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Abstract We study empirical and hierarchical Bayes approaches to the problem of
estimating an infinite-dimensional parameter in mildly ill-posed inverse problems.
We consider a class of prior distributions indexed by a hyperparameter that quantifies
regularity.We prove that both methods we consider succeed in automatically selecting
this parameter optimally, resulting in optimal convergence rates for truthswith Sobolev
or analytic “smoothness”,without usingknowledge about this regularity.Bothmethods
are illustrated by simulation examples.
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1 Introduction

In recent years, Bayesian approaches have become more and more common in deal-
ing with nonparametric statistical inverse problems. Such problems arise in many
fields of applied science, including geophysics, genomics, medical image analysis
and astronomy, to mention but a few. In nonparametric inverse problems some form
of regularization is usually needed in order to estimate the (typically functional) para-
meter of interest. One possible explanation of the increasing popularity of Bayesian
methods is the fact that assigning a prior distribution to an unknown functional para-
meter is a natural way of specifying a degree of regularization. Probably at least as
important is the fact that various computational methods exist to carry out the infer-
ence in practice, includingMCMCmethods and approximatemethods like expectation
propagation, Laplace approximations and approximate Bayesian computation. A third
important aspect that appeals to users of Bayes methods is that an implementation of a
Bayesian procedure typically produces not only an estimate of the unknown quantity
of interest (usually a posterior mean or mode), but also a large number of samples
from the whole posterior distribution. These can then be used to report a credible set,
i.e. a set of parameter values that receives a large fixed fraction of the posterior mass,
that serves as a quantification of the uncertainty in the estimate. Some examples of
papers using Bayesian methods in nonparametric inverse problems in various applied
settings include [3,16,24,27,28]. The paper [34] provides a nice overview and many
additional references.

Work on the fundamental properties of Bayes procedures for nonparametric inverse
problems, like consistency, (optimal) convergence rates, etcetera, has only started to
appear recently. The few papers in this area include [1,14,22,23,30]. Other papers
addressing frequentist properties of Bayes procedures for different, but related inverse
problems include [21] and [15]. This is in sharp contrast with the work on frequentist
methodology, which is quite well developed. See for instance the overviews given by
Cavalier [8,9].

Our focus in this paper is on the ability of Bayesian methods to achieve adaptive,
rate-optimal inference in so-called mildly ill-posed nonparametric inverse problems
(in the terminology of, e.g., [8]). Nonparametric priors typically involve one or more
tuning parameters, or hyper-parameters, that determine the degree of regularization.
In practice there is widespread use of empirical Bayes and full, hierarchical Bayes
methods to automatically select the appropriate values of such parameters. These
methods are generally considered to be preferable to methods that use only a single,
fixed value of the hyper-parameters. In the inverse problem setting it is known from
the recent paper [22] that using a fixed prior can indeed be undesirable, since it can
lead to convergence rates that are sub-optimal, unless by chance the statistician has
selected a prior that captures the fine properties of the unknown parameter (like its
degree of smoothness, if it is a function). Theoretical work that supports the preference
for empirical or hierarchical Bayes methods does not exist at the present time how-
ever. It has until now been unknown whether these approaches can indeed robustify a
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procedure against prior mismatch. In this paper we answer this question in the affir-
mative. We show that empirical and hierarchical Bayes methods can lead to adaptive,
rate-optimal procedures in the context of nonparametric inverse problems, provided
they are properly constructed.

We study this problem in the context of the canonical signal-in-white-noise model,
or, equivalently, the infinite-dimensional normal mean model. Using singular value
decompositions many nonparametric, linear inverse problems can be cast in this form
(e.g. [9,22]). Specifically, we assume that we observe a sequence of noisy coefficients
Y = (Y1,Y2, . . .) satisfying

Yi = κiμi + 1√
n
Zi , i = 1, 2 . . . , (1.1)

where Z1, Z2, . . . are independent, standard normal random variables, μ = (μ1,

μ2, . . .) ∈ �2 is the infinite-dimensional parameter of interest, and (κi ) is a known
sequence that may converge to 0 as i → ∞, which complicates the inference. We
suppose the problem is mildly ill-posed of order p ≥ 0, in the sense that

C−1i−p ≤ κi ≤ Ci−p, i = 1, 2 . . . , (1.2)

for some C ≥ 1. Minimax lower bounds for the rate of convergence of estimators for
μ are well known in this setting. For instance, the lower bound over Sobolev balls
of regularity β > 0 is given by n−β/(1+2β+2p) and over certain “analytic balls” the
lower bound is of the order n−1/2 log1/2+p n (see [8]). There are several regularization
methods which attain these rates, including classical Tikhonov regularization and
Bayes procedures with Gaussian priors.

Many of the older existing methods for nonparametric inverse problems are not
adaptive, in the sense that they rely on knowledge of the regularity (e.g. in Sobolev
sense) of the unknown parameter of interest to select the appropriate regularization.
This also holds for the Bayesian approach with fixed Gaussian priors. Early papers on
the direct problem, i.e. the case p = 0 in (1.2), include [33,41]. Themore recent papers
[22] and [1] study the inverse problemcase, but also obtain non-adaptive results only. In
the last decade however, several methods have been developed in frequentist literature
that achieve the minimax convergence rate without knowledge of the regularity of the
truth. This development parallels the earlier work on adaptive methods for the direct
nonparametric problem to some extent, although the inverse case is technically usually
more demanding. The adaptive methods typically involve a data-driven choice of a
tuning parameter in order to automatically achieve an optimal bias-variance trade-off,
as in Lepski’s method for instance.

For nonparametric inverse problems, the construction of an adaptive estimator based
on a properly penalized blockwise Stein’s rule has been studied in [12], cf. also [6].
This estimator is adaptive both over Sobolev and analytic scales. In [10] the data-driven
choice of the regularizing parameters is based on unbiased risk estimation. The authors
consider projection estimators and derive the corresponding oracle inequalities. For μ

in the Sobolev scale they obtain asymptotically sharp adaptation in a minimax sense,
whereas for μ in analytic scale, their rate is optimal up to a logarithmic term. Yet
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another approach to adaptation in inverse problems is the risk hull method studied in
[11]. In this paper the authors consider spectral cut-off estimators and provide oracle
inequalities. An extension of their approach is presented in [25]. The link between the
penalized blockwise Stein’s rule and the risk hull method is presented in [26].

Adaptation properties of Bayes procedures for mildly ill-posed nonparametric
inverse problems have until now not been studied in the literature, with an excep-
tion of [15] in a different setting. Results in our setting are only available for the direct
problem, i.e. the case that κi = 1 for every i , or, equivalently, p = 0 in (1.2). In the
paper [5] it is shown that in this case adaptive Bayesian inference is possible using a
hierarchical, conditionally Gaussian prior, while in [35] partially adaptation is shown
using Gaussian priors with scale parameter determined by an empirical Bayes method.
Other recent papers also exhibit priors that yield rate-adaptive procedures in the direct
signal-in-white-noise problem (see for instance [2,13,32,38]), but it is important to
note that these papers use general theorems on contraction rates for posterior distribu-
tions (as given in [18] for instance) that are not suitable to deal with the truly ill-posed
case in which ki → 0 as i → ∞. The reason is that if these general theorems are
applied in the inverse case, we only obtain convergence rates relative to the (squared)
norm μ �→ ∑

κ2
i μ2

i , which is not very interesting. Obtaining rates relative to the �2-
norm is much more involved and requires a different approach. Extending the testing
approach of [17,18] would be one possibility, cf. the recent work of [30], although it
seems difficult to obtain sharp results in this manner. In this paper we follow a more
pragmatic approach, relying on partly explicit computations in a relatively tractable
setting.

To obtain rate-adaptive Bayes procedures for the model (1.1) we consider a family
(Πα : α > 0) of Gaussian priors for the parameter μ. These priors are indexed
by a parameter α > 0 which quantifies the “regularity” of the prior Πα (details in
Sect. 2). Instead of choosing a fixed value for α (which is the approach studied in
[22]) we view it as a tuning-, or hyper-parameter and consider two different methods
for selecting it in a data-driven manner. The approach typically preferred by Bayesian
statisticians is to endow the hyper-parameterwith a prior distribution itself. This results
in a full, hierarchical Bayes procedure. The paper [5] follows the same approach in
the direct problem. We prove that under a mild assumption on the hyper-prior on α,
we obtain an adaptive procedure for the inverse problem using the hierarchical prior.
Optimal convergence rates are obtained (up to lower order factors), uniformly over
Sobolev and analytic scales. For tractability, the priorsΠα that we use put independent,
Gaussian prior weights on the coefficients μi in (1.1). Extensions to more general
priors, including non-Gaussian densities or priors that are not exactly diagonal (as
in [30] for instance) should be possible, but would require considerable additional
technical work.

A second approach we study consists in first “estimating” α from the data and then
substituting the estimator α̂n for α in the posterior distribution for μ corresponding to
the prior Πα . This empirical Bayes procedure is not really Bayesian in the strict sense
of the word. However, for computational reasons empirical Bayes methods of this type
are widely used in practice, making it relevant to study their theoretical performance.
Rigorous results about the asymptotic behavior of empirical Bayes selectors of hyper-
parameters in infinite-dimensional problems only exist for a limited number of special
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problems, see e.g. [4,19,20,35,40]. In this paper we prove that the likelihood-based
empirical Bayes method that we propose has the same desirable adaptation and rate-
optimality properties in nonparametric inverse problems as the hierarchical Bayes
approach.

The estimator α̂n for α that we propose is the commonly used likelihood-based
empirical Bayes estimator for the hyper-parameter. Concretely, it is the maximum
likelihood estimator for α in the model in which the data Y is generated by first
drawing μ from Πα and then generating Y = (Y1,Y2, . . .) according to (1.1), i.e.

μ|α ∼ Πα, and Y |(μ, α) ∼
∞⊗

i=1

N
(
κiμi ,

1

n

)
. (1.3)

A crucial element in the proof of the adaptation properties of both procedures we
consider is understanding the asymptotic behavior of α̂n . In contrast to the typical
situation in parametric models (see [29]) this turns out to be rather delicate, since
the likelihood for α can have complicated behavior. We are able however to derive
deterministic asymptotic lower and upper bounds for α̂n . In general these depend on
the true parameter μ0 in a complicated way. It appears that in general the difference
between these bounds does not become asymptotically negligible, but it can be shown
that any value between the bounds gives the correct bias-variance trade-off for the
class containing the particular μ0, whence adaptive minimaxity arises.

In the special case that the true parameter has regular behavior of the form μ0,i 

i−1/2−β for someβ > 0, both bounds tends toβ and hence α̂n is essentially a consistent
estimator for β (see Lemma 1). This means that in this case the estimator α̂n correctly
“estimates the regularity” of the true parameter (see [4] for work in a similar direction).
Since the typical models used to define “minimax adaptation” only impose upper
bounds on the parameters (e.g. μ0,i � i−1/2−β or an integrated version of this), in
general the “regularity” of a parameter is an ill-defined concept. The value α̂n may
then have complicated behaviour, but it still gives minimaxity over the class.

Our priors Πα model the coordinates μi as independent N (0, i−1−2α) variables.
This is flexible enough to adapt to the full scale of Sobolev spaces, and also to models
of supersmooth parameters (up to logarithmic factors). In [35] it was shown (only
for the direct problem) that priors of the form N (0, τ 2i−1−2α) for a fixed exponent α
and adaptation to scale τ achieves adaptive minimaxity over Sobolev classes only in
a limited range, dependent on α.

