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894 J. C. A. Dias, S. Friedli

1 Introduction

We consider stationary stochastic processes on Z,

. . . , Z−2, Z−1, Z0, Z1, Z2, . . .

where each Zt , t ∈ Z, is a symbol taking values in a finite alphabet A. The processes
we consider are called chains with complete connections (Doeblin and Fortet [3]), due
to a dependence on the past of the following form. Assume some measurable map
g : A ×AN → [0, 1] is given a priori, called g-function, and that for all t , all zt ∈ A,

P(Zt = zt |Zt−1 = zt−1, Zt−2 = zt−2, . . . ) = g(zt |zt−1, zt−2, . . . ) a.s. (1)

A processes Z = (Zt )t∈Z satisfying (1) is said to be specified by g. The role played
by g for Z is therefore analogous to a transition kernel for a discrete time Markov
process, except that it allows dependencies on the whole past of the process.

We will always assume that g is regular, which means that it satisfies the following
two conditions.

(1) It is uniformly bounded away from 0 and 1: there exists η > 0 such that η ≤
g(z0|z) ≤ 1 − η for all z0 ∈ A, z ∈ AN.

(2) Define the variation of g of order j by

var j (g) := sup |g(z0|z) − g(z0|z′)|,

where the sup is over all z0 ∈ A, and over all z, z′ ∈ AN for which zi = z′i for all
1 ≤ i ≤ j . Then g is continuous in the sense that var j (g) → 0 when j → ∞.

When g is regular, the existence of at least one stationary process specified by g
follows by a standard compactness argument (see also the explicit construction given
below). Once existence is guaranteed, uniqueness can be shown under additional
assumptions on the speed at which var j (g) → 0. For instance, Doeblin and Fortet [3]
showed that if

∑

j

var j (g) < ∞,

then there exists a unique process specified by g. More recently, Johansson and Öberg
[9] strengthned this result, showing that uniqueness holds as soon as

∑

j

var j (g)
2 < ∞. (2)

An interesting and natural question is to determine if a given regular g-function can
lead to a phase transition, that is if it specifies at least two distinct processes.

In a pioneeringpaper,BramsonandKalikow [2] gave thefirst example of a regular g-
function exhibiting a phase transition. More recently, Berger et al. [1], in a remarkable
paper, introduced amodel whose g-function also exhibits a phase transition, but whose
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Complete connections with modified majority rules... 895

Fig. 1 On the left, the pure majority rule used in [1], for which non-uniqueness holds when 0 < α < 1−ε∗
2 .

On the right, a smoothed version, for which the process is always unique for all α > 0, or more generally,
for all sequence hk ↘ 0

variation has a summability that can be made arbitrarily close to the �2-summability
of the Johansson–Öberg criterion (see Remark 2 below).

The g-functions constructed in [2] and [1] have common features. The main one is
that they both rely on some majority rule used in order to fix the influence of the past
on the probability distribution of the present. That is, Zt+1, given (Zs)s≤t , is deter-
mined by the sign (and not the true value) of the average of a subset of the variables
(Zs)s≤t over a large finite region. This feature is essential in the mechanisms that lead
to non-uniqueness, since it allows, roughly speaking, small local fluctuations to have
dramatic effects in the remote future, thus favorizing the transmission of information
from −∞ to +∞.

For the Bramson–Kalikowmodel, it had already been observed in [5] that arbitrarily
small changes in the behavior of the majority rule, turning it smooth at the origin, can
have important consequences on uniqueness/non-uniqueness of the process.

In this paper, we give a closer look at a class of models based on the one of Berger,
Hoffman, and Sidoravicius (which will be called simply the BHS-model hereafter).
Beyond giving amore detailed description of the originalmodel of [1], our results show
that any smoothing of the majority rule (see Fig. 1) leads, under general assumptions,
to uniqueness, even for very slow-decaying variations.

We will present these models from scratch, and not assume any prior knowledge
concerning [1]; since their construction is not trivial and deserves some explanations,
we will state our results precisely only at the end of Sect. 2.

Before proceeding, we single out other non-uniqueness-related works. Hulse [8]
gave examples of non-uniqueness, based on the Bramson–Kalikow approach. Fer-
nández and Maillard [4] constructed an example, using a long-range spin system of
statistical mechanics, although in a non-shift-invariant framework. Gallesco et al. [6]
studied a criterium for non-uniqueness which is optimal for the class of binary attrac-
tive models.

1.1 Models considered

Although the basic structure of our model is entirely imported from the one of BHS,
our notations and terminology differ largely from those of [1].

The process Z = (Zt )t∈Z defined in [1] takes values in an alphabet with four
symbols, where each symbol is actually a pair, which we denote
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896 J. C. A. Dias, S. Friedli

Zt = (Xt , ωt ),

with1 Xt ∈ {+,−}, ωt ∈ {0, 1}. The process can be considered as constructed in
two steps. First, a doubly-infinite sequence of i.i.d. random variables ω = (ωt )t∈Z is
sampled, representing the environment, with distribution Q:

Q(ωt = 1) = 1 − Q(ωt = 0) = 1
2 .

Then, once the environment ω is fixed, a process X = (Xt )t∈Z is considered, whose
conditional distribution given ω is denoted Pω and called the quenched distribution.
We will assume that Pω-almost surely,

Pω(Xt = ± | Xt−1 = xt−1, Xt−2 = xt−2, . . . ) = 1
2

{
1 ± ψω

t (xt−1−∞)
}
. (3)

where xt−1−∞ = (xt−1, xt−2, . . . ) ∈ {±}N. The perturbation ψω
t : {±}N → [−1, 1]

describes how the variables of the process X differ from those of an i.i.d. symmet-
ric sequence (which corresponds to ψω

t ≡ 0). The quenched model will always be
attractive, in the sense that ψω

t (xt−1−∞) is non-decreasing in each of the variables xs ,
s < t .

We assume that the functions ψω
t satisfy the following conditions:

C1. For all x ∈ {±}N, ψω
t (x) depends only on the environment variables ωs , s ≤ t .

C2. The functions ψω
t are odd, ψω

t (−x) = −ψω
t (x) for all x ∈ {±}N, and bounded

uniformly in all their arguments:

|ψω
t (x)| ≤ ε for some ε ∈ (0, 1).

C3. The maps (x, ω) 
→ ψω
t (x) are continuous, uniformly in t .

C4. If θ : {0, 1}Z → {0, 1}Z denotes the shift, (θω)s := ωs+1, then

ψω
t = ψ

θtω
0 .

The probability distribution P of the joint process Zt = (Xt , ωt ) is defined as
follows. If A ∈ F := σ(Xt , t ∈ Z), B ∈ G := σ(ωt , t ∈ Z), then

P(A × B) :=
∫

B
Pω(A)Q(dω). (4)

We will sometimes denote P by Q ⊗ Pω. It can then be verified that under P, Z =
(Zt )t∈Z is a chain with complete connections specified by the regular g-function

g((±, ωt )|(xt−1, ωt−1), (xt−2, ωt−2), . . . ) := 1
4

{
1 ± ψω

t (xt−1−∞)
}
. (5)

Conversely, the distribution of any process Z specified by this g-function can be
expressed as in (4). Although the processes specified by g are of a dynamical nature

1 Often, we will abbreviate +1 (resp. −1) by + (resp. −).
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Complete connections with modified majority rules... 897

Fig. 2 In a given environment ω, the distribution of Xt , conditioned on its past, is determined by the
variables Xs , with s ∈ Sω

t ⊂ (−∞, t)

[the process (xt , ωt ) at time t having a distribution fixed by the entire past], we will
rather be working with the quenched picture in mind, and think only of the variables
xt as being dynamical, evolving in a fixed environment (ωt )t∈Z.

The precise definition of the functionsψω
t will be given in Sect. 2.1. Before that we

describe, in an informalway, themain ingredients thatwill appear in their construction.

1.2 Sampling a random set in the past

A natural feature of the model is that the distribution of the quenched process X at
time t is determined by its values over a finite (albeit large) region in the past of t .
Therefore, for a given environment ω, the starting point will be to associate to each
time t ∈ Z a random set St = Sω

t living in the past of t : St ⊂ (−∞, t). We will say
that St targets the time t (see Fig. 2). Although each St is finite, we will always have,
Q-almost surely,

sup
t

|St | = ∞ and sup
t

dist(t, St ) = ∞.

In the environment ω, the distribution of Xt conditionned on its past (Xs)s<t [see (3)]
is determined by the values of X on St . As a matter of fact, the distribution of Xt will
depend on the average of X on the set St :

ψω
t (xt−1−∞) = odd function of

(
1

|Sω
t |
∑

s∈Sω
t

xs

)
.

The precise dependence will be fixed by some majority rule.

Remark 1 In general, Sω
t will not be an interval; as will be seen below, Sω

t is defined by
amultiscale description ofω, and ismade of unions of far apart intervals. Nevertheless,
we will simplify the figures by picturing St as if it were an interval.

The sets St will be constructed in such a way that the event pictured on Fig. 3 occurs
with positive Q-probability. That event represents a global connectivity satisfied by the
sets (St )t∈Z in relation to the origin: 0 is targeted by the set S0, which we temporarily
denote by S0(1). In turn, all points s ∈ S0(1) happen to be targeted by the same set,
denoted S0(2). Then, all points s′ ∈ S0(2) are targeted by the same set S0(3), etc.
In this way, for each j ≥ 0 the variables {Xs, s ∈ S0( j)}, when conditionned on the
values of the process on the past of S0( j), are independent, with a distribution fixed
solely by the magnetization of X on S0( j + 1). In this way, the properties of X in
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898 J. C. A. Dias, S. Friedli

Fig. 3 An environment in which information is likely to travel from the remote past up to 0

a finite region of Z will be obtained via values of X on a sequence of sets S0( j),
j = 1, 2, . . . . This sequence will happen to be multiscale in the sense that S0( j + 1)
will be orders of magnitude larger than S0( j). Part of the mechanism will be to obtain
estimates on the sizes of these sets. (Obs: The notations of this paragraph will not be
used later. For a precise description of the picture just described, see the definition of
the event {∞ → k} in Sect. 4.1).

