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Abstract We study the distribution of the time to explosion for one-dimensional
diffusions. We relate this question to the computation of expectations of suitable
nonnegative local martingales. Moreover, we characterize the distribution function
of the time to explosion as the minimal solution to a certain Cauchy problem for an
appropriate parabolic differential equation; this leads to alternative characterizations
of Feller’s criterion for explosions. We discuss in detail several examples for which
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it is possible to obtain analytic expressions for the corresponding distribution of the
time to explosion, using the methodologies developed in the paper.

Keywords Explosion · Girsanov theorem · Local martingale · Pathwise solutions of
SDEs · Minimal solutions of Cauchy problems for parabolic PDEs · Bessel processes

Mathematics Subject Classification 35C99 · 35K10 · 60J35 · 60J60 · 60H10 ·
60H30

1 Introduction and summary

Precise conditions for whether or not a one-dimensional diffusion process explodes
in finite time have been developed, most notably by William Feller. To the best of our
knowledge, and rather surprisingly, the distribution of the explosion time has rarely—
if at all—been the subject of investigation (a notable exception is the appendix in [15],
particularly its Theorem 9.1.3(ii)). With the present work we hope to help close this
gap or, at the very least, to narrow it.

In Sect. 2, we recall relevant facts of the theory of one-dimensional diffusions. In
Sect. 3, we recall and generalize a result of [39] that associates the distribution of the
explosion time to the expectation of a related nonnegative local martingale. In Sect. 4,
we study analytic properties of the distribution function such as continuity, strict
positivity, and full support. In Sect. 5, we characterize the tail (t, ξ) �−→ Pξ (S >

t) of the probability distribution function of the time-to-explosion S, viewed as a
function of time t and starting position ξ , as the smallest nonnegative solution of an
appropriate partial differential equation of parabolic type. We also derive a similar
characterization for the Laplace transform of this tail probability distribution function
in terms of an ordinary differential equation, and present alternative characterizations
of Feller’s criterion for explosions. In Sect. 6, we provide several examples to illustrate
the methodologies developed in Sects. 3–5. In Appendices A and B, we recall some
useful facts regarding the Feller test and the Lamperti transformation. Finally, in
Appendix C, we provide a technical uniqueness result for stopped diffusions in natural
scale.

Although not much work seems to exist on the distribution of the time to explosion,
there is a huge literature on the computation of first-passage times by diffusions. We
refer to [45] and Section 2 in [24] for several pointers to this literature. If a boundary is
regular, the diffusion can be extended beyond that boundary and the time to explosion
can be represented as a first-passage time for a regular diffusion; however, for an
exit boundary such an extension is not possible (one-dimensional diffusions cannot
explode at natural or entrance boundaries). We refer the reader to Section 16.7 in [7]
for a classification of boundary behavior for one-dimensional diffusions.

2 Some essentials of one-dimensional diffusions

Wefix an open interval I = (�, r)with−∞ ≤ � < r ≤ ∞ and consider the stochastic
differential equation
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Distribution of the time to... 1029

dX (t) = s(X (t))
[
dW (t) + b(X (t)) dt

]
, t ≥ 0, X (0) = ξ , (2.1)

where ξ ∈ I and W (·) denotes a Brownian motion. We shall impose throughout the
paper the following:

Standing Assumption 2.1 The functions b : I → R and s : I → R \ {0} are
measurable and satisfy

∫

K

(
1

s2(y)
+
∣∣∣∣
b(y)

s(y)

∣∣∣∣

)
dy < ∞ for every compact set K ⊂ I. (2.2)

In other words, we shall be assuming that both 1/s2(·) and the “local mean/variance
ratio” function

f(·) := b(·)
s(·) = b(·)s(·)

s2(·) (2.3)

are locally integrable over the interval I . 	


In the sequel we shall also need the anti-derivative

F(·) :=
∫ ·

c
f(x)dx (2.4)

of the function f(·), for some arbitrary, but fixed, constant c ∈ I .
From the arguments in [16,17] or Theorem 5.5.15 in [33], the standing assumption

implies that the stochastic differential equation (2.1) admits a weak solution, unique
in the sense of the probability distribution and defined up until the “explosion time”

S := lim
n↑∞ Sn , Sn := inf

{
t ≥ 0 : X (t) /∈ (�n, rn)

}
, (2.5)

for anymonotone sequences {�n}n∈N, {rn}n∈Nwith � < �n < rn < r and limn↑∞ �n =
�, limn↑∞ rn = r . The endpoints of the interval I = (�, r) are absorbing for X (·), that
is, we suppose that on {S < ∞} this process stays after S at the endpoint where it exits
the interval. Feller’s test of explosions yields an analytic characterization whether such
an explosion occurs; see Appendix A for a review.

We shall suppose that this weak solution has been constructed on some filtered
probability space (�,F,P), F = {F(t)}0≤t<∞ which satisfies the usual conditions of
right-continuity and augmentation by P-null sets. Because of uniqueness in the sense
of the probability distribution, the state process X (·) in this solution has the strong
Markov property. A thorough exposition and study of such equations appears in the
monograph [9].
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1030 I. Karatzas, J. Ruf

2.1 A diffusion in natural scale

Let Xo(·) denote the state process of a solution to the Eq. (2.1) without drift but with
the same state space I = (�, r) , that is,

Xo(·) = ξ +
∫ ·

0
s
(
Xo(t)

)
dWo(t) , (2.6)

where Wo(·) denotes a Brownian motion. Thanks to our assumptions on s(·), this
equation admits on some filtered probability space (�o,Fo,Po), Fo = {Fo(t)}0≤t<∞
a weak solution (Xo(·),Wo(·)) which is unique in the sense of the probability distrib-
ution (see Theorem 5.5.7 in [33]) up until an explosion time So , and has no absorbing
points in the interval I (see Corollary 4.20 in [17]). Here So , Son denote the stopping
times defined as in (2.5) with X (·) replaced by Xo(·). We recall from Theorem 5.5.4 in
[33] that Po(So = ∞) = 1 holds if � = −∞ and r = ∞ . Once again, the endpoints
of the interval I = (�, r) are absorbing for Xo(·), that is, we suppose that on {So < ∞}
the process stays after So at the endpoint where it exits.

In order to fix ideas and notation for what follows, let us summarize the construction
of this solution. We start with ξ ∈ I and a standard Brownian motion B(·), and define
the stopping time

τ := lim
n↑∞ τ n , τ n := inf

{
t ≥ 0 : ξ + B(t) /∈ (�n, rn)

}
(2.7)

in the spirit and the notation of (2.5). We introduce also the time change

�(θ) :=
∫ θ

0

dr

s2(ξ + B(r))
, 0 ≤ θ < τ

with �(θ) := ∞ for all θ ∈ [τ ,∞). Next, we construct the inverse A(·) of �(·), and
from it the state process Xo(·) ≡ Xo(· ; ξ) := ξ + B(A(·)). Finally, we construct the
Brownian motion

Wo(t) :=
∫ A(t)

0

dB(r)

s(ξ + B(r))
, 0 ≤ t < So = �(τ−)

and check that the pair (Wo(·), Xo(·)) satisfies (2.6) up until the explosion time

So = �(τ−) =
∫ τ

0

dθ

s2(ξ + B(θ))
=
∫

I

2L(τ , y)

s2(y)
dy ; (2.8)

here L(τ , y) is the local time accumulated up to τ by the Brownian motion ξ + B(·)
at the site y ∈ R.
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Distribution of the time to... 1031

2.2 Transformation of scale

Under the conditions of (2.2) and with the notation of (2.3), (2.4), the diffusion X (·)
of (2.1) has scale function

p(x) :=
∫ x

c
exp (−2F(z)) dz . (2.9)

This is a strictly increasing, continuously differentiable bijection of the interval
I = (�, r) onto the interval J = (λ, �) with endpoints λ := p(�+) and � := p(r−).
We denote the inverse mapping q := p−1 and check that ϒ(·) := p

(
X (·)) is a

diffusion in natural scale, with state space J , dynamics

ϒ(·) = p(ξ) +
∫ ·

0
σ
(
ϒ(t)

)
dW (t) (2.10)

up until the (same) explosion time S, and dispersion function σ (y) := (
p′ ·

s
)
(q(y)) , y ∈ J ; see, for instance, Section 5.5B in [33]. It is clear from this reduction

that the explosion time S of X (·) can be represented in the form (2.8), namely

S =
∫ ζ

0

dθ

σ 2(p(ξ) + B(θ))
=
∫

J

2L(ζ , y)

σ 2(y)
dy,

in terms of a standard Brownian motion B(·), its local time random field L(· , ·), and
the first exit time

ζ := lim
n↑∞ ζ n, ζ n := inf

{
θ ≥ 0 : p(ξ) + B(θ) /∈ (λn, �n)

}
(2.11)

for any monotone sequences {λn}n∈N, {�n}n∈N satisfying λ < λn < �n < � and
limn↑∞ λn = λ , limn↑∞ �n = � . For later reference, we also introduce the time
change

�ϒ(θ) :=
∫ θ

0

dr

σ 2(ξ + B(r))
, 0 ≤ θ < S

with �ϒ(θ) := ∞ for all θ ∈ [S,∞), construct the inverse Aϒ(·) of �ϒ(·) , and
note the representation ϒ(·) ≡ p(ξ) + B(Aϒ(·)) for some standard Brownian motion
B(·).

3 Relating explosions to the martingale property

3.1 A generalized Girsanov theorem

We present here a generalized version of the Girsanov–Van Schuppen–Wong theorem,
which appeared in Section 3.7 of [39] under conditions considerably stronger than
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1032 I. Karatzas, J. Ruf

those imposed here; see also Exercise 5.5.38 in [33] for the special case s(·) ≡ 1 and
� = −∞, r = ∞ and Theorem 9.1.3(ii) in [15]. This version can be considered a
“weak” result, as it provides a distributional identity;Ruf [49] andLarsson andRuf [38]
use a related “strong” (i.e., pathwise) version to provide a proof of the sufficiency of the
Novikov and Kazamaki criteria for the martingale property of stochastic exponentials;
see also [43].

First, we recall the finiteness of integral functionals under additional square-
integrability assumptions on certain related functions.

Remark 3.1 (Finiteness of integral functionals) Let us assume that the local
mean/variance ratio function f(·) is locally square-integrable on I . Furthermore, for
fixed T > 0, let us denote by 
X (T, y) the local time accumulated during the time
interval [0, T ] by the semimartingale X (·) in (2.1) at the site y ∈ I ; for the properties
of this random field, see for example Theorem 3.7.1 in [33]. From the occupation time
density formula in that theorem, we have on {Sn > T } the P-a.e. property
∫ T

0
b2(X (t))dt =

∫ T

0

(
b

s

)2

(X (t))d〈X〉(t) =
∫ T

0

(
f 1[�n ,rn)

)2
(X (t))d〈X〉(t)

= 2
∫ rn

�n

f2(y)
X (T, y)dy ≤ 2 sup
�n≤y≤rn

(

X (T, y)

) ·
∫ rn

�n

f2(y)dy

< ∞ , (3.1)

where the last inequality follows from the càdlàg property of the function 
X (T, ·). 	

We are now ready to state and prove a first result. For its purposes, we shall need

the Borel σ -algebra B generated by the open sets in C([0,∞)), the mappings ϕt

defined as (ϕtw)(s) := w(s ∧ t), 0 ≤ s < ∞ , and the corresponding σ -algebras
Bt := ϕ−1

t (B), for all t ∈ [0,∞) . In this vein, see Problem 2.4.2 in [33].

Theorem 3.2 (Generalized Girsanov theorem) Suppose that the local mean/variance
ratio function f(·) is locally square-integrable on I . For any given T ∈ (0,∞) and
any Borel set 
 ∈ BT , we then have

P
(
X (·) ∈ 
, S > T

)

= E
o
[
exp

(∫ T

0
b
(
Xo(t)

)
dWo(t) − 1

2

∫ T

0
b2
(
Xo(t)

)
dt

)
1{Xo(·)∈
, So>T }

]
.

