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Abstract We prove that the variance of the passage time from the origin to a point
x in first-passage percolation on Z

d is sublinear in the distance to x when d ≥ 2,
obeying the bound C‖x‖/ log ‖x‖, under minimal assumptions on the edge-weight
distribution. The proof applies equally to absolutely continuous, discrete and singular
continuous distributions and mixtures thereof, and requires only 2 + log moments.
The main result extends work of Benjamini–Kalai–Schramm (Ann Prob 31, 2003)
and Benaim–Rossignol (Ann Inst Henri Poincaré Prob Stat 3, 2008).
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1 Introduction

1.1 Background

In addition to its rich stochastic geometric structure, first-passage percolation on Z
d

provides amodel for the study of fluctuations of a non-linear function of a large number
of independent random variables. For recent surveys, see [5,15,17].

In this paper, we are concerned with the variance of the passage time τ(0, x) from
0 to x ∈ Z

d . The passage time is the random variable defined as

τ(0, x) = inf
γ :0→x

∑

e∈γ

te, (1.1)

where the infimum is taken over all lattices paths γ = (v0 = 0, e0, v1, . . . , eN , vN =
x) joining 0 to x . The collection (te)e∈Ed consists of nonnegative independent random
variables with common distribution μ and Ed is the set of nearest-neighbor edges.

When d = 1, (1.1) is simply a sum over i.i.d. random variables for each x , and the
variance of τ(0, x) is of order ‖x‖1. In contrast, when d ≥ 2, (1.1) is a minimum over
a collection of correlated sums of i.i.d. random variables. This correlation structure
has led physicists to conjecture a sublinear scaling of the form ‖x‖α

1 , α < 1 for the
fluctuations. In the case d = 2, the model is expected to have KPZ scaling [19], with
α = 2

3 , and the recentered passage time approximately follows the Tracy–Widom
distribution. Except for Johansson’s work [18] on a related exactly solvable model,
there has been little success in rigorously confirming these predictions.

In [21], Kesten showed that the variance of τ(0, x) is at most linear in the distance
of x to the origin:

Var τ(0, x) ≤ C‖x‖1,

for some constant C . Kesten also showed that if μ has exponential moments:

∫
eδx μ(dx) < ∞ for some δ > 0, (1.2)

then the passage time is exponentially concentrated around its mean:

P(|τ(0, x) − Eτ(0, x)| ≥ λ
√‖x‖1) ≤ Ce−c λ, (1.3)

for λ ≤ C‖x‖1. Talagrand improved this result to Gausssian concentration on the
scale

√‖x‖1: see [31, Proposition 8.3]. These results have been used to derive con-
centration of the mean of the passage time around the “time constant.” Some relevant
papers include [1,27,33]. In the other direction, lower bounds have been given for the
variance of the passage time, but the strongest results are dimension-dependent; see
[3,21,25,34].

In a remarkable paper [4], Benjamini et al. used an inequality due to Talagrand [32]
to prove that if the edge-weight distribution is uniform on a set of two positive values,
the variance is sublinear in the distance:

123



Sublinear variance in first-passage percolation 225

Var τ(0, x) ≤ C(a, b)
‖x‖1

log ‖x‖1 , d ≥ 2

for 0 < a < b and P(te = a) = P(te = b) = 1
2 . Benaim and Rossignol [6] intro-

duced their “modified Poincaré inequality,” itself based on an inequality of Falik and
Samorodnitsky (a corresponding inequality appears in Rossignol [28, Equations (11)–
(14)]), to extend the variance estimate to a class of continuous distributions which they
termed “nearly gamma.” Nearly gamma distributions satisfy an entropy bound analo-
gous to the logarithmic Sobolev inequality for the gamma distribution, which explains
their name; for a nearly gamma μ and, for simplicity, f smooth,

Entμ f 2 : =
∫

f 2(x) log
f 2(x)

Eμ f 2
μ(dx) ≤ C

∫ (√
x f ′(x)

)2
μ(dx). (1.4)

Benaim and Rossignol also show exponential concentration at scale
√‖x‖1/ log ‖x‖1

for nearly gamma distributions with exponential moments: if μ satisfies (1.4) and
(1.2), then

Pμ(|τ(0, x) − Eμτ(0, x)| ≥ λ
√‖x‖1/ log ‖x‖1) ≤ Ce−c λ. (1.5)

The nearly gamma condition excludes many natural distributions, including all
power lawdistributions and distributionswith infinite supportwhich decay too quickly,
mixtures of continuous and discrete distributions, singular continuous distributions,
and continuous distributions with disconnected support, or whose density has zeros
on its support.

1.2 Main result

The purpose of the present work is to extend the sublinear variance results mentioned
above to general distributions with 2 + log moments. We make two assumptions:

∫
x2(log x)+ μ(dx) < ∞, (1.6)

μ({0}) < pc(d), (1.7)

where pc(d) is the critical parameter for bond percolation on Z
d .

Our main result is the following:

Theorem 1.1 Let μ be a Borel probability measure supported on [0,∞) satisfying
(1.6) and (1.7). In i.i.d. first-passage percolation on (Zd , Ed), d ≥ 2, with edge-weight
distribution μ, there exists a constant C = C(μ, d) such that

Var τ(0, x) ≤ C
‖x‖1

log ‖x‖1 for all x ∈ Z
d .
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226 M. Damron et al.

Remark 1.2 When (1.7) fails, the passage time is known to be bounded by C‖x‖ε
1 for

any ε. See [9,35] for more details. 
�

Remark 1.3 The moment condition Et2e (log te)+ < ∞ may be able to be weakened,

perhaps as low as Et (2/d)+a
e < ∞ for some a > 0 by tensorizing entropy over small

blocks, as in [12, Lemma 2.6]. The main reason is that, due to [10, Lemma 3.1],
Var τ(x, y) < ∞ for all x, y under the condition Et (1/d)+a

e < ∞ for some a > 0. 
�

Our method of proof may be of independent interest. Following [6], we use a
martingale difference decomposition and the inequality of Falik and Samorodnitsky to
control the variance of an averagedversion of τ(0, x)by the entropy times a 1/ log ‖x‖1
factor. Instead of representing the measure μ as the pushfoward of a Gaussian by an
invertible transformation and using the Gaussian logarithmic Sobolev inequality, we
representμ as the image of an infinite sequence of uniformBernoulli variables, and use
Bonami and Gross’s [7,16] two-point entropy inequality (the “discrete log-Sobolev
inequality”) to control the entropy. A central part of the argument is then to estimate
the discrete derivatives of τ(0, x) with respect to variations of the Bernoulli variables.

1.3 Outline of the paper

The plan of the paper is as follows: in Sect. 2, we review some basic properties of the
entropy functional with respect to a probability measure, and present the inequality
of Falik and Samorodnitsky which we will use. In Sect. 3, we apply this inequality to
first-passage percolation, using the martingale decomposition introduced in [6]. We
then briefly explain Benaim and Rossignol’s approach based on the Gaussian log-
Sobolev inequality (LSI) in Sect. 4, and show that a modification of their method
using positive association already allows one to deal with a larger class of continuous
distributions than the ones handled in [6]. The purpose of Sect. 4 is only to clarify the
role of conditions appearing in [6]. This section is independent of the derivation of
our main result.

In Sect. 5, we provide a lower bound for the quantity
∑∞

k=1(E|Vk |)2 appearing in
the variance bound, which will give the logarithmic factor in the final inequality. Next,
in Sect. 6 we represent the passage time variables through a Bernoulli encoding and,
after applying Bonami’s inequality, bound a sum of discrete derivatives with the help
of estimates on greedy lattice animals.