Throughout the paper, |A| will denote the number of elements of A. For simplicity,
intervals of Z will be denoted as {a, a + 1, . . . , b − 1, b} ≡ [a, b]. The diameter of
[a, b] is d([a, b]) := b − a + 1.

2 The BHS model

The construction of the random sets St starts by using the environment ω to partition
Z into blocks of increasing scales. Below, most objects are random and depend on ω,
although this will not always be indicated in the notations.

We start by fixing two numbers:

ε∗ ∈ (0, 1), and k∗ ∈ N.

Later, k∗ (the smallest scale) will be chosen large. For all k ≥ k∗, define

�k := �(1 + ε∗)k�,

and let Ik be the word defined as the concatenation of �k − 1 symbols “1” followed
by a symbol “0”:

Ik = (1, 1, . . . , 1, 1, 0). (6)

Let ω ∈ {0, 1}Z be an environment and [a, b] ⊂ Z an interval of diameter �k . We
say that Ik is seen in ω on [a, b] if

(ωa, ωa+1, . . . , ωb) = Ik .

In a given environment, Ik is seen on infinitely many disjoint intervals (Q-a.s.).
Consider two successive occurrences of Ik in ω. That is, suppose Ik is seen on two
disjoint intervals [a, b] and [a′, b′], but not on any other interval contained in [a, b′].
Then the interval [b, b′ − 1] is called a k-block. By definition, a k-block has diameter
at least �k , the first symbol seen on a k-block is 0, and the last �k − 1 symbols are 1s.
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Complete connections with modified majority rules... 899

Fig. 4 A partition of Z into k-blocks, using successive occurences of Ik in ω

A given k allows to partition Z into k-blocks (see Fig. 4): for each t ∈ Z, there
exists a unique k-block containing t , denoted by Bk(t) = [ak(t), bk(t)], where ak(t)
[resp. bk(t)] is the leftmost (resp. rightmost) point of Bk(t).

The diameter of a typical k-block is of order (see Lemma 1)

βk := 2�k .

In a fixed environment, the partition of Z in k-blocks is coarser than the partition in
(k − 1)-blocks: when k > k∗, each k-block B is a disjoint union of one or more
(k − 1)-blocks. If we denote the number of (k − 1)-blocks in B by N (B), then

B = b1 ∪ b2 ∪ · · · ∪ bN (B) ≡
N (B)⋃

i=1

bi , (7)

where b1 [resp. bN (B)] is the leftmost (resp. rightmost) (k − 1)-block contained in B.
We will verify in Lemma 2 that N (B) is of order

νk := βk

βk−1
.

When k > k∗, the beginning of a k-block B, decomposed as in (7), is defined as

C(B) :=
N (B)∧�ν1−ε∗

k �⋃

i=1

bi . (8)

Due to the exponent “1− ε∗” in (8), the beginning of a k-block, when k > k∗ is large,
is typically smaller than the block itself (see Lemma 3):

b1 b2 bN(B)

B

C(B)

For a k∗-block B = [a, b], the beginning is defined in a different manner:

C(B) := {s ∈ B : |s − a| ≤ β
1+ε∗
k∗
}
.

Since the typical size of a k∗-block B is βk∗ , we will verify later that B = C(B) with
high Q-probability.
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900 J. C. A. Dias, S. Friedli

2.1 The definition of Sω
t and ψω

t

In order to help understand the precise definition of St given below, we first give a
definition which is natural but not yet sufficient for our needs.

Fix t ∈ Z, and consider the first scale for which t is not in the beginning of its
block: kt := inf{k ≥ k∗ : t /∈ C(Bk(t))}. Then, a natural way of defining St could
be St := C(Bkt (t)). Unfortunately, this definition does not guarantee that some event
like the one described on Fig. 3 occurs with positive probability. Namely, two distinct
points t ′, t ′′ ∈ St can very well be targeted by different sets St ′ �= St ′′ . The definitions
of St and kt thus need to be modified in some subtle way.

Definition 1 Let k ≥ k∗. We say that t ∈ Z is k-active in the environment ω if for all
j ∈ {k∗, . . . , k},
(1) t ∈ C(B j (t)), where B j (t) = [a j (t), b j (t)] is the j-block containing t , and if
(2) |t − a j (t)| < β j+1.

Let also Ak := {t ∈ Z : t is k-active}.
Observe that

Ak∗ ⊃ Ak∗+1 ⊃ · · · ⊃ Ak ⊃ Ak+1 ⊃ . . .

We will see after Lemma 3 that Ak ↘ ∅ as k → ∞, Q-almost surely. Therefore, it
is natural to define, for t ∈ Z,

kt = kω
t := inf{k ≥ k∗; t /∈ Ak}, (9)

with the convention: inf ∅ = ∞. The set of k-active points inside a k-block B is

A(B) := Ak ∩ B.

By definition, A(B) ⊂ C(B). Then, let

St = Sω
t :=
{
A(Bkt (t)) if k∗ < kt < ∞,

∅ otherwise.

Unlike in [1], we don’t impose St to contain an odd number of points. By definition,
St ⊂ (−∞, t), and the two following crucial properties hold:

P1. If t ′, t ′′ ∈ St , then St ′ = St ′′ .
P2. If ω,ω′ are such that ωs = ω′

s for all s ∈ (∞, t], then kω
t = kω′

t and Sω
t = Sω′

t .

We can now define ψω
t .

Definition 2 Let ϕ : [−1, 1] → [−1, 1] be non-decreasing and odd, ϕ(−z) = −ϕ(z),
and hk > 0 be a decreasing sequence such that hk ↘ 0 when k → ∞. If St �= ∅ and
|t − akt (t)| < βkt+1, define

ψω
t (x) := hktϕ

(
1

|St |
∑

s∈St
xs

)
. (10)
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Complete connections with modified majority rules... 901

Otherwise,

ψω
t (x) := 0. (11)

We check that ψω
t satisfies the properties C1–C4 described earlier. If hk∗ is small

enough, say hk∗ ≤ 1
2 , then ψω

t satisfies C2. C3 is guaranteed by the fact that hk ↘ 0
and that a cutoff was introduced so that ψω

t = 0 if |t − akt | ≥ βkt + 1. Then, C4 is
clearly satisfied, and C1 is consequence of P2.

We will now present some results concerning the processes Z specified by the g-
function defined in (5), with ψω

t defined above. Our interest will be in observing the
role played by the behavior of ϕ at the origin.

2.2 A sharper result for the pure majority rule

In [1], the function ϕ used is a pure majority rule (see Fig. 1). That is,

ϕPMR(z) :=

⎧
⎪⎨

⎪⎩

+1 if z ∈ (0,+1],
0 if z = 0,

−1 if z ∈ [−1, 0).

(12)

The behavior of the model then depends crucially on the choice of the sequence
hk . As will be seen, the criterion is roughly the following:

∑

k

e−h2k+1β
1−ε∗
k

{
<∞ ⇒ non-uniqueness,

=∞ ⇒ uniqueness.
(13)

The sequence hk considered in [1] was therefore of the form

hk := 1

βα
k−1

, α > 0. (14)

With this particular choice, our first result completes the description given in [1]:

Theorem 1 Consider the g-function (5), with ψω
t of the form (10), with ϕ discontin-

uous at the origin like ϕPMR, and hk defined as in (14).

(1) If α < 1−ε∗
2 , then there exist two distinct stationary processes Z+ �= Z− specified

by g.
(2) If α > 1−ε∗

2 , then there exists a unique stationary process specified by g.

Item (1) was the main result of [1] but there, the uniqueness regime was not studied.
We will actually see (in the proof of Lemma 6) that when α > 1−ε∗

2 , uniqueness holds
independently of ϕ being continuous or not at the origin. Themethods presented below
don’t allow to treat the critical case α = 1−ε∗

2 .
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902 J. C. A. Dias, S. Friedli

Remark 2 It can be shown (see [1]) that with hk as in (14), the variation of g satisfies
var j (g) ≤ c · j−α/(1+ε∗)3 . Therefore, the Johansson–Öberg criterion (2) guarantees
uniqueness when α > (1 + ε∗)3/2. Our result extends uniqueness also to values

α ∈ ( 1−ε∗
2 ,

(1+ε∗)3
2

]
.

2.3 Uniqueness for continuous majority rules

The following two results show, roughly, that any attempt to turn ϕ continuous at the
origin leads to uniqueness.

Theorem 2 Consider the g-function (5), with ψω
t of the form (10), and assume there

exists γ > 0 such that

lim sup
z→0+

ϕ(z)

zγ
< ∞. (15)

If hk is as in (14), then for all α > 0 the stationary process specified by g is unique.

Condition (15) is of course satisfiedwhen ϕ is differentiable at 0: ϕ′(0) < ∞. Some
examples of non-uniqueness with ϕ′(0) = ∞ for the Bramson-Kalikow model were
given in [5]. We will see in Remark 6 that there exist majority rules ϕ continuous at
the origin but which don’t satisfy (15), and for which non-uniqueness holds.

Under a stronger condition onϕ, we can show that uniqueness holds for all sequence
hk ↘ 0.

Theorem 3 Consider the g-function (5), with ψω
t of the form (10). Assume that ϕ is

locally Lipschitz in a neighborhood of the origin: there exists δ > 0 and λ > 0 such
that

|ϕ(z2) − ϕ(z1)| ≤ λ|z2 − z1|, ∀z1, z2 ∈ [−δ, δ].

Then for any sequence hk ↘ 0, the stationary process specified by g is unique.

An example that leads to uniqueness for all sequence hk ↘ 0 is when ϕ = ϕlin is
linear at the origin: there exists 0 < λ < ∞ and δ > 0 such that ϕlin(z) = λz for all
z ∈ [−δ, δ]. (This particular example will actually play an important role in the proof.)
Otherwise, natural candidates such as ϕ(z) := tanh(βz) also lead to uniqueness even
for large β > 0.

