrum of AN , it is easy to see that �N

converges uniformly towards � on the compact set Aα/2,K . Moreover, since � is
continuous on the compact set Aα,K−1, we have

inf
x∈Aα,K−1

min(|�(x − α/2) − �(x)|; |�(x + α/2) − �(x)|) = m > 0.

Therefore since for all large N , supAα/2,K
|�N (x)−�(x)| < m and using also Lemma

2.2 for �, we get that for all large N , for all x ∈ Aα,K−1, �N
(
x − α

2

)
< �(x) <

�N
(
x + α

2

)
and therefore

�(Aα,K−1) ⊂ �N (Aα/2,K ). (27)

(26) and (27) yield that

supp(μAN � μsc) ⊂ R\�(Aα,K−1)

with

R\�(Aα,K−1)=]− ∞;�(−K +1)[∪]�(K −1);+∞[∪�({x, dist(x, U ∪ 
ν)<α}.

Then, the result readily follows from (24) and (25). ��
Moreover, in [12], the authors proved that the spikes of the perturbation which

belong to R\U , generate outliers in the spectrum of the deformed model.
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Theorem 2.4 [12] Let θ j ∈ R\U (i.e. ∈ 
ν). Denote by n j−1 + 1, . . . , n j−1 + k j the
descending ranks of θ j among the eigenvalues of AN . Then, almost surely,

lim
N→∞ λn j−1+i (MN ) = ρθ j = H(θ j ), ∀ 1 ≤ i ≤ k j .

Remark 2.2 In [12], the authors proved this theorem when the support of ν has a
finite number of connected components; nevertheless it is still true in our more general
setting since it follows fromTheorems 2.3 and 2.2 and an exact separation phenomenon
(see Theorem 7.1 in [12]) which proof does not care about the number of connected
components of the support of ν.

3 Comparison of the supports of μsc � ν and μsc � μAN

As we show in the next Sect. 4, the support of μsc � μAN plays a fundamental role
in the study of the fluctuations of eigenvalues at the edges of the spectrum. Due to
assumptions (H2), (H3) and (H4), we are able to show that the supports of μsc � ν

andμsc �μAN exhibit very similar features at edges which are distant from outliers as
we explain in Sect. 3.1 below. In Sect. 3.2, we prove that μsc � μAN has a connected
component in the vicinity of each outlier. Sections 3.3 and 3.4 are devoted to the proof
of the propositions stated in Sects. 3.1 and 3.2.

3.1 Fundamental preliminary results

The two following results will be fundamental for considering asymptotics of the
correlation kernel at the edges of the support of μsc � ν.

Proposition 3.1 Assume that for a sufficiently small ε > 0,

p(u) > 0, ∀u ∈]u0 − ε; u0[, and p(u) = 0, ∀u ∈ [u0; u0 + ε[.

Set t0 = �−1(u0). Then there exists τ > 0 such that ]t0 − τ ; t0[⊂ U, [t0; t0 +
τ [⊂ R\U and we have

∫ dν(x)

(t0−x)2
= 1 and

∫ dν(x)

(t0−x)3
> 0. Assume that for all j ∈

{1, . . . , J }, θ j �= t0. Then for τ > 0 small enough, for all large N, there exists one
and only one t0(N ) in ]t0 − τ ; t0 + τ [, such that

∫ 1
(t0(N )−x)2

dμAN (x) = 1 and
]t0 −τ ; t0 +τ [∩UN =]t0 −τ ; t0(N )[. Moreover, for η > 0 small enough, for all large
N, u0(N ) = �N (t0(N )) ∈]u0 − η; u0 + η[,

and ∀u ∈]u0 − η; u0(N )[, pN (u) > 0 and ∀u ∈ [u0(N ); u0 + η[, pN (u) = 0.

Moreover, we have

u0(N ) = u0 + εN (t0(N )) + 1

4
(εN

′
(t0(N )))2(1 + o(1)) + O

(
1

N

)

, (28)
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where for t in a small neighborhood of t0,

εN (t) = N − r

N

∫
d ν̂N (x)

(t − x)
−
∫

dν(x)

(t − x)
.

Similarly we have the following result involving the left edges of the support of
μsc � ν.

Proposition 3.2 Assume that for a sufficiently small ε > 0,

p(u) > 0, ∀u ∈]u0; u0 + ε[, and p(u) = 0, ∀u ∈ [u0 − ε; u0[.

Set t0 = �−1(u0). Then there exists τ > 0 such that ]t0 − τ ; t0] ⊂ R\U, ]t0; t0 +
τ [⊂ U and we have

∫ dν(x)

(t0−x)2
= 1 and

∫ dν(x)

(t0−x)3
< 0. Assume that for all j ∈

{1, . . . , J }, θ j �= t0. Then for τ > 0 small enough, for all large N, there exists one
and only one t0(N ) in ]t0 − τ ; t0 + τ [, such that

∫ 1
(t0(N )−x)2

dμAN (x) = 1 and
]t0 −τ ; t0 +τ [∩UN =]t0(N ); t0 +τ [. Moreover, for η > 0 small enough, for all large
N, u0(N ) = �N (t0(N )) ∈]u0 − η; u0 + η[

and ∀u ∈]u0(N ); u0 + η[, pN (u) > 0 and ∀u ∈]u0 − η; u0(N )], pN (u) = 0.

Moreover we have

u0(N ) = u0 + εN (t0(N )) + 1

4
(εN

′
(t0(N )))2(1 + o(1)) + O

(
1

N

)

,

where for t in a small neighborhood of t0,

εN (t) = N − r

N

∫
d ν̂N (x)

(t − x)
−
∫

dν(x)

(t − x)
.

Remark 3.1 It is clear that, under the assumption (3) of Shcherbina ([26]), Theorem
1.1 and (28) imply her result.

The following proposition will be fundamental to study the asymptotics of the
correlation kernel in a neighborhood of any point of the support of μsc � ν where the
density vanishes.

Proposition 3.3 Let u0 ∈ R be such that p(u0) = 0 and there exists ε > 0 such
that, ∀u ∈]u0 − ε; u0 + ε[\{u0}, p(u) > 0 . Set t0 = �−1(u0) ∈ R. Then t0 is a
point in R\supp(ν) where two components of U merge and satisfies

∫ dν(s)
(t0−s)2

= 1,
∫ dν(s)

(t0−s)3
= 0. We have u0 = H(t0). Assume that assumption (H4) holds true and that

for any i = 1, . . . , J , θi �= t0. Then, for η small enough, for all large N, there exists
u0(N ) in ]u0−η; u0+η[ such that pN (u0(N )) = 0 and ∀u ∈]u0−η; u0+η[\{u0(N )},
pN (u) > 0. t0(N ) = �−1

N (u0(N )) is a point of R\Spect(AN ) where two components

of UN merge and satisfies
∫ dμAN (s)

(t0(N )−s)2
= 1,

∫ dμAN (s)

(t0(N )−s)3
= 0. We have u0(N ) =

HN (t0(N )) and limN→+∞ t0(N ) = t0.
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3.2 In the vicinity of outliers

It turns out that the support of μsc � μAN exhibits a small connected component in
the vicinity of each outlier.

Proposition 3.4 Let θi be such that
∫ dν(x)

(θi −x)2
< 1 and ρθi = H(θi ). Then, for

ε > 0 small enough, for all large N, supp(μsc � μAN ) has a unique connected
component [Li (N ); Di (N )] inside ]ρθi − ε; ρθi + ε[. Moreover, setting ρN (θi ) =
1
N

∑
y j �=θi

1
θi −y j

+ θi , we have

Li (N ) = ρN (θi ) − 2
√

ki

√

1 −
∫

1

(θi − x)2
dν(x)

1√
N

+ o

(
1√
N

)

,

Di (N ) = ρN (θi ) + 2
√

ki

√

1 −
∫

1

(θi − x)2
dν(x)

1√
N

+ o

(
1√
N

)

.

Thus, ρN (θi ) = Li (N )+Di (N )
2 + o

(
1√
N

)
.

3.3 Some technical lemmas

In the proof of the previous propositions, we will use the following lemmas.

Lemma 3.1 Let [a; b] ⊂ R\supp(ν) ∪ 
. Then m N : z → ∫ dμAN (s)
(z−s) (resp. −m

′
N :

z → ∫ dμAN (s)

(z−s)2
) converges uniformly towards m : z → ∫ dν(s)

(z−s) (resp. −m
′ : z →

∫ dν(s)
(z−s)2

) on every compact set included in {z ∈ C; a < �z < b}.

Proof Let γ > 0 be such that [a − 3γ ; b + 3γ ] ⊂ R\supp(ν) ∪ 
. Since AN has
N − r eigenvalues β j (N ) satisfying max1≤ j≤N−r dist(β j (N ), supp(ν))−→N→∞ 0,
and the other eigenvalues of AN are the spikes θ j ∈ 
, we can readily deduce that for
all large N,

[a − 2γ ; b + 2γ ] ⊂ R\Spect(AN ).