1.4 Notation and preliminary results

We will work on the spaceΩ = [0,∞)Ed
and let μ be a Borel probability measure on

[0,∞). The product measure
∏

e∈Ed μ will be denoted by P. A realization of passage
times (edge-weights) ω ∈ Ω will be written as ω = (te) with point-to-point passage
time τ(x, y) given by (1.1). Throughout the paper, the letter I will refer to the infimum
of the support of μ: writing

F(x) = μ((−∞, x]) (1.8)
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Sublinear variance in first-passage percolation 227

for the distribution function of μ, set

I = inf{x : F(x) > 0}. (1.9)

A fundamental object in first-passage percolation is a geodesic, and we spend some
time here giving some basic properties of geodesics. Any path γ from x to y with
passage time τ(γ ) = ∑

e∈γ te satisfying τ(γ ) = τ(x, y) will be called a geodesic
from x to y. From the shape theorem of Cox–Durrett [10] and the fact that under (1.7),
the limiting shape for the model is bounded [20, Theorem 6.1], assumptions (1.6) and
(1.7) ensure the existence of geodesics:

P(for all x, y ∈ Z
d there exists a geodesic from x to y) = 1. (1.10)

There is almost surely a unique geodesic between x and y if and only ifμ is continuous,
so this need not be true in general. For any x, y ∈ Z

d we then use the notation

Geo(x, y) = {e ∈ Ed : e ∈ γ for all geodesics γ from x to y}. (1.11)

Central to the current proofs of variance bounds for the passage time are estimates
on the length of geodesics. The key theorem is due to Kesten [21, (2.25)] and is listed
below.We will need to derive two generalizations of this result. The first is Lemma 5.1
and concerns the number of intersections of Geo(0, x) with arbitrary edge sets. The
second, Theorem 6.6, gives a bound on the number of edges of Geo(0, x) whose
weight lies in a given Borel set.

Theorem 1.4 (Kesten) Assume Ete < ∞ and (1.7). There exists C1 such that for all
x,

E#Geo(0, x) ≤ C1‖x‖1.

The second tool we shall need is [20, Propsition 5.8] and shows that under assump-
tion (1.7), it is unlikely that long paths have small passage time.

Theorem 1.5 (Kesten) Assuming (1.7), there exist constants a,C2 > 0 such that for
all n ∈ N,

P

(
∃ self -avoiding γ starting at 0 with #γ ≥n but with τ(γ ) < an

)
≤exp(−C2n).

1.5 Proof sketch

The setup Our argument begins with the setup of Benaim and Rossignol: to bound the
variance, we use the inequality of Falik–Samorodnitsky. That is, if T = τ(0, x) is the
passage time, then we enumerate the edges of the lattice as {e1, e2, . . .} and perform
a martingale decomposition
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228 M. Damron et al.

T − ET =
∞∑

k=1

Vk,

where Vk = E[T | Fk] − E[T | Fk−1] and Fk is the sigma-algebra generated by the
edge weights te1, . . . , tek . Then one has

Var T log

[
Var T∑∞

k=1(E|Vk |)2
]

≤
∞∑

k=1

Ent (V 2
k ).

(See Lemma 3.3.) If Var T ≤ ‖x‖7/8, then the required bound holds; otherwise, one
has Var T ≥ ‖x‖7/8 and the bound is

Var T log

[ ‖x‖7/8∑∞
k=1(E|Vk |)2

]
≤

∞∑

k=1

Ent (V 2
k ).

Byworkingwith an averaged version Fm of T (similar to that used in [4], but a different
definition that simplifies the analysis and requires a new argument) one can ensure that
the sum in the denominator on the left is at most order ‖x‖3/4. (See Proposition 5.3.)
Thus we begin our analysis with

Var T ≤ C

log ‖x‖
∞∑

k=1

Ent (V 2
k ). (1.12)

Step 1 Bernoulli encoding. If one knows a LSI of the form Ent f 2 ≤ CE‖∇ f ‖22, then
the argument of Benaim–Rossignol would give

∑∞
k=1 Ent (V

2
k ) ≤ CE‖∇T ‖22 and the

method of Kesten can give an upper bound on this term by C‖x‖1. Combining with
(1.12) gives the sub-linear variance bound.

Unfortunately very few distributions satisfy a LSI of the above type. Benaim–
Rossignol deal with this by exhibiting certain edge-weight distributions (those in the
“nearly gamma” class) as images ofGaussian randomvariables and using theGaussian
LSI. This does not work for all distributions, so our main idea is to encode general
edge-weights using infinite sequences of Bernoulli variables and use the Bernoulli
(two-point) LSI.

For simplicity, assume that the edge-weights te are uniformly distributed on [0, 1],
so that we can encode their values using the binary expansion and i.i.d. Bernoulli (1/2)
sequences

te =
∞∑

i=1

ωe,i2
−i , where (ωe,1, ωe,2, . . .) is i.i.d. Bernoulli(1/2).

(For general distributions, we compose with the right-continuous inverse of the dis-
tribution function of te.) Then using the Bernoulli LSI and the argument of Benaim–
Rossignol,
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Sublinear variance in first-passage percolation 229

∞∑

k=1

Ent (V 2
k ) ≤ 2

∞∑

k=1

∞∑

i=1

E
(
	ek ,i T

)2
, (1.13)

where 	ek ,i is the discrete derivative of T relative to flipping the i-th bit in the binary
expansion of tek . This is done in Lemma 6.3.
Step 2 The bulk of the paper is devoted to bounding these discrete derivatives: giving
the inequality

∞∑

k=1

∞∑

i=1

E
(
	ek ,i T

)2 ≤ C‖x‖1.

This is not a priori clear because flipping bits in the binary expansion can have a
large change on te if there are gaps in the support of the edge-weight distribution. We
deal with this by considering this influence “on average.” That is, letting E<i be the
expectation over the binary variables ωek ,1, . . . , ωek ,i−1, one has

E<i
(
	ek ,i T

)2 = 1

2i−1

∑

σ∈{0,1}i−1

(T (σ, 1) − T (σ, 0))2,

where we have indicated dependence of T only on the first i binary variables. Because
the weights are bounded in [0, 1], the differences above are at most 1 (and nonzero
only when ek is in a geodesic from 0 to x for some value of te), so we can telescope
them, obtaining the upper bound

1{ek∈Geo(0,x) for some value of tek
} 1

2i−1

∑

σ∈{0,1}i−1

(T (σ, 1) − T (σ, 0))

≤ 1

2i−1 1
{
ek∈Geo(0,x) for some value of tek

}.

Pretending for the moment that the indicator is actually of the event that ek ∈
Geo(0, x), we can sum over i to give the bound 21{ek∈Geo(0,x)}, and sum over k,
using Theorem 1.4, to obtain

∞∑

k=1

Ent (V 2
k ) ≤ C

∑

k

P(ek ∈ Geo(0, x)) ≤ C‖x‖1.

Step 3General case.We are not using only uniform [0, 1] edgeweights, so several com-
plications arise, due both to large edge-weights and to edge-weights near the infimum
of the support. The first problem forces the moment condition Et2e (log te)+ < ∞ and
the second is related to the change from 1{e∈Geo(0,x) for some te} to 1{e∈Geo(0,x)}. How-
ever, careful bounding (for example, keeping track of the value Dz,e of the edge-weight
above which the edge leaves the geodesic—see Lemma 5.2) leads to the inequality in
Proposition 6.4:

∞∑

k=1

Ent (V 2
k ) ≤ CE

∑

e

(1 − log F(te))1{e∈Geo(0,x)}, (1.14)
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where F(te) is the distribution function of the weight te. Note that this is large when
te is near its infimum. In a sense, (1.14) is our version of an LSI, with the penalties
due to the fact that we do not have a traditional LSI.

