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Abstract We study site percolation on Angel and Schramm’s uniform infinite planar
triangulation. We compute several critical and near-critical exponents, and describe
the scaling limit of the boundary of large percolation clusters in all regimes (sub-
critical, critical and supercritical). We prove in particular that the scaling limit of the
boundary of large critical percolation clusters is the random stable looptree of index
3 = 2, which was introduced in Curien and Kortchemski (Random stable looptrees.
arXiv:1304.1044, 2014). We also give a conjecture linking looptrees of any index
α ∈ (1, 2) with scaling limits of cluster boundaries in random triangulations deco-
rated with O(N ) models.
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1 Introduction

We investigate site percolation on large random triangulations and in particular on the
uniform infinite planar triangulation (in short, UIPT) which was introduced by Angel
and Schramm [4]. In particular, we compute the critical and near-critical exponents
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304 N. Curien, I. Kortchemski

Fig. 1 A site percolated triangulation and the interfaces separating the clusters (color figure online)

related to the perimeter of percolation interfaces andwe identify the scaling limit of the
boundary of large clusters in all regimes (critical, subcritical and supercritical (Fig. 1)).
In the critical case, this limit is shown to beL3/2, the stable looptree of parameter 3/2
introduced in [13]. Our method is based on a surgery technique inspired from Borot,
Bouttier and Guitter and on a tree decomposition of triangulations with non-simple
boundary. We finally state precise conjectures linking the whole family of looptrees
(Lα)1<α<2 to scaling limits of cluster boundaries of random planar triangulations
decorated with O(N ) models.

TheUIPTThe probabilistic theory of randomplanarmaps and its physics counterpart,
the Liouville 2D quantum gravity, is a very active field of research. See in particular
the work of Le Gall and Miermont on scaling limits of large random planar maps and
the Brownian map [31,35]. The goal is to understand universal large-scale properties
of random planar graphs or maps. One possible way to get information about the
geometry of these random lattices is to understand the behavior of (critical) statistical
mechanics models on them. In this paper, we focus on one of the simplest of such
models: site percolation on random triangulations.

Recall that a triangulation is a proper embedding of a finite connected graph in the
two-dimensional sphere, considered up to orientation-preserving homeomorphisms,
and such that all the faces have degree 3. We only consider rooted triangulations,
meaning that an oriented edge is distinguished and called the root edge. Note that we
allow loops andmultiple edges.WewriteTn for the set of all rooted triangulationswith
n vertices, and let Tn be a random triangulation chosen uniformly at random among
Tn . Angel and Schramm [4] have introduced an infinite random planar triangulation
T∞, called the Uniform Infinite Planar Triangulation (UIPT), which is obtained as the
local limit of Tn as n → ∞. More precisely, T∞ is characterized by the fact that for
every r ≥ 0 we have the following convergence in distribution

Br (Tn)
(d)−−−→

n→∞ Br (T∞), (1)
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Percolation on random triangulations 305

Fig. 2 On the left, a part of a site-percolated triangulation with the interface going through the root edge
and the hull of the cluster of the origin. The interface is drawn using the rules displayed in the middle
triangles. On the right, the boundary of the hull is in bold black line segments and has perimeter 16 (color
figure online)

where Br (m) is the map formed by the edges and vertices of m that are at graph
distance smaller than or equal to r from the origin of the root edge. This infinite
random triangulation and its quadrangulation analog (the UIPQ, see [10,28]) have
attracted a lot of attention, see [5,11,19] and the references therein.

Percolation Given the UIPT, we consider a site percolation by coloring its vertices
independently white with probability a ∈ (0, 1) and blackwith probability 1 − a. This
model has already been studied by Angel [2], who proved that the critical threshold
is almost surely equal to

ac = 1/2.

His approach was based on a clever Markovian exploration of the UIPT called the
peeling process. See also [3,11,30] for further studies of percolation on random maps
using the peeling process.

In this work, we are interested in the geometry of the boundary of percolation clus-
ters and use a different approach. We condition the root edge of the UIPT on being of
the form ◦ → •, which will allow us to define the percolation interface going through
the root edge. The white cluster of the origin is by definition the set of all the white ver-
tices and edges between them that can be reached from the origin of the root edge using
white vertices only. We denote byH◦

a its hull, which is obtained by filling-in the holes
of the white cluster except the one containing the target of the root edge called the exte-
rior component (see Fig. 2; Sect. 2.2 below for a precise definition). Finally, we denote
by ∂H◦

a the boundary of the hull, which is the graph formed by the edges and vertices
ofH◦

a adjacent to the exterior (see Fig. 2), and let #∂H
◦
a be its perimeter, or length, that

is the number of half edges of ∂H◦
a belonging to the exterior. Note that ∂H

◦
a is formed

of discrete cycles attached by some pinch-points. It follows from the work of Angel
[2] that, for every value of a ∈ (0, 1), the boundary ∂H◦

a is always finite (if an infinite
interface separating a black cluster from a white cluster existed, this would imply the
existence of both infinite black and white clusters, which is intuitively not posible).

One of our contributions is to find the precise asymptotic behavior for the probability
of having a large perimeter in the critical case.
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306 N. Curien, I. Kortchemski

Theorem 1.1 (Critical exponent for the perimeter) For a = ac = 1/2 we have

P

(
#∂H◦

1/2 = n
)

∼
n→∞

3

2 · |�(−2/3)|3 · n−4/3,

where � is Euler’s Gamma function.

It is interesting to mention that the exponent 4/3 for the perimeter of the boundary
of critical clusters also appears when dealing with the half-plane model of the UIPT:
using the peeling process, it is shown in [3] that P(#∂H◦

ac > n) � n−1/3, where
an � bn means that the sequence an/bn is bounded from below and above by certain
constants.

The main idea used to establish Theorem 1.1 is a tree representation of the 2-
connected components of ∂H◦

a , which we prove to be closely related to the law of a
certain two-typeGalton–Watson tree.We reduce the study of this two-type random tree
to the study of a standard one-type Galton–Watson tree by using a recent bijection due
to Janson and Stefánsson [23], which enables us to use the vast literature on random
trees and branching processes to make exact computations.

This method also allows us to fully understand the probabilistic structure of the
hull of the white cluster and to identify the scaling limits (for the Gromov–Hausdorff
topology) in any regime (subcritical, critical and supercritical) of ∂H◦

a , seen as a
compact metric space, when its perimeter tends to infinity. In particular, we estab-
lish that the scaling limit of ∂H◦

ac conditioned to be large, appropriately rescaled,
is the stable looptree of parameter 3/2 introduced in [13], whose definition we now
recall.

Stable looptrees Random stable looptrees are random compact metric spaces and
can, in a certain sense, be seen as the dual of the stable trees introduced and studied in
[16,33]. They are constructed in [13] using stable processes with no negative jumps,
but can also be defined as scaling limits of discrete objects: With every rooted oriented
tree (or plane tree) τ , we associate a graph, called the discrete looptree of τ and denoted
by Loop(τ ), which is the graph on the set of vertices of τ such that two vertices u
and v are joined by an edge if and only if one of the following three conditions are
satisfied in τ : u and v are consecutive siblings of a same parent, or u is the first
sibling (in the lexicographical order) of v, or u is the last sibling of v, see Fig. 3.
Note that in [13], Loop(τ ) is defined as a different graph, and that here Loop(τ )

is the graph which is denoted by Loop′(τ ) in [13]. We view Loop(τ ) as a compact
metric space by endowing its vertices with the graph distance (every edge has unit
length).

Fixα ∈ (1, 2).Now let τn be aGalton–Watson tree conditionedonhavingn vertices,
whose offspring distribution μ is critical and satisfies μk ∼ c · k−1−α as k → ∞ for
a certain c > 0. In [13, Section 4.2], it is shown that there exists a random compact
metric space Lα , called the stable looptree of index α, such that

n−1/α · Loop(τn)
(d)−−−→

n→∞ (c|�(−α)|)−1/α · Lα, (2)
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Percolation on random triangulations 307

Fig. 3 A plane tree τ (left) and its looptree Loop(τ ) (middle and right)

Fig. 4 An α = 3/2 stable tree, and its associated looptree L3/2, embedded non isometrically and non
properly in the plane (color figure online)

where the convergence holds in distribution for the Gromov–Hausdorff topology and
where c · M stands for the metric space obtained from M by multiplying all distances
by c > 0. Recall that theGromov–Hausdorff topology gives a sense to the convergence
of (isometry classes) of compact metric spaces, see Sect. 4.3.1 below for the definition
(Fig. 4).

It has been proved in [13] that the Hausdorff dimension of Lα is almost surely
equal to α. Furthermore, the stable looptrees can be seen as random metric spaces
interpolating between the unit length circle C1 := 1

2π · S1 and Aldous’ Brownian
CRT [1] (which we view here as the tree Te coded by a normalized Brownian excur-
sion e, see [32]). We are now in position to describe the possible scaling limits of
the boundary of percolation clusters in the UIPT. For fixed a ∈ (0, 1), let ∂H◦

a(n)

be the boundary of the white hull of the origin conditioned on the event that H◦
a

is finite and that the perimeter of ∂H◦
a is n. We view ∂H◦

a(n) as a compact met-
ric space by endowing its vertices with the graph distance (every edge has unit
length).