The remainder of the paper is organized as follows. In Sect. 2 we first describe
the empirical and hierarchical Bayes procedures in detail. Then we present a theorem
on the asymptotic behavior of estimator α̂n for the hyper-parameter, followed by two
results on the adaptation and rate of contraction of the empirical and hierarchical Bayes
posteriors over Sobolev and analytic scales. These results all concern global �2-loss. In
Sect. 2.3 we briefly comment on rates relative to other losses. Specifically we discuss
contraction rates of marginal posteriors for linear functionals of the parameter μ. We
conjecture that the procedures that we prove to be adaptive and rate-optimal for global
�2-loss, will be sub-optimal for estimating certain unbounded linear functionals. A
detailed study of this issue is outside the scope of the present paper. The empirical and
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hierarchical Bayes approaches are illustrated numerically in Sect. 3. We apply them to
simulated data from an inverse signal-in-white-noise problem, where the problem is
to recover a signal from a noisy observation of its primitive and also another example
with a smaller degree of ill-posedness. Proofs of the main results are presented in
Sects. 4–7. Some auxiliary lemmas are collected in Sect. 8.

1.1 Notation

For β, γ ≥ 0, the Sobolev norm ‖μ‖β , the analytic norm ‖μ‖Aγ and the �2-norm ‖μ‖
of an element μ ∈ �2 are defined by

‖μ‖2β =
∞∑

i=1

i2βμ2
i , ‖μ‖2Aγ =

∞∑

i=1

e2γ iμ2
i , ‖μ‖2 =

∞∑

i=1

μ2
i ,

and the corresponding Sobolev space by Sβ = {μ ∈ �2 : ‖μ‖β < ∞}, and the analytic
space by Aγ = {μ ∈ �2 : ‖μ‖Aγ < ∞}.

For two sequences (an) and (bn) of numbers, an 
 bn means that |an/bn| is bounded
away from zero and infinity as n → ∞, an � bn means that an/bn is bounded, an ∼ bn
means that an/bn → 1 as n → ∞, and an � bn means that an/bn → 0 as n → ∞.
For two real numbers a and b, we denote by a ∨ b their maximum, and by a ∧ b their
minimum.

2 Main results

2.1 Description of the empirical and hierarchical Bayes procedures

We assume that we observe the sequence of noisy coefficients Y = (Y1,Y2, . . .)
satisfying (1.1), for Z1, Z2, . . . independent, standard normal random variables, μ =
(μ1, μ2, . . .) ∈ �2, and a known sequence (κi ) satisfying (1.2) for some p ≥ 0 and
C ≥ 1. We denote the distribution of the sequence Y corresponding to the “true”
parameter μ0 by P0, and the corresponding expectation by E0.

For α > 0, consider the product prior Πα on �2 given by

Πα =
∞⊗

i=1

N
(
0, i−1−2α)

. (2.1)

It is easy to see that this prior is “α-regular”, in the sense that for everyα′ < α, it assigns
mass 1 to the Sobolev space Sα′

. In [22] it was proved that if for the true parameter
μ0 we have μ0 ∈ Sβ for β > 0, then the posterior distribution corresponding to the
Gaussian prior Πα contracts around μ0 at the optimal rate n−β/(1+2β+2p) if α = β.
If α �= β, only sub-optimal rates are attained in general (cf. [7]). In other words,
when using a Gaussian prior with a fixed regularity, optimal convergence rates are
obtained if and only if the regularity of the prior and the truth are matched. Since the
latter is unknown however, choosing the prior that is optimal from the point of view
of convergence rates is typically not possible in practice.
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However, the results in [22] indicate that a regular enough prior (β ≤ 1+2α +2p)
can be appropriately scaled to attain the optimal rate. This observation in the direct case
p = 0, led to the study of a data-driven selection of the scaling parameter τn in [35]with
priors of the form N (0, τ 2i−1−2α). Already in the direct case (p = 0), the performance
of the empirical Bayes procedure cuts the range β ≤ 1 + 2α where the optimal
deterministic scaling is possible, into two subregimes. If β < 1/2 + α, the empirical
Bayes leads to the optimal rate. Otherwise, that is when 1/2 + α ≤ β ≤ 1 + 2α,
the performance of the empirical Bayes procedure is strictly worse than the optimal
procedure. Therefore, the procedure is suboptimal not only over a wide range of
Sobolev classes, but also over certain “analytic balls”, e.g., Aγ for all γ > 0. The
same conclusions hold for the hierarchical Bayes procedure.

Therefore, in this paper we fix τ ≡ 1 and consider two data-driven methods for
selecting the regularity α of the prior.

The first is a likelihood-based empirical Bayes method, which attempts to estimate
the appropriate value of the hyper-parameter α from the data. In the Bayesian setting
described by the conditional distributions (1.3), it holds that

Y |α ∼
∞⊗

i=1

N

(

0, i−1−2ακ2
i + 1

n

)

.

The corresponding log-likelihood for α (relative to an infinite product of N (0, 1/n)-
distributions) is easily seen to be given by

�n(α) = −1

2

∞∑

i=1

(

log

(

1 + n

i1+2ακ−2
i

)

− n2

i1+2ακ−2
i + n

Y 2
i

)

. (2.2)

The idea is to “estimate” α by the maximizer of �n . The results ahead (Lemma 1 and
Theorem 1) imply that with P0-probability tending to one, �n has a global maximum
on [0, log n) if μ0,i �= 0 for some i ≥ 2. (In fact, the cited results imply the maximum
is attained on the slightly smaller interval [0, (log n)/(2 log 2)−1/2− p]). If the latter
condition is not satisfied (if μ0 = 0 for instance), �n may attain its maximum only at
∞. Therefore, we truncate the maximizer at log n and define

α̂n = argmax
α∈[0,log n]

�n(α).

The continuity of �n ensures the argmax exists. If it is not unique, any value may be
chosen. We will always assume at least that μ0 has Sobolev regularity of some order
β > 0. Lemma 1 and Theorem 1 imply that in this case α̂n > 0 with probability
tending to 1. An alternative to the truncation of the argmax of �n at log n could be to
extend the definition of the priorsΠα to include the case α = ∞. The priorΠ∞ should
then be defined as the product N (0, 1) ⊗ δ0 ⊗ δ0 ⊗ . . ., with δ0 the Dirac measure
concentrated at 0. However, from a practical perspective it is more convenient to define
α̂n as above.
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The empirical Bayes procedure consists in computing the posterior distribution of
μ corresponding to a fixed prior Πα and then substituting α̂n for α. Under the model
described above and the prior (2.1) the coordinates (μ0,i ,Yi ) of the vector (μ0,Y ) are
independent, and hence the conditional distribution of μ0 given Y factorizes over the
coordinates as well. The computation of the posterior distribution reduces to countably
many posterior computations in conjugate normal models. Therefore (see also [22])
the posterior distribution corresponding to the prior Πα is given by

Πα( · |Y ) =
∞⊗

i=1

N

(
nκ−1

i

i1+2ακ−2
i + n

Yi ,
κ−2
i

i1+2ακ−2
i + n

)

. (2.3)

Then the empirical Bayes posterior is the random measure Πα̂n ( · |Y ) defined by

Πα̂n (B|Y ) = Πα(B|Y )

∣
∣
∣
α=α̂n

(2.4)

for measurable subsets B ⊂ �2. Note that the construction of the empirical Bayes
posterior does not use information about the regularity of the true parameter. In Theo-
rem 2 below we prove that it contracts around the truth at an optimal rate (up to lower
order factors), uniformly over Sobolev and analytic scales.

The second method we consider is a full, hierarchical Bayes approach where we
put a prior distribution on the hyper-parameter α. We use a prior on α with a positive
Lebesgue density λ on (0,∞). The full, hierarchical prior for μ is then given by

Π =
∫ ∞

0
λ(α)Πα dα. (2.5)

In Theorem 3 below we prove that under mild assumptions on the prior density λ,
the corresponding posterior distribution Π( · |Y ) has the same desirable asymptotic
properties as the empirical Bayes posterior (2.4).

2.2 Adaptation and contraction rates for the full parameter

Understanding of the asymptotic behavior of the maximum likelihood estimator α̂n

is a crucial element in our proofs of the contraction rate results for the empirical and
hierarchical Bayes procedures. The estimator somehow “estimates” the regularity of
the true parameter μ0, but in a rather indirect and involved manner in general. Our
first theorem gives deterministic upper and lower bounds for α̂n , whose construction
involves the function hn : (0,∞) → [0,∞) defined by

hn(α) = 1 + 2α + 2p

n1/(1+2α+2p) log n

∞∑

i=1

n2i1+2αμ2
0,i log i

(i1+2ακ−2
i + n)2

. (2.6)

For positive constants 0 < l < L we define the lower and upper bounds as

αn = inf{α > 0 : hn(α) > l} ∧ √
log n, (2.7)
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αn = inf{α > 0 : hn(α) > L(log n)2}, (2.8)

and the infimum of the empty set is considered ∞.
One can see that the function hn and hence the lower and upper bounds αn and αn

depend on the true μ0. We show in Theorem 1 that the maximum likelihood estimator
α̂n is between these bounds with probability tending to one. In general the true μ0
can have very complicated tail behavior, which makes it difficult to understand the
behavior of the upper and lower bounds. If μ0 has regular tails however, we can get
some insight in the nature of the bounds. We have the following lemma, proved in
Sect. 4.

Lemma 1 For any l, L > 0 in the definitions (2.7)–(2.8) the following statements
hold.

(i) For all β, R > 0, there exists c0 > 0 such that

inf‖μ0‖β≤R
αn ≥ β − c0

log n

for n large enough.
(ii) For all γ, R > 0,

inf‖μ0‖Aγ ≤R
αn ≥

√
log n

log log n

for n large enough.
(iii) Ifμ0,i ≥ ci−γ−1/2 for some c, γ > 0, then for a constant C0 > 0 only depending

on c and γ , we have αn ≤ γ + C0(log log n)/log n for all n large enough.
(iv) If μ0,i �= 0 for some i ≥ 2, then αn ≤ (log n)/(2 log 2) − 1/2 − p for n large

enough.

We note that items (i) and (iii) of the lemma imply that if μ0,i 
 i−1/2−β , then
the interval [αn, αn] concentrates around the value β asymptotically. In combination
with Theorem 1 this shows that at least in this regular case, α̂n correctly estimates the
regularity of the truth. A parameter μ0 in an analytic class Aγ could be viewed as
being infinitely regular. By item (ii) of the lemma, which shows that αn → ∞ in this
case, the procedure correctly detects this infinite regularity (although of course it does
not reveal the value of γ ).

Item (iv) implies that if μ0,i �= 0 for some i ≥ 2, then αn < log n < ∞ for
large n. Conversely, the definitions of hn and αn show that if μ0,i = 0 for all i ≥ 2,
then hn ≡ 0 and hence αn = ∞. This justifies the choice of the truncated α̂n in the
definition of the empirical Bayes posterior.

The following theorem asserts that the point(s) where �n is maximal is (are) asymp-
totically between the bounds just defined, uniformly over Sobolev and analytic scales.
The proof is given in Sect. 5.

Theorem 1 For every R > 0 the constants l and L in (2.7) and (2.8) can be chosen
such that
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780 B. T. Knapik et al.

inf
μ0∈B(R)

P0

(

argmax
α∈[0,log n]

�n(α) ∈ [αn, αn]
)

→ 1,

where B(R) = {μ0 ∈ �2 : ‖μ0‖β ≤ R} or B(R) = {μ0 ∈ �2 : ‖μ0‖Aγ ≤ R}.
With the help of Theorem 1 we can prove the following theorem, which states that

the empirical Bayes posterior distribution (2.4) achieves optimal minimax contraction
rates up to a slowly varying factor, uniformly over Sobolev and analytic scales. Careful
inspection of the proof of Theorem 1 indicates that α̂n is contained with probability
tending to 1 in a slightly smaller interval obtained by raising or lowering the bounds
by a suitable multiple of 1/log n, but this does not help to improve the main results of
the paper presented below. We also note that posterior contraction at a rate εn implies
the existence of estimators, based on the posterior, that converge at the same rate. See
for instance the construction in Sect. 4 of [5].

