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Abstract For a locally finite point set � ⊂ R, consider the collection of exponential
functions given by E� := {eiλx : λ ∈ �}. We examine the question whether E� spans
theHilbert space L2[−π, π ], when� is random.For several point processes of interest,
this belongs to a certain critical case of the corresponding question for deterministic
�, about which little is known. For � the continuum sine kernel process, obtained as
the bulk limit of GUE eigenvalues, we establish that E� is indeed complete almost
surely. We also answer an analogous question on C for the Ginibre ensemble, arising
as weak limits of the spectra of certain non-Hermitian Gaussian random matrices.
In fact we establish completeness for any “rigid” determinantal point process in a
general setting. In addition, we partially answer two questions of Lyons and Steif
about stationary determinantal processes on Z

d .

Mathematics Subject Classification 60G55 · 42C30 · 42C15 · 42C40 · 60G57 ·
60G60 · 82B05

1 Introduction

Any locally finite point set � ⊂ R gives us a set of functions

E� := {eλ : λ ∈ �} ⊂ L2[−π, π ],

where eλ(x) = eiλx , i being the imaginary unit. A set of vectors is said to “span” a
Hilbert space if their closed linear span equals the Hilbert space under consideration.
The following question is classical:
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644 S. Ghosh

Question 1 Does E� span L2[−π, π ] ?

An equivalent terminology found in the literature to describe the fact that E� spans
L2[−π, π ] is that E� is complete in L2[−π, π ]. When � is deterministic, this a well
studied problem in the literature. In the case where � is random, that is, � is a point
process, the literature is far more limited (other than what can be deduced from the
results in the deterministic setting). For any ergodic point process �, it can be easily
checked that the event in question has a 0-1 law.

In this paper we provide a complete answer to Question 1 in the case where � is
the continuum sine kernel process (see Sect. 2 for a precise definition):

Theorem 1.1 When � is a realisation of the continuum sine kernel process on R,
almost surely E� spans L2[−π, π ].

Similar questions can be asked in higher dimensions as well. On C, we consider
the analogous question with � coming from the Ginibre ensemble (see Sect. 2 for a
precise definition). An exponential function here is defined as eλ(z) = eλz and the
natural space in which to study completeness is the Fock–Bargmann space. The latter
space is the closure of the set of polynomials (in one complex variable) in L2(γ )where
γ is the standard complex Gaussian measure on C, having the density 1

π
e−|z|2 with

respect to the Lebesgue measure. In this case we prove:

Theorem 1.2 When � is a realisation of the Ginibre ensemble on C, a.s. E� spans
the Fock–Bargmann space. Equivalently, a.s. in � the following happens: if there is
a function f in the Fock–Bargmann space which vanishes at all the points of �, then
f ≡ 0.

All these questions are specific realisations of the following completeness question
that was asked of any determinantal process by Lyons and Peres.

Consider a determinantal point process� in a space� equipped with a background
measure μ. Let the point process � correspond to a projection onto the subspaceH of
L2(μ) in the usual way; for details, see Sect. 2 and also [7,10,17]. Let K (·, ·) be the
kernel of the determinantal process, which is also the integral kernel corresponding
to the projection onto H. Consequently, H is a reproducing kernel Hilbert space,
with the kernel K (·, ·). Let {xi }∞i=1 be a sample from �. Clearly, {K (·, xi )}∞i=1 ⊂ H.
Lyons and Peres asked the following question for any arbitrary determinantal point
process associated with a projection kernel (see, e.g., [11] Section 4 and Conjecture
4.6 therein):

Question 2 Is the random set of functions {K (·, xi )}∞i=1 complete in H a.s.?

Results of a similar nature have been obtained in special cases. The answer to
Question 2 is trivial in the case whereH is finite dimensional (say the dimension is N ),
there it follows simply from the fact that thematrix (K (xi , x j ))

N
i, j=1 is a.s. non-singular

on one hand, and it is the Gram matrix of the vectors {K (·, xi )} ⊂ H on the other. In
the case where � is a countable space, this was first proved, albeit implicitly, for the
case of spanning forests by Morris [13], although his theorem was not stated in terms
of the completeness problem that we have been discussing. For a detailed explanation
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Determinantal processes and completeness of random exponentials 645

of the connection between Morris’ theorem and the completeness problem, we refer
the reader to [10], in particular Section 7 and the discussion preceding Theorem 7.2
therein. Subsequently, this matter has been settled in the affirmative for any discrete
determinantal process by Lyons, see [10]. However, in the continuum (e.g. when
� = R

d and H is infinite dimensional), the answer to Question 2 is unknown.
In this paper, we answer Question 2 in the affirmative for rigid determinantal

processes. Recall that a locally compact metric space is called proper if every closed
ball (of finite radius) in that space is compact.

Theorem 1.3 Let � be a determinantal point process with a kernel K (·, ·) on a second
countable locally compact proper metric space (E, d) and a background measure μ

which is a non-negative regular Borel measure. Suppose K (·, ·), as an integral operator
from L2(μ) to itself, is the projection onto a closed subspace H ⊂ L2(μ).

Let � be rigid, in the sense that for any open ball B with a finite radius, the point
configuration outside B a.s. determines the number of points NB of � inside B. Then
{K (·, x) : x ∈ �} is a.s. complete in H, that is, a.s. this set of functions spans H.

A typical example of the setup described in Theorem 1.3 is a rigid determinantal
point process on a Euclidean spacewith a continuous kernel and a backgroundmeasure
that ismutually absolutely continuouswith respect to Lebesguemeasure.Many natural
examples of determinanal point processes in the continuum, including the sine kernel
process or the Ginibre ensemble, fit the above description.

To see the correspondence between Question 2 and Theorems 1.1–1.2, we can
make appropriate substitutions for the kernels and spaces in Theorem 1.3, for details
see Sect. 2. Briefly, the statement of Theorem 1.1 is equivalent to Question 2 (with an
affirmative answer) under Fourier conjugation. The statement in Theorem 1.2 involv-
ing the vanishing of functions on� is a result of the fact that the Fock–Bargmann space
is a reproducing kernel Hilbert space, with the reproducing kernel and background
measure being the same as the determinantal kernel and the background measure of
the Ginibre ensemble.

Completeness (in the appropriate Hilbert space) of collections of exponential func-
tions indexed by a point configuration is a well-studied theme, for a classic reference
see the survey by Redheffer [14]. However, most of the classical results deal with
deterministic point configurations, and are often stated in terms of some sort of den-
sity of the underlying point set. E.g., one crucial parameter is the Beurling Malliavin
density of the point configuration, for details, see [10] Definition 7.13 and the ensu-
ing discussion there. Typically, the results are of the following form : if the relevant
density parameter is supercritical, then the exponential system is complete, and if it
is subcritical, it is incomplete. E.g., see Beurling and Malliavin’s theorem, stated as
Theorem 71 in [14].

However, it turns out that in our cases of interest, e.g. as in Theorems 1.1 and 1.2,
the density of the point process is almost surely equal to the critical density in terms
of the classical results (see, e.g., Section 4.2 points 1 and 2 in [11]). In this paper
we have chosen the normalizations for our models such that the one-point intensity
(equivalently, the critical density) is equal to 1.

