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Abstract We are interested in the clusters formed by a Poisson ensemble of Markov-
ian loops on infinite graphs. This model was introduced and studied in Le Jan (C R
Math Acad Sci Paris 350(13–14):643–646, 2012, Ill J Math 57(2):525–558, 2013). It
is a model with long range correlations with two parameters α and κ . The non-negative
parameter α measures the amount of loops, and κ plays the role of killing on vertices
penalizing (κ > 0) or favoring (κ < 0) appearance of large loops. It was shown in Le
Jan (Ill J Math 57(2):525–558, 2013) that for any fixed κ and large enough α, there
exists an infinite cluster in the loop percolation onZd . In the present article, we show a
non-trivial phase transition on the integer latticeZd (d ≥ 3) for κ = 0.More precisely,
we show that there is no loop percolation for κ = 0 and α small enough. Interestingly,
we observe a critical like behavior on the whole sub-critical domain of α, namely,
for κ = 0 and any sub-critical value of α, the probability of one-arm event decays at
most polynomially. For d ≥ 5, we prove that there exists a non-trivial threshold for
the finiteness of the expected cluster size. For α below this threshold, we calculate, up
to a constant factor, the decay of the probability of one-arm event, two point function,
and the tail distribution of the cluster size. These rates are comparable with the ones
obtained from a single large loop and only depend on the dimension. For d = 3 or 4,
we give better lower bounds on the decay of the probability of one-arm event, which
show importance of small loops for long connections. In addition, we show that the
one-arm exponent in dimension 3 depends on the intensity α.
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1 Introduction

Consider an unweighted undirected graph G = (V, E) and a random walk (Xm,m ≥
0) on it with transition matrix Q. Unless specified, we will assume that (Xm,m ≥ 0)
is a simple random walk (SRW) on Z

d .
As in [17], an element �̇ = (x1, . . . , xn) ofV n, n ≥ 2, satisfying x1 �= x2, . . . , xn �=

x1 is called a non-trivial discrete based loop. Two based loops of length n are equivalent
if they coincide after a circular permutation of their coefficients, i.e., (x1, . . . , xn) is
equivalent to (xi , . . . , xn, x1, . . . , xi−1) for all i . Equivalence classes of non-trivial
discrete based loops for this equivalence relation are called (non-trivial) discrete loops.

Given an additional parameter κ > −1, we associate to each based loop �̇ =
(x1, . . . , xn) the weight

μ̇κ (�̇) = 1

n

(
1

1 + κ

)n

Qx1
x2 · · · Qxn−1

xn Qxn
x1 . (1)

The push-forward of μ̇κ on the space of discrete loops is denoted by μκ . (Note that
our parameter κ in (1) corresponds to κ

2d in [17].)
For α > 0 and κ > −1, letLα,κ be the Poisson loop ensemble of intensity αμκ , i.e,

Lα,κ is a random countable collection of discrete loops such that the point measure∑
�∈Lα,κ

δ� is a Poisson random measure of intensity αμκ . (Here, δ� means the Dirac
mass at the loop �.) The collection Lα,κ is induced by the Poisson ensemble of non-
trivial continuous loops defined by Le Jan [16].

The Poisson ensembles of Markovian loops were introduced informally by
Symanzik [29]. They have been rigorously defined and studied by Lawler and Werner
[13] in the context of two dimensional Brownian motion (the Brownian loop soup).
The random walk loop soup on graphs was studied by Lawler and Limic [11, Chap-
ter 9], and its convergence to the Brownian loop soup by Ferreras and Lawler [12].
Extensive investigation of the loop soup on finite and infinite graphs was done by Le
Jan [14,15] for reversible Markov processes, and by Sznitman [32] in the context of
reversible Markov chains on finite graphs from the point of view of occupation field
and relation with random interlacement. A comprehensive study of Poisson ensembles
of loops of one-dimensional diffusions was done by Lupu [19]. Let us also mention
the works of Sheffield andWerner [28] and Camia [3], who studied clusters in the two
dimensional Brownian loop soup.

In this paper we are interested in percolative properties of clusters formed by Lα,κ

on Z
d , motivated by the work of Le Jan and Lemaire [17]. An edge e ∈ E is called

open for Lα,κ if it is traversed by at least one loop from Lα,κ . Maximal connected
components of open edges forLα,κ formopen clusters Cα,κ of vertices. The percolation
probability is defined as

θ(α, κ)
def= P[#Cα,κ (0) = ∞].
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Phase transition in loop percolation 981

Fig. 1 Illustration of critical
curve α �→ κc(α) in Zd (d ≥ 3)

It is known that θ(α, κ) is an increasing function of α and a decreasing function of
κ , see [17, Proposition 4.3]. In particular, if we define the critical thresholds

αc(κ) = inf{α ≥ 0 : θ(α, κ) > 0} and κc(α) = inf{κ ≥ −1 : θ(α, κ) = 0},

then θ(α, κ) = 0 for α < αc(κ) or κ > κc(α), and θ(α, κ) > 0 for α > αc(κ) or
κ < κc(α), αc(κ) is non-decreasing in κ and κc(α) is non-decreasing in α. The first
properties of these thresholds were proved by Le Jan and Lemaire [17, Proposition 4.3,
Remark 4.4]:

• for fixed κ , αc(κ) < ∞, i.e., for large enough α there is an infinite open cluster,
• for fixed α, κc(α) < ∞, i.e., there is no infinite open cluster for large enough κ ,
• on Z

2, for any α, κc(α) ≥ 0.

This picture can be complemented with the following result.

Theorem 1.1 For simple random walk loop percolation on Z
d , d ≥ 3,

1. αc
de f= αc(0) > 0,

2. for any α > 0, κc(α) ≥ 0,

i.e., the percolation phase transition is non-trivial, see Fig. 1.
In contrast, for any connected recurrent 1 graph G, for κ = 0 and α > 0, with

probability 1, all the vertices are in the same open cluster.

The first statement of Theorem 1.1 will directly follow from further stronger results
of Theorem 1.3 that for some positive value of α, the one arm probability tends to 0
polynomially, the second statement will be proved in Proposition 3.4, and the third in
Proposition 7.3. We should mention that during the write up of this paper, Titus Lupu
posted a paper [20] in which he proves that for the loop percolation on Z

d , d ≥ 3,
αc ≥ 1

2 using a new coupling between the loop percolation and the Gaussian free field.
Later in Theorem 1.7 we provide an asymptotic expression for αc as the dimension
d → ∞.

The loop percolation on Z
d , d ≥ 3, has long range correlations, see Propo-

sition 3.1, it is translation invariant and ergodic with respect to the lattice shifts,
see Proposition 3.2, it satisfies the positive finite energy property, and thus there

1 A graph G is called recurrent if the simple random walk on G is recurrent.
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982 Y. Chang, A. Sapozhnikov

can be at most one infinite open cluster, see Proposition 3.3. It is worth to make
a comparison with other percolation models with long range correlations, which
have been recently actively studied, for instance, the vacant set of random interlace-
ments [30] or the level sets of the Gaussian free field [2,25]. As we will soon see
from our main results, the loop percolation displays a rather different behavior in
the sub-critical regime than the above mentioned models. The decay of the one-arm
probability in the loop percolation is at most polynomial, and in the other models
it is exponential or stretched exponential, see [22,23]. The latter is a consequence
of the so-called decoupling inequalities [22,23,31]. They are pivotal in the study of
phase transitions in those models, but could not be applicable to the questions of this
paper.

For x, y ∈ V , we write x
Lα,κ←→ y if y ∈ Cα,κ (x) (equivalently, x ∈ Cα,κ (y)). For

two vertex sets A and B, the notation A
Lα,κ←→ B means that there exist x ∈ A and

y ∈ B such that x
Lα,κ←→ y. For a vertex x and a set of vertices B, we write x

Lα,κ←→ B

instead of {x} Lα,κ←→ B.
Our main object of interest in this paper is the one arm probability for the loop

percolation on Z
d with α < αc and κ = 0:

P[0 Lα,0←→ ∂B(0, n)],

where ∂B(0, n) is the boundary of the box of side length 2n centered at 0. A general
lower bound for α > 0 can be obtained by calculating the probability of connection
by one big loop in Lα,0:

Theorem 1.2 For d ≥ 3, α > 0 and κ = 0, there exists c = c(d) > 0 such that for
all n ≥ 1,

P[0 Lα,0←→ ∂B(0, n)] ≥ P[∃�∈ Lα,0 : � intersects both 0 and ∂B(0, n)] ≥ α · c · n2−d .

It is interesting that we have in the same model a non-trivial phase transition together
with an at most polynomial decay of one-arm connectivity for sub-critical domain.
This critical-like behavior might be understood in the following way. By the second
statement of Theorem 1.1, for any α > 0, κc(α) ≥ 0. Thus, ]0, αc[×{0} is a part of
the critical curve of (α, κ), see Fig. 1. This polynomial decay phenomenon appears
exactly at the critical value 0 of the parameter κ .

It is natural to consider whether n2−d is the right order of P[0 Lα,0←→ ∂B(0, n)]. We
cannot give an answer for the whole sub-critical domain. We introduce an auxiliary
parameter as follows: for d ≥ 3,

α1 = α1(d)
def= sup

β>1
inf

{
α > 0 : lim sup

n→∞
P[B(0, n)

Lα,0←→ ∂B(0, 
βn�)] = 1

}
.

Our first step is the following polynomial upper bound:
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Phase transition in loop percolation 983

Theorem 1.3 (a) For d ≥ 3, α1 > 0.
(b) For d ≥ 3 and α < α1, there exist constants C(d, α) < ∞ and c(d, α) > 0 such

that limα→0 c(d, α) = d − 2 and for N ≥ 1,

P[0 Lα,0←→ ∂B(0, N )] ≤ C(d, α) · N−c(d,α).

In fact, one can take c(d, α) = d − 2−C(d)(log 1
α
)−1 as α → 0, where C(d) is

a large enough constant.

By Theorem 1.2, c(d, α) ≤ d−2, and Theorem 1.3 suggests that d−2 could probably
be the right exponent for the one-arm decay. This is indeed the case when the expected
cluster size is finite, see Theorem1.4. To state the result, we introduce another auxiliary
parameter corresponding to the finiteness of expected cluster size:

α# = α#(d)
def= sup{α > 0 : E[#Cα,0(0)] < ∞}. (2)

Our next result provides the strict positivity of α# and the order of one-arm decay for
d ≥ 5 together with the order of two point connectivity, the tail of cluster size and
comparison between α# and α1:

Theorem 1.4 (a) For d ≥ 5, α# > 0, and for d = 3 or 4, α# = 0.
(b) For d ≥ 5 and α < α#, there exist constants 0 < c(d, α) < C(d, α) < ∞ such

that for all n,

c(d, α)n2−d ≤ P[0 Lα,0←→ ∂B(0, n)] ≤ C(d, α)n2−d .

(c) For d ≥ 5 and α < α#, there exist 0 < c(d, α) < C(d, α) < ∞ such that for all
x ∈ Z

d ,

c(d, α)(||x ||∞ + 1)2(2−d) ≤ P[x ∈ Cα,0(0)] ≤ C(d, α)(||x ||∞ + 1)2(2−d).

(d) For d ≥ 5 and α < α#, there exist 0 < c(d, α) < C(d, α) < ∞ such that for all
n,

c(d, α)n1−d/2 ≤ P[#Cα,0(0) > n] ≤ C(d, α)n1−d/2,

(e) For d ≥ 5, α# ≤ α1.

Theorems 1.2 and 1.4 suggest the following picture for sub-critical loop percolation in
dimension d ≥ 5: the large cluster typically contains a macroscopic loop of diameter
comparable with the diameter of the cluster.

This scenario however cannot be true for sub-critical loop percolation in dimensions
d = 3, 4, as we can get better lower bounds on the one-arm probability. In dimension
d = 3, we prove that d − 2 is not the right exponent for the one-arm probability:

Theorem 1.5 For d = 3, for α > 0, there exist ε(α), c(α) > 0 such that for all n,

P[0 Lα,0←→ ∂B(0, n)] ≥ c(α)n−1+ε(α).
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984 Y. Chang, A. Sapozhnikov

Note that limα→0 ε(α) = 0 by Theorem 1.3.
In dimension d = 4, we get an improved lower bound for the one-arm probability,

still with exponent d − 2, but with an extra logarithmic correction:

Theorem 1.6 For d = 4, there exist ε(α), c(α) > 0 such that

P[0 Lα,0←→ ∂B(0, n)] ≥ c(α)n−2(log n)ε(α).

We conjecture that for the sub-critical loop percolation in dimension d = 4, an upper
bound on the one-arm probability is in similar form with logarithmic correction.

The results of Theorems 1.5 and 1.6 imply that the structure of connectivities in
sub-critical loop percolation in dimensions d = 3, 4 is different from that in dimen-
sions d ≥ 5: macroscopic loops are not essential for formation of large connected
components.

All the upper bounds that we obtain hold either for α < α# or for α < α1, i.e.,
for subregimes of the sub-critical phase. We expect that for d ≥ 5, α# = αc, and
for d ≥ 3, α1 = αc, but we do not have a proof yet. However, we can show that
asymptotically, as d → ∞, all these thresholds coincide.

Theorem 1.7 Asymptotically, as d → ∞,

2d − 6 + O(d−1) ≤ α# ≤ αc ≤ 2d + 3

2
+ O(d−1).