For certain distributions, we can bound (1 − log F(te)) ≤ C and sum as above. In
particular, this is possible when there is an atom at the infimum of the support. But
for general distributions, we must analyze the number of edges in the geodesic which
have weight near the infimum. For this we use the theory of greedy lattice animals.
Theorem 6.6 shows that without such an atom, for any ε > 0, the expected number of
edges in Geo(0, x) with weight within ε of the infimum of the support I satisfies

E#{e ∈ Geo(0, x) : te ∈ [I, I + ε]} ≤ C‖x‖1β(ε),

where β(ε) → 0 as ε → 0. Combining this with another dyadic partition of the
interval [I,∞) (see Sect. 6.2.4) provides the required control on (1 − log F(te)) and
allows the bound

E

∑

e

(1 − log F(te))1{e∈Geo(0,x)} ≤ C‖x‖1.

Along with (1.14), we obtain
∑∞

k=1 Ent (V
2
k ) ≤ C‖x‖ and complete the proof.

2 Entropy

Recall the definition of entropy with respect to a probability measure μ:

Definition 2.1 Let (Ω,F , μ) be a probability space and X ∈ L1(Ω,μ) be nonnega-
tive. Then

EntμX = EμX log X − EμX logEμX.

Note that by Jensen’s inequality, EntμX ≥ 0. We will make use of the variational
characterization of entropy (see [23, Section 5.2]):

Proposition 2.2 If X is nonnegative, then

Entμ(X) = sup{EμXY : Eμe
Y ≤ 1}.

This characterization will let us prove the “tensorization” of entropy.

Theorem 2.3 Let X be a non-negative L2 random variable on a product probability
space

( ∞∏

i=1

Ωi ,F , μ =
∞∏

i=1

μi

)
,

where F = ∨∞
i=1 Gi and each triple (Ωi ,Gi , μi ) is probability space. Then

EntμX ≤
∞∑

k=1

EμEnti X, (2.1)
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Sublinear variance in first-passage percolation 231

where Enti X is the entropy of X (ω) = X (ω1, . . . , ωi , . . .)) with respect to μi , as a
function of the i-th coordinate (with all other values fixed).

Proof We use a telescoping argument: write Fk for the sigma algebra generated by
G1 ∪ · · · ∪ Gk (with F0 trivial) and compute for any n

EntμX = EμX
[
log X − logEμX

]

=
n∑

k=1

EμX
[
logEμ[X | Fk] − logEμ[X | Fk−1]

]

+ EμX
[
log X − logEμ[X | Fn]

]

=
n∑

k=1

EμEμk X
[
logEμ[X | Fk] − logEμ[X | Fk−1]

]

+ EμX
[
log X − logEμ[X | Fn]

]
.

Here Eμk is expectation with respect to the coordinate ωk . Because for almost all
realizations of {(ωi ) : i �= k},

Eμk exp
(
logEμ[X | Fk] − logEμ[X | Fk−1]

) = 1,

we use Proposition 2.2 to get the bound

EntμX ≤
n∑

k=1

EμEntk X + EμX log X − EμX logEμ[X | Fn].

Putting Xn = Eμ[X | Fn], one has

EμX logEμ[X | Fn] = EμXn log Xn .

By martingale convergence (since X ∈ L1), one has Xn → X almost surely. Further-
more, since X ∈ L2, the sequence (Xn log Xn) is uniformly integrable. Therefore

EμX log X − EμX logEμ[X | Fn] → 0

and the proof is complete. 
�
We end this section with the lower bound from Falik and Samorodnitsky [13,

Lemma 2.3].

Proposition 2.4 (Falik–Samorodnitsky) If X ≥ 0 almost surely,

Entμ(X2) ≥ EμX
2 log

EμX2

(EμX)2
.
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Proof First assume X > 0 almost surely and define Y = X/‖X‖2. Then

Entμ(Y 2) = EμY
2 log Y 2 − EμY

2 logEμY
2 = EμY

2 log Y 2

= −2EμY
2 log(1/Y ).

Apply Jensen to the measure E(·) = Eμ(· Y 2) and the function − log to obtain

Entμ(Y 2) ≥ −2EμY
2 log

E(1/Y )

EμY 2 = EμY
2 log

EμY 2

(EμY )2
,

proving the proposition for Y . Now for X ,

Entμ(X2) = ‖X‖22Entμ(Y 2) ≥ ‖X‖22EμY
2 log

EμY 2

(EμY )2
= EμX

2 log
EμX2

(EμX)2
.

If X = 0 with positive probability, we can conclude by a limiting argument applied
to Xn = max{1/n, X}. 
�

3 Variance bound for τ(0, x)

The mechanism for sublinear behavior of the variance which was identified in [4] can
be understood as follows. Since a geodesic from the origin to x is “one-dimensional,”
one expects that most edges in the lattice have small probability to lie in it: the edges
have small influence. This is not true of edges very close to the origin. To circumvent
this difficulty, Benjamini et al. considered an averaged version of the passage time (see
[4, Lemma 3]), which they subsequently compare to the actual passage time from 0 to
x . It was brought to our attention by Sodin (see [29, Section 3]) that their argument can
be replaced by a geometric average. This observation was made earlier by Alexander
and Zygouras in [2] for polymer models. Let x ∈ Z

d and Bm be a box of the form
[−m,m]d for m = �‖x‖1�1/4. Define

Fm = 1

#Bm

∑

z∈Bm
τ(z, z + x). (3.1)

Note that by (1.6), Var Fm < ∞.

3.1 Approximating τ(0, x) by Fm

Because of the choice of m, the variance of Fm closely approximates that of τ :

Proposition 3.1 Assume Et2e < ∞. Then there exists C3 > 0 such that

|Var τ(0, x) − Var Fm | ≤ C3‖x‖3/41 for all x .
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Sublinear variance in first-passage percolation 233

Proof By subadditivity, for each z ∈ Bm , |τ(0, x)−τ(z, z+x)| ≤ τ(0, z)+τ(x, z+x).
Therefore, writing Mx = max{τ(0, z) : z ∈ Bm} and X̂ = X − EX ,

|Var τ(0, x) − Var Fm | ≤ (‖τ̂ (0, x)‖2 + ‖F̂m‖2)‖τ̂ (0, x) − F̂m‖2.

Using ‖F̂m‖2 ≤ ‖τ̂ (0, x)‖2, we get the bound

2‖τ̂ (0, x)‖2(‖τ(0, x) − Fm‖2 + E|τ(0, x) − Fm |) ≤ 4‖τ̂ (0, x)‖2‖Mx‖2.

Since we assume (1.6), [21, Theorem 1] gives ‖τ̂ (0, x)‖2 ≤ C4‖x‖1/21 . On the other
hand, we can bound Mx using the following lemma.

Lemma 3.2 If Et2e < ∞, there exists C5 such that for all finite subsets S of Zd ,

E

[
max
x,y∈S τ(x, y)

]2
≤ C5(diam S)2.