The critical cases in the deterministic setting are more difficult to handle. E.g., in
L2[−π, π ], {eλ : λ ∈ Z} is a complete set of exponentials, but {eλ : λ ∈ Z\{0}} is
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incomplete. In the random case, when the densities are super or subcritical, we can
either invoke the results in the deterministic setting (e.g., Theorem 71 in [14]), or
there is existing literature (see [3] Theorems 1.1 and 1.2 or [18]). However, at critical
densities, which is the case we are interested in, much less is known. To the best of our
knowledge, the only known case is that of a perturbed lattice, where completeness was
established under some regularity conditions on the (random) perturbations, see [2]
Theorem5.Our result inTheorem1.3 answers this question for natural point processes,
like the Ginibre or the sine kernel, which are not independent perturbations of a lattice.

There are other natural examples of determinantal point processes for which similar
questions are not amenable to our approach. E.g., one can consider Question 2 for the
zero process of the hyperbolic Gaussian analytic function, where the answer, either
way, is unknown, because this determinantal point process is not rigid (see [8]).

En route proving Theorem 1.3, we establish a version of the negative association
property for determinantal point processes in the continuum, which is relevant for our
purposes. In the discrete setting, a complete theorem to this effect was has been proved
in [10]. However, we could not locate such a result in the literature on determinantal
point processes in the continuum. In Theorem 1.4, we establish negative association
for the number of points for determinantal point processes in a general setting.

Definition 1 We call two non-negative real valued random variables X and Y nega-
tively associated if for any real numbers r and s we have

P
(
(X > r) ∩ (Y > s)

) ≤ P
(
X > r

)
P
(
Y > s

)
.

This is equivalent to the complementary condition

P
(
(X ≤ r) ∩ (Y ≤ s)

) ≤ P
(
X ≤ r

)
P
(
Y ≤ s

)
.

Theorem 1.4 Let E be a second countable locally compact Hausdorff space, equipped
with a non-negative regular Borel measure μ. Let � be a determinantal point process
on E with a kernel K and background measure μ. Then, for every finite collection of
disjoint Borel sets {Ai }n

i=1 ⊂ E and integers {mi }n
i=1, we have

P

(
n⋂

i=1

{N (Ai ) ≤ mi }
)

≤
n∏

i=1

P (N (Ai ) ≤ mi ) . (1)

In particular, the random variables N (A) and N (B) are negatively associated for any
two disjoint Borel sets A and B.

Consequent toTheorem1.4,we also discuss brieflyhow the abovenotionof negative
dependence implies more general notions of negative association for determinantal
point processes.

In addition to the completeness questions for random exponentials defined with
respect to natural determinantal processes, we also partially answer two questions
asked by Lyons and Steif in [12]. First, we give a little background on a certain class
of stationary determinantal processes on Zd studied in [12].
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Determinantal processes and completeness of random exponentials 647

Let f be a function Td → [0, 1], where Td = [0, 1]d . Then multiplication by f is
a non-negative contraction operator from L2(Td) to itself. Under Fourier conjugation,
this gives rise to a non-negative contraction operator Q : �2(Zd) → �2(Zd). This,
in turn, gives rise to a determinantal point process P f on Z

d in a canonical way, for
details see [10]. For a point configuration ω on Z

d , we denote by ω(k) the indicator
function of having a point at k ∈ Z

d in the configuration ω. We denote by ωout the
configuration of points on Z

d\0 obtained by restricting ω to Z
d\0, where 0 denotes

the origin in Zd .
For a point process � on a space �, we denote by [�] the (random) count-

ing measure obtained from a realisation of �. The k-point intensity functions of a
point process, when they exist, will be denoted by ρk, k ≥ 1. For the processes P f ,
all intensity functions exist. Moreover, the translation invariance of P f implies that
ρk(x1 + x, . . . , xk + x) = ρk(x1, . . . , xk) for all x, x1, . . . , xk ∈ Z

d , in particular, ρ1
is a constant ∈ [0, 1].

In the paper [12] it was conjectured (Conjecture 9.9 therein) that all determinantal
processes obtained in this way are insertion and deletion tolerant, meaning that both
P[ω(0) = 1|ωout] > 0 and P[ω(0) = 0|ωout] > 0 a.s. We resolve this conjecture in
the negative, showing that for f which is the indicator function of an interval in T,
this is not true.

Theorem 1.5 Let f be the indicator function of an interval I ⊂ T. Then there exists
a measurable function

N : Point configurations on Z\0 → N ∪ {0}

such that a.s. we have ω(0) = N (ωout). Consequently, the events {P[ω(0) = 1|ωout] =
0} and {P[ω(0) = 0|ωout] = 0} both have positive probability (in ωout).

We end by partially answering another question from [12], where we demonstrate
that “almost all” functions f can be reconstructed from the distribution P

f .

Theorem 1.6 Define E to be the set of functions

E := { f ∈ L∞(T) : 0 ≤ f (x) ≤ 1 for almost every x ∈ T}.

Then P
f determines f up to translation and flip, except possibly for a meagre set of

functions in the L∞ topology on E .

For any (as opposed to “almost all”) function f , we prove that P f determines the
value distribution of f .

Proposition 1.7 For any f ∈ E , P f determines the value distribution of f . This is
true for P f defined on Z

d for any d ≥ 1.

2 Definitions

In this section, we give precise descriptions of the models under study and discuss
how Theorem 1.3 is related to Theorems 1.1 and 1.2.
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648 S. Ghosh

A determinantal point process on a space�with background measureμ and kernel
K : � × � → C, is a point process whose n-point intensity functions (with respect
to the measure μ⊗n) are given by

ρn(x1, . . . , xn) = det
(
K(xi , x j )

n
i, j=1

)
.

The kernel K induces an integral operator on L2(μ), which must be locally trace
class and, additionally, a non-negative contraction. An interesting class of examples
is obtained when the integral operator given by K is a projection onto a subspace H
of L2(μ).

Our first example is the Ginibre ensemble, which is obtained as above with
K (z, w) = ezw, dμ(z) = 1

π
e−|z|2dL(z) andH is the Fock–Bargmann space⊂ L2(μ)

(here L is the Lebesgue measure on C). For every n, we can consider an n × n matrix
of i.i.d. complex Gaussian entries. The Ginibre ensemble arises as the weak limit (as
n → ∞) of the point process given by the eigenvalues of this matrix. The connection
between Theorems 1.3 and 1.2 is fairly straightforward. It has been proved in [6] The-
orem 1.1 that the Ginibre ensemble is rigid in the sense of Theorem 1.3. Setting � =
the Ginibre ensemble in Theorem 1.3, we deduce that the set of functions {eλ(z) :=
eλz |λ ∈ �} is a.s. complete in the Fock–Bargmann space. But the Fock–Bargmann
space is a reproducing kernelHilbert spacewith the kernel K (z, w) = ewz and the stan-
dard complex Gaussian measure as the background measure. Therefore, for a function
f in the Fock–Bargmann space, orthogonality of f to K (·, λ) is equivalent to f (λ) =
0. So the statement that f (λ) = 0∀λ ∈ � is equivalent to orthogonality of f to the span
of {K (·, λ) : λ ∈ �}. Therefore, Theorem 1.3 implies that f must be identically 0.