Outline of the paper. In the next section, we introduce the commonly used notation and
collect some preliminary results about simple randomwalk onZd and some properties
of the loop measure μ. In Sect. 3, we prove some elementary properties of the loop
percolation onZd , such as long-range correlations, translation invariance and ergodic-
ity, the uniqueness of the infinite cluster, and the connectedness for κ < 0. Except for
the translation invariance, these properties will not be used in the proofs of the main
results. In Sect. 4, we prove Theorems 1.2 and 1.3. Finer results for the loop percola-
tion in dimensions d ≥ 5 are presented in Sect. 5. In particular, the first 5 subsections
are devoted to the proof of Theorem 1.4, which is split into 5 Propositions 5.1, 5.2, 5.3,
5.4, and 5.10, and the last subsection contains the proof of Theorem 1.7. The proofs
of Theorems 1.5 and 1.6 (refined lower bounds in dimension d = 3 or 4) are given in
Sect. 6. In Sect. 7, we collect some results for the loop percolation on general graphs,
such as triviality of the tail sigma-algebra, connectedness in recurrent graphs, and the
continuity of κc(α). We finish the paper with an overview of some open questions.

2 Notation and preliminary results

2.1 Notation

Let G = (V, E) be an unweighted undirected graph. For F ⊆ V , let ∂F = {x ∈ F :
∃y ∈ V \F such that {x, y} is an edge} be the boundary of F .

Let (Xn, n ≥ 0) be a simple random walk (SRW) on G. Let Px be the law of SRW
started from x ∈ V . Let (G(x, y))x,y∈V be the Green function for (Xn, n ≥ 0).
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Phase transition in loop percolation 985

For F ⊆ V , let τ(F) be the entrance time of F and τ+(F) be the hitting time of F
by (Xn, n ≥ 0):

τ(F) = inf{n ≥ 0 : Xn ∈ F} and τ+(F) = inf{n ≥ 1 : Xn ∈ F}.

For x ∈ V , we use the notation τ(x) and τ+(x) instead of τ({x}) and τ+({x}).
Definition 2.1 The capacity of a set F is defined by

Cap(F) =
∑
x∈∂F

P
x [τ+(F) = ∞].

For finite subsets of vertices of a transient graph, the capacity is positive andmonotone,
i.e., for any finite F ⊂ F ′ ⊂ V , 0 < Cap(F) ≤ Cap(F ′).

For x ∈ V and a loop �, we write x ∈ � if � visits x , i.e., for some based loop
�̇ in the equivalence class �, �̇ = (x1, . . . , xn) with x1 = x . For F ⊆ V , we write
� ∩ F �= φ if � visits at least one vertex in F , and � ⊂ F if all the vertices visited by

� are contained in F . For two sets of vertices F1 and F2, we write F1
�←→ F2 if the

loop � intersects both F1 and F2. If some of the two sets is a singleton, say {x}, then
we omit the brackets from the notation. For instance, x

�←→ y means that the loop �

intersects both x and y.
For F ⊆ V , α > 0 and κ > −1, we write

(Lα,κ )F
def= {� ∈ Lα,κ : � ∩ F �= φ},

(Lα,κ )F
def= {� ∈ Lα,κ : � ⊂ F}.

Since most of the time we will deal with the case κ = 0, we accept the following
convention:

I n case κ = 0, we omit the subindex “κ” f rom all the notation.

For instance, we will write μ = μ0, Lα = Lα,0, Cα = Cα,0.
Throughout the following context, we denote by M+

p the set of σ -finite point mea-
sures on the space of discrete loops on G, and by F the canonical σ -algebra on M+

p .
For K ⊆ V and a point measurem = ∑

i∈N ciδ�i of loops where δ�i is the Dirac mass
at the loop �i , define mK = ∑

i∈N ciδ�i 1{�i∩K �=φ} and mK = ∑
i∈N ciδ�i 1{�i⊂K }.

We denote by FK the σ -field generated by {mK : m ∈ M+
p } and by FK the σ -field

generated by {mK : m ∈ M+
p }. A random setK is called (FK ){K finite}-optional iff for

any deterministic K ⊆ V , {K ⊂ K } is FK -measurable. Then, define

FK = {A ∈ F : A ∩ {K ⊂ K } ∈ FK , ∀K finite}.

Similar definitions hold for the filtration (FK ){K finite}.
For x ∈ Z

d and natural number n ∈ N, denote by B(x, n) the box of side length
2n centered at x .
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986 Y. Chang, A. Sapozhnikov

2.2 Facts about random walk

Lemma 2.1 ([11, Proposition 4.6.4])For a transient graph and a subset F of vertices,
by last passage time decomposition,

P
x [τ(F) < ∞] =

∑
z∈∂F

G(x, z)Pz[τ+(F) = ∞].

Lemma 2.2 ([11, Theorem 4.3.1]) For simple random walk on Zd , d ≥ 3, there exist
0 < c(d) ≤ C(d) < ∞ such that

c(d)(1 + ||x − y||∞)2−d ≤ G(x, y) ≤ C(d)(1 + ||x − y||∞)2−d .

More precisely, G(x, y) = d(d/2)
(d−2)πd/2 (||x − y||2 + 1)2−d + O((||x − y||2 + 1)−d).

Lemma 2.3 ([11, Proposition 6.5.1]) There exist 0 < c(d) < C(d) < ∞ such that
for n ≥ 1,

c(d)nd−2 ≤ Cap(B(0, n)) ≤ C(d)nd−2.

The following lemma provides an estimate on the capacity of the random walk
range.

Lemma 2.4 For a SRW on Z
d , d ≥ 3, there exists c(d) > 0 such that

inf
n≥1,z∈∂B(0,n)

P
0[Cap({X0, . . . , Xτ(∂B(0,n))}) > c(d) · F(d, n)|Xτ(∂B(0,n)) = z] > 0,

where F(d, n) = 1d=3 · n + 1d=4 · n2
log n + 1d≥5 · n2.

Proof It suffices to show that there exists c′ = c′(d) > 0 such that for all T ≥ 0,

P
0[Cap({X0, . . . , XT }) ≥ c′F(d,

√
T )] > c′. (3)

Indeed, let τ(n) = τ(∂B(0, n)). By the strongMarkovproperty andHarnack’s inequal-
ity,

P
0[Cap({X0, . . . , Xτ(n)}) > cF(d, n)|Xτ(n) = z]

≥
inf

w∈∂B(0,
n/2�)P
w[Xτ(n) = z]

P0[Xτ(n) = z] · P0[Cap({X0, . . . , Xτ(
n/2�)}) > cF(d, n)]
≥ c′′(d) · P0[Cap({X0, . . . , Xτ(
n/2�)}) > cF(d, n)].

By Kolmogorov’s maximal inequality for the coordinates,

P
0[τ(
n/2�) < δn2] ≤ 4δ.
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Phase transition in loop percolation 987

We choose δ = c′
8 and apply (3) with T = � c′

8 n
2� to get P0[Cap({X0, . . . , Xτ(
n/2�)})

> cF(d, n)] ≥ c′
2 for a suitable choice of c = c(d).

It remains to verify (3). By the Paley–Zygmund inequality it suffices to check that
for some c(d) > 0 and C(d) < ∞,

E
0[Cap({X0, . . . , XT })] ≥ cF(d,

√
T )

and

E
0[Cap({X0, . . . , XT })2] ≤ C(E0[Cap({X0, . . . , XT })])2.

The first inequality was proved in [24, Lemma 4] for all d ≥ 3, and the second was
proved in [24] for d = 3 and d ≥ 5, see the proof of Lemma 5 there. For d = 4,
the second inequality is obtained in [24] with a logarithmic correction, which is not
enough to imply (3). Below we provide a proof of the correct bound using a result
about intersection of SRWs from [9, Theorem 2.2]. We prove that there exists C such
that for the SRW on Z

4,

E
0[Cap({X0, . . . , XT })2] ≤ C · T 2

(log T )2
. (4)

Let (X0
n)n≥0, (X1

n)n≥0, (X2
n)n≥0 be three independent SRWs.Denote byEx

(i) the expec-

tation corresponding to the random walk Xi with initial point x . Similarly, we define
(E

x,y
(i),( j))i �= j . For simplicity of notation, we denote by E

x,y,z (or Px,y,z) the expecta-

tion (or probability) corresponding to X0, X1 and X2 with initial points x, y and z,
respectively. Denote by X0[0, T ] the range of X0 up to time T . Similarly, we define
X1[0,∞[ and X2[0,∞[.

Let x0 = (2T, 0, . . . , 0). By Lemmas 2.1 and 2.2, E0[Cap({X0, . . . , XT })2] is
comparable to

T 4 · P0,x0,x0 [X0[0, T ] ∩ X1[0,∞[�= φ, X0[0, T ] ∩ X2[0,∞[�= φ].

For i = 1 and 2, define τi = inf{ j ≥ 0 : X0
j ∈ Xi [0,∞[}. By symmetry,

P
0,x0,x0 [X0[0, T ] ∩ X1[0,∞[�= φ, X0[0, T ] ∩ X2[0,∞[�= φ]
≤ 2P0,x0,x0 [τ1 ≤ τ2 ≤ T ].

By conditioning on X1 and X2 and then applying the strong Markov property for X0

at time τ1,

P
0,x0,x0 [τ1 ≤ τ2 ≤ T ] = E

0,x0,x0

[
τ1 ≤ τ2, τ1 < T,E

X0
τ1

(0) [1{X0[0,T−τ1]∩X2[0,∞[�=φ]}]
]

≤ E
0,x0,x0

[
τ1 < T,E

X0
τ1

(0) [1{X0[0,T ]∩X2[0,∞[�=φ}]
]

.
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988 Y. Chang, A. Sapozhnikov

Then, we take the expectation with respect to X2 and get that

P
0,x0,x0 [τ1 ≤ τ2 ≤ T ] ≤ P

0,x0
(0),(1)[X0[0, T ] ∩ X1[0,∞[�= φ]

× sup
y∈B(0,T )

P
y,x0
(0),(2)[X0[0, T ] ∩ X2[0,∞[�= φ].

Note that ||y − x0||2 ≥ T for all y ∈ B(0, T ). By [9, Theorem 2.2], there exists
C < ∞ such that

sup
y∈B(0,T )

P
y,x0
(0),(i)[X0[0, T ] ∩ Xi [0,∞[�= φ] ≤ C

1

T log T
.

Thus, (4) is proved and the proof of Lemma 2.4 is complete. ��

2.3 Properties of the loop measure μ

In this subsection, we present several properties of loop measure μ. Most of them are
taken from [15–17].

Lemma 2.5 (Proposition 18 in Chapter 4 of [15]) For a finite subset of vertices F of
a transient graph,

μ(� : � ∩ F �= φ) = log det(G|F×F ),

where G is the Green function viewed as a matrix (G(x, y))x,y , and G|F×F is its
sub-matrix with indexes on F × F.

As a corollary, for n different vertices x1, . . . , xn,

μ(� : xi ∈ � for i ∈ {1, . . . , n}) =
∑

A⊂{x1,...,xn},A �=φ

(−1)#A+1 log det(G|A×A).

We point out that Le Jan uses a different normalization for the Green function and
refer to Proposition 18 in Chapter 4 of [15] for a proof.

The following lemma is a special case of the result in [15, Eq. (4.3)]. In fact, Le Jan
proves that the joint distribution of visiting times for a set of points is multi-variate
binomial distribution. The result about the excursions can be derived from explicit
calculation.

Lemma 2.6 ([15]) Fix a vertex x0 in a transient graph with the Green function G.
Let ξ(x0, �) count the number of visits of vertex x0 in the loop �. Set ξ(x0,Lα) =∑

�∈Lα
ξ(x0, �) be the total number of visits of x0 for the loop ensemble Lα . Then,

ξ(x0,Lα) follows a negative binomial (or Pólya) distribution, i.e.,

P[ξ(x0,Lα) = k] = G(x0, x0)
−α ·

(
1 − 1

G(x0, x0)

)k

· α(α + 1) · · · (α + k − 1)

k! .
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By cutting down all the loops fromLα into excursions from x0, we get ξ(x0,Lα)-many
excursions. Conditionally on ξ(x0,Lα) = k, those excursions are i.i.d. sample of the
SRW excursions with finite length.

We proceed by describing a useful representation of the measure of a given loop
visiting two disjoint sets as a linear combination of themeasures of based loops starting
on the boundary of one of the sets, see (6). We first introduce some notation. For a
based loop �̇, the multiplicity of �̇ is defined as

m(�̇) = max{k ≥ 1 : �̇ = (�̇1, . . . , �̇k) for �̇1 = · · · = �̇k}.

The multiplicity of a loop �, denoted also by m(�), is the multiplicity of any of the
based loops in the equivalence class. By (1) and the definition ofμ as the push-forward
of μ̇, for any loop � of length n,

μκ(�) = n

m(�)
· μ̇κ (�̇). (5)

For two disjoint subsets S1 and S2, consider the map L(S1, S2) from the space of loops
visiting S1 and S2 to subsets of based loops such that

(a) any �̇ = (x1, . . . , xn) ∈ L(S1, S2)(�) is in the equivalence class �,
(b) x1 ∈ S1,
(c) there exists i such that xi ∈ S2 and x j /∈ (S1 ∪ S2) for all j > i .

Note that L(S1, S2)(�) �= φ if and only if � visits S1 and S2.
For any �̇ = (x1, . . . , xn) ∈ L(S1, S2)(�), we define recursively the sequence

(τi )i≥0 as follows: for k ≥ 0,

τ0 = 1, τ2k+1 = inf{ j > τ2k : x j ∈ S2}, τ2k+2 = inf{ j > τ2k+1 : x j ∈ S1}.