Proof We start with the argument of [20, Lemma 3.5]. Given x, y ∈ S, we can build
2d disjoint (deterministic) paths from x to y of length at most C6‖x − y‖1 for some
integerC6. This means that τ(y, z) is bounded above by the minimum of 2d variables
T1, . . . , T2d , the collection being i.i.d. and each variable distributed as the sum of
C6diam(S) i.i.d. variables te, so

P(τ (x, y) ≥ λ) ≤
2d∏

i=1

P(Ti ≥ λ) ≤
[

C6diam(S)Var te
(λ −C6diam(S)Ete)2

]2d
.

Therefore if we fix some x0 ∈ S, for M = �2C6Ete�,
∞∑

λ=Mdiam(S)

λmax
y∈S P(τ (x0, y) ≥ λ) ≤ (4C6diam(S)Var te)

2d
∞∑

λ=Mdiam(S)

λ
1−4d

= C7(diam S)2−2d .

Last, by subadditivity,

E

[
max
x,y∈S τ(x, y)

]2
≤ 4E

[
max
y∈S τ(x0, y)

]2

≤ 4(Mdiam S)2

+ 8(diam S)

∞∑

λ=Mdiam(S)

λmax
y∈S P(τ (x0, y) ≥ λ)

≤ C8(diam S)2.


�
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234 M. Damron et al.

Using the lemma, we find ‖Mx‖2 ≤ C9diam(Bm) ≤ C10‖x‖1/41 . This means

|Var τ(0, x) − Var Fm | ≤ 4C4C10‖x‖1/21 ‖x‖1/41 = C11‖x‖3/41 .


�
3.2 Bounding the variance by the entropy

Enumerate the edges of Ed as e1, e2, . . .. We will bound the variance of Fm using the
martingale decomposition

Fm − EFm =
∞∑

k=1

Vk,

where
Vk = E[Fm | Fk] − E[Fm | Fk−1], (3.2)

and we have written Fk for the sigma-algebra generated by the weights te1, . . . , tek
(with F0 trivial). In particular if X ∈ L1(Ω,P), we have

E[X | Fk] =
∫

X
(
(te)e∈Ed

) ∏

i≥k+1

μ
(
dtei
)
. (3.3)

The idea now is to compare the variance of Fm to
∑∞

k=1 Ent (V
2
k ). The lower bound

comes from the proof of [13, Theorem 2.2].

Lemma 3.3 (Falik–Samorodnitsky) We have the lower bound

∞∑

k=1

Ent (V 2
k ) ≥ Var Fm log

[
Var Fm∑∞

k=1(E|Vk |)2
]

. (3.4)

Proof For M ∈ N, define F̃m = E[Fm | FM ]. We first use Proposition 2.4 and the
fact that

∑M
k=1 EV

2
k = Var F̃m :

M∑

k=1

Ent (V 2
k ) ≥

M∑

k=1

EV 2
k log

[
EV 2

k

(E|Vk |)2
]

= −Var F̃m

M∑

k=1

EV 2
k

Var F̃m
log

[
(E|Vk |)2
EV 2

k

]
.

Next use Jensen’s inequality with the function − log and sum
∑M

k=1
EV 2

k

Var F̃m
(·) to get

the lower bound

−Var F̃m log

[
M∑

k=1

EV 2
k

Var F̃m
· (E|Vk |)2

EV 2
k

]
,

which gives the lemma, after a limiting argument to pass to a countable sum. 
�
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4 Benaim and Rossignol’s approach

In this section,we explain how the argument developed in [6] can be extended, isolating
a more general condition than the “nearly gamma” condition. It includes, for example,
all power law distributions with 2+ ε moments. We emphasize that the content of this
section is independent of the derivation of our main result. In [6], the authors assume
that the distribution

μ = h(x) dx, h continuous

is an absolutely continuous measure such that

(supp h)◦ := {x : h(x) > 0} ⊂ (0,∞)

is an interval. Denoting by G(x) the distribution function of the standard normal
distribution, H(x) = ∫ x

−∞ h(t) dt , and X an N (0, 1) variable, the random variable

Y = T (X), (4.1)

with T = H−1 ◦ G, has distribution μ. Recall the Gaussian logarithmic Sobolev
inequality [14,16,30]: for any smooth f : R → R

E f 2(X) log
f 2(X)

E f 2(X)
≤ 2E( f ′(X))2. (4.2)

Combining (4.1) and (4.2), a calculation yields

Entμ( f (Y ))2 ≤ 2Eμ((ψ · f ′)(Y ))2, (4.3)

where

ψ(Y ) = (g ◦ G−1 ◦ H)(Y )

h(Y )

for any f in a suitable Sobolev space.
Benaim and Rossignol apply this inequality to the passage time, using inequality

(3.4). It is shown in [6], along the same lines as the proof of Lemma 6.3 that (4.3)
implies

∞∑

k=1

Entμ(V 2
k ) ≤ 2

∞∑

j=1

E

[(
ψ
(
te j
)
∂te j Fm

)2]
, (4.4)

with Fm as in (3.1). The derivative with respect to the edge weight can be expressed
as

∂te j Fm = 1

�Bm

∑

z∈Bm
1{e j∈Geo(z,z+x)}. (4.5)

Observe that the right side of (4.5) is a decreasing function of the edge weight te j .
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The following simple asymptotics appear in [6, Lemma 5.2]:

Lemma 4.1

g ◦ G−1(y) ∼ y
√−2 log y, y → 0, (4.6)

g ◦ G−1(y) ∼ (1 − y)
√−2 log(1 − y), y → 1. (4.7)

That is, in each case the ratio of the left to the right side tends to 1.

Suppose that there is a constant C12 > 0 such that

H(t)
√− log t

h(t)
≤ C12 (4.8)

for all t with I ≤ t ≤ I +δ, with δ > 0 and I the left endpoint of the interval (supp h)◦
[as in (1.9)]. The condition (4.8) holds, for example, if the density h is monotone near
I or if h(t) � (t − I )α for some (integrable) power α. The latter condition appears in
[6, Lemma 5.3].

For M > 0 such that F(M) < 1, the expectation in (4.4) can be computed as

E

[(
ψ
(
te j
)
∂te j Fm

)2] = EEμ j

[(
ψ
(
te j
)
∂te j Fm

)2]

= EEμ j

[(
ψ
(
te j
)
∂te j Fm

)2 ; te j ≤ M

]

+ EEμ j

[(
ψ
(
te j
)
∂te j Fm

)2 ; te j > M

]
. (4.9)

For te j ≤ M , (4.6) implies that the first term in (4.9) is bounded by

(
max

{
C12, sup

δ≤t≤M
h(t)−1

})2

· Eμ j

(
∂te j Fm

)2
.

The maximum is finite by assumption, and we have, by Cauchy–Schwarz,

E

(
∂te j Fm

)2 ≤ 1

�Bm

∑

z∈Bm
E
(
1{e j∈Geo(z,z+x)}

)
.