Theorem 1.2 (Scaling limits for ∂H◦
a when #H◦

a < ∞) For every a ∈ (0, 1), there
exists a positive constant Ca such that the following convergences hold in distribution
for the Gromov–Hausdorff topology:
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308 N. Curien, I. Kortchemski

(i) when 1/2 < a < 1, n−1 · ∂H◦
a(n)

(d)−−−→
n→∞ Ca · C1,

(i i) when a = ac = 1/2, n−2/3 · ∂H◦
a(n)

(d)−−−→
n→∞ 31/3 · L3/2,

(i i i) when 0 < a < 1/2, n−1/2 · ∂H◦
a(n)

(d)−−−→
n→∞ Ca · Te.

See Theorem 1.3 below for more details about the constants Ca.

Although Theorem 1.2 does not imply that 1/2 is the critical threshold for perco-
lation on the UIPT (as shown in [2]), it is a compelling evidence for it. Let us give
a heuristic justification for the three limiting compact metric spaces appearing in the
statement of this theorem. Imagine that we condition the cluster of the origin to be
finite and have a very large, but finite, boundary. In the supercritical regime (i), as
soon as the cluster grows arms it is likely to become infinite, hence the easiest way
to stay finite is to look like a loop. On the contrary, in the subcritical regime (i i i),
having a large boundary costs a lot, so the cluster adopts the shape which maximizes
its boundary length for fixed size: the tree. In the critical case (i i), these effects are
balanced and a fractal object emerges: not quite a loop, nor a tree, but a looptree!

The proof of Theorem 1.2 gives the expression of Ca in terms of certain quantities
involving Galton–Watson trees. This allows us to obtain the following near-critical
scaling behavior.

Theorem 1.3 (Near-critical scaling constants) The constants Ca satisfy the following
near-critical asymptotic behavior:

Ca ∼
a↓1/2

2√
3

·
(
a − 1

2

)
and Ca ∼

a↑1/2
33/4

8
·
(
1

2
− a

)−1/2

.

See (21) below for the exact expression of Ca .
Let usmention that the exponents appearing in the previous theorems are expected to

be universal (see Section 5.2 for analogous results for type II triangulations). Finally,
we believe that our techniques may be extended to prove that the stable looptrees
(Lα : α ∈ (1, 2)) give the scaling limits of the outer boundary of clusters of suitable
statistical mechanics models on random planar triangulations, see Sect. 5.3.

Strategy and organization of the paper. In Sect. 2, we explain how to decompose a
percolated triangulation into a white hull, a black hull and a necklace by means of a
surgery along a percolation interface. In Sect. 3, we study the law of the white hull by
using the so-called Boltzmann measure with exposure and its relation with a certain
Galton–Watson tree. In Sect. 4, we prove our main results by carrying out explicit
calculations. Finally, Sect. 5 is devoted to comments, extensions and conjectures.

2 Decomposition of percolated triangulations

In this section, we explain how to decompose certain percolated triangulations into
a pair of two hulls glued together by a so-called necklace of triangles. This sort of
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Percolation on random triangulations 309

decomposition was first considered by Borot, Bouttier and Guitter [7,8]. We then
associate a natural tree structure to a triangulation with boundary. The crucial feature
is that when considering percolation on the UIPT, the random tree coding the hull
turns out to be related to a Galton–Watson tree with an explicit offspring distribution
in the domain of attraction of a stable law of index 3/2.

2.1 Percolated triangulations

A planarmap is a proper embedding of a finite connected graph in the two-dimensional
sphere, considered up to orientation-preserving homeomorphisms. The faces of the
map are the connected components of the complement of the edges, and the degree of
a face is the number of edges that are incident to it, with the convention that if both
sides of an edge are incident to the same face, this edge is counted twice.

As usual in combinatorics, we will only consider rooted maps that are maps with a
distinguished oriented root edge. If m is a planar map, we will denote by V(m),E(m)

and F(m) respectively the sets of vertices, edges and faces of m.
A triangulation is a (rooted) planarmapwhose faces are all triangles, i.e. have degree

three. Self-loops and multiples edges are allowed. A triangulation with boundary T
is a planar map whose faces are triangles except the face adjacent on the right of the
root edge called the external face, which can be of arbitrary degree. The size |T | of
T is its total number of vertices. The boundary ∂T is the graph made of the vertices
and edges adjacent to the external face of T and its perimeter #∂T is the degree of the
external face. The boundary is simple if the number of vertices of ∂T is equal to its
perimeter, or equivalently if ∂T is a discrete cycle. In the following, we denote byTn,p

the set of all triangulations with boundary of perimeter p having n vertices in total.
For reasons that will appear later, the set T2,2 is made of the “triangulation” made of
a single edge. By splitting the root edge of a triangulation into two new edges seen as
part of a new triangle (by adding a loop) it follows that #Tn,1 is also the number of
rooted triangulations with n vertices in total. When working with the UIPT we will
also allow triangulations to be infinite, see [14] for background (in the quadrangular
case).

A percolated triangulation is by definition a triangulation T with a coloring of
its vertices in black or white. We say that the percolation is nice if the root edge
joins a white vertex to a black vertex (which we write ◦ → •). Note that this forces
a percolation interface to go through the root edge, and that the latter cannot be a
self-loop. The origin of the root edge is called the white origin and its target is called
the black origin.

In the following, we always assume that the percolation is nice.

2.2 Necklace surgery

In this section, we assume in addition that the percolation interface going through the
root edge is finite, see Fig. 5.
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The white and black hulls Let T be a nicely percolated triangulation (possibly
infinite). The white cluster is by definition the submap consisting of all the edges
(together with their extremities) whose endpoints are in the same white connected
component as the white origin. The complement of this cluster consists of connected
components. The white hull H◦ is the union of the white cluster and of all the lat-
ter connected components, except the one containing the black origin (see Fig. 5).
HenceH◦ is a triangulation with a (non necessarily simple) boundary, and is by con-
vention rooted at the edge whose origin is the white origin (with the external face
lying on its right). Note that by definition all the vertices on the boundary of H◦ are
white.

We similarly define the black cluster as the submap consisting of all the edges
(togetherwith their extremities)whose endpoints are in the same connected component
as the black origin. The black hull H• is similarly obtained by filling-in the holes of
the black cluster except the one containing the white origin. The map H• is thus a
triangulation with a black boundary which is rooted at the edge whose origin is the
black origin. Recall that the perimeters of H◦ and H• are respectively denoted by
#∂H◦ and #∂H•. These quantities are finite by the assumption made in the beginning
of this section. However, |H•| and |H◦| may be infinite.

Surgery Imagine that using a pair of scissors, we separate the two hulls H◦ and H•
by cutting along their boundaries. After doing so, we are left with the two hulls H◦
and H• which are now separated, together with the map that was stuck in-between
H• and H◦, which is called the necklace [7,8]. During this operation, we duplicate
in the necklace the vertices which are pinch-points in the boundary of H◦ or H•, see
Fig. 5.

If n,m ≥ 0 are integers such that m + n > 0, a (n,m)-necklace is by definition a
triangulation with two simple boundaries, a “white” one of perimeter n and a “black”
one of perimeter m, such that every vertex belongs to one of these two boundaries
and such that every triangle has at least one vertex on each boundary, rooted along an
edge joining a white vertex to a black one. The root of the necklace obtained from a
nicely percolated triangulation T is the root of T . It is an easy exercise to show that
for n,m ≥ 0,

#{(n,m)-necklaces} =
(
n + m

n

)
.

It is plain that the last decomposition is invertible, in other words the following
result holds (Fig. 6):

Fig. 6 Examples of 0–5, 1–5, 2–12, 8–4 and 3–1 necklaces

123



312 N. Curien, I. Kortchemski

Proposition 2.1 (Necklace surgery) Every nicely percolated triangulation, such that
the interface going through the root edge is finite, can be unambiguously decomposed
into a pair of two triangulations with boundary (H◦,H•) forming the white and black
hulls glued together along a (#∂H◦, #∂H•)-necklace.

In the next subsection, we further decompose a hull according to the tree structure
provided by its two-connected components.

2.3 Tree representation of triangulation with boundary

We denote by T the set of all plane (rooted and oriented) trees, see [32,37] for the
formalism. In the following, tree will always mean plane tree. We will view each
vertex of a tree τ as an individual of a population whose τ is the genealogical tree.
The vertex ∅ is the ancestor of this population and is called the root. The degree of a
vertex u ∈ τ is denoted by deg(u) and its number of children is denoted by ku . The
size of τ is by definition the total number of vertices and will be denoted by |τ | and
H(τ ) is the height of the tree, that is, its maximal generation.