It is clear that the functionsm N , g,−m
′
N and−m

′
are holomorphic on {z ∈ C; a−γ <

�z < b + γ }. Since for large N , {z ∈ C; a − γ < �z < b + γ } is included
in {z ∈ C; dist(z; supp(ν)) > γ ; dist(z;Spect(AN )) > γ }, it readily follows that
for large N , m N and m (respectively m

′
N and m

′
) are uniformly bounded by 1/γ

(respectively 1/γ 2). Since the sequence of measures μAN weakly converges to ν, it
is easy to see that m N (z) (respectively m

′
N (z)) converges towards m(z) (respectively

m
′
(z)) for all z ∈]a; b[. Therefore, by Montel’s theorem, the convergence is uniform

on every compact set of {z ∈ C; a − γ < �z < b + γ } ��
Lemma 3.2 (1) For any t in U, vN (t) converges towards v(t) when N goes to infinity.
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(2) For any t in U such that t ∈ R\{supp(ν) ∪ 
}, �N (t) converges towards �(t)
when N goes to infinity.

(3) For any t in R\{U ∪ 
}, �N (t) converges towards �(t) when N goes to infinity.

Proof Let t be in U . Therefore we have v(t) > 0. Let 0 < ε < v(t). We have∫ dν(s)
(t−s)2+(v(t)−ε)2

> 1 and
∫ dν(s)

(t−s)2+(v(t)+ε)2
< 1 which implies that for all large

N ,
∫ dμAN (s)

(t−s)2+(v(t)−ε)2
> 1 and

∫ dμAN (s)

(t−s)2+(v(t)+ε)2
< 1. It follows that for all large N ,

v(t) − ε < vN (t) < v(t) + ε.

Now, let t be in U and such that t ∈ R\{supp(ν) ∪ 
}. Let δ > 0 such that [t −
δ; t + δ] ⊂ R\{supp(ν) ∪ 
}. According to Lemma 3.1, z → ∫ dμAN (x)

z−x converges

towards z → ∫ dν(x)
z−x uniformly on every compact set of {t − δ < �z < t + δ}.

Since vN (t) converges towards v(t), for all large N , 0 ≤ vN (t) ≤ v(t) + 1. The
convergence of �N (t) towards �(t) when N goes to infinity readily follows from the

uniform convergence of z → ∫ dμAN (x)

z−x towards z → ∫ dν(x)
z−x on the compact set

{z = t + ib, 0 ≤ b ≤ v(t) + 1}.
Let t be in R\{U ∪ 
}. Since v(t) = 0, we have �(t) = H(t). Since we assume
that supp(ν) ⊂ U , we have t ∈ R\supp(ν). According to the assumption (H3) on the
spectrum of AN , for δ > 0 small enough, for all large N , we have [t − δ; t + δ] ⊂
R\{supp(ν)∪supp(μAN )}. Therefore it is easy to see that ∫ dμAN (x)

(t−x)
converges towards

∫ dν(x)
(t−x)

and
∫ dμAN (x)

(t−x)2
converges towards

∫ dν(x)

(t−x)2
< 1 and thus for all large N ,

t /∈ UN . It follows that for all large N , vN (t) = 0 and�N (t) = HN (t) = t+∫ dμAN (x)

(t−x)

converges towards t + ∫ dν(x)
(t−x)

= H(t) = �(t). ��

Lemma 3.3 Let t0 /∈ supp(ν) ∪ 
 be such that
∫ 1

(t0−x)2
dν(x) = 1 and

∫ 1
(t0−x)3

dν(x) �= 0. Then for small enough ε > 0, for all large N, there exists

one and only one t0(N ) ∈]t0 − ε; t0 + ε[ such that
∫ 1

(t0(N )−x)2
dμAN (x) = 1. t0(N )

satisfies

t0(N ) = t0 + fN (t0(N ))

where fN (t)

= h(t)

⎡

⎣
{

N − r

N

∫
1

(t − x)2
d ν̂N (x) −

∫
1

(t − x)2
dν(x)

}

+ 1

N

J∑

j=1

k j

(t − θ j )2

⎤

⎦

with h(t) = 1
∫ (t−x+t0−x)

(t−x)2(t0−x)2
dν(x)

and 0 < K1(ε) < |h(t)| < K2(ε),∀t ∈]t0 − ε; t0 + ε[.
Moreover, if ]t0 − ε; t0[⊂ U and ]t0; t0 + ε[⊂ R\U (respectively ]t0; t0 + ε[⊂ U
and ]t0 − ε; t0[⊂ R\U ), then for all large N, ]t0 − ε; t0 + ε[∩UN =]t0 − ε; t0(N )[
(respectively ]t0 − ε; t0 + ε[∩UN =]t0(N ); t0 + ε[.)
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Proof One can readily see that t /∈ {θi , i = 1, . . . , J, β j , j = 1, . . . , N − r} is in UN

if and only if PN (t) > 0 where PN (t) is the polynomial defined by

PN (t) =
N−r∏

i=1

(t − βi )
2

J∏

j=1

(t − θ j )
2
(∫

dμAN

(t − x)2
− 1

)

(29)

= 1

N

N−r∑

i=1

∏

l �=i

(t − βl)
2

J∏

j=1

(t − θ j )
2

+ 1

N

N−r∏

i=1

(t − βi )
2

J∑

j=1

k j

∏

l �= j

(t − θl)
2

−
J∏

j=1

(t − θ j )
2

N−r∏

i=1

(u − βi )
2. (30)

Condition (H3) on the spectrum of AN allows us to choose ε > 0 small enough such
that for N large enough [t0 − 2ε; t0 + 2ε] is in the complement of the support of ν

and the support of μAN .
PN (t) = 0 for t ∈]t0 − ε; t0 + ε[ if and only if

1 − N − r

N

∫
1

(t − x)2
d ν̂N − 1

N

J∑

j=1

k j

(t − θ j )2
= 0. (31)

Using that

∫
1

(t0 − x)2
dν(x) = 1,

(31) can be rewritten as follows:

∫
1

(t0 − x)2
dν(x) −

∫
1

(t − x)2
dν(x)

=
{

N − r

N

∫
1

(t − x)2
d ν̂N (x) −

∫
1

(t − x)2
dν(x)

}

+ 1

N

J∑

j=1

k j

(t − θ j )2
,

or equivalently

(t − t0)
∫

(t − x + t0 − x)

(u − x)2(t0 − x)2
dν(x)

=
{

N − r

N

∫
1

(t − x)2
d ν̂N (x) −

∫
1

(t − x)2
dν(x)

}

+ 1

N

J∑

j=1

k j

(t − θ j )2
.
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Since we have
∫ 1

(t0−x)3
dν(x) �= 0, it readily follows that for ε > 0 small enough

and for all z such that |z − t0| ≤ ε,
∫

(z−x+t0−x)

(z−x)2(t0−x)2
dν(x) �= 0. Therefore, there exists

C1(ε) > 0 and C2(ε) > 0 such that for any z such that |z − t0| ≤ ε, 0 < C1(ε) <

| ∫ (z−x+t0−x)

(z−x)2(t0−x)2
dν(x)| < C2(ε). Define on {z; |z − t0| ≤ ε},

h(z) = 1
∫

(z−x+t0−x)

(z−x)2(t0−x)2
dν(x)

.

Using Lemma 3.1, by Rouché theorem, for large N , the function

z − t0 − h(z)

⎡

⎣
{

N − r

N

∫
d ν̂N (x)

(z − x)2
−
∫

dν(x)

(z − x)2

}

+ 1

N

J∑

j=1

k j

|z − θ j |2

⎤

⎦

has exactly one zero z0 in {z; |z − t0| < ε}. Since z̄0 is obviously a zero too, we can
conclude that z0 is real. Hence, for ε small enough, for all large N , PN has exactly
one zero t0(N ) in ]t0 − ε; t0 + ε[ and

t0(N ) = t0 + h(t0(N ))
⎡

⎣
{

N − r

N

∫
d ν̂N (x)

(t0(N ) − x)2
−
∫

dν(x)

(t0(N ) − x)2

}

+ 1

N

J∑

j=1

k j

(t0(N ) − θ j )2

⎤

⎦

where 0 < K1(ε) < |h(t0(N ))| < K2(ε).

Now, if ]t0 − ε; t0[⊂ U and ]t0; t0 + ε[⊂ R\U (respectively ]t0; t0 + ε[⊂ U and
]t0−ε; t0[⊂ R\U ), then since for all large N , PN (t0−ε/2) > 0 and PN (t0+ε/2) < 0
(respectively PN (t0 − ε/2) < 0 and PN (t0 + ε/2) > 0), it is clear that for all large N ,
]t0−ε; t0+ε[∩UN =]t0−ε; t0(N )[ (respectively ]t0−ε; t0+ε[∩UN =]t0(N ); t0+ε[.)
The proof of Lemma 3.3 is complete. ��

Lemma 3.4 Let t0 be such that
∫ dν(s)

(t0−s)2
= 1, t0 �= θ j ,∀1 ≤ j ≤ J , and there exists

τ > 0 such that, ∀t ∈]t0 − τ ; t0 + τ [\{t0},
∫ dν(s)

(t−s)2
> 1 . Then, t0 /∈ supp(ν) ∪ 
.