Theorem 2 For every β, γ, R > 0 and Mn → ∞ we have

sup
‖μ0‖β≤R

E0Πα̂n

(‖μ − μ0‖ ≥ MnLnn
−β/(1+2β+2p)

∣
∣ Y

) → 0

and

sup
‖μ0‖Aγ ≤R

E0Πα̂n

(‖μ − μ0‖ ≥ MnLn(log n)1/2+pn−1/2
∣
∣ Y

) → 0,

where (Ln) is a slowly varying sequence.

So indeed we see that both in the Sobolev and analytic cases, we obtain the optimal
minimax rates up to a slowly varying factor. The proofs of the statements (given
in Sect. 6) show that in the first case we can take Ln = (log n)2(log log n)1/2 and
in the second case Ln = (log n)(1/2+p)

√
log n/2+1−p(log log n)1/2. These sequences

converge to infinity but they are slowly varying, hence they converge slower than any
power of n.

The full Bayes procedure using the hierarchical prior (2.5) achieves the same results
as the empirical Bayes method, under mild assumptions on the prior density λ for α.

Assumption 1 Assume that for every c1 > 0 there exist c2 ≥ 0, c3 ∈ R, with c3 > 1
if c2 = 0, and c4 > 0 such that

c−1
4 α−c3 exp(−c2α) ≤ λ(α) ≤ c4α

−c3 exp(−c2α)

for α ≥ c1.

One can see that a many distributions satisfy this assumption, for instance the
exponential, gamma and inverse gamma distributions. Careful inspection of the proof
of the following theorem, given in Sect. 7, can lead to weaker assumptions, although
these will be less attractive to formulate. Recall the notation Π( · |Y ) for the posterior
corresponding to the hierarchical prior (2.5).
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Theorem 3 Suppose the prior density λ satisfies Assumption 1. Then for every
β, γ, R > 0 and Mn → ∞ we have

sup
‖μ0‖β≤R

E0Π
(‖μ − μ0‖ ≥ MnLnn

−β/(1+2β+2p)
∣
∣ Y

) → 0

and

sup
‖μ0‖Aγ ≤R

E0Π
(‖μ − μ0‖ ≥ MnLn(log n)1/2+pn−1/2

∣
∣ Y

) → 0,

where (Ln) is a slowly varying sequence.

The hierarchical Bayes method thus yields exactly the same rates as the empirical
method, and therefore the interpretation of this theorem is the same as before. We
note that already in the direct case p = 0 this theorem is an interesting extension of
the existing results of [5]. In particular we find that using hierarchical Bayes we can
adapt to a continuous range of Sobolev regularities while incurring only a logarithmic
correction of the optimal rate.

2.3 Discussion on linear functionals

It is known already in the non-adaptive situation that for attaining optimal rates relative
to losses other than the�2-norm, itmaybenecessary to set the hyperparameter to a value
different from the optimal choice for �2-recovery of the full parameter μ. If we are for
instance interested in optimal estimation of the (possibly unbounded) linear functional

Lμ =
∑

liμi , (2.9)

where li 
 i−q−1/2 for some q < p, then ifμ0 ∈ Sβ for β > −q the optimal Gaussian
prior (2.1) is not Πβ , but rather Πβ−1/2. The resulting, optimal rate is of the order
n−(β+q)/(2β+2p) (see [22], Sect. 5).

An example of this phenomenon occurswhen considering global L2-loss estimation
of a function versus pointwise estimation. If for instance the μi are the Fourier coef-
ficients of a smooth function of interest f ∈ L2[0, 1] relative to the standard Fourier
basis ei and for a fixed t ∈ [0, 1], li = ei (t), then estimating μ relative to �2-loss
corresponds to estimating f relative to L2-loss and estimating the functional Lμ in
(2.9) corresponds to pointwise estimation of f in the point t (in this case q = −1/2).

Theorems 2 and 3 show that the empirical and hierarchical Bayes procedures auto-
matically achieve a bias-variance-posterior spread trade-off that is optimal for the
recovery of the full parameter μ0 relative to the global �2-norm. As conjectured in a
similar setting in [22] this suggests that the adaptive approaches might be sub-optimal
outside the �2-setting. In view of the findings in the non-adaptive case wemight expect
however that we can slightly alter the procedures to deal with linear functionals. For
instance, it is natural to expect that for the linear functional (2.9), the empirical Bayes
posterior Πα̂n−1/2(·|Y ) yields optimal rates.

Matters seem to be more delicate however. A combination of elements of the proof
of Theorem 5.1 of [22] and new results on the coverage of credible sets from the paper
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[36] lead us to conjecture that for linear functionals L with coefficients li 
 i−q−1/2

for some q < p and β > −q there exists aμ0 ∈ Sβ such that along a subsequence n j ,

E0Πα̂n j −1/2

(
μ : |Lμ0 − Lμ| ≥ mn−(β+q)/(1+2β+2p)

j |Y
)

→ 1,

as j → ∞ for a positive, small enough constant m > 0. Since n−(β+q)/(1+2β+2p)
j

tends to zero at a slower rate than the minimax rate n−(β+q)/(2β+2p) for Sβ , this means
that there exist “bad truths” for which the adjusted empirical Bayes procedure does
not concentrate at the optimal rate along a subsequence. For linear functionals (2.9)
the empirical Bayes posterior Πα̂n−1/2(·|Y ) seems only to contract at an optimal rate
for “sufficiently nice” truths, for instance of the form μ0,i 
 i−1/2−β , or the more
general polished-tail sequences considered in [36].

Similar statements are expected to hold for hierarchicalBayes procedures. This adds
to the list of remarkable behaviours of marginal posteriors for linear functionals, cf.
also [31], for instance. Further research is necessary to shedmore light on thesematters.

3 Numerical illustration

Consider the inverse signal-in-white-noise problem where we observe the process
(Yt : t ∈ [0, 1]) given by

Yt =
∫ t

0

∫ s

0
μ(u) du ds + 1√

n
Wt ,

with W a standard Brownian motion, and the aim is to recover the function μ. If,
slightly abusing notation, we define Yi = ∫ 1

0 ei (t) dYt , for ei the orthonormal basis
functions given by ei (t) = √

2 cos((i − 1/2)π t), then it is easily verified that the
observations Yi satisfy (1.1), with κ2

i = ((i − 1/2)2π2)−1, i.e. p = 1 in (1.2), and μi

the Fourier coefficients of μ relative to the basis ei .
We first consider simulated data from this model for μ0 the function with Fourier

coefficientsμ0,i = i−3/2 sin(i), sowehave a truthwhich essentially has regularity 1. In
the following figurewe plot the true functionμ0 (black dashed curve) and the empirical
Bayes posterior mean (red curve) in the left panels, and the corresponding normalized
likelihood exp(�n)/max(exp(�n)) in the right panels (we truncated the sum in (2.2) at a
high level). Figure 1 shows the results for the empiricalBayes procedurewith simulated
data for n = 103, 105, 107, 109, and 1011, from top to bottom. The figure shows that
the estimator α̂n does a good job in this case at estimating the regularity level 1, at least
for large enough n. We also see however that due to the ill-posedness of the problem,
a large signal-to-noise ratio n is necessary for accurate recovery of the function μ.

We applied the hierarchical Bayes method to the simulated data as well. We chose
a standard exponential prior distribution on α, which satisfies Assumption 1. Since the
posterior can not be computed explicitly, we implemented an MCMC algorithm that
generates (approximate) draws from the posterior distribution of the pair (α, μ). More
precisely, we fixed a large index J ∈ N and defined the vector μJ = (μ1, . . . , μJ )
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Fig. 1 The degree of ill-posedness p = 1. Left panels the empirical Bayes posterior mean (red) and
the true curve (black, dashed). Right panels corresponding normalized likelihood for α. We have n =
103, 105, 107, 109, and 1011, from top to bottom (color figure online)

consisting of the first J coefficients ofμ. (Ifμ has positive Sobolev regularity, then tak-
ing J at least of the order n1/(1+2p) ensures that the approximation error ‖μJ −μ‖ is of
lower order than the estimation rate.) Thenwedevised aMetropolis-within-Gibbs algo-
rithm for sampling from the posterior distribution of (α, μJ ) (e.g. [37]). The algorithm
alternates between draws from the conditional distributionμJ |α,Y and the conditional
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distribution α|μJ ,Y . The former is explicitly given by (2.3). To sample from α|μJ ,Y
we used a standard Metropolis-Hastings step. It is easily verified that the Metropolis-
Hastings acceptance probability for a move from (α, μ) to (α′, μ) is given by

1 ∧ q(α′|α)p(μJ |α′)λ(α′)
q(α|α′)p(μJ |α)λ(α)

,

where p( · |α) is the density of μJ if μ ∼ Πα , i.e.

p(μJ |α) ∝
J∏

j=1

j1/2+αe− 1
2 j

1+2αμ2
j ,

and q is the transition kernel of the proposal chain. We used a proposal chain that, if it
is currently at location α, moves to a new N (α, σ 2)-distributed location provided the
latter is positive. We omit further details, the implementation is straightforward.

The results for the hierarchical Bayes procedure are given in Fig. 2. The figure
shows the results for simulated data with n = 103, 105, 107, 109 and 1011, from top
to bottom. Every time we see the posterior mean (in blue) and the true curve (black,
dashed) on the left and a histogram for the posterior of α on the right. The results are
comparable to what we found for the empirical Bayes procedure.

To illustrate the impact of ill-posedness on the quality of the empirical Bayes
procedure we also considered simulated data from the model (1.1) with κi = i−0.1.
Recall that μ0,i = i−3/2 sin(i) are the coefficients of μ0 relative to the basis ei as
before. Figure 3 shows the results for the empirical Bayes procedure with simulated
data for n = 10, 102, 103, 104, and 105, from top to bottom.Again, in the left panelswe
plot the true functionμ0 (black dashed curve) and the empirical Bayes posterior mean
(red curve), and the corresponding normalized likelihood exp(�n)/max(exp(�n)) in the
right panels. In this case the estimator α̂n does a good job at estimating the regularity
level 1 already for n = 100. Moreover, the true function μ0 is accurately recovered
for moderate values of n.

We also considered simulated data from the original model with κi 
 i−1 for μ0
with Fourier coefficients μ0,i = (−1)i+1 exp(−2i). This function μ0 is essentially
of infinite regularity. Figure 4 shows the results of the empirical Bayes procedure
with simulated data for n = 102, 103, 104, 105, and 106, from top to bottom. We
can observe that the empirical posterior Bayes mean recovers the function μ well for
n = 105 or 106. We also note that the estimated value α̂n is rather large and unstable.
This is not surprising in this case: item (ii) of Lemma 1 shows that the lower bound
for α̂n diverges to infinity. However, large values of α are good enough to capture the
infinite regularity of the truth in the empirical Bayes posterior.

4 Proof of Lemma 1

In the proofs we assume for brevity that we have the exact equality κi = i−p. Dealing
with the general case (1.2) is straightforward, butmakes the proofs somewhat lengthier.
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Fig. 2 The degree of ill-posedness p = 1. Left panels the hierarchical Bayes posterior mean (blue) and the
true curve (black). Right panels histograms of posterior for α. We have n = 103, 105, 107, 109, and 1011

from top to bottom (color figure online)

(i) We show that for all α ≤ β − c0/ log n, for some large enough constant c0 > 0
that only depends on l, β, ‖μ0‖β and p, it holds that hn(α) ≤ l, where l is the given
positive constant in the definition of αn .
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Fig. 3 The degree of ill-posedness p = 0.1. Left panels the empirical Bayes posterior mean (red) and the
true curve (black).Right panels corresponding normalized likelihood for α. We have n = 10, 102, 103, 104,
and 105, from top to bottom (color figure online)

The sum in the Definition (2.6) of hn can be split into two sums, one over indices
i ≤ n1/(1+2α+2p) and one over indices i > n1/(1+2α+2p). The second sum is bounded
by
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Fig. 4 The degree of ill-posedness p = 1. Left panels the empirical Bayes posterior mean (red) and the true
curve (black). Right panels corresponding normalized likelihood for α. We have n = 102, 103, 104, 105,
and 106, from top to bottom (color figure online)

n2
∑

i≥n1/(1+2α+2p)

i−1−2α−4p−2β(log i)i2βμ2
0,i .