We denote by T
B the set of all triangulations with boundary and by T

S the set
of all triangulations with simple boundary (also called simple triangulations in the
sequel). Let T be a triangulation with boundary. We recall that the perimeter #∂T of
T is the number of half-edges on its boundary. We define the set E(T ) of all exterior
vertices of T as the set of all the vertices on the boundary of T , and I(T ) as the
complement of E(T ) in V(T ), which are the so-called inner vertices of T . Note that
#E(T ) = #∂T when T has a simple boundary, and that #E(T ) < #∂T otherwise. If
T is not a simple triangulation, then T can be decomposed into #∂T − #E(T ) + 1
different simple triangulations, attached by some pinch-points, see Fig. 7.

Imagine that we scoop out the interior of all these simple triangulation components
and duplicate each edgewhose sides both belong to the external face into two “parallel”
edges (see Fig. 7). We thus obtain a collection of cycles glued together, which we call
the scooped-out triangulation and denote it by Scoop(T ). Note that Scoop(T ) may
differ from the boundary ∂T of T only because some edges may have been duplicated,
see Fig. 7. Note however that the underlying metric spaces are identical.

The scooped-out triangulation Scoop(T ) can naturally be represented as a tree.
More precisely, with Scoop(T ) we associate a tree with two types of vertices, white

Fig. 7 From left to right, a triangulation with boundary, its scooped-out triangulation and the tree structure
underneath (color figure online)
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Percolation on random triangulations 313

and black, as follows. Inside each cycle, add a new black vertex which is connected to
all the white vertices belonging to this cycle. The resulting tree is denoted by Tree(T )

and is rooted at the corner adjacent to the target of the root edge of T (see Fig. 7).
By construction, Tree(T ) is a plane tree such that all the vertices at even (resp. odd)
height are white (resp. black). If t is a plane tree, let •(t) (resp. ◦(t)) be the set of all
vertices at odd (resp. even) height. If t = Tree(T ), then the vertices belonging to ◦(t)
correspond to the exposed vertices of T and the following relations are easy to check:

# ◦ (t) = #E(T ) (3)

|t | = # • (t) + # ◦ (t) = #∂T + 1 (4)

∑
u∈•(t)

deg(u) = #∂T (5)

∑
u∈◦(t)

(1 + ku) = |t |. (6)

This scooping-out procedure is a bijection between the set of all triangulations with
boundary and the set of all plane trees having at least two vertices together with
a finite sequence (Tu, u ∈ •(t)) of triangulations with simple boundary such that
#∂Tu = deg(u) (which correspond to the triangulations inside each cycle). Recall
that T2,2, the set of all triangulations with simple boundary of perimeter 2 and no
internal vertices, is by convention composed by a degenerate triangulation made of a
single edge : We use this triangulation to close a double edge into a single one, see
Fig. 7.

2.4 Enumerative results

In the previous section, we have explained how to decompose a triangulation with
boundary into a tree of triangulations with simple boundary. We now present some
useful enumerative results on triangulations with simple boundary.

We denote by W the generating function of triangulations with simple boundary
having weight x per inner vertex and y per edge on the boundary, that is

W (x, y) :=
∑

T∈TS

x#I(T )y#∂T = yx + y2 + · · · .

Note that the contribution of the “edge triangulation” is y2 in the previous sum. We
also let wn,p = [xn][y p]W be the number of triangulations with simple boundary of
perimeter p ≥ 1 and n internal vertices. Following Tutte [40], Krikun [29] calcu-
lated the generating function W (x, y). In particular, for y ∈ [0, 1/12] the radius of
convergence of W as a function of x is

rc := 1√
432

= 1

12
√
3
,
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314 N. Curien, I. Kortchemski

and an explicit formula for wn,p can be found in [29] (Krikun uses the number of
edges as size parameter; to translate his formulas recall that if a triangulation of the
p-gon has n inner vertices then by Euler’s formula it has 3n + 2p − 3 edges). We will
not need its exact expression, but we will heavily rely on the following asymptotic
estimates:

wn,p ∼
n→∞ Cp · n−5/2 r−n

c ,

Cp = 3p−2 · p · (2p)!
4
√
2π · (p!)2 ∼

p→∞
1

36π
√
2

· √
p 12p. (7)

In particular, note that the number of triangulations with n vertices is

#Tn,1 = wn−1,1 ∼
n→∞

1

72
√
6π

· n−5/2 r−n
c . (8)

We will also use the explicit expression of W (rc, y):

W (rc, y) = y

2
+ (1 − 12y)3/2 − 1

24
√
3

. (9)

This expression can be obtained from [29, (4)] after a change of variables (with the
notation of Krikun we have formally W (x3, yx2) = x3U0(x, y)). For every integer
k ≥ 1, we also introduce

qk := 1

12k
· [yk]W (rc, y)

= 1

12k
·

∞∑
n=0

wn,kr
n
c . (10)

Standard singularity analysis shows that

qk ∼
k→∞

1

32
√
3π

· k−5/2. (11)

In particular, note that the series
∑

k≥1 qk is convergent.

3 Boltzmann triangulations with exposure and GW trees

This section is devoted to the study of the tree structure of a random triangulation
with boundary distributed according to the Boltzmann measure with exposure defined
below. This measure will naturally arise in Proposition 4.2 when considering the hulls
in a Bernoulli site percolation of the UIPT.
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Percolation on random triangulations 315

Definition 3.1 (Boltzmann measure with exposure on triangulations) For every
a ∈ (0, 1), we introduce a measure Qa on the set of all triangulations with (general)
boundary, called the critical Boltzmann measure with exposure a, defined by

Qa(T) = r#V(T )
c 12−#∂T a#E(T ), ∀ T ∈ T

B . (12)

Note that in this definition, rc is elevated to the power #V(T ) and not to the power
#I(T ) as in W . Our goal is now to describe the “law” of the tree of components of a
triangulation under the measure Qa .

3.1 A two-type Galton–Watson tree

Given two probability measures μ◦ and μ• on {0, 1, 2, 3, . . .}, we consider a two-
type Galton–Watson tree where every vertex at even (resp. odd) height has a number
of children distributed according to μ◦ (resp. μ•), all independently of each other.
Specifically, using the notation ku for the number of children of a vertex u in a plane
tree, its law, denoted by GWμ◦,μ• , is characterized by the following formula:

GWμ◦,μ•(t) =
∏

u∈•(t)

μ•(ku)
∏

u∈◦(t)

μ◦(ku), ∀ t ∈ T.

Recall that a ∈ (0, 1). To simplify notation, set γ = √
3 − 1, ξ = γ /(γ + 2a) and

define two probability distributions μ• and μ◦
a on {0, 1, 2, 3, . . .} by

μ•( j) = q j+1

Z•
, μ◦

a( j) = (1 − ξ)ξ j ( j ≥ 0),

where Z• is a normalizing constant. Using (9), simple computations show that
Z• = γ rc/2. The following proposition is the key of this work:

Proposition 3.2 For every a ∈ (0, 1) and for every plane tree t such that |t | ≥ 1, we
have

Qa

(
{T ∈ T

B; Tree(T ) = t}
)

=
(
rc(2a + γ )

2

)|t |
· GWμ◦

a ,μ
•(t).

Proof Fix t ∈ T with |t | ≥ 1. Using (12), the scoop decomposition of Sect. 2.3 [and
its consequence (3)], (5), the definition of the qk in (10), then (4) and finally (6), we
get that

Qa({T : Tree(T ) = t}) = 1

12#∂T

∏
u∈◦(t)

arc
∑

n1,...,n#•(t)≥0

∏
u∈•(t)

rnic wni ,deg(u)

=
(5),(10)

∏
u∈◦(t)

arc
∏

u∈•(t)

qku+1
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=
(4)

Z#•(t)+#◦(t)•
∏

u∈◦(t)

arc
Z•

∏
u∈•(t)

qku+1

Z•

=
(6)

(
Z•
ξ

)#•(t)+#◦(t) ∏
u∈◦(t)

arc
Z•

ξ ku+1
∏

u∈•(t)

qku+1

Z•
.

Since ξarc/Z• = 1 − ξ , this completes the proof. ��
Remark 3.3 A simple computation shows that the mean of μ• is equal to m• = 1/γ
and that the mean of μ◦

a is m◦
a = γ /(2a). In particular m•m◦

a = 1/(2a), so that the
two-type Galton–Watson tree is critical if and only if a = 1/2.

The following proposition will be useful when we will deal with the UIPT. Recall
that Tn,p is the set of all triangulations with general boundary of perimeter p having
n vertices in total.

Proposition 3.4 For every fixed p ≥ 1, we have Qa(Tn,p) ∼ Ka(p) · n−5/2 as
n → ∞, with

Ka(p) =
(
rc(γ + 2a)

2

)p+1

GWμ◦
a ,μ

•

⎡
⎣ ∑
u∈•(τ )

φ(ku)1|τ |=p+1

⎤
⎦ ,

where

φ(k) = Ck+1

12k+1qk+1
∼

k→∞
4

9

√
6

π
· k3.