From there, one can conclude the argument as in Sects. 6.2.4 and 6.3.
As for the second term in (4.9), assume first that

ψ
(
te j
) ≤ C13

√
te j . (4.10)

This is the “nearly gamma” condition of Benaim and Rossignol. The right side of
(4.10) is increasing in te j . Using this in (4.9) together with the Chebyshev association
inequality [8, Theorem 2.14], we find
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EEμ j

[(
ψ
(
te j
)
∂te j Fm

)2 ; te j > M

]
≤ C2

13EEμ j

(√
te j · ∂te j Fm

)2

≤ C2
13E

(
te j
) · E

(
∂te j Fm

)2
. (4.11)

The previous argument shows that the condition (4.10) is not necessary: it is sufficient
that ψ be bounded by some increasing, square integrable function of te j . Suppose for
example that t �→ h(t) is decreasing for t > M . In this case, by (4.6), we have

ψ
(
te j
)
1{

te j >M
} = (g ◦ G−1 ◦ H)

(
te j
)

h
(
te j
) 1{

te j >M
}

≤ C14

(
1 − H

(
te j
)) ·

√
−2 log

(
1 − H

(
te j
))

h
(
te j
) 1{

te j >M
}. (4.12)

Let us denote by K
(
te j
)
the expression in (4.12). For t > M , we have

1 − H(t) =
∫ ∞

t
h(s) ds =

∫ ∞

t
s2/3+εs−2/3−εh(s) ds

≤
(∫ ∞

t
s2+3ε h(s)ds

)1/3 (∫ ∞

t
s−1−3ε/2h(s) ds

)2/3

≤ C15h(t)2/3,

assuming h(s) is decreasing for s > M and that the distribution posesses 2 + 3ε
moments. We have used the L3 − L3/2 Hölder inequality. This gives

K (t) ≤ C14C15h(t)−1/3
√−2 log(1 − H(t)) · 1{t>M}.

Thus K (t) is bounded by a quantity which is increasing in t . Using the Chebyshev
association inequality as in (4.11), we find

EEμ j

[(
ψ
(
te j
)
∂te j Fm

)2 ; te j > M

]

≤ (C14C15)
2
E

(
h−1/3 (te j

)√−2 log
(
1 − H

(
te j
)))2

×E

(
∂te j Fm

)2
.

We are left with the task of estimating the first expectation, which is

∫
h(s)−2/3(−2 log(1 − H(s))h(s) ds =

∫
h(s)1/3(−2 log(1 − H(s)) ds.
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We again use polynomial weights and L3 − L3/2:
∫

h(s)1/3(−2 log(1 − H(s))) ds =
∫

s−2/3−εs2/3+εh(s)1/3(−2 log(1 − H(s))) ds

≤
(∫

s−1−3ε/2 ds

)2/3

×
(∫

s2+3ε(−2 log(1 − H(s)))3h(s) ds

)1/3

.

A further application of Hölder’s inequality allows one to control the logarithm, at the
cost of an arbitrarily small increase in the moment assumption. It follows that

E

(
ψ
(
te j
)
∂te j Fm

)2 ≤ C16E

(
∂te j Fm

)2

if the distribution μ has 2 + ε′ moments. In conclusion, Benaim and Rossignol’s
argument extends to the case of distributions with 2+ ε moments whose densities are
positive and eventually decreasing.

One can derive many variants of the above, the key point being the application of
positive association in (4.11).

5 The lower bound

In this section we derive the first generalization of Kesten’s geodesic length estimate
and show how it is used to bound the sum

∑∞
k=1(E|Vk |)2 appearing in (3.4). Let G be

the set of all finite self-avoiding geodesics.

Lemma 5.1 Assuming (1.6) and (1.7), there exists C17 > 0 such that for all x and
all finite E ⊂ Ed ,

Emax
γ∈G

#(E ∩ γ ) ≤ C17diam(E).

Proof Choose a,C2 > 0 from Theorem 1.5. If #(E ∩ γ ) ≥ λ for some γ ∈ G, then
we may find the first and last intersections (say y and z respectively) of γ with V , the
set of endpoints of edges in E . The portion of γ from y to z is then a geodesic with at
least λ edges. This means

P(#(E ∩ γ ) ≥ λ for some γ ∈ G) ≤ (#V ) exp(−C2 λ) + P

(
max
y,z∈V τ(y, z) ≥ a λ

)
.

Therefore

Emax
γ∈G

#(E ∩ γ ) ≤ diam(E) +
∞∑

λ=diam(E)

(#V ) exp(−C2 λ)

+
∞∑

λ=diam(E)

P

(
max
y,z∈V τ(y, z) ≥ a λ

)
.
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By the inequality diam(E) ≥ C18(#V )1/d for some universal C18, the middle term is
bounded uniformly in E , so we get the upper bound

C19diam(E) + 1

a
E max

y,z∈V τ(y, z).

By Lemma 3.2, this is bounded by C20diam(E). 
�
We will now apply Lemma 5.1 to get an upper bound on

∑∞
k=1(E|Vk |)2. To do

so, we use a simple lemma, a variant of which is already found in various places,
including the work of Benaim–Rossignol [6, Lemma 5.9]. For its statement, we write
an arbitrary element ω ∈ Ω as (tec , te), where tec = (t f : f �= e). Further, set

S := sup supp(μ) = sup{x : F(x) < 1} ∈ R ∪ {∞}.

We use the following short-hand:

τz = τ(z, z + x).

Lemma 5.2 For e ∈ Ed and z ∈ Z
d , the random variable

Dz,e := sup{r < S : e is in a geodesic from z to z + x in (tec , r)}

has the following properties almost surely.

1. Dz,e < ∞.
2. For s ≤ t < S,

τz(tec , t) − τz(tec , s) = min{t − s, (Dz,e − s)+}.

3. For s < Dz,e, e ∈ Geo(z, z + x) in (tec , s).

Proof Part 1 is clear if S < ∞. Otherwise choose any path γ not including e. Then
for r larger than the passage time of this path, e cannot be in a geodesic in (tec , r),
giving Dz,e < ∞.

If e is in a geodesic γ in (tec , t) and t ≥ s then the passage time of γ decreases by
t − s in (tec , s). Since the passage time of no other path decreases by more than t − s,
γ is still a geodesic in (tec , s). This shows that

1{e is in a geodesic from z to z+x} is a non-increasing function of te. (5.1)

Therefore if t < Dz,e, e is in a geodesic in (tec , t) and by the above argument, for any
s ≤ t , part 2 holds. We can then extend to s ≤ t ≤ Dz,e by continuity.

If Dz,e < s ≤ t then e is not in a geodesic from z to z + x in (tec , s). By (1.10), we
can almost surely find a geodesic γ in (tec , s) not containing e and this path has the
same passage time in (tec , t). However all other paths have no smaller passage time,
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so τz(tec , t) − τz(tec , s) = (Dz,e − s)+ almost surely, proving part 2 in this case. We
can then extend the result to Dz,e ≤ s ≤ t by continuity and for s ≤ Dz,e ≤ t write

τz(tec , t) − τz(tec , s) = τz(tec , t) − τz(tec , Dz,e) + τz(tec , Dz,e) − τz(tec , s),

and use the other cases to complete the proof.
For part 3, let s < Dz,e, so that by (5.1), e is in a geodesic γ1 in (tec ,

s+Dz,e
2 ) from z

to x + z. Assume for a contradiction that e is not in every geodesic from z to x + z in
(tec , s), and choose γ2 as one that does not contain e. Because s+Dz,e

2 ≥ s, γ1 is still
a geodesic in (tec , s) and therefore has the same passage time in this configuration as
γ2. But then in (tec ,

s+Dz,e
2 ) it has strictly larger passage time, contradicting the fact

that it is a geodesic. 
�
Proposition 5.3 Assuming (1.6) and (1.7), there exists C21 such that

∞∑

k=1

(E|Vk |)2 ≤ C21‖x‖
5−d
4

1 for all x .