The continuum sine kernel process is given by K (x, y) = sinπ(x−y)
π(x−y)

, μ = the

Lebesgue measure on R, H = the Fourier transforms of the set of L2 functions
supported on [−π, π ] (considered as a subspace of L2(R)). Here we define the Fourier
transform of a Schwarz function f to be f̂ (ξ) = 1

2π

∫∞
−∞ f (x)e−i xξ dx , and extend

the definition to all L2 functions f by a standard density argument. The continuum
sine kernel process arises as the bulk limit of the eigenvalues of the Gaussian Unitary
Ensemble (GUE). Setting f = 1[−π,π ] in Theorem 4.2, we obtain that the continuum
sine kernel process is rigid in the sense of Theorem 1.3. Therefore, setting � to
be the continuum sine kernel process in Theorem 1.3, we deduce that the functions
hλ(t) := sinπ(λ−t)

π(λ−t) , where λ ranges over the points in�, are a.s. complete in the Hilbert

space H = the Fourier transforms of the set of L2 functions supported on [−π, π ].
Therefore, {h̆λ : λ ∈ �} is complete in L2(−π, π), where h̆ denotes the inverse
Fourier transform. But h̆λ(x) = eiλx1[−π,π ](x) = eλ(x). Putting all these together,
we obtain the fact that Theorem 1.3 implies Theorem 1.1.

For greater details on these point processes, see [7].

3 Completeness of random function spaces

In this section, we prove Theorem 1.3. Due to the connections discussed in Sect. 2,
this will automatically establish Theorems 1.1 and 1.2.
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Determinantal processes and completeness of random exponentials 649

Before the main theorem, we establish a preparatory result.

Proposition 3.1 Suppose � is a rigid point process on a locally compact metric space
(E, d), in the sense that for any open ball B with finite radius, the point configuration
outside B a.s. determines the number of points NB of � inside B. Assume that for
any ball B, E [NB] < ∞. Let A(r) denote the closed annulus of thickness r around
B, and let �A(r) denote the point configuration in A(r) obtained by restricting � to
A(r). Then we have

E
[
NB
∣
∣�A(r)

] → NB (2)

a.s. as r → ∞.

Proof This follows from Levy’s 0–1 law and the convergence of the Doob’s martin-
gales Mr := E

[
NB |�A(r)

]
, r ≥ 0 of NB , as r → ∞. Note that M∞ = NB because

� is rigid. �
We are now ready to establish the main Theorem 1.3.

Proof of Theorem 1.3 Let H0 be the random closed subspace of H spanned by the
functions {K (·, x) : x ∈ �} inside L2(μ). Wewish to show that a.s. we haveH0 = H.
It suffices to prove that almost surely, we have K (·, x0) ∈ H0 for μ-a.e. x0. To
see this, let f ∈ H be such that f is orthogonal to H0. Since f ∈ H, therefore
f (x) = ∫

f (y)K (y, x)dμ(y) for each x . But K (·, x) is in H0 for μ-a.e. x , and f is
orthogonal to H0, so f (x) = 0 for a.e. x with respect to μ. In other words, f ≡ 0 in
L2(μ), therefore H0 = H.

For any realization of �, the set of functions {K (·, x) : x ∈ �} is trivially in H0.
We need to show that a.s., we have K (·, x) ∈ H0 for μ-a.e. point x ∈ E\�. To this
end, we will construct, for each ε > 0 and x0 ∈ E a pair of events N (ε, x0) and
J (ε, x0) such that:

• On the event N (ε, x0)\J (ε, x0), we have K (·, x) ∈ H0 for μ-a.e. x in B(x0; ε)

• P(J (ε, x0)) = 0
• For any x /∈ �, the event N (ε, x) occurs for each value of ε < d(x,�).

Here d(x,�) is the distance between x and the set � and B(x0; ε) is the open ball
with centre x0 and radius ε.

We claim that such events N (ε, x0) and J (ε, x0) are enough to ensure that a.s.,
we have K (·, x) ∈ H0 for μ-a.e. point x ∈ E\�. We will prove this claim in the
following paragraphs.

Consider a countable dense set of pointsQ in E . For each point q ∈ Q\�, consider
B(q; rq) where rq is any rational number between d(q,�) and d(q,�)/2. We first
show that these balls cover E\�. Any point x ∈ E\� is a limit of a sequence of points
belonging Q. Since � is a locally finite set of points and x ∈ E\�, this sequence
will eventually be contained inQ\�. If we denote this sequence by {qk}k≥0, we have
qk → x as k → ∞ and limk→∞ rqk ≥ d(x,�)/2 > 0. Thus, x ∈ ⋃q∈Q B(q; rq), as
desired.

Since

P
(∪q∈Q ∪q∈Q J (r, q)

) = 0,
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we can assume thatwe areworking on the complement of the event∪q∈Q∪q∈Q J (r, q).
Then for each q ∈ Q\�, the event N (rq , q) occurs. Therefore, a.s. the event
∪q∈Q\�N (rq , q) occurs. Each event N (rq , q) implies that for μ-a.e. point x in
B(q; rq) the function K (·, x) is inH0. But we have already seen that the sets B(q; rq)

cover E\�. Therefore, a.s. it is true that forμ-a.e. point x in E\�, the function K (·, x)

is inH0. This completes the proof of our claim.
We now proceed to construct the events N (ε, x0) and J (ε, x0) for each x0 ∈ E and

ε > 0. The event N (ε, x0) is simply the event that B(x0; ε) ∩ � = φ. It is obvious
from the definition that whenever x0 /∈ �, for any ε < d(x0,�) the event N (ε, x0)
occurs. In what follows, we will show that for a fixed x0 and ε, on the event N (ε, x0)
the function K (·, x) is in H0 for μ-a.e. point x in B(x0; ε). The null event on which
the statement does not hold will be our event J (ε, x0).

For brevity, we will henceforth denote by Br the open ball of radius r > 0 centred
at x0.

For the points {xi }n
i=1 ∈ E , let D(x1, . . . , xn) denote det

[ (
K (xi , x j )

)n
i, j=1

]
.

Then, if we consider the function K (·, x) as a vector in the Hilbert space H,
the squared norm of the projection of K (·, x) onto the orthogonal complement of
Span {K (·, xi ), 1 ≤ i ≤ n} is given by the ratio D(x,x1,...,xn)

D(x1,...,xn)
. This follows easily from

the interpretation of the determinant of a Gram matrix as the squared volume of a par-
allelopiped. But D(x,x1,...,xn)

D(x1,...,xn)
is also equal to the conditional intensity p(x |x1, . . . , xn)

(with respect to the backgroundmeasureμ) of� at x given that {x1, . . . , xn} ⊂ �, see
e.g. Corollary 6.6 in [19]. Let us elaborate a little more on this conditioning.We fix the
point configuration ϒR = {x1, . . . , xn} in BR\Bε and consider the point process �′′
obtained by conditioning � to contain ϒR (with the understanding that �′′ contains
all the points in ϒR). Now, set �′ = �′′\ϒR . Let PϒR be the law of the point process
�′. Such conditioning is well known in the literature as the Palm measure of � at ϒR .
For more details on the Palm measure, we refer to [9] Chapter 10 or [19] Section 6.