(3.2)

In particular, if both diffusions X (·) , Xo(·) are non-explosive, i.e., if P(S = ∞) =
P
o(So = ∞) = 1 , then the exponential Po-local martingale

exp

(∫ T

0
b
(
Xo(t)

)
dWo(t) − 1

2

∫ T

0
b2
(
Xo(t)

)
dt

)
, 0 ≤ T < ∞

is a true P
o-martingale.
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Proof We fix T ∈ (0,∞) and a Borel set 
 ∈ BT . In addition to the stopping times
of (2.5), we consider the stopping times

Tn := Sn ∧ inf

{
t ≥ 0 :

∫ t

0
b2(X (s))ds ≥ n

}
, n ∈ N, (3.3)

as well as stopping times Son and T o
n defined in the same manner as in (2.5) and (3.3),

but now with X (·) replaced by Xo(·).
We note that (3.1) implies {S > T } = ⋃

n∈N{Tn > T }, modulo P ; similarly, we
have {So > T } = ⋃

n∈N{T o
n > T }, modulo P

o. In conjunction with the monotone
convergence theorem, these observations imply that, in order to prove (3.2), it is
sufficient to show

P
(
X (·) ∈ 
, Tn > T

) = E
o [Zo(T )1{Xo(·)∈
, T o

n >T }
]

(3.4)

for all n ∈ N, where we have set

Zo(·) := exp

(∫ ·∧T o
n

0
b(Xo(t))dWo(t) − 1

2

∫ ·∧T o
n

0
b2(Xo(t))dt

)

.

In the following we shall prove (3.4) for fixed n ∈ N. Towards this end, we define
the processes

Ŵ (·) :=
∫ ·∧Tn

0
b(X (t))dt + W (·) ,

Z(·) := exp

(∫ ·∧Tn

0
b(X (t))dŴ (t) − 1

2

∫ ·∧Tn

0
b2(X (t))dt

)

and the P-local martingale

L(·) := exp

(
−
∫ ·∧Tn

0
b(X (t))dW (t) − 1

2

∫ ·∧Tn

0
b2(X (t))dt

)
= 1

Z(·) .

We note that L(·) is a strictly positive martingale; cf. Corollary 3.5.13 in [33].
Therefore, dQ = L(T )dP defines a new probability measure Q on (�,F(T )). Gir-
sanov’s theorem (see Theorem 3.5.1 in [33]) yields that Ŵ (·) is aQ-Brownian motion.
Moreover, X̂(·) := X (· ∧ Tn) is a solution of the stochastic integral equation

X̂(·) = ξ +
∫ ·∧Tn

0
s
(
X̂(t)

)
dŴ (t).

Proposition 9.1 implies that the Q-distribution of X (· ∧ T ∧ Tn) is the same as the
P
o-distribution of Xo(· ∧ T ∧ T o

n ). Finally, we note that
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1034 I. Karatzas, J. Ruf

Z(·) = exp

(∫ ·∧Tn

0
f(X (s))dX (s) − 1

2

∫ ·∧Tn

0
b2(X (s))ds

)
,

Zo(·) = exp

(∫ ·∧T o
n

0
f(Xo(s))dXo(s) − 1

2

∫ ·∧T o
n

0
b2(Xo(s))ds

)

are also nonanticipative functionals of X (· ∧ Tn) and Xo(· ∧ T o
n ), respectively, so we

have

P
(
X (·) ∈ 
, Tn > T

) = E
[
L(T ) · Z(T )1{X (·)∈
, Tn>T }

]

= E
Q
[
Z(T )1{X (·)∈
, Tn>T }

] = E
o [Zo(T )1{Xo(·)∈
, T o

n >T }
]
.

This yields (3.4) and concludes the proof. 	


3.2 Feynman–Kac representation

Fixing T ∈ (0,∞) and taking 
 = C([0, T ]) in (3.2), we obtain the distribution of
the explosion time S in (2.5) as

P(S > T ) = E
o
[
exp

(∫ T

0
b
(
Xo(t)

)
dWo(t) − 1

2

∫ T

0
b2
(
Xo(t)

)
dt

)
1{So>T }

]
,

(3.5)

whenever the function f(·) in (2.3) is locally square-integrable (thus also locally
integrable) on I .

If we assume, in addition, that f(·) is also of finite first variation on compact subin-
tervals of I and left-continuous, we have in the notation of (2.4) the generalized
Itô–Tanaka formula

F(Xo(T )) − F(ξ) =
∫ T

0
b
(
Xo(t)

)
dWo(t) +

∫

I

Xo

(T, a) df(a)

on the event {So > T }, where 
Xo
(T, a) denotes the semimartingale local time

accumulated by Xo(·) at the site a ∈ I during the time-interval [0, T ], and the
expression (3.5) becomes

P(S > T ) = E
o
[
exp

(
F(Xo(T )) − F(ξ) −

∫

I

Xo

(T, a) df(a)

− 1

2

∫ T

0
b2
(
Xo(t)

)
dt

)
1{So>T }

]
. (3.6)

Let us assume next, that the function f(·) is actually continuously differentiable on
I ; then (3.6) takes the more “classical” form
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Distribution of the time to... 1035

P(S > T ) = exp
(− F(ξ)

) · Eo
[
exp

(
F(Xo(T )) −

∫ T

0
V (Xo(t))dt

)
· 1{So>T }

]

(3.7)

with the notation

V (x) := 1

2
s2(x)

(
f2(x) + f′(x)

)
= 1

2

(
b2(x) + b′(x)s(x) − b(x)s′(x)

)
, x ∈ I.

In other words, the distribution of the explosion time is determined then completely
by the joint distribution of Xo(T ) and

∫ T
0 V

(
Xo(t)

)
dt on the event {So > T }, for all

T ∈ (0,∞).

Remark 3.3 (Non-explosive Xo(·))
When P

o(So = ∞) = 1, the expression of (3.7) takes the simpler form

P(S > T ) = exp
(− F(ξ)

) · Eo
[
exp

(
F
(
Xo(T )

)−
∫ T

0
V
(
Xo(t)

)
dt

)]
.

In the special case s(·) ≡ 1 we have Xo(·) = ξ +Wo(·), so finding the distribution
of the explosion time S as in (3.7) amounts then to computing the joint distributions
of appropriate Brownian functionals. 	

Remark 3.4 (Non-explosive X (·)) Of course, the reverse situation also prevails: when
P(S = ∞) = 1 and the function f(·) is continuously differentiable on I , the distribution
of the explosion time of the diffusion Xo(·) in natural scale (2.6) is given as

P
o(So > T ) = exp

(
F(ξ)

) · E
[
exp

(
−F
(
X (T )

)+
∫ T

0
V
(
X (t)

)
dt

)]
.

This can be argued in exactly the same manner. 	


4 Analytic properties of the explosion time distribution

In this section, we shall discuss analytic properties of the functionU : (0,∞) × I →
[0, 1], defined via

U (T, ξ) := Pξ (S > T ), (T, ξ) ∈ (0,∞) × I. (4.1)

Here and in what follows, we index the probability measure by the common starting
position ξ ∈ I of the diffusions X (·) and Xo(·).

4.1 Continuity

The question of continuity of the functionU (· , ·) is of interest in itself; it also will be
important for our arguments later on. Since 1 − U (·, ξ) is a distribution function, it
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1036 I. Karatzas, J. Ruf

is right-continuous for all ξ ∈ I . In this subsection we shall see, without any further
assumptions on the coefficients s(·) and b(·) beyond those of StandingAssumption 2.1,
that U (· , ·) is even jointly continuous in its two arguments.

We start with a technical result in Lemma 4.1. In particular, the property in (4.5) is
well known for regular, one-dimensional diffusions; it is discussed, for instance, in the
“matching numbers” Section 3.3 of [29]. It is not hard to prove from first principles,
so we present here a simple argument. We then show in Lemma 4.2 the continuity
of the function U (· , ·) in the first component, as a function of time only. Finally, in
Proposition 4.3 we establish the joint continuity of U (·, ·).
Lemma 4.1 (Diffusions hit nearby points fast) With the stopping times

Hx := inf {t ∈ [0,∞) : X (t) = x} , x ∈ I, (4.2)

Ĥx,y := inf {t ∈ [Hx ,∞) : X (t) = y} , (x, y) ∈ I 2, (4.3)

for any given ε > 0 there exist x1 ≡ x1(ε) ∈ (−∞, ξ) and x2 ≡ x2(ε) ∈ (ξ,∞) such
that

Pξ

(
Ĥxi ,ξ < ε

) ≥ 1 − ε, i = 1, 2. (4.4)

In particular, for all δ > 0, we have

lim
y→ξ

Py
(
Hξ < δ

) = 1. (4.5)

Proof We first show that we have Pξ (A) = 0 for the event

A :=
{
ω ∈ � : ∃ R(ω) > 0 such that min

t∈[0,R(ω)] X (t, ω) ≥ ξ

}
. (4.6)

It is sufficient to show that (4.6) holds with the process ϒ(·) = p
(
X (·)) of (2.10)

instead of the diffusion X (·), andwith ξ replaced by p(ξ) , due to the strictmonotonic-
ity of the scale function p in (2.9). The path properties of standard Brownian motion,
in conjunction with the representation ϒ(·) ≡ p(ξ) + B(Aϒ(·)) of Sect. 2.2 for some
standard Brownian motion B(·), and with the fact that Aϒ(t) > 0 holds for all t > 0,
let us conclude.

The continuity (from below) of the probability measure Pξ then yields the existence
of y1 ∈ (−∞, ξ) such that Pξ (Hy1 < ε) ≥ 1 − ε/2. Replacing the minimum by a
maximum in (4.6) and repeating the argument, we obtain the existence of x2 ∈ (ξ,∞)

such that Pξ (Hx2 < Hy1 < ε) ≥ 1 − ε holds; this then implies (4.4) for i = 2. The
existence of the claimed x1 ∈ (−∞, ξ) is argued in the same manner. Finally, the
strong Markov property of the diffusion X (·) implies

Py
(
Hξ < ε

) ≥ Pξ

(
Ĥy,ξ < ε

);

that is, the probability of the event that the diffusion X (·) started at y hits ξ before time
ε dominates the probability of the event that X (·) completes a round-trip from ξ to y
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Distribution of the time to... 1037

and then back to ξ , before time ε. We now fix δ > 0, ε ∈ (0, δ) and the corresponding
x1 ∈ (−∞, ξ) and x2 ∈ (ξ,∞). Then for all y ∈ (x1, x2), applying (4.4), we have

Py
(
Hξ < δ

) ≥ Py
(
Hξ < ε

) ≥ 1 − ε .

The proof of (4.5) follows. 	

Lemma 4.2 (Continuity of U (·, ·) as a function of time) The function T �→ U (T, ξ)

is continuous on [0,∞), for any given ξ ∈ I .

Proof Wefix (T, ξ) ∈ (0,∞)×I and observe that it is sufficient to show p := Pξ (S =
T ) = 0 , due to the right-continuity of the functionU (· , ξ). Let us consider any strictly
increasing sequence of stopping times 0 = H (0) < H (1) < H (2) < · · · .We then have,
again by the strong Markov property of the diffusion X (·), the comparison

1 ≥ Pξ

(
S ∈

{
T + H (i) : i ∈ N0

})
=
∑

i∈N0

Pξ

(
S − H (i) = T

)

≥
∑

i∈N0

Eξ

[
PX (H (i))

(
S = T

)
1{X (H (i))∈I }

] ≥ p
∑

i∈N0

Pξ

(
X
(
H (i)) = ξ

)
.

Thus, in order to show the statement, it is sufficient to construct a strictly increasing
sequence of stopping times {H (i)}i∈N such that Pξ

(
X (H (i)) = ξ

)
does not converge

to zero as i increases. We shall construct such a sequence inductively, by “stitch-
ing together” the round trips of Lemma 4.1. Towards this end, consider a sequence
{qi }i∈N ⊂ I such that (4.4) holds with x1 replaced by qi and ε replaced by εi ∈ (0, 1)
such that the series

∑
i∈N log(1 − εi ) converges. Next, define the stopping times

H̃ (i) := inf
{
t ∈ [H (i−1),∞) : X (t) = qi

}
,

H (i) := inf
{
t ∈ [H̃ (i),∞) : X (t) = ξ

}

and use the Markov property of X (·), along with conditioning on the event{
X (H (i−1)) = ξ

}
, to obtain

Pξ

(
X (H (i)) = ξ

)
≥ Pξ

(
X (H (i−1)) = ξ

)
· Pξ

(
Ĥqi ,ξ < εi

)

≥ Pξ

(
X (H (i−1)) = ξ

)
· (1 − εi

)

≥ · · · ≥
i∏

j=1

(
1 − ε j

)
= exp

⎛

⎝
i∑

j=1

log
(
1 − ε j

)
⎞

⎠ ,

which does not tend to zero as i increases. This concludes the proof. 	