Proof Using the definition of Vk ,

E|Vk | = 1

#Bm
E

∣∣∣∣∣∣
E

⎡

⎣
∑

z∈Bm
τz | Fk

⎤

⎦− E

⎡

⎣
∑

z∈Bm
τz | Fk−1

⎤

⎦

∣∣∣∣∣∣

≤ 1

#Bm

∑

z∈Bm
E
∣∣E
[
τz | Fk

]− E
[
τz | Fk−1

]∣∣ . (5.2)

Write a configuration ω as
(
t<k, tek , t>k

)
, where

t<k = (
te j : j < k

)
and t>k = (

te j : j > k
)
.

The summand in (5.2) becomes

∫ ∣∣∣∣
∫

τz(t<k, t, t>k)P(dt>k) −
∫

τz(t<k, s, t>k)μ(ds)P(dt>k)

∣∣∣∣μ(dt)P(dt<k)

≤ 2E
∫ ∫

t≥s
|τz(t<k, t, t>k) − τz(t<k, s, t>k)| μ(ds)μ(dt).

By Lemma 5.2 and Ete < ∞, this equals

E

∫ ∫

t≥s
min{t − s,

(
Dz,ek − s

)
+}μ(ds)μ(dt)

≤ 2
∫

t
∫

s<Dz,ek

μ(ds)μ(dt) = C22F
(
D−
z,ek

)
.
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Using part 3 of the same lemma, EF
(
D−
z,ek

) ≤ P(ek ∈ Geo(z, z + x)). Therefore

E|Vk | ≤ C22
1

#Bm

∑

z∈Bm
P(ek ∈ Geo(z, z + x)).

By translation invariance, the above probability equals P(ek + z ∈ Geo(0, x)), so we
get the bound C22

#Bm
E# [Geo(0, x) ∩ {ek + z : z ∈ Bm}]. Lemma 5.1 providesC23 such

that this is no bigger than C23
diam Bm
#Bm

. Hence

E|Vk | ≤ C24‖x‖
1−d
4

1 .

This leads to

∞∑

k=1

(E|Vk |)2 ≤ C24‖x‖
1−d
4

1

∞∑

k=1

E|Vk |

≤ C25‖x‖
1−d
4

1
1

#Bm

∑

z∈Bm

∞∑

k=1

P(ek ∈ Geo(z, z + x))

≤ C26‖x‖
5−d
4

1 .

In the last inequality we have used Theorem 1.4. 
�

6 Sublinear variance for general distributions

Combining the results from the previous sections, we have shown so far that if (1.6)
and (1.7) hold then

Var τ(0, x) ≤ Var Fm+C3‖x‖3/41 ≤ C3‖x‖3/41 +
⎡

⎣log

⎡

⎣Var Fm

‖x‖
5−d
4

1

⎤

⎦

⎤

⎦
−1 ∞∑

k=1

Ent (V 2
k ).

(6.1)
Our goal now is to bound the sum by C‖x‖1. We will do this using a Bernoulli
encoding.

6.1 Bernoulli encoding

We will now view our edge variables as the push-forward of a Bernoulli sequence.
Specifically, for each edge e, let Ωe be a copy of {0, 1}N with the product sigma-
algebra. We will construct a measurable map Te : Ωe → R using the distribution
function F . To do this, we create a sequence of partitions of the support ofμ. Recalling
I : = inf supp(μ) = inf{x : F(x) > 0}, set

123



242 M. Damron et al.

a0, j = I and ai, j = min

{
x : F(x) ≥ i

2 j

}
for j ≥ 1 and 1 ≤ i ≤ 2 j − 1.

Note that by right continuity of F , the minimum above is attained; that is,

F(ai, j ) ≥ i

2 j
for j ≥ 1 and 0 ≤ i ≤ 2 j − 1. (6.2)

Let us note two properties of the sequence.

For j ≥ 1, a0, j ≤ a1, j ≤ · · · ≤ a2 j−1, j . (6.3)

For i = 0, . . . , 2 j − 1, x ≥ ai, j if and only if F(x) ≥ i

2 j
and x ≥ a0, j . (6.4)

Each ω ∈ Ωe gives us an “address” for a point in the support of μ. Given ω =
(ω1, ω2, . . .) and j ≥ 1, we associate a number Tj (ω) by

Tj (ω) = ai(ω, j), j , where i(ω, j) =
j∑

l=1

2 j−lωl .

i(ω, j) is just the number between 0 and 2 j −1 that corresponds to the binary number
ω1 · · · ω j . It will be important to note that if ωi ≤ ω̂i for all i ≥ 1 (written ω ≤ ω̂),
then i(ω, j) ≤ i(ω̂, j) for all j ≥ 1. This, combined with the monotonicity statement
(6.3), implies

ω ≤ ω̂ ⇒ Tj (ω) ≤ Tj (ω̂) for all j ≥ 1. (6.5)

It is well-known that one can represent Lebesgue measure on [0, 1] using binary
expansions and Bernoulli sequences. One way to view the encoding T in Lemma 6.1
is a composition of this representation with the right-continuous inverse of the distri-
bution function F . The function Tj instead uses an inverse approximated by simple
functions taking dyadic values.

Lemma 6.1 For each ω, the numbers (Tj (ω)) form a non-decreasing sequence and
have a limit T (ω). This map T : Ωe → R∪ {∞} is measurable and has the following
properties.

1. (Monotonicity) If ω ≤ ω̂ then T (ω) ≤ T (ω̂).
2. (Nesting) For any ω ∈ Ωe and j ≥ 1, if i(ω, j) < 2 j − 1 then

ai(ω, j), j ≤ T (ω) ≤ ai(ω, j)+1, j .

3. If ωk = 0 for some k ≥ 1 then T (ω) < ∞.
4. Letting π be the product measure

∏
l∈N πl , with each πl uniform on {0, 1}, we have

π ◦ T−1 = μ.

By part 3, T is π -almost surely finite.
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Proof The functions Tj are each measurable since their ranges are finite and the pre-
image of each point is a cylinder in Ωe. If we show that Tj → T pointwise then T
will also be measurable. Given ω ∈ Ωe, we have

i(ω, j)

2 j
= 1

2 j

j∑

l=1

2 j−lωl =
j∑

l=1

2−lωl ≤
j+1∑

l=1

2−lωl = i(ω, j + 1)

2 j+1 .

Therefore if x is such that F(x) ≥ i(ω, j+1)
2 j+1 then also F(x) ≥ i(ω, j)

2 j . This means that
if i(ω, j) > 0,

Tj (ω) = min

{
x : F(x) ≥ i(ω, j)

2 j

}
≤ min

{
x : F(x) ≥ i(ω, j + 1)

2 j+1

}
= Tj+1(ω).

Otherwise if i(ω, j) = 0 then Tj+1(ω) ≥ a0, j+1 = a0, j = Tj (ω). In either case,
(Tj (ω)) is monotone and has a limit T (ω).

For part 1, we simply take limits in (6.5). To prove part 2, we note the lower bound
follows from monotonicity. For the upper bound, take ω ∈ Ωe and let k ≥ j . Then

i(ω, k)

2k
=

k∑

l=1

2−lωl ≤
j∑

l=1

2−lωl +
∞∑

l= j+1

2−l = i(ω, j) + 1

2 j
≤ 2 j − 1

2 j
.

If ω is the zero sequence then T (ω) = I and T (ω) ≤ ai(ω, j)+1, j . Otherwise we can

find k ≥ j such that i(ω, k) �= 0. For this k, F(x) ≥ i(ω, j)+1
2 j implies F(x) ≥ i(ω,k)

2k
,

giving

Tk(ω) = ai(ω,k),k ≤ ai(ω, j)+1, j .