ϕlin

−1
+1

tanh(βz)

−1
+1
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We emphasize that our uniqueness results can’t be derived from the classical criteria
found in the litterature [such as (2)]. The reason for this is that most criteria are insensi-
tive to the behavior ofϕ at the origin. In particular, our results allow to build g-functions
with arbitrarily slow-decaying variation, that specify a unique stationary process.

The paper is organized as follows. We will first give a detailed description of the
environment in Sect. 3, whose spirit follows closely [1]. Nevertheless, our presentation
includes a few differences; in particular, our Definition 3 differs from the one in [1].
For that reason, and for the sake of completeness, we will give full proofs. After
that, we will describe when an environment should be considered as good, and at the
beginning of Sect. 4 introduce an event {∞ → k}, that will be used constantly in the
sequel. We then prove Theorems 1 and 2, using two propositions that are proved later
in Sect. 4.6. Theorem 3 is proved in Sect. 5.

3 The environment and properties of blocks

In this section, we study typical properties of a k-block: its diameter, its beginning,
and finally we estimate the number of k-active points it contains.

Given a k-block B = [a, b] in some environment ω, we define �(B), the word of
B, as the sequence of symbols of ω seen in B:

�(B) := (ωa, ωa+1, . . . , ωb).

Remember (check Fig. 4) that ωa = 0, and that ωb−�k−2 = · · · = ωb = 1.
To study properties of blocks that only depend on their word, and since the environ-

ment is stationarywith respect to Q, it will be enough to consider the blocks containing
the origin, Bk(0), k ≥ k∗. The study of �(Bk(0)) will be simplified by first studying
the block Bk(0) when its first point is fixed at the origin.

Let therefore η = (ηi )i≥1 be an i.i.d. sequence, such that P(ηi = 0) = 1− P(ηi =
1) = 1

2 . For each k ≥ 1, we consider the time of first occurrence of Ik [remember (6)]
in η, defined by

T k := inf
{
j ≥ �k : (η j−�k+1, . . . , η j ) = Ik

}
.

Defining η0 := 0, the random word

�k := (η0, η1, . . . , ηT k−1)

has the same distribution as of that of a word of a k-block. We call �k a k-word, and
denote the set of all k-words by Wk . Many notions introduced for k-blocks extend
naturally to the k-word �k . For instance, the diameter of �k , that is the number of
symbols it contains, is

d(�k) = T k . (16)

We will study a few elementary properties of the k-word �k , and then extend them
to Bk(0).
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904 J. C. A. Dias, S. Friedli

3.1 The diameter

A classical martingale argument (see for instance “the monkey typing Shakespeare”
in [11]) allows to compute the expectation of the size of a k-word:

E[T k] = 21 + 22 + · · · + 2�k .

Therefore,

βk ≤ E[d(�k)] ≤ 2βk . (17)

We leave it as an exercise to verify that the distribution of T k

E[T k ] has an exponential
tail:

Lemma 1 For all j ≥ 1

P
(
T k ≥ jβk

) ≤ e− j .

Corollary 1 For all j ≥ 1,

Q
(
d(Bk(0)) ≥ jβk

) ≤ 6 je− j . (18)

Proof Write Bk(0) = [ak(0), bk(0)]. For all finite interval J ⊂ N,

Q
(
d(Bk(0)) ∈ J

) =
∑

π∈Wk

d(π)∈J

Q
(
�(Bk(0)) = π

)

=
∑

π∈Wk

d(π)∈J

∑

− d(π)<a≤0

Q
(
�(Bk(0)) = π, ak(0) = a

)
. (19)

But {�(Bk(0)) = π, ak(0) = a}, when not empty, is uniquely determined by the
following three conditions:

(1) ω j = 1 for all j ∈ {a − �k + 1, . . . , a − 1},
(2) (ωa, ωa+1, . . . , ωa+d(π)−1) = π ,
(3) ωa+d(π) = 0.

Therefore, by the independence of the variables ωi ,

Q
(
�(Bk(0)) = π, ak(0) = a

) = ( 12
)�k−1( 1

2

)d(π)( 1
2

)
, (20)

which implies

Q
(
d(Bk(0)) ∈ J

) = ( 12
)�k ∑

π∈Wk d(π)∈J

d(π)
( 1
2

)d(π)

≤ ( 12
)�k (max

j∈J
j)

∑

π∈Wk d(π)∈J

( 1
2

)d(π)
.
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But for each π ∈ Wk ,

P(�k = π) = ( 12
)d(π)−1 · ( 12

) = ( 12
)d(π)

, (21)

where “· ( 12
)
” appears in order to have a “0” after π , to guarantee the occurrence of

the event {�k = π}. Therefore,
∑

π∈Wk

d(π)∈J

( 1
2

)d(π) ≡ P
(
d(�k) ∈ J

) = P
(
T k ∈ J

)
, (22)

and we have shown that

Q
(
d(Bk(0)) ∈ J

) ≤ ( 12
)�k (max J )P

(
T k ∈ J

)
. (23)

Let J ki := [iβk, (i + 1)βk). Since
( 1
2

)�kβk = 1,

Q
(
d(Bk(0)) ≥ jβk

) =
∑

i≥ j

Q
(
d(Bk(0)) ∈ J ki

)

≤
∑

i≥ j

(i + 1)P
(
T k ∈ J ki

) ≤
∑

i≥ j

(i + 1)P
(
T k ≥ iβk

)
.

Then, (18) follows from Lemma 1. ��

3.2 The beginning

When k > k∗, �k can always be viewed as a concatenation of (k − 1)-words:

�k = �k−1
1 � · · · � �k−1

N (�k )
,

where �k−1
1 := �k−1 and

�k−1
j := �k−1 ◦ θd(�k−1

1 �···��k−1
j−1)

.

The number of (k − 1)-words contained in �k , N (�k), is geometric:

Lemma 2 For all k > k∗, there exists pk ∈ (0, 1), ν−1
k ≤ pk ≤ 2ν−1

k , such that

∀ j ≥ 1, P(N (�k) = j) = (1 − pk)
j−1 pk . (24)

In particular, E[N (�k)] = p−1
k .
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906 J. C. A. Dias, S. Friedli

Proof Consider an independent identically distributed sequence of (k−1)-words, with
the same distribution as �k−1: �k−1

1 ,�k−1
2 , . . . . When sampling a (k − 1)-word, we

say that this (k − 1)-word is closing if the first occurrence of Ik−1 coincides with
the first occurrence of Ik , which means that the first occurrence of Ik−1 is preceded
by a sequence of �k − �k−1 symbols “1”. Therefore, the concatenation of the first j
(k−1)-words of the sequence�k−1

1 ,�k−1
2 , . . . is a k-word if and only if the ( j−1)-th

first are not closing and the j-th is closing. Defining

pk := P(�k−1 is closing) = P(T k−1 = T k),

we obtain (24). If T k−1 = t ≥ �k , we denote by rt the word seen in the interval
[t − �k + 1, t − �k−1], of diameter �k − �k−1, and by qt the word seen in the interval
[t − �k−1 + 1, t]. We have

P(T k−1 = T k = t) = P(rt = (1, . . . , 1), T k−1 = t)

= P(T k−1 > t − �k, rt = (1, . . . , 1), qt = Ik−1)

= P(T k−1 > t − �k)P(rt = (1, . . . , 1))P(qt = Ik−1)

= β−1
k P(T k−1 > t − �k).

Therefore,

pk =
∑

t≥�k

P(T k−1 = T k = t) = β−1
k E[T k−1].

Using (17), we get ν−1
k ≤ pk ≤ 2ν−1

k . ��
All notions previously defined for blocks, such as active points, “being good”, etc,

have immediate analogs for words. Namely, any k-word � ∈ Pk , can be identified
as �(Bk(0)), where Bk(0) is assumed to have its first point pinned at the origin:
ak(0) = 0. The beginning of �k is the interval

C(�k) :=
⎡

⎢⎣0,
N (�k )∧�ν1−ε∗

k �∑

i=1

d(�k−1
i )

⎞

⎟⎠ .

Using (17),

E[d(C(�k))] ≤ ν
1−ε∗
k E[d(�k−1)] ≤ 2ν1−ε∗

k βk−1. (25)

We can now study the position of a point relative to the beginning of each of the
k-blocks in which it is contained:

Lemma 3 Let t ∈ Z. For k = k∗,

Q
(
t ∈ C(Bk∗(t))

) ≥ 1 − 6�βε∗
k∗ �e−�βε∗

k∗ �
. (26)

123



Complete connections with modified majority rules... 907

For all k > k∗,

Q
(
t ∈ C(Bk(t))

) ≤ 2ν−ε∗
k , (27)

Remark 3 Observe that νk diverges superexponentially in k, and so (27) implies

∑

k>k∗
Q(t ∈ C(Bk(t)) < ∞.

Therefore, by Borel–Cantelli’s Lemma, t /∈ C(Bk(t)) for all large enough k. As a
consequence, Q(kt < ∞) = 1.

Proof of Lemma 3 It suffices to consider t = 0. On the one hand, by Corollary 1,

Q
(
0 /∈ C(Bk∗(0))

) ≤ Q
(
Bk∗(0)\C(Bk∗(0)) �= ∅

)

≤ Q
(
d(Bk(0)) ≥ β

1+ε∗
k∗
) ≤ 6�βε∗

k∗ �e−�βε∗
k∗ �

.

On the other hand, using (20), (21), (25),

Q(0 ∈ C(Bk(0))) =
∑

a≤0

Q(0 ∈ C(Bk(0)), ak(0) = a)

=
∑

a≤0

∑

π∈Wk :
d(C(π))>|a|

Q(�(Bk(0)) = π, ak(0) = a)

= ( 12
)�k ∑

π∈Wk

d(C(π))
( 1
2

)d(π) = β−1
k E[d(C(�k))] ≤ 2ν−ε∗

k .