Proposition 4.3 (Joint continuity of U (·, ·) ) The function (T, ξ) �→ U (T, ξ) is
jointly continuous on [0,∞) × I .
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Proof We fix a pair (T, ξ) ∈ [0,∞) × I and a sequence {(tn, ξn)}n∈N ⊂ [0,∞) × I
such that limn↑∞(tn, ξn) = (T, ξ).

We start with the case T = 0. We need to show that limn↑∞ U (tn, ξn) =
limn↑∞ Pξn (S > tn) = 1 . With S = S(�) ∧ S(r), the minimum of the explosion
times of X (·) to � and r , respectively, let us choose some η ∈ (�, ξ) and observe that,
for sufficiently large n ∈ N, we have the upper bound

Pξn

(
S(�) > tn

) ≥ Pη

(
S(�) > tn

) = U (tn, η).

This last quantity converges to U (0, η) = 1 as n tends to infinity , due to the right-
continuity of the function U (·, η). We obtain thus limn↑∞ Pξn (S(�) > tn) = 1;
similarly limn↑∞ Pξn (S(r) > tn) = 1, and this proves the claim for T = 0.

We assume now T > 0 and fix some ε > 0. From Lemma 4.2, there exists
δ ∈ (0, T/2) so that |U (t, ξ) − U (T, ξ)| < ε holds for all t ∈ (T − 2δ, T + 2δ).
Without loss of generality, we assume |tn − T | < δ for all n ∈ N. Next, we observe
that the strong Markov property of X (·) implies

Pξn

({S > tn} ∩ {Hξ < δ}) = Eξn

[
U (tn − Hξ , ξ) 1{Hξ <δ}

]
,

thus

∣
∣U (tn, ξn) −U (T, ξ)

∣
∣ = ∣∣Eξn

[(
1{S>tn} −U (T, ξ)

)
1{Hξ <δ}

]

+Eξn

[(
1{S>tn} −U (T, ξ)

)
1{Hξ ≥δ}

] ∣∣

≤ Eξn

[∣∣U (tn − Hξ , ξ) −U (T, ξ)
∣
∣ 1{Hξ <δ}

]+ Pξn

(
Hξ ≥ δ

)

≤ ε + Pξn

(
Hξ ≥ δ

)

for all n ∈ N. Here Hξ , defined as in (4.2), is the first hitting time of ξ by the process
X (·); and we have noted that the inequalities T − 2δ < tn − Hξ < T + δ hold on the
event {Hξ < δ} for all n ∈ N. Letting n tend to infinity and applying (4.5) concludes
the proof. 	


4.2 Strict positivity

We shall show in this subsection that the distribution of the explosion time S in (2.5)
cannot possibly have compact support.

Proposition 4.4 (The explosion time distribution is not supported on a compact set)
For all K ∈ R , we have Pξ (S > K ) > 0 .

Proof The scale considerations in Sect. 2.2 make clear that it is enough to consider
diffusions in natural scale; so we shall prove P

o
ξ (S

o > K ) > 0 for all K ∈ (0,∞) .

In the light of the representation (2.8), setting h := 1/s2 and recalling the stopping
time τ from (2.7), it suffices then to show

P
o
ξ

(∫ τ

0
h
(
ξ + B(θ)

)
dθ > K

)
> 0, ∀ K ∈ (0,∞). (4.7)
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We shall argue by contradiction, so let us suppose that (4.7) fails; to wit, that

∫ τ

0
h
(
B(θ) + ξ

)
dθ ≤ K (4.8)

holds P
o
ξ -a.e. for some real constant K > 0. To help obtain a contradiction, we first

consider a diffusionY (·)with state space I = (�, r), solution of the stochastic equation

Y (t) = ξ +
∫ t

0

(
1

Y (θ) − �
− 1

r − Y (θ)

)
dθ + W (t), 0 ≤ t < ∞ .

This equation has a solution which is unique in the sense of the probability dis-
tribution; we also observe that the lifetime of this diffusion is SY = ∞ , that is,
the endpoints of the interval I = (�, r) are never reached. Next, we note that∫∞
0 h

(
Y (θ)

)
dθ = ∞ holds almost surely, by Theorem 2.10(ii) in [40]; to apply

this result, use f (·) = h(·) ∧ 1 ≤ h(·). Thus, there exists some T > 0 such that

P
o
ξ

(∫ T

0
h(Y (θ))dθ > K

)
> 0 . (4.9)

Denoting Bτ (·) ≡ B(· ∧ τ ) , we define now a nonnegative local martingale M(·)
as follows:

(i) M(·) ≡ 1, if � = −∞ and r = ∞;

(ii) M(·) ≡ (
ξ + Bτ (·) − �

)/
(ξ − �) = E

(∫ ·∧τ
0 (ξ + B(θ) − �)−1dB(θ)

)
, if � >

−∞ and r = ∞;
(iii) M(·) = (

r − ξ − Bτ (·))/(r − ξ) = E
(∫ ·∧τ

0 (ξ + B(θ) − r)−1dB(θ)
)
, if � =

−∞ and r < ∞;
(iv) and finally,

M(t) =
(

ξ + Bτ (t) − �

ξ − �

)(
r − ξ − Bτ (t)

r − ξ

)

· exp
(∫ t∧τ

0

dθ

(ξ + B(θ) − �)(r − ξ − B(θ))

)

= E
(∫ t∧τ

0

(
1

ξ + B(θ) − �
− 1

r − ξ − B(θ)

)
dB(θ)

)
, 0 ≤ t < ∞,

if � > −∞ and r < ∞ ,

where E(·) denotes stochastic exponentiation. In each of these four cases, the local
martingale M(·) is a true martingale with expectation equal to M(0) = 1 . This is
obvious in the first three cases, and follows from the considerations of [41] or of [50]
in the last case.

Thus, we may define a probability measure Q
(T ) on F(T ) via the recipe

dQ(T )/dPo
ξ = M(T ). We observe that the process ξ + B(·) solves the same sto-

chastic differential equation under this new measure Q
(T ), as the process Y (·) does
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under the measure Po
ξ , again in each of the four cases. Recalling that this stochastic

differential equation has a solution which is unique in the sense of the probability
distribution, as well as (4.8) and (4.9), we obtain the contradiction

0 < P
o
ξ

(∫ T

0
h(Y (θ))dθ > K

)
= Q

(T )

(∫ T

0
h(B(θ) + ξ)dθ > K

)

= E
P
o
ξ

[
M(T ) 1{∫ T

0 h(B(θ)+ξ)dθ>K
}
]

≤ E
P
o
ξ

[
M(T ) 1{∫ τ

0 h(B(θ)+ξ)dθ>K}
]

= 0 .

Here the last inequality follows from the fact that M(T ) = 0 holds on the event
{τ ≤ T }. The statement is now proved. 	

Remark 4.5 (Alternative argument) The referee suggests an alternative and shorter
proof of Proposition 4.4: Let us recall the notation of (4.3), and observe that there
exist some η ∈ I and δ > 0 such that Pξ (δ ≤ Ĥη,ξ < S) > 0. By the strong Markov
property this then yields that Pξ (nδ ≤ Ĥη,ξ < S) > 0 for each n ∈ N, and thus the
statement. 	


4.3 Full support

We shall show now that, when explosions can occur in finite time with positive prob-
ability, Assumption 4.6 below guarantees that the distribution of the explosion time
has full support on the positive real half-line. Let us start by considering the closed set

A :=
{
x ∈ I :

∫ ε

−ε

dz

s4(x + z)
= ∞, ∀ ε ∈ (0,min{x − �, r − x})

}
. (4.10)

Assumption 4.6 The set A in (4.10) is countable. 	

Every s : I → R\{0} which is continuous or, more generally, locally bounded

away from the origin, satisfies this assumption; for then the set A is empty. In the
example that follows, we construct a non-trivial discontinuous function, not bounded
away from zero locally, that satisfies Assumption 4.6. Thus, in most cases of interest,
Assumption 4.6 is satisfied; however, as Example 5.23 in [54] illustrates, it is even
possible to have A = I despite the integrability condition in (2.2).

Example 4.7 We observe that the intervals

In,m =
(

1

n + 1
+ 1

n(m + 1)(n + 1)
,

1

n + 1
+ 1

nm(n + 1)

]
, (n,m) ∈ N

2

are disjoint since
⋃

m∈N In,m = (1/(n + 1), 1/n] for each n ∈ N and satisfy⋃
(n,m)∈N2 In,m = (0, 1]. Consider the function f : (−1, 1) → (0,∞) (we inter-

pret f (·) ≡ 1/s4(·)) , defined by f (x) = 1 for all x ∈ (−1, 0] and by

f (x) =
(
x − 1

n + 1
− 1

n(m + 1)(n + 1)

)−1

for all x ∈ In,m \{1}.
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We now consider the state space I = (−1, 1), and note that

A =
{

1

n + 1
+ 1

n(m + 1)(n + 1)
: (n,m) ∈ N

2
}⋃{

1

n + 1
: n ∈ N

}⋃
{0};

thus, Assumption 4.6 is satisfied. 	

Theorem 4.8 (Distribution function of time to explosion is strictly decreasing) For
any fixed starting position ξ ∈ I , the function

[0,∞) � T �−→ Pξ

(
S > T

) ∈ (0, 1]

is strictly decreasing, provided that Pξ

(
S = ∞) < 1 and Assumption 4.6 hold.

The argument will require a few preliminaries. The next lemma contains the key
idea in the proof of the main result. It asserts that, under the local integrability of the
reciprocal of the second power of its local variance function, the diffusion in natural
scale Xo(·) “can reach far away points fast, with positive probability.”

Lemma 4.9 (Xo reaches far-away points fast, with positive probability) Assume there
exist z ∈ (�, ξ) and y ∈ (ξ, r) such that

∫ y
z s−4(a) da < ∞ . Then for every ε > 0

we have

P
o
ξ (Hz < ε) > 0 . (4.11)

Proof We start by fixing the constant

K = (ξ − z)(y − z)

ε(y − ξ)
+ 1 > 0 ,

and considering the Po
ξ -local martingale

L(t) := −K
∫ t∧Hz∧Hy

0

dWo(u)

s(Xo(u))
= −K

∫ t∧Hz∧Hy

0

dXo(u)

s2(Xo(u))
, 0 ≤ t < ∞.

The stochastic integral here is well-defined, because

∫ t∧Hz∧Hy

0

du

s2(Xo(u))
=
∫ t∧Hz∧Hy

0

d〈Xo〉(u)

s4(Xo(u))

=
∫ y

z
2
Xo(

t ∧ Hz ∧ Hy, a
) da

s4(a)
< ∞

holds for all t ∈ [0,∞) . Here, the second equality follows from the occupation-time-
density property of semimartingale local time, and the strict inequality from the càdlàg
property of the mapping a �→ 
Xo

(t ∧ Hz ∧ Hy, a) .
Next, we consider the stochastic exponential M = E(L). By [41], the local

martingale M(·) is a true martingale (use Theorem 2.1 in that paper, with function
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b(·) = −K1[z,y](·)/s(·) along with (24) and (26) there). Consequently, by the Gir-
sanov theorem, there exist a probability measure Q

o
ξ , absolutely continuous with

respect to P
o
ξ on F(ε) , and a Q

o
ξ–Brownian motion W̃ (·), so that Xo(·) satisfies up

until the explosion time So the equation

Xo(·) = ξ − K (· ∧ Hz ∧ Hy) +
∫ ·

0
s
(
Xo(t)

)
dW̃ (t) . (4.12)

Now let us assume that (4.11) fails, that is, Q
o
ξ (Hz ≥ ε) = 1 holds for some

ε > 0 ; as a consequence, the process Xo(·) is then bounded from below by z on the
time-interval [0, ε]. Thus, we have

∫ t

0
s(Xo(u))dW̃ (u) = Xo(t) + K (t ∧ Hy) − ξ, 0 ≤ t ≤ ε

Q
o
ξ -a.e., and deduce that the process on the left-hand side is a Q

o
ξ -local martingale,

bounded frombelowby z−ξ on the interval [0, ε]. This again implies that Xo(·∧ε∧Hy)

is a Qo
ξ -supermartingale, and

Q
o
ξ

(
Hy ≥ ε

) ≥ Q
o
ξ

(
Hy ≥ Hz

) ≥ y − ξ

y − z
.