Set d1 = sup{s ∈ supp(ν) ∪ 
; s < t0} and d2 = inf{s ∈ supp(ν) ∪ 
; s > t0}. Let
[a; b] be such that t0 ∈]a; b[, [a; b] ⊂]d1; d2[. Then, ∀t ∈ [a; b]\{t0},

∫ dν(s)
(t−s)2

> 1.
Assume that (H4) holds true. Then moreover, for all large N, [a; b] ⊂ R\Spect(AN )

and there exists t0(N ) in [a; b] such that
∫ dμAN (s)

(t0(N )−s)2
= 1,

∫ dμAN (s)

(t0(N )−s)3
= 0 and

∀t ∈ [a; b]\{t0(N )}, ∫ dμAN (s)

(t−s)2
> 1 . We have also limN→+∞ t0(N ) = t0.

Proof Since we assume that for any t in supp(ν),
∫ dν(s)

(t−s)2
> 1 (i.e supp(ν) ⊂ U ) and

that t0 �= θ j ,∀1 ≤ j ≤ J , it readily follows that t0 /∈ supp(ν) ∪ 
. Let [a; b] be such
that t0 ∈]a; b[, [a; b] ⊂]d1; d2[.
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Since
∫ dν(s)

(t0−s)2
= 1 and there exists τ > 0 such that, ∀t ∈]t0 − τ ; t0 +

τ [\{t0},
∫ dν(s)

(t−s)2
> 1, the strict convexity of z → ∫ dν(s)

(z−s)2
on [a; b] implies that

∀t ∈ [a; b]\{t0},
∫

dν(s)

(t − s)2
> 1. (32)

By Lemma 3.1, φN : z → ∫ dμAN (s)

(z−s)2
− 1 converges uniformly towards φ : z →

∫ dν(s)
(z−s)2

− 1 on every compact set of {z ∈ C; a < �z < b}.
By the principle of isolated zeroes, there exist δ0 such that [t0−δ0; t0+δ0] ⊂]a; b[ and
φ has no other zero in {z ∈ C; |z − t0| ≤ δ0} than t0. Thus, using Hurwitz’s theorem
and assumption (H4), we can claim that for any 0 < δ < δ0, for all large N , φN has
a unique real zero t0(N ) in {z ∈ C; |z − t0| < δ} and that φ′

N (t0(N )) = 0. Moreover
since φN is strictly convex on [a; b], we have ∀t ∈ [a; b]\{t0(N )}, φN (t) > 0. ��
Lemma 3.5 For each i such that

∫ 1
(θi −x)2

dν(x) < 1, for ε > 0 small enough, for all

large N, UN
⋂]θi − ε; θi + ε[=]t i

1(N ), t i
2(N )[ where ti

1(N ) and ti
2(N ) satisfy

t i
1(N ) = θi −

√
ki

N
φN (t i

1(N ))

t i
2(N ) = θi +

√
ki

N
φN (t i

2(N ))

with φN (t) = 1

1− N−r
N

∫ 1
(t−x)2

d ν̂N (x)− 1
N

∑
j �=i

k j
(t−θ j )

2

and 1 ≤ φN (t) ≤ K (ε) for any

t ∈]θi − ε; θi + ε[ .

Proof Let θi be such that
∫ dν(x)

(θi −x)2
< 1. Let ε > 0 be such that ]θi − 4ε; θi + 4ε[⊂

R\{supp(ν)∪{θ j , j �= i}} and inf z∈C,|z−θi |≤2ε | ∫ dν(x)

(z−x)2
−1| = m �= 0. In particular,

we have that for any t in [θi −ε; θi +ε], ∫ dν(x)

(t−x)2
< 1.According to the assumption (H3)

on the spectrum of AN , for all large N , [θi − 3ε; θi [∪]θi ; θi + 3ε] ⊂ R\Spect(AN ).

Note that since
∫ dμAN (x)

(θi ±ε−x)2
converges towards

∫ dν(x)

(θi ±ε−x)2
, we have moreover for all

large N ,
∫ dμAN (x)

(θi ±ε−x)2
< 1, whereas

∫ dμAN (x)

(θi −x)2
= +∞. Therefore, for all large N ,

there exists at least one sN ∈]θi − ε; θi [ and at least one tN ∈]θi ; θi + ε[ such that
∫ dμAN (x)

(sN −x)2
= 1 and

∫ dμAN (x)

(tN −x)2
= 1. Let us study the zeroes of the polynomial PN

defined by (30) in {z; |z − θi | < ε}. We know that there are at least two real zeroes sN

and tN . Let us rewrite

PN (t) = 1

N

N−r∑

i=1

∏

l �=i

(t − βl)
2

J∏

j=1

(t − θ j )
2 + 1

N

N−r∏

l=1

(t − βl)
2
∑

j �=i

k j

∏

p �= j

(t − θp)
2

+ 1

N

N−r∏

j=1

(t − β j )
2ki

∏

l �=i

(t − θl)
2 −

J∏

j=1

(t − θ j )
2

N−r∏

l=1

(t − βl)
2.
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PN (t) = 0 for t such that |t − θi | < 2ε if and only if

(t − θi )
2

⎧
⎨

⎩
1 − N − r

N

∫
1

(t − x)2
d ν̂N (x) − 1

N

∑

j �=i

k j

(t − θ j )2

⎫
⎬

⎭
= ki

N
,

Since for all large N , [θi − 3ε; θi + 3ε] ⊂ R\{supp(ν̂N ) ∪ supp(ν)}, using the
same arguments as in the proof of Lemma 3.1, we get easily the uniform convergence
on any compact set included in {z ∈ C, θi − 3ε < �z < θi + 3ε} of z → 1 −
N−r

N

∫ 1
(z−x)2

d ν̂N (x) − 1
N

∑
j �=i

k j

(z−θ j )
2 towards z → 1 − ∫ 1

(z−x)2
dν(x).

Hence, we have for all large N ,

inf
z∈C,|z−θi |≤2ε

∣
∣
∣
∣
∣
∣
1 − N − r

N

∫
1

(z − x)2
d ν̂N (x) − 1

N

∑

j �=i

k j

(z − θ j )2

∣
∣
∣
∣
∣
∣
≥ m/2

and

inf
t∈[θi −2ε;θi +2ε]

⎧
⎨

⎩
1 − N − r

N

∫
1

(t − x)2
d ν̂N (x) − 1

N

∑

j �=i

k j

(t − θ j )2

⎫
⎬

⎭
≥ m/2

and the zeros of PN in {z ∈ C, |z − θi | < 2ε} are the solutions of the equation
(z − θi )

2 = ki
N φN (z) where

φN (z) = 1

1 − N−r
N

∫ 1
(z−x)2

d ν̂N (x) − 1
N

∑
j �=i

k j

(z−θ j )
2

and 0 < |φN (z)| ≤ 2
m . Therefore, by Hurwitz theorem, for all large N , PN has exactly

two zeroes in {z ∈ C, |z − θi | < ε}. Since we have already seen that PN has at least
one zero in ]θi − ε; θi [ and at least one zero in ]θi ; θi + ε[, we can conclude that for all
large N, PN has exactly one zero t i

1(N ) in ]θi −ε; θi [ and one zero t i
2(N ) in ]θi ; θi +ε[.

Moreover since φN (t) > 0 on [θi − ε; θi + ε], we have

t i
1(N ) = θi −

√
ki

N
φN (t) and t i

2(N ) = θi +
√

ki

N
φN (t).

Now, since PN (θi ) > 0, it is clear that UN
⋂]θi − ε; θi + ε[=]t i

1(N ), t i
2(N )[ . The

proof of Lemma 3.5 is complete. ��

3.4 Proof of Propositions 3.1, 3.2, 3.3 and 3.4

Proof of Proposition 3.1 Using (15) and (16), it is clear that �−1(]u0 − ε; u0[) ⊂ U
and �−1([u0; u0 + ε[) ⊂ R\U . Note that since we assume that supp(ν) ⊂ U , this
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implies that t0 = �−1(u0) ∈ R\supp(ν). Let 0 < δ < ε be such that �−1(]u0 −
δ; u0+δ[) ⊂ R\{supp(ν)∪
}. Since according to Theorem 2.1, the homeomorphism
� is strictly increasing on U , we have �−1(]u0 − δ; u0[) =]�−1(u0 − δ); t0[⊂ U .
Moreover according to Lemma 2.2, �−1([u0; u0 + δ[) = [t0;�−1(u0 + δ)[⊂ R\U .
Thus, according to Lemma 2.3 (i) and (ii), we have

∫ dν(x)

(t0−x)2
= 1,

∫ dν(x)

(t0−x)3
> 0.