Taking the limit in k gives the result.
In part 3, we assume that ωk = 0 for some k ≥ 1. Then i(ω, k + 1) < 2k+1 − 1

and therefore by part 2,

T (ω) ≤ ai(ω,k+1)+1, j ≤ a2k+1−1, j < ∞.

Last we must show that π ◦T−1 = μ. The first step is to show that for each x ∈ R,

π ◦ T−1
j ((−∞, x]) → π ◦ T−1((−∞, x]).

Consider the sets

S j (x) = {ω ∈ Ωe : Tj (ω) ≤ x}.

If Tj+1(ω) ≤ x then Tj (ω) ≤ Tj+1(ω) ≤ x , so these sets are decreasing. Ifω is in their
intersection then Tj (ω) ≤ x for all j . Since Tj (ω) → T (ω) this means T (ω) ≤ x and
thus ω ∈ S(x) := {ω ∈ Ωe : T (ω) ≤ x}. Conversely, if ω ∈ S(x) then T (ω) ≤ x and
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so Tj (ω) ≤ T (ω) ≤ x for all j , meaning ω ∈ ∩ j S j (x). Therefore π ◦ T−1
j ((−∞, x])

converges to π ◦ T−1((−∞, x]).
Next we claim that

x ≥ a0, j ⇒ π ◦ T−1
j ((−∞, x]) = 2− j max

{
i + 1 : F(x) ≥ i

2 j

}
. (6.6)

The left side of the equality is π({ω : Tj (ω) ≤ x}). The function Tj is constant on
sets of ω with the same first j entries. By definition, if ω has first j entries ω1 · · ·ω j

then Tj (ω) = Tj (ω1 · · · ω j ) = ai(ω, j), j . So

π ◦ T−1
j ((−∞, x]) = 2− j#

{
(ω1, . . . , ω j ) : ai(ω, j), j ≤ x

}
.

Also, since x ≥ a0, j , (6.4) gives

π ◦ T−1
j ((−∞, x]) = 2− j#

⎧
⎨

⎩(ω1, . . . , ω j ) : F(x) ≥
j∑

l=1

2−lωl

⎫
⎬

⎭ .

This is exactly the right side of (6.6).

By (6.6),
∣∣∣π ◦ T−1

j ((−∞, x]) − F(x)
∣∣∣ ≤ 2− j and so π ◦T−1

j ((−∞, x]) → F(x),

completing the proof of part 4. 
�

6.2 Bound on discrete derivatives

In this section we prove the result:

Theorem 6.2 Assume (1.6) and (1.7). There exists C27 such that

∞∑

k=1

Ent (V 2
k ) ≤ C27‖x‖1.

The proof will be broken into subsections. In the first we apply Bonami’s inequality
to the Bernoulli encoding of Fm to get a sum involving discrete derivatives. The next
subsection uses the quantities Dz,e from Lemma 5.2 to control the sum of derivatives.
In the third subsection, we give a lemma based on the theory of greedy lattice animals
and in the final subsection, we use this lemma to achieve the bound C27‖x‖1.

6.2.1 Application of Bonami’s inequality

We will view Fm as a function of sequences of Bernoulli variables, so define

ΩB =
∏

e

Ωe
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where Ωe is, as in the last section, a copy of {0, 1}N. The measure on Ωe is πe, a
product of the form

∏
j≥1 πe, j with πe, j uniform on {0, 1} and the measure on ΩB is

π := ∏
e πe. Here as usual we use the product sigma-algebra. A typical element of

ΩB is denoted ωB and we list the collection of individual Bernoulli variables as

ωB =
{
ωe, j : e ∈ Ed , j ≥ 1

}
.

Last, calling Te the map from Lemma 6.1 onΩe, the product map T := ∏
e Te: ΩB →

Ω is defined

T (ωB) =
(
Te(ωe): e ∈ Ed

)
.

It is measurable and, by Lemma 6.1, pushes the measure π forward to P, our original
product measure on Ω .

We consider Fm as a function on ΩB ; that is, we set G = Fm ◦ T . The goal is
to estimate the derivative of G, so define the derivative relative to ωe, j of a function
f : ΩB → R as

(
	e, j f

)
(ω) = f

(
ωe, j,+)− f

(
ωe, j,−) ,

where ωe, j,+ agrees with ω except possibly at ωe, j , where it is 1, and ωe, j,− agrees
withω except possibly atωe, j , where it is 0. Then the following analogue of [6, Eq. (3)]
holds.

Lemma 6.3 We have the following inequality:

∞∑

k=1

Ent (V 2
k ) ≤

∑

e

∞∑

j=1

Eπ (	e, j G)2.

Proof Define a filtration of ΩB by enumerating the edges of Ed as {e1, e2, . . .} as
before and setting Gk as the sigma-algebra generated by

{
ωer , j : r ≤ k, j ∈ N

}
. Also

defineWk = Eπ [G | Gk]−Eπ

[
G | Gk−1

]
. It is straightforward to verify that, because

P = π ◦ T−1,

E[Fm | Fk](T (ωB)) = Eπ [G | Gk](ωB) for π -almost every ωB ∈ ΩB .

Therefore Ent (V 2
k ) = Entπ (W 2

k ) for each k. Using tensorization of entropy (Theo-
rem 2.3),

∞∑

k=1

Entπ (W 2
k ) ≤

∞∑

k=1

Eπ

∑

e

∞∑

j=1

Entπe, j W
2
k .

For this to be true, we need to check the condition W 2
k ∈ L2, or that Vk ∈ L4. Since

Vk is a difference of martingale sequence terms, it suffices to show that τ(0, x) is in
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L4. But this follows from [10, Lemma 3.1]: if Y = min{t1, . . . , t2d} is a minimum of
2d i.i.d. variables distributed as te, then τ(0, x) ∈ L4 if and only if EY 4 < ∞. By
Chebyshev’s inequality,

EY α = α

∫ ∞

0
yα−1

P(te > y)2d dy ≤ C
∫ ∞

0
yα−1−4d dy,

which is finite if α < 4d. In particular, since d ≥ 2, one has W 2
k ∈ L2.

Recall the Bonami–Gross inequality [7,16], which says that if f : {0, 1} → R and
ν is uniform on {0, 1} then

Entν f
2 ≤ (1/2)( f (1) − f (0))2.

Therefore we get the upper bound
∑∞

j=1
∑

e
∑∞

k=1 Eπ (	e, jWk)
2. For fixed

e = ei and j ,

	e, jWk =

⎧
⎪⎨

⎪⎩

0 if k < i

Eπ [	e, j G | Gk] if k = i

Eπ [	e, j G | Gk] − Eπ [	e, j G | Gk−1] if k > i

.

The first follows because when k < i then Wk does not depend on ωe, j , as this
variable is integrated out. A similar idea works for the second, noting that	e, jEπ [G |
Gk−1] = 0. The third is straightforward.Using orthogonality ofmartingale differences,∑∞

k=1 Eπ (	e, jWk)
2 = Eπ (	e, j G)2 and this completes the proof. 
�

6.2.2 Control by edges in geodesics

The first major step is to bound the sum of discrete derivatives by a weighted average
of edge-weights in geodesics. The bound we give is analogous to what would appear
if we had a LSI for μ (see the approach in Benaim–Rossignol [6]); however, we get a
logarithmic singularity as te ↓ I .

Proposition 6.4 There exists C28 such that for all x,

∑

e

∞∑

j=1

Eπ (	e, j G)2 ≤ C28E
∑

e

(1 − log F(te))1{e∈Geo(0,x)}.