Let ωR be the random point configuration obtained by restricting � to BR\Bε . For
any fixed point configuration ϒR in BR\Bε we have

EϒR [Number of points in Bε] =
∫

Bε

p(x |ϒR)dμ(x) (3)

We now proceed with the left hand side in (3) as

EϒR [Number of points in Bε]

=
∞∑

k=1

PϒR [There are ≥ k points in Bε]

≤
∞∑

k=1

P[There are ≥ k points in Bε |ωR = ϒR] (see Proposition 3.2)

= E[Number of points in Bε |ωR = ϒR]

The inequality
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Determinantal processes and completeness of random exponentials 651

PϒR [There are ≥ k points in Bε] ≤ P[There are ≥ k points in Bε |ωR = ϒR]
is a consequence of the negative association property of determinantal point processes,
and is proved in Proposition 3.2 using Theorem 1.4.

Denote by NBε the number of points of � in Bε . By Proposition 3.1, we have that
given any δ > 0, we can find Rδ such that except on an event �δ

1 of probability < δ,
we have

∣∣E[NBε |ωRδ ] − NBε

∣∣ < δ.

But, on the event N (ε, x0), we have NBε = 0.
Hence, on the event N (ε, x0)\�δ

1, we have

∫

Bε

p(x |ωRδ )dμ(x) ≤ δ

Letting δ ↓ 0 along a summable sequence and Rδ ↑ ∞, we deduce that a.s. on N (ε, x0)
we have,

lim
δ→0

∫

Bε

p(x |ωRδ )dμ(x) = 0.

This is true because, by the Borel Cantelli lemma, the event that �δ
1 occurs infinitely

often (along this summable sequence of δ-s) has probability zero.
By Fatou’s lemma, this implies that on the event N (ε, x0), a.s. we have

∫

Bε

lim
δ→0

p(x |ωRδ )dμ(x) = 0.

This implies that on the event N (ε, x0), a.s. we have limδ→0 p(x |ωRδ ) = 0 for almost
every x ∈ Bε (with respect to the measure μ). By our previous discussion, at the
beginning of the proof, regarding the connection between the squared norms of pro-
jections and conditional intensities, this means that on the event N (ε, x0), a.s. we have
K (·, x) ∈ H0 for a.e. x ∈ Bε (with respect to μ), as desired. �

Wenowestablish the precise negative association inequality necessary for the above
theorem:

Proposition 3.2

PϒR [There are ≥ k points in Bε]≤P[There are ≥k points in Bε |ωR =ϒR].
Proof Recall from the proof of Theorem 1.3 that PϒR is the law of the point process
�′ . It is known that �′ is again a determinantal point process on E with background
measure μ, see [19] Corollary 6.6. Applying Theorem 1.4 to �′, we get that

PϒR

(
There are ≥ k points of �′ in Bε ∩ There is no point of �′ in BR\Bε

)

≥PϒR

(
There are ≥k points of �′ in Bε

)
PϒR

(
There is no point of �′ in BR\Bε

)
.
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SinceϒR is a possible realization of the full point configurationωR of� in BR\Bε ,
thereforePϒR

(
There is no point of �′ in BR\Bε

)
> 0 (for almost every such config-

uration ϒR ; the probability measure on ϒR being that induced by the random variable
ωR).

Hence the last inequality can be rephrased as

PϒR

(
There are ≥ k points of �′ in Bε

)

≤ PϒR

(
There are ≥ k points of �′ in Bε | There is no point of �′ in BR\Bε

)

= P
(
There are ≥ k points of �′ in Bε |ωR = ϒR

)
.

The last equality is a relation between the Palmmeasure and the conditional probability
measure of � under the conditioning ωR = ϒR . While this relation is intuitively
straightforward, it is explained and proved in Proposition 3.3. This completes the
proof of our desired inequality. �
Proposition 3.3 PϒR (M | There is no point of �′ in BR\Bε) = P(M |ωR = ϒR),
where M is an event which depends only on the points in Bε .

Proof Wewill prove this, for ease of demonstration, in the case |ϒR | = 1; the general
case follows on similar lines. In this setting, we will prove a statement connecting the
Palm and conditional measures of a general point process, of which our situation is a
special case. Here |ϒR | is the number of points in ϒR .

Consider a point process ξ on the second countable locally compact Hausdorff
space E and a Borel set V ⊂ E . Let ρ1 denote the first intensity measure of ξ . Let N
denote the event that there are no points in V , and M be any event that depends only
on the points in V �. We will denote the point process ξ conditioned to contain s to
be ξs . By definition, ξs contains the point s. We will denote by δs the delta measure
at s. Let P denote the law of ξ and Ps denote the law of ξs − δs . Let ξ V denote the
restriction of ξ to the set V . We want to show that, for ρ1-a.e. point x in V (such that
Px (N ) > 0), we have Px (M |N ) = P(M |ξ V = {x}).

Let h be any non-negative real valued compactly supported measurable function
whose support is contained in V . It suffices to show that

∫
h(s)Ps(M |N )Ps(N )ρ1(ds) =

∫
h(s)P(M |ξ V = {s})Ps(N )ρ1(ds)

for all such h. In what follows, we will make repeated use of the following relation,
which holds for any function f : E × N → R+ (where N denotes the space of
counting measures corresponding to locally finite point configurations on E and R+
denotes the non-negative real numbers). In this setting, we have

[E f (s, ξs − δs)] ρ1(ds) = E [ f (s, ξ − δs)ξ(ds)] . (4)

This is a restatement of Lemma 10.2 in [9]. This also follows from (6.1) in [19] (for
the situation |ϒR | > 1 look at (6.5) in [19]). Here ξ(ds) refers to the counting measure
induced by the particular realization of the point process ξ .
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We have,

∫
h(s)Ps(M |N )Ps(N )ρ1(ds) =

∫
h(s)Ps(M ∩ N )ρ1(ds)

=
∫

E[h(s)1M∩N (ξs − δs)]ρ1(ds) = E

(∫
h(s)1M∩N (ξ − δs)ξ(ds)

)
.

In the last equality we have used relation (4). Observe that

1M∩N (ξ − δs) = 1M (ξ)1(ξ V = {s}),

because the event M depends only on the points in V � and s ∈ V . Since h is supported
on V , we have

∫
h(s)1M∩N (ξ − δs)ξ(ds) = h(ξ V )1M (ξ)1(|ξ V | = 1).

Therefore,

∫
h(s)Ps(M |N )Ps(N )ρ1(ds) = E

(∫
h(s)1M∩N (ξ − δs)ξ(ds)

)

= E

[
h(ξ V )1M (ξ)1(|ξ V | = 1)

]
=
∫

V
h(s)P(ξ ∈ M |ξ V = {s})dPξ V ({s}) (5)

where Pξ V is the marginal distribution of ξ V . All that remains to show, therefore, is
that on the event {|ξ V | = 1}, we have dPξ V ({s}) = Ps(N )ρ1(ds) for a.e. s ∈ V .
However, this follows from relation (5), as discussed below. By setting h(s) = θ(s) in
(5), where θ is a non-negative function compactly supported on V and setting M = �

(the universal event), we get

∫

V
θ(s)Ps(N )ρ1(ds) = E

[
θ(ξ V )1(|ξ V | = 1)

]
=
∫

V
θ(s)dPξ V ({s}).

This holds for all such θ , giving us the desired equality of measures. This completes
the proof. �

4 Rigidity and tolerance for certain determinantal point processes

In this section we discuss the insertion and deletion tolerance question from [12],
principally the proof of Theorem 1.5.