Proof By (4), if T ∈ Tn,p and t = Tree(T ), then 1 ≤ # ◦ (t) ≤ p. Using the scoop-out
decomposition, we can thus write

Qa(Tn,p) = 1

12p
·

∑
t∈T|t |=p+1

∏
◦(t)

arc
∑

n1+···+n#•(t)=n−#◦(t)

∏
u∈•(t)

rnic wni ,deg(u).

(13)

As n → ∞, a standard phenomenon occurs: in the second sum appearing in (13), the
only terms n1, . . . , n#•(t) that have a contribution in the limit are those where one term
is of order n whereas all the others remain small. More precisely, we use the following
lemma whose proof is similar to that of [4, Lemma 2.5] and is left to the reader:

Lemma 3.5 Fix an integer k ≥ 0 and β > 1. For every i ∈ {1, 2, . . . , k}, let
(a(i)

n ; n ≥ 0) be a sequence of positive numbers such that a(i)
n ∼ Ci · n−β as n → ∞.

Then

lim
n→∞ nβ

∑
n1+···+nk=n

k∏
i=1

a(i)
ni =

k∑
i=1

Ci

∏
j �=i

∞∑
n=0

a( j)
n .
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Multiplying both sides of (13) by n5/2, by (7) we are in position to apply Lemma
3.5 together with the definition of qk (10) to get:

lim
n→∞ n5/2Qa(Tn,p) = 1

12p
∑
t∈T|t |=p+1

∏
◦(t)

arc
∑
u∈•(t)

Cdeg(u)

∏
v∈•(t)
v �=u

12deg(v)qdeg(v)

=
(5)

∑
t∈T|t |=p+1

∏
◦(t)

arc
∑
u∈•(t)

Cdeg(u)

12deg(u)

∏
v∈•(t)
v �=u

qdeg(v)

=
∑
t∈T|t |=p+1

∏
◦(t)

arc
∏

v∈•(t)

qdeg(v)

∑
u∈•(t)

Cdeg(u)

12deg(u)qdeg(u)
.

Performing the same manipulations as in the proof of Proposition 3.2, the last display
is equal to

=
(
rc(γ + 2a)

2

)|t | ∑
t∈T|t |=p+1

∏
u∈◦(t)

μ◦
a(ku)

∏
u∈•(t)

μ•(ku)
∑
u∈•(t)

Cku+1

12ku+1qku+1

=
(
rc(γ + 2a)

2

)p+1

GWμ◦
a ,μ

•

⎡
⎣ ∑
u∈•(τ )

φ(ku)1|τ |=p+1

⎤
⎦ ,

whereφ(k) = Ck+1/(12k+1qk+1) is asymptotically equivalent to 4
9

√
6
π

· k3 as k → ∞
by (11) and (7). ��

We conclude this section by giving the asymptotic behavior of the expectation
appearing in the definition of Ka(p) as p → ∞, in the critical case a = 1/2:

GWμ◦
1/2,μ

•

⎡
⎣ ∑
u∈•(τ )

φ(ku)1|τ |=p+1

⎤
⎦ ∼

p→∞
31/6

�(−2/3)2 · √
2π

· p1/3. (14)

The proof is postponed to the appendix (see Corollary 6.7).

3.2 Reduction to a one-type Galton–Watson tree

We have seen in the last section that the “law” of the tree associated with a Boltzmann
triangulation with exposure is closely related to a two-type Galton–Watson tree. In
order to study this random tree, we will use a bijection due to Janson and Stefáns-
son [23, Section 3] which will map this two-type Galton–Watson tree to a standard
one-type Galton–Watson tree, thus enabling us to use the vast literature on this sub-
ject.

We start by describing this bijection, denoted by G (the interested reader is referred
to [23] for further details). First set G(τ ) = {∅} if τ = {∅} is composed of a sin-
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318 N. Curien, I. Kortchemski

Fig. 8 An example of a tree τ (left) where vertices at even (resp. odd) generation have been colored in
white (resp. black), and two representations of G(τ ) (middle and right) (color figure online)

gle vertex. Now fix a tree τ �= {∅}. The tree G(τ ) has the same vertices as τ , but
the edges are different and are defined as follows. For every white vertex u repeat
the following operation : denote u0 be the parent of u (if u �= ∅) and then list
the children of u in lexicographical order u1, u2, . . . , uk . If u �= ∅ draw the edge
between u0 and u1 and then edges between u1 and u2, . . . , uk−1 and uk and finally
between uk and u. If u is a white leaf this reduces to draw the edge between u0
and u. One can check that the graph G(τ ) defined by this procedure is a tree. In
addition, G(τ ) is rooted at the corner between the root of τ and its first child (see
Fig. 8).

This mapping thus has the property that every vertex at even generation is mapped
to a leaf, and every vertex at odd generation with k ≥ 0 children is mapped to a vertex
with k + 1 children. The following result is implicit in [23, Appendix A], but for sake
of completeness we give a proof.

Proposition 3.6 ([23]) Let ρ,μ be two probability measures on {0, 1, 2, . . .}. Assume
thatρ is a geometric distribution, i.e. there existsλ ∈ (0, 1) such thatρ(i) = (1 − λ)λi

for i ≥ 0. Then the image of GWρ,μ under G is the Galton–Watson measure GWν ,
where ν is defined by:

ν0 = 1 − λ, νk = λ · μk−1, k ≥ 1.

Proof Fix a tree t . Color in white the vertices at even generation in t and in black the
other vertices. Recall that •(t) (resp. ◦(t)) is the set of all black (resp. white) vertices.
Then, using the fact that # • (t) + # ◦ (t) = ∑

u∈◦(t)(1 + ku), write

GWρ,μ(t) =
∏

u∈•(t)

μku

∏
u∈◦(t)

λku+1(1/λ − 1)

= λ#•(t)+#◦(t)
∏

u∈•(t)

μku

∏
u∈◦(t)

(1/λ − 1)

=
∏

u∈◦(t)

(1 − λ) ·
∏

u∈•(t)

λμku .
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Since G maps white vertices to leaves and black vertices with k children to vertices
with k + 1 children, the last expression implies that for a tree τ :

GWρ,μ(G−1(τ )) =
∏
u∈τ
ku=0

(1 − λ)
∏
u∈τ
ku>0

λ · μku−1.

The conclusion follows. ��
Application In virtue of Proposition 3.6 (appliedwithμ = μ• and ρ = μ◦

a), the image
ofGWμ◦

a ,μ
• by G is a standard Galton–Watson measure with offspring distribution νa

on {0, 1, . . .} defined by

νa(0) = 2a

γ + 2a
, νa(k) = 2

rc(γ + 2a)
qk (k ≥ 1).

Using (9), it is a simple matter to check that the generating function of νa is given by:

Fa(z) =
∑
i≥0

νa(i)z
i = 2a − 1 + √

3z + (1 − z)3/2

2a − 1 + √
3

. (15)

In particular F ′
a(1) = (1 + 2(a − 1/2)/

√
3)−1, so that νa is critical if and only if

a = 1/2. When a = 1/2, to simplify notation we write ν = ν1/2. Then note that:

ν(0) =
√
3

3
and ν(i) = 24 · qi (i ≥ 1),

∑
i≥0

ν(i)zi = z + (1 − z)3/2√
3

,

ν(k) ∼
k→∞

√
3

4
√

π
· k−5/2. (16)

In particular, this enables us to find the asymptotic behavior of the probability that our
two-type Galton–Watson tree has total size n (see Corollary 6.7 for this well-known
fact):

GWμ◦
1/2,μ

• (|τ | = n) = GWν (|τ | = n) ∼
n→∞

31/3

|�(−2/3)| · n−5/3. (17)

Remark 3.7 The exponent 5/3 in (17) also appears (O. Bernardi, personal commu-
nication) when analyzing the Boltzmann distribution with exposure using generating
functions and methods from the theory of analytic combinatorics.

4 Study of the percolation hull

With the tools developed in the previous sections, we can now proceed to the proofs
of our main results. We start by identifying the law of the hulls of a nicely percolated
UIPT (Proposition 4.2), and then connect it with theBoltzmannmeasurewith exposure
introduced in Sect. 3.
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4.1 Identification of the law of the hull of the origin

Fix a ∈ (0, 1). Recall from (1) the construction of the UIPT as the distributional local
limit of uniform triangulations of size tending to infinity. Given T∞, we define a
site percolation (percolation in short) as a random bi-coloring of the vertices of T∞,
obtained by painting independently each vertex white with probability a and black
with probability 1 − a, see Fig. 2. Recall that Angel [2] has proved that the critical
threshold parameter for percolation is almost surely ac := 1/2 and that, furthermore,
at ac there is no percolation. Angel also proved that on the event that the percolation
is nice, the percolation interface going through the root edge is finite in all regimes
(subcritical, critical and supercritical) allowing us to perform the necklace surgery.
Since almost surely the UIPT has one end, only one of the two hulls H◦ and H• is
infinite. In the sequel, we will implicitly use the above remarks without further notice.