Taking expectations in (4.12), we obtain

z ≤ E
Q

o
ξ
[
Xo (ε)

] ≤ ξ − K ε · Qo
ξ

(
Hy ≥ ε

) ≤ ξ − K ε · y − ξ

y − z
< z

by the definition of K . This apparent contradiction yields (4.11) and concludes the
proof. 	


We continue by showing that under Assumption 4.6, when the diffusion Xo(·)
can explode in finite time with positive probability, it can explode arbitrarily fast
with positive probability. Although the proof of the lemma that follows is somewhat
tedious, the underlying idea is quite simple. First, it suffices to show that the diffusion,
started in ξ , can hit a certain point y ∈ I arbitrarily fast; let us assume, for the
moment, that y < ξ . Then, we choose some K ∈ N and decompose the interval [y, ξ ]
in 2K − 1 intervals, each of which the diffusion Xo(·) can cross fast enough with
positive probability, so that the total time until the diffusion Xo(·) hits y can still be
made arbitrarily small with positive probability.

Among these 2K − 1 intervals, there are K ones that contain all “critical” points in
the set A

⋂[y, ξ ] as in (4.10). Their lengths are chosen so that the diffusion Xo(·) can
cross each of these K intervals fast enough; in the proof that follows, these intervals
have the form (xik − δ′

ik
, xik + δik ). The remaining K − 1 intervals, of the form

(xik+1 +δik+1 , xik −δ′
ik
), do not contain any points of the set A, and may be quite large;

nevertheless, an application of Lemma 4.9 guarantees that the diffusion can cross them
fast enough with positive probability. This concludes the argument for diffusions in
natural scale.
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Proposition 4.10 (If Xo can explode, it explodes fast with positive probability)Under
Assumption 4.6, and provided P

o
ξ (S

o < ∞) > 0 holds, the explosion time of (2.8)
satisfies

P
o
ξ

(
So < ε

)
> 0 for all ε > 0 .

Proof We fix ε > 0 and note that there exists a point y ∈ (�, r) such that Po
y(S

o <

ε/2) > 0 and Po
ξ (Hy < ∞) > 0 hold, where Hy is defined in (4.2); for otherwise, we

would have Po
ξ (S

o < ∞) = 0. Thus, we need only show P
o
ξ (Hy < ε/2) > 0. Without

loss of generality, we shall assume y ∈ (�, ξ).
We enumerate now as {xi }i∈N the points of the closed set A

⋃{y, ξ}, where A is
given right before Assumption 4.6 (if A

⋃{y, ξ} has only a finite number of points,
say m ∈ N, we just set xm+1 = xm+2 = · · · = ξ ). Fix a sequence of strictly positive
numbers {εi }i∈N such that

∑
i∈N εi < ε/4. As in the proof of Lemma 4.1, there exist

strictly positive numbers δi , δ
′
i such that

P
o
xi+δi

(
Hxi−δ′

i
< εi

)
> 0

holds for each i ∈ N. An application of the Heine-Borel theorem then yields the
existence of an integer K ∈ N and of K points, say ξ = xi1 > · · · > xiK = y, such
that

(
A
⋃

{y, ξ}
)⋂

[y, ξ ] ⊂
K⋃

k=1

(

xik − δ′
ik

2
, xik + δik

)

holds for the corresponding positive numbers δik , δ′
ik
. We may assume xik − δ′

ik
>

xik+1 + δik+1 for all k = 1, . . . , K − 1; since if one of these last inequalities did not
hold, we could just merge two overlapping intervals of the form (xik − δ′

ik
, xik + δik )

and (xi� − δ′
i�
, xi� + δi� ) to one of the form (xik − δ̃′

ik
, xik + δ̃ik ) (and replace the two

corresponding εi ’s by their sum) and repeat this procedure until all strict inequalities
were made to hold.

If we show now that the diffusion Xo(·) can move fast through those intervals of
the form (xik+1 + δik+1 , xik − δ′

ik
) with positive probability, that is, if the inequalities

P
o
xik−δ′

ik

(
Hxik+1+δik+1

<
ε

4K

)
> 0, ∀ k = 1, . . . , K − 1 (4.13)

hold, then we obtain from the Markov property

P
o
ξ

(
So < ε

) ≥ P
o
ξ

(
Hy <

ε

2

)
P
o
y

(
So <

ε

2

)

≥ P
o
xi1+δi1

(
HxiK −δ′

iK
<

ε

2

)
P
o
y

(
So <

ε

2

)
> 0.
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Here, the second inequality holds since ξ < xi1 + δx1 and y > xiK − δ′
iK

by
construction of the sequence (xi , i ∈ N) , and the last inequality holds since

P
o
xi1+δi1

(
HxiK −δ′

iK
<

ε

2

)

≥
K−1∏

k=1

(
P
o
xik+δik

(
Hxik−δ′

ik
< εik

)
P
o
xik−δ′

ik

(
Hxik+1+δik+1

<
ε

4K

))

·Po
xiK +δiK

(
HxiK −δ′

iK
< εiK

)
> 0 .

This yields the statement of the proposition.

In order to show (4.13),wefix k ∈ 1, . . . , K−1 and note A
⋂ [

xik+1+δik+1 , xik −
δ′
ik
2

]
= ∅ , which implies

∫ xik−
δ′ik
2

xik+1+δik+1

da

s4(a)
< ∞

from the definition of the set A and another application of the Heine–Borel theorem
(yielding that any open cover of the compact interval [xik+1 + δik+1 , xik − δ′

ik
/2] has a

finite subcover). Thus, the assertion in (4.13) follows now from Lemma 4.9, and this
concludes the proof. 	


Propositions 4.4 and 4.10 together yield the following statement:

Proposition 4.11 (Distribution function of time to explosion of Xo is strictly decreas-
ing) Under Assumption 4.6, the function [0,∞) � t �−→ P

o
ξ (S

o > t) ∈ [0, 1] is
strictly decreasing, provided P

o
ξ (S

o < ∞) > 0 holds.

Proof We know from Proposition 4.10 that

P
o
y

(
So ≤ ε

)
> 0, ∀ε > 0 (4.14)

holds for any y ∈ I . For all t ≥ 0 and ε > 0 , the Markov property and (4.14) give
then

P
o
ξ

(
So > t + ε

) = E
o
ξ

[
1{So>t} · Po

X (t)

(
So > ε

)]
< P

o
ξ

(
So > t

)

in conjunction with Proposition 4.4, and this establishes the strict decrease. 	

Proof of Theorem 4.8 We recall the reduction to natural scale in Sect. 2.2, as well as
the notation there. We also note that

∫ ε

−ε

dz

σ 4(y + z)
= ∞ , ∀ ε ∈ (0,min{y − λ , � − y})
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holds for some fixed y ∈ J , if and only if

∫ q(y+ε)−q(y)

q(y−ε)−q(y)

dζ

s4(q(y) + ζ )

=
∫ ε

−ε

dz

p′ (q(y + z)) s4(q(y + z))
= ∞, ∀ ε ∈ (0,min{y − λ, � − y})

holds, since the derivative p′(·) = exp(−2F(·)) of the scale function is continuous on
I . However, this last condition is equivalent to

∫ δ

−δ

dz

s4(q(y) + z)
= ∞, ∀ δ ∈ (0,min{q(y) − �, r − q(y)}),

so the conclusion follows now on the strength of Propositions 4.10 and 4.11. 	

Open Question 4.12 We have not been able to establish Theorem 4.8 without the
condition of Assumption 4.6—or to find an example showing that it fails in the absence
of this condition. We leave the resolution of this issue to future research. 	


5 Connections with differential equations

We shall now study conditions, under which the functionU (·, ·) and its Laplace trans-
form can be characterized as the minimal nonnegative solutions of appropriate linear
partial and ordinary, respectively, differential equations.

5.1 Connections with parabolic partial differential equations

In this subsection, we study conditions implying that the function U (·, ·) solves the
Cauchy problem for the linear, parabolic partial differential equation

∂U
∂τ

(τ, x) = s2(x)

2

∂2U
∂x2

(τ, x) + b(x)s(x)
∂U
∂x

(τ, x) (5.1)

with an appropriate initial condition, namely

U(0, x) = 1, x ∈ I. (5.2)

We start with an existence result.

Lemma 5.1 (Existence of a classical solution) Assume that the functions s(·) and
b(·) are locally uniformly Hölder-continuous on I . Then for any bounded, continuous
function g : (0,∞) × I → ∞ and any n ∈ N, the parabolic partial differential
equation of (5.1) has a unique classical solution U(· , ·) of class C1,2((1/n,∞) ×
(�n, rn)), subject to the initial and lateral conditions

U(1/n, x) = g(1/n, x) and U(τ, �n) = g(τ, �n), U(τ, rn) = g(τ, rn)
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for all (τ, x) ∈ (1/n,∞) × (�n, rn). Moroever, the solution U(·, ·) is bounded on
[1/n,∞) × [�n, rn].
Proof The continuity of the function s(·) yields minx∈[�n ,rn ] |s(x)| > 0. Moreover,
our assumptions imply that the functions s2(·) and b(·)s(·) are also uniformly Hölder-
continuous on [�n, rn]. Thus, the existence and uniqueness result of Theorem 3.9 in
[20], and themaximumprinciple of Theorem2.1 in this samebook, yield the statement.

	

We can now show that the function U (·, ·) of (4.1) solves the Cauchy problem of

(5.1), (5.2).

Proposition 5.2 (Stochastic representation of a solution to the Cauchy problem)
Under the assumptions of Lemma 5.1, the function U (· , ·) is of class C([0,∞) ×
I ) ∩ C1,2((0,∞) × I ) and solves the Cauchy problem of (5.1), (5.2).

Proof Wehave shown the continuity of the functionU (· , ·) in Proposition 4.3.We now
fix (T, ξ) ∈ (1/n,∞) × (�n, rn) for some n ∈ N and show that the function U (· , ·)
satisfies the Cauchy problem of (5.1) in (1/n,∞) × (�n, rn), which then yields the
statement.

Applying Lemma 5.1 with g(· , ·) = U (· , ·), we see that this Cauchy problem
has a bounded classical solution U(· , ·). Simple stochastic calculus then implies that
U(T − (t ∧ ρ), X (t ∧ ρ)), 0 ≤ t ≤ T is a bounded Pξ -martingale, where ρ denotes
the smaller of T − 1/n and Sn . Optional sampling gives

U(T, ξ) = Eξ

[U(T − ρ, X (ρ))
] = Eξ

[
U (T − ρ, X (ρ))

] = U (T, ξ),

where the last equality is a consequence of the strongMarkov property of the diffusion
X (·). We have shown that U (· , ·) coincides with U(· , ·), and thus solves the Cauchy
problem of (5.1), (5.2). 	


The proof of Proposition 5.2 resembles the arguments in [30]. For similar results,
see Section 3.5 in [39], Theorem 5.6.1 in [3,21,27,48]. We emphasize that the Hölder
exponent in Lemma 5.1 need not be 1/2, as often postulated in related questions.
Inspired by the observations made in Section 4.11 of [29], we expect that studying
solutions in the sense of distributions would allow us to weaken the assumption of
Hölder continuity in Proposition 5.2; this will be the subject of future research. Con-
siderable progress in this direction has been made by [53], indeed in a more general,
and multi-dimensional, setting.

This Cauchy problem of (5.1), (5.2) admits the trivial solution U(· , ·) ≡ 1; it may
have lots of other solutions. The onewe are interested in, the functionU (· , ·) defined in
(4.1), turns out to be its minimal nonnegative solution. The following characterization
of this function is analogous to the results in Problem 3.5.1 of [39] and in Exercise
4.4.7 of [33]; see also [18,19,48].

Proposition 5.2 yields directly the following corollary:

Corollary 5.3 (Continuity of density function) Under the conditions of Lemma 5.1,
the explosion time S has a continuous (sub-)probability density function.
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Proposition 5.4 (Upper bounds on U (· , ·), and minimality) The function U (· , ·),
defined in (4.1) as the tail of the distribution function of the explosion time S, is
dominated by every nonnegative classical supersolution U(·, ·) of the Cauchy problem
of (5.1), (5.2).

Furthermore, under the conditions of Lemma 5.1, the functionU (· , ·) is the smallest
nonnegative classical (super)solution of (5.1), (5.2).