��

3.3 The number of active points

Definition 3 A k-block B is good if

(1) d(B) < 1
2β

1+ε∗
k , and if

(2) n1(k) := β
1−ε∗
k 2−k < |A(B)| < n2(k) := β

1−ε∗
k β

2ε∗
k−1.

If not good, B is bad.

Proposition 1 If k∗ is large enough, then for all k > k∗,

Q(Bk(0) is bad) ≤ 2−k . (28)

Since the event {Bk(0) is good} is determined by the word of Bk(0), we first obtain
a similar result for words.

The notion of “good” extends naturally to k-words. The set of good k-words is
denoted Wk

good, and Wk
bad := Wk\Wk

good.

123



908 J. C. A. Dias, S. Friedli

Lemma 4 If k∗ if large enough, then for all k > k∗,

P
(
�k ∈ Wk

bad

) ≤ 3 · 2−3k + 2β−ε∗
k−1. (29)

Proof We writeWk
good = Wk,1

good ∩ Wk,2
good, where

Wk,1
good := {π ∈ Wk : d(π) < 1

2β
1+ε∗
k and |A(π)| > n1(k)

}
,

Wk,2
good := {π ∈ Wk : |A(π)| < n2(k)

}
.

Let then Wk,i
bad := Wk\Wk,i

good. We first prove that for all k ≥ k∗,

P
(
�k ∈ Wk,1

bad

) ≤ 3 · 2−3k . (30)

We will proceed by induction on k. Let k∗ be large enough, such that for all k ≥ k∗,

e− 1
2β

ε∗
k ≤ 2−3k, 2ν−ε∗

k ≤ 2−3k .

(Observe that k∗ ↗ ∞ as ε∗ ↘ 0.) We start with the case k = k∗:

P
(
�k∗ ∈ Wk∗,1

bad

) ≤ P
(
d(�k∗) ≥ 1

2β
1+ε∗
k∗
)

+ P
(
d(�k∗) < 1

2β
1+ε∗
k∗ , |A(�k∗)| ≤ n1(k∗)

)
.

By Lemma 1,

P
(
d(�k∗) ≥ 1

2β
1+ε∗
k∗
) = P(T k∗ ≥ 1

2β
1+ε∗
k∗ ) ≤ e− 1

2β
ε∗
k∗ ≤ 2−3k∗ . (31)

On the other hand, A(�k∗) is an interval, and d(�k∗) < 1
2β

1+ε∗
k∗ implies that

|A(�k∗)| = d(�k∗) = T k∗ . Therefore,

P
(
d(�k∗) < 1

2β
1+ε∗
k∗ , |A(�k∗)| ≤ n1(k∗)

) ≤ P
(
T k∗ ≤ n1(k∗)

)

≤ n1(k∗)
( 1
2

)�k∗ = β
−ε∗
k∗ 2−k∗ ≤ 2 · 2−3k∗ .

Therefore, (30) is proved for k = k∗. Suppose that (30) holds for k − 1. Remember
that �k is a concatenation of (k − 1)-words, denoted by � j , j = 1, . . . , N (�k). We
define the events:

A1 := {d(�k) < 1
2β

1+ε∗
k },

A2 := {N (�k) > ν
1−ε∗
k },

A3 :=
{at least half of the (k−1)-words

in C(�k ) are inWk−1,1
good

}
.
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We claim that A1 ∩ A2 ∩ A3 ⊂ {�k ∈ Wk,1
good}. Indeed, A1 ensures that the first

condition in Wk,1
good is satisfied. Furthermore, in A1 ∩ A2 ∩ A3, every (k − 1)-word

� j ⊂ C(�k) is at distance ≤ 1
2β

1+ε∗
k ≤ βk+1 of the origin, and therefore, each active

point of � j is active in �k . As a consequence,

|A(�k)| =
∑

� j⊂C(�k )

|A(� j )|

≥
∑

� j⊂C(�k ):
� j∈Wk−1,1

good

|A(� j )|>n1(k−1)
∑

� j⊂C(�k ):
� j∈Wk−1,1

good

1≥n1(k−1) · 1
2ν

1−ε∗
k ≡ n1(k).

Therefore, �k ∈ Wk,1
good. It follows that

P
(
�k ∈ Wk,1

bad

) ≤ P
(
Ac
1

)+ P
(
Ac
2

)+ P
(
A2 ∩ Ac

3

)
.

As in (31), P(Ac
1) ≤ 2−3k . By Lemma 2,

P(Ac
2) =

�ν1−ε∗
k �∑

j=1

P(N (�k) = j)

=
�ν1−ε∗

k �∑

j=1

(1 − pk)
j−1 pk ≤ ν

1−ε∗
k pk ≤ 2ν−ε∗

k ≤ 2−3k .

On A2, C(�k) contains exactly �ν1−ε∗
k �(k − 1)-words. Therefore, using the induction

hypothesis (30) for k − 1,

P(A2 ∩ Ac
3) = P

(
A2 ∩
{
at least half of the (k−1)-words

of C(�k ) are inWk−1,1
bad

})

≤ P
({

at least half of the �ν1−ε∗
k �(k−1)-words

of C(�k ) are inWk−1,1
bad

})

≤
�ν1−ε∗

k �∑

j= 1
2 �ν1−ε∗

k �

(�ν1−ε∗
k �
j

)(
3 · 2−3(k−1)) j ≤(2−3(k−1)+6) 12 �ν1−ε∗

k �
< 2−3k .

This proves (30). It remains to prove that for all k > k∗,

P
(
�k ∈ Wk,2

bad

) ≤ 2β−ε∗
k−1. (32)

Since A(�k) ⊂ C(�k), we estimate d(C(�k)). We define T k−1
1 := T k−1 and for

i > 1,

T k−1
i := inf

{
j > T k−1

i−1 : (η j−�k+1, . . . , η j ) = Ik
}
.
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910 J. C. A. Dias, S. Friedli

The increments τ k−1
i := T k−1

i − T k−1
i−1 are i.i.d., and E[τ k−1

1 ] = E[T k−1] ≤ 2βk−1.

Moreover, d(C(�k)) ≤∑�ν1−ε∗
k �

i=1 τ k−1
i . Therefore,

P
(|A(�k)| ≥ n2(k)

) ≤ P

⎛

⎜⎝
�ν1−ε∗

k �∑

i=1

τ k−1
i ≥ n2(k)

⎞

⎟⎠ ≤ E[τ k−1
1 ]

β
1+ε∗
k−1

≤ 2β−ε∗
k−1.

This proves (32). Together, (30) and (32) give (29). ��
Proof of Proposition 1 Take k > k∗, where k∗ was defined in the proof of Lemma 4.
We have

Q(Bk(0) is bad) ≤ Q
(
d(Bk(0)) ≥ kβk

)

+ Q
(
Bk(0) is bad, d(Bk(0)) ≤ kβk

)
. (33)

By Corollary 1, Q
(
d(Bk(0)) ≥ kβk

) ≤ 6ke−k . Then,

Q
(
Bk(0) is bad, d(Bk(0)) ≤ kβk

) = ( 12
)�k ∑

π∈Wk
bad

d(π)≤kβk

d(π)
( 1
2

)d(π)

≤ k
∑

π∈Wk
bad

( 1
2

)d(π) ≡ kP
(
�k ∈ Wk

bad

)
.

Using Lemma 4,

Q
(
Bk(0) is bad

) ≤ 6ke−k + k(3 · 2−3k + 2β−ε∗
k−1). (34)

Taking k∗ large enough, this proves (28). ��

4 Proofs of Theorems 1 and 2

The proofs of all the results will study the process X under the quenched measure Pω,
using environments ω for which the influence of the remote past on the present (for
example on a local event like {X0 = +}) can be computed and related to ϕ and to the
sequence hk .

4.1 The event {∞ → k}

To start, consider a set of variables {Xs, s ∈ R}, where R is a finite subset of Z. There
clearly exists some k(1) ≥ k∗ such that R ⊂ Bk(1)(0). Furthermore, using Remark 3,
we can take k(1) sufficiently large, and guarantee that R ⊂ Bk(1)(0)\C(Bk(1)(0)). But
then, by the definition of the g-function constructed with ψω

t , the only way by which
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Fig. 5 The quenched distribution of the process X , on the event {∞ → k}

the remote past influences the variables in R is through the value of the average of the
variables {Xt , t ∈ A(Bk(1)(0))}.

Repeating the same procedure with Bk(1)(0) in place of R, we deduce that the
distribution of {Xt , t ∈ A(Bk(1)(0))} is entirely determined by the values of {Xt , t ∈
A(Bk(2)(0))} for some sufficiently large k(2), etc.

Our aimwill be to ensure that the random sequence k(i) satisfies k(i+1) = k(i)+1
for all large i , and that the sizes of the sets A(Bk(i)(0)) are under control. We thus
define, for all k > k∗,

{∞ → k} :=
⋂

j≥k

{
0 /∈ C(B j (0)), B j (0) is good

}
. (35)

The notation used suggests that the event is of the type described earlier in Fig. 3.
Indeed, let ω ∈ {∞ → k}. Take j ≥ k, and t ∈ A(B j (0)). Since 0 /∈ C(B j+1(0)) and
B j+1(0) = B j+1(t), we have that t /∈ C(B j+1(t)) which implies t /∈ A(B j+1(t)).
Therefore, kt = j + 1. Moreover, since B j+1(0) is good, we have that d(B j+1(0)) ≤
1
2β

1+ε∗
j+1 ≤ β j+2. This implies that St = A(B j+1(0)), and

ψω
t = h j+1ϕ

⎛

⎝ 1

|A(B j+1(0))|
∑

s∈A(B j+1(0))

Xs

⎞

⎠ . (36)

Therefore, on {∞ → k}, for all j ≥ k, the variables {Xt , t ∈ A(B j (0))} are i.i.d., and
their distribution is fixed by the value of the magnetization of {Xt , t ∈ A(B j+1(0))}.
That is, the distribution of the process X on any finite region is related to the behavior
of the non-homogeneous Markov sequence

ξ j := 1

|A(B j (0))|
∑

s∈A(B j (0))

Xs, j ≥ k.