Since the function x �→ x−γ log x is decreasing on [e1/γ ,∞), this is further bounded by
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‖μ0‖2β
1 + 2α + 2p

n
1+2α−2β
1+2α+2p log n.

The sum over i ≤ n1/(1+2α+2p) is upper bounded by

∑

i≤n1/(1+2α+2p)

i1+2α−2β i2βμ2
0,i log i.

Since the logarithm is increasing we can take (log n)/(1+ 2α + 2p) outside the sum
and then bound i1+2α−2β above by n(1+2α−2β)/(1+2α+2p)∨0 to arrive at the subsequent
bound

‖μ0‖2β
1 + 2α + 2p

n0∨
1+2α−2β
1+2α+2p log n.

Combining the bounds for the two sums we obtain the upper bound

hn(α) ≤ ‖μ0‖2βn− 1∧2(β−α)
1+2α+2p ,

valid for all α > 0. Now suppose that α ≤ β − c0/ log n. Then for n large enough,
the power of n on the right-hand side is bounded by

n− 1∧2(c0/ log n)

1+2β+2p = e− 2c0
1+2β+2p .

Hence given l > 0 we can choose c0 so large, only depending on l, β, ‖μ0‖β and p,
that hn(α) ≤ l for α ≤ β − c0/log n.

(ii) We show that in this case we have hn(α) ≤ l for α ≤ √
log n/(log log n) and

n ≥ n0, where n0 only depends on ‖μ0‖Aγ . Again we give an upper bound for hn
by splitting the sum in its definition into two smaller sums. The one over indices
i > n1/(1+2α+2p) is bounded by

n2
∑

i>n1/(1+2α+2p)

i−1−2α−4pe−2γ i (log i)e2γ iμ2
0,i .

Using the fact that for δ > 0 the function x �→ x−δe−2γ x log x is decreasing on
[e1/δ,∞) we can see that this is further bounded by

‖μ0‖2Aγ

1 + 2α + 2p
e−2γ n1/(1+2α+2p)

n
1+2α

1+2α+2p log n.

The sum over indices i ≤ n1/(1+2α+2p) is bounded by

log n

1 + 2α + 2p

∑

i≤n1/(1+2α+2p)

i1+2αe−2γ i e2γ iμ2
0,i .
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Since themaximumon (0,∞) of the function x �→ x1+2α exp(−2γ x) equals exp((1+
2α)(log((1 + 2α)/2γ ) − 1)), we have the subsequent bound

‖μ0‖2Aγ

1 + 2α + 2p
e(1+2α) log((1+2α)/2γ )log n.

Combining the two bounds we find that

hn(α) ≤ ‖μ0‖2Aγ

(

n
2α

1+2α+2p e−2γ n
1

1+2α+2p + n− 1
1+2α+2p e(1+2α) log 1+2α

2γ

)

for all α > 0. It is then easily verified that for the given constant l > 0, we have
hn(α) ≤ l for n ≥ n0 if α ≤ √

log n/ log log n, where n0 only depends on ‖μ0‖Aγ .
(iii) Let γn = γ + C0(log log n)/(log n). We will show that for n large enough,

hn(γn) ≥ L(log n)2, provided C0 is large enough. Note that

∞∑

i=1

n2i1+2γnμ2
0,i log i

(i1+2γn+2p + n)2
≥ c2

4

∑

i≤n1/(1+2γn+2p)

i2(γn−γ ) log i.

By monotonicity and the fact that �x� ≥ x/2 for x large, the sum on the right is
bounded from below by the integral

∫ n1/(1+2γn+2p)/2

0
x2γn−2γ log x dx .

This integral can be computed explicitly and is for large n bounded from below by a
constant times

log n

1 + 2γn + 2p
n

2γn−2γ+1
1+2γn+2p .

It follows that, for large enough n, hn(γn) is bounded from below by a constant times
c2n2(γn−γ )/(1+2γn+2p). Since (log log n)/(log n) ≤ 1/4 for n large enough, we obtain

n2(γn−γ )/(1+2γn+2p) ≥ n
1

log n (log log n)
2C0

1+2γ+C0/2+2p = (log n)2C0/(1+2γ+C0/2+2p).

Hence for C0 large enough, only depending on c and γ , we indeed have that and
hn(γn) ≥ L(log n)2 for large n.

(iv) If μ0,i �= 0 for i ≥ 2, then

hn(α) � 1 + 2α + 2p

n1/(1+2α+2p) log n

n2i1+2α

(i1+2α+2p + n)2
.

Now define αn such that i1+2αn+2p = n. Then by construction we have hn(αn) �
n1−(1+2p)/(1+2αn+2p). Since αn → ∞ the right side is larger than L log2 n for n large
enough, irrespective of the value of L , hence αn ≤ αn ≤ (log n)/(2 log 2) − 1/2− p.
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5 Proof of Theorem 1

With the help of the dominated convergence theorem one can see that the random
function �n is (P0 − a.s.) differentiable and its derivative, which we denote byMn , is
given by

Mn(α) =
∞∑

i=1

n log i

i1+2ακ−2
i + n

−
∞∑

i=1

n2i1+2ακ−2
i log i

(i1+2ακ−2
i + n)2

Y 2
i .

We will show that on the interval (0, αn + 1/ log n] the random function Mn is
positive and bounded away from 0 with probability tending to one, hence �n has no
local maximum in this interval. Next we distinguish two cases according to the value
of αn . If αn > log n, then the inequality α̂n ≤ αn trivially holds. In the case αn ≤ log n
we show that for a constant C1 > 0 we a.s. have

�n(α) − �n(αn) =
∫ α

αn

Mn(γ ) dγ ≤ C1
n1/(1+2αn+2p)(log n)2

1 + 2αn + 2p
(5.1)

for all α ≥ αn . Then we prove that for any given C2 > 0, the constant L can be set
such that for γ ∈ [αn − 1/ log n, αn] we have

Mn(γ ) ≤ −C2
n1/(1+2αn+2p)(log n)3

1 + 2αn + 2p

with probability tending to one uniformly. Together with (5.1) this means that on the
interval [αn−1/ log n, αn] the function �n decreasesmore than it can possibly increase
on the interval [αn,∞). Therefore, it holds with probability tending to one that �n has
no global maximum on (αn − 1/ log n,∞).

Recall thatB(R) = {μ0 ∈ �2 : ‖μ0‖β ≤ R}orB(R) = {μ0 ∈ �2 : ‖μ0‖Aγ ≤ R}.
Again for simplicity we assume κi = i−p in the proof.

5.1 Mn(α) on [αn,∞)

In this section we give a deterministic upper bound for the integral of Mn(α) on the
interval [αn,∞).

We have the trivial bound

Mn(α) ≤
∞∑

i=1

n log i

i1+2α+2p + n
.

An application of Lemma 7(i) with r = 1 + 2α + 2p and c = β + 2p shows that for
β/2 < α ≤ log n,

Mn(α) � 1

1 + 2α + 2p
n1/(1+2α+2p) log n.
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For α ≥ log n we apply Lemma 7(ii), and see that Mn(α) � n2−1−2α−2p. Using the
fact that x �→ 2−x x3 is decreasing for large x , it is easily seen that n2−1−2α−2p �
(log n)3/(1 + 2α + 2p)3 for α ≥ log n, hence

Mn(α) � (log n)3

(1 + 2α + 2p)3
.

By Lemma 1 we have β/2 < αn for large enough n, both for the case that μ0 ∈ Sβ

and μ0 ∈ Aγ , since for any β > 0 we have
√
log n/ log log n ≥ β/2 for large enough

n. It follows that the integral we want to bound is bounded by a constant times

n1/(1+2αn+2p) log n
∫ log n

αn

1

1 + 2α + 2p
dα + log3 n

∫ ∞

log n

1

(1 + 2α + 2p)3
dα.

This quantity is bounded by a constant times

n1/(1+2αn+2p)(log n)2

1 + 2αn + 2p
.

5.2 Mn(α) on α ∈ [αn − 1/ log n, αn]

In this section we show that the processMn(α) is with probability going to one smaller
than a negative, arbitrary large constant times n1/(1+2αn+2p)(log n)3/(1+ 2αn + 2p)
uniformly on the interval [αn − 1/ log n, αn]. More precisely, we show that for every
β, R, M > 0, the constant L > 0 in the definition of αn can be chosen such that

lim sup
n→∞

sup
μ0∈B(R)

sup
α∈[αn−1/ log n,αn ]

E0
(1 + 2α + 2p)Mn(α)

n1/(1+2α+2p)(log n)3
< −M (5.2)

sup
μ0∈B(R)

E0 sup
α∈[αn−1/ log n,αn ]

(1 + 2α + 2p)|Mn(α) − E0Mn(α)|
n1/(1+2α+2p)(log n)3

→ 0. (5.3)

The expected value of the normalized version of the process Mn given on the
left-hand side of (5.2) is equal to

1 + 2α + 2p

n1/(1+2α+2p)(log n)3

( ∞∑

i=1

n2 log i

(i1+2α+2p + n)2
−

∞∑

i=1

n2i1+2αμ2
0,i log i

(i1+2α+2p + n)2

)

. (5.4)

We write this as the sum of two terms and bound the first term by

1 + 2α + 2p

n1/(1+2α+2p)(log n)3

∞∑

i=1

n log i

i1+2α+2p + n
.

We want to bound this quantity for α ∈ [αn − 1/ log n, αn]. By Lemma 1, β/4 <

αn − 1/ log n for large enough n, both for the case that μ0 ∈ Sβ and μ0 ∈ Aγ, so this
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interval is included in (β/4,∞). Taking c = β/2+2p in Lemma 7(i) then shows that
the first term is bounded by amultiple of 1/(log n)2 and hence tends to zero, uniformly
over [αn − 1/ log n, αn]. We now consider the second term in (5.4), which is equal to
hn(α)/(log n)2. By Lemma 2 for any μ0 ∈ �2 and n ≥ e4 we have

hn(α)

(log n)2
� 1

(log n)2
hn(αn) = L ,

where the last equality holds by the definition of αn . This concludes the proof of (5.2).
To verify (5.3) it suffices, by Corollary 2.2.5 in [39] (applied with ψ(x) = x2), to

show that

sup
μ0∈B(R)

sup
α∈[αn−1/ log n,αn ]

var0
(1 + 2α + 2p)Mn(α)

n1/(1+2α+2p)(log n)3
→ 0, (5.5)

and

sup
μ0∈B(R)

∫ diamn

0

√
N (ε, [αn − 1/ log n, αn], dn) dε → 0,

where dn is the semimetric defined by

d2n (α1, α2) = var0

(
(1 + 2α1 + 2p)Mn(α1)

n1/(1+2α1+2p)(log n)3
− (1 + 2α2 + 2p)Mn(α2)

n1/(1+2α2+2p)(log n)3

)

,

diamn is the diameter of [αn − 1/ log n, αn] relative do dn , and N (ε, B, d) is the
minimal number of d-balls of radius ε needed to cover the set B.

By Lemma 3

var0
(1 + 2α + 2p)Mn(α)

n1/(1+2α+2p)(log n)3
� n−1/(1+2α+2p)

(log n)4

(
1 + hn(α)

)
, (5.6)

(with an implicit constant that does not depend on μ0 and α). By the definition of αn

the function hn(α) is bounded above by L(log n)2 on the interval [αn − 1/ log n, αn].
Together with (5.6) it proves (5.5).