Then, using Lemma 3.3, for τ small enough, for all large N there exists one and only
one t0(N ) ∈]t0 − τ ; t0 + τ [ such that ∫ 1

(t0(N )−x)2
dμAN (x) = 1. t0(N ) satisfies

t0(N ) = t0 + fN (t0(N ))

where

fN (t) = h(t)

⎡

⎣
{

N − r

N

∫
d ν̂N (x)

(t − x)2
−
∫

dν(x)

(t − x)2

}

+ 1

N

J∑

j=1

k j

(t − θ j )2

⎤

⎦

with h(t) = 1
∫ (t−x+t0−x)

(t−x)2(t0−x)2
dν(x)

and 0 < K1(τ ) < |h(t)| < K2(τ ),∀t ∈]t0−τ ; t0+τ [.
Moreover, for all large N ,

]t0 − τ ; t0 + τ [∩UN =]t0 − τ ; t0(N )[. (33)

Since according to Theorem 2.1, �N is strictly increasing on UN , we have

�N (]t0 − τ ; t0(N )[) =]�N (t0 − τ);�N (t0(N ))[. (34)

Moreover according to Lemma 2.2,

�N ([t0(N ); t0 + τ [) = [�N (t0(N ));�N (t0 + τ)[. (35)

Note that�N (t0(N )) = HN (t0(N )) = t0(N )+∫ dμAN (x)

t0(N )−x with for τ small enough and
N large enough t0(N ) ∈ [t0−τ ; t0+τ)] ⊂ R\{supp(ν)∪
}.Lemma3.1 readily yields
that u0(N ) = �N (t0(N )) converges towards H(t0) = �(�−1(u0)) = u0. Now, for
τ small enough, t0 + τ ∈ R\{U ∪ 
} and t0 − τ ∈ U , t0 − τ ∈ R\{supp(ν) ∪ 
}, so
that using Lemma 3.2, for any η > 0 small enough, for all large N ,

�N (t0 + τ) > u0 + η and �N (t0 − τ) < u0 − η. (36)

It readily follows from (33), (34), (35), (36), (15) and (16) that for any η > 0 small
enough, for all large N ,

∀u ∈ [u0(N ); u0 + η[, pN (u) = 0 and ∀u ∈]u0 − η; u0(N )[, pN (u) > 0.

Now, for t in a small neighborhood of t0 and N large enough let us define

εN (t) = N − r

N

∫
d ν̂N (x)

(t − x)
−
∫

dν(x)

(t − x)
.
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We have

�N (t0(N )) = HN (t0(N ))

= t0(N ) +
∫

dμAN (x)

t0(N ) − x

= H(t0) + fN (t0(N )) +
∫

dμAN (x)

t0(N ) − x
−
∫

dν(x)

t0 − x

= H(t0) + fN (t0(N )) + εN (t0(N )) +
∫

dν(x)

t0(N ) − x
−
∫

dν(x)

t0 − x

+ O

(
1

N

)

= H(t0) + fN (t0(N )) + εN (t0(N ))

− fN (t0(N ))

[∫
dν(x)

(t0 − x)2
− fN (t0(N ))

∫
dν(x)

(t0(N ) − x)(t0 − x)2

]

+ O

(
1

N

)

= H(t0) + εN (t0(N )) + fN (t0(N ))2
∫

dν(x)

(t0(N ) − x)(t0 − x)2

+ O

(
1

N

)

= H(t0) + εN (t0(N )) + 1

4
(εN

′
(t0(N )))2(1 + o(1)) + O

(
1

N

)

.

The proof of Proposition 3.1 is complete. ��
The proof of Proposition 3.2 is similar and left to the reader.

Proof of Proposition 3.3 According to Theorem 2.1,

�−1(]u0 − ε; u0 + ε[) ⊂ U

and more precisely, since

p(�(�−1(u))) = v(�−1(u))

π
,

we have �−1(]u0 − ε; u0 + ε[\{u0}) ⊂ U and x0 = �−1(u0) /∈ U . Since we
assume that supp(ν) ⊂ U , x0 /∈ supp(ν). Note that u0 = �(x0) = H(x0) since
v(x0) = 0. Moreover, since the homeomorphism � is strictly increasing on U , it
is easy to see that �−1 is strictly increasing on ]u0 − ε; u0 + ε[ and �−1(]u0 −
ε; u0 + ε[\{u0}) =]�−1(u0 − ε); x0[∪]x0;�−1(u0 + ε)[. Therefore x0 is a point
in the complement of supp(ν) where two components of the set U merge into one.
Therefore, Lemma 2.1 implies that

∫ dν(s)
(x0−s)2

= 1 and
∫ dν(s)

(x0−s)3
= 0. Since we assume

that for any θi ∈ 
, θi �= x0, we have x0 /∈ 
. Therefore x0 satisfies the assumptions
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of Lemma 3.4. Let η be such that 0 < 2η < ε and [�−1(u0 − 2η);�−1(u0 + 2η)] ⊂
R\{supp(ν) ∪ 
}. According to Lemma 3.4, for all large N , there exists x0(N ) in

[�−1(u0 − 2η);�−1(u0 + 2η)] such that
∫ dμAN (s)

(x0(N )−s)2
= 1,

∫ dμAN (s)

(x0(N )−s)3
= 0 and

[�−1(u0−2η);�−1(u0+2η)]\{x0(N )} ⊂ UN .Wehave also limN→+∞ x0(N ) = x0.
Note that since

for any x ∈ R, pN (�N (x)) = vN (x)

π
,

we have

pN (�N (x0(N ))) = 0

and

∀x ∈ [�−1(u0 − 2η);�−1(u0 + 2η)]\{x0(N )}, pN (�N (x)) > 0.

Using Lemma 3.2, we can deduce that for all large N ,

�N (�−1(u0 − 2η)) < u0 − η and �N (�−1(u0 + 2η)) > u0 + η.

Moreover since limN→+∞ x0(N ) = x0, we have for all large N , x0(N ) ∈]�−1(u0 −
η/2);�−1(u0 + η/2)[ so that u0(N ) = �N (x0(N )) ∈]u0 − η; u0 + η[ for all large
N by using oncemore Lemma 3.2. The proof is complete. ��

Proof of Proposition 3.4 According to Lemma 3.5, for ε > 0 small enough, for all
large N , UN

⋂]θi − ε; θi + ε[=]t i
1(N ), t i

2(N )[ where t i
1(N ) and t i

2(N ) satisfy

t i
1(N ) = θi −

√
ki

N
φN (t i

1(N ))

t i
2(N ) = θi +

√
ki

N
φN (t i

2(N ))

with φN (t) = 1

1− N−r
N

∫ 1
(t−x)2

d ν̂N (x)− 1
N

∑
j �=i

k j
(t−θ j )

2

and 1 ≤ φN (t) ≤ K (ε) for any

t ∈]θi − ε; θi + ε[ . For N large enough t i
1(N ) > θi − ε/2 and t i

2(N ) < θi + ε/2
and [θi − ε/2; θi + ε/2] ∩ UN = [t i

1(N ), t i
2(N )]. Therefore, according to Theorem

2.1, [�N (t i
1(N )),�N (t i

2(N ))] is a connected component of supp(μsc � μAN ) and
[�N (θi − ε/2);�N (t i

1(N ))[∪]�N (t i
2(N ));�N (θi + ε/2]) ⊂ R\supp(μsc � μAN ).
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Now, we have

�N (t i
1(N )) = θi −

√
ki

N
φN (t i

1(N )) + N − r

N

∫
d ν̂N (x)

(

θi −
√

ki
N φN (t i

1(N )) − x

)

+
∑

j �=i

k j

N

(

θi − θ j −
√

ki
N φN (t i

1(N ))

) − ki

N
√

ki
N φN (t i

1(N ))

= θi −
√

ki

N
φN (t i

1(N )) −
√

ki√
N

1
√

φN (t i
1(N ))

+ N − r

N

∫
1

(

θi −
√

ki
N φN (t i

1(N )) − x

)d ν̂N (x) + O

(
1

N

)

= θi −
√

ki

N
φN (t i

1(N ))

{

1 −
∫

1

(θi − x)2
dν(x)

}

+ N − r

N

∫
1

θi − x
d ν̂N (x) −

√
ki√
N

1
√

φN (t i
1(N ))

+
√

ki

N
φN (t i

1(N ))

{
N − r

N

∫
d ν̂N (x)

(θi − x)2
−
∫

dν(x)

(θi − x)2

}

+ O

(
1

N

)

= ρN (θi ) − τi√
N

+ o

(
1√
N

)

with ρN (θi ) := 1
N

∑
y j �=θi

1
θi −y j

+ θi and τi = 2
√

ki

√
1 − ∫ 1

(θi −x)2
dν(x). In the

same way

�N (t i
2(N )) = ρN (θi ) + τi√

N
+ o

(
1√
N

)

.

Note that �N (t i
1(N )) and �N (t i

2(N )) converges towards ρθi = �(θi ). Since for ε

small enough, [θi − ε; θi + ε] ⊂ R\(U ∪ 
) (see (18)), according to Lemma 3.2(3),
�N (θi − ε/2) and �N (θi + ε/2) converge respectively towards �(θi − ε/2) and
�(θi + ε/2) and, according to Lemma 2.2, �(θi − ε/2) < �(θi − ε/4) < �(θi ) <

�(θi + ε/4) < �(θi + ε/2). Now, for all large N , �N (θi − ε/2) < �(θi − ε/4)
and �(θi + ε/4) < �N (θi + ε/2). Then, for any 0 < η < min{�(θi + ε/4) −
�(θi );�(θi ) − �(θi − ε/4)}, for all large N , we have �N (t i

1(N )) > �(θi ) − η and
�N (t i

2(N )) < �(θi ) + η whereas �N (θi − ε/2) < �(θi ) − η and �N (θi + ε/2) >

�(θi ) + η. Thus [�N (t i
1(N )),�N (t i

2(N ))] is the unique connected component of
supp(μsc � μAN ) inside ]�(θi ) − η;�(θi ) + η[. The proof of Proposition 3.4 is
complete. ��
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4 Proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3

4.1 Correlation functions of the deformed GUE

It is known fromJohansson [16] (see also [10]) that the joint eigenvalue density induced
by the deformed GUE MN can be explicitly computed. Furthermore it induces a so-
called “determinantal randompoint field”. In otherwords, if one considers a symmetric
function f : Rm → R, one has that

E

∑

1≤i1<i2<···<im≤N

f (λi1 , . . . , λim )

=
∫

f (x1, . . . , xm)
1

m! det(KN (xi , x j ))
m
i, j=1

m∏

i=1

dxi ,

where KN is the so-called correlation kernel of the deformed GUE, which has been
explicited by [16]. We here state his result.