Proof Consider any continuous function U : [0,∞) × I → [0,∞) of class
C1,2((0,∞) × I ) that satisfies the partial differential inequality

∂U
∂τ

(τ, x) ≥ s2(x)

2

∂2U
∂x2

(τ, x) + b(x)s(x)
∂U
∂x

(τ, x); (τ, x) ∈ (0,∞) × I,

as well as the initial condition U(0, ·) ≥ 1.
For any given T ∈ (0,∞), it is checked readily on the strength of this inequality

that the process U(T −(t∧ Sn), X (t∧ Sn)), 0 ≤ t ≤ T is a local Pξ -supermartingale;
as it is nonnegative, this process is actually a true Pξ -supermartingale, so

U(T, ξ) ≥ Eξ

[U(T − (T ∧ Sn), X (T ∧ Sn)
)]

≥ Eξ

[
1{Sn>T } U(0, X (T ))

] ≥ Pξ (Sn > T )

by optional sampling. Letting n ↑ ∞, we obtain the first claimed result frommonotone
convergence; the second then follows from Proposition 5.2. 	


If there are no explosions, then the Cauchy problem of (5.1), (5.2) actually has a
unique bounded classical solution.

Proposition 5.5 (Unique bounded solution) Assume that the function U(· , ·) ≡ 1 is
the smallest nonnegative classical solution of the Cauchy problem (5.1), (5.2), and
let V (· , ·) be any bounded classical solution of this Cauchy problem. Then we have
V (· , ·) ≡ U(· , ·) ≡ 1.

Proof Let V : [0,∞)× I → [−K , K ] be a bounded classical solution of the Cauchy
problem (5.1), (5.2), for some K ∈ (0,∞). Then the function V̂ (·, ·) = (

V (·, ·) +
K
)
/(1+K ) is a bounded, nonnegative classical solution of the same Cauchy problem,

so by assumption we must have V̂ (·, ·) ≥ 1.
Let us assume that V̂ (· , ·) is not identically equal to the constant function U(·, ·) ≡

1, so that we have K2 := sup(t,x)∈[0,∞)×(�,r) V̂ (t, x) ∈ (1, 2) . The function Ṽ (· , ·) =(
K2 − V̂ (·, ·))/(K2 −1) is then a classical solution of the Cauchy problem (5.1), (5.2)
with values in [0, 1], and not identically equal to the constant function U(· , ·) ≡ 1.
But this contradicts the assumption that the function U(· , ·) ≡ 1 is the smallest
nonnegative classical solution of the Cauchy problem (5.1), (5.2). 	


We note that it is not possible to remove the boundedness assumption in Proposi-
tion 5.5; see for example [47]. Bayraktar and Xing [5] characterize one-dimensional
time-homogeneous Cauchy problems with a unique solution. For the relevance of
super- and sub-solutions in the study of partial differential equations of parabolic type
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1048 I. Karatzas, J. Ruf

we refer to the recent paper by [4] and the references therein. Let us also note that the
characterizations of Propositions 5.4 and 5.5 are impervious to boundary conditions
at the endpoints of the state space I = (�, r) .

5.2 Connections with second-order ordinary differential equations

Let us consider now, for any given real number λ > 0, the Laplace transform or
“resolvent” of the function U (·, ξ) in (4.1), namely

Ûλ(ξ) =
∫ ∞

0
exp(−λT )U (T, ξ)dT =

∫ ∞

0
exp(−λT )Pξ (S > T )dT

= 1

λ

(
1 − Eξ

[
exp(−λS)

])
. (5.3)

Proposition 5.6 (Stochastic representation of a solution to an ordinary differential
equation) If the functions b(·) and s(·) are continuous on I , then the function Ûλ(·)
is of class C2(I ) and satisfies the second-order ordinary differential equation

s2(x)

2
u′′(x) + b(x)s(x)u′(x) − λu(x) + 1 = 0, x ∈ I. (5.4)

Proof For some fixed n ∈ N, we consider the ordinary differential equation

s2(x)

2
v′′(x) + b(x)s(x)v′(x) − λv(x) = 0, x ∈ (�n, rn) (5.5)

with boundary condition v(�n) = v(rn) = 0, and note that it has the unique solution
v(·) ≡ 0. To see why, let us assume that (5.5) has a non-constant solution v̂(·), and try
to arrive at a contradiction. This solution v̂(·)must have a local maximum orminimum
at some y ∈ (�n, rn)with v̂ ′(y) = 0; assuming that y is the location of a positive local
maximum with v̂(y) > 0, we obtain the absurdity 0 > s2(y) v̂ ′′(y) = 2λv̂(y). This
yields the asserted uniqueness.

Thereom 12.3.1 in [26] shows now that the differential equation in (5.4) has a
unique solution in (�n, rn) with boundary conditions u(�n) = g1 and u(rn) = g2 for
all n ∈ N and g1, g2 ∈ R.

Finally, we fix a ξ ∈ I and a sufficiently large n ∈ N so that ξ ∈ (�n, rn) and let
u(·) denote the solution of the differential equation in (5.4) with boundary conditions
u(�n) = Ûλ(�n) andu(rn) = Ûλ(rn). Simple stochastic calculus shows that the process

M(t) := exp
(− λ(t ∧ Sn)

) (
u
(
X (t ∧ Sn)

)− 1

λ

)
, 0 ≤ t < ∞ (5.6)

is a Pξ -local martingale; we conclude that M(·) is a uniformly integrable martingale,
as it is bounded. Since classical results, recalled in (7.2), yield Pξ (Sn < ∞) = 1, we
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obtain that

u(ξ) − 1

λ
= Eξ

[
exp(−λSn)

(
u(X (Sn)) − 1

λ

)]

= Eξ

[
exp(−λSn)

(
Ûλ(X (Sn)) − 1

λ

)]

= − 1

λ
Eξ

[
exp(−λSn) · EX (Sn)

[
exp(−λS)

]]

= − 1

λ
Eξ

[
exp(−λS)

] = Ûλ(ξ) − 1

λ
;

the result now follows. 	

For related results, see Theorem 5.9.3 in [28], and Theorem 13.16 on page 51 in

Volume II of [13]. Once again, the ordinary differential equation in (5.4) may have
lots of classical solutions, in addition to the obvious u(·) ≡ 1/λ.

The function of (5.3) we are interested in, turns out to be the smallest nonnegative
classical supersolution of (5.4).

Proposition 5.7 (Upper bounds on Ûλ(·), andminimality)The function Ûλ(·), defined
in (5.3) as the Laplace transform of the tail of the distribution function of the explosion
time S, is dominated by every nonnegative classical supersolution of the second-order
equation (5.4).

Furthermore, under the conditions of Proposition 5.6, the function Ûλ(·) is the
smallest nonnegative classical (super)solution of (5.4).

Proof Consider any function u : I → [0,∞) of class C2(I ) that satisfies

s2(x)

2
u′′(x) + b(x)s(x)u′(x) − λu(x) + 1 ≤ 0, x ∈ I.

Simple stochastic calculus shows that the process M(·), defined in (5.6), is now a
supermartingale, so

u(ξ) ≥ Eξ

[
exp(−λSn)

(
u(X (Sn)) − 1

λ

)]
+ 1

λ
≥ Eξ

[∫ ∞

0
exp(−λt)1{Sn>t}dt

]

=
∫ ∞

0
exp(−λt)Pξ (Sn > t)dt.

Letting n tend to infinity, we conclude that

u(ξ) ≥
∫ ∞

0
exp(−λt)P(S > t)dt = Ûλ(ξ)

holds for any given initial position ξ ∈ I ; the first claim follows. The second is a
consequence of Proposition 5.6. 	
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By analogy with the situation in Sect. 5.1, in the absence of explosions the second-
order equation (5.4) actually has a unique bounded solution.

Proposition 5.8 (Unique bounded solution) Assume that the function Ûλ(·) ≡ 1/λ
is the minimal nonnegative classical solution of the second-order equation (5.4), and
let u(·) be any bounded classical solution of (5.4). Then we have u(·) ≡ Ûλ(·) .
Proof This result can be proved in exactly the same manner as Proposition 5.5. 	


Again, it is not possible to remove the boundedness assumption in Proposition 5.8.
For instance, with I = R, s(·) ≡ √

2 , b(·) ≡ 0, and λ = 1 in (5.4), the (smallest
nonnegative and) unique bounded solution of the second-order equation (5.4) is of
course Ûλ(·) ≡ 1, but there is a host of unbounded solutions uκ,ϑ (x) = 1+κ exp(x)+
ϑ exp(−x) for all κ, ν ∈ R (nonnegative, as long as κ ≥ 0 , ϑ ≥ 0).

Finally, we remark that solving the ordinary differential equation in (5.5) has been
the standard way to compute Laplace transformations of the distributions of hitting
times, a computation that is a special case of the computation of the distributions of
explosion times; see for example [2,34,51].

5.3 Equivalent formulations for the Feller test

The next theorem summarizes several of our previous observations; it amounts to
an extended version of the celebrated Feller test for explosions, which we recall in
Appendix A.

Theorem 5.9 (Characterization of explosions) The following conditions are equiva-
lent:

(i) the diffusion process X (·) of (2.1) has no explosions, i.e., P(S = ∞) = 1 ;
(ii) w(�+) = w(r−) = ∞ hold for the “Feller test” function defined in (7.1) for

some c ∈ (�, r).

If the function f(·) of (2.3) is locally square-integrable on I , then conditions (i)–(ii)
are equivalent to:

(iii) the truncated exponential Po-supermartingale

Z �(T ) = exp

(∫ T

0
b(Xo(t))dWo(t) − 1

2

∫ T

0
b2(Xo(t))dt

)
· 1{So>T },

0 ≤ T < ∞,

appearing in (3.5), is a P
o-martingale.

If the functions s(·) and b(·) are continuous on I , conditions (i)–(iii) are equivalent
to:

(iv) the smallest nonnegative classical solution of the second-order differential equa-
tion in (5.4) is u(·) ≡ 1/λ ;

(iv)′ the unique bounded classical solution of the equation in (5.4) is u(·) ≡ 1/λ .
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If, in addition, the functions s(·) and b(·) are locally uniformly Hölder-continuous
on I , conditions (i)–(iv) are equivalent to:

(v) the smallest nonnegative classical solution of the Cauchy problem (5.1), (5.2) is
U(·, ·) ≡ 1 ;

(v)′ the unique bounded classical solution of the Cauchy problem (5.1), (5.2) is
U(·, ·) ≡ 1.

Proof The equivalence of (i) and (ii) is the subject of the Feller test for explosions
(see for example Theorem 5.5.29 in [33]). The equivalence of (i) and (iii) follows from
Theorem 3.2. Under the stated conditions, the equivalence of (i) and (iv) is covered
by Propositions 5.6 and 5.7; whereas the equivalence of (i) and (v) is covered by
Propositions 5.2 and 5.4. The equivalence of (iv) and (iv)′ (resp., (v) and (v)′) is the
subject of Proposition 5.8 (resp., Proposition 5.5). 	


It would be of some interest to have a more “circular” proof of this result, in
particular, a direct derivation of the Feller test (ii) fromone of theminimality properties
(iv), (v).

6 Examples

Let us consider some illustrative examples. In several of these examples, we will rely
on the Lamperti transformation, reviewed in Appendix B.

Example 6.1 (Reciprocal of Brownian motion) Let us take I = (0,∞) and

s(x) = −x2, b(x) = −x, (6.1)

implying f(x) = 1/x . With a given initial condition ξ ∈ (0,∞), the driftless equation
of (2.6) becomes

Xo(·) = ξ −
∫ ·

0

(
Xo(t)

)2 dWo(t),

and is easily seen to take values in I = (0,∞) for all times, as it is identified with the
reciprocal Xo(·) = 1/R(·) of the three-dimensional Bessel process

dR(t) = 1

R(t)
dt + dWo(t), R(0) = 1

ξ
.

In particular, the condition in (7.6) is satisfied, and we have P
o(So = ∞) = 1.