Wewrite inf{φ} = n+1. By the definition of L(S1, S2), there exists k(�̇) ≥ 1 such that
τ2k(�̇)−1 ≤ n and τ2k(�̇) = n+1. The value of k(�̇) is the same for all �̇ ∈ L(S1, S2)(�),
and we denote it by k(�). In words, it is half of the number of excursions of � between
S1 and S2.

Claim 1 For any loop � of length n visiting S1 and S2,

μκ(�) = n

k(�)
·

∑
�̇∈L(S1,S2)(�)

μ̇κ (�̇). (6)

Proof The claim is immediate from the fact that k(�) = m(�) · |L(S1, S2)(�)| and (5).
��

We end this section with crucial estimates which will be frequently used in the
proofs.

Lemma 2.7 (a) For d ≥ 3 and λ > 1, there exists C = C(d, λ) < ∞ such that for
N ≥ 1, M ≥ λN, and K ⊂ B(0, N ),
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990 Y. Chang, A. Sapozhnikov

μ(� : K �←→ ∂B(0, M)) ≤ C · Cap(K ) · M2−d .

(b) For d ≥ 3, let F(d, n) = 1d=3 · n + 1d=4 · n2
log n + 1d≥5 · n2. For any λ > 1, there

exists c = c(d, λ) > 0 such that for N ≥ 1, M ≥ λN, and K ⊂ B(0, N ),

μ(� : K �←→ ∂B(0, M), Cap(�) > cF(d, M)) ≥ c · Cap(K ) · M2−d .

Proof (a) Let (τn)n≥0 be the sequence of stopping times defined recursively by

τ0
def= τ(K ),

τ2k+1
def= inf{n > τ2k : Xn ∈ ∂B(0, M)},

τ2k+2
def= inf{n > τ2k+1 : Xn ∈ K }.

By (1) and (6),

μ(� : K �←→ ∂B(0, M)) =
∑
n≥1

1

n

∑
x∈∂K

P
x [Xτ2n = x].

By the strong Markov property, for n ≥ 0,

P
x [Xτ2n+2 = x] =

∑
y∈∂K

z∈∂B(0,M)

P
x [Xτ2n = y]Py[Xτ(∂B(0,M)) = z]Pz[Xτ(K ) = x].

By Harnack’s inequality, there exists a constant C = C(d, λ) such that

max
y∈∂K

P
y[Xτ(∂B(0,M)) = z] ≤ C · P0[Xτ(∂B(0,M)) = z].

Therefore,

P
x [Xτ2n+2 = x] ≤ C · Px [τ2n < ∞]

∑
z∈∂B(0,M)

P
0[Xτ(∂B(0,M)) = z]Pz[Xτ(K ) = x]

≤ C ·
(
max
x∈∂K

P
x [τ2n < ∞]

)
· P0[Xτ2 = x]

≤ C ·
(
max
x∈∂K

P
x [τ2 < ∞]

)n

· P0[Xτ2 = x].

Under the assumption λ > 1, there exists ρ = ρ(d, λ) < 1 such that

max
x∈∂K

P
x [τ2 < ∞] < ρ < 1.
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Thus, there exists C ′ = C ′(d, λ) such that

μ(� : K �←→ ∂B(0, M)) ≤ C · P0[τ2 < ∞] ·
⎛
⎝∑

n≥1

1

n
(max
x∈∂K

P
x [τ2 < ∞])n−1

⎞
⎠

≤ C ′ · P0[τ2 < ∞] ≤ C ′ · max
z∈∂B(0,M)

P
z[τ(K ) < ∞].

By Lemmas 2.1 and 2.2 and using the assumption λ > 1, there exists C ′′ =
C ′′(d, λ) such that for any z ∈ ∂B(0, M),

P
z[τ(K ) < ∞] ≤ C ′′ · M2−d ·

∑
w∈∂K

P
w[τ+(K ) = ∞] = C ′′ · M2−d · Cap(K ).

The result follows.
(b) By Lemma 2.4 and the monotonicity of the capacity of finite sets, there exists

c = c(d, λ) > 0 such that

min
y∈∂B(0,M)

P
y[Cap({X0, . . . , Xτ(K )}) > cF(d, M)|Xτ(K ) = x]

≥ min
y∈∂B(0,M)

P
y[Cap({X0, . . . , Xτ(∂B(y,M−N ))}) > cF(d, M)|Xτ(K ) = x]

≥ min
z∈∂B(0,M−N )

P
0[Cap({X0, . . . , Xτ(∂B(0,M−N ))})

> cF(d, M)|Xτ(∂B(0,M−N )) = z] ≥ c.

By (1) and (6) (and ignoring the loops with k(�) ≥ 2),

μ(� : K �←→ ∂B(0, M), Cap(�) > cF(d, M))

≥
∑

x∈∂K ,y∈∂B(0,M)

P
x [Xτ(∂B(0,M)) = y] · Py[Xτ(K ) = x,Cap({X0, . . . , Xτ(K )})

> cF(d, M)] ≥ c ·
∑

x∈∂K ,y∈∂B(0,M)

P
x [Xτ(∂B(0,M)) = y] · Py[Xτ(K ) = x].

The rest of the proof is very similar to that of Part a). It is based on an application
of Harnack’s inequality, Lemmas 2.1 and 2.2. We omit the details.

��

3 Some basic properties of loop percolation

In this section we collect some elementary properties of the loop percolation on Zd :

• long range correlations, see Proposition 3.1,
• translation invariance and ergodicity, see Proposition 3.2,
• the uniqueness of infinite cluster, see Proposition 3.3,
• the existence of percolation for α > 0 and κ < 0, see Proposition 3.4.
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992 Y. Chang, A. Sapozhnikov

We remark that except for the translation invariance, these properties will not be used
in the proofs of the main results.

The following proposition shows the long range correlations in SRW loop perco-
lation on Z

d for d ≥ 3 and κ = 0.

Proposition 3.1 Let d ≥ 3, α > 0, and κ = 0. For x ∈ Z
d , we write x ∈ Lα if there

exists � ∈ Lα such that x ∈ �. For any x, y ∈ Z
d ,

Cov(1{x∈Lα}, 1{y∈Lα})

= (G(x, x)G(y, y))−α

((
1 − G(x, y)G(y, x)

G(x, x)G(y, y)

)−α

− 1

)

∼ α(G(0, 0))−2−2α d
2((d/2))2

πd(d − 2)2
||x − y||4−2d

2 , as ||x − y||2 → ∞.

Proof By Lemma 2.5, for F ⊂ Z
d ,

P[∀� ∈ Lα : � ∩ F = φ] = exp{−αμ(� : � ∩ F �= φ)} = (det(G|F×F ))−α.

Thus,

Cov(1{x∈Lα}, 1{y∈Lα}) = P[x, y /∈ Lα] − P[x /∈ Lα] · P[y /∈ Lα]

=
∣∣∣∣G(x, x) G(x, y)
G(y, x) G(y, y)

∣∣∣∣
−α

− (G(x, x)G(y, y))−α.

This gives the first statement. The second follows from Lemma 2.2. ��
Next, we prove the ergodicity of SRW loop soup under lattice shifts (tx )x∈Zd ,

tx : � �→ � + x .

Proposition 3.2 The Poisson loop ensemble associated with a simple random walk
onZd is invariant under lattice shifts. Moreover, it is ergodic under these translations.

Proof of Proposition 3.2 The translation invariance of Poisson loop ensemble comes
from the translation invariance of its intensity measure and we omit its proof here. For
the ergodicity, let us fix x ∈ Z

d , a measurable event A and show that

lim
n→∞

1

n

n∑
i=1

1A ◦ t ix = constant, P-almost surely.

By the law of large numbers, it is enough to show that for measurable events A and B,

lim
n→∞Cov(1B, 1A ◦ tnx ) = 0.

Or equivalently, by translation invariance, it is enough to show

lim
n→∞E[1B · 1A ◦ tnx ] = P[A]P[B].
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By a classical monotone class argument (Dynkin’s π − λ theorem), it is enough to
show it for A, B ∈ ⋃

K finiteFK . (Recall thatFK is the sigma-filed generated by loops
inside K .) We choose K large enough such that A and B are FK -measurable. Then,
1A ◦ tnx is F t−n

x (K )-measurable. For n large enough, t−n
x (K ) ∩ K is empty. Recall that

Poisson random measure of disjoint sets are independent. Then, for the same n, we
have independence between 1B and 1A ◦ tnx since we have independence between the
loops inside t−n

x (K ) and those loops inside K . Thus,

lim
n→∞E[1B · 1A ◦ tnx ] = P[A]P[B].

��
Ergodicity implies that any translation invariant event has probability either 0 or 1.

Consequently,

θ(α, κ) > 0 ⇐⇒ P[∃x ∈ Z
d : #Cα,κ (x) = ∞] = 1. (7)

The next proposition states the uniqueness of infinite cluster.

Proposition 3.3 (Uniqueness of infinite cluster) For the Poisson loop ensemble asso-
ciated with a SRW on Z

d , there is at most one infinite cluster in the corresponding
loop percolation.

Proof By Theorem 1 in [5], “translation invariance” and “positive finite energy prop-
erty” imply the uniqueness. Thus, we only need to show the positive finite energy
property: for all e = {x, y},

P[ωe = 1|σ({ω f : f is an edge in Zd and f �= e})] > 0 almost surely,

where ωe ∈ {0, 1} and ωe = 1 if and only if the edge e is traversed by a loop from Lα .
From the independence structure of Poisson loop ensemble between two disjoint

sets, the event {the loop (x, y) is in Lα} is independent from σ({ω f : f is an edge in
Z
d and f �= e}). Thus,
P[ωe = 1|σ({ω f : f is an edge in Zd and f �= e})]

≥ P[{the loop (x, y) is in Lα}|σ({ω f : f is an edge in Zd and f �= e})]
= P[the loop (x, y) is in Lα] > 0.

��
Remark 3.1 In fact, for d ≥ 3, for an edge e = {x, y} in the integer lattice Zd , one
can also prove that

P[ωe = 0|σ({ω f : f is an edge in Zd and f �= e})] > 0 almost surely.

As a consequence, there exists at most one infinite cluster of closed edges.

We complete this section with a statement about triviality of loop percolation on
Z
d for α > 0 and κ < 0. In particular, it implies the second statement of Theorem 1.1.
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994 Y. Chang, A. Sapozhnikov

Proposition 3.4 For d ≥ 3, α > 0, κ < 0, and x ∈ Z
d , the graph Z

d is covered by
the loops {� ∈ Lα : x ∈ �} passing through x.

Proof For y �= x , by (1) and (6) applied to S1 = {x} and S2 = {y}, and by ignoring
all the loops with k(�) ≥ 2, we get that for any n ≥ 1,

μ(� : x, y ∈ �) ≥ E
x [(1 + κ)−τ(y) · 1τ(y)<∞] · Ey[(1 + κ)−τ(x) · 1τ(x)<∞]

= E
x [(1 + κ)−τ(y) · 1τ(y)<∞]2

≥ (1 + κ)−2n · Px [n ≤ τ(y) < ∞]2.

Moreover, for any n ≥ 1,

P
x [n ≤ τ(y) < ∞] = E

x [τ(y) ≥ n, P
Xn [τ(y) < ∞]]

Lemmas 2.1,2.2≥ c(d) · Ex [τ(y) ≥ n, (||Xn − y|| + 1)2−d ]
≥ c(d) · Px [τ(y) = ∞] · (||x − y|| + n)2−d

≥ c′(d) · (||x − y|| + n)2−d .

Since the above inequalities hold for all n ≥ 1, μ(� : x, y ∈ �) = ∞. Therefore,

P[∃� ∈ Lα : x, y ∈ �] = 1 − e−α·μ(�:x,y∈�) = 1.

��

4 First results for the one-arm connectivity for Z
d(d ≥ 3) and κ = 0

4.1 Lower bound: Proof of Theorem 1.2

For any d ≥ 3, α > 0, and n ≥ 1,

P[0 Lα←→ ∂B(0, n)] ≥ P[∃� ∈ Lα : 0 �←→ ∂B(0, n)]
= 1 − exp{−αμ(� : 0 �←→ ∂B(0, n))}
Lemma 2.7≥ α · c(d)Cap({0})n2−d .

��

4.2 Upper bound: Proof of Theorem 1.3

4.2.1 α1 > 0

We will prove the following lemma.

Lemma 4.1 For d ≥ 3 and β > 1, there exists C(d, β) < ∞ such that for all α > 0
and n ≥ 1,
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Phase transition in loop percolation 995

P[B(0, n)
Lα←→ ∂B(0, 
βn�)] ≤ C(d, β) · α. (8)

Lemma 4.1 implies that α1 > 0 for all d ≥ 3.

Proof Fix d ≥ 3 and β > 1. For α > 0 and n ≥ 1, define the function

f (α)(n) = sup
k≤n

P[B(0, k)
Lα←→ ∂B(0, 
βk�)].

By Lemma 2.7, there exists C1 = C1(d) < ∞ such that

f (α)(1) ≤ P[∃� ∈ Lα : � ∩ B(0, 1) �= φ] ≤ C1 · α.

Wewill prove that there existsC2 = C2(d, β) < ∞ such that for all α > 0 and n ≥ 1,

f (α)(4n) ≤ C2 · α + C2 · ( f (α)(n))2. (9)

Before we prove (9), we show how it implies (8). Take C3 = C3(d, β) =
max(C1, 2C2). On the one hand for α ≤ C−2

3 , by induction on m, we obtain that
f (α)(4m) ≤ C3 ·α for allm ≥ 0. Then bymonotonicity of f (α), f (α)(n) ≤ C3 ·α for all
α ≤ C−2

3 and n ≥ 1. On the other hand for α ≥ C−2
3 and n ≥ 1, f (α)(n) ≤ 1 ≤ C2

3 ·α.
Thus (8) follows with C(d, β) = max(C3,C2

3 ).
It remains to prove (9). For x ∈ Z

d , m ≥ k ≥ 1, consider the events

Eα(x, k,m) = {B(x, k)
Lα←→ ∂B(x,m)}.