Proposition 4.1 [16] The correlation of the deformed GUE MN is given by the double
complex integral:

KN (u, v) = N

(2iπ)2

∫

�

∫

γ

eN (w−v)2
2 −N (z−u)2

2
1

w − z

N∏

i=1

w − yi

z − yi
dwdz, (37)

where � encircles the poles y1, . . . , yN and γ is a line parallel to the y-axis not
crossing �.

At this point, it is worth mentioning that correlation functions and thus local eigen-
value statistics are invariant through conjugation of the correlation kernel. Indeed, one
has that

det(KN (ui , u j ))
m
i, j=1 = det

(

KN (ui , u j )
h(ui )

h(u j )

)m

i, j=1
,

for any non vanishing function h. This fact will be used many times in this article.
Before starting the asymptotic analysis, we list some important facts and notations

that are needed hereafter.
Let u0 be given. Assume that both u and v satisfy |u − u0| ≤ N−δ for some δ > 0.

Let us set

Fu0(z) := (z − u0)
2

2
+
∫

R

ln(z − y)dν(y).

Note that Fu0 is the first order approximation (as N → ∞) of the true exponential
term arising in both z and w integrals in the correlation kernel KN . Indeed the true
exponential term arising in both integrals is given by
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Fu0,N (z) := (z − u0)
2

2
+ 1

N

N∑

i=1

ln(z − yi ).

We neglect for a while the fake singularity introduced by the logarithm (as eFu0,N is
holomorphic). By definition, critical points satisfy

F ′
u0,N (z) = z − u0 + 1

N

N∑

i=1

1

z − yi
= 0

and one can note that F ′′
u0,N = 1 − 1

N

∑N
i=1

1
(z−yi )

2 does not depend on u0. It is also
convenient for the following to define the curve of critical points of both Fu and Fu,N .
Let us define

C = {x ± iv(x), x ∈ R}.

One can check that a critical point of Fu with non null imaginary part lies on

{x ± iv(x), x ∈ U } = C ∩ {z ∈ C, Imz �= 0}
=
{

z ∈ C, Imz �= 0,
∫

1

|z − y|2 dν(y) = 1

}

.

For any u ∈ �(U ), we denote by z±
c (u) these two critical points:

z±
c (u) = �−1(u) ± iv(�−1(u)).

Formula (15) due to Biane shows that |Imzc(u)| = πp(u).

If instead Fu has no non real critical point, then u ∈ �(U c). As a consequence
there exists a unique zc(u) ∈ C ∩R = U c such that F ′

u(zc(u)) = 0. The real numbers
u and zc(u) are then related by the equation

u := zc(u) +
∫

1

zc(u) − y
dν(y) i.e. zc(u) = �−1(u).

This follows from the fact that � : R → R is one to one. In all cases z±
c (u), zc(u)

and u are related by :

H(z(±)
c (u)) = u.

Similarly we define

CN = {x ± ivN (x), x ∈ R}.
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A critical point of Fu,N with non zero imaginary part lies on

{x ± ivN (x), x ∈ UN } = CN ∩ {z ∈ C, Imz �= 0}

=
⎧
⎨

⎩
z ∈ C, Imz �= 0,

1

N

N∑

j=1

1

|z − y j |2 = 1

⎫
⎬

⎭
.

For any u ∈ �N (UN ), denote by z±
c,N (u) these two critical points of Fu,N :

z±
c,N (u) = �−1

N (u) ± ivN (�−1
N (u)).

We note that Fu,N necessarily admits N − 1 other critical points, which are real
interlaced with the yi ’s. We disregard these critical points. Then one has that

HN (z±
c,N (u)) = u.

If instead Fu,N has no non real critical points, u ∈ �N (U c
N ) and there exists a unique

zc,N (u) ∈ R ∩ CN = U c
N such that F ′

u,N (zc,N (u)) = 0. Again one has that

u = HN (zc,N (u)) = zc,N (u) + 1

N

N∑

i=1

1

zc,N (u) − yi
.

We emphasize that according to (18)

∀z ∈ ˚(CN ∩ R) = UN
c
,

1

N

N∑

i=1

1

(z − yi )2
< 1,

and that, according to Theorem 2.1 and Lemma 2.2, u → �z(±)
c,N (u) = �−1

N (u) is a
strictly increasing function.

Actually in all the cases we study, it turns out that the critical points, that we here
denote by zc, lie on the real axis. We may therefore need to modify Fu,N so that there
is no singularity in the logarithm. It may happen in particular that ∃ 1 ≤ i ≤ N ,
yi < zc < yi+1. However by the assumptions we have made, in all cases there exists
ε > 0 such that [zc − ε, zc + ε] contains no eigenvalue y j , j = 1, . . . , N . In that case
we set

Fu,N = (z − u0)
2

2
+ 1

N

∑

i :yi <zc+ε

ln(z − yi ) + 1

N

∑

i :yi >zc+ε

ln(yi − z). (38)

The contour � will be split into two parts: �1 lying to the left of zc + ε and �2 to its
right (encircling all the eigenvalues yi > zc + ε). The contour γ will be chosen so
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that it lies to the left of zc + ε. All these contours cross the real axis at a point where
Fu,N has no singularity. Note that with this new definition of Fu,N , it is still true that

F ′
u,N (z) = z − u + 1

N

N∑

i=1

1

z − yi
.

Thus all the subsequent derivatives and the curve CN are unchanged with this new
definition. The asymptotic exponential term at zc is then given by

Fu0(z) = (z − u0)
2

2
+
∫

(−∞,zc+ε)

ln(z − y)dν(y) +
∫

(zc+ε,+∞)

ln(−z + y)dν(y).

4.2 Asymptotics of the correlation kernel at the edges of the support

4.2.1 Proof of Theorem 1.1

We start from a right extremity point d of a connected component of supp(ν �μsc) so
that p(x) = 0,∀x ∈ [d, d + ε] for some small ε > 0. We assume moreover that for
any θ j such that

∫ dν(s)
(θi −s)2

= 1, we have d �= θ j + mν(θ j ). According to Proposition
3.1, such a point d satisfies d = H(z0) where z0 is a real solution of

F ′′
d (z0) = 0.

Since z0 /∈ supp(ν) ∪ 
, (H3) implies that for all large N , one also has that
infk=1,...,N dist(z0, yk) > 0. By Proposition 3.1, there exists a unique extremity point
dN which is the right endpoint of a connected component of supp(μN �μsc) and such
that |d − dN | ≤ ε for any ε. Then there exists a point zN such that

HN (zN) = dN .

Let FdN ,N be defined as in (38) with zc = zN. By definition, one has that zN is the real
degenerate critical point associated to dN :

F ′
dN ,N (zN) = 0, and F ′′

dN ,N (zN) = 0. (39)

We now turn to the asymptotics of the correlation kernel. Let α ∈ R to be fixed later.
Assume that

u0 := dN , u = u0 + αx

N
2
3

; v = u0 + αy

N
2
3

(40)

We assume that there exists a real number M0 > 0 such that x, y ≥ −M0. If u0 is
not the top edge of the support supp(μAN � μσ ), then x and y shall be bounded from
above by ε0N 2/3 with ε0 small enough so that u0 + αx

N2/3 is smaller than the left edge
of the next connected component of supp(μAN � μσ ).
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The associated rescaled correlation kernel is then

α

N
2
3

KN (u, v).

We now consider the asymptotics of the correlation kernel and prove that the rescaled
kernel α

N2/3 KN (u, v) uniformly converges to the Airy kernel when −M0 ≤ x, y ≤
ε0N 2/3.

Theorem 1.1 is an easy consequence of the following Proposition. Set

α = 21/3
1

|F (3)
u0,N (zN)|1/3

.

α is well defined using Lemma 2.3 (ii).

Proposition 4.2 There exist constants q, C, c > 0 such that for any x, y ∈
[−M0, ε0N 2/3],

∣
∣
∣
∣

α

N
2
3

KN (u, v)eq(y−x)N
1
3 − A(x, y)

∣
∣
∣
∣ ≤

Ce−c(x+y)

N
1
3

,

where A denotes the Airy kernel.