The last bound also shows that the dn-diameter of the set [αn − 1/ log n, αn] is
bounded above by a constant times (log n)−1, with a constant that does not depend on
μ0 andα. By Lemma 4 and the fact that hn(α) ≤ L(log n)2 forα ∈ [αn−1/ log n, αn],
we get the upper bound, α1, α2 ∈ [αn − 1/ log n, αn],

dn(α1, α2) � |α1 − α2|,

with a constant that does not depend onμ0. Therefore N (ε, [αn −1/ log n, αn], dn) �
1/(ε log n) and hence

sup
μ0∈B(R)

∫ diamn

0

√
N (ε, [αn − 1/ log n, αn], dn) dε � 1

log n
→ 0.
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5.3 Mn(α) on (0, αn + 1/ log n]

In this subsection we prove that if the constant l in the definition of αn is small enough,
then

lim inf
n→∞ inf

μ0∈�2
inf

α∈(0,αn+1/ log n]E0
(1 + 2α + 2p)Mn(α)

n1/(1+2α+2p) log n
> 0 (5.7)

sup
μ0∈�2

E0 sup
α∈(0,αn+1/ log n]

(1 + 2α + 2p)|Mn(α) − E0Mn(α)|
n1/(1+2α+2p) log n

→ 0. (5.8)

This shows thatMn is positive throughout (0, αn + 1/ log n] with probability tending
to one uniformly over �2.

Since E0Y 2
i = κ2

i μ2
0,i + 1/n, the expected value on the left-hand side of (5.7) is

equal to
1 + 2α + 2p

n1/(1+2α+2p) log n

∞∑

i=1

n2 log i

(i1+2α+2p + n)2
− hn(α). (5.9)

We first find a lower bound for the first term. Since αn ≤ √
log n by definition, we

have α � log n for all α ∈ (0, αn + 1/ log n]. Then it follows from Lemma 9 that
for n large enough, the first term in (5.9) is bounded from below by 1/12 for all
α ∈ (0, αn + 1/ log n]. Next note that by definition of hn and Lemma 2, we have

sup
α∈(0,αn+1/ log n]

hn(α) ≤ Kl,

where K > 0 is a constant independent of μ0. So by choosing l > 0 small enough,
we can indeed ensure that (5.7) is true.

To verify (5.8) it suffices again, by Corollary 2.2.5 in [39] applied with ψ(x) = x2,
to show that

sup
μ0∈�2

sup
α∈(0,αn+1/ log n]

var0
(1 + 2α + 2p)Mn(α)

n1/(1+2α+2p) log n
→ 0, (5.10)

and

sup
μ0∈�2

∫ diamn

0

√
N (ε, (0, αn + 1/ log n], dn) dε → 0,

where dn is the semimetric defined by

d2n (α1, α2) = var0

(
(1 + 2α1 + 2p)Mn(α1)

n1/(1+2α1+2p) log n
− (1 + 2α2 + 2p)Mn(α2)

n1/(1+2α2+2p) log n

)

,

diamn is the diameter of (0, αn+1/ log n] relative to dn , and N (ε, B, d) is theminimal
number of d-balls of radius ε needed to cover the set B.
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By Lemma 3

var0
(1 + 2α + 2p)Mn(α)

n1/(1+2α+2p) log n
� n−1/(1+2α+2p) (1 + hn(α)) , (5.11)

with a constant that does not depend on μ0 and α. We have seen that on the interval
(0, αn +1/ log n] the function hn is bounded by a constant times l, hence the variance
in (5.10) is bounded by a multiple of n−1/(1+2αn+2/ log n+2p) ≤ e−(1/3)

√
log n → 0,

which proves (5.10).
The variance bound above also imply that the dn-diameter of the set (0, αn +

1/ log n] is bounded by a multiple of e−(1/6)
√
log n . By Lemma 4, the definition of αn

and Lemma 2,

dn(α1, α2) � |α1 − α2|(log n)
√
n−1/(1+2αn+2/ log n+2p) � |α1 − α2|,

with constants that do not depend on μ0. Hence for the covering number of (0, αn +
1/ log n] ⊂ (0, 2

√
log n) we have

N (ε, (0, αn + 1/ log n], dn) �
√
log n

ε
,

and therefore

sup
μ0∈�2

∫ diamn

0

√
N (ε, (0, αn + 1/ log n], dn) dε � (log n)1/4e−(1/12)

√
log n → 0.

5.4 Bounds on hn(α), variances and distances

In this section we prove a number of auxiliary lemmas used in the preceding. The first
one is about the behavior of the function hn in a neighborhood of αn and αn .

Lemma 2 The function hn satisfies the following bounds:

hn(α) � hn(αn), for α ∈
[
αn − 1

log n
, αn

]
and n ≥ e4,

hn(α) � hn(αn), for α ∈
[
αn, αn + 1

log n

]
and n ≥ e2.

Proof We provide a detailed proof of the first inequality, the second one can be proved
using similar arguments.

Let

Sn(α) =
∞∑

i=1

n2i1+2αμ2
0,i log i

(i1+2α+2p + n)2
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be the sum in the definition of hn . Splitting the sum into two parts we get, for α ∈
[αn − 1/ log n, αn],

4Sn(α) ≥
∑

i≤n1/(1+2α+2p)

i1+2αn−2/ log nμ2
0,i log i

+ n2
∑

i>n1/(1+2α+2p)

i−1−2αn−4pμ2
0,i log i.

In the first sum i−2/ log n can be bounded below by exp(−2). Furthermore, for i ∈
[n1/(1+2αn+2p), n1/(1+2α+2p)], we have the inequality

i1+2αnμ2
0,i log i ≥ n2i−1−2αn−4pμ2

0,i log i.

Therefore Sn(α) can be bounded from below by a constant times

∑

i≤n1/(1+2αn+2p)

i1+2αnμ2
0,i log i + n2

∑

i>n1/(1+2αn+2p)

i−1−2αn−4pμ2
0,i log i

≥
∑

i≤n1/(1+2αn+2p)

n2i1+2αnμ2
0,i log i

(i1+2αn+2p + n)2
+

∑

i>n1/(1+2αn+2p)

n2i1+2αnμ2
0,i log i

(i1+2αn+2p + n)2
.

Hence, we have Sn(α) � Sn(αn) for α ∈ [αn − 1/ log n, αn].
Next note that for n ≥ e4 we have 2(1 + 2αn − 2/ log n + 2p) ≥ 1 + 2αn + 2p.

Moreover, n−1/(1+2αn−2/ log n+2p) � n−1/(1+2αn+2p). Therefore

1 + 2α + 2p

n1/(1+2α+2p) log n
� 1 + 2αn + 2p

n1/(1+2αn+2p) log n

for α ∈ [αn − 1/ log n, αn] and for n ≥ e4. Combining this with the inequality for
Sn(α) yields the desired result.

Next we present two results on variances involving the random function Mn .

Lemma 3 For any α > 0,

var0
(1 + 2α + 2p)Mn(α)

n1/(1+2α+2p)
� n−1/(1+2α+2p)(log n)2

(
1 + hn(α)

)
.

Proof The random variables Y 2
i are independent and var0 Y 2

i = 2/n2 + 4κ2
i μ2

0,i/n,
hence the variance in the statement of the lemma is equal to

2n2(1 + 2α + 2p)2

n2/(1+2α+2p)

∞∑

i=1

i2+4α+4p(log i)2

(i1+2α+2p + n)4

+4n3(1 + 2α + 2p)2

n2/(1+2α+2p)

∞∑

i=1

i2+4α+2p(log i)2μ2
0,i

(i1+2α+2p + n)4
. (5.12)
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By Lemma 10 the first term is bounded by

2n(1 + 2α + 2p) log n

n2/(1+2α+2p)

∞∑

i=1

i1+2α+2p log i

(i1+2α+2p + n)2

≤ 2(1 + 2α + 2p) log n

n2/(1+2α+2p)

∞∑

i=1

n log i

i1+2α+2p + n
.

Lemma 7(i) further bounds the right hand side of the above display by a multiple of
n−1/(1+2α+2p)(log n)2 uniformly for α > c, where c > 0 is an arbitrary constant.
For α ≤ c we get the same bound by applying Lemma 8 (with m = 2, l = 4,
r = 1 + 2α + 2p, r0 = 1 + 2c + 2p, and s = 2r ) to the first term in (5.12). By
Lemma 10, the second term in (5.12) is bounded by

4n−2/(1+2α+2p)(1 + 2α + 2p)(log n)

∞∑

i=1

n2i1+2αμ2
0,i log i

(i1+2ακ−2
i + n)2

= 4n−1/(1+2α+2p)(log n)2hn(α).

Combining the upper bounds for the two terms we arrive at the assertion of the lemma.

Lemma 4 For any 0 < α1 < α2 < ∞ we have that

var0

(
(1 + 2α1 + 2p)Mn(α1)

n1/(1+2α1+2p)
− (1 + 2α2 + 2p)Mn(α2)

n1/(1+2α2+2p)

)

� (α1 − α2)
2(log n)4 sup

α∈[α1,α2]
n−1/(1+2α+2p) (1 + hn(α)),

with a constant that does not depend on α and μ0.

Proof The variance we have to bound can be written as

n4
∞∑

i=1

( fi (α1) − fi (α2))
2(log i)2 var0 Y

2
i ,

where fi (α) = (1 + 2α + 2p)i1+2α+2pn−1/(1+2α+2p)(i1+2α+2p + n)−2. For the
derivative of fi we have f ′

1(α) = 2 f1(α)(1/(1+ 2α + 2p) + log n/(1+ 2α + 2p)2)
and for i ≥ 2,

| f ′
i (α)| =

∣
∣
∣
∣2 fi (α)

(
1

1 + 2α + 2p
+ log i + log n

(1 + 2α + 2p)2
− 2i1+2α+2p log i

i1+2α+2p + n

)∣
∣
∣
∣

≤ 8 fi (α)
(
log i + (log n)/(1 + 2α + 2p)2

)
.
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It follows that the variance is bounded by a constant times

(α1 − α2)
2n4 sup

α∈[α1,α2]
(1 + 2α + 2p)2

×
( ∞∑

i=1

i2+4α+4p(log i)2
(
1 ∨ log i + (log n)/(1 + 2α + 2p)2

)2

n2/(1+2α+2p)(i1+2α+2p + n)4
var0 Y

2
i

)

.

Since var0 Y 2
i = 2/n2 + 4κ2

i μ2
0,i/n, it suffices to show that both

n2 sup
α∈[α1,α2]

(1 + 2α + 2p)2

×
( ∞∑

i=1

i2+4α+4p(log i)2
(
1 ∨ log i + (log n)/(1 + 2α + 2p)2

)2

n2/(1+2α+2p)(i1+2α+2p + n)4

)

(5.13)

and

n3 sup
α∈[α1,α2]

(1 + 2α + 2p)2

×
⎛

⎝
∞∑

i=1

i2+4α+2p(log i)2μ2
0,i

(
1 ∨ log i + (log n)/(1 + 2α + 2p)2

)2

n2/(1+2α+2p)(i1+2α+2p + n)4

⎞

⎠ (5.14)

are bounded by a constant times (log n)4 supα∈[α1,α2] n
−1/(1+2α+2p)(1 + hn(α)).

By applying Lemma 10 twice (once the first statement with r = 1 + 2α + 2p and
m = 1 and once the second one with the same r and m = 3 and ξ = 1) the expression
in (5.14) is seen to be bounded above by a constant times

(log n)3 sup
α∈[α1,α2]

(

n−2/(1+2α+2p)(1 + 2α + 2p)
∞∑

i=1

n2i1+2αμ2
0,i log i

(i1+2α+2p + n)2

)

.