It suffices to show that

P[Eα(0, 4k, 
4βk�)] ≤ C(d, β) · α + C(d, β) · P[Eα(0, k, 
βk�)]2.

Please see Fig. 2 for an illustration of the event mentioned above. Moreover, we may
suppose k ≥ 1

β−1 . Let

ak = 4k, bk = 4k + 
(β − 1)k�, ck = 
4βk� − 
(β − 1)k�, dk = 
4βk�.

The key observation is that if Eα(0, ak, dk) occurs andLα does not contain a loop inter-
secting both B(0, bk) and ∂B(0, ck), then B(0, ak) is connected to ∂B(0, bk) by loops
from Lα which are contained in B(0, ck − 1), and B(0, ck) is connected to ∂B(0, dk)
by loops which are not contained in B(0, ck − 1). Since the two collections of loops
are disjoint and Lα is a Poisson point process, the two events are independent. Thus,

P[Eα(0, ak, dk)] ≤ P[∃� ∈ Lα : B(0, bk)
�←→ ∂B(0, ck)]

+P[Eα(0, ak, bk)] · P[Eα(0, ck, dk)].
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996 Y. Chang, A. Sapozhnikov

Fig. 2 Illustration of event
Eα(0, 4k, 
4βk�) for β = 3

Since ck > bk and limk→∞ ck
bk

= 3, by Lemmas 2.7 and 2.3,

P[∃� ∈ Lα : B(0, bk)
�←→ ∂B(0, ck)] ≤ C(d, β) · α.

It remains to show that for some C(d, β) < ∞, P[Eα(0, ak, bk)] ≤ C(d, β) ·
P[Eα(0, k, 
βk�)] and P[Eα(0, ck, dk)] ≤ C(d, β) · P[Eα(0, k, 
βk�)].

Let s = s(d) be such that there exist x1, . . . , xs ∈ Z
d such that B(xi , k) ⊆ B(0, 4k)

and∪s
i=1∂B(xi , k) ⊇ ∂B(0, 4k). Let S = S(d, β) be such that there exist y1, . . . , yS ∈

Z
d such that B(yi , k) ∩ B(0, 
4βk� − 1) = φ and ∪S

i=1∂B(yi , k) ⊇ ∂B(0, 
4βk�).
Such a choice of s, S always exists, andwe fix some suitable s, S and some correspond-
ing x1, . . . , xs and y1, . . . , yS . Note that Eα(0, ak, bk) implies that Eα(xi , k, 
βk�)
occurs for some 1 ≤ i ≤ s, and Eα(0, ck, dk) implies that Eα(yi , k, 
βk�) occurs
for some 1 ≤ i ≤ S. Thus using translation invariance, P[Eα(0, ak, bk)] ≤
s · P[Eα(0, k, 
βk�)] and P[Eα(0, ck, dk)] ≤ S · P[Eα(0, k, 
βk�)]. The result
follows. ��

4.2.2 Upper bound on the one-arm probability for α < α1

Let d ≥ 3, α > 0 and β > 1. Define two random sequences (An)n and (Bn)n as
follows. Let Bn = 
βAn� and

A1=1, An = inf

{
m : B(0,m − 1) contains all the loops from Lα

which intersect B(0,Bn−1)

}
(for n ≥ 2).

Since the graphZd is transient, the totalmass underμ of the loops intersecting B(0, N )

is finite for any N according to Lemma 2.5. Therefore, in the Poisson loop ensemble
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Lα , the number of the loops intersecting B(0, N ) is almost surely finite. Thus,An are
almost surely finite for all n.

Consider

r = r(d, α, β)
def= sup

n≥1
P[B(0, n)

Lα←→ ∂B(0, 
βn�)]. (10)

We first show that for all n ≥ 1,

P[0 Lα←→ ∂B(0,Bn)] ≤ rn . (11)

The proof is by induction on n. The case n = 1 follows from the definitions of r , A1
and B1. For n ≥ 2,

P[0 Lα←→ ∂B(0,Bn)] ≤ P[0 Lα←→ ∂B(0,Bn−1), B(0,An)
Lα←→ ∂B(0,Bn)]

=
∑

(bn−1,an)

P[Bn−1 = bn−1, An = an, 0
Lα←→ ∂B(0, bn−1),

B(0, an)
Lα←→ ∂B(0, 
βan�)].

Using the fact that the loops intersecting B(0,Bn−1) never visit ∂B(0,An), we can
rewrite summands in the above display as

P[Bn−1 = bn−1, An = an, 0
Lα←→ ∂B(0, bn−1),

B(0, an)
LB(0,bn−1)c

α←→ ∂B(0, 
βan�)].

The event {Bn−1 = bn−1, An = an, 0
Lα←→ ∂B(0, bn−1)} is ameasurable function

of loops intersecting B(0, bn−1), and the event {B(0, an)
LB(0,bn−1)c

α←→ ∂B(0, 
βan�)}
depends only on loops which do not intersect B(0, bn−1). Thus, the two events are

independent. Moreover, the random loops LB(0,bn−1)
c

α avoiding B(0, bn−1) is a subset
of Lα . Thus, by monotonicity,

P[B(0, an)
LB(0,bn−1)c

α←→ ∂B(0, 
βan�)] ≤ P[B(0, an)
Lα←→ ∂B(0, 
βan�)] ≤ r.

As a result, we get

P[0 Lα←→ ∂B(0,Bn)] ≤ P[0 Lα←→ ∂B(0,Bn−1)] · r ≤ rn,

which is precisely (11).
Next we prove that there exists C = C(d) < ∞ such that for any δ ∈ (0, d − 2)

and n ≥ 1,

E[Bδ
n] ≤ βδn · Cn ·

(
1 + α

d − 2 − δ

)n

. (12)
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Define Gk = FB(0,Bk ). Since
Bk+1
Bk

is Gk-measurable,

E

[(Bk+2

Bk+1

)δ ∣∣∣∣Gk
]

≤ (β + 1)δ · E
[(Ak+2

Bk+1

)δ ∣∣∣∣Gk
]

= (β + 1)δ ·
∑

bk ,bk+1

1{Bk=bk ,Bk+1=bk+1}E
B(0,bk )c

[(A(bk+1)

bk+1

)δ
]

where PB(0,bk )c is the law of the loops avoiding B(0, bk) and

A(bk+1) = inf{m : B(0,m − 1) contains all the loops which intersect B(0, bk+1)}.

Since

E
B(0,bk )c

[(A(bk+1)

bk+1

)δ
]

≤ E

[(A(bk+1)

bk+1

)δ
]

,

E

[(Bk+2

Bk+1

)δ ∣∣∣Gk
]

≤ (β + 1)δ ·
∑

bk ,bk+1

1{Bk=bk ,Bk+1=bk+1}E
[(A(bk+1)

bk+1

)δ
]

≤ (β + 1)δ ·
∑

bk ,bk+1

1{Bk=bk ,Bk+1=bk+1}

×
⎛
⎝2δ +

∞∫
2

dλ · δλδ−1
P[A(bk+1) ≥ λbk+1]

⎞
⎠ .

By Lemma 2.7, there exists C = C(d) < ∞ such that for all λ > 2,

P[A(bk+1) ≥ λbk+1] = P[∃� ∈ Lα : B(0, bk+1)
�←→ ∂B(0, 
λbk+1�)]

≤ α · C · λ2−d .

Therefore,

E

[(Bk+2

Bk+1

)δ ∣∣∣∣Gk
]

≤ (β + 1)δ

⎛
⎝2δ + α · C · δ ·

∞∫
2

dλ · λ−(d−1−δ)

⎞
⎠

= (β + 1)δ
(
2δ + α · C · δ · 22+δ−d

d − 2 − δ

)
,

and (12) follows.
We can now complete the proof of Theorem 1.3. From (11) and (12), for N ≥ 1

and ε ∈ (0, d − 2),
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P[0 Lα←→ ∂B(0, N )] ≤ P[0 Lα←→ ∂B(0,Bn)] + P[Bn > N ]

≤ rn + E[Bd−2−ε
n ]

Nd−2−ε

≤ rn + β(d−2)n · Cn ·
(
1 + α

ε

)n · N 2−d+ε .

Choosing

n =
⌊

ε · log N
(d − 2) logβ + logC + log(1 + α

ε
)

⌋
,

we get

P[0 Lα←→ ∂B(0, N )] ≤ exp

{
log r ·

⌊
ε · log N

(d − 2) logβ + logC + log(1 + α
ε
)

⌋}

+ N 2−d+2ε .

Note that for any α < α1, there exists β > 1 such that r < 1. Thus, there exist
C = C(d, α) < ∞ and c = c(d, α) ∈ (0, d − 2) such that

P[0 Lα←→ ∂B(0, N )] ≤ C · N−c.

Moreover, by Lemma 4.1, there exists C ′ = C ′(d, β) < ∞ such that for all α, r ≤
C ′ ·α. Therefore, one can choose c(d, α) above so that limα→0(d−2−c)· log 1

α
< ∞.

��

5 Loop percolation in dimension d ≥ 5

In this section we prove Theorems 1.4 and 1.7. The proof of Theorem 1.4 is split into 5
parts given in 5 different subsections of this section, see, respectively, Propositions 5.1,
5.2, 5.3, 5.4, and 5.10. Theorem 1.7 is restated and proved as Proposition 5.14 in the
last subsection.

5.1 α# > 0 if and only if d ≥ 5

Weprove here that the expected size of Cα(0) is finite for small enough α only if d ≥ 5.
The size of Cα(0) is stochastically dominated by the total progeny of a Galton–Watson
process with offspring distribution defined by the size of

Cα(0, 1)
def= {x ∈ Z

d\{0} : ∃� ∈ Lα such that 0
�←→ x}.

Thus, if for some α > 0, E[#Cα(0, 1)] < 1, then the Galton–Watson process is sub-
critical, and the expected progeny is finite. Existence of such α will follow from the
dominated convergence, as soon as we show that for some α > 0, E[#Cα(0, 1)] < ∞.

123



1000 Y. Chang, A. Sapozhnikov

Proposition 5.1 α# > 0 if and only if d ≥ 5.

Proof Let d ≥ 3 and α > 0. We compute

E[#Cα(0, 1)] =
∑

x∈Zd ,x �=0

P[x ∈ Cα(0, 1)]

=
∑

x∈Zd ,x �=0

1 − e−αμ(�:0 �←→x) =
∑

x∈Zd ,x �=0

1 −
(
1 −

(
G(0, x)

G(0, 0)

)2
)α

,

which is finite if and only if d ≥ 5 by Lemma 2.2. In particular, if d = 3 or 4, then
E[#Cα(0)] ≥ E[#Cα(0, 1)] = ∞ for all α > 0. On the other hand, for d ≥ 5, by the
dominated convergence, there exists α > 0 such that E[#Cα(0, 1)] < 1. For such α,
#Cα(0) is dominated by the total progeny of a subcritical Galton–Watson process with
offspring distribution P[#Cα(0, 1) ∈ ·]. Thus, E[#Cα(0)] < ∞. ��
Remark 5.1 Domination of the cluster size by the total progeny of a Galton–Watson
process is used rather often in studies of sub-critical percolation models. In the context
of loop ensembles, it was used in [18, Section 2] to study the distribution of connected
components of loops on the complete graph.

5.2 One-arm connectivity

In this section, we prove the second statement in Theorem 1.4, which we restate in the
following proposition.

Proposition 5.2 For d ≥ 5 and α < α#, there exist constants 0 < c(d, α) <

C(d, α) < ∞ such that for all n,

c(d, α)n2−d ≤ P[0 Lα←→ ∂B(0, n)] ≤ C(d, α)n2−d .

We need to introduce the notion of loop distance and decompose the cluster at 0
according to the loop distance from 0.

Definition 5.1 Define a random loop distance d on Z
d :

d(x, y)

=
⎧⎨
⎩
inf

{
k ≥ 1 : ∃�1, . . . , �k ∈ Lα such that

x ∈ �1, �1 ∩ �2 �= φ, . . . , �k−1 ∩ �k �= φ, y ∈ �k

}
for x �= y,

0 for x = y.

Then, we decompose Cα(0) into a countable disjoint union:

Cα(0) =
∞⋃
i=0

Cα(0, i), where Cα(0, i) = {z ∈ Z
d : d(0, z) = i}. (13)
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Proof of Proposition 5.2 The lower bound follows from Theorem 1.2.
For k ≥ 0, set Ck = ⋃k

i=0 Cα(0, i). Then,

P[0 Lα←→ ∂B(0, 2n)] ≤ P[Ck ∩ ∂B(0, n) �= φ]
+ P[Ck ∩ ∂B(0, n) = φ, 0

Lα←→ ∂B(0, 2n)].

If Ck ∩ ∂B(0, n) �= φ, then Cα(0) contains a loop from Lα with diameter ≥ n
k . By

considering the loop distance d(0, �) and using the first moment method, we get

P[Ck ∩ ∂B(0, n) �= φ] ≤
∞∑
i=0

E[#Cα(0, i)] · P
[
∃� ∈ Lα : 0 ∈ �, Diam(�) ≥ n

k

]

≤ E[#Cα(0)] · P
[
∃� ∈ Lα : 0 �←→ ∂B

(
0,
⌊ n

2k

⌋)]
Lemma 2.7≤ C(d, α) · kd−2 · n2−d .