To stress the dependence in a ∈ (0, 1), conditionally on the percolation on theUIPT
being nice, we denote by H◦

a and H•
a respectively the white and black hulls H◦ and

H•. We start with a useful remark based on symmetry.

Proposition 4.1 We have the following equality in distribution

(
H◦

a,H
•
a

) (d)= (
H•

1−a,H
◦
1−a

)
.

Proof This is a consequence of the fact that flipping all the colors into their opposite
reverses the roles of H◦ and H•, and exchanges a with 1 − a. ��

Proposition 4.2 Let h ∈ T
B be a finite triangulation with boundary. Set n = #∂h. For

every m ≥ 1, we have

P
(
H◦

a = h, #∂H•
a = m

) = 72
√
6π · 12nQa(h) ·

(
n + m

n

)
· 12mK1−a(m).

Proof For every N ≥ 1, let TN be a uniform triangulation with N vertices. Condition-
ally on TN , sample a site percolation on TN with parameter a ∈ (0, 1). On the event
on which the percolation is nice, denote respectively by H◦

a,N and H•
a,N the white

and black hulls. Recall the notation Tn,p for the set of all triangulations with bound-
ary of perimeter p and n vertices in total. By the necklace decomposition of Sect.
2.2, on the event {#∂H•

a,N = m,H◦
a,N = h}, the triangulation TN is a gluing, along a

(n,m)-necklace, of the hull h with another triangulation with boundary of perimeter
m totalizing N − #V(h) vertices, and such that all the vertices of the boundary of h
are white and those on the boundary of the second triangulation are black. Hence,

P
(
#∂H•

a,N = m,H◦
a,N = h

)

= 1

#TN ,1
a#E(h)

(
n + m

n

) ∑
t∈TN−#V(h),m

(1 − a)#E(t)
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= 12n

r Nc #TN ,1

r#V(h)
c a#E(h)

12#∂h

(
n + m

n

)
12m

∑
t∈TN−#V(h),m

r#V(t)
c (1 − a)#E(t)

12#∂t

= 12n

r Nc #TN ,1
Qa(h)

(
n + m

n

)
12mQ1−a(TN−#V(h),m).

Since TN converges locally in distribution towards the UIPT [see (1)], using Propo-
sition 3.4 and (8) we can take the limit as N → ∞ and get the statement of the
proposition. ��

4.2 The critical exponent for the perimeter

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 We keep the notation of Sect. 2.3, in particular recall that
Tree(T ) denotes the tree of components of a triangulation T ∈ T

B and that
|Tree(T )| = #∂T + 1. Note that when a = 1/2, we have rc(2a + γ )/2 = 1/24. To
simplify notation, set

K̃n := 24n · K1/2(n) = 1

24
· GWμ◦

1/2,μ
•

⎡
⎣ ∑
u∈•(τ )

φ(ku)1|τ |=n+1

⎤
⎦ ,

Q̃n := 24n · Q1/2({T : #∂T = n}) = 1

24
· GWμ◦

1/2,μ
• (|τ | = n + 1) .

This implies that

K̃n ∼
n→∞

1

8 · 35/6 · �(−2/3)2 · √
2π

· n1/3 and

Q̃n ∼
n→∞

1

8 · 32/3 · |�(−2/3)| · n−5/3. (18)

Indeed, the first statement follows from (14), while the second one is a consequence
of Proposition 3.2 combined with (17). Next, using Proposition 4.1, write for n ≥ 1

P(#∂H◦
1/2 = n)

= P(#∂H◦
1/2 = n, |H•

1/2| = ∞) + P(#∂H◦
1/2 = n, |H•

1/2| < ∞)

=
Prop. 4.1

P(#∂H◦
1/2 = n, |H•

1/2| = ∞) + P(|H◦
1/2| < ∞, #∂H•

1/2 = n)

=
∞∑

m=1

∑

h∈TB ,|h|<∞
#∂h=n

P(H◦
1/2 = h, #∂H•

1/2 = m)
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+
∞∑

m=0

∑

h∈TB ,|h|<∞
#∂h=m

P(H◦
1/2 = h, #∂H•

1/2 = n)

=
Prop. 4.2

72
√
6π

(
n + m

m

)
12n+m ·

( ∞∑
m=1

Q1/2({T ∈ T
B; #∂T = n})K1/2(m)+

∞∑
m=0

Q1/2({T ∈ T
B; #∂T = m})K1/2(n)

)

= 72
√
6π

∞∑
m=0

(
n + m

n

)
2−n−m(

Q̃m K̃n + Q̃n K̃m
)
,

with the convention that K̃0 = 0. Now, for every m ≥ 0 and u ∈ R, set

Fn(u) =
(
2n + ⌊

u
√
n
⌋

n

) √
n

22n+�u√
n� .

It is a simple matter to check that for fixed u ∈ R, Fn(u) → e−u2/4/
√

π as n → ∞
and that there exists a constant C > 0 such that Fn(u) ≤ C2−|u| for every n ≥ 2 and
u ∈ R. Combined with (18), the dominated convergence theorem implies that

∞∑
m=0

(
n + m

n

)
1

2m+n

K̃m Q̃n + K̃n Q̃m

4K̃n Q̃n

=
∫ ∞

−√
n
du Fn(u)

K̃n+�u√
n� Q̃n + K̃n Q̃n+�u√

n�
4K̃n Q̃n

−→
n→∞

1

2
·
∫ ∞

−∞
1√
π
e−u2/4 du = 1.

Hence

P(#∂H◦
1/2 = n) ∼

n→∞ 288
√
6π · K̃n Q̃n .

Thus, by (18), we get

P(#∂H◦
1/2 = n) ∼ 32 · 32 · √

6π · 1

8 · 35/6 · �(−2/3)2 · √
2π

· n1/3

· 1

8 · 32/3 · |�(−2/3)| · n−5/3. = 3

2 · |�(−2/3)|3 · n−4/3.

This completes the proof. ��
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4.3 Scaling limits

We are now ready to prove Theorem 1.2, which describes the scaling limits of the
boundary of large percolation clusters in the UIPT. We start by recalling the definition
of the Gromov–Hausdorff topology (see [9] for additional details).

4.3.1 The Gromov–Hausdorff Topology

If (E, d) and (E ′, d ′) are two compact metric spaces, the Gromov–Hausdorff distance
between E and E ′ is defined by

dGH(E, E ′) = inf
{
dFH(φ(E), φ′(E ′))

}
,

where the infimum is taken over all choices of metric space (F, δ) and isometric
embeddings φ : E → F and φ′ : E ′ → F of E and E ′ into F , and where dFH is the
Hausdorff distance between compacts sets in F . The Gromov–Hausdorff distance is
indeed a metric on the space of all isometry classes of compact metric spaces, which
makes it separable and complete.

An alternative practical definition of dGH uses correspondences. A correspondence
between two metric spaces (E, d) and (E ′, d ′) is by definition a subset R ⊂ E × E ′
such that, for every x1 ∈ E , there exists at least onepoint x2 ∈ E ′ such that (x1, x2) ∈ R

and conversely, for every y2 ∈ E ′, there exists at least one point y1 ∈ E such that
(y1, y2) ∈ R. The distortion of the correspondence R is defined by

dis(R) = sup
{|d(x1, y1) − d ′(x2, y2)| : (x1, x2), (y1, y2) ∈ R

}
.

The Gromov–Hausdorff distance can then be expressed in terms of correspondences
by the formula

dGH(E, E ′) = 1

2
inf

R⊂E×E ′
{
dis(R)

}
, (19)

where the infimum is over all correspondences R between (E, d) and (E ′, d ′).

4.3.2 Discrete looptrees and scooped-out triangulations

Themain ingredient for proving Theorems 1.2 and 1.3 is a relation between the bound-
ary of a triangulation and the discrete looptree associated with its tree of components,
which we now describe. To this end, we need to introduce a slightly modified discrete
looptree.

Let τ be a plane tree and recall from the Introduction the construction of Loop(τ ).
We define Loop(τ ) as the graph obtained from Loop(τ ) by contracting the edges
linking two vertices u and v such that v is the last child of u in lexicographical order
in τ (meaning that we identify such vertices).

Recall from Sect. 2.3 the definition of scooped-out triangulationScoop(T ) and the
tree Tree(T ) for a triangulation with boundary T , and from Sect. 3.2 the bijection G.
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Fig. 9 The first figure represents a scooped-out triangulation Scoop(T ), the second one represents its
associated trees Tree(T ) (with dashed edges) and G(Tree(T )) (in bold red), the third one represents
Loop(G(Tree(T ))) (in light blue). Finally, the last figure represents Loop(G(Tree(T ))) (which is exactly
Scoop(T )) (color figure online)

Fig. 10 The same elements as in Fig. 9, but locally around a pinch-point of T (color figure online)

Lemma 4.3 Let T ∈ T
B be a finite triangulation with boundary. Then the graphs

Loop
(
G
(
Tree(T )

))
and Scoop(T ) are equal.