Proof of proposition 4.2 By Cauchy’s theory and using the fact proved in Lemma 2.3
that

F (3)
d (z0) = 2

∫
1

(z0 − y)3
dν(y) = ai > 0,

one deduces that F (3)
u0,N (zN) ≥ ai/2 and that there exist a > 0, M > 0 and a small

δ-neighborhood of zN such that

∀z, |z − zN| ≤ δ, �F (3)
u0,N (z) > a and |F (4)

u0,N (z)| ≤ M. (41)

We now rewrite the correlation kernel. To this aim, we split � into two contours
lying respectively to the left and to the right of zN. This is possible as we assume that
� := infk=1,...,N dist(z0, yk) > 0 and |zN − z0| < �/2 for N large enough. Denote
by �1 the part of the contour � lying to the left of zN and set �2 := �\�1. In the
correlation kernel given by Proposition 4.1, along �1, we first rewrite the singularity

1/(w − z) = αN
1
3

∫

R+
e−N

1
3 αto(w−z)dto,

which is valid provided the contour γ remains to the right of �1. This then yields the
following expression for the correlation kernel (up to a conjugation factor):

α

N
2
3

KN (u, v) = α2N 2/3

(2iπ)2

∫

R+
dto

∫

�1

dz
∫

γ

dw

123



148 M. Capitaine, S. Péché

e−N
1
3 αto(w−z)eN ( w2

2 −wv− z2
2 +uz)

N∏

i=1

w − yi

z − yi
(42)

+ αN
1
3

(2iπ)2

∫

�2

∫

γ

eN (w−v)2
2 −N (z−u)2

2
1

w − z

N∏

i=1

w − yi

z − yi
dwdz. (43)

We denote by K (l)
N (resp. K (r)

N (u, v)) the kernel arising in (42) [resp. (43) that we
consider separately].
Note that it is enough to concentrate on Fu0,N for the saddle point analysis of the
correlation kernel.Assumegivenq ∈ R thatwewill fix later.We rewrite the correlation
kernel (and use conjugation thanks to q) as:

K (l)
N (u, v)eq(y−x)N

1
3

= 1

(2iπ)2

∫

R+
dto

∫

�1

∫

γ

H(w, y + t0)G(z, x + t0)dwdz, (44)

where

H(w, y) := αN
1
3 eN Fu0,N (w)−αy(w−q)N

1
3
,

G(z, x) := αN
1
3 e−N Fu0,N (z)+αx(z−q)N

1
3
. (45)

Let us first consider the leading term in the exponential defining H and G that is
Fu0,N . By the choice of u0, the two first derivatives of the exponential term vanish
at the real point zN so that standard saddle point analysis suggest that the ascent and
descent contours shall be given by lines with direction (2)iπ/3 through the critical
point zN. This is true in a compact neighborhood of zN, as we see below. We ignore
for a while the constraint that the contours do not cross each other.
We first check that �1 and γ shall follow the directions 2iπ/3 or iπ/3. To consider
the constraint that they do not cross each other, we later modify these contours in a
N−1/3 neighborhood of zN. Using (41), there exists δ0 > 0 and a = a(δ0) such that
for any |s| ≤ δ0

�(Fu0,N (zN + seiπ/3) − Fu0,N (zN))

= −�
(

s3
∫ 1

0

∫ 1

0

∫ 1

0
dtdxdvF (3)

u0,N (zN + st xveiπ/3)

)

= −s3
∫ 1

0

∫ 1

0

∫ 1

0
dtdxdv� 2

N

N∑

j=1

1

(zN + st xveiπ/3 − y j )3
< −as3.

�(Fu0,N (zN + sei2π/3) − Fu0,N (zN))

= �
(

s3
∫ 1

0

∫ 1

0

∫ 1

0
dtdxdvF (3)

u0,N (zN + st xve2iπ/3)

)

= s3
∫ 1

0

∫ 1

0

∫ 1

0
dtdxdv� 2

N

N∑

j=1

1

(zN + st xve2iπ/3 − y j )3
> as3. (46)
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One can then complete the w-contour by a line parallel to the imaginary axis. Indeed
one can choose δ0 small enough so that zN + δ0eiπ/3 lies in the domain where 1 >
1
N

∑ 1
|z−yi |2 . Thus there exists a constant a′ > 0 such that

d�Fu0,N (zN + δ0eiπ/3 + i t)

dt
<−a′t, t > 0.

As a consequence�Fu0,N still decreases along the contour t → zN +δ0eiπ/3+ i t, t >

0. This yields the descent path γ for the w-integral.
For the z-integral, we complete the contour as follows.
If zN + δ0e2iπ/3 lies above the curve CN , we complete the contour by lines parallel

to the real axis x → zN +δ0e2iπ/3+ x, x < 0, up to the moment one crosses the curve

CN . Then this part of contour remains on the domain {z, 1
N

∑N
j=1

1

|z − y j |2 ≤ 1}.
Thus, one can check that there exists a constant a′′ > 0 such that

d�Fu0,N (zN + δ0e2iπ/3 − x)

dx
> a′′x .

This (part of) line is then an ascent path for Fu,N .
At the moment (if it exists) where the curve x → zN + δ0e2iπ/3 − x, x < 0 crosses

CN , one follows CN to the left direction up to themoment of timewhere Imz ≤ δ0
√
3/2

and then again follow a line parallel to the real axis. Due to the fact that u → �zc(u)

is an increasing function, this part of the contour is also an ascent path.
If instead zN + δ0e2iπ/3 lies below the curve CN , we first follow the contour zN +

δ0e2iπ/3 + i t, where t ≥ 0 up to the moment one crosses CN . One then follows CN to
the left direction up to themoment of timewhere Imz ≤ δ0

√
3/2 and then again follow

a line parallel to the real axis. It is an easy computation to check that this contour is
also an ascent path.

Because dN may not be the right edge of the support, we need to complete the
z-contour �2 to the right of zN too. In this case, define

z′
N = inf{x ∈ R, x > zN, vN (x) > 0}.

Note that the contour CN ∩ {z ∈ C,�(z) ≥ z′
N} is made of contours around y′

i s. Let
Z be the first point encountered on CN to the right of z′

N such that Im(Z) is a local
maximum.The contour�2 then followsCN ∩{z ∈ C,�(Z) ≥ �(z) ≥ z′

N}. Afterwards
�2 follows the highest of the two curves {Z + x, x > 0} and CN ∩ {�(z) > �(Z)}.
The contour is completed by symmetry with respect to the real axis. Because CN is
the curve of critical points, along �2 which lies above CN , one has that

∀z ∈ �2 ∩ CN , ∃u > u0, z = zc,N (u) and �Fu0,N (z) > �Fu0,N (zN);
∀x > 0,

∂

∂x
�Fu0,N (Z + x) > 0,
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Γ2

CN

zN

Γ1
γ

Fig. 2 The contour � and γ at an edge

as long as Z + x lies above CN . This finishes the definition of the contours, apart from
the constraint that the two contours cannot cross each other.

We now slightly modify the contours in a N− 1
3 neighborhood of zN so that γ does

not cross�1. Let ε > 0 (small) be fixed. Thew and z contours do not go through zN but

instead follows an arc of circle of ray εN− 1
3 centered at zN in order to avoid crossing

each other (see Fig. 2). We now fix q = zN + ε
2 N− 1

3 where ε has been defined as
above. By the estimates on the decay of Fu0,N given in (46), we deduce the following.

Assume first that |x |, |y| ≤ M0. Using (46), we first deduce that there exists A > 0
such that

∫

γ

H(w, x)dw = α

∫

|w−zN|≤δ0

H(w, x)dw(1 + O(e−AN )).

Let us now set γ0 := {tei±π/3, ε ≤ t ≤ δ0N 1/3} ∪ Cε where Cε is the arc of circle
centered at 0 joining εe−iπ/3 and εeiπ/3. This contour is oriented from bottom to top.

We now make the change of variables w = zN + s N− 1
3 where s ∈ γ0. We then obtain

that

∫

γ

H(w, x)dw(1 + O(e−AN ))

= α

∫

γ0

eN Fu0,N (zN+s N− 1
3 )−αxs−xε/2ds

= α

∫

γ0

e
F (3)

u0,N (zN) s3
3! −αxs

eN Fu0,N (zN)−xε/2ds(1 + O(N− 1
3 )). (47)
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The last line is obtained by using the fact that

|eN Fu0,N (zN+s N− 1
3 )−N Fu0,N (zN) − e

F (3)
u0,N (zN) s3

3! |
≤ e−as3

|s|4 sup|z−zN|≤δ0
|F (4)

u0,N (z)|
N

1
3

, (48)

for some constant a > 0. More detail can be found in [4, Section 3] and we do not
develop the computations here.

Similarly we define �0 := {tei2±π/3, ε ≤ t ≤ δ0N 1/3} ∪ C ′
ε where C ′

ε is the arc of
circle centered at 0 joining εe−2iπ/3 and εe2iπ/3. This contour is again oriented from
bottom to top.
∫

�1

G(z, x)dz = α

∫

|z−zN|≤δ0

G(z, x)dz(1 + O(e−AN ))

= α

∫

�0

e−N Fu0,N (zN+t N− 1
3 )+αxt+xε/2dt (1 + O(e−AN ))

= α

∫

�0

e
−F (3)

u0,N (zN) t3
3! +αxt

e−N Fu0,N (zN)+xε/2dt (1 + O(N− 1
3 )),

(49)

where t describes the contour �0 formed with the two half lines in the complex plane
with angle e±2iπ/3 with respect to the real axis. The contour is also oriented from
bottom to top. We recall that α has been chosen as

α = 21/3
1

|F (3)
u0,N (zN)|1/3

.

We then deduce that for |x |, |y| ≤ M0, one has that

∣
∣
∣
∣
1

2iπ

∫

γ

H(w, y)dw − Ai(y)e−yε/2
∣
∣
∣
∣ ≤ C

N
1
3

,

∣
∣
∣
∣
1

2iπ

∫

�1

G(z, y)dz − Ai(y)eyε/2
∣
∣
∣
∣ ≤ C

N
1
3

.