We will use the following general observation for determinantal point processes
given by a projection kernel:

Proposition 4.1 Consider a determinantal point process � on a locally compact
space � with determinantal kernel K (·, ·) and background measure μ, such that K
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is a projection as an integral operator on L2(μ). Let ψ be a compactly supported
function on �. Then

Var

[∫
ψ d[�]

]
= 1

2

∫∫
|ψ(x) − ψ(y)|2|K (x, y)|2 dμ(x)dμ(y) (6)

Proof Denote by ρ1 and ρ2 respectively the one and two-point correlation functions
of �. Then we can write

Var

[∫
ψ d[�]

]
=
∫

ψ(x)ψ(y)ρ2(x, y)dμ(x)dμ(y)

+
∫

|ψ(x)|2 ρ1(x)dμ(x) −
∣∣
∣∣

∫
ψ(x)ρ1(x)dμ(x)

∣∣
∣∣

2

. (7)

But ρ1(x) = K (x, x) and ρ2(x, y) = K (x, x)K (y, y) − |K (x, y)|2. Using this, the
expression for the variance in (7) reduces to

∫∫
|ψ(x)|2K (x, x)dμ(x) −

∫∫
ψ(x)ψ(y)|K (x, y)|2dμ(x)dμ(y). (8)

But since K is the integral kernel corresponding to a projection operator and K (y, x) =
K (x, y), we have K (x, x) = ∫∫ |K (x, y)|2dμ(y). Using this, the expression for the
variance in (8) reduces to

∫∫ (
|ψ(x)|2 − ψ(x)ψ(y)

)
|K (x, y)|2dμ(x)dμ(y)

= 1

2

∫∫
|ψ(x) − ψ(y)|2|K (x, y)|2 dμ(x)dμ(y),

as desired. In the last step, we have used symmetry in x and y. �
Proof of Theorem 1.5 We will approach this question by estimating the variance of
linear statistics ofP f .A similar approach has been used in [6] to obtain rigidity behav-
iour for the Ginibre ensemble and the zero process of the standard planar Gaussian
analytic function.

Let ϕ be aC∞
c function onRwhich is≡ 1 in a neighbourhood of the origin. Viewed

as a function onZ,ϕ is compactly supported and= 1 at the origin. LetϕL be defined by
ϕL(x) = ϕ(x/L). Since f is the indicator function of an interval I ⊂ T, therefore the
determinantal kernel K ofP f gives rise to a projection as an integral operator on �2(Z).
Applying Proposition 4.1 with � = P

f , � = Z, μ = the counting measure on Z and
ψ = ϕL we get

Var

[∫
ϕL d[P f ]

]
= 1

2

∑

i, j∈Z

∣∣∣∣ϕ
(

i

L

)
− ϕ

(
j

L

)∣∣∣∣

2

| f̂ (i − j)|2. (9)
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Observe that translating the interval I ⊂ T leaves themeasureP f invariant, so,without
loss of generality, we take I to be corresponding to the interval [−a, a] where T is
parametrized as (−π, π ] and 0 < a < π . Then f̂ (k) = c(a)sinak/k where c(a) is a
constant. This implies that, for some constant c > 0, we have

Var

[∫
ϕL d[P f ]

]
= c

∑

i, j∈Z

∣∣
∣∣ϕ
(

i

L

)
− ϕ

(
j

L

)∣∣
∣∣

2 (
sin2a(i − j)

)
|i − j |−2. (10)

This, in turn, implies (using |sinθ | ≤ 1) that

Var

[∫
ϕL d[P f ]

]
≤ c

∑

i, j∈Z

∣
∣∣∣ϕ
(

i

L

)
− ϕ

(
j

L

)∣∣∣∣

2

|(i − j)/L|−2L−2. (11)

Hence we have

lim
L→∞Var

[∫
ϕL d[P f ]

]
≤ c

∫ ∫ (
ϕ(x) − ϕ(y)

x − y

)2

dL(x)dL(y) (12)

where L denotes the Lebesgue measure on R.
For any C

1
c functions ψ1, ψ2 on R, we define the form

�(ψ1, ψ2) =
∫ ∫

(ψ1(x) − ψ1(y)) (ψ2(x) − ψ2(y))

(x − y)2
dL(x)dL(y). (13)

It is known that �(ψ,ψ) is related to the H1/2 norm of ψ .
A simple calculation shows that for any λ > 0, we have �((ψ1)λ, (ψ2)λ) =

�(ψ1, ψ2). In particular, this implies that �(ψ1, (ψ2)λ) = �((ψ1)1/λ, ψ2). Further,
we will see in Proposition 4.3 that �(ψ,ψλ−1) → 0 as λ → 0.

For an integer n > 0, let 0 < λ = λ(n) < 1 be such that for ϕ as above,
|�(ϕ, ϕλ−i )| ≤ 1/2i for 1 ≤ i ≤ n. Such a choice can be made because of the
observations in the previous paragraph. Define�n = (∑n

i=1 ϕλ−i

)
/n. Note that�n ≡

1 in a neighbourhood of 0 inR, and the same is true for all scalings�n
L of�n whenever

L ≥ 1.
Let L = L(n) > 1 be such that

Var

[∫
�n

L d[P f ]
]

≤ c�(�n,�n) + 1

n
.

But �(�n,�n) = 1
n2

(∑n
i, j=1 �(ϕλ−i , ϕλ− j )

)
. Observe that

�(ϕλ−i , ϕλ− j ) = �(ϕ, ϕλ−|i− j |) ≤ 2−|i− j |.
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This implies that

n∑

i, j=1

�(ϕλ−i , ϕλ− j ) ≤ C(ϕ)n.

Hence Var
[∫

�n
L d[P f ]] ≤ C(ϕ)/n.

By the Borel–Cantelli lemma, we have, as n → ∞,

∣∣∣
∣

∫
�2n

L d[P f ] − E

[∫
�2n

L d[P f ]
]∣∣∣
∣ → 0. (14)

But
∫

�2n

L d[P f ] = ω(0) + ∫Z\0 �2n

L d[P f ], and the second term can be evaluated

if we know ωout. E[∫ �2n

L d[P f ]] can also be computed explicitly in terms of the first
intensity measure of P f . This implies that from (14), we can deduce the value of ω(0)
by letting n → ∞.

Thus, ωout a.s. determines the value of ω(0). Since both the events ω(0) = 0 and
ω(0) = 1 occurwith positive probability, therefore the events {P[ω(0) = 1|ωout] = 0}
and {P[ω(0) = 0|ωout] = 0} both have positive probability (in ωout). �
Remark 4.1 For f which is the indicator function of a finite, disjoint union of intervals
⊂ T, we have | f̂ (k)| ≤ c/|k|, hence the same argument and the same conclusion as
Theorem 1.5 holds for such f .

Remark 4.2 A similar argument shows that, in fact, for any finite set S ⊂ Z, the point
configuration of P f restricted to S� a.s. determines the number of points of P f in S,
when f is the indicator function of an interval.

A similar class of determinantal point processes in the continuum can be obtained
by considering L2 functions f : Rd → [0, 1]. Themultiplication operator M f defined
by such a function f is clearly a contraction on L2(Rd). By considering the Fourier
conjugate of such an operator, we get another contraction on L2(Rd), which gives us a
translation invariant determinantal point process P f inRd . One of the most important
examples of such a point process is the sine kernel process on R, which is defined by
the determinantal kernel sinπ(x−y)

π(x−y)
with the Lebesgue measure onR as the background

measure. Here the relevant function f is the indicator function of the interval [−π, π ].
For details, see [1]. More generally we can consider the indicator function of any
measurable subset ofR, which will give us a projection operator on L2(R), and hence
a determinantal point process corresponding to a projection kernel. In this setting,
we have a continuum analogue of Theorem 1.5, which says that whenever f is the
indicator of a finite union of compact intervals inR, we have that P f is a rigid process.