Proof drawings A formal proof of this would not be enlightening and this property
should be clear on Figs. 9, 10 below. ��

4.3.3 Proof of Theorems 1.2 and 1.3

Fix a ∈ (0, 1) and an integer n ≥ 1. LetH◦
a(n) denote the random variableH◦

a condi-
tioned on the event {#∂H◦

a = n, |H◦
a | < ∞}. From Proposition 4.2, it follows that the

distribution of H◦
a(n) is the probability measure Qa( · | #∂T = n). Hence, by Propo-

sition 3.2 the tree of components Tree(H◦
a(n)) is distributed as a GWμ◦

a ,μ
• tree con-

ditioned on having n + 1 vertices. Set τ na = G(Tree(H◦
a(n))). By Proposition 3.6, τ na

is distributed as a GWνa tree conditioned on having n + 1 vertices.

Proof of Theorem 1.2 Case 1/2 < a < 1. Denote by �n the maximal degree of τ na
and let u�

n ∈ τ na be a vertex with degree �n (this vertex is asymptotically unique by
[24, Theorem 5.5]). Hence, by [24, Theorem 5.5],

�n

n
(P)−→

n→∞ 1 −
∞∑
i=0

iνa(i) = 2a − 1√
3 − 1 + 2a

.

123



Percolation on random triangulations 325

Since μ◦
a has an exponential tail, a simple argument shows that u�

n is a black vertex
with probability tending to one as n → ∞. Informally, this means that a loop of
length roughly �n appears in ∂H◦

a(n). By [26, Corollary 2], the maximal size of the
connected components of τ na \{u�

n}, divided by n, converges in probability towards 0 as
n → ∞. By properties of the bijection G, this means that the maximal size of a cluster
branching on the macroscopic loop corresponding to the black vertex u�

n , divided by
n, converges in probability towards 0 as n → ∞, and immediately implies that

1

n
· ∂H◦

a(n)
(d)−→

n→∞
2a − 1√
3 − 1 + 2a

· C1.

Case a = 1/2. First of all recall that ∂H◦
a(n), viewed as a metric space, is the

same as Scoop(H◦
a(n)), viewed as a metric space. We shall thus work with the latter.

Recall from (16) that in the case a = 1/2, ν = ν1/2 is critical and ν(k) ∼
√
3

4
√

π
k−5/2 as

k → ∞. Next, since the longest path in τ n1/2 containing only vertices that are identified

in the definition of Loop(τ n1/2) is bounded by the height H(τ n1/2) of the tree τ n1/2, this
implies that

dGH
(
Loop(τ n1/2),Loop(τ n1/2)

)
≤ 2H(τ n1/2).

Since τ n1/2/n
1/3 converges towards the stable tree of index 3/2 (see [15] or [27]),

we get that the quantity H(τ n1/2)/n
2/3 converges in probability towards 0 as n → ∞.

These observations combined with (2) show that

n−2/3 · Loop
(
τ n1/2

)
(d)−−−→

n→∞ 31/3 · L3/2,

where the convergence holds in distribution for the Gromov–Hausdorff topology.

Finally, we use Lemma 4.3 to replace Loop
(
τ n1/2

)
by Scoop(H◦

1/2(n)) in the last

display and get the desired result.
Case a < 1/2. In this case, the tree τ na is a supercritical Galton–Watson tree con-

ditioned on having n + 1 vertices. We perform a standard exponential tilting of the
offspring distribution in order to reduce to the critical case as follows. Recall that Fa
denotes the generating function of the offspring distribution νa . For every λ ∈ (0, 1)
it is easy to see that τ na has the same law as a Galton–Watson tree whose offspring
distribution generating function is z �→ Fa(λz)/Fa(λ) conditioned on having n + 1
vertices, see e.g. [25]. We now choose λa ∈ (0, 1) be the unique positive real number
such that

λa · F ′
a(λa) = Fa(λa). (20)

In other words, λa is chosen such that the offspring distribution ν̃a whose generating
function is z �→ Fa(λaz)/Fa(λa) is critical (see e.g. [22, Section 4] for a proof that λa
exists and is unique). We write τ̃ na for a ν̃a-Galton–Watson tree conditioned on having
n + 1 vertices. Since ν̃a has small exponential moments, we can apply [12, Theorem
14] and get
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1√
n

· Loop(τ na )
(d)= 1√

n
· Loop(̃τ na )

(d)−−−→
n→∞

2

σ̃a
· 1
4

(
σ̃ 2
a + ν̃a(2Z+)

)
· Te,

where σ̃ 2
a is the variance of ν̃a and ν̃a(2Z+) = ν̃a(0) + ν̃a(2) + ν̃a(4) + · · ·. Apply-

ing Lemma 4.3, we have established Theorem 1.2 in the case a < 1/2 with
Ca = 2

σ̃
· 1
4 (̃σa + ν̃a(2Z+)). ��

Proof of Theorem 1.3 It follows from the proof of Theorem 1.2 that:

Ca = 2a − 1√
3 − 1 + 2a

a ∈ (1/2, 1), Ca = 2

σ̃a
· 1
4

(
σ̃ 2
a + ν̃a(2Z+)

)
a ∈ (0, 1/2).

(21)
The asymptotic estimate as a ↓ 1/2 immediately follows. As a ↑ 1/2, we have
σ̃a → ∞, so that Ca ∼ σ̃a/2. Next, using the exact expression of Fa given in (15),
simple calculations show that λa = c1/3a + c−1/3

a − 1 with

ca = 8(1 − a)a − 4(1 − 2a)
√
a − a2i − 1.

Note that ca is a complex number, but that λa is real and in particular we have

λa = 1 − 16

9
· (1/2 − a)2 + o((1/2 − a)2), Fa(λa) −→

a↑1/2 1,

F ′′
a (λa) ∼

a↑1/2
3
√
3

16
· 1

1/2 − a
.

For the last asymptotic estimate, we use the fact that

F ′′
a (z) = 3

4(2a − 1 + √
3)

· 1√
1 − z

Since σ̃ 2
a = λ2a · F ′′

a (λa)/Fa(λa), the conclusion follows. ��

5 Comments

5.1 Critical Boltzmann triangulations

Instead of working with the infinite model of the UIPT we can also consider another
natural model of random triangulations: the critical Boltzmann measure is the proba-
bility measure on triangulations which assigns a probability

Pb(T ) = 1∑
t∈T r#V(t)

c

· r#V(T )
c

to every finite triangulation T , where rc = 1/
√
432 andT is the set of all finite triangu-

lations. Note that
∑

t∈T r#V(t)
c = (192

√
3)−1 by (9). With this model, the underlying
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triangulation T is always finite, so that both the white and black hullsH◦
a andH

•
a are

finite. It is straightforward to adapt Proposition 4.2 in order to get the following:

Proposition 5.1 Let h be a finite triangulation with boundary of perimeter n.We have

Pb
(
H◦

a = h
) = 192

√
3 · 12nQa(h)

∞∑
m=0

12m
(
n + m

n

)
Q1−a({T : #∂T = m}).

As for the UIPT, this implies that the random variable H◦
a , under Pb, conditioned on

the event {#∂H◦
a = n}, is distributed according to Qa( · | #∂T = n). Hence Theorems

1.2 and 1.3 remain truewithout changes. To get an analog of Theorem 1.1, we similarly
compute

Pb
(
#∂H◦

ac = n
) = 192

√
3 · Q̃n ·

∑
m≥0

(
n + m

n

)
1

2m+n
Q̃m

∼
n→∞ 384

√
3 · Q̃2

n = 2 · 31/6
�(−2/3)2

· n−10/3.

Remark 5.2 It is useful to note that the exponent 10/3 appearing in the last formula
is obtained as

2

(
1 + 1

α

)
(22)

withα = 3/2.Note also that 1 + 1/α is exactly the exponent appearing in the probabil-
ity that a Galton–Watson tree with an offspring distribution in the domain of attraction
of an α-stable law has a large progeny (see Proposition 6.3 (i) for a precise statement).

5.2 Type II triangulations

In this work, we focused on general triangulations, but similar results can be derived in
the context of type II triangulations, that are triangulations where no loops are allowed.
The approach is exactly the same, the necklace surgery and the tree representation of
clusters work alike and so we only give the main intermediate enumerative results. In
particular, if W denotes the generating function of type II triangulations with simple
boundary with weight x per inner vertex and y then W (x, y) is also well-known (see
[18]). In particular, the radius of convergence of W as a function of x is rc = 2/27,
and we have

W (rc, y) = y

2
+ (1 − 9y)3/2 − 1

27
.