The expression in the parentheses equals hn(α)n−1/(1+2α+2p) log n. Now fix c > 0.
Again, applying Lemma 10 twice implies that we get that (5.13) is bounded above by

(log n)3 sup
α∈[α1,α2]

(
2n−2/(1+2α+2p)

1 + 2α + 2p

∞∑

i=1

ni1+2α+2p log i

(i1+2α+2p + n)2

)

.

Using the inequality x/(x + y) ≤ 1 and Lemma 7(i), the expression in the parenthesis
can be bounded by a constant times n−1/(1+2α+2p) log n for α > c. For α ≤ c,
Lemma 8 (with m = 2 or m = 4, l = 4, r = 1 + 2α + 2p, r0 = 1 + 2c + 2p, and
s = 2r ) gives the same bound (or even a better one) for (5.13). The proof is completed
by combining the obtained bounds.
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6 Proof of Theorem 2

We only present the details of the proof for the Sobolev case μ0 ∈ Sβ . The analytic
case differs from the Sobolev case mainly in the upper bound for n−2αn/(1+2αn+2p),
see also Sect. 6.5. Again, we assume the exact equality κi = i−p for simplicity.

By Markov’s inequality and Theorem 1,

sup
‖μ0‖β≤R

E0Πα̂n

(‖μ − μ0‖ ≥ Mnεn
∣
∣ Y

)

≤ 1

M2
nε2n

sup
‖μ0‖β≤R

E0 sup
α∈[αn ,αn∧log n]

Rn(α) + o(1), (6.1)

where

Rn(α) =
∫

‖μ − μ0‖2 Πα(dμ|Y )

is the posterior risk. We will show in the subsequent subsections that for εn =
n−β/(1+2β+2p)(log n)2(log log n)1/2 and arbitrary Mn → ∞, the first term on the
right of (6.1) vanishes as n → ∞. Note that by the explicit posterior computation
(2.3), we have

Rn(α) =
∞∑

i=1

(μ̂α,i − μ0,i )
2 +

∞∑

i=1

i2p

i1+2α+2p + n
, (6.2)

where μ̂α,i = ni p(i1+2α+2p + n)−1Yi is the i th coefficient of the posterior mean. We
divide the Sobolev-ball ‖μ0‖β ≤ R into two subsets

Pn = {μ0 : ‖μ0‖β ≤ R, αn ≤ (log n)/ log 2 − 1/2 − p},
Qn = {μ0 : ‖μ0‖β ≤ R, αn > (log n)/ log 2 − 1/2 − p},

and show that on both subsets the posterior risks are of the order ε2n .

6.1 Bound for the expected posterior risk over Pn

In this section we prove that

sup
μ0∈Pn

sup
α∈[αn ,αn ]

E0Rn(α) = O(ε2n). (6.3)

The second term of (6.2) is deterministic. The expectation of the first term can be split
into square bias and variance terms. We find that the expectation of (6.2) is given by

∞∑

i=1

i2+4α+4pμ2
0,i

(i1+2α+2p + n)2
+ n

∞∑

i=1

i2p

(i1+2α+2p + n)2
+

∞∑

i=1

i2p

i1+2α+2p + n
. (6.4)
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Note that the second and third terms in (6.4) are independent ofμ0, and that the second
is bounded by the third. By Lemma 8 (with m = 0, l = 1, r = 1 + 2α + 2p and
s = 2p) the latter is for α ≥ αn further bounded by

n− 2α
1+2α+2p ≤ n

− 2αn
1+2αn+2p .

In view of Lemma 1 (i), the right-hand side is bounded by a constant times
n−2β/(1+2β+2p) for large n.

It remains to consider the first sum in (6.4), which we divide into three parts and
show that each of the parts has the stated order. First we note that

∑

i>n1/(1+2β+2p)

i2+4α+4pμ2
0,i

(i1+2α+2p + n)2
≤

∑

i>n1/(1+2β+2p)

μ2
0,i ≤ ‖μ0‖2βn−2β/(1+2β+2p). (6.5)

Next, observe that elementary calculus shows that for α > 0 and n ≥ e, the maximum
of the function i �→ i1+2α+4p/ log i over the interval [2, n1/(1+2α+2p)] is attained at
i = n1/(1+2α+2p), for α ≤ log n/(2 log 2) − 1/2 − p. It follows that for α > 0,

∑

i≤n1/(1+2α+2p)

i2+4α+4pμ2
0,i

(i1+2α+2p + n)2

= μ2
0,1

(1 + n)2
+ 1

n2
∑

2≤i≤n1/(1+2α+2p)

((i1+2α+4p)/ log i)n2i1+2αμ2
0,i log i

(i1+2α+2p + n)2

≤ μ2
0,1

(1 + n)2
+ n− 2α

1+2α+2p hn(α).

We note that for α > log n/(2 log 2)− 1/2− p the second term on the right hand side
of the preceding display disappears and for μ0 ∈ Pn we have that αn is finite. Since
n1/(1+2αn+2p) ≤ n1/(1+2α+2p) for α ≤ αn , the preceding implies that

sup
μ0∈Pn

sup
α∈[αn ,αn ]

∑

i≤n1/(1+2αn+2p)

i2+4α+4pμ2
0,i

(i1+2α+2p + n)2
� R2

n2
+ Ln

− 2αn
1+2αn+2p log2 n.

By Lemma 1, αn ≥ β − c0/ log n for a constant c0 > 0 (only depending on β, R, p).
Hence, using that x �→ x/(c + x) is increasing for every c > 0 the right-hand side is
bounded by a constant times n−2β/(1+2β+2p) log2 n.

To complete the proof we deal with the terms between n1/(1+2αn+2p) and
n1/(1+2β+2p). Let J = J (n) be the smallest integer such that αn/(1+1/ log n)J ≤ β.
One can see that J is bounded above by a multiple of (log n)(log log n) for any posi-
tive β. We partition the summation range under consideration into J pieces using the
auxiliary numbers

b j = 1 + 2
αn

(1 + 1/ log n) j
+ 2p, j = 0, . . . , J.
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Note that the sequence b j is decreasing. Now we have

n1/(1+2β+2p)
∑

i=n1/(1+2αn+2p)

i2+4α+4pμ2
0,i

(i1+2α+2p + n)2
≤

J−1∑

j=0

n1/b j+1
∑

i=n1/b j

μ2
0,i ≤ 4

J−1∑

j=0

n1/b j+1
∑

i=n1/b j

nib j μ2
0,i

(ib j+1 + n)2
,

and the upper bound is uniform in α. Since (b j − b j+1) log n = b j+1 − 1 − 2p, it
holds for n1/b j ≤ i ≤ n1/b j+1 that ib j−b j+1 ≤ n1/ log n = e. On the same interval i2p is
bounded by n2p/b j+1 . Therefore the right hand side of the preceding display is further
bounded by a constant times

J−1∑

j=0

n1/b j+1
∑

i=n1/b j

nib j+1μ2
0,i log i

(ib j+1 + n)2
≤

J−1∑

j=0

n2p/b j+1−1
n1/b j+1
∑

i=n1/b j

n2ib j+1−2pμ2
0,i log i

(ib j+1 + n)2

≤
J−1∑

j=0

n2p/b j+1−1hn

(
αn

(1 + 1/ log n) j+1

)

n1/b j+1
log n

b j+1

≤ (log n)

J−1∑

j=0

n(1+2p−b j+1)/b j+1hn(b j+1/2 − 1/2 − p)

≤ (log n)n− 2β/(1+1/ log n)
1+2β/(1+1/ log n)+2p

J−1∑

j=0

hn(b j+1/2 − 1/2 − p).

In the last stepwe used the fact that by construction, b j/2−1/2− p ≥ β/(1+1/ log n)

for j ≤ J . Because b j/2 − 1/2 − p ≤ αn for every j ≥ 0, it follows from the
definition of αn that hn(b j/2−1/2− p) is bounded above by L(log n)2, and we recall
that J = J (n) is bounded above by a multiple of (log n)(log log n). Finally we note
that

n− 2β/(1+1/ log n)
1+2β/(1+1/ log n)+2p ≤ en−2β/(1+2β+2p).

Therefore the first sum in (6.4) over the range [n1/(1+2αn+2p), n1/(1+2β+2p)] is
bounded above by a multiple of n−2β/(1+2β+2p)(log n)4(log log n), in the appropriate
uniform sense over Pn . Putting the bounds above together we conclude (6.3).

6.2 Bound for the centered posterior risk over Pn

We show in this section that for the set Pn we also have

sup
μ0∈Pn

E0 sup
α∈[αn ,αn ]

∣
∣
∣
∣
∣

∞∑

i=1

(
μ̂α,i − μ0,i

)2 − E0

∞∑

i=1

(
μ̂α,i − μ0,i

)2
∣
∣
∣
∣
∣
= O(ε2n),
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for εn = n−β/(1+2β+2p)(log n)2(log log n)1/2. Using the explicit expression for the
posterior mean μ̂α,i we see that the random variable in the supremum is the absolute
value of V(α)/n − 2W(α)/

√
n, where

V(α) =
∞∑

i=1

n2κ−2
i

(i1+2ακ−2
i + n)2

(Z2
i − 1), W(α) =

∞∑

i=1

ni1+2ακ−3
i μ0,i

(i1+2ακ−2
i + n)2

Zi .

We deal with the two processes separately.
For the process V, Corollary 2.2.5 in [39] implies that

E0 sup
α∈[αn ,∞)

|V(α)| � sup
α∈[αn ,∞)

√
var0 V(α) +

∫ diamn

0

√
N (ε, [αn,∞), dn) dα,

where d2n (α1, α2) = var0(V(α1) − V(α2)) and diamn is the dn-diameter of [αn,∞).
Now the variance of V(α) is equal to

var0 V(α) = 2n4
∞∑

i=1

i4p

(i1+2α+2p + n)4
,

since var0 Z2
i = 2. Using Lemma 8 (with m = 0, l = 4, r = 1 + 2α + 2p

and s = 4p), we can conclude that the variance of V(α) is bounded above by a
multiple of n(1+4p)/(1+2α+2p). It follows that the diameter of the interval diamn �
n(1+4p)/(1+2αn+2p). To compute the covering number of the interval [αn,∞) we first
note that for 0 < α1 < α2,

var0 (V(α1) − V(α2)) =
∞∑

i=2

(
n2i2p

(i1+2α1+2p + n)2
− n2i2p

(i1+2α2+2p + n)2

)2

var Z2
i

≤ 2
∞∑

i=2

n4i4p

(i1+2α1+2p + n)4
≤ 2n4

∞∑

i=2

i−4−8α1−4p � n42−8α1 .

Hence for ε > 0, a single ε-ball covers the whole interval [K log(n/ε),∞) for some
constant K > 0. By Lemma 5, the distance dn(α1, α2) is bounded above by a mul-
tiple of |α1 − α2|n(1+4p)/(2+4αn+4p)(log n). Therefore the covering number of the
interval [αn, K log(n/ε)] relative to the metric dn is bounded above by a multiple of
(log n)n(1+4p)/(2+4αn+4p)(log(n/ε))/ε. Combining everything we see that

E0 sup
α∈[αn ,∞)

|V(α)| � n
1+4p

2+4αn+4p (log n).

By the fact that x �→ x/(x + c) is increasing and Lemma 1 (i), the right-hand side
divided by n is bounded by

n
− 2αn

1+2αn+2p (log n) � n−2β/(1+2β+2p)(log n).

123



802 B. T. Knapik et al.

It remains to deal with the process W. The basic line of reasoning is the same as
followed above forV. An essential difference however is the derivation of a bound for
the variance ofW, of which we provide the details. The rest of the proof is left to the
reader. The variance W(α)/

√
n is given by

var0

(
W(α)√

n

)

=
∞∑

i=1

ni2+4α+6pμ2
0,i

(i1+2α+2p + n)4
.