Theorem 4.2 Let f : R → [0, 1] be an indicator function of a finite union of compact
intervals. Then the determinantal point process P

f in R is “rigid” in the following
sense. Let U ⊂ R be a bounded interval, and let ω be the point configuration sampled
from the distribution P

f . Define the restricted point configurations ωin = ω|U and
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ωout = ω|U� . Let |ωin| be the number of points of ω in U. Then there exists a measurable
function

N : Point configurations in U� → N ∪ {0}

such that a.s. we have |ωin| = N (ωout). This holds true for all bounded intervals U.
In particular, the continuum sine kernel process is “rigid” in the above sense.

Proof By translation invariance, it suffices to take U to be centred at the origin. Let ϕ
be a C∞

c function which is ≡ 1 in a neighbourhood of U . Then we have

Var

[∫
ϕ d[P f ]

]
= 1

2

∫ ∫
|ϕ(x) − ϕ(y)|2| f̂ (x − y)|2dL(x)dL(y). (15)

But for any compact interval [a, b] we have |1̂[a,b](ξ)| ≤ c|ξ |−1, hence we have

Var

[∫
ϕ d[P f ]

]
≤ C

∫ ∫ (
ϕ(x) − ϕ(y)

x − y

)2

dL(x)dL(y). (16)

Recall the form�(·, ·) as in (13). Proposition 4.3 implies that�(ϕ, ϕλ−1) → 0 as λ →
0. For an integer n > 0, let 0 < λ < 1 be such that for ϕ as above, |�(ϕ, ϕλ−i )| ≤ 1/2i

for 1 ≤ i ≤ n. Define �n = (∑n
i=1 ϕλ−i

)
/n. We have �n ≡ 1 in a neighbourhood of

U in R. Due to our choice of λ, we have Var
(∫

�nd[P f ]) = �(�n,�n) = O(1/n).
From here, we proceed on similar lines to the proof of Theorem 1.5 and deduce the
existence of N as prescribed in the statement of Theorem 4.2. �

We now prove Proposition 4.3, which will complete the proof of Theorem 1.5.

Proposition 4.3 For a C1
c function ϕ, we have �(ϕ, ϕλ−1) → 0 as λ → 0.

Proof We begin with the expression

�(ϕ, ϕλ−1) =
∫∫

(ϕ(x) − ϕ(y)) (ϕ(λx) − ϕ(λy))

(x − y)2
dL(x)dL(y). (17)

Fix a > 0. Let K be the support of ϕ. We define the function

γ (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

‖ϕ′‖2∞ if x or y ∈ K and |x − y| ≤ a

4‖ϕ‖2∞
(x−y)2

if x or y ∈ K and |x − y| > a

0 otherwise

(18)

For 0 < λ < 1, the integrand in (17) is bounded in absolute value from above
pointwise by γ (x, y). To see this, note that the integrand in (17) is non-zero only on
the set S = {(x, y) : x or y ∈ K }. On S, we bound the integrand from above as
follows: for (x, y) ∈ S such that |x − y| ≤ a we use |ϕ(x) − ϕ(y)| ≤ ‖ϕ′‖∞|x − y|,
for other (x, y) ∈ S we use |ϕ(x) − ϕ(y)| ≤ 2‖ϕ‖∞.
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Since K is a compact set, we have

∫∫
γ (x, y) dL(x)dL(y) < ∞, (19)

where we use the fact that
∫
|t |>a

1
t2

dt = 2
a .

(19) enables us to use the dominated convergence theorem and let λ → 0 in the
integrand of (17), whence �(ϕ, ϕλ−1) → 0. �

Next we show that in any dimension d, whenever f is not the indicator of a subset
of Td , Var

[∫
ϕLd[P f ]] blows up at least like Ld as L → ∞. So, the above approach

cannot be used to decide questions on rigidity phenomena in such situations.

Proposition 4.4 Let f : Td → [0, 1] not equal the indicator function of some subset
of Td (up to Lebesgue-null sets). Then Var

[∫
ϕLd[P f ]] = �(Ld) as L → ∞.

Proof Let ρ2(·, ·) be the two point intensity function of P f , given by the formula

ρ2(i, j) = det

(
f̂ (0) f̂ (i − j)

f̂ ( j − i) f̂ (0)

)

Let λd denote the normalized Lebesgue measure on Td . Using the above formula, we
can write the variance in question as:

Var

[∫
ϕLd[P f ]

]
= E

(∫
ϕLd[P f ]

)2

−
(
E

[∫
ϕL d[P f ]

])2

=
∑

i

ϕL(i)2 f̂ (0) +
∑

i, j

ϕL(i)ϕL( j)
(

f̂ (0)2 − | f̂ (i − j)|2
)

−
∑

i, j

ϕL(i)ϕL( j) f̂ (0)2

=
∑

i

ϕL(i)2

⎛

⎝ f̂ (0) −
∑

j

| f̂ (i − j)|2
⎞

⎠

+
∑

i, j

(
ϕL(i)2 − ϕL(i)ϕL( j)

)
| f̂ (i − j)|2

=
(

f̂ (0) −
∑

k

| f̂ (k)|2
)(

∑

k

ϕL(k)2

)

+1

2

⎛

⎝
∑

i, j

|ϕL(i) − ϕL( j)|2 | f̂ (i − j)|2
⎞

⎠

≥
(

f̂ (0) −
∑

k

| f̂ (k)|2
)(

∑

k

ϕL(k)2

)
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=
(∫

Td
f (x)dλd(x) −

∫

Td
f (x)2dλd(x)

)(∑

k

ϕL(k)2

)

.

In the last step we have used Parseval’s identity:
∑

k | f̂ (k)|2 = ∫
f (x)2dλd(x). Note

that since 0 ≤ f ≤ 1, we have
(∫

Td f (x)dλd(x) − ∫Td f (x)2dλd(x)
) ≥ 0 with strict

inequality holding if and only if f is not the indicator of some subset of Td (upto
Lebesgue null sets). Finally, observe that as L → ∞ we have

1

Ld

(
∑

k

ϕL(k)2

)

=
∑

k

1

Ld
ϕ

(
k

L

)2

→ ‖ϕ‖22.

This completes the proof of the proposition. �

5 P
f determines f

In this section we provide the proofs of Theorem 1.6 and Proposition 1.7

Proof of Theorem 1.6 Define F to be the subset of functions f of E satisfying the
following conditions:

(i) Either f̂ (k) �= 0∀k ∈ Z, or f is a trigonometric polynomial of degree N , and
f̂ (k) �= 0 for all |k| ≤ N .

(ii) For every n ≥ 3 (and n ≤ the degree N in the case of f being a trigonometric
polynomial),we haveArg( f̂ (n))−Arg( f̂ (n−1)) does not differ fromArg( f̂ (2))−
Arg( f̂ (1)) by an integer multiple of π . Further, Arg( f̂ (2)) − 2Arg( f̂ (1)) is not
an integer multiple of π . Here we consider Arg to be a number in (−π, π ].