It has been known since the work of [31] that Xo(·) is a strict local martingale; and
the connection with the Bessel process allows the computation of the distribution of
Xo(T ) as in [14], namely

P(Xo(T ) ∈ dy)

= ξ

y3
√
2πT

(
exp

(
− ((1/y) − (1/ξ))2

2T

)
− exp

(
− ((1/y) + (1/ξ))2

2T

))
.
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On the other hand, with the choices of (6.1), the equation of (2.1) becomes

X (·) = ξ −
∫ ·

0
X2(t)dW (t) +

∫ ·

0
X3(t)dt , (6.2)

whereas the functions of Sect. 3.2 take the form F(x) = log(x) and V (·) ≡ 0. The
condition in (7.7) of the Feller test clearly fails in this case, sowe have P(S = ∞) < 1;
in fact, it follows from (3.7) that

P(S > T ) = 1

ξ
· Eo

[
1

R(T )

]
= 2

∫ 1/(ξ
√
T )

0

1√
2π

exp

(
−r2

2

)
dr =: U (T, ξ)

(6.3)

holds for 0 < T < ∞, so in fact P(S = ∞) = 0 . This is also quite straightforward
to check directly, as follows: we observe that (6.2) is of the special form

dX (t) = s(X (t))

(
dW (t) + 1

2
s′(X (t)) dt

)
, X (0) = ξ , (6.4)

or equivalently the function b(·) is of the form (8.1) with μ = 0. Following the
procedure of Appendix B, we see that (6.2) can be solved “pathwise” in terms of the
function ϑξ (w) = (w + (1/ξ))−1, namely as

X (t) = 1

W (t) + (1/ξ)
, 0 ≤ t < S .

Thus, the explosion time S is the first hitting time of the level (−1/ξ) by a standard
Brownian motion started at the origin, that is, the right-hand side of (6.3). Note that
the process explodes at S = limn↑∞ S′

n where S′
n = inf{t ≥ 0 : X (t) ≥ n}; the left

endpoint � = 0 of the state space is inaccessible by X (·). This is consistent with the
observation made in Proposition 7.1(i) since

∫ 1
0 s−1(z)dz = ∞ and

∫∞
1 s−1(z)dz =

1 < ∞.
Here, it is easy to verify “by hand” that the functionU (· , ·), defined in (6.3), satisfies

both the linear parabolic equation of (5.1), now in the form

∂U
∂τ

(τ, x) = x4

2

∂2U
∂x2

(τ, x) + x3
∂U
∂x

(τ, x), (τ, x) ∈ (0,∞) × I,

and the initial condition U(0+, x) ≡ 1 for all x ∈ I . (It also satisfies the lateral
condition U(T, 0+) ≡ 1 for all T ∈ (0,∞) but this is immaterial, as the left end-
point � = 0 of the state space is inaccessible.) The function of (6.3) is not the only
classical solution of this Cauchy problem, as U(·, ·) ≡ 1 is clearly a solution; from
Proposition 5.4, however, U (·, ·) is its smallest nonnegative classical solution.
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Let us consider next the second-order ordinary differential equation in (5.4), written
here as

x4

2
u′′(x) + x3u′(x) − λu(x) + 1 = 0 , x ∈ I. (6.5)

It is easy to see that a general solution of this differential equation takes the form

u(x) = A exp

(
−2λ

x

)
+ B exp

(
2λ

x

)
+ 1

λ
, x ∈ I

for some real constants A, B. We are interested in the smallest nonnegative solution
Ûλ(·) in (6.5), which we obtain by first setting B = 0 and then A = −1/λ. We thus
have

Ûλ(·) = 1

λ

(
1 − exp

(
−2λ

x

))
,

which is clearly smaller than the constant 1/λ. This illustrates the validity of the
characterization of an explosive diffusion in (v) of Theorem 5.9. 	

Example 6.2 (Stochastic equations of Bessel-type) With a given constant δ ∈
(−∞, 2) and state space I = (0,∞), let us consider the stochastic equation

dX (t) = δ − 1

2X (t)
dt + dW (t), X (0) = ξ. (6.6)

The solution of this equation does not explode to infinity, but reaches the origin
in finite time: P(S < ∞) = 1, where S = limn↑∞ S′

n with S′
n = inf{t ≥ 0 :

X (t) ≤ 1/n}. When δ ∈ (1, 2), this corresponds to a Bessel process, with “dimension
parameter” δ and absorption at the origin.

In our notation s(·) ≡ 1 and, with index ν = 1 − (δ/2) > 0, we have

f(x) = 1/2 − ν

x
, F(x) = log

(
x1/2−ν

)
, V (x) = ν2 − 1/4

2x2

in the notation of Sect. 3.2. The representation in (3.7) then helps us compute the
distribution of S as the expectation of a functional of the Brownian motion Xo(t) =
ξ + W (t), 0 ≤ t < So with So = inf{t ≥ 0 : ξ + W (t) = 0}; to wit,

P(S > T ) = E
o

[(
Xo(T )

ξ

)−2ν

·
(
Xo(T )

ξ

)ν+1/2

exp

(
1/4 − ν2

2

∫ T

0

dt

(Xo(t))2

)

×1{So>T }

]

= E
Qν

[(
Xo(T )

ξ

)−2ν
]

(6.7)

= 1

T
ξν exp

(−ξ2

2T

)∫ ∞

0
x1−ν exp

(−x2

2T

)
Iν

(
ξ x

T

)
dx . (6.8)
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Here, Qν is the probability measure under which the process Xo(·) is Bessel of
dimension 2ν +2 = 4− δ > 2 ; the change of measure is proved in Exercise XI.1.22,
and the density of the process Xo(·) is derived on page 446, of [46]. In (6.8) and
throughout the paper, we denote by Iν(·) the modified Bessel function of the second
type, namely

Iν(u) :=
∑

n∈N0

(u/2)ν+2n

n! �(n + ν + 1)
. (6.9)

Now with the help of the monotone convergence theorem and of the substitutions
z = x/

√
2T and y = ξ2/(2T ), the expression in (6.8) simplifies to

P(S > T ) = 2yν/2 exp (−y)
∫ ∞

0
z1−ν exp

(
−z2

)
Iν
(
2z

√
y
)
dz

= 2yν/2 exp (−y)
∞∑

k=0

yν/2+k

k! �(ν + k + 1)

∫ ∞

0
z1+2k exp

(
−z2

)
dz

= exp (−y)
∞∑

k=0

yν+k

�(ν + k + 1)

= 1

�(ν)

∫ y

0
exp (−θ) θν−1dθ = 1

�(ν)

∫ ξ2/(2T )

0
exp (−θ) θν−1dθ .

Thus, we have

P(S > T ) = P

(
G <

ξ2

2T

)
= Hν

(
ξ2

2T

)
, where Hν(u) :=

∫ u

0

tν−1 exp(−t)

�(ν)
dt

(6.10)

is the cumulative Gamma(ν) probability distribution function, and the random variable
G has Gamma distribution with parameter ν.

Of course, it is well known from the time-reversal considerations in Sect. 2.1 of
[24]—based on the results in [22,44]—that S has the distribution of ξ2/(2G); see
also Section 14 in [35]. Here we just derived this fact from rather elementary Bessel
process computations, with no need for time-reversal. Alternatively, Proposition 6.1 in
[55] yields the representation of the explosion time S as in (6.10) by using the identity
in (6.7) but now via a representation of negative powers as an integral of exponentials.

It can be checked “by hand” that the function (T, ξ) �→ Pξ (S > T ) =
Hν

(
ξ2/(2T )

)
in (6.10) is a classical solution of the linear parabolic equation

∂U
∂T

(T, ξ) = 1

2

∂2U
∂ξ2

(T, ξ) + δ − 1

2 ξ

∂U
∂ξ

(T, ξ), (T, ξ) ∈ (0,∞) × I,

and satisfies also the initial condition U(0+, ξ) = 1 for ξ ∈ I (as well as the lateral
condition U(T, 0+) = 0 for T ∈ (0,∞)). From Proposition 5.4, this function is the
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smallest nonnegative classical solution of the initial/boundary value problem under
consideration. 	


Remark 6.3 (A generalization of Example 6.2) Barndorff-Nielsen et al. [2] construct,
for a given set of parameters, a one-dimensional diffusion X (·) on the interval I =
(0,∞) such that the corresponding time to explosion S has a generalized Gamma
distribution. If the parameters are chosen so that the generalized Gamma distribution
is exactly a Gamma distribution, then their construction yields the Bessel process of
Example 6.2. 	


Example 6.4 (A generalization of Example 6.1, and h-transforms) The special case
I = (0,∞) and f(x) = 1/x , or equivalently b(x) = s(x)/x , corresponds exactly
to the situation in which the diffusion process X (·) of (2.1) is the h-transform of the
nonnegative local martingale and diffusion in natural scale Xo(·) of (2.6); see for
example [11] or Section 3.3 in [42]. We observe that Example 6.1 is a special case of
this setup. The above choices lead to F(x) = log(x) and V (·) ≡ 0 in the notation of
Sect. 3.2, and (3.7) becomes

P(S > T ) = 1

ξ
E
o [Xo(T ) · 1{So>T }

] = 1

ξ
E
o[ Xo(T ∧ So)

]
, 0 ≤ T < ∞.

(6.11)

This can be seen from first principles, as Xo(·) is a nonnegative local martingale,
which gets absorbed at the origin the first time it reaches it. Consequently, we have
P(S = ∞) = 1 if and only if the stopped diffusion in natural scale Xo(·) of (2.6) is a
martingale.

Let us recall from Proposition 7.1(iii) that we have w(∞) = ∞ and P(S = ∞) =
1 , if and only if the condition in (7.7) holds. That is, Xo(·) is a martingale, if and only
if the condition in (7.7) holds; see also [10]. Alternatively, we observe that the process
Y (·) = 1/X (·) satisfies the equation

Y (·) = 1

ξ
−
∫ ·

0
Y 2(t) · s

(
1

Y (t)

)
dW (t)

and reaches the origin if and only if

∫ 1

0

z

z4 s2(1/z)
dz = ∞,

by virtue of (7.6). This, however, is again equivalent to (7.7).
The equation for Y (·) can be solved by the familiar method of time-changing a

standard Brownian motion B(·), namely Y (t) = 1/ξ + B(A(t)); here

A(t) =
∫ t

0
h2(Y (s)) ds, 0 ≤ t < ∞ ,
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with h(y) := y2 s(1/y), is the inverse of the continuous, strictly increasing, real-
valued function

�(u) :=
∫ u

0
h−2

(
1

ξ
+ B(v)

)
dv, 0 ≤ u < ∞

with �(∞) = ∞. The explosion time S of X (·) is thus related to the first hitting time

τ := inf

{
u ≥ 0 : B(u) = − 1

ξ

}

for the auxiliary Brownian motion B(·) via
P(S > T ) = P

(
τ > A(T )

) = P
(
�(τ ) > T

)
. (6.12)

We now consider the special case s(x) = κx p for all x > 0 for some real numbers
κ > 0 , p > 0 . First, by (7.6), we observe that Xo(·) is a martingale and P(S = ∞) =
1, if and only if p ≤ 1, that is, the function s(·) grows at most linearly. We note that
in the case p = 1/2 we have

dX (t) = κ2dt + κ
√
X (t) dW (t), X (0) = ξ. (6.13)

In particular, with κ = 2 we see that X (·) is the square of a Bessel process in
dimension δ = 4.

For the case p > 1 = κ we would like to compute the distribution of the random
variable

�(τ ) =
∫ τ

0

(
x + B(t)

)μdt, where we have set x = 1

ξ
,

μ = 2p − 4, (6.14)

and thus the distribution of the explosion time S via (6.12). Let us consider two special
cases first.

(i) For the value p = 2, we have h(·) ≡ 1, �(u) ≡ u and P(S > T ) = P(τ > T ) is
given by (6.3).

(ii) For the value p = 3/2, Borodin and Salminen [6] provide in Formula (2.19.2) on
page 208 the distribution of the random variable

�(τ ) =
∫ τ

0

dv

ξ−1 + B(v)
as P

(
�(τ ) ∈ dt

) = 2

ξ t2
exp

(
− 2

ξ t

)
dt

or equivalently the distribution of the explosion time

P(S > T ) = P(�(τ ) > T ) = 1 − exp

(
− 2

ξT

)
= 1

ξ
· Eo [Xo(T )

]
, 0 < T < ∞

(6.15)

123



Distribution of the time to... 1057

for the diffusion

X (·) = ξ +
∫ ·

0

(
X (t)

)3/2dW (t) +
∫ ·

0

(
X (t)

)2dt,

thus Xo(·) = ξ+∫ ·
0(X

o(t))3/2dWo(t) ; a related diffusion is discussed inExample 6.8.
It is checked “by hand”, that the function U (T, ξ) = 1 − exp(−2/(ξT )) in (6.15)
satisfies the linear parabolic equation

∂U
∂T

(T, ξ) = s2(ξ)

(
1

2

∂2U
∂ξ2

(T, ξ) + 1

ξ

∂U
∂ξ

(T, ξ)

)
, (T, ξ) ∈ (0,∞) × I

(6.16)

subject to the initial condition U(0+, ·) ≡ 1 on I , for s(ξ) = ξ 3/2 ; from Proposi-
tions 5.2 and 5.4, the function U of (6.15) is the smallest nonnegative (super)solution
of the Cauchy problem.