We show that uniformly for α ∈ [αn, αn], this variance is bounded above by a constant
(which depends only on ‖μ0‖β ) times n−(1+4β)/(1+2β+2p)(log n)2. We note that on
the set Pn the upper bound αn ≤ log n/ log 2 − 1/2 − p is finite.

For the sum over i ≤ n1/(1+2α+2p) we have

∑

i≤n1/(1+2α+2p)

ni2+4α+6pμ2
0,i

(i1+2α+2p + n)4

≤ μ2
0,1

n3
+ 1

n3
∑

2≤i≤n1/(1+2α+2p)

n2i1+2α+6p(log i)−1i1+2αμ2
0,i log i

(i1+2α+2p + n)2

≤ ‖μ0‖2β
n3

+ (1 + 2α + 2p)
n4p/(1+2α+2p)

(log n)n2
∑

i≤n1/(1+2α+2p)

n2i1+2αμ2
0,i log i

(i1+2α+2p + n)2

≤ ‖μ0‖2β
n3

+ n− 1+4α
1+2α+2p hn(α). (6.6)

We note that the second term on the right hand side of the preceding display disappears
for α > log n/(2 log 2) − 1/2 − p. We have used again the fact that on the range
i ≤ n1/(1+2α+2p), the quantity i1+2α+6p(log i)−1 is maximal for the largest i . Now
the function x �→ −(1 + 2x)/(x + c) is decreasing on (0,∞) for any c > 1/2.
Moreover hn(α) ≤ L(log n)2 for any α ≤ αn , thus the preceding display is bounded
above by a multiple of n−(1+4αn)/(1+2αn+2p)(log n)2. Using Lemma 1(i) this is further
bounded by a constant times n−(1+4β)/(1+2β+2p)(log n)2.

Next we consider sum over the range i > n1/(1+2α+2p). We distinguish two cases
according to the value of α. First suppose that 1+2α ≥ 2p. Then i−1−2α+2p(log i)−1

is decreasing in i , hence

∑

i>n1/(1+2α+2p)

ni2+4α+6pμ2
0,i

(i1+2α+2p + n)4

≤ 1

n

∑

i>n1/(1+2α+2p)

n2i−1−2α+2p(log i)−1i1+2αμ2
0,i log i

(i1+2α+2p + n)2

≤ 1 + 2α + 2p

n(2+4α)/(1+2α+2p) log n

∑

i>n1/(1+2α+2p)

n2i1+2αμ2
0,i log i

(i1+2α+2p + n)2

≤ n− 1+4α
1+2α+2p hn(α).
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As above, this is further boundedbya constant times thedesired raten−(1+4β)/(1+2β+2p)

(log n)2. If 1 + 2α < 2p, then

∑

i>n1/(1+2α+2p)

ni2+4α+6pμ2
0,i

(i1+2α+2p + n)4
≤ n

∑

i>n1/(1+2α+2p)

i−2−4α−2p−2β i2βμ2
0,i

≤ ‖μ0‖2βn
2p−2β

1+2α+2p −1
.

Since αn ≥ β − c0/ log n, we have 1 + 2α > 2β for large enough n, for any α ∈
[αn, αn]. Since we have assumed 1+ 2α < 2p, this implies that 2p > 2β. Therefore
the right hand side of the preceding display attains its maximum at α = αn . Using
again that αn ≥ β − c0/ log n, it is straightforward to show that for α ∈ [αn, αn],

n
2p−2β

1+2α+2p −1 ≤ n
2p−2β

1+2αn+2p −1 ≤ e4c0n− 1+4β
1+2β+2p .

6.3 Bound for the expected and centered posterior risk over Qn

To complete the proof of Theorem 2 we show that similar results to Sects. 6.1 and 6.2
hold over the set Qn as well:

sup
μ0∈Qn

sup
α∈[αn ,∞)

E0Rn(α) = O(ε2n), (6.7)

sup
μ0∈Qn

E0 sup
α∈[αn ,∞)

∣
∣
∣

∞∑

i=1

(
μ̂α,i − μ0,i

)2 − E0

∞∑

i=1

(
μ̂α,i − μ0,i

)2
∣
∣
∣ = O(ε2n). (6.8)

For the first statement (6.7) we follow the same line of reasoning as in Sect. 6.1. The
second and third terms in (6.4) are free of μ0, and hence the same upper bound as in
Sect. 6.1 apply. The first term in (6.4) is also treated exactly as in Sect. 6.1, except that
n1/(1+2αn+2p) ≤ 2 if μ0 ∈ Qn and hence the sum over the terms i < n1/(1+2αn+2p

need not be treated, and we can proceed by replacing αn by log n/(2 log 2)− 1/2− p
in the definition of J and the sequence b j .

To bound the centered posterior risk (6.8) we follow the proof given in Sect. 6.2.
There the processV(α) is already bounded uniformly over [αn,∞), whence it remains
to deal with the process W(α). The only essential difference is the upper bound for
the variance of the process W(α)/

√
n. In Sect. 6.2 this was shown to be bounded

above by a multiple of the desired rate (log n)2n−(1+4β)/(1+2β+2p) for α ∈ [αn, αn ∧
(log n/ log 2 − 1/2 − p)], which is α ∈ [αn, log n/ log 2 − 1/2 − p] on the set Qn .
Finally, for α ≥ log n/ log 2 − 1/2 − p we have

∞∑

i=1

ni2+4α+6pμ2
0,i

(i1+2α+2p + n)4
≤ μ2

0,1

n3
+

∞∑

i=2

ni−1−2αμ2
0,i

i1+2α+2p + n

≤ ‖μ0‖2β
n3

+
∞∑

i=2

i−1−2α−2β i2βμ2
0,i
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≤ ‖μ0‖2β
n3

+ 2−1−2α‖μ0‖2β ≤ ‖μ0‖2β
n3

+ 22p
‖μ0‖2β
n2

� n−2. (6.9)

This completes the proof.

6.4 Bounds for the semimetrics associated to V and W

The following lemma is used in Sect. 6.2.

Lemma 5 For any αn ≤ α1 < α2 ≤ αn the following inequalities hold:

var0 (V(α1) − V(α2)) � (α1 − α2)
2n(1+4p)/(1+2αn+2p)(log n)2,

var0

(
W(α1)√

n
− W(α2)√

n

)

� (α1 − α2)
2n− 1+4αn

1+2αn+2p (log n)4,

with a constant that does not depend on α and μ0.

Proof The left-hand side of the first inequality is equal to

n4
∞∑

i=1

( fi (α1) − fi (α2))
2i4p var Z2

i ,

where fi (α) = (i1+2α+2p + n)−2. The derivative of fi is given by f ′
i (α) =

−4i1+2α+2p(log i)/(i1+2α+2p + n)3, hence the preceding display is bounded above
by a multiple of

(α1 − α2)
2n4 sup

α∈[α1,α2]

∞∑

i=1

i2+4α+8p(log i)2

(i1+2α+2p + n)6

≤ (α1 − α2)
2n3(log n)2 sup

α∈[α1,α2]
1

(1 + 2α + 2p)2

∞∑

i=1

i1+2α+6p

(i1+2α+2p + n)4

� (α1 − α2)
2(log n)2 sup

α∈[α1,α2]
n(1+4p)/(1+2α+2p),

with the help of Lemma 10 (with r = 1 + 2α + 2p, and m = 2), and Lemma 8 (with
m = 0, l = 4, r = 1 + 2α + 2p, and s = r + 4p). Since α ≥ αn , we get the first
assertion of the lemma.

We next consider W/
√
n. The left-hand side of the second inequality in the state-

ment of the lemma is equal to

∞∑

i=1

( fi (α1) − fi (α2))
2nμ2

0,i var Zi ,
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where now fi (α) = i1+2α+3p/(i1+2α+2p + n)2. The derivative of this fi satisfies
| f ′

i (α)| ≤ 2(log i) fi (α), hence we get the upper bound

4(α2 − α1)
2 sup

α∈[α1,α2]

∞∑

i=1

ni2+4α+6pμ2
0,i log

2 i

(i1+2α+2p + n)4
.

The proof is completed by arguing as in (6.6) or (6.9).

6.5 Proof of Theorem 2 in the case of the analytic truth

The assertion of Theorem 2 in the case of the analytic truth μ0 ∈ Aγ can be
proven along the lines of the proof presented above. In view of Lemma 1.(ii),√
log n/(log log n) < αn , and whence

n
− 2αn

1+2αn+2p ≤ n
2
√
log n/(log log n)

1+2
√
log n/(log log n)+2p

= n−1n
1+2p

1+2
√
log n/(log log n)+2p ≤ n−1(log n)(1/2+p)

√
log n .

We note that the computations in Sect. 6.1 go through for the analytic case by
replacing β and ‖μ0‖β by

√
log n/ log log n and ‖μ0‖Aγ , respectively. Furthermore

in Sect. 6.2 it is sufficient to consider the case 1+ 2α ≥ 2p following from Lemma 1
(ii).

7 Proof of Theorem 3

Let B(R) denote a Sobolev or analytic ball of radius R, and εn,B the corresponding
contraction rate. Let An be the event that α̂n ∈ [αn, αn]. Then with α �→ λn(α|Y )

denoting the posterior Lebesgue density of α, we have

sup
μ0∈B(R)

E0Π(‖μ − μ0‖ ≥ Mnεn,B|Y )

≤ sup
μ0∈B(R)

P0(A
c
n) + sup

μ0∈B(R)

E0

∫ αn

0
λn(α|Y ) dα 1An

+ sup
μ0∈B(R)

E0

∫ ∞

αn

λn(α|Y )Πα(‖μ − μ0‖ ≥ Mnεn,B|Y ) dα 1An . (7.1)

By Theorem 1 the first term on the right vanishes as n → ∞, provided l and L in
the definitions of αn and αn are chosen small and large enough, respectively. We will
show that the other terms tend to 0 as well.

Observe thatλn(α|Y ) ∝ Ln(α)λ(α), where Ln(α) = exp(�n(α)), for �n the random
function defined by (2.2). In Sect. 5.3 we have shown that on the interval (0, αn +
1/ log n]
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806 B. T. Knapik et al.

�′
n(α) = Mn(α) � n1/(1+2α+2p) log n

1 + 2α + 2p
,

on the event An . Therefore on the interval (0, αn] we have

�n(α) < �n(αn) ≤ �n

(

αn + 1

2 log n

)

− Kn1/(1+2αn+2p)

1 + 2αn + 2p

for some K > 0, since for n > e and α ∈ [αn, αn + 1/(2 log n)]), we have
n1/(1+2α+2)/(1 + 2α + 2p) � n1/(1+2αn+2p)/(1 + 2αn + 2p), and on the interval
[αn + 1/(2 log n), αn + 1/ log n],

�n(α) ≥ �n

(

αn + 1

2 log n

)

.

For the likelihood Ln we have the corresponding bounds

Ln(α) < exp

(

−Kn1/(1+2αn+2p)

1 + 2αn + 2p

)

Ln

(

αn + 1

2 log n

)

for α ∈ (0, αn] and

Ln(α) ≥ Ln

(

αn + 1

2 log n

)

for α ∈ [αn + 1/(2 log n), αn + 1/ log n] on the event An . Using these estimates for
Ln we obtain the following upper bound for the second term on the right-hand side of
(7.1):

sup
μ0∈B(R)

E0

∫ αn
0 λ(α)Ln(α) dα

∫ ∞
0 λ(α)Ln(α) dα

≤ sup
μ0∈B(R)

E0 exp

(

−Kn1/(1+2αn+2p)

1 + 2αn + 2p

)
Ln

(
αn + 1

2 log n

) ∫ αn
0 λ(α) dα

Ln

(
αn + 1

2 log n

) ∫ αn+1/ log n
αn+1/(2 log n) λ(α) dα

≤ sup
μ0∈B(R)

exp

(

−Kn1/(1+2αn+2p)

1 + 2αn + 2p

) (∫ αn+1/ log n

αn+1/(2 log n)

λ(α) dα

)−1

. (7.2)

From Lemma 1 we know that αn ≥ β/2 for large enough n, hence by Assumption 1,
Lemma 6, and the definition of αn ,

∫ αn+1/ log n

αn+1/(2 log n)

λ(α) dα ≥ C1(2 log n)−C2 exp
(
−C3 exp(

√
log n/3)

)
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for some C1,C2,C3 > 0. Therefore the right hand side of (7.2) is bounded above by
a constant times

exp

(

−Kn1/(1+2
√
log n+2p)

1 + 2
√
log n + 2p

)

(log n)C2 exp

(

C3 exp

(√
log n

3

))

.