We claim that the complement of F in E , denoted by G := E\F, is a meagre subset
of E , and for f ∈ F, we have P f determines f up to the rotation and flip. A meagre
subset of a topological space is a set which can be expressed as a countable union of
nowhere dense sets.

To show that G is meagre, we will show that it is a subset of a countable union of
nowhere dense sets. Indeed, we can write G as:

G ⊂ ∪i Ai ∪n≥3 Bn ∪ C

where

Ai := { f ∈ E : f̂ (i) = 0},
Bn := { f ∈ E : Either f̂ (k) = 0 for k = 1, 2, n, n − 1 or

Arg( f̂ (n)) − Arg( f̂ (n − 1)) = Arg( f̂ (2)) − Arg( f̂ (1)) + tπ, t an integer with |t | ≤ 4},
C := { f̂ (1) = 0 or f̂ (2) = 0 or Arg( f̂ (2)) − 2Arg( f̂ (1)) = tπ, t an integer with |t | ≤ 3}.

It is not hard to see that each Ai and Bn are closed sets in L∞(T), being defined
by closed conditions on finitely many co-ordinates of the Fourier expansion (observe
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that | f̂ (n)| ≤ ‖ f ‖∞ for each n, hence f → f̂ (n) is a continuous linear functional
on L∞(T)). The same holds true for C . It is also clear that none of the Ai -s or Bn-s
or C contain any L∞(T) ball (since even small perturbations in the relevant Fourier
cofficients can lead us outside these sets), showing that they are nowhere dense. All
these combine to prove that G is a meagre subset of L∞(T).

Let f be a function in F. We begin with the Fourier expansion f :

f (x) =
∞∑

−∞
a j e

i j x (20)

where i is the imaginary unit.
Wemake the following observations about the expansion (20). First, f is real valued

implies
a− j = a j for all j. (21)

Secondly, letting fξ = f (x + ξ) = ∑∞
j=−∞ a j (ξ)ei j x where ξ ∈ (−π, π ] and the

addition is in T, we have

a j (ξ) = a j e
i jξ . (22)

Finally, setting f̃ (x) = f (−x) = ∑∞
j=−∞ ã j ei j x , we have

ã j = a j . (23)

We want to recover the coefficients a j (up to the symmetries (21), (22) and (23))
from the measure P

f . We observe that the class of functions F is preserved under
these symmetries. In particular, a trigonometric polynomial remains a trigonometric
polynomial of the same degree and the same regularity property as demanded in the
definition of the class F.

In what follows, we will make certain choices at several steps, which will “spend”
these symmetries. For instance, since we need to determine f only up to a translation,
therefore we can use the symmetry (22) to make a choice of ξ and fix the argument
of a particular coefficient (provided it is non-zero). In the subsequent analysis, we
use this with the coefficient a1 and assume that it is positive real. Similarly, the flip
symmetry (23) can be used to fix the value of the imaginary part of a particular (non-
real) coefficient to be positive. In the argument that follows, we use this with the
coefficient a2.

To recover f , we begin by observing that a0 = ρ1, and is therefore determined by
P

f .
Further,

ρ2(0, n) =
∣
∣∣∣

a0 an

a−n a0

∣
∣∣∣ = a2

0 − |an|2. (24)

This implies that P f determines |an| for all n.
Recall that a1 �= 0 for f ∈ F (unless f is a constant function; this follows from

condition (i) defining F). Using the symmetry (22), we choose a1 to be a positive
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real number, equal to its absolute value which is determined by P
f . If f ∈ F is a

trigonometric polynomial of degree 1, then we are done. Else, we proceed as follows.
For any positive integer n, we have

ρ3(0, 1, n) =
∣∣∣∣∣
∣

a0 a1 an

a−1 a0 an−1
a−n a−(n−1) a0

∣∣∣∣∣
∣

(25)

Expanding the right hand side along the first row, we have

ρ3(0, 1, n) = a0

∣∣∣∣
a0 an−1

a−(n−1) a0

∣∣∣∣− a1

∣∣∣∣
a−1 an−1
a−n a0

∣∣∣∣+ an

∣∣∣∣
a−1 a0
a−n a−(n−1)

∣∣∣∣ .

Expanding the 2 × 2 determinants, we can simplify the above equation to

ρ3(0, 1, n) = 2a1�(anan−1) + g(a0, a1, |an−1|, |an|), (26)

where g(w, x, y, z) is a polynomial in four complex variables. Since all quantities
in (26) except �(anan−1) are known and a1 > 0, we deduce that P f determines
�(anan−1) for all integers n.

For n = 2, we have an−1 = a1, and this implies that P f in fact determines �(a2).
Since |a2| is also known, this implies that P f determines |�(a2)|, which is non-zero
because of the assumption Arg( f̂ (2)) − 2Arg( f̂ (1)) is not an integer multiple of π ,
Arg( f̂ (1)) being 0 because f̂ (1) is real. Using the symmetry (23), we choose a2 such
that �(a2) > 0.

We have now spent all the symmetries present in the problem, and our goal is to
show that all the other an-s (n ≥ 0) are determined exactly by P

f . an for n < 0 can
then be found using the symmetry (21).

To this end, we apply induction. Suppose n ≥ 3 and we know the values of ak, 0 ≤
k ≤ n − 1. Since f ∈ F, either an = 0 or all such ak are non-zero. Computing
ρ3(0, 2, n) along similar lines to ρ3(0, 1, n) we obtain

ρ3(0, 2, n) = 2�(ana2an−2) + g(a0, a2, |an−2|, |an|), (27)

where g is as in (26).
If |an| = 0, then we deduce that f is a trigonometric polynomial of degree n −

1, because f ∈ F (recall condition (i) defining F). In that case, we have already
determined f . Else, an �= 0, and we proceed as follows.

Since we already know |an|, we need only to determine Arg(an). For any complex
number z �= 0, |z| and �(z) determines Arg(z) (considered as a number in (−π, π ])
up to sign. Hence, if we know �(zz1) and �(zz2) for two non-zero complex numbers
z1 and z2 such that Arg(z1) does not differ from Arg(z2) by an integer multiple of
π , then this data would be sufficient to determine Arg(z). To be more elaborate, if
θ, φ1, φ2 are the arguments of z, z1 and z2 respectively, then the given data determines
θ − φ1 and θ − φ2 upto signs (via the cosines of these quantities). Unless φ1 − φ2 is
an integer multiple of π , this is enough to determine θ . We apply this to the situation
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we have in our hands, with z = an , z1 = an−1 and z2 = a2an−2. None of them is 0
by condition (i) defining F, and the condition on the difference of arguments of z1 and
z2 follows from condition (ii) defining F. This enables us to determine Arg(an), and
hence an .

This completes the proof. �
Remark 5.1 The argument used in proof of Theorem 1.6 can also be used to recover
the function f if all its Fourier coefficients are real. E.g., if f is the indicator function
of an interval A in (−π, π ], then we can “rotate” f (symmetry 22) so that 0 is in the
centre of the interval A. Then all the Fourier coefficients of f are real, and we can
identify the interval A. This argument will also work for any set A which has a point
of reflectional symmetry when looked upon as a subset of T.