In order to compute the distribution of the random variable �(τ ) of (6.14) in any
generality, the crucial observation, for which we are grateful to Marc Yor, is that for
any given x > 0, � > 0 and for standard Brownian motion B(·), the representation

(
x + B(t)

)2� = R

(
k
∫ t

0

(
x + B(s)

)μ ds

)
, 0 ≤ t ≤ τ (6.17)

holds, where R(·) is a Bessel process started in x2� with dimension

δ = 2 − 1

2�
, and k = 4�2, μ = 2

(
2� − 1

)
, x = 1/ξ. (6.18)

This is verified easily, via stochastic calculus and the dynamics in (6.6) for the
process R(·); consult alsoPropositionXI.1.11 in [46].However, now the representation
(6.17) identifies k �(τ ) as the first time the Bessel process R(·) visits the origin, and
(6.12), (6.14), (6.18) give the distribution of the explosion time S as

P
(
S > T ) = Hν

(
x 4�

2 k T

)
= Hν

(
2 ν2

T ξ 1/ν

)
,

with ν = 1 − δ

2
= 1

4�
and � = p − 1

2
> 0

in the notation of (6.10); see also [23,25,44], and Proposition 1 in [36]. Once again,
it is checked by hand that this function solves the Eq. (6.16) subject to the initial
condition U(0+, ·) ≡ 1 on I , for s(ξ) = ξ p, p > 1; and from Propositions 5.2, 5.4
that it is the smallest nonnegative (super)solution of this Cauchy problem. 	


In Example 6.4 (cf. (6.11)), we proved the following result, which appeared under
slightly stronger assumptions in [10].
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Corollary 6.5 (Martingale property of nonnegative diffusions in natural scale) Sup-
pose that the function 1/s(·) is locally square-integrable on I = (0,∞) , and that
Xo(·) is a nonnegative Po-local martingale which satisfies the stochastic differential
equation

Xo(·) = ξ +
∫ ·

0
s
(
Xo(t)

)
dWo(t)

of (2.6), and becomes absorbed at the origin the first time it gets there. Then Xo(·) is
a true Po−martingale, if and only if the condition of (7.7) holds, namely

∫ ∞

1

z dz

s2(z)
= ∞.

Example 6.6 (Lamperti transformation for affine variance diffusions) Let us consider
a modification of the stochastic differential equation (6.13), namely I = (0,∞) and

dX (t) = κ2

4
dt + κ

√
X (t) dW (t), X (0) = ξ ∈ (0,∞) (6.19)

for some κ > 0. This corresponds to s(x) = κ
√
x , b(x) = κ/

(
4
√
x
)
, thus

f(x) = 1

4x
, F(x) = 1

4
log(x), and V (x) = − 3κ2

32x
.

We note that b(x) = s′(x)/2 holds, and thus Appendix B applies. The result is
X (·) = ϑξ (W (·)), now in terms of the function

ϑξ (w) =
( κ

2
w +√ξ

)2
, namely X (t) =

( κ

2
W (t) +√ξ

)2
, 0 ≤ t < S.

It follows that S is the first hitting time of the point (−2
√

ξ /κ) by standard Brown-
ian motion started at the origin. Thus, the process X (·) explodes by hitting the left
endpoint 0 of the state space; the right endpoint ∞ is inaccessible by the diffusion
X (·); that is, X (S−) = 0. Of course, this is again consistent with Proposition 7.1(i)
since

∫ 1
0 s−1(z)dz = 2κ < ∞ and

∫∞
1 s−1(z)dz = ∞.

From (3.7), we conclude that

P(S > T ) = 2
∫ 2

√
ξ/(κ

√
T )

0

1√
2π

exp

(
− y2

2

)
dy

= E
o

[(
Xo(T )

ξ

)1/4

exp

(
3κ2

32

∫ T

0

dt

Xo(t)

)
· 1{So>T }

]

; (6.20)

here Xo(·) is a martingale and diffusion in natural scale with

dXo(t) = κ
√
Xo(t) dWo(t), Xo(0) = ξ.
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Once again, it is easy to check by direct computation that the function of (6.20)
solves the linear parabolic equation of (5.1), namely

∂U
∂τ

(τ, x) = κ2x

2

∂2U
∂x2

(τ, x) + κ2

4

∂U
∂x

(τ, x), (τ, x) ∈ (0,∞) × I,

subject to the initial condition U(0+, x) = 1 for x ∈ I (and to the lateral condition
U(T, 0+) = 0 for T ∈ (0,∞)). Arguing then by analogy with Proposition 5.4, it is
checked that the function of (6.20) is the smallest nonnegative classical solution of
this initial/boundary value problem. 	

Example 6.7 (Diffusion with quartic variance function) Let us consider, for some
given real number μ ∈ R, the stochastic differential equation

dX (t) = (1 + X2(t)
)[
dW (t) + (μ + X (t)) dt

]
, X (0) = ξ (6.21)

of the form (2.1) with s(x) = 1 + x2 and b(x) = μ + x for all x ∈ I = R . In this
case the diffusion in natural scale

dXo(t) =
(
1 + (Xo(t))2

)
dWo(t), Xo(0) = ξ

of (2.6) does satisfy Po(So = ∞) = 1 but does not satisfy the condition of (7.7): it is
a strict local martingale, studied for example in [8]. We have

f (x) = μ + x

1 + x2
, F(x) = μ tan−1(x) + log(1 + x2)

2
, V (x) = 1 + μ2

2
,

in the notation of Sect. 3.2. Then (3.7) and Corollary 1 and Lemma 2 in [8], which
provide a distributional identity of the local martingale Xo(·) in terms of the Brownian
motion Wo(·), applied with

g̃(x) = cos(x + c)/ cos(c),

f̃ (x) = tan(x + c), h̃(x) = (1 + x2)1/2 exp(μ tan−1(x))

and C = 1, where c = tan−1(ξ), yield the representation

P(S > T )

= E
o

[(
1 + (Xo(T ))2

1 + ξ2

)1/2

exp

(
μ tan−1 (Xo(T )

)− μ tan−1(ξ) − 1 + μ2

2
T

)]

= E
o
[
exp

(
μWo(T ) − μ2T

2

)
1{τ o>T }

]

with τ o the first time that Wo(·) hits either

a = a(ξ) := −(π/2) − tan−1(ξ) or b = b(ξ) := (π/2) − tan−1(ξ).
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Alternatively, we observe that the function b(·) is of the form (8.1), and thus,
following Appendix B,

X (t) = tan
(
W (t) + μt + tan−1(ξ)

)
, 0 ≤ t < S

identifies the explosion time as a first exit time for Brownian motion with drift

S = inf
{
t ≥ 0 : W (t) + μt /∈ (a, b)

}

from the open interval (a, b). Formula (3.0.2) on page 309 of [6] now computes the
distribution of this exit time as

P(S > T ) =
∫ ∞

T
exp

(−μ2t

2

) (
exp(μa)� (t; b, b − a)

+ exp(μb)� (t;−a, b − a)
)
dt , (6.22)

where

�(t; u, v) :=
∑

k∈Z

v − u + 2kv√
2π t3

exp

(

− (v − u + 2kv)2

2t

)

denotes a certain inverse Laplace transform.
In this example, the explosion time S has actually finite expectation. From Propo-

sitions 5.2 and 5.4, the function on the right-hand side of (6.22) is the smallest
nonnegative classical solution of the Cauchy problem

∂U
∂τ

(τ, x) = (1 + x2)2

2

∂2U
∂x2

(τ, x)

+(μ + x)(1 + x2)
∂U
∂x

(τ, x), (τ, x) ∈ (0,∞) × R

with boundary condition U(0, x) = 1 for all x ∈ R. 	

Example 6.8 (Diffusionwith cubic variance function) In a similarmanner,we consider
the stochastic differential equation

dX (t) = (X (t)
)3/2

[
dW (t) +

(
μ + 3

4

(
X (t)

)1/2
)
dt

]
, X (0) = ξ ∈ I

with state space I = (0,∞), for some given real number μ ∈ R. This equation is of
the form (2.1) with s(x) = x3/2, b(x) = μ + (3/4)x1/2, and the diffusion in natural
scale

dXo(t) = (Xo(t)
)3/2dWo(t), Xo(0) = ξ
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of (2.6) satisfies the conditions of (7.6). We note that

f(x) = μ

x3/2
+ 3

4x
, F(x) = −2μ√

x
+ log(x3/4), V (x) = μ2

2
− 3x

32

in the notation of Sect. 3.2, so (3.7) gives the representation

Pξ (S > T ) = exp

(
2μ√

ξ
− μ2T

2

)

×E
o

[(
Xo(T )

ξ

)3/4

exp

(
3

32

∫ T

0
Xo(T )dt − 2μ√

Xo(T )

)]

.

This probability can be computed explicitly via the observations in Appendix B.
We obtain the diffusion X (·) explicitly as

X (t) =
(

1√
ξ

− 1

2

(
W (t) + μt

))−2

, 0 ≤ t < S.

This shows that the origin is inaccessible by the diffusion X (·), which can thus only
explode to infinity, consistent with Proposition 7.1(i). The explosion happens at the
Brownian first passage time

S = inf

{
t ≥ 0 : W (t) + μt = 2√

ξ

}
,

whose distribution is of course well known, namely

Pξ (S > T ) = 1 −
∫ T

0

(
2

πξ t3

)1/2

exp

(

− 1

2t

(
2√
ξ

− μt

)2
)

dt =: U (T, ξ);

see also Section 3.5.C in [33]. In particular, with μ < 0 we have P(S < ∞) =
exp(4μ/

√
ξ); whereas, with μ ≥ 0, we have P(S < ∞) = 1. It is checked by direct

computation, that the above function U (·, ·) solves the parabolic partial differential
equation

∂U
∂τ

(τ, x) = x3

2

∂2U
∂x2

(τ, x) +
(

μx3/2 + 3

4
x2
)

∂U
∂x

(τ, x), (τ, x) ∈ (0,∞) × R

with boundary condition U(0, x) ≡ 1 for all x ∈ I ; indeed, from Proposition 5.4,
U (· , ·) is the smallest nonnegative (super)solution of this linear parabolic equation.

We remark that a related example is discussed in Corollary 1 of [1]. 	

Example 6.9 (Explosion to infinity) Let us now consider the situation with I = R,
s(·) ≡ 1 and b(x) = exp(βx) for some β > 0. In this case the Brownian motion
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Xo(·) = ξ + Wo(·) has no explosions, i.e., Po(So = ∞) = 1; the process X (·) with
dynamics

X (·) = ξ +
∫ ·

0
exp
(
βX (t)

)
dt + W (·)

explodes (to +∞) in finite time, that is P(S < ∞) = 1; and

P(S > T ) = E
o
[
exp

(
1

β

(
eβXo(T ) − eβξ

)
− β

2

∫ T

0
eβXo(t)dt − 1

2

∫ T

0
e2βXo(t)dt

)]

holds for all T ∈ (0,∞). From Formula (1.30.7) on page 196 in [6], we obtain the
distribution of the explosion time as

P(S > T ) = β2
∫ ∞

−∞

∫ ∞

0

exp
(
(eβz − eβξ )/β − (βy/2)

)

8 sinh(βy/2)
exp

(
− eβξ + eβz

β tanh(βy/2)

)

×iβ2T/8

(
2eβ(ξ+z)/2

β sinh(βy/2)

)

dy dz ,

where

it (z) := L−1
t

(
I√t (z)

)

= z exp(π2/(4t))

π
√

π t

∫ ∞

0
exp

(
−z cosh(u) − u2

4t

)
sinh(u) sin

(πu

2t

)
du

denotes an inverse Laplace transform related to the modified Bessel function of the
second type in (6.9). We obtain

P(S > T ) = 2 exp(2π2/(β2T ))
√
2η

πβ
√

πT

∫ ∞

0

∫ ∞

0

∫ ∞

0

exp
(
ζ 2 − η2 − ψ

)

(sinh(ψ))2

× exp

(
− η2 + ζ 2

tanh(ψ)

)
· exp

(
− 2ηζ

cosh(u)

sinh(ψ)
− 2u2

β2T

)
sinh(u)

× sin

(
4πu

β2T

)
du dψ dζ,

after applying the substitutions of βy/2 by ψ , and of exp(βz/2)/
√

β by ζ , and the
change of variable η = exp (βξ/2) /

√
β . 	