The transition probability of the chain will be studied using the following relation,
which holds on the event {∞ → k}, for all j ≥ k (Fig. 5):

Eω[ξ j | ξ j+1] = h j+1ϕ(ξ j+1), (37)

Proposition 2 Let k ≥ k∗. There exists λ(ε∗, k) > 0with λ(ε∗, k) ↘ 0when k → ∞,
such that

Q(∞ → k) ≥ 1 − λ(ε∗, k). (38)
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Moreover, there exists a random scale K = K (ω), Q(K < ∞) = 1, such that

Q(∞ → K ) = 1.

Proof If k∗ is as large as in Proposition 1, then for k ≥ k∗

Q({∞ → k}c) ≤
∑

j≥k

{
Q(B j (0) is bad) + Q(0 ∈ C(B j (0)))

}

≤
∑

j≥k

{
2− j + 2ν−ε∗

j

}
, (39)

which is summable in k. The existence of K follows by Borel-Cantelli’s Lemma. ��

4.2 The measures P+
ω , P−

ω and their maximal coupling

Our proofs will rely on the use of two particular processes specified by g, Z+ =
(X+, ω) and Z− = (X−, ω), symmetric with respect to each other in the sense that

P(X−
s = +) = P(X+

s = −). (40)

Each X# will actually be the coordinate process associated to a probability measure
P#

ω on {±}Z constructed with a pure boundary condition # ∈ {+,−}. The construction
given below is standard.

For x, y ∈ {±}Z, let xts := (xt , . . . , xs) and xt−∞ := (xt , xt−1, . . .). If ω ∈ {0, 1}Z,
define

gω
t

(
xt |xt−1−∞

) := 1
2 {1 + xtψ

ω
t

(
xt−1−∞
)}.

Define also the cylinder [x]ts := {y ∈ {±}Z : yi = xi , i ∈ [s, t]} and xts y
s−1−∞ :=

(xt , . . . , xs, ys−1, ys−2, . . .). For each N ∈ N, η ∈ {±}Z, we define a probability
measure on {±}(−N ,∞) by setting

Pη,N
ω

([x]s−N+1

) := gω−N+1

(
x−N+1|η−N−∞

) s∏

t=−N+2

gω
t

(
xt |xt−1

−N+1η
−N−∞
)
.

When η1 ≤ η2 (pointwise), Pη1,N
ω and Pη2,N

ω can be coupled as follows. Consider
an i.i.d. sequence of random variables (Ut )t>−N , each with a uniform distribution on

[0, 1].We construct two processes, X1 and X2, through a sequence of pairs,�t = (X2
t

X1
t

)
,

t > −N , in such a way that (X#
t )t>−N has distribution Pη#,N

ω and such that X1
t ≤ X2

t

for all t > −N . For s ≤ −N , set x#s := η#s . Assume that the pairs �s = (x2s
x1s

)
have
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been sampled for all s < t , and that these satisfy x1s ≤ x2s . Let

�t =
(
X2
t

X1
t

)
:=
(+

−
)
1At +

(+
+
)
1Bt +

(−
−
)
1Ct , (41)

where

At := {0 ≤ Ut < gω
t (+ | (x2)t−1−∞) − gω

t (+ | (x1)t−1−∞)
}
,

Bt := {gω
t (+ | (x2)t−1−∞) − gω

t (+ | (x1)t−1−∞) ≤ Ut < gω
t (+ | (x2)t−1−∞)

}
,

Ct := {gω
t (+ | (x2)t−1−∞) ≤ Ut ≤ 1

}
. (42)

We of course have P(X1
t ≤ X2

t ) = 1, and

P
(
X2
t = + | X2

t−1 = x2t−1, . . . , X
2−N+1 = x2−N+1

) = P
(
At ∪ Bt

)

= gω
t

(+ | (x2)t−1−∞
)
,

and so the distribution of (X2
t )t>−N is given by Pη2,N

ω . Similarly,

P
(
X1
t = + | X1

t−1 = x1t−1, . . . , X
1−N+1 = x1−N+1

) = P
(
Bt
)

= gω
t

(+ | (x1)t−1−∞
)
,

and so the distribution of (X1
t )t>−N is given by Pη1,N

ω .

The above coupling allows to extract information about the measures Pη#,N
ω . First,

x1 ≤ x2 implies gω
t (+ | (x1)t−1−∞) ≤ gω

t (+ | (x2)t−1−∞), and so we always have

Pη1,N
ω (Xt = +) ≤ Pη2,N

ω (Xt = +), t > −N .

More generally, if f : {±}(−N+1,∞) → R is an increasing local function (that is: non-
decreasing in each variable xs and depending only on a finite number of coordinates),
then

Eη1,N
ω [ f ] ≤ Eη2,N

ω [ f ]. (43)

Using the previous item, one can also construct two processes P+
ω and P−

ω by tak-
ing monotone limits. Namely, let P+,N

ω be constructed as above using the boundary
condition ηs ≡ + for all s. Using (43), it is easy to see that for all local increasing f ,
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914 J. C. A. Dias, S. Friedli

E+,N+1
ω [ f ] ≤ E+,N

ω [ f ].

which allows to define E+
ω [ f ] := limN→∞ E+,N

ω [ f ]. Since this extends to all con-
tinuous function, it defines a measure P+

ω . It can then be verified that the coordinate
process X = (Xt )t∈Z defined by Xt (x) := xt satisfies (3) (with P+

ω in place of Pω).

4.3 Non-uniqueness when α < 1−ε∗
2

Let ξ#k denote the average of X# over A(Bk(0)) (if A(Bk(0)) = ∅, let ξ#k := 0). To
obtain non-uniqueness, we will show that when α < 1−ε∗

2 ,

P(ξ+
k > 0) > 1

2 > P(ξ−
k > 0), (44)

for all large enough k. Actually, due to the attractiveness of g, the following lower
bound holds for all ω:

P+
ω (ξk ≥ 0) ≥ 1

2 . (45)

Proposition 3 Under the hypotheses of Theorem 1, with α < 1−ε∗
2 , there exists for

all k′ > k∗ some ε(k′), ε(k′) ↘ 0 as k′ → ∞, such that

∀ ω ∈ {∞ → k′}, P+
ω (ξk′ > 0) ≥ 1 − ε(k′). (46)

Proof of Theorem 1, item (1) Using (46),

P
(
ξ+
k > 0) ≥

∫

{∞→k}
P+

ω

(
ξk > 0

)
Q(dω)

≥ (1 − ε(k)
)
Q(∞ → k).

By taking k large, this lower bound is > 1
2 . This proves (44), and thereby item (1) of

Theorem 1. ��
Remark 4 As the proof of Proposition 3 will show, it is possible to distinguish X+
and X− even at the origin. Namely, it can be shown that

∀ ω ∈ {∞ → k∗ + 1}, P+
ω (X0 = +) ≥ 1

2 + τ, (47)

where τ > 0 once k∗ is taken large depending on α. Then, by (45) and (47),

P(X+
0 = +) ≥ ( 12 + τ

)
Q(∞ → k∗ + 1) + 1

2Q({∞ → k∗ + 1}c)
= 1

2 + τQ(∞ → k∗ + 1)

> 1
2 .

Nevertheless, we prefer to avoid having k∗ depend on α.
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Remark 5 In [1], non-uniqueness was obtained by showing that when α < 1−ε∗
2 , any

process P specified by g must satisfy

P

({
lim
k→∞ 1{ξk>0} = 1

}
∪
{
lim
k→∞ 1{ξk<0} = 1

})
= 1.

From this, the existence of two distinct processes can be deduced, using an argument
based on symmetry and ergodic decomposition.

4.4 The signature of uniqueness

Assume the environment ω is typical, in the sense that {∞ → k′} occurs for some
large enough k′. As we have seen, the distribution of X on any finite region can be
studied via the information contained in the sequence ξk , k ≥ k′. On the one hand,
we have seen in (44) that non-uniqueness is observed through some asymmetry in the
distribution of ξk when k is large. Uniqueness, on the other hand, will essentially be
characterized by showing that the variables ξk are symmetric:

Eω[ξk] = 0 for all large k. (48)

Observe that regardless of the details of ϕ,

lim
k→∞ Eω[ξk] = 0 (49)

always holds. Namely, for all k ≥ k′,

Eω[ξk] = Eω

[
Eω[ξk | ξk+1]

] = hk+1Eω[ϕ(ξk+1)] = O
(
hk+1
)
.

More can be said: when conditioned on ξk+1, ξk is a Bernoulli sum of i.i.d. variables
Xs with expectation hk+1ϕ(ξk+1). Therefore, for any fixed ε > 0, if k is large enough
so that hk+1 ≤ ε/2, a standard large deviation estimate yields

Pω

(|ξk | > ε | ξk+1
) ≤ e−c|A(Bk (0))| ≤ e−cn1(k), (50)

where c = c(ε) > 0 (we have used the fact that Bk(0) is good). Therefore,

∀ε > 0, Pω

(|ξk | ≤ ε for all large enough k
) = 1. (51)

Since the variables ξk almost surely tend to zero when k → ∞, observing some
(a)symmetry in their distribution is a delicate problem.

Uniqueness will be obtained with the help of the following criterion, whose proof
can be found in Appendix A.
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916 J. C. A. Dias, S. Friedli

Theorem 4 Assume that

E+
ω [Xt ] = 0 = E−

ω [Xt ] ∀ t ∈ Z. (52)

Then, P+
ω = P−

ω , and any measure Pω satisfying (3) coincides with P+
ω and P−

ω .

4.5 Uniqueness when α > 1−ε∗
2

Proposition 4 Let P = Q ⊗ Pω be the distribution of any process specified by g.
Under the hypotheses of Theorem 1, with α > 1−ε∗

2 , for Q-almost all environment ω,
and for all large enough k,

lim
M→∞ Eω

[
ξk
∣∣ ξM
] = 0 Pω-almost surely. (53)

Proof of Theorem 1, item 2 By Proposition 2, we can consider a fixed environment ω
for which K = K (ω) < ∞. Take k ≥ K large. We will consider P+

ω , and show that
(53) implies (52).