We can now conclude to the asymptotic behavior of the rescaled correlation kernel

K (l)
N (u, v)eq(y−x)N

1
3 when x and/or y are allowed to grow unboundedly positive.

Indeed for this part of the kernel we do not need to bound x and y from above by
ε0N 2/3. As by construction the two contours �1 and γ lie respectively to the left (resp.
right) strictly of q, one can deduce (copying the arguments developed in [4, Section 3])
that there exist constants C, c > 0 such that

∣
∣
∣
∣
1

2iπ

∫

γ

H(w, y)dw − Ai(y)e−yε/2
∣
∣
∣
∣ ≤ C

N
1
3

e−cy,

∣
∣
∣
∣
1

2iπ

∫

�1

G(z, y)dz − Ai(y)eyε/2
∣
∣
∣
∣ ≤ C

N
1
3

e−cy . (50)
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Note that (50) also holds true (modifying the constants C, c if needed) when |x |, |y| ≤
M0.

Last we need to consider the contribution of the contour �2 ∪ γ . We show that this
contribution is negligible provided x and y are bounded from above by ε0N 2/3 for
some ε0 small enough. Let us recall that �F ′′

u (z) ≥ 0 for any z along �2. Furthermore
there exists η > 0 such that dist(�2, γ ) > η. As a consequence the main contribution
from �2 comes from the closest point to zN, namely z′

N. From this we deduce that

∣
∣
∣
∣
∣
∣
α

N
1
3

(2iπ)2

∫

�2

∫

γ

eN (w−v)2/2−N (z−u)2/2 eq(y−x)N
1
3

w − z

N∏

i=1

w − yi

z − yi
dwdz

∣
∣
∣
∣
∣
∣

≤ CeN Fu0,N (zN)−N Fu0,N (z′
N)+q(y−x)N

1
3
, (51)

for some constant C > 0. As |y|, |x | ≤ ε0N 2/3, we choose ε0 > 0 small enough so
that there exists a constant C ′ > 0 so that

�(N Fu0,N (zN) − N Fu0,N (z′
N) + q(y − x)N

1
3 ) < −C ′N . (52)

Combining (51), (52) and (50) then yields Proposition 4.2. ��

4.3 Proof of Theorem 1.2

Consider a spike θi1 of multiplicity ki1 such that
∫ 1

(θi1−y)2
dν(y) < 1. Then θi1

makes ki1 outliers separate from the bulk at ρ(θi1) asymptotically, with ρ(z) :=
z + ∫ 1

z−y dν(y). We recall that θi1 is such that dist(ρ(θi1), supp(μsc � ν)) > 0.
Thus there exist (possibly) zN and wN such that HN (zN) and HN (wN) are respec-
tively the right and left endpoints of the connected component of supp(μsc � μAN )

which is respectively on the left hand side and right hand side of ρ(θi1) and we have
zN < θi1 < wN. If there is no connected component of supp(μsc � μAN ) to the right
respectively the left of ρ(θi1), we then set wN = +∞, respectively zN = −∞.

We first need some definitions to consider the asymptotic correlation functions
close to an outlier. Let ρN be defined in (10). Let c > 0 be given (to be defined later).
We set

u0 := ρN (θi1), u = u0 + cx√
N

, v = u0 + cy√
N

.

Again we assume that x, y are bounded from below by −M0 for some real number
M0 > 0. On the other side, x and y are not allowed to grow unboundedly. Let η1 > 0
be given (small). We assume that η0 > 0 is small enough so that

ρθi1
+ η0 < ρN (θi ) − η1, ∀i s. t. θi > θi1 , ρθi1

+ η0 < HN (wN).
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We assume that x, y ≤ η0N 1/2. We now consider the asymptotics of the rescaled
correlation kernel:

c√
N

KN (u, v).

Define

Gu0,N (z) := z2

2
− u0z + 1

N

⎛

⎝
∑

j : y j <θi1

ln(z − y j )

⎞

⎠+ 1

N

⎛

⎝
∑

j : y j >θi1

ln(y j − z)

⎞

⎠ .

(53)
We here set

c :=
√

G ′′
u0,N (θi1) > 0.

Let K H be the correlationkernel of a ki1×ki1 GUE.We recall that K H is theChristof-
fel Darboux kernel of some rescaled Hermite polynomials satisfying the orthogonality

relationship
∫∞
−∞ pm(x)pn(x)e− 1

2 x2dx = δmn .

Proposition 4.3 There exist constants q, C, and C ′ > 0 such that for x, y ∈
[−M0, η0N 1/2]

∣
∣
∣
∣

c√
N

KN (u, v)eqcN
1
2 (y−x) − K H (x, y)

∣
∣
∣
∣ ≤

Ce−C ′(x+y)

N 1/2 .

Proof of Proposition 4.3 We again split the correlation kernel into two parts, by divid-
ing the contour � into two parts. One contour, denoted by �1 encircles the eigenvalues
yi such that yi ≤ θi1 . The other contour �2 then encircles all the eigenvalues y j such
that y j > θi1 . This is possible as we assume that spikes are independent of N . Note
that �1 can be chosen so that it lies to the left of θi1 + ηN−1/2 for some small η > 0.
Accordinglywe define K (l)

N (u, v) and K (r)
N to be the corresponding contributions (from

contours lying to the left or to the right of θi1 + ηN−1/2) to the correlation kernel.
We first rewrite the singularity in the correlation kernel. Then, provided�(w−z) >

0, one has that

1

w − z
=
∫

R+
dt0e−N

1
2 ct0(w−z)cN

1
2 .

Thus one can write that

c√
N

K (l)
N (u, v) = c2N

(2iπ)2

∫

R+
dt0

∫

�1

∫

γ

N∏

i=1

w − yi

z − yi

×eN ( w2
2 −wv)−N ( z2

2 −zu)−N
1
2 ct0(w−z)dwdz, (54)
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where γ is a line parallel to the y-axis not crossing �1. We keep the other kernel
unchanged:

c√
N

K (r)
N (u, v) = cN 1/2

(2iπ)2

∫

�2

∫

γ

N∏

i=1

w − yi

z − yi

× eN ( w2
2 −wv)−N ( z2

2 −zu) 1

w − z
dwdz. (55)

Consider the rescaled correlation kernel
c√
N

KN (u, v)eqcN
1
2 (y−x) for some q to

be defined. We now set, using the definition of Gu0,N given by (53):

H(w, y) = c
√

N
(√

N
)ki1

eN Gu0,N (w)−N
1
2 cy(w−q)(w − θi1)

ki1 ,

G(z, x) = c

√
N

(√
N
)ki1

e−N Gu0,N (z)+N
1
2 cx(z−q) × (z − θi1)

−ki1 . (56)

Then one has that

c√
N

K (l)
N (u, v)eqcN

1
2 (y−x)

=
∫

R+
dt0

∫

γ

dw

∫

�1

dzH(w, y + t0)G(z, x + t0). (57)

Note that the measure

ν̃N = 1

N − ki1

∑

j : y j �=θi1

1

z − y j

still converges to ν. Let us define

ṽN : R → R, ṽN (x) = inf

{

v ≥ 0,
∫

d ν̃N (s)

(x − s)2 + v2
>

N

N − ki1

}

,

ŨN = {x ∈ R, ṽN (x) > 0}

and

C′
N = {x ± i ṽN (x), x ∈ R}.

In addition θi1 is a critical point of Gu0,N , which is the leading term in the exponen-
tial term defining both G and H . An easy computation shows that G ′′

u0,N (θi1) > 0.
Furthermore one can check that there exist δ > 0 and constants c(δ) > 0, M(δ) > 0
such that

∀ z, |z − θi1 | ≤ δ, |G ′′
u0,N (z)| ≥ c(δ), and |G(3)

u0,N (z)| ≤ M(δ).
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In order to perform the asymptotic analysis of the correlation kernel, we nowchoose

q = θi1 + ε

2cN
1
2

.

We start with the kernel K (l)
N . We first consider the asymptotics of the function H.

We first consider the case where |x |, |y| ≤ M0. The other case will be considered
hereafter. Let ε > 0 be small. Define γ = θ ′

i1
+ i t, t ∈ R oriented from bottom to top

where θ ′
i1

= θi1 + ε
c N− 1

2 . One has that

d

dt
�(Gu0N (θ ′

i1 + i t)) = −t

⎛

⎝1 − 1

N

∑

j : y j �=θi1

1

|θ ′
i1

− y j + i t |2

⎞

⎠ ≤ −Ct,

for some constantC > 0. This follows from the fact that the second derivative ofGu0,N

does not vanish in a neighborhood of θi1 in particular. Note also that the variation of
Gu0,N (θ ′

i1
)− Gu0,N (θi1) is of the order of 1/N . We now use the same arguments as in

Sect. 4.2.1. As we see just below, we can deform �1 so that γ lies strictly to the right
of �1. Assuming this holds true, one gets that there exists a constant A > 0 such that

∫

γ

H(w, y)dw

= c(
√

N )ki1+1
∫

|w−θ ′
i1

|≤δ

eN Gu0,N (w)−N
1
2 cy(w−q) × (w − θi1)

ki1 (1 + O(e−AN )).