Appendix A: Feller test

A well-known criterion for deciding whether the diffusion X (·) can explode or not
(to wit, whether we have P(S < ∞) > 0 or P(S < ∞) = 0) is Feller’s test; see
Theorem 5.5.29 in [33]. This criterion relies on the Feller test function defined as
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w(x) :=
∫ x

c

(
exp (2F(z))

s2(z)

(∫ x

z
exp
(− 2F(y)

)
dy

))
dz, x ∈ I (7.1)

for some fixed constant c ∈ I , where F(·) is the function of (2.4). Feller’s test then
states that P(S = ∞) = 1 holds, if and only if w(�+) = w(r−) = ∞ . Moreover,
the finiteness or nonfiniteness of w(·) does not depend on the choice of the constant
c. Alternative characterizations are discussed in Sect. 5.3.

Since the function 1/s2(·) is locally square-integrable thanks to the assumption in
(2.2), and since the anti-derivative F(·) is continuous, we have w(�n) + w(rn) < ∞
and, in particular,

P(Sn < ∞) = 1, (7.2)

for all n ∈ N; in fact, we even have E[Sn] < ∞, see Proposition 5.5.32 in [33].
There are several situations in which the Feller test functionw(·) can be simplified:

• If the function s(·) is differentiable and b(·) = a s′(·) for some a ∈ R , then

w(x) =
∫ x

c

(
s2a−2(z)

∫ x

z
s−2a(y)dy

)
dz.

In particular, we have the following two special cases:
– a = 1/2:

w(x) =
∫ x

c

(
1

s(y)

∫ y

c

1

s(z)
dz

)
dy = 1

2

(∫ x

c

1

s(z)
dz

)2

; (7.3)

– a = 1:

w(x) =
∫ x

c

z − c

s2(z)
dz.

• If b(·) = a s(·) for some a ∈ R \ {0}, then

w(x) = 1

2a

∫ x

c

1 − exp(2a(z − x))

s2(z)
dz .

• If b(x) = a s(x)/x for all x ∈ R for some a ∈ R\{1/2}, then

w(x) = 1

1 − 2a

∫ x

c

x(z/x)2a − z

s2(z)
dz . (7.4)

In particular, with a = 0, we have

w(x) =
∫ x

c

x − z

s2(z)
dz . (7.5)
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From these observations we obtain the following useful corollary.

Proposition 7.1 (Conditions for explosions in special cases) Feller’s test simplifies
in the following cases:

(i) Suppose that the function s(·) is differentiable (without loss of generality, we then
assume that s(·) > 0 on I ), and that b(·) = s′(·)/2 . Then P(S = ∞) = 1 holds,
if and only if for some c ∈ I we have

∫ c

�

dz

s(z)
= ∞ =

∫ r

c

dz

s(z)
.

(ii) Suppose that I = (0,∞) and b(·) = 0. Then w(0+) = ∞ holds, if and only if
we have

∫ 1

0

z

s2(z)
dz = ∞; (7.6)

moreover, w(∞) = ∞. Therefore, P(S = ∞) = 1 holds in this case, if and only
if (7.6) does.

(iii) Suppose that I = (0,∞) and b(x) = s(x)/x for all x ∈ I . Then w(∞) = ∞
holds, if and only if we have

∫ ∞

1

z

s2(z)
dz = ∞; (7.7)

moreover, w(0+) = ∞ . Therefore, P(S = ∞) = 1 holds in this case, if and
only if (7.7) does.

Proof Part (i) is an application of the identity in (7.3) and Feller’s test. For part (ii),
we first observe that the conditionw(0+) = ∞ , along with the representation in (7.5)
with c = 1, imply that (7.6) holds. For the reverse direction, we assume that (7.6)
holds and define m(y) := ∫ 1y s−2(z)dz for all y ∈ [0, 1]. If lim supy↓0(ym(y)) < ∞
holds, then w(0+) = ∞ by (7.5) with c = 1. If lim supy↓0(ym(y))) = ∞ holds, we
observe that we may rewrite (7.5) as

w(0+) = lim
x↓0

∫ 1

x

z − x

s2(z)
dz = lim

x↓0

(∫ 1

x

∫ z

x

1

s2(z)
dy

)
dz

=
∫ 1

0
m(y)dy ≥

∫ y

0
m(y)dy ≥ ym(y)

for all y ∈ [0, 1], which yields w(0+) = ∞. Moreover, we have w(x) ≥ (x −
2)
∫ 2
1 s−2(z)dz for all x ≥ 2, which yields w(∞) = ∞.
For part (iii), we use (7.4) with a = 1 and c = 1 to obtain the representation

w(x) =
∫ x

1

z − z2/x

s2(z)
dz =

∫ x

1

(
1

y2

∫ y

1

z2

s2(z)
dz

)
dy. (7.8)
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In the samemanner as abovewe havew(0+) = ∞ under (7.7), and need only show
that (7.7) implies w(∞) = ∞ . We may assume again lim supy↑∞(k(y)/y) = ∞,
where k(y) = ∫ y

1 z2s−2(z)dz for all y ∈ [1,∞), as otherwise the statement is clear.
Under this assumption, we obtain from (7.8) that

w(∞) ≥
∫ ∞

y

k(z)

z2
dz ≥ k(y)

∫ ∞

y

dz

z2
= k(y)

y

holds for all y ≥ 1, which concludes the proof. 	

Of course, additional statements in the form of the last proposition can be proved;

we focused here on those needed in the body of the paper. An alternative proof of the
equivalence in part (ii) under slightly stronger assumptions and using the Ray–Knight
theorem, appears in Theorem 1.4 of [10]. In Example 6.4, we discuss the setup of
part (iii) in Proposition 7.1, and its connection to part (ii) will then become clearer;
see also Corollary 6.5.

Appendix B: Explosions as Brownian exits via Lamperti transformations

In Sect. 3.1 we saw how to remove drifts by changing the underlying probability
measure. We discuss now ways to transform the dispersion term into a constant, by
distorting the space as Y (·) = h(X (·)), for some strictly increasing and continuous
function h : (�, r) → (�̃, r̃ ) and suitable −∞ ≤ �̃ < r̃ ≤ ∞. We shall assume in this
section that the function s(·) is continuously differentiable on the interval I = (�, r);
without loss of generality, we shall also assume that s(·) is strictly positive.

We shall consider the function

hc(x) =
∫ x

c

dz

s(z)
, x ∈ (�, r)

for some c ∈ (�, r). We observe that hc(·) is strictly increasing and twice differ-
entiable. We set �̃ = hc(�) := limx↓� hc(x) ∈ [−∞,∞) and r̃ = hc(r) :=
limx↑r hc(x) ∈ (−∞,∞] and define the process Y (·) via

Y (t) := hc(X (t)) for all t ∈ [0, S) and Y (t) = lim
u↑S hc(X (u)) for all t ∈ [S,∞).

It is clear that limt↑S Y (t) ∈ {�̃, r̃ } holds on {S < ∞}, and that the new process Y (·)
leaves its state space Ĩ := (�̃, r̃ ) at exactly the time S. In particular, the (distribution
of the) explosion time S of X (·) is exactly the (distribution of the) explosion time S̃
of Y (·).

With ϑc : Ĩ → I denoting the inverse function of hc, simple stochastic calculus
yields that

dY (t) =
(
b(ϑc(Y (t))) − s′(ϑc(Y (t)))

2

)
dt + dW (t), Y (0) = hc(ξ) =: ξ̃ ∈ Ĩ
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hold for all t ∈ [0, S). In particular, with the function ν : Ĩ → I defined by

ν(y) := b(ϑc(y)) − 1

2
s′(ϑc(y)) , y ∈ Ĩ

we have the simple dynamics

dY (t) = ν(Y (t))dt + dW (t), Y (0) = hc(ξ) = ξ̃

for all t ∈ [0, S). As [37] stresses (see also Section 3.4 in [39]), this equation can be
solved pathwise by simple Picard iterations,without any need for stochastic integration
or other probabilistic tools, as long as the function ν(·) is Lipschitz continuous. In
particular, if

b(·) = 1

2
s′(·) + μ (8.1)

for some constant μ ∈ R, the computation of the time to explosion reduces to to
computing the distribution of the time to explosion for a Brownian motion with drift.

This approach has been generalized in an effort to study the pathwise solvability
of stochastic differential equations by [12,32,37,52].

Appendix C: A technical result on uniqueness in distribution

In this appendix,we revisit the diffusion Xo(·)of Sect. 2.1. Theorem5.5.7 in [33] yields
the uniqueness in the sense of the probability distribution of the stochastic integral
equation in (2.6); however, the proof of Theorem 3.2 requires a slightly stronger
uniqueness statement. Towards this end, and using the notation of the paragraph right
before Theorem 3.2, we call a function ϑ : C([0,∞)) → [0,∞] a stop-rule, if

{
w ∈ C([0,∞)) : ϑ(w) ≤ t

} ∈ Bt := ϕ−1
t (B) holds for all 0 ≤ t < ∞ .

Proposition 9.1 (Uniqueness up to stopping times)Letϑ denote a stop-rule satisfying
w(t) ∈ I for all w ∈ C([0,∞)) and 0 ≤ t < ϑ(w). The solution of the “stopped”
version of the stochastic integral equation in (2.6), namely

X̂(·) = ξ +
∫ ·∧ϑ(X̂)

0
s
(
X̂(t)

)
dŴ (t) , (9.1)

is unique in the sense of the probability distribution.

Proof Let us consideranyweak solutionof (9.1) anddenote� = ϑ(X̂). The solvability
of (9.1) implies that the time change A(·) := ∫ ·

0 s
2(X̂(t))1{�>t}dt is well-defined, and
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we note that this process is the quadratic variation of the continuous local martingale
M(·) = ∫ ·

0 s(X̂(t))1{�>t}dŴ (t).
According to theDambis–Dubins–Schwarz theory (see Theorem3.4.6 and Problem

3.4.7 in [33]) there exists a standard Brownian motion B(·) on (an extension of) the
underlying probability space, such that

X̂(·) = ξ +
∫ ·

0
s
(
X̂(t)

)
1{�>t}dŴ (t) = ξ + B(A(·)).

We consider now the inverse time change �(θ) := inf{t ≥ 0 : A(t) > θ} for all
0 ≤ θ < A(�) and �(θ) := ∞ for all θ ≥ A(�), and note that

�′(θ) = 1

A′(�(θ))
= 1

s2
(
X̂(�(θ))

) , thus �(θ) =
∫ θ

0

dr

s2(ξ + B(r))

for all 0 ≤ θ < A(�). Next, we define the function s∗(x) := s(x)1(�,r)(x)+1R\(�,r)(x)
and the corresponding time change

�∗(θ) =
∫ θ

0

dr

s2∗(ξ + B(r))
, 0 ≤ θ < ∞,

along with its inverse A∗(t) := inf{θ ≥ 0 : �∗(θ) > t} for all 0 ≤ t < ∞.
We note that we have the ordinary integral equations

A(· ∧ �) =
∫ ·∧�

0
s2
(
ξ + B(A(t))

)
dt,

A∗(· ∧ �∗(τ )) =
∫ ·∧�∗(τ )

0
s2
(
ξ + B(A∗(t))

)
dt (9.2)

in the notation of (2.7). We also have � ≤ �∗(τ ), a consequence of our assumption
that ξ + B(A(t)) ∈ I for all t < �. The uniqueness of solutions to (9.2) implies
then A(· ∧ �) = A∗(· ∧ �); therefore, the process X∗(·) := ξ + B(A∗(·)) satisfies
X̂(·) = X̂(· ∧ �) = X∗(· ∧ �) and

� = ϑ
(
X̂(·)) = ϑ

(
X̂(· ∧ �)

) = ϑ (X∗(· ∧ �)) = ϑ (X∗(·)) .

We note that the process A∗(·) is FB(∞)−measurable, thus so is X∗(·) and hence
also X̂(·). In particular, the distribution of X̂(·) is determined uniquely. 	
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