On the other hand,

P[Ck ∩ ∂B(0, n) = φ, 0
Lα←→ ∂B(0, 2n)]

≤
∑

x∈B(0,n)

P[x ∈ Cα(0, k), x
(Lα)(Ck−1)c

←→ ∂B(0, 2n)].

Since Cα(0, k) is FCk−1 measurable and

P[x (Lα)(Ck−1)c

←→ ∂B(0, 2n)|FCk−1 ] ≤ P[x Lα←→ ∂B(0, 2n)] ≤ P[0 Lα←→ ∂B(0, n)],

we get

P[Ck ∩ ∂B(0, n) = φ, 0
Lα←→ ∂B(0, 2n)] ≤ E[#Cα(0, k)] · P[0 Lα←→ ∂B(0, n)].

Putting two bounds together,

P[0 Lα←→ ∂B(0, 2n)] ≤ C(d, α) · kd−2 · n2−d + E[#Cα(0, k)] · P[0 Lα←→ ∂B(0, n)].

We choose k = k0 large enough such that E[#Cα(0, k0)] ≤ 21−d and take C ′(d, α) =
max(2d−1kd−2

0 C(d, α), 1). Then, by induction on n,

P[0 Lα←→ ∂B(0, 2n)] ≤ C ′(d, α) · (2n)2−d .

The proof is complete by the monotonicity of P[0 Lα←→ ∂B(0, n)] in n. ��
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Remark 5.2 Recall from Theorem 1.2 and Lemma 2.7 that the probability that a single
loop from Lα passing through a given vertex x ∈ Z

d has diameter ≥ n is of order
n2−d . Thus, for d ≥ 5 and α < α#, the probability that Cα(0) contains a loop of
diameter ≥ n is of the same order as the probability of one arm to ∂B(0, n). This
suggests that long connections in Lα for d ≥ 5 and α < α# arise because of a single
big loop. It is indeed the case, as one can show that the probability that Cα(0) contains
at least two loops of diameter ≥ m is O(m6−2d), and the probability of having a path
from 0 to ∂B(0, n) only through loops of Lα of diameter ≤ m is O(e−c(d,α)· nm ). Since
we do not use such refined estimates, we omit details of their proofs. Curiously, as
we will see later, the situation in dimensions d = 3 and 4 is rather different, as long
connections through small loops are more likely than connections through a single big
loop.

5.3 Two point connectivity

In this section we prove the third statement of Theorem 1.4 about the bounds on the
two point connectivity, which we restate in the next proposition. As in the case of one
arm connectivity, the lower bound here is given by one loop connection. While the
upper bound is obtained by one loop connection together with the upper bound for the
decay of one arm connectivity.

Proposition 5.3 For d ≥ 5 and α < α#,

0 < inf
x∈Zd

P[x ∈ Cα(0)](||x ||∞ + 1)2(d−2)

≤ sup
x∈Zd

P[x ∈ Cα(0)](||x ||∞ + 1)2(d−2) < ∞.

Proof Since P[x ∈ Cα(0)] ≥ P[∃� ∈ Lα : 0 �←→ x], the lower bound is given by
Lemmas 2.5 and 2.2. It remains to show the upper bound.

Let n = ||x ||∞. Without loss of generality we may suppose n ≥ 3. We divide the
loops Lα into four independent set of loops as follows:

• L1,1
def= {� ∈ Lα : � intersects B(0, �n/3�) and B(x, �n/3�)},

• L1,0
def= {� ∈ Lα : � intersects B(0, �n/3�) but not B(x, �n/3�)},

• L0,1
def= {� ∈ Lα : � intersects B(x, �n/3�) but not B(0, �n/3�)},

• L0,0
def= {� ∈ Lα : � avoids B(0, �n/3�) and B(x, �n/3�)}.

Let Ckα(z) be the cluster of z induced by the loops of Lα which are entirely contained
in B(z, k). The main observation is that when x ∈ Cα(0), at least one of the four events
occurs:

• E1
def=

{
0

L1,0←→ ∂B(0, �n/3�)
}

∩
{
x

L0,1∪L0,0←→ ∂B(x, �n/3�)
}
,

• E2
def=

{
0
L1,0∪L0,0←→ ∂B(0, �n/3�)

}
∩
{
x

L0,1←→ ∂B(x, �n/3�)
}
,
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Phase transition in loop percolation 1003

• E3
def= {∃a ∈ C�n/3�

α (0), b ∈ C�n/3�
α (x), � ∈ L1,1 : a �←→ b

}
,

• E4
def=

{
∃a ∈ C�n/3�

α (0), b ∈ C�n/3�
α (x), �1, �2 ∈ L1,1 : a∈�1, �1∩C�n/3�

α (x)=φ,

b∈�2, �2∩C�n/3�
α (0)=φ

}
.

Thus,P[x ∈ Cα(0)] ≤ P[E1]+P[E2]+P[E3]+P[E4]. By independence ofL0,1,L1,0,
and L1,1, translation invariance of Lα , and Proposition 5.2,

P[E1] = P[E2] ≤ (P[0 Lα←→ ∂B(0, �n/3�)])2 ≤ C1(d, α) · n2(2−d).

Next we estimate P[E3]:

P[E3] ≤
∑

a∈B(0,�n/3�),
b∈B(x,�n/3�)

P[∃� ∈ L1,1 : a �←→ b] · P[0 L1,0←→ a] · P[x L0,1←→ b]

≤ (E[#Cα(0)])2 · max
a∈B(0,�n/3�),
b∈B(x,�n/3�)

P[∃� ∈ Lα : a �←→ b]

≤ α · (E[#Cα(0)])2 · max
a∈B(0,�n/3�),
b∈B(x,�n/3�)

μ(� : a �←→ b).

Since ||a−b||∞ ≥ n/3 for all a ∈ B(0, �n/3�) and b ∈ B(x, �n/3�), by Lemmas 2.5
and 2.2, P[E3] ≤ C2(d, α) · n2(2−d).

Finally, we estimate P[E4] by first conditioning on C�n/3�
α (0) and C�n/3�

α (x), and
then using independence between loops from L1,1 that intersect C�n/3�

α (0) and do not
intersect it:

P[E4] ≤ E[#C�n/3�
α (0)] · E[#C�n/3�

α (x)] · P[∃� ∈ Lα : 0 �←→ ∂B(0, �n/3�)]2
Lemmas 2.5, 2.2≤ C3(d, α) · n2(2−d).

Thus, for ||x ||∞ ≥ 3, P[x ∈ Cα(0)] ≤ (2C1 + C2 + C3) · ||x ||2(2−d). ��
Remark 5.3 As in the case of one arm connectivity, see Remark 5.2, one can show

that for d ≥ 5 and α < α#, the most likely situation for 0
Lα←→ x is to have a large

loop which passes near 0 and near x , i.e., the existence of connections between 0 and
x with two large loops or with only small loops are both of probability o(||x ||2(2−d)).

5.4 Tail of the cluster size

In this section we prove the fourth statement of Theorem 1.4, showing that the tail of
the distribution of #Cα(0) is of order n1−d/2, see Proposition 5.4. The lower bound
is given by the loops passing through 0. Roughly speaking, the upper bound is given
by the total progeny of a sub-critical Galton–Watson process which dominates the
cluster size. The existence of such sub-critical Galton–Watson process is guaranteed
by assumption α < α#. An upper bound for the sub-critical Galton–Watson process is
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given in Lemma 5.6. Later we will take the offspring distribution to be the distribution
of #Uα(0, K ) where for K ≥ 1,

Uα(0, K )
def=

{
x ∈ Z

d : ∃ different �1, . . . , �K ∈ Lα such that 0 ∈ �1, x ∈ �K
and �i ∩ � j �= φ if |i − j | ≤ 1

}
.

(14)
The crucial point is that for x, y ∈ Z

d , the following is an increasing event:

{∃ different �1, . . . , �K ∈ Lα : x ∈ �1, y ∈ �K and that �i ∩ � j �= φ if |i − j | ≤ 1}.

This enables us to dominate (#Cα(0, Ki))i≥0 by a sub-critical Galton–Watson process
with offspring #Uα(0, K ). In order to apply Lemma 5.6 to dominate the total progeny,
we need an upper bound estimate for the tail of Uα(0, K ). This is given in Lemma 5.7.

Proposition 5.4 For d ≥ 5 and α < α#, there exist 0 < c(d, α) < C(d, α) < ∞
such that for all n,

c(d, α)n1−d/2 < P[#Cα(0) > n] < C(d, α)n1−d/2. (15)

The proof of the proposition is based on the following lemmas.

Lemma 5.5 Suppose ξ and η are N valued variables with finite means. Denote by F̄
the tail of the distribution function of ξ and by Ḡ that of η. Suppose F̄(x), Ḡ(x) ≤
x−ah(x) where a > 1 and h slowly varies2 as x → ∞. Take a sequence (ηi )i≥0 of
independent copies of η which is also independent of ξ . Then there exists C < ∞ such
that for n ≥ 1,

P

⎡
⎣ ξ∑

i=1

ηi > n

⎤
⎦ ≤ Cn−ah(n).

Lemma 5.6 Let F̄(x) = 1 − F(x) be the tail of a distribution function F. As in
Lemma 5.5, we suppose that F̄(x) ≤ x−ah(x) where a > 1 and h is slowly varying
when x → ∞. For a sub-critical Galton–Watson process (Zn)n≥0 with offspring
distribution F, let Sn = ∑n

i=0 Zi . Then there exists a constant C < ∞ such that

P[S∞ > n] < Cn−ah(n).

Recall the definition of the partition (Cα(0, i), i ≥ 0) of Cα(0) from (13).

Lemma 5.7 For d ≥ 5 and K ≥ 1, there exist 0 < c(d, α) ≤ C(d, α, K ) < ∞ such
that

c(d, α) ·n1−d/2 ≤ P[#Cα(0, 1) > n]≤P

[
K⋃
i=1

#Cα(0, K ) > n

]
≤C(d, α, K ) ·n1−d/2.

(16)

2 Recall that a function h :]0,∞[→]0, ∞[ is slowly varying at ∞ if for all a > 0, limx→∞ h(ax)
h(x) = 1.
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Since Uα(0, K ) ⊂ ⋃K
i=1 #Cα(0, K ), the same upper bound holds for the tail distribu-

tion of #Uα(0, K ):

P[#Uα(0, K ) > n] ≤ C(d, α, K ) · n1−d/2. (17)

We postpone the proof of the lemmas until the end of this section.

Proof of Proposition 5.4 The lower bound follows from Lemma 5.7.
For the upper bound, let d ≥ 5 and α < α#. Since #Cα(0) is finite almost

surely, limK→∞ #Uα(0, K ) = 0. By the dominated convergence, we can choose K
large enough such that E[#Uα(0, K )] < 1. Then we define a sub-critical Galton–
Watson process (Zi )i≥0 with offspring distribution P[#Uα(0, K ) ∈ ·], so that∑

i≥0 #Cα(0, Ki) is stochastically dominated by S∞
def= ∑∞

i=0 Zi . By Lemmas 5.7
and 5.6, there exists C = C(d, α) < ∞ such that

P

⎡
⎣∑

i≥0

#Cα(0, Ki) > n

⎤
⎦ ≤ P[S∞ > n] < C · n1−d/2.

Let (ηi )i be a sequence of independent copies of S∞. We further suppose that they are
independent ofLα . Then for j = 1, . . . , K −1,

∑
i≥0 #Cα(0, Ki+ j) is stochastically

dominated by
∑#Cα(0, j)

i=1 ηi . By applying Lemma 5.5 for
∑#Cα(0, j)

i=1 ηi , there exists
C ′ = C ′(d, α) < ∞ such that for j = 1, . . . , K − 1,

P

⎡
⎣∑

i≥0

#Cα(0, Ki + j) > n

⎤
⎦ ≤ P

⎡
⎣#Cα(0, j)∑

i=1

ηi > n

⎤
⎦ < C ′ · n1−d/2.

Similar upper bound with a bigger constant holds for #Cα(0), since

{#Cα(0) > n} ⊂
K−1⋃
j=0

{ ∞∑
i=0

#Cα(0, Ki + j) >
n

K

}
.

The proof is complete. ��
It remains to prove the lemmas.

5.4.1 Proof of Lemma 5.5

By [21, Theorem 2], for γ > 0,

sup
{k,x :x≥γ k}

P

[∑k
i=1 ηi − kE[η] > x

]
kP[η > x] < ∞.
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By taking γ = E[η], k = ξ and x = n/2, there exists C < ∞ such that

P

⎡
⎣ ξ∑

i=1

ηi > n, ξ ≤ n

2E[η]

⎤
⎦ ≤ C · E[ξ ] · P[η > n/2] ≤ C · 2a · E[ξ ] · n−ah(n/2).

Since P[ξ > n
2E[η] ] ≤ (2E[η])an−ah( n

2E[η] ) by assumption,

P

⎡
⎣ ξ∑

i=1

ηi > n

⎤
⎦ ≤ 2a · C · E[ξ ] · n−ah(n/2) + (2E[η])a · n−ah

(
n

2E[η]
)

.

By the definition of slowly varying function, there exists C ′ < ∞ such that

P

⎡
⎣ ξ∑

i=1

ηi > n

⎤
⎦ ≤ C ′ · n−ah(n).