It is easy to see that this quantity tends to 0 as n → ∞.
In bounding the third term on the right hand side of (7.1) we replace the supremum

overB(R) by the suprema over the sets Pn and Qn defined in the beginning of Sect. 6.
The supremum over Qn is bounded above by

sup
μ0∈Qn

E0 sup
α∈[αn ,∞)

Πα(‖μ − μ0‖ ≥ Mnεn,B|Y ).

This goes to zero, as follows from Sect. 6.3 and Markov’s inequality. The supremum
over Pn we write as

sup
μ0∈Pn

E0

( ∫ αn

αn

λn(α|Y )Πα(‖μ − μ0‖ ≥ Mnεn,B|Y ) dα

+
∫ ∞

αn

λn(α|Y )Πα(‖μ − μ0‖ ≥ Mnεn,B|Y ) dα

)

1An . (7.3)

The first term in (7.3) is bounded above by

sup
μ0∈Pn

E0 sup
α∈[αn ,αn ]

Πα(‖μ − μ0‖ ≥ Mnεn,B|Y ).

This goes to zero, following from Sects. 6.1 and 6.2 and Markov’s inequality. In
Sect. 5.1 we have shown that the differentiated log-likelihood function Mn on the
interval [αn,∞) can increase maximally by a multiple of

n1/(1+2αn+2p)(log n)2

1 + 2αn + 2p
.

Moreover, in Sect. 5.2 we have shown that for α ∈ [αn − 1/ log n, αn],

�′
n(α) = Mn(α) < −M

n1/(1+2αn+2p)(log n)3

1 + 2αn + 2p

on the event An , andM can bemade arbitrarily large by increasing the constant L in the
definition of αn . Therefore the integral ofMn(α) on [αn − 1/ log n, αn − 1/(2 log n)]
is bounded above by

−M

2

n1/(1+2αn+2p)(log n)2

1 + 2αn + 2p
,
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and by choosing a large enough constant L in the definition of αn it holds that for
some N > 0,

�n(α) ≤ �n

(

αn − 1

2 log n

)

− N
n1/(1+2αn+2p)(log n)2

1 + 2αn + 2p

for α ∈ [αn,∞), and

�n(α) ≥ �n

(

αn − 1

2 log n

)

for α ∈ [αn − 1/ log n, αn − 1/(2 log n)]. These bounds lead to the following bounds
for the likelihood:

Ln(α) ≤ Ln

(

αn − 1

2 log n

)

exp

(

−N
n1/(1+2αn+2p)(log n)2

1 + 2αn + 2p

)

for α ∈ [αn,∞), and

Ln(α) ≥ Ln

(

αn − 1

2 log n

)

for α ∈ [αn − 1/ log n, αn − 1/(2 log n)]. Similarly to the upper bound for the second
term of (7.1) we now write

sup
μ0∈Pn

E0

∫ ∞

αn

λn(α|Y ) dα ≤ sup
μ0∈Pn

E0

∫ ∞
αn

λ(α)Ln(α) dα
∫ ∞
0 λ(α)Ln(α) dα

≤ sup
μ0∈Pn

exp

(

−N
n1/(1+2αn+2p)(log n)2

1 + 2αn + 2p

) ∫ ∞
αn

λ(α) dα
∫ αn−1/(2 log n)

αn−1/ log n λ(α) dα
.

Since αn ≥ αn ≥ β/2 for n large enough, Assumption 1 and Lemma 6 imply that

∫ ∞
αn

λ(α) dα
∫ αn−1/(2 log n)

αn−1/ log n λ(α) dα
≤ C4(log n)C5 exp

(
C6α

C7
n

)
.

Since αn ≤ log n/(2 log 2)−1/2− p forμ0 ∈ Pn , the right-hand side of the preceding
display is bounded above by

C4 exp (−2C9(log 2)(log n)) (log n)C5 exp

(

C6

(
log n

2 log 2
− 1

2
− p

)C7
)

,

which tends to zero for any fixed constant C7 smaller than 1.
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Lemma 6 Suppose that the prior density λ satisfies Assumption 1 for some c1 > 0.
Then there exist positive constants C1, . . . ,C6 and C7 < 1 depending on c1 only such
that for all x ≥ c1, every δn → 0, and n large enough

∫ x+2δn

x+δn

λ(α) dα ≥ C1δ
C2
n exp

(
−C3 exp

( x

3

))

and

∫ ∞
x λ(α) dα

∫ x−δn
x−2δn

λ(α) dα
≤ C4δ

−C5
n exp(C6x

C7).

Proof The proof only involves straightforward calculus.

8 Auxiliary lemmas

In this section we collect several lemmas that we use throughout the proofs to upper
and lower bound certain sums.

Lemma 7 Let c > 0 and r ≥ 1 + c.

(i) For n ≥ 1

∞∑

i=1

n log i

ir + n
≤

(

2 + 2

c
+ 2

c2 log 2

)
n1/r log n

r
.

(ii) If r > (log n)/(log 2), then for n ≥ 1

∞∑

i=1

n log i

ir + n
≤

(

1 + 2

c
+ 2

c2 log 2

)

(log 2)n2−r .

Proof First consider r ≤ (log n)/(log 2), which implies that n1/r ≥ 2. We split the
series in two parts, and bound the denominator ir + n by n or ir . Since log i is
increasing, we see that

�n1/r �∑

i=1

log i ≤ n1/r log n

r
.

Since f (x) = x−γ log x is decreasing for x ≥ e1/γ , we see that i−r log i is decreasing
on interval

[�n1/r�,∞)
for n ≥ e. Therefore

∞∑

i=�n1/r �

n log i

ir
≤ n

log�n1/r�
�n1/r�r + n

∫ ∞

�n1/r �
log x

xr
dx .
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Since �x�/x ≤ 2 for x ≥ 1, and n1/r ≥ 2,

n
log�n1/r�
�n1/r�r ≤ 2 log n1/r ≤ n1/r log n

r
.

Moreover

∫ ∞

�n1/r �
log x

xr
dx ≤

∫ ∞

n1/r

log x

xr
dx = n−1+1/r (r − 1) log n1/r + 1

(r − 1)2
.

Since r ≥ 1 + c, we have

log n1/r

r − 1
≤ 1

c
· log n

r
,

1

(r − 1)2
≤ log n1/r

(r − 1)2 log 2
≤ 1

c2 log 2
· log n

r
.

This proves (i) for the case r ≤ (log n)/(log 2).
We now consider r > (log n)/(log 2), which implies that n1/r < 2. We have

∞∑

i=2

n log i

ir + n
≤ n

∞∑

i=2

log i

ir
≤ n2−r log 2 + n

∫ ∞

2
x−r log x dx,

by monotonicity of the function f defined above (with γ = r ). We have

∫ ∞

2
x−r log x dx = 21−r (r − 1) log 2 + 1

(r − 1)2
,

and since r ≥ 1 + c

log 2

r − 1
≤ log 2

c
,

1

(r − 1)2
≤ 1

c2
,

which finishes the proof of (ii).
To complete the proof of (i), we consider the function f (x) = 2−x x and note that

it is decreasing for x > 1/ log 2. Therefore n2−r = (n2−r r)/r ≤ (log n)/(r log 2),
for n ≥ 3. Since 1 ≤ n1/r, we get the desired result.

Lemma 8 For any m > 0, l ≥ 1, r0 > 0, r ∈ (0, r0], s ∈ (0, rl − 2], and n ≥ e2mr0

∞∑

i=1

i s(log i)m

(ir + n)l
≤ 4n(1+s−lr)/r (log n)m

rm
.

The same upper bound holds for m = 0, r ∈ (0,∞), s ∈ (0, rl − 1), and n ≥ 1.
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Proof We deal with this sum by splitting the sum in the parts i ≤ n1/r and i > n1/r .
In the first range we bound the sum by

n1/r∑

i=1

n−l i s(log i)m ≤ n1/r n−l+s/r (log n)m

rm
,

by monotonicity of the function f (x) = xs(log x)m .
Suppose that m > 0. The derivative of the function f (x) = x−1/2(log x)m is

f ′(x) = x−3/2(log x)m−1(m − (log x)/2), hence it is monotone decreasing for x ≥
e2m . Since n1/r ≥ n1/r0 and n > e2mr0 , the function f is decreasing on interval
[n1/r ,∞). Therefore we bound the sum over the second range by

∞∑

i=n1/r

i s−rl(log i)m ≤ n−1/(2r) (log n)m

rm

∞∑

i=n1/r

i1/2+s−rl .

Since s ≤ rl − 2, i1/2+s−rl is decreasing and rd − s − 3/2 ≥ 1/2. We get

∞∑

i=n1/r

i1/2+s−rl ≤ n(1/2+s−rl)/r +
∫ ∞

n1/r
x1/2+s−rl dx

= n(1/2+s−rl)/r + 1

−3/2 − s + rl
n(3/2+s−rl)/r

≤ 3n(3/2+s−rl)/r .

In the case m = 0, we use monotonicity of i s−rl for all i ≥ 1.

Lemma 9 For any r ∈ (1, (log n)/(2 log(3e/2))], and γ > 0,

∞∑

i=1

nγ log i

(ir + n)γ
≥ 1

3 · 2γ r
n1/r log n.

Proof In the range i ≤ n1/r we have ir + n ≤ 2n, thus

∞∑

i=1

nγ log i

(ir + n)γ
≥ 1

2γ

�n1/r �∑

i=1

log i ≥ 1

2γ

∫ �n1/r �

1
log x dx ≥ 1

2γ

∫ (2/3)n1/r

1
log x dx,

since n1/r ≥ 2 and �x� ≥ 2x/3 for x ≥ 2. The latter integral equals
(2/3)n1/r

(
log((2/3)n1/r ) − 1

) + 1. Since log n ≥ 2 log(3e/2)r implies that
(log n)/(2r) ≥ log(3e/2), we have

2

3
n1/r

(

log

(
2

3
n1/r

)

− 1

)

= 2

3
n1/r

(
1

r
log n − log

3e

2

)

≥ 1

3r
n1/r log n.
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Lemma 10 Let m, i , r , and ξ be positive reals. Then for n ≥ em

nir (r log i)m

(ir + n)2
≤ (log n)m, and

nξ (r log i)ξm

(ir + n)ξ
≤ (log n)ξm .

Proof Assume first that i ≤ n1/r, then the left hand side of the first inequality is
bounded above by

n2
(
r log n1/r

)m

n2
= (log n)m .

Next assume that i > n1/r . The derivative of the function f (x) = x−c(log x)m is
f ′(x) = x−c−1(log x)m−1

( − c(log x) + m
)
, hence f (x) is monotone decreasing for

x ≥ em/c. Therefore the function i−r (log i)m is monotone decreasing for i ≥ em/r and
since by assumption i > n1/r , we get that for n ≥ em the function f (i) = i−r (log i)m

takes its maximum at i = n1/r . Hence the left hand side of the inequality is bounded
above by

n (r log i)m i−r ≤ nrm
(
log n1/r

)m
n−1 = (log n)m .

The second inequality can be proven similarly. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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