We know that ξk is a sum of identically distributed variables Xs , s ∈ A(Bk(0)). By
(53), P+

ω -almost surely, for each such s,

lim
M→∞ P+

ω

(
Xs = + ∣∣ ξM

) = lim
M→∞

1
2

(
E+

ω

[
Xs
∣∣ ξM
]+ 1
)

= lim
M→∞

1
2

(
E+

ω

[
ξk
∣∣ ξM
]+ 1
) = 1

2 .

This implies that for all large enough k, the distribution of ξk under P+
ω (· | ξM ) con-

verges when M → ∞ to a symmetric distribution. We can show that this extends to
any variable Xt as follows. Take k large enough so that t /∈ A(Bk(0)), and write

E+
ω

[
Xt
∣∣ ξM
] = E+

ω

[
E+

ω [Xt | ξk]
∣∣ ξM
]
. (54)

Since f (x) := E+
ω [Xt | ξk = x] is odd, f (−x) = − f (x), and since ξk converges

in distribution to a symmetric variable, the right-hand side of (54) converges to zero
when M → ∞. By dominated convergence, we thus get

E+
ω [Xt ] = lim

M→∞ E+
ω

[
E+

ω

[
Xt
∣∣ ξM
]] = 0.

Similarly, E−
ω [Xt ] = 0, and this finishes the proof. ��

4.6 Proofs of Propositions 3 and 4

The sequence ξk ∈ [−1, 1] is Markovian and temporally non-homogeneous; we can
nevertheless estimate its transition probabilities with relative precision. Since the
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BHS-model considers the pure majority rule ϕPMR , its study can be reduced to the
sign variables

σk :=

⎧
⎪⎨

⎪⎩

+1 if ξk > 0,

0 if ξk = 0,

−1 if ξk < 0.

Remember that if Bk(0) is good, then

n1(k) < |A(Bk(0))| < n2(k), (55)

where the leading term in each n#(k) is β
1−ε∗
k . But since hk+1 = β−α

k ,

h2k+1n#(k)

{
↗ ∞ if α < 1−ε∗

2 ,

↘ 0 if α > 1−ε∗
2 .

(56)

We study the sign changes of the sequence ξk :

Lemma 5 Assume ϕ = ϕPMR. Letω ∈ {∞ → k′}. For all large k ≥ k′, the following
holds.

(1) For all hk ↘ 0,

Pω

(
σk ≤ 0 | σk+1 = +) ≤ e−h2k+1n1(k)/16.

(2) There exists c0 > 0 such that if hk = β−α
k−1,

Pω

(
σk ≤ 0 | σk+1 = +)

{
≤ e−h2k+1n1(k)/16 if α < 1−ε∗

2 ,

≥ c0 if α > 1−ε∗
2 .

Proof (1) On ω ∈ {∞ → k′}, each block Bk(0), k ≥ k′, is good. In particular, (55)
holds and by (35), under Pω

( · | σk+1 = +), the variables {Xs, s ∈ A(Bk(0))} are
i.i.d. with

Eω[Xs | σk+1 = +] = hk+1ϕPMR(ξk+1) ≡ hk+1.

Let X ′
s := Xs − Eω[Xs | σk+1 = +]. By the Bernstein Inequality,

Pω(σk ≤ 0 | σk+1 = +)

= Pω

(
1

|A(Bk (0))|
∑

s∈A(Bk (0))

X ′
s ≤ −hk+1

∣∣∣ σk+1 = +
)

≤ e−h2k+1|A(Bk (0))|/16 ≤ e−h2k+1n1(k)/16.
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918 J. C. A. Dias, S. Friedli

(2) To prove the lower bound we let A(k) := |A(Bk(0))| and let Lk denote the set
of integers between 0 and

√
A(k) that have the same parity as A(k). Using Stirling’s

formula:

Pω

(
σk ≤ 0 | σk+1 = +)

≥
∑

L∈Lk

Pω

( ∑

s∈A(Bk (0))

Xs = −L
∣∣∣ σk+1 = +

)

=
∑

L∈Lk

(
A(k)
A(k)+L

2

)( 1
2 (1 + hk+1)

) A(k)−L
2
( 1
2 (1 − hk+1)

) A(k)+L
2

≥ c̃0e
−h2k+1A(k)e−

(
hk+1

√
A(k)
)
/4

.

��
Proof of Proposition 3 Let ω ∈ {∞ → k′}. The probability we are interested in is
defined using the + boundary condition:

P+
ω (ξk′ > 0) = lim

N→∞ P+,N
ω (ξk′ > 0).

We choose N large, always to be between two successive sets A(BM−1(0)),
A(BM (0)). A lower bound is obtained by assuming that all the sign of the boundary
condition travels down to ξk′ :

0

σ(M) = +

· · · A(Bk′+1(0))A(BM−1(0))A(BM (0))
−N

+++

A(Bk′
(0))

Using Lemma 5,

P+,N
ω (ξk′ > 0) = P+,N

ω (σk′ = +)

≥
M−1∏

k=k′
P+,N

ω (σk = + | σk+1 = +)

≥
∞∏

k=k′

{
1 − e−h2k+1n1(k)/16

}
.

When α < 1−ε∗
2 , we have

∑

k

e−h2k+1n1(k)/16 < ∞, (57)

and so that last product converges and goes to 1 when k′ → ∞. ��
Proof of Proposition 4 By Proposition 2, we can consider a fixed environment ω for
which K = K (ω) < ∞. Then for each k′ > K , we have that ω ∈ {∞ → k′}.
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Complete connections with modified majority rules... 919

TakeM > k′. If ξM = 0 then Eω[ξk′ | ξM ] = 0. If ξM > 0, then by the attractiveness
of the model, Eω[ξk′ | ξM ] ≥ 0. For an upper bound, we look for the scale k at which
ξ changes sign:

κM := max{k′ ≤ k ≤ M : ξk ≤ 0}, (58)

with the convention that κM := k′ − 1 if ξk > 0 for all k′ ≤ k < M . Again by
attractiveness, on {κM ≥ k′}, the Markov property gives Eω[ξk′ | ξκM ] ≤ 0. Therefore,
Eω[ξk′ | κM ≥ k′, ξM ] ≤ 0, and so

Eω[ξk′ | ξM ] ≤ Pω

(
κM = k′ − 1 | ξM

)
. (59)

It follows by Lemma 5 and 1 − x ≤ e−x that when α > 1−ε∗
2 ,

Pω

(
κM = k′ − 1 | ξM

) = Pω

(
ξk′ > 0, . . . , ξM−1 > 0 | ξM

)

=
M−1∏

k=k′
Pω

(
σk = + | σk+1 = +)

≤ (1 − c0)
M−k′

.

��

4.7 Proof of Theorem 2

The proof of uniqueness when ϕ is Lipshitz at the origin will be based on the same
principle used when proving item 2 of Theorem 1.

Proposition 5 Let P = Q ⊗ Pω be the distribution of any process specified by g.
Under the hypotheses of Theorem 2, for Q-almost all environment ω, and for all large
enough k′,

lim
M→∞ Eω[ξk′ | ξM ] = 0 Pω-almost surely.

We consider an environment ω with K = K (ω) < ∞. We take k′ > K , and
M > k′. As before, the proof is based on showing that whatever the sign of ξM , the
sequence ξk has a positive probability of having changed sign before reaching k′.

We will look at the variables ξk at even times: ξM , ξM−2, . . . , and show that the
probability of ξ changing sign between two scales k and k − 2 is bounded away from
zero.

Lemma 6 Let ω ∈ {∞ → k′} with k′ large enough. If ϕ satisfies (15), then for all
α > 0, and all k ≥ k′ + 2,

Pω

(
ξk−2 ≤ 0 | ξk

) ≥ c1
2 > 0,

where c1 is a universal constant.
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Proof Let γ > 0 be such that (15) holds. If ξk ≤ 0, then attractiveness gives
Pω

(
ξk−2 ≤ 0 | ξk

) ≥ 1
2 . If ξk = x > 0, let us denote Px

ω(·) := Pω(· | ξk = x).
We have

Px
ω

(
ξk−2 ≤ 0

) = Ex
ω

[
Px

ω

(
ξk−2 ≤ 0 | ξk−1

)]

≥ Ex
ω

[
Px

ω

(
ξk−2 ≤ 0 | ξk−1

)
1{|ξk−1|≤hmk−1}

]
,

where m > 0 is chosen such that

α >
1 − ε∗

2(1 + mγ )
. (60)

Again, by attractiveness, −hmk−1 ≤ ξk−1 ≤ 0 implies

Px
ω

(
ξk−2 ≤ 0 | ξk−1

) ≥ 1
2 .

When 0 ≤ ξk−1 ≤ hmk−1, we let

Xs := Xs − Ex
ω[Xs |ξk−1]√

Varxω(Xs | ξk−1)
,

which are centered with variance 1. Then

Px
ω

(
ξk−2 ≤ 0 | ξk−1

)

= Px
ω

⎛

⎝ 1√
|A(Bk−2(0))|

∑

s∈A(Bk−2(0))

Xs ≤ − Ex
ω[Xs | ξk−1]

√
|A(Bk−2(0))|√

Varxω(Xs | ξk−1)

∣∣∣ ξk−1

⎞

⎠ .

By (15), there exists 0 < λ < ∞ and δ > 0 such that ϕ(y) ≤ λyγ for all 0 ≤ y ≤ δ.
Therefore, if k is large enough so that hmk−1 ≤ δ,

0 ≤ Ex
ω[Xs | ξk−1] = hk−1ϕ(ξk−1) ≤ λhk−1ξ

γ

k−1 ≤ λh1+mγ

k−1 .

Then, since Bk−2(0) is good,

Ex
ω[Xs | ξk−1]

√|A(Bk−2(0))|
Varxω(Xs | ξk−1)

≤ λh1+mγ

k−1

√
n2(k − 2)

√
1 − h2k−1

.