��

5.4.2 Proof of Lemma 5.6

Set H(x) = x−ah(x). We may assume that H(x) ≤ 1 for 0 < x ≤ 1. Denote by

m
def= E[Z1]. By assumption, m < 1, hence E[Zk−1] = mk−1 and P[Zk−1 > 0] ≤

E[Zk−1] = mk−1.
Fix δ > 0 and take ρ ∈]m, 1[ close enough to 1 so that mρ−a−δ < 1. (This

particular choice of ρ will be clear during the proof.) Let γ = ρ − m. Then,

P[Zk ≥ ρkn, Zk−1 < ρk−1n] ≤ P[Zk − mZk−1 ≥ γρk−1n > γ Zk−1, Zk−1 > 0].
(18)

By [21, Theorem 2], for γ > 0,

C(γ )
def= sup

p≥1
sup
x≥γ p

P
[∑p

i=1 ηi − pm > x
]

pH(x)
< ∞ (19)

where (ηi )i are i.i.d. variables with the distribution F . By conditioning on Zk−1 and
then applying (19) with p = Zk−1 and x = γρk−1n,

(18) ≤ C(γ ) · E[Zk−1] · H(γρk−1n) = C(γ ) · mk−1 · H(γρk−1n). (20)

By Protter’s Theorem, see [1, Theorem 1.5.6], there exists C ′ = C ′(δ) such that for
all n ≥ 1 and c ∈]0, 1[, H(cn) ≤ C ′ · c−a−δ · H(n). Therefore,

(20) ≤ C ′(δ)C(γ )γ −a−δ(mρ−a−δ)k−1H(n).
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For n > 1/ρ, Z0 = 1 < ρn. Thus,

{
S∞ >

1

1 − ρ
n

}
⊂ {∃k ≥ 1 : Zk ≥ ρkn, Zk−1 < ρk−1n},

and for n > 1/ρ,

P

[
S∞ >

ρ

1 − ρ
n

]
≤ P[∃k ≥ 1 : Zk ≥ ρkn, Zk−1 < ρk−1n]

≤
∑
k≥1

P[Zk ≥ ρkn, Zk−1 < ρk−1n]

≤ C ′(δ)C(ρ − m)

(ρ − m)a+δ(1 − mρ−a−δ)
H(n).

Finally, there exists C ′′ < ∞ such that for n ≥ 1, P[S∞ > n] < C ′′ · H(n). ��

5.4.3 Proof of Lemma 5.7

Lemma 5.7 follows from the lemma:

Lemma 5.8 For d ≥ 3 and α > 0, as x → ∞,

P[#Cα(0, 1) > x] ∼ αdd/2

(d/2 − 1)(2πG(0, 0))d/2 x
1− d

2 .

In particular, for p ≥ 0, E[(#Cα(0, 1))p] < ∞ iff p < d
2 − 1.

Indeed, the case K = 1 in Lemma 5.7 follows from Lemma 5.8. We prove the general
case by induction on K . Suppose that for any K ≤ m there exists C(d, α, K ) < ∞
such that

P [#Cα(0, K ) > n] ≤ C(d, α, K ) · n1−d/2. (21)

Let (ηi )i be a sequence of independent variables with distribution P[#Cα(0, 1) ∈ ·]
which is also independent from Lα . Then, #Cα(0,m + 1) is stochastically dominated
by

∑#Cα(0,m)
i=1 ηi . The proof is complete by using (21) for K = 1 and K = m, and by

applying Lemma 5.5 with ξ = #Cα(0,m). ��
It remains to prove Lemma 5.8. We first prove a result on the tail of the range of

the first finite excursion of a SRW at 0.

Lemma 5.9 Let P0 be the law of SRW on Zd starting from 0. Let Pex be the law of the
first excursionunderP0[·|τ+(0) < ∞]. LetPex,2n be the lawof the first excursiongiven
that the first excursion has exactly 2n jumps. Set F = P

0[τ+(0) < ∞] = 1 − 1
G(0,0) .

Then,

(a) for any ε > 0,

lim
n→∞P

ex,2n
[∣∣∣∣ 12n #(Range of excursion) − (1 − F)

∣∣∣∣ > ε

]
= 0;
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(b) P
ex [#(Range of excursion) > x] ∼ dd/2(1−F)d/2+1

(d/2−1)(2π)d/2F
x1− d

2 .

Proof Firstly, by [6], for d ≥ 3, as n → ∞,

P
0[τ+(0) = 2n] ∼ (1 − F)2P0[X2n = 0].

Then, by [10, Theorem 1.2.1],

P
0[X2n = 0] ∼ 2dd/2

(4πn)d/2 as n → ∞.

Thus,

P
0[τ+(0) = 2n] ∼ (1 − F)2

2dd/2

(4πn)d/2 . (22)

(a) We see that P0[τ+(0) = 2n] decays polynomially. By [8, Theorem 1],

P
0
[
1

2n
#(Range of {X0, . . . , X2n}) > 1 − F + ε

]
goes to 0 exponentially fast.

Then,

P
ex,2n

[
1

2n
#(Range of excursion) > 1 − F + ε

]

= 1

P0[τ+(0) = 2n]P
0
[
1

2n
#(Range of {X0, . . . , X2n})

> 1 − F + ε, τ+(0) = 2n

]

≤ 1

P0[τ+(0) = 2n]P
0
[
1

2n
#(Range of {X0, . . . , X2n}) > 1 − F + ε

]

which also goes to 0 exponentially fast. On the other hand, for any fixed δ > 0,
the Radon–Nikodym derivative dPex,2n

dP0 with respect to σ(X0, . . . , X�2n−nδ�) is
bounded by a constant c(ε):

E
0
[
dPex,2n

dP0

∣∣∣∣σ(X0, . . . , X�2n−nδ�)
]

= 1{τ+(0)>�2n−nδ�}
P
X�2n−nδ� [τ+(0) = 
nδ�]
P0[τ+(0) = 2n]

≤ P
X�2n−nδ� [X
nδ� = 0]
P0[τ+(0) = 2n]

≤ c(δ)

where the last inequality comes from local central limit theorem with Eq. (22).
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Phase transition in loop percolation 1009

For anyfixed ε > 0, choose δ small enough such that (1−F−ε) 2
2−δ

< 1−F−ε/2.
Then, for n large enough,

P
ex,2n

[
1

2n
#(Range of excursion) < 1 − F − ε

]

≤ P
ex,2n

[
1

2n
#(Range of {X0, . . . , X�2n−nδ�}) < 1 − F − ε

]

≤ P
ex,2n

[
1

�2n − nδ�#(Range of {X0, . . . , X�2n−nδ�}) < 1 − F − ε/2

]

≤ c(ε)P0
[

1

�2n − nδ�#(Range of {X0, . . . , X�2n−nδ�}) < 1 − F − ε/2

]

which goes to 0 as n tends to infinity since under P0,

1

n
#(Range of {X0, . . . , Xn}) n→∞−→ 1 − F in probability,

see e.g. [27, T1 in Section 4].
(b) By decomposing the event according to the value of τ+(0), we see that as x → ∞,

P
ex [#(Range of excursion) > x] =

∑
n≥�x/2�

P
0[τ+(0) = 2n]/P0[τ+(0) < ∞]

× P
ex,2n[#(Range of excursion) > x].

By using the result in the first part and Eq. (22), as x → ∞

P
ex [#(Range of excursion) > x] ∼

∑
n≥ x

2(1−F)

P
0[τ+(0) = 2n]/P0[τ+(0) < ∞]

∼
∑

n≥ x
2(1−F)

(1 − F)2

F

2dd/2

(4πn)d/2

∼ dd/2(1 − F)d/2+1

(d/2 − 1)(2π)d/2F
x1−

d
2 .

��

Proof of Lemma 5.8 By [4, Theorem3.29], the result of Lemma 5.9 implies that the
distribution of #(Range of excursion) under Pex is sub-exponential for d ≥ 3. By

[4, Theorem 3.37], the random stopped sum Sτ
def= ∑τ

i=1 ηi of i.i.d. sub-exponential
variables (ηi )i is again sub-exponential ifE[(1+δ)τ ] < ∞ for some δ > 0.Moreover,

P[Sτ > x] ∼ E[τ ]P[η1 > x] as x → ∞.
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1010 Y. Chang, A. Sapozhnikov

Here, we are in a slightly different situation. In fact, by Lemma 2.6, we have that

#(Cα(0, 1) ∪ {0}) law= #

⎛
⎝ξ(0,Lα)⋃

i=1

rangei

⎞
⎠

where (rangei )i are i.i.d. variables which are independent of the Poisson loop soup
and follow the distribution of the range of excursion under Pex . We see that

ξ(0,Lα)
max
i=1

ηi ≤ #

⎛
⎝ξ(0,Lα)⋃

i=1

rangei

⎞
⎠ ≤

ξ(0,Lα)∑
i=1

ηi

where ηi
def= #rangei for all i . We will see that maxξ(0,Lα)

i=1 ηi and
∑ξ(0,Lα)

i=1 ηi have the
same tail behavior: On one hand, since ξ(0,Lα) has an exponentially decayed tail by
Lemma 2.6, we can apply [4, Theorem3.37]. Then, as x → ∞,

P

⎡
⎣ξ(0,Lα)∑

i=1

ηi > x

⎤
⎦ ∼ E[ξ(0,Lα)]P[η1 > x].

On the other hand,

P[ξ(0,Lα)
max
i=1

ηi > x] = E[1 − (1 − P[η1 > x])ξ(0,Lα)]

= P[η1 > x]E
[
1 − (1 − P[η1 > x])ξ(0,Lα)

P[η1 > x]ξ(0,Lα)
ξ(0,Lα)

]
.

By Lemma 5.9, P[η1 > x] → 0 as x → ∞. Then, by the dominated convergence,

E

[
1 − (1 − P[η1 > x])ξ(0,Lα)

P[η1 > x]ξ(0,Lα)
ξ(0,Lα)

]
x→∞∼ E[ξ(0,Lα)].

Therefore, as x → ∞,

P[ξ(0,Lα)
max
i=1

ηi > x] ∼ E[ξ(0,Lα)] · P[η1 > x].

Thus, we must have that as x → ∞,

P[#Cα(0, 1) > x] ∼ E[ξ(0,Lα)]P[η1 > x].

By Lemma 2.6,

E[ξ(0,Lα)] = α(G(0, 0) − 1).
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By Lemma 5.9, as x → ∞,

P[η1 > x] ∼ dd/2

(G(0, 0) − 1)(d/2 − 1)(2πG(0, 0))d/2 x
1− d

2 .

Thus, as x → ∞,

P[#Cα(0, 1) > x] ∼ αdd/2

(d/2 − 1)(2πG(0, 0))d/2 x
1− d

2 .

In particular, for p ≥ 0, E[(#Cα(0, 1))p] < ∞ iff p < d
2 − 1. ��

5.5 α# ≤ α1

In this section we complete the proof of Theorem 1.4 by showing the relation between
α# and α1.

Proposition 5.10 For d ≥ 5, α# ≤ α1.

Weprove Proposition 5.10 by showing that ifE[#Cα(0)] < ∞, then the probabilities of
crossing annuli of large enough aspect ratio by chains of loops from Lα are uniformly
smaller than 1. For a given annulus, we distinguish three possible situations: (a) one
of the 5 disjoint subannuli is crossed by a single loop from Lα , (b) there is a crossing
with at least 3 big loops, and (c) every crossing contains many loops. Probabilities of
these events are estimated in 3 lemmas below.

The first lemma estimates the probability that one of the 5 disjoint subannuli of a
given annulus is crossed by a loop.

Lemma 5.11 For integers β ≥ 2, n ≥ 1, and i = 1, 2, 3, 4, 5, let

Wn,i = {∃� ∈ Lα : B(0, β i−1n)
�←→ ∂B(0, β i n)}.

Then, there exists C(d) < ∞ such that for n ≥ 1,

P

[
5⋃

i=1

Wn,i

]
≤ 5αC(d)β2−d .

The next lemma estimates the probability that there is a chain of loops from a given
vertexwhich contains at least k loops of diameter≥ m. (In the proof of Proposition 5.10
we will only need the case k = 3.) To state the lemma, we introduce some notation.
For x, y ∈ Z

d and m ≥ 1, define the events Jx,m and Jx,y,m by

Jx,y,m = {∃� ∈ Lα : x, y ∈ �, Diam(�) ≥ m} and Jx,m = Jx,x,m .
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1012 Y. Chang, A. Sapozhnikov

For x ∈ Z
d , define the event

Ex
m,k

def=

⎧⎪⎨
⎪⎩

⋃
x1,...,xk
y1,...,yk−1

{x Lα←→ x1} ◦ {y1 Lα←→ x2} ◦ · · · ◦ {yk−1
Lα←→ xk}

◦Jx1,y1,m ◦ · · · ◦ Jxk−1,yk−1,m ◦ Jxk ,m

⎫⎪⎬
⎪⎭ ,

where the notation “◦” means the disjoint occurrence in the sense of loops instead of

edges. To be more precise, for x, y ∈ Z
d and a set of loops O , denote by x

O←→ y
the connection from x to y by loops in O:

{x O←→ y}={∃�1, . . . , �p ∈ O : x ∈ �1, �1 ∩ �2 �=φ, . . . , �p−1 ∩�p �= φ, y ∈ �p}

with the conventions that {x φ←→ x} is the sure event. Then,

Ex
m,k =

⋃
⎧⎨
⎩

disjoint finite loop sets
O1,...,Ok such that

x
O1←→x1, y1

O2←→x2,...,yk−1
Ok←→xk

⎫⎬
⎭

⋃
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Different �1,...,�k /∈

k⋃
i=1

Oi such that

Diam(�1)≥m,...,Diam(�k )≥m

x1
�1←→y1,...,xk−1

�k−1←→yk−1, xk∈�k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

×
{

k⋃
i=1

(Oi ∪ {�i }) ⊂ Lα

}
.