As previously, for every integer k ≥ 1, set qk = [yk]W (rc, y)/9k . Note that q1 = 0.
In this case, the tree of components of the white hull is described similarly as in
Proposition 3.2 by the two offspring distributions μ ◦

a and μ • defined by

123



328 N. Curien, I. Kortchemski

μ•( j) = q j+1

Z•
, μ◦

a( j) = (1 − ξ)ξ j ( j ≥ 0),

where Z• = 1/54 and ξ = 1/(1 + 4a). Note that μ•(0) = 0, which is consistent with
the fact that we are working with type II triangulations, since black vertices with no
children of the tree of components are in bijection with loops. In addition, if νa is the
image of GWμ◦

a ,μ
• by G, then

∑
i≥0

νa(i)z
i = 4a − 2 + 3z + 2(1 − z)3/2

4a + 1
.

In particular the mean of νa is 3/(1 + 4a), so that νa is critical if and only if a = 1/2.
When a = 1/2, to simplify notation we write ν = ν1/2. Note that then:

∑
i≥0

ν(i)zi = z + 2

3
(1 − z)3/2, ν(k) ∼

k→∞
1

2
√

π
· k−5/2.

It easily follows that Theorem 1.2 holds in this case with the constants C1/2 =
(3/2)2/3,Ca = 4(a − 1/2)/(4a + 1) for 1/2 < a < 1. In addition,

Ca ∼
a↓1/2

4

3

(
a − 1

2

)
and Ca ∼

a↑1/2

√
3

4
√
2

·
(
1

2
− a

)−1/2

.

Theorem 1.1 also holds in this case with the same exponent (but with a different
constant).

5.3 Conjectures about O(N ) models on random triangulations

In this work, we established thatL3/2 is the scaling limit of the boundary of the cluster
of the origin for critical site percolation on random triangulations (such as the UIPT or
random Boltzmann triangulations). We conjecture that all the family of looptreesLα

for α ∈ (1, 2) are scaling limits of boundary clusters of certain statistical mechanics
models on random planar maps.

More precisely, we focus on the so-called O(N ) model on random planar triangu-
lations. We follow closely the presentation of [34, Section 8] and [36, Section 3.4], see
also [7,8]. A loop configuration � on a triangulation T is a collection of loops drawn
on the dual of T such that two different loops visit different faces. Equivalently, a loop
configuration is a consistent gluing of two types of triangles (an empty triangle, and
a triangle with a dual path inside joining two different edges) such that the result is a
topological sphere, see Fig. 11.

The total perimeter |�| of the collection of loops is the number of faces visited by
the union of the loops and the number of loops of � is denoted by #�. Provided that a
loop traverses the root edge (which we assume from now on), we can define the hull
of the origin and its boundary as depicted in Fig. 11. We can also define the gasket of
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Fig. 11 A triangulation with a
loop decoration and the cluster
of the origin (color figure online)

{T, �} as the map obtained by removing the interior of the loops (the exterior of a loop
contains the target of the root edge) as well as the faces traversed by the loops, see [8,
Fig. 4].

The Boltzmann annealed O(N ) measure on decorated triangulations is the proba-
bility measure

Pg,h,N ({T, �}) = 1

Zg,h,N
g#F(T)h|�|N #�,

where g, h, N > 0 are parameters and Zg,h,N is a normalizing constant. Now fix
N ∈ (0, 2). Formost choices of the parameters g, h, large random triangulations under
Pg,h,N are believed to converge towards the Brownian map unless g and h satisfy a
certain relation which we assume to hold from now on, see [7,8] for similar models.
We are thus left with one parameter h > 0. In this case, Le Gall and Miermont [34]
provided the conjectural scaling limits of the gasket of decorated triangulations: It
is conjectured that there exists hc(N ) so that if h < hc(N ) then the scaling limits of
random planar (decorated) triangulations as well as their gaskets converge towards
the Brownian map. If h > hc(N ), it is conjectured that the gasket of a large random
decorated triangulation under Pg,h,N converges (after suitable scaling) towards the
stable map of parameter

a = 3/2 + π−1arcsin(N/2).

In this regime, stable maps have large macroscopic faces that touch themselves and
each other. In the discrete underlying model, this means that the boundaries of large
clusters should possess pinch-points at large scale. We believe that in this case, the
scaling limits of these cluster boundaries (or equivalently the inner geometry of a face
in a stable map of parameter a ∈ (3/2, 2)) is the stable looptreeLα of index α, where
α satisfies the relation

1 + 1

α
= a ∈ (3/2, 2). (23)
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Let us give an heuristic argument supporting this prediction. In [8, Eq. 3.18] the
authors showed that (in certain closely related models) the probability that the origin
hull H of a random decorated map under under Pg,h,N (with the parameters chosen
as above) satisfies

P(#∂H = k) ∼
k→∞ C · k−2a .

On the other hand, if the tree structure associated to the origin hull is a critical Galton–
Watson tree with an offspring distribution in the domain of attraction of an α-stable
law, from Remark 5.2 we should have

P(#∂H = k) ∼
k→∞ C · k−2(1+α−1).

Identifying the exponents in the last two displays gives our conjecture (23).

Acknowledgments The first author is indebted to Olivier Bernardi and Grégory Miermont for many
useful discussions concerning percolation on random maps.

6 Appendix: proof of the technical lemmas

We conclude this work by establishing several technical results, some of which involve
stable densities. We will only use the case α = 3/2, but prove the general case in
view of future applications. By α-stable Lévy process we will always mean a stable
spectrally positive Lévy process (Xt )t≥0 of index α, normalized so that for every
λ > 0, E[exp(−λXt )] = exp(tλα). The process X takes values in the Skorokhod space
D(R+, R) of right-continuous with left limits (càdlàg) real-valued functions, endowed
with the Skorokhod topology (see [6, Chap. 3]). The dependence of X in α will be
implicit in this section, and we denote by p1 the density of X1.

6.1 Technical lemmas on stable densities

The following result, which is a consequence of [17, LemmaXVII.6.1], will be useful.

Lemma 6.1 We have p1(0) = 1/|�(−1/α)|.
Lemma 6.2 For every β > 0 and α ∈ (1, 2),

∫ ∞

0
dx xβ · p1(−x)dx = �(β)

�(β/α)
.

Proof By [17, Lemma XVII.6.1], we have the following series representation, valid
for x > 0:

p1(−x) = − 1

πx

∞∑
k=1

�(1 + k/α)

k! (−x)k sin(kπ/α).
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To simplify notation, set F(A) = ∫ A
0 dx xβ · p1(−x)dx for A > 0, so that:

F(A) = − 1

π

∞∑
k=1

�(1 + k/α)

k!
1

k + β
Ak+β(−1)k sin(kπ/α)

= − Aβ

π
· Im

( ∞∑
k=1

�(k/α + 1)�(k + β)

�(k + β + 1)
·
(−Aeiπ/α

)k
k!

)
.

By [38, (2.3.10)], we have

Im

( ∞∑
k=1

�(k/α + 1)�(k + β)

�(k + β + 1)
·
(−Aeiπ/α

)k
k!

)

∼
A→∞ −�(β)�(1 − β/α) sin(πβ/α) · A−β.

Hence, using the reflection formula for the � function, we get

lim
A→∞ F(A) = �(β)�(1 − β/α)

sin(πβ/α)

π
= �(β)

�(β/α)
.

��
In particular, note that for α = 3/2 and β = 1/2 we have

p1(0) = 2

3�(1/3)
and

∫ ∞

0
dx

√
x · p1(−x)dx =

√
π

�(1/3)
. (24)

6.2 A technical estimate for Galton–Watson trees

We next establish the following asymptotic estimates.

Proposition 6.3 Fix α ∈ (1, 2) and β > α. Let ρ be a critical offspring distribution
such thatρk ∼ C · k−1−α as k → ∞ for a certainC > 0. Letφ : Z+ → R+ a function
such that φ(x) ∼ κ · xβ as x → ∞ for a certain κ > 0.

(i) We have

GWρ (|τ | = n) ∼
n→∞

1

|�(−1/α)| · (�(−α)C)1/α
· 1

n1+1/α .

(ii) We have

GWρ

[∑
u∈τ

φ(ku)

∣∣∣∣∣ |τ | = n

]
∼

n→∞ κ · C (β−1)/α

·�(−α)(β−α−1)/α · �(β − α − 1)

�((β − α − 1)/α)
· nβ/α.
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(iii) We have

GWρ

[∑
u∈τ

φ(ku)1|τ |=n

]
∼

n→∞ κ · C (β−2)/α · �(−α)(β−α−2)/α

· �(β − α − 1)

|�(−1/α)|�((β − α − 1)/α)
· n(β−α−1)/α.

Before proving Proposition 6.3, we state two useful results.