But, the dominating term in this last expression is β
−(α(1+mγ )−(1−ε∗)/2)
k−2 , which tends

to zero since (60) holds. Therefore, taking k large enough,

Px
ω

(
ξk−2 ≤ 0 | ξk−1

) ≥ Px
ω

⎛

⎝ 1√
|A(Bk−2(0))|

∑

s∈A(Bk−2(0))

Xs ≤ −1
∣∣∣ ξk−1

⎞

⎠

≥ 0, 5 · 1√
2π

∫ −1

−∞
e−x2/2 dx ≡ c1.
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It remains to study Px
ω(|ξk−1| ≤ hmk−1). We have Ex

ω[ξk−1] = hkϕ(x), so if k is such
that hk ≤ hmk−1/2 then, using Chebyshev’s inequality,

Px
ω(|ξk−1| ≤ hmk−1) ≥ Px

ω(|ξk−1 − hkϕ(x)| ≤ hmk−1/2)

≥ 1 − 2
|A(Bk−1(0))|hmk−1

≥ 1 − 2
n1(k−1)hmk−1

,

which is ≥ 1
2 when k is large enough. ��

Proof of Proposition 5 The proof is the same as the one of Proposition 4. If ξM > 0,
define SM as in (58). Assuming for simplicity that M − k′ is even, Lemma 6 gives

Pω

(
SM = k′ − 1

∣∣ ξM
) ≤ Pω

(
ξk′ > 0, ξk′+2 > 0, . . . , ξM−2 > 0 | ξM

)

≤ (1 − c1
2

)(M−k′)/2
. ��

Remark 6 Proceeding as in the proof of Proposition 3, we show that it is possible to
obtain non-uniqueness with a ϕ continuous at the origin, and the sequence hk as in (14)
with α < 1−ε∗

2 (as mentioned after Theorem 1, α > 1−ε∗
2 always leads to uniqueness,

for any function ϕ). Namely, fix ω ∈ {∞ → k′}. We want to define a sequence δk ↘ 0
so that the probability

P+,N
ω

(
ξk′ > 0

) ≥ P+,N
ω

(
ξk′ ≥ δk′ , . . . , ξM ≥ δM

)

≥
M−1∏

k=k′
P+,N

ω

(
ξk ≥ δk | ξk+1 = δk+1

)

is close to one. The majority rule ϕ will be defined appropriately along the sequence
δk , then extended to [0, 1] by linear interpolation, so as to be continuous at the origin
and to satisfy ϕ(0) = 0. Finally, ϕ is defined in [−1, 0] in order to be odd. Conditioned
on {ξk+1 = δk+1}, the variables Xs , s ∈ A(Bk(0)) are Bernoulli with expectation

Eω[Xs | ξk+1 = δk+1] = hk+1ϕ(δk+1) ≡ τk .

If δk < τk , for all k, then ∈ A(Bk(0)), then

P+,N
ω

(
ξk ≥ δk | ξk+1 = δk+1

) ≥ P+,N
ω

(
δk ≤ ξk ≤ (2τk − δk) | ξk+1 = δk+1

)

= P+,N
ω

(|ξk − τk | ≤ (τk − δk)
∣∣ ξk+1 = δk+1

)
.

Using Chebyshev’s inequality,

P+,N
ω

(|ξk − τk | ≤ (τk − δk)
∣∣ ξk+1 = δk+1

) ≥ 1 − 1

n1(k)(τk − δk)2
.

By taking for example

δk := β−α
k+1, ϕ(β−α

k+1) := β−α
k−2,
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we get, since α < 1−ε∗
2 ,

P+,N
ω

(
ξk′ > 0

) ≥
M−1∏

k=k′

{
1 − 2β−((1−ε∗)−2α)

k β2α
k−1

}

≥ exp
{
−

∞∑

k=k′
β

−((1−ε∗)−2α)
k β2α

k−1

}
.

As a consequence,

lim
k′→∞

P+
ω

(
ξk′ > 0

) = 1.

Of course, in contrast with (15), the majority rule constructed above satisfies

lim sup
z→0+

ϕ(z)

zγ
= ∞, for all γ > 0.

5 Proof of Theorem 3

The proof of uniqueness when ϕ is Lipschitz, for arbitrary hks, will be based on
the same principle used when proving item 2 of Theorem 1, showing that for all large
enough k, the distribution of ξk under Pω(· | ξM ) converges to a symmetric distribution
when M → ∞:

Proposition 6 Assume ϕ is Lipshitz in a neighborhood of the origin. Let hk ↘ 0 be
an arbitrary sequence. Let P = Q ⊗ Pω be the distribution of any process specified
by g. Then for Q-almost all environment ω, for all large enough k′,

lim
M→∞ Eω

[
ξk′
∣∣ ξM
] = 0 Pω-almost surely.

To understand why Lipschitzness near the origin implies uniqueness regardless of
the details of the sequence hk , we first consider a particular case.

Assume ϕ is globally linear with slope 1:

ϕI D(z) := z ∀z ∈ [−1, 1].

Let ω ∈ {∞ → k′}, and take k > k′. Then

Eω[ξk] = Eω

[
Eω[ξk | ξk+1]

] = Eω

[
hk+1ϕI D(ξk+1)

] = hk+1Eω[ξk+1].

Repeating this procedure we get, for all L ≥ 1,

Eω[ξk] =
{ k+L∏

j=k+1

h j

}
Eω[ξk+L ]. (61)
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Taking L → ∞ gives Eω[ξk] = 0.
The proof of Proposition 6 consists in using this phenomenon, which obviously

doesn’t depend on the precise values of the sequence hk . So first, we will consider a
case where the Lipschitzness of ϕ is global:

Lemma 7 Assume that ϕ̃ is 1-Lipschitz on [−1, 1] :

|ϕ̃(z2) − ϕ̃(z1)| ≤ |z2 − z1| ∀z1, z2 ∈ [−1, 1].

LetP = Q⊗Pω be thedistributionof anyprocess specifiedby the g-functionassociated
to ϕ̃ and to some sequence h̃k ↘ 0. Then for Q-almost all environment ω, for all large
enough k′,

lim
M→∞ Eω

[
ξ̃k′
∣∣ ξ̃M
] = 0 Pω-almost surely.

Proof of Proposition 6: Let δ > 0 and λ > 0 be such that 0 ≤ ϕ(z2) − ϕ(z1) ≤
λ(z2 − z1) for all −δ ≤ z1 ≤ z2 ≤ δ. We define a function ϕ̃ that satisfies the
conditions of Lemma 7:

ϕ̃(z) := 1
λ
φ(z),

where

φ(z) :=

⎧
⎪⎨

⎪⎩

λ(z + δ) + ϕ(−δ) if z ∈ [−1,−δ],
ϕ(z) if z ∈ [−δ, δ],
λ(z − δ) + ϕ(δ) if z ∈ [δ, 1].

(62)

Assume ω ∈ {∞ → k′} for some large k′. We fix M > k′ large, and to study
Eω[ξk′ | ξM ] we construct the sequence ξk for k decreasing from M to k′, coupled to
another sequence ξ̃k ; ξk will have its transition probability fixed by ϕ and hk , and ξ̃k
will have its transition probability fixed by ϕ̃ and

h̃k := λhk .

If λ is large, we may need to take k′ large enough so that h̃k ≤ 1/2 for all k ≥ k′. The
processes ξk and ξ̃k will be constructed along with a sequence γk ∈ {0, 1}: if γk = 1,
then ξk and ξ̃k are still coupled; γk = 0 means they have already decoupled.

For simplicity, we will continue denoting the coupling measure by Pω. The con-
struction is illustrated on the figure below. We start with some fixed ξM . By (51),
we can assume that M is large enough in order to guarantee that |ξM | ≤ δ. Let then
ξ̃M := ξM , and γM := 1.

Given (γk+1, ξ̃k+1, ξk+1), (γk, ξ̃k, ξk) is constructed as follows:

(1) Sample ξ̃k as an average of variables {X̃s = ±, s ∈ A(Bk(0))}, i.i.d. with
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Eω[X̃s | ξ̃k+1] = h̃k+1ϕ̃(ξ̃k+1).

(2) If γk+1 = 1, set ξk := ξ̃k and γk := 1{|ξk |≤δ}.
(3) If γk+1 = 0, set γk := 0, and sample ξk as an average of variables {Xs = ±, s ∈

A(Bk(0))}, i.i.d. with

Eω[Xs | ξk+1] = hk+1ϕ(ξk+1).

By construction, (γk, ξ̃k, ξk) is a Markov chain, and ξk has the proper marginals.
Namely, if γk+1 = 0 then

Eω[ξk | ξk+1] = hk+1ϕ(ξk+1),

and if γk+1 = 1, then

Eω[ξk | ξk+1] = Eω[ξ̃k | ξ̃k+1] = h̃k+1ϕ̃(ξ̃k+1)

= h̃k+1ϕ̃(ξk+1)

= hk+1ϕ(ξk+1),

where in the last line we used that |ξk+1| ≤ δ.

k′M

δ

1 01 1 1 1 0 · · · 0· · ·

Dδ M − 1

ξk′

ξ̃k′

0 = γk′

Let D be the scale at which decoupling occurs:

D := max
{
k : M > k ≥ k′, γk = 0

}
.

Clearly, D is a stopping time for the chain (γk, ξ̃k, ξk), and if k ∈ {k : M ≥ k > D},
then ξk = ξ̃k and |ξk | = |ξ̃k | ≤ δ.

Fix k′ < L < M . On the one hand, proceeding as in (50),

∣∣Eω

[
ξk′, D ≥ L | ξM

]∣∣ ≤ Pω(D ≥ L | ξM )

≤
∑

k≥L

Pω(|ξk | ≥ δ | ξM ) ≤
∑

k≥L

e−cn1(k).