Figure 3 is an illustration of event Ex
m,3.

Lemma 5.12 For d ≥ 5, α < α#, and k ≥ 1, there exists constant Ck(d, α) such that

P[E0
m,k] ≤ Ck(d, α) · m−(k(d−4)+2). (23)

Finally, the next lemma provides a bound on the probability of a long “geodesic”
chain of loops from 0.

Fig. 3 Illustration of event Ex
m,k for k = 3
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Lemma 5.13 For d ≥ 5 and α < α#, there exist c(d, α) > 0 and C(d, α) < ∞ such
that for k ≥ 0

P[#Cα(0, k) > 0] ≤ C(d, α) · e−c(d,α)k .

We can now deduce Proposition 5.10 from the above three lemmas, and after that
prove the lemmas.

Proof of Proposition 5.10 Let d ≥ 5 and α < α#. To prove that α ≤ α1, we need to
show that there exist β ≥ 2 and r < 1 such that

lim sup
n→∞

P[B(0, n)
Lα←→ ∂B(0, β5n)] ≤ r. (24)

We cut the annulus into 5 concentric annuli and denote by Wn,i the one loop crossing
event for each annulus for i = 1, 2, 3, 4, 5:

Wn,i = {∃� ∈ Lα : B(0, β i−1n)
�←→ ∂B(0, β i n)}.

By Lemma 5.11, we can choose β large enough such that for n ≥ 1,

P

[
5⋃

i=1

Wn,i

]
≤ 1

2
.

Next, we estimate the probability that a path of loops from B(0, n) to ∂B(β5n)

contains at least 3 large loops. Take m = �n5/6�. By Lemma 5.12,

P

⎡
⎣ ⋃
x∈∂B(0,n)

Ex
m,3

⎤
⎦ ≤ C(d, α) · #∂B(0, n) · m10−3d ,

which tends to 0 as n → ∞.
On the event

{B(0, n)
Lα←→ ∂B(0, β5n)} ∩

(
5⋃

i=1

Wn,i

)c

∩
⎛
⎝ ⋃

x∈∂B(0,n)

Ex
m,3

⎞
⎠

c

,

every path of loops in Lα from B(0, n) to ∂B(0, β5n) must cross at least one of the 5
subannuli only by loops of diameter smaller thanm. Since the infinity distance between
the inner boundary and the outer boundary of each subannulus is at least (β − 1)n,
every such path must consist of at least (β−1)n

m loops, which implies that for some

x ∈ ∂B(0, n), Cα(x, (β−1)n
m ) �= φ. By Lemma 5.13, the probability of this event is

bounded from above byC(d, α)·nd−1 exp{−c(d, α)n1/6}, which goes to 0 as n → ∞.
Finally, we conclude (24) with r = 1/2. ��
It remains to prove the lemmas.
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1014 Y. Chang, A. Sapozhnikov

Proof of Lemma 5.11 By Lemmas 2.7 and 2.3, there exists C(d) < ∞ such that for
n ≥ 1,

P

[
5⋃

i=1

Wn,i

]
≤

5∑
i=1

P[∃� ∈ Lα : B(0, β i−1n)
�←→ ∂B(0, β i n)]

≤
5∑

i=1

αμ(� : B(0, β i−1n)
�←→ ∂B(0, β i n))

≤ 5αC(d)β2−d .

��
Proof of Lemma 5.12 We prove (23) by induction in the following three steps:

(I) Proof of (23) for k = 1: By considering

min{q ≥ 0 : there exists � ∈ Lα such that � ∩ Cα(0, q) �= φ, Diam(�) ≥ m}

and then using the first moment method,

P[E0
m,1] ≤ E[#Cα(0)] · P[∃� ∈ Lα : 0 ∈ �, Diam(�) ≥ m]

≤ E[#Cα(0)] · P[∃� ∈ Lα : 0 �←→ ∂B(0, �m/2�)]
≤ α · E[#Cα(0)] · μ(� : 0 �←→ ∂B(0, �m/2�)).

The proof of (23) for k = 1 is complete by Lemma 2.7.
(II) Suppose (23) holds for k ≤ K . Then for k = K + 1, since Ex

m,K are increasing
events and Lα is translation invariant, by the first moment method,

P[E0
m,K+1] ≤

∑
x,y∈Zd

P[{0 Lα←→ x}◦{∃� ∈ Lα : x, y ∈ �, Diam(�) ≥ m}◦Ey
m,K ].

(25)
where A ◦ B means the disjoint occurrence for two increasing events A and B
in the sense of loops instead of edges. We set ω(�) = 1 iff � ∈ Lα . Similarly
to the primitive loops considered in [17, Section 2.1], the distribution of the
random configuration measure (ω(�))� is a product measure by the definition
of Poisson random measure. It is known that the BK inequality holds for prod-
uct measure on {0, 1}m for finite m ≥ 1, see e.g. [7, Theorem 2.12]. Although
{0, 1}{loop space on Zd } is not finite, the finite volume approximationworks inmany
situations. Indeed, the increasing event considered in this proof can be approx-
imated by monotone sequence of finitely loop dependent events. Thus, we can
apply BK inequality:

(25) ≤
∑

x,y∈Zd

P[0 Lα←→ x] · P[∃� ∈ Lα : x, y ∈ �, Diam(�) ≥ m] · P[Ey
m,K ].

123



Phase transition in loop percolation 1015

By translation invariance of Lα ,

P[E0
m,K+1] ≤ E[#Cα(0)] · P[E0

m,K ] ·
∑
y∈Zd

P[∃� ∈ Lα : 0, y ∈ �, Diam(�) ≥ m].

In the next step, we will bound
∑

y∈Zd P[∃� ∈ Lα : 0, y ∈ �, Diam(�) ≥ m]
by C(d, α) · m4−d , which will finish the proof of the lemma.

(III) By comparing #Cα(0, 1) with m2,

∑
y∈Zd

P[∃� ∈ Lα : 0, y ∈ �, Diam(�) ≥ m] ≤ E
[
1{#Cα(0,1)≥m2} · #Cα(0, 1)

]

+ m2
P[∃� ∈ Lα : 0 ∈ �, Diam(�) ≥ m].

By Lemma 5.8, there exists C(d, α) < ∞ such that

E[1{#Cα(0,1)≥m2} · #Cα(0, 1)] ≤ C(d, α) · m4−d .

The second term is estimated by m2 · P[E0
m,1] ≤ C ′(d, α) · m4−d . The proof of

the lemma is thus complete. ��
Proof of Lemma 5.13 Recall the definition of Uα(0, K ) from (14).

For d ≥ 5 and α < α#, there exists K (d, α) ∈ N large enough such that

E[#Uα(0, K (d, α))] < e−1.

Since (#C(0, K (d, α)i))i≥0 is dominated by a sub-critical Galton–Watson process
with offspring distribution P[#Uα(0, K (d, α)) ∈ ·],

P[#Cα(0, k) > 0] ≤ P

[
#Cα

(
0, K (d, α)

⌊
k

K (d, α)

⌋)
> 0

]
≤ exp

{
−
⌊

k

K (d, α)

⌋}
.

��

5.6 Asymptotic expression for αc as d → ∞

The main result of this section is Proposition 5.14, which shows that all the critical
thresholds defined in this paper asymptotically coincide as the dimension d → ∞, and
gives also their asymptotic value. The proof involves a careful estimate ofE[#Cα(0, 1)]
together with an upper bound of critical value αc in [17, Proposition 4.3(ii)].

Proposition 5.14 Asymptotically, as d → ∞,

2d − 6 + O(d−1) ≤ α# ≤ αc ≤ 2d + 3

2
+ O(d−1).
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1016 Y. Chang, A. Sapozhnikov

Proof The upper bound of the critical value αc follows from the comparison between
the loop percolation and Bernoulli bond percolation in [17, Proposition 4.3(ii)],

(
1 − 1

(2d)2

)αc

≤ 1 − pc,

where pc is the critical value of Bernoulli bond percolation, and the asymptotic expan-
sion for pc as in [26, (11.19)],

pc = 1

2d
+ 1

(2d)2
+ O(d−3).

For the lower bound on α#, recall from the proof of Proposition 5.1 that for d ≥ 5,

α# ≥ inf{α > 0 : E[#Cα(0, 1)] < 1}

= inf

⎧⎨
⎩α > 0 :

∑
x∈Zd ,x �=0

1 −
(
1 −

(
G(0, x)

G(0, 0)

)2
)α

< 1

⎫⎬
⎭ .

For α ≥ 1,

∑
x∈Zd ,x �=0

1 −
(
1 −

(
G(0, x)

G(0, 0)

)2
)α

≤ α
∑

x∈Zd ,x �=0

(
G(0, x)

G(0, 0)

)2

.

Thus, the lower bound on α# follows from the following claim:

∑
x∈Zd ,x �=0

(
G(0, x)

G(0, 0)

)2

= 1

2d

(
1 + 3

d
+ O(d−2)

)
, as d → ∞. (26)

For (26), it suffices to show that

∑
x∈Zd

(G(0, x))2 = 1+ 3

2d
+ 15

4d2
+O(d−3) and G(0, 0) = 1+ 1

2d
+ 3

4d2
+O(d−3).

(27)
We use Fourier transforms. For an absolutely summable function f : Zd → C and
k ∈] − π, π [d , the Fourier transform of f at k is defined by

f̂ (k) =
∑
x∈Zd

eik·x f (x), where k · x =
d∑
j=1

k j x j .

Let D(x) = 1
2d 1{||x ||2=1} be the transition probability for SRW from 0. Then D̂(k) =

1
d

∑d
i=1 cos(ki ) and Ĝ(k) = 1

1−D̂(k)
in the sense of L2(dk) for d ≥ 5, where Ĝ(k) is

the Fourier transform of x �→ G(0, x).
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We first consider
∑

x∈Zd (G(0, x))2. By Parseval’s identity, for d ≥ 5,

∑
x∈Zd

(G(0, x))2 = 1

(2π)d

∫

]−π,π [d

(
1

1 − D̂(k)

)2

ddk.

It will be convenient to use the probabilistic interpretation. Let (Ui )i be independent
random variables uniformly distributed in ]−π, π [, and define Zd = 1

d

∑d
i=1 cos(Ui ).

Then, ∑
x∈Zd

(G(0, x))2 = E[(1 − Zd)
−2].

We expand (1− Zd)
−2 = ∑

n≥0(n+1)Zn
d into a power series of Zd . We first estimate

the error term

Rd,2m
def=

∣∣∣∣∣(1 − Zd)
−2 −

2m−1∑
n=0

(n + 1)Zn
d

∣∣∣∣∣ .

If |Zd | < 1/2,

Rd,2m ≤ Z2m
d ·

∞∑
j=0

(2m + 1 + j)|Zd | j ≤ 8mZ2m
d ,

if |Zd | ≥ 1/2,

Rd,2m ≤ (1 − Zd)
−2 +

∣∣∣∣∣
2m−1∑
n=0

(n + 1)Zn
d

∣∣∣∣∣ ≤ (1 − Zd)
−21Zd≥1/2 + 1 + m(2m − 1).

Note that

E[Z2
d ] = 1

2d
and E[Z2m

d ] ≤ C(m)

dm
, for m ≥ 2,

and by the exponential Markov inequality, P[|Zd | ≥ 1
2 ] ≤ 2 · e−d/8. Thus, for some

C ′(m) < ∞,

E[Rd,2m] ≤ C ′(m)

dm
+ E[(1 − Zd)

−21Zd≥1/2].

By Hölder’s inequality and the exponential Markov inequality,

E[(1 − Zd)
−21Zd≥1/2] ≤ (E[(1 − Zd)

−7/3])6/7 · e−d/56. (28)

We will show that there exists a universal constant C < ∞ such that for d ≥ 5,

E[(1 − Zd)
−7/3] < C. (29)
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1018 Y. Chang, A. Sapozhnikov

Once (29) is proved, by using the bound on E[Rd,6], we get

∑
x∈Zd

(G(0, x))2 =
5∑

n=0

(n + 1)E[Zn
d ] + O(d−3),

and the first part of (27) follows by direct calculation of moments of Zd up to order
O(d−3).

It remains to prove (29). By convexity of the function h �→ (1 − h)−7/3 and the
definition of D̂(k),

E[(1 − Zd)
−7/3] ≤ 5

d
E[(1 − Z5)

−7/3] + d − 5

d
E[(1 − Zd−5)

−7/3]. (30)

Thus, the uniform bound in (29) follows by induction from (30) as soon as we
show that for any d ≥ 5, E[(1 − Zd)

−7/3] < ∞. This follows from the defini-
tion of D̂(k), the fact that minx∈]−π,π [ 1−cos(x)

x2
> 0, and the finiteness of the integral

1
(2π)d

∫
]−π,π [d

1
||k||14/32

ddk for any d ≥ 5.

The proof of the first expansion in (27) is complete. Since 1
1−D̂(k)

∈ L1 by (29), the

expansion for G(0, 0) in (27) can be done similarly by the inverse Fourier transform.
We omit the details, and complete the proof. ��

6 Refined lower bound for d = 3, 4

6.1 d = 3: Proof of Theorem 1.5

In this section we prove that n2−d is not the correct order of decay of the one arm
probability in dimension d = 3 by providing a lower bound on the one arm probability
of order n2−d+ε. The key ingredient for the proof is the following lemma which gives
a lower bound of the expected capacity of the open cluster at 0 formed by the loops
(Lα)B(0,k) contained inside the box B(0, k).