Proof of Proposition 1.7 Recall that the harmonic mean of a function f : Td → R is
defined as

HM( f ) =
(∫

Td

dλd(x)

f (x)

)−1

,

where λd is the Lebesgue measure on T
d . The fact that we know the distribution P

f

implies that we know the distribution P
t f for any 0 < t < 1, e.g. by performing an

independent site percolationwith survival probability t onP f . By taking complements,
that is by considering the point process of the excluded points (see [12] for more
details), this implies that we know the distributionP1−t f . But this enables us to recover
the harmonic mean HM(1 − t f ) of the function 1 − t f by the formula

HM(1 − t f ) = Sup{p ∈ [0, 1] : μp �f P
1−t f }.

Here μp is the standard site percolation on Z with survival probability p, and μp �f
P
1−t f means thatP1−t f is uniformly insertion tolerant at level p, that is,P1−t f [ω(0) =

1|ωout] ≥ p a.s. in ωout. For details, we refer to Definition 5.15 and Theorem 5.16 in
[12]. But

HM(1 − t f )−1 =
∫

Td

dλd(x)

1 − t f (x)
.

By expanding the integral on the right as a power series in t , we can recover∫
Td f k(x) dλd(x) for each k ≥ 1. But we have

∫

Td
f k(x) dλd(x) = k

∫ 1

0
ξ k−1ν f (ξ)dL(ξ),

where L is the Lebesgue measure on R, and ν f is the value distribution of f , given
by

ν f (ξ) = λd({x ∈ T
d : f (x) ≥ ξ}).
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Thus we have all the moments of the measure ν f (ξ)dL(ξ). Since ν f (ξ)dL(ξ) is a
compactly supported measure on the interval [0, 1], it is uniquely determined by its
moments (this follows, e.g., from the Weierstrass approximation theorem on the unit
interval). This enables us to recover the value distribution of f . �

6 Negative association for determinantal point processes

In this section we take up the proof of Theorem 1.4, and remark how it connects
with more general notions of negative association. In doing so, we will make use of a
discretization approach due to Goldman [5], which Lyons in [11] calls the transference
principle. To this end, we quote below Theorem 3.4 and Lemma 3.5 from [11]; they
correspond to Proposition 12 and Lemma 16 in Goldman’s original paper [5].

Theorem 6.1 Let (E, μ) and (F, ν) be two Radon measure spaces on locally com-
pact Polish sets. Let (Ai )

n
i=1 and (Bi )

n
i=1 be pairwise disjoint Borel subsets of E

and F respectively. Let λk ∈ [0, 1] with
∑

k λk < ∞. Let (φk) and (ψk) be ortho-
normal vectors in L2(E, μ) and L2(F, ν) respectively. Let K := ∑

k λkφk ⊗ φk

and L := ∑
k λkψk ⊗ ψk . If 〈1Ai ψ j , ψk〉 = 〈1Bi ψ j , ψk〉 for all possible i, j, k,

then the P
K distribution of (N (A1), . . . , N (An)) is equal to the P

L distribution of
(N (B1), . . . , N (Bn)). Here P

K and P
L are the probability measures corresponding

to the determinantal point processes induced by K and L on E and F respectively.

Proposition 6.2 Let μ be a Radon measure on a locally compact Polish space E.
Let (Ai )

N
i=1 be pairwise disjoint Borel subsets of E. Let φk ∈ L2(E, μ) for k ≥ 1 be

orthonormal. Then there exists a denumerable set F, pairwise disjoint subsets (Bi )
N
i=1

of F, and orthonormal vectors vk ∈ �2(F) such that 〈1Ai φ j , φk〉 = 〈1Bi v j , vk〉 for
all possible values of i, j, k.

We now apply these results in order to establish Theorem 1.4.

Proof of Theorem 1.4 First, we show that it suffices to consider the casewhere each Ai

is precompact. Because, we can consider an increasing sequence of compact sets Mr

such that ∪∞
r=1Mr = E . Now consider Ar

i = Ai ∩ Mr . If we have the statement of the
theorem for each Ar

i , then we can let r ↑ ∞ and observe that 1N (Ar
i )≤mi ↓ 1N (Ai )≤mi

to deduce the theorem in the general case.
Henceforth, we assume that each Ai is indeed precompact.
Denote A = ∪n

i=1Ai . Denote by K A the compression of the integral operator K
to the set A. In other words, K A is an integral operator with the kernel K A(x, y) =
1A(x)K (x, y)1A(y). So K A is a trace class operator. Let {φi }∞i=1 be an orthonormal
eigenbasis for the integral operator K A, with the eigenvalue λk corresponding to the
eigenfunction φk . Thus, the integral kernel K A(x, y) has the expansion

K A(x, y) =
∑

k

λkφk(x) ⊗ φk(y).

Here each λk ∈ [0, 1] because K must be a non-negative contraction.
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By Proposition 6.2, we have a countable set F , orthonormal vectors {vi }∞i=1 in
�2(F) and pairwise disjoint subsets (Bi )

n
i=1 of F such that 〈1Ai φ j , φk〉 = 〈1Bi v j , vk〉

for all possible values of i, j, k. Define L : �2(F) → �2(F) to be the integral operator
with the integral kernel

L(x, y) =
∑

k

λkvk(x) ⊗ vk(y).

Thus, L is a non-negative contraction on �2(F), and therefore, defines a determinantal
point process on F . ByTheorem6.1, this implies that the laws of (N (A1), . . . , N (An))

and (N (B1), . . . , N (Bn)) are identical.
But PL is the law of a determinantal point process on a countable space F , hence

by Theorem 6.5 in [10], PL has negative associations. Namely,

EPL [ f1 . . . fn] ≤ EPL [ f1] . . .EPL [ fn]

for any collection f1, . . . , fn of non-negative functions (on point configurations on
F) that are measurable with respect to disjoint subsets of F , and that are either all
increasing or all decreasing.

Setting fi = 1N (Bi )≤mi in the above, we get

P
L

(
n⋂

i=1

(N (Bi ) ≤ mi )

)

≤
n∏

i=1

P
L(N (Bi ) ≤ mi ).

But (N (A1), . . . , N (An)) has the same law as (N (B1), . . . , N (Bn)), so this implies

P
K

(
n⋂

i=1

(N (Ai ) ≤ mi )

)

≤
n∏

i=1

P
K (N (Ai ) ≤ mi ),

as desired. �
We observe the following corollary of the proof of Theorem 1.4:

Corollary 6.3 Let f : Zm≥0 → R and g : Zn≥0 → R be two functions which are co-
ordinate wise non-decreasing. Let {Ai }m

i=1 and {B j }n
j=1 be disjoint bounded Borel sets.

Let N (A) denote the number of points of the determinantal point process � with a con-
tinuous kernel. Let X f = f (N (A1), . . . , N (Am)) and Xg = g(N (B1), . . . , N (Bn)).
Then we have

E
[
X f Xg

] ≤ E
[
X f
]
E
[
Xg
]
.

Proof The proof is on similar lines to Theorem 1.4, using the transference principle
and utilizing the analogous negative correlation inequality for discrete determinantal
processes (as a special case of Theorem 6.5 in [10]). �
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6.1 Connection of Theorem 1.4 to more general notions of negative association

It can be shown that Theorem 1.4 implies much more general notions of negative
association. In the note [20], D. Yogeshwaran has shown that Corollary 6.3 implies
negative correlation of increasing (or decreasing) functionals of the point process
which are supported on disjoint subsets of Rd , provided that these functionals are
�-continuous (i.e., their set of discontinuities has �-measure 0).
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