On the other hand, D < L implies ξL = ξ̃L and so

Eω

[
ξk′, D < L | ξM

] = Eω

[
Eω

[
ξk′ | ξL

]
1{D<L}

∣∣∣ ξM
]
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= Eω

[
fω(ξ̃L)1{D<L}

∣∣∣ ξM
]

= Eω

[
fω(ξ̃L)

∣∣ ξM
]+ O
(
Pω(D ≥ L | ξM )

)
,

where fω(x) := Eω[ξk′ | ξL = x]. Now, the construction of ξ̃ was based on ϕ̃, so by
Lemma 7,

Eω[ξ̃L | ξ̃M ] → 0 when M → ∞.

Since ξ̃M := ξM , ξ̃L has, under Pω(· | ξM ) in the limit M → ∞, a symmetric law.
But since fω(−x) = − fω(x), this implies

Eω

[
fω(ξ̃L)

∣∣ ξM
]→ 0 as M → ∞.

We have thus shown that for all L > k′,

lim sup
M→∞

∣∣Eω[ξk′ | ξM ]∣∣ ≤ 2
∑

k≥L

e−cn1(k).

��
Proof of Lemma 7 We work with two different g-functions that have the same
sequence h̃k but different majority rules. The first, g̃, is associated to ϕ̃, which is
1-Lipschitz [−1, 1]. The second, g, is associated to ϕ := ϕI D:

1

−1

ϕ

ϕ̃

Uniformly in z1 < z2,

0 ≤ ϕ̃(z2) − ϕ̃(z1) ≤ z2 − z1 ≡ ϕ(z2) − ϕ(z1). (63)

Let X̃ (resp. X ) denote the process associated to g̃ (resp. g). Using attractiveness and
the notations of Sect. 4.2,

E−,N
ω [ξ̃k′ ] ≤ Eω[ξ̃k′ | ξ̃M ] ≤ E+,N

ω [ξ̃k′ ],

where N is chosen appropriately in function ofM . Since ξ̃k′ is an average of identically
distributed variables X̃s , our aim will be to show that when M → ∞,

0 ≤ E+,N
ω [ξ̃k′ ] − E−,N

ω [ξ̃k′ ] = E+,N
ω [X̃s] − E−,N

ω [X̃s] → 0.
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To bound this last difference, consider the coupling of E+,N
ω and E−,N

ω described in
Sect. 4.2, which we here denote by E±,N

ω . Since that coupling is maximal,

E+,N
ω [X̃s] − E−,N

ω [X̃s] = 2E±,N
ω [1{�̃s=(+

−)}]. (64)

We will now use (63) to further couple the pair processes, �̃s = (X̃2
s

X̃1
s

)
and �s = (X

2
s

X
1
s

)
.

This coupling will contain the four processes associated to g̃ and g, with boundary
conditions + and−. The coupling will be such that there are more discrepancies

between X
2
and X

1
than there are between X̃2 and X̃1, in the following sense:

1{�̃s=(+
−)} ≤ 1{�s=(+

−)} a.s. (65)

By definition, when s ≤ −N , �̃s = �s = (+−
)
. Let Ut , t > −N be an i.i.d.

sequence, each withUt uniform on [0, 1]. Assume all pairs, �̃s = (x̃2x̃1
)
and�s = (x2x1

)
,

have been sampled for all s < t and that (65) holds for all s < t . Let �̃t (resp. �t ) be
defined as in (41), in which At , Bt ,Ct are replaced by the corresponding Ãt , B̃t , C̃t

(resp. At , Bt ,Ct ). (Obs: we are using the same variableUt to define �̃t and�s .) Then
�̃t and �t obviously have the correct distribution. To verify that (65) holds at time t ,
we first remind that

At = {0 ≤ Ut < gω
t (+ | (x2)t−1−∞) − gω

t (+ | (x1)t−1−∞)
}
,

Ãt = {0 ≤ Ut < g̃ω
t (+ | (̃x2)t−1−∞) − g̃ω

t (+ | (̃x1)t−1−∞)
}
.

Using the fact that X has more discrepancies than X̃ , and (63),

gω
t (+ | (x2)t−1−∞) − gω

t (+ | (x1)t−1−∞) = h̃kt
2

{
ϕ
(

1
|St |
∑

s∈St
x2s
)

− ϕ
(

1
|St |
∑

s∈St
x1s
)}

≥ h̃kt
2

{
ϕ
(

1
|St |
∑

s∈St
x̃2s
)

− ϕ
(

1
|St |
∑

s∈St
x̃1s
)}

≥ h̃kt
2

{
ϕ̃
(

1
|St |
∑

s∈St
x̃2s
)

− ϕ̃
(

1
|St |
∑

s∈St
x̃1s
)}

= g̃ω
t (+ | (̃x2)t−1−∞) − g̃ω

t (+ | (̃x1)t−1−∞),

which implies Ãt ⊂ At almost surely.
With (65) at hand, we go back to (64):

E+,N
ω [X̃s] − E−,N

ω [X̃s] = 2E±,N
ω [1{�̃s=(+

−)}]
≤ 2E±,N

ω [1{�s=(+
−)}] = E+,N

ω [Xs] − E−,N
ω [Xs].
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But since ϕ is purely linear, the explicit computation made at the beginning of the
section can be repeated, giving

E±,N
ω [Xs] =

{ M∏

k=k′+1

h̃k
}
(±1) → 0 when M → ∞.

��

6 Concluding remarks

The analysis of the model was possible due to theMarkovian structure of the sequence
ξk , in particular to the relation (valid on {∞ → k})

Eω[ξk] = hk+1Eω[ϕ(ξk+1)]. (66)

We will give a simple heuristic argument that might shed some light on the proofs
given above, and on the role played by the continuity of ϕ at the origin.

A mean field approximation consists in assuming that ξk+1 can be approximated
by its mean:

ξk+1 � Eω[ξk+1].

This allows to transform Eω[ϕ(ξk+1)] � ϕ
(
Eω[ξk+1]

)
. This approximation is correct

in exactly one case: when ϕ is purely linear.
With the mean field approximation, one can transform (66) into a deterministic toy

model, in which μk := Eω[ξk] is a sequence satisfying the relation

μk = hk+1ϕ(μk+1). (67)

We thus take some large integer M , fix some initial condition, μM , and study the
sequence μM , μM−1, . . . , μk∗ . Since ϕ(0) = 0, 0 is always a fixed point for the
dynamics. In the case of a purely linear majority rule, ϕ(z) = λz, the trajectory
of μk+1 → μk is always attracted towards the origin, independently of the initial
condition. For example, if μM > 0:

0

id

z
μM

hM−1λz

hMλz

μM−1

...
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The same qualitative behavior holds if ϕ′(0) < ∞. Namely, when ϕ is Lipschitz
near the origin, a coupling with a straight line has shown that the same phenomenon
occurs: for large enough k, z ≥ 0, the curve z 
→ hk+1ϕ(z) lies strictly below the
identity z 
→ z, and any initial condition is also attracted towards the origin.

In the case of a pure majority rule [or when ϕ′(0) = ∞ as in Remark 6], the
mechanism changes: the trajectories ofμk+1 → μk = hk+1ϕPMR(μk+1), are repelled
away from the origin, with a sign that depends on the sign of the initial condition. For
example, if μM > 0:

id

z

hM

hM−1

hM−2

μM

...

This scenario was shown to hold for the BHS model, at least when α was taken
small enough. When α is large, fluctuations allow μk to change sign at any time,
yielding uniqueness. The role of ϕ′(0) in the model of Bramson and Kalikow is under
current investigation (work in progress).
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Appendix A. The uniqueness criterion

The uniqueness criterion (52) is standard in attractive systems, although usually used
for translation invariant processes (which is not the case of Pω). See for example how
it is used in Statistical Mechanics in [10], or in [7] for g-measures.

We will use some notations and results from Sect. 4.2. Let χ := {±}Z = {x =
(xt )t∈Z, xt = ±} equipped with the σ -field generated by cylinders. A function f :
χ → R is local if it depends only on a finite number of xt s; we denote its support by
supp( f ). We say f is increasing if f (x) ≤ f (y) whenever xt ≤ yt for all t .

The probability measures on χ are entirely determined by their action on local
functions: if E1[ f ] = E2[ f ] for all local function f , then P1 = P2. But a local
function can always be represented as

f (x) =
∑

B⊂supp( f )

αBnB,

where αB ∈ R, nB :=∏t∈B nt , with nt := 1
2 (1 + xt ).

Lemma 8 If E+
ω [Xt ] = E−

ω [Xt ] for all t ∈ Z, then P+
ω = P−

ω .
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Proof By what was said above, it suffices to show that E+
ω [nB] = E−

ω [nB] for all
finite B ⊂ Z. Observe that G = ∑t∈B nt − nB is increasing. Using (43) yields
E+

ω [G] ≥ E−
ω [G], which can be written

∑

t∈B

(
E+

ω [nt ] − E−
ω [nt ]
) ≥ E+

ω [nB] − E−
ω [nB] ≥ 0.

But E+
ω [nt ] − E−

ω [nt ] = E+
ω [Xt ] − E−

ω [Xt ] = 0. ��
Lemma 9 If P+

ω = P−
ω , then any other measure Pω satisfying (3) coincides with P+

ω

and P−
ω .

Proof Once again, we need only consider local functions of the form nB . If B ⊂ [a, b],
we can take k large enough so that A(Bk(0)) ⊂ (−∞, a ∧ 0). Then,

Eω[nB] = Eω

[
Eω[nB | ξk]

]
.

But, since nB is increasing,

Eω[nB | ξk] ≤ Eω[nB | ξk = +1] ≡ E+,N (k)
ω [nB],

for some suitable N (k). But by the definition of P+
ω ,

lim
k→∞ E+,N (k)

ω [nB] = E+
ω [nB].

We therefore have Eω[nB] ≤ E+
ω [nB]. In the same, way, E−

ω [nB] ≤ Eω[nB]. As
a consequence, Eω[nB] = E+

ω [nB] = E−
ω [nB], and the same extends to all local

function f . ��
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