Lemma 6.1 For d = 3 and α > 0, denote by Ckα(0) the open cluster at 0 formed
by the loops (Lα)B(0,k) contained inside the box B(0, k). Then, there exist positive
constants ε(α) and c(α) such that

E[Cap(Ckα(0))] ≥ c(α) · kε(α).

Before proving the lemma, we show how to deduce Theorem 1.5 from it.

Proof of Theorem 1.5 Let d = 3 and α > 0. Take C�n/2�
α (0) as in the statement of

Lemma 6.1. We always have

P[0 Lα←→ ∂B(0, n)] ≥ P[∃� ∈ Lα : C�n/2�
α (0)

�←→ ∂B(0, n)].
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Note that C�n/2�
α (0) depends only on the loops (Lα)B(0,�n/2�) inside the box

B(0, �n/2�). Thus, it is independent from the loops (Lα)(B(0,�n/2�))c intersecting
(B(0, �n/2�))c. Then, by Lemma 2.7, there exists c > 0 such that

P[∃� ∈ Lα : C�n/2�
α (0)

�←→ ∂B(0, n)]
= E[1 − exp{−αμ(� : C�n/2�

α (0)
�←→ ∂B(0, n))}]

≥ E[1 − exp{−αcn−1 Cap(C�n/2�
α (0))}]. (31)

Since by Lemma 2.3, n−1 Cap(C�n/2�
α (0)) ≤ n−1 Cap(B(0, �n/2�)) is uniformly

bounded, there exists a constant c = c(α) such that

(31) ≥ c · n−1 · E[Cap(C�n/2�
α (0))].

The proof is complete by Lemma 6.1. ��
We complete this section with the proof of the remaining lemma.

Proof of Lemma 6.1 Let d = 3 and α > 0.

(I) By Lemma 2.7, there exist constants λ1 > 1 and c > 0 such that for n ≥ 1,
m ≥ 2n, M ≥ λ1m, and K ⊂ B(0, n),

μ(� : K �←→ ∂B(0,m), � ⊂ B(0, M), Cap(�) > cm)

≥ μ(� : K �←→ ∂B(0,m), Cap(�) > cm) − μ(� : K �←→ ∂B(0, M))

≥ c · Cap(K ) · m−1. (32)

(II) Denote by Cα(K ,m, M) the set of vertices visited by the loops from Lα which
are contained in B(0, M) and intersect both K and ∂B(0,m).
We claim that there exists λ2 = λ2(α) > 1 such that for n ≥ 1, m ≥ 2n,
M > λ2m, and K ⊂ B(0, n),

E[Cap(Cα(K ,m, M))] ≥ 2 · Cap(K ). (33)

Indeed, for the constant c as in (I),

E[Cap(Cα(K ,m, M)] = c ·
∞∫
0

dp · P[Cap(Cα(K ,m, M)) > cp]

≥ c ·
�M/λ1�∫
m

dp · P[∃� ∈ Lα : K �←→ ∂B(0, 
p�), � ⊂ B(0, M),Cap(�)>cp]

(32)≥ c ·
�M/λ1�∫
m

dp ·
(
1 − exp

{
−α · c · Cap(K ) · 1


p�
})

(34)

123



1020 Y. Chang, A. Sapozhnikov

Since Cap(K ) · 1

p� ≤ Cap(B(0, 
p�)) · 1


p� is bounded, see Lemma 2.3, there
exists c′ = c′(α) > 0 such that

(34) ≥ c · c′ · Cap(K ) ·
M/λ1∫
m

dp

p
= c · c′ · Cap(K ) · log

(
M

λ1m

)
. (35)

By choosing λ2 = λ2(α) > 1 such that c · c′ · log
(

λ2
λ1

)
> 2, we get (33).

(III) We can now complete the proof of Lemma 6.1 by iterating (33). Take the deter-
ministic sequence

M0 = 1, and Mi+1 = 
2λ2Mi� for i ≥ 0,

and the sequence of random subsets of Zd

C0 = {0}, and Ci+1 = Cα(Ci , 2Mi , Mi+1) for i ≥ 0.

Note that for all i , Ci ⊂ B(0, Mi ), and the sets of loops forming Ci ’s are disjoint
for different i’s. Thus, by (33), for i ≥ 1,

E[Cap(Ci )|Ci−1] ≥ 2 · Cap(Ci−1), (36)

and by iteration of (36),

E[Cap(Ci )] ≥ 2i · Cap({0}). (37)

For k ≥ 1, let Tk = max{i ≥ 0 : Mi ≤ k}. Note that CTk ⊂ Ckα(0) and
Tk ≥ log k

log
2λ2� −1. By the monotonicity of capacity and (37), there exist c = c(α)

and ε = ε(α) such that

E[Cap(Ckα(0))] ≥ E[Cap(CTk )] ≥ 2Tk · Cap({0}) ≥ c · kε .

��

6.2 d = 4: Proof of Theorem 1.6

In this section we prove a lower bound on the one arm probability in dimension d = 4,
which is of order n2−d(log n)ε . This is better than the bound by the probability of single
big loop obtained in Theorem 1.2.

Since the proof of this fact is very similar to the proof of Theorem 1.5, we will
only discuss necessary modifications. The role of Lemma 6.1 used in the proof of
Theorem 1.5, is now played by the following lemma.

Lemma 6.2 For d = 4 and α > 0, let Ckα(0) be the open cluster at 0 formed by the
loops (Lα)B(0,k) contained inside the box B(0, k). Then, there exist positive constants
ε = ε(α) and c = c(α) such that
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E[Cap(Ckα(0))] ≥ c · (log n)ε.

The proof of Lemma 6.2 consists of the same 3 steps as the proof of Lemma 6.1:

(I) By Lemma 2.7, there exist constants λ1 > 1 and c > 0 such that for n ≥ 1,
m ≥ 2n, M ≥ λ1m, and K ⊂ B(0, n),

μ

(
� : K �←→∂B(0,m), �⊂ B(0, M), Cap(�)>c · m2

logm

)
≥ c·Cap(K )·m−2.

(38)
(II) Denote by Cα(K ,m, M) the set of vertices visited by the loops from Lα which

are contained in B(0, M) and intersect both K and ∂B(0,m). Then using (38),
one can show similarly to (34) and (35) that there exists c = c(α) such that

E[Cap(Cα(K ,m, M)] ≥ c · Cap(K ) · log
(
logM

logm

)
.

In particular, there exists λ2 = λ2(α) > 1 such that for all M ≥ mλ2 ,

E[Cap(Cα(K ,m, M)] ≥ 2 · Cap(K ),

which is an analogue of (33).
(III) Take the deterministic sequence

M0 = 1, and Mi+1 = 
(2Mi )
λ2� for i ≥ 0,

and the sequence of random subsets of Zd

C0 = {0}, and Ci+1 = Cα(Ci , 2Mi , Mi+1) for i ≥ 0.

For k ≥ 1, let Tk = max{i ≥ 0 : Mi ≤ k}. Then Tk is of order log log k, and
E[Cap(Ckα(0))] ≥ E[Cap(CTk )] ≥ c · (log k)ε , for some c = c(α) and ε = ε(α).

��

7 Loop percolation on infinite connected graphs

In this sectionwe discuss several properties of the loop percolation on a general infinite
connected graph:

• triviality of the tail sigma-algebra, see Proposition 7.1,
• κc(α) ≤ 0 for any recurrent graph, see Proposition 7.3,
• continuity of κc(α), see Proposition 7.4.

We begin with a 0–1 law for tail events.

Proposition 7.1 For any A ∈ ⋂
K finite FKc , P[A] ∈ {0, 1}.
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Proof Let (Kn)n be an increasing sequence of finite subsets of vertices in V such that⋃
n Kn = V . As 1A ∈ L p(P),

P[1A|FKn ] a.s.→
L p(P)

1A.

Therefore,

lim
n→∞E[1AE[1A|FKn ]] = P[A].

On the other hand, by independence between FKn and
⋂

K finite FKc ,

E[1AE[1A|FKn ]] = P[A]P[P[A|FKn ]] = (P[A])2.

The 0–1 law holds since P[A] = (P[A])2. ��
Corollary 7.2 For any x ∈ V ,P[#Cα,κ (x) = ∞] > 0 iffP[∪z∈V {#Cα,κ (z)=∞}]=1.

Proof By the definition of Poisson loop soup, (1{�∈Lα,κ })�∈{loops} is a sequence of 0, 1
valued independent variables. By the FKG inequality for product measures, for loop
percolation associated with irreducible random walk, if P[#Cα,κ (x) = ∞] > 0 for
some x ∈ V , then such probability is positive for any vertex in V . Since V is countable,
if for a given x ∈ V , P[#Cα,κ (x) = ∞] = 0, then P[∪z∈V {#Cα,κ (z) = ∞}] = 0. The
inverse statement follows from Proposition 7.1. ��

The next statement shows that κc(α) ≤ 0 for any recurrent graph.

Proposition 7.3 For a connected recurrent graph G = (V, E), α > 0, κ = 0, and
x ∈ V , P almost surely, the set {� ∈ Lα,0 : x ∈ �} of loops passing through x covers
V .

Proof Let Xn be a SRWonG. For any different x, y ∈ V , let τ0 = 0, τ2k+1 = inf{n >

τ2k : Xn = x}, and τ2k+2 = inf{n > τ2k+1 : Xn = y} for k ≥ 0. Since G is recurrent,
τi are all finite almost surely for any initial position of the random walk. By (1) and
(6),

μ(� : x �←→ y) =
∑
k≥1

1

k
· Px [τ2k < ∞] =

∑
k≥1

1

k
= ∞.

Therefore,

P[∃� ∈ Lα,0 : x �←→ y] = 1 − exp{−αμ(� : x �←→ y)} = 1.

Since G is connected and V is countable, it follows that P almost surely G is covered
by the loops from Lα,0 which visit x . ��
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Next, we study the continuity of the critical curve (α, κ) of the loop percolation
model. By [17, Proposition 4.3], both αc(κ) and κc(α) are non-decreasing. It follows
from Theorem 1.1 that κ �→ αc(κ) is discontinuous at κ = 0 for loop percolation on
Z
d , d ≥ 3. We do not know if it is continuous for κ > 0. Our following result is about

the continuity of α �→ κc(α).

Proposition 7.4 For α > 0, κc(α) is a non-decreasing continuous function of α.

For its proof, we need the following lemma.

Lemma 7.5 For κ1 ≥ κ0 and α1 ≤ α0(
1+κ1
1+κ0

)2, the point process of loops Lα1,κ1 is
stochastically dominated by Lα0,κ0 , i.e., there exists a coupling (L0,L1) of Lα0,κ0 and
Lα1,κ1 on some probability space (�̂, Â, P̂) such that P̂[L1 ⊆ L0] = 1.

Proof By definition, α0μκ0 is the intensity measure of the Poisson loop ensemble
Lα0,κ0 , and α1μκ1 is the intensity measure of Lα1,κ1 . Under the assumption of this
lemma, for a fixed based loop (x1, . . . , xk),

α0μ̇κ0((x1, . . . , xk)) = α0
1

(1 + κ0)k

1

k
Qx1

x2 · · · Qxk−1
xk Qxk

x1

= α0

(
1 + κ1

1 + κ0

)k 1

k

1

(1 + κ1)k
Qx1

x2 · · · Qxk−1
xk Qxk

x1

= α0

(
1 + κ1

1 + κ0

)k

μ̇κ1((x1, . . . , xk))

≥ α0

(
1 + κ1

1 + κ0

)2

μ̇κ1((x1, . . . , xk))

≥ α1μ̇κ1((x1, . . . , xk)). (39)

For two measures ν1 and ν2, we write ν1 ≤ ν2 iff ν1(A) ≤ ν2(A) for any measurable
A. Then, (39) implies that α0μκ0 ≥ α1μκ1 , and the existence of the claimed coupling
of Lα0,κ0 and Lα1,κ1 follows. ��
Proof of Proposition 7.4 Fix 0 < α0 < α1. By Lemma 7.5, for any κ1 < κc(α1),

κ0 =
√

α0
α1

(1 + κ1) − 1 ≤ κc(α0). Thus,

0 ≤ κc(α1) − κc(α0) ≤ 1 + κc(α1)√
α1

· (
√

α1 − √
α0) ≤ 1 + κc(α0)

2α0
· (α1 − α0).

��

8 Open problems

• For d = 3, does the limit limn→∞ 1
log n logP[0 Lα←→ ∂B(0, n)] exist? Note that

if the limit exists, it must depend on α by Theorems 1.3 and 1.5. Assume that the

limit exists and equals −c(α). Does the limit limn→∞ nc(α)
P[0 Lα←→ ∂B(0, n)]
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exist? What is the value of c(α)? Conditionally on 0
Lα←→ ∂B(0, n), is the typical

loop distance between 0 and ∂B(0, n) of order log n?

• For d = 4, does P[0 Lα←→ ∂B(0, n)] equal n−2 up to some multiplicative factor of
power of log n? If so, does the power of the logarithm depend on α? Conditionally

on 0
Lα←→ ∂B(0, n), is the typical loop distance between 0 and ∂B(0, n) of order

log log n?

• For d ≥ 5, do the limits limn→∞ nd−2
P[0 Lα←→ ∂B(0, n)], lim||x ||→∞ ||x ||2(d−2)

P[0 Lα←→ x], limn→∞ n
d
2 −1

P[#Cα(0) > n] exist?
• For d ≥ 3, is α1 = αc?
• For d = 5, is α# = αc? By Proposition 5.10 this would imply also that α1 = αc.
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