Making the change of variables w = θi1 + i t
c
√

N
, and setting Rdef = R − iε one

obtains that
∫

γ

H(w, y)dw(1 + O(e−AN ))

= ceN Gu0,N (θi1 )eyε/2
∫

Rdef

i

c
e− t2

2 −yi t
(

i
t

c

)ki1

(1 + O(N− 1
2 ))

= eN Gu0,N (θi1 )

∫

Rdef

ie− t2
2 −y(i t−ε/2)

(
i t

c

)ki1

(1 + O(N− 1
2 )).

We consider now the case where y can be as large as ε0N 1/2. We use the fact that
the contour γ remains to the right of q strictly. In particular, one can show that there
exist constants C, C ′ > 0 such that

∣
∣
∣
∣
∣

∫

γ

H(w, y)

eN Gu0,N (θi1 )
dw −

∫

Rdef

ie− t2
2 −y(i t−ε/2)

(
i t

c

)ki1

∣
∣
∣
∣
∣
≤ Ce−C ′ y

√
N

. (58)

We now turn to the asymptotics of
∫
�1

G(z, y)dz. Similarly for the z contour, we
use the following contour �1 (see Fig. 3).
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q

Γ1

CN

γ

Γ2

θi1

Fig. 3 The contour � and γ at a spike

First �1 contains a circle of ray ε

4cN
1
2
around θi1 . �1 then has to encircle all the

eigenvalues to the left of θi1 . Note that there exists η > 0

sup{x ∈ ŨN , x < θi1} =: w′
N ≤ θi1 − η

and

inf{x ∈ ŨN , x > θi1} =: z′
N ≥ θi1 + η.

Let then Z ′ be the first point along C′
N to the left of w′

N such that Im(Z ′) is a local
maximum. �1 then follows C′

N from w′
N to the left direction up to Z ′. Then to the left

of Z ′, �1 follows the highest of the two curves C′
N and Z ′ − x, x > 0. The contour is

completed by symmetry with respect to the real axis. Computing residues, one easily
gets that the asymptotics for G(z, y) splits into two parts

– the residue at θi1 that yields by a straightforward Taylor approximation:

e− ε
2 ye−N Gu0,N (θi1 )Resa=0

(( c

a

)ki1
e
−N Gu0

(
θi1+ a

c
√

N

)
+N Gu0,N (θi1 )+ya

)

.

– The contribution of the rest of the contour �1 ∩ {z,∈ C,�z < θi1 − η} which, by
a small extension of the previous subsection, is in the order of

e−N Gu0,N (w′
N) << e−N Gu0,N (θi1 ).

This is also exponentially negligible in the large N limit.
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To finish the asymptotic analysis of G, we show that the first term is indeed in the
order of e−N Gu0,N (θi1 ). By a straightforward Taylor expansion one obtains that

e− εy
2

∣
∣
∣
∣
∣
∣
∣

Resa=0

⎛

⎜
⎝
( c

a

)ki1
e

N

(

Gu0,N (θi1 )−Gu0,N

(

θi1+ a

cN
1
2

))

+ya

⎞

⎟
⎠

−Resa=0

(( c

a

)ki1
eay− a2

2

)∣
∣
∣
∣

≤ Ce−C ′ y
√

N
, (59)

for some constants C, C ′ > 0. The exponential decay for large y follows again from
the fact that the residue is computed on a circle of ray ε/4c lying to the left strictly of
ε/2c.

We now turn to the asymptotic analysis of K (r)
N (u, v). Let us define the contour �2

as in the preceding section. Let Z be the first point along C′
N to the left of z′

N such
that Im(Z) is a local maximum. �2 first follows the part C′

N lying to the right of z′
N up

to the moment where it reaches Z . Then �2 is pursued to the right by following the
highest of the two curves C′

N and Z + x, x > 0. Again it is completed by symmetry
with respect to the real axis. It is an easy computation to check that �Gu0(z) achieves
its minimum on �2 at z′

N. The contour γ is chosen as before. Note that the function
1

w−z remains bounded along γ ∪ �2. We then deduce that

∣
∣
∣
∣

c√
N

K (r)
N (u, v)eN1/2c(y−x)q

∣
∣
∣
∣ = ≤ CeN�Gu0,N (θi1 )−Gu0,N (z′

N)+N1/2c(y−x)q

≤ Ce−C ′ N , (60)

provided ε0 is small enough. Thus the kernel
c√
N

K (r)
N (u, v)eN1/2c(y−x)q converges

uniformly to 0 on [−M0, ε0N 1/2]. Combining (58), (59) and (60) then yields Propo-
sition 4.3 using the expression of the correlation functions of ki1 × ki1 GUE given in
Section 4.3 of [4]. ��

4.4 At a point where two connected components merge

Let now consider a point u ∈ supp(μsc �ν) such that the density p ofμsc �ν verifies

p(u) = 0, p(x) > 0 ∀ x ∈ [u − ε/2, u + ε/2]\{u} for some ε > 0.

This means that the critical point zc(u) associated to u = H(zc(u)) is unique,
real and lies at the “intersection” of two complex curves (see Fig. 4 below). Because
zc(u) /∈ supp(ν), we deduce from Lemma 2.1 that

F ′′(zc(u)) = 0 and that F (3)(zc(u)) = 0.
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zc(u)

Fig. 4 A point in the bulk with vanishing density

The first order derivative which does not vanish at zc(u) is then the fourth one:
F (4)(zc(u)) < 0. For the asymptotic exponential term F , zc(u) is a doubly degenerate
critical point. Thanks to Proposition 3.3, one can transmit this double degeneracy to
the true exponential term Fu,N . There exists a unique point zc,N in a η-neighborhood
of zc (for any η > 0) such that

F ′′
u,N (zc,N ) = F (3)

u,N (zc,N ) = 0.

At such a point, one obviously has that

F (4)
u,N (zc,N ) < 0.

Here Fu,N is defined by (38) with zc = zc,N . Set u0 = HN (zc,N ). We here show
that the asymptotic correlation functions in the vicinity of u0 are determined by the
so-called Pearcey kernel defined by (13).

Proposition 4.4 Set κ = |F (4)(zc,N )|1/4. Uniformly for x, y in a fixed compact inter-
val, one has that

lim
N→∞

κ

N
3
4

KN

(

u0 + κx

N
3
4

, u0 + κy

N
3
4

)

= K P (x, y).

Proof of Proposition 4.4 We start from the expression for the correlation kernel given
in Proposition 4.1, where the contours are as shown on Fig. 5.

One has that F (4)
N (zc,N ) < 0 and it is not difficult to see that, given δ > 0 small,

there exists a constant M such that |F (5)
N (z)| ≤ M for all complex numbers z, such

that |z − zc,N | ≤ δ. From this we deduce that for any real t such that |t | ≤ δ

∣
∣
∣
∣Fu,N (zc,N + tei π

4 ) − Fu,N (zc,N ) + F (4)
u,N (zc,N )

t4

4!
∣
∣
∣
∣ ≤

M |t |5
5! .

Assume that |t | ≤ δ, then one has that

�(Fu,N (zc,N + tei π
4 ) − Fu,N (zc,N )) ≥ |F (4)

N (zc,N )|t4/8!,

provided δ is small enough. This ensures that the (z-)contour made of two lines with
direction ±π/4 with the real axis is an ascent contour for Fu,N , at least in a δ neigh-
borhood of zc,N . To complete the z-contour, we need to encircle all the remaining
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γ

Γ

yi

Fig. 5 Initial contours γ and �, which do not cross

eigenvalues. We pursue the contour as before. If zc,N + δei π
4 (resp. zc,N + δe3i π

4 )
lies above CN , the contour goes parallely to the real axis to the right (resp. left) up to
the moment of time one crosses the curve CN . Then it follows CN to the right (resp.
left) direction up to the moment where it crosses the line Imz = δ

√
2/2 and so on. If

instead zc,N + δei π
4 (resp. zc,N + δe3i π

4 ) lies below CN , then one first joins CN along
zc,N + δei π

4 + i t, t ≥ 0 (resp. zc,N + δe3i π
4 + i t, t ≥ 0) and then follows CN to the

right (resp. left) direction (not going below the line Imz = δ
√
2/2). The contour is

then completed by symmetry with respect to the real axis.
For the w contour it is an easy computation that the curve zc,N + i t, t ∈ R satisfies

the descent assumption. Last, so that the w and z contours do not cross each other, we
deform the z contour in a small neighbordhood of zc,N to the new contour �0 as on
Fig. 1.

We can now conclude to the asymptotic behavior of the kernel.Wemake the change
of variablesw = zc,N +s N−1/4, z = zc,N +t N−1/4, neglecting the part of the contour
where |w − zc,N | ≥ δ or |z − zc,N | ≥ δ.
One has that (up to a conjugation factor)

1

N
3
4

KN

(

u + x

N
3
4

, u + y

N
3
4

)

= 1

(2iπ)2

∫

�0

dt
∫

iR
dseF (4)(zc,N ) s4−t4

4! −sy+t x 1

s − t
(1 + O(N− 1

4 )), (61)

where we first neglected the parts of the contour lying at a distance δ > 0 of zc,N and
then performed a Taylor expansion, using the boundedness of the fifth derivative F (5)

u,N
in a compact neighborhood of zc,N . The last estimate holds uniformly for x, y in a
fixed compact real interval. Thenmaking the change of variables s = |F (4)(zc,N )|1/4s′
yields the desired result. ��
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