Theorem 6.4 (Local limit theorem) Let (Wn)n≥0 be a randomwalk onZ started from
0. Assume that P[W1 < 0] = 0 and that there exists α ∈ (1, 2) and c > 0 such that
P[W1 = k] ∼ C · k−1−α as k → ∞. Set an = (�(−α)C)1/α n1/α . Then:

lim
n→∞ sup

k∈Z

∣∣∣∣anP[Wn = k] − p1

(
k − nE[W1]

an

)∣∣∣∣ = 0. (25)

See e.g. [20, Theorem 4.2.1] for a proof of the local limit theorem.

Lemma 6.5 Let (Sn)n≥0 be a random walk on Z whose jump distribution is ρ. Then:

(i) for n ≥ 1,GWρ (|τ | = n) = 1

n
P (Sn = n − 1)

(ii) for every function F : Z → R+,

GWρ

[∑
u∈τ

F(ku)

∣∣∣∣∣ |τ | = n

]
= n · E [F(S1)|Sn = n − 1] .

Proof For (i), see e.g. [39, Section 5.2]. Assertion (ii) easily follows from the fact that∑
u∈τ F(ku) is invariant under cyclic shifts. ��
We are now ready to prove Proposition 6.3.

Proof of Proposition 6.3 Let (Sn)n≥0 be a random walk on Z whose jump distri-
bution is ρ. Since ρ is critical and ρi ∼ Ci−1−α as i → ∞, (25) applies with
an = (�(−α)C)1/α n1/α . Then by Lemma 6.5 (i) and the local limit theorem:

GWρ (|τ | = n) ∼
n→∞

p1(0)

(�(−α)C)1/α
· 1

n1+1/α = 1

|�(−1/α)| · (�(−α)C)1/α
· 1

n1+1/α .

This proves the first assertion.
For (ii), write

1

nβ/α
GWρ

[∑
u∈τ

φ(ku)

∣∣∣∣∣ |τ | = n

]

= n
∞∑
k=0

φ(k)

nβ/α
ρk

P (Sn−1 = n − 1 − k)

P (Sn = n − 1)
by Lemma A.5 (ii)
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=
∫ ∞

0
dx

φ(
⌊
xn1/α

⌋
)

nβ/α
n1+1/αρ�xn1/α�

P
(
Sn−1 = n − 1 − ⌊

xn1/α
⌋)

P (Sn = n − 1)
.

(26)

In order to use the dominated convergence theorem we use the following technical
lemma whose proof is postponed to the end of this section:

Lemma 6.6 Let ξ be a critical probability measure on {0, 1, 2, . . .} of span 1 (i.e. the
greatest integer dividing all the integers n such that ξ(n) > 0 is 1). Let F(z) = E

[
zξ

]
be the probability generating function of ξ and assume there exists c ∈ R such that
the following Taylor expansion holds around z = 1:

F(z) = 1 + (z − 1) + c(z − 1)α + o(|z − 1|α), |z| ≤ 1. (27)

Let SN = ∑N
i=1 ξi , where ξi are i.i.d. copies of ξ . There exists constants c1, c2 such

that for every k, N ≥ 1:

P(SN = N − k) ≤ c1
N 1/α e

−c2kα/N .

We return to the proof of Proposition 6.3. We may apply Lemma 6.6, which combined
with the local limit theorem gives that for every n ≥ 1 and x ≥ 0

P
(
Sn−1 = n − 1 − ⌊

xn1/α
⌋)

P (Sn = n − 1)
≤ c3e

−c4xα

.

In addition, since φ(x) ∼ κ · xβ and ρk ∼ C · k−1−α , we have

φ
(⌊
xn1/α

⌋)

nβ/α
n1+1/αρ�xn1/α� ≤ c5x

β−α−1.

Theexpression appearingunder the integral in (26) is thus boundedby c6xβ−α−1e−c4xα
.

By using the dominated convergence theorem as n → ∞ in (26) combined with the
local limit theorem, we conclude that:

1

nβ/α
GWρ

[∑
u∈τ

φ(ku)

∣∣∣∣∣ |τ | = n

]
−→
n→∞ κC

∫ ∞

0
dx xβ−α−1 p1

(
− x

(�(−α)C)1/α

)

= κC (�(−α)C)(β−α−1)/α ·
∫ ∞

0
dx xβ−α−1 p1(−x).

= κC (�(−α)C)(β−α−1)/α · �(β − α − 1)

�((β − α − 1)/α)

= κ · C (β−1)/α · �(−α)(β−α−1)/α · �(β − α − 1)

�((β − α − 1)/α)
.

This completes the proof of (ii).
The last assertion should now be of no difficulty. ��
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Recall the two offspring distributions μ• and μ◦
a introduced in Sect. 3.1 and the

bijection G introduced in Sect. 3.2. Here we take a = 1/2, and to simplify notation
we set μ◦ = μ◦

1/2. Recall finally that ν is the image ofGWμ◦
a ,μ

• by G. In the previous
sections, we have used the following corollary of Proposition 6.3:

Corollary 6.7 Let φ be the same function as in Proposition 3.4. We have the following
two asymptotic behaviors:

GWμ◦,μ• (|τ | = n) = GWν (|τ | = n) ∼
n→∞

31/3

|�(−2/3)| · n−5/3

GWμ◦,μ•

⎡
⎣ ∑
u∈•(τ )

φ(ku)1|τ |=n

⎤
⎦ ∼

n→∞
31/6

�(−2/3)2 · √
2π

· n1/3.

Proof By Proposition 3.6, using the fact that G maps black vertices of degree k to
vertices of degree k + 1, it is sufficient to prove that

GWν

[∑
u∈τ

φ(ku − 1)1|τ |=n

]
∼

n→∞
31/6

�(−2/3)2 · √
2π

· n1/3,

where by convention we set φ(−1) = 0. Corollary 6.7 hence immediately follows
from Proposition 6.3 (iii), applied with C = √

3/π/4, κ = 4/9 · √6/π, α = 3/2 and
β = 3. ��
Proof of Lemma 6.6 We adapt the proof of Lemma 2.1 of [21]. By the local limit
theoremwemayassume that N 1/α ≤ k ≤ N . To simplify notation, setG(z) = F(z)/z.
By (27), we have the following Taylor expansion around z = 1 : G(z) = 1 + c(z −
1)α + o(|z − 1|α) for |z| ≤ 1. In particular,

lnG(ew) = cwα + o(|w|α), Re w ≤ 0. (28)

By integration around the circle of radius exp(−δkα−1/N ) (for some small δ > 0 to
be chosen later):

P(SN = N − k) = 1

2iπ

∮
zk−N F(z)N

dz

z

= 1

2π

∫ π

−π

exp(−δkα/N + ikt)G(e−δkα−1/N+i t )Ndt (29)

It is easy to check that, for η, t ≥ 0 small enough, Re((−η + i t)α) ≤ ηα

− | cos(απ/2)|tα and | − η + i t |α ≤ 2(ηα + tα). Thus, by (28),

ln |G(e−δkα−1/N+i t )| = Re lnG(e−δkα−1/N+i t )

= c
(
−δkα−1/N + i t

)α + o
(∣∣∣−δkα−1/N + i t

∣∣∣
α)
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≤ cδαkα(α−1)/Nα − c| cos(απ/2)|tα + o
(
kα(α−1)/Nα + tα

)

Since kα(α−1)/Nα ≤ Nα(α−1)/Nα = N−α(2−α) → 0 as N → ∞, there exist δ0,

t0 > 0 sufficiently small such that for 0 < δ ≤ δ0 and |t | ≤ t0:

ln |G(e−δkα−1/N+i t )| ≤ 2cδαkα(α−1)/Nα − c| cos(απ/2)|tα/2. (30)

Now, since the span of ξ is 1, we have |F(z)| < 1 for |z| ≤ 1 and z �= 1, so by conti-
nuity and compactness, there exists ε ∈ (0, 1) such that |F(reit )| ≤ 1 − ε < e−ε when
e−δ0 ≤ r ≤ 1 and t0 ≤ |t | ≤ π . Thus, using the fact that kα−1 ≤ N , for t0 ≤ |t | ≤ π

and 0 ≤ δ ≤ δ1 := min(δ0, ε/2) we get:

|G(e−δkα−1/N+i t )| = eδkα−1/N |F(e−δkα−1/N+i t )| ≤ eδe−ε ≤ e−ε/2. (31)

Combining (30) and (31), we get for δ ≤ δ1 and |t | ≤ π :

|G(e−δkα−1/N+i t )| ≤ e2cδ
αkα(α−1)/Nα−c1tα

with c1 := min(c| cos(απ/2)|/2, ε/(2πα)). Plugging this in (29), we get:

P(SN = N − k) ≤ e2cδ
αkα(α−1)/Nα−1−δkα/N

∫ ∞

−∞
e−c1Ntαdt.

The result follows by choosing δ ≤ 1/(2c)α−1. Indeed, for δ ≤ 1/(2c)α−1, since
k ≥ N 1/α , we have

(
kα

N

)2−α

≥ 2cδα−1.

This completes the proof. ��
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