Proof We begin by using convexity of the square function to get

∑

e

∞∑

j=1

Eπ

(
	e, j G

)2 ≤ 1

#Bm

∑

z∈Bm

⎡

⎣
∑

e

∞∑

j=1

Eπ

(
	e, jτz

)2
⎤

⎦ , (6.7)

where τz = τ(z, z + x). Write Eec for expectation relative to
∏

f �=e π f and for any
i ≥ 1, let πe,≥i be the measure

∏
k≥i πe,k . Further, for j ≥ 1 write

ωB = (ωec , ωe,< j , ωe, j , ωe,> j ),
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whereωec is the configurationωB projected on the coordinates (ω f,k : f �= e, k ≥ 1),
ωe,< j is ωB projected on the coordinates (ωe,k : k < j) and ωe,> j is ωB projected on
the coordinates (ωe,k : k > j).

The expectation in (6.7) is now

EecEπe,1 · · ·Eπe, j−1

[
Eπe,≥ j

(
	e, jτz

)2]

= Eec

⎡

⎣ 1

2 j−1

∑

σ∈{0,1} j−1

[
Eπe,≥ j

(
	e, jτz(ωec , σ, ωe, j , ωe,> j )

)2]
⎤

⎦ , (6.8)

and the innermost term is

Eπe,≥ j

(
τz(ωec , σ, 1, ωe,> j ) − τz(ωec , σ, 0, ωe,> j )

)2
. (6.9)

Because of Lemma 5.2, we can rewrite (6.9) as

Eπe,≥ j min
{
(Te(σ, 1, ωe,> j ) − Te(σ, 0, ωe,> j ))

2, (Dz,e − Te(σ, 0, ωe,> j ))
2+
}

.

(6.10)
Note that this allows us to assume Dz,e > I :

Eπ (	e, j τz)
2 = Eec

⎡

⎣ 1

2 j−1

∑

σ∈{0,1} j−1

[
Eπe,≥ j

(
	e, j τz(ωec , σ, ωe, j , ωe,> j )

)2] 1{I<Dz,e}

⎤

⎦ .

(6.11)
To simplify notation in the case j ≥ 2, we write the values a1, j−1, . . . , a2 j−1−1, j−1

as a1, . . . , a2 j−1−1 and for a fixed σ ∈ {0, 1} j−1, aσ for ai((σ,0,ωe,> j ), j−1), j−1 (note
that this does not depend on the configuration outside of σ ). Also we write a′

σ for
the element of the partition that follows aσ (when there is one; that is, when σ is not
(1, . . . , 1)). Last, we abbreviate Te(σ, c, ωe,> j ) by Te, j (σ, c) for c = 0, 1. With this
notation, we claim the inequalities

aσ ≤ Te, j (σ, 0) ≤ Te, j (σ, 1) ≤ a′
σ when σ �= (1, . . . , 1) and j ≥ 2.

The first and third inequalities follow from the nesting part of Lemma 6.1. The second
holds because of the monotonicity part. Therefore we can give an upper bound for
(6.10) when j ≥ 2 of

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if Dz,e ≤ aσ

Eπe,≥ j min{Dz,e − aσ , Te, j (σ, 1) − aσ }21{Te, j (σ,0)<Dz,e} if σ �= (1, . . . , 1) and aσ < Dz,e ≤ a′
σ

or σ = (1, . . . , 1)

(a′
σ − aσ )2 if a′

σ ≤ Dz,e

.

[Here and above we have strict inequality in the condition of the indicator function
since when Te(σ, 0, ωe,> j ) = Dz,e, (6.10) is zero.] With this, when j ≥ 2, the
integrand of Eec in (6.11) is no bigger than
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1

2 j−1

[
(a1 − a0)

2 + · · · + (as − as−1)
2

+Eπe,≥ j min{Dz,e − as, Te, j (σ (Dz,e), 1) − as}21{Te, j (σ (Dz,e),0)<Dz,e}
]
1{I<Dz,e}.

(6.12)

Here we have written s for the largest index i such that ai < Dz,e and σ(Dz,e) for the
configuration such that aσ(Dz,e) = as . In the case j = 1, we have the similar upper
bound

Eπe,≥ j min{Dz,e − I, Te,1(1) − I }21{Te,1(0)<Dz,e}1{I<Dz,e}. (6.13)

Either way, writing 1 j (respectively 0 j ) for the configuration (1, . . . , 1) (respectively
(0, . . . , 0)) of length j ,

Eπe(	e, jτz)
2 ≤ 1

2 j−1Eπe,≥ j

[
min{Dz,e, Te, j (1 j−1, 1)}21{Te, j (0 j−1,0)<Dz,e}

]
1{I<Dz,e}.

(6.14)
Note that min{Dz,e, Te, j (1 j−1, 1)2} is an increasing function of ωe,≥ j (with all other
variables fixed), whereas 1{Te, j (0 j−1,0)<Dz,e} is decreasing (here we use monotonicity
of Te). Therefore we can apply the Harris-FKG inequality [8, Theorem 2.15] and sum
over j for the upper bound

Eπe

∞∑

j=1

(	e, jτz)
2 ≤

∞∑

j=1

1

2 j−1

[
Eπe,≥ j min{Dz,e, Te, j (1 j−1, 1)}2 πe,≥ j (Te, j (0 j−1, 0)

< Dz,e)
]
1{I<Dz,e}. (6.15)

The goal is now to give a useful bound for this sum. To do this, we consider two
types of values of j . Note that F(D−

z,e) > 0 and therefore for some j , F(D−
z,e) ≥ 2− j .

So define

J (Dz,e) = min{ j ≥ 2 : F(D−
z,e) ≥ 2−( j−1)}.

Note that
1 − log2 F(D−

z,e) ≤ J (Dz,e) ≤ 2 − log2 F(D−
z,e). (6.16)

We will estimate the term πe,≥ j (Te, j (0 j−1, 0) < Dz,e) only when j < J (Dz,e).
By definition, it is

⎛

⎝
∏

k≥ j

πe,k

⎞

⎠({ωe : Te(0, . . . , 0, ωe, j+1, . . .) < Dz,e
})

= πe({ωe : Te(0, . . . , 0, ωe, j+1, . . .) < Dz,e}).
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The event inΩe listed on the right depends only on ωe,k for k > j , so it is independent
(under πe) of the state of the first j coordinates. Thus the above equals

2 jπe(Te(0, . . . , 0, ωe, j+1, . . .) < Dz,e, ωe,1, . . . , ωe, j = 0)

≤ 2 jπ(Te(ωe) < Dz,e) = 2 j F(D−
z,e).

Using this inequality for j < J (Dz,e), (6.15) becomes

Eπe

∞∑

j=1

(	e, j τz)
2 ≤ 2F(D−

z,e)Eπe,≥1Te,1(1)
21{I<De,z } + 2F(D−

z,e)

J (Dz,e)−1∑

j=2

D2
z,e1{I<Dz,e} (6.17)

+
∞∑

j=J (Dz,e)

1

2 j−1

[
Eπe,≥ j min{Dz,e, Te, j (1 j−1, 1)}2

]
1{I<Dz,e}. (6.18)

The second term on the right of (6.17) is bounded by noting that when this sum is
nonempty (that is, J (Dz,e) > 2), it follows that F(D−

z,e) < 1/2 and so Dz,e ≤ a1,1.
Using this with (6.16) we obtain

2F(D−
z,e)

J (Dz,e)−1∑

j=2

D2
z,e1{I<Dz,e} ≤ 2F(D−

z,e)(1 − log2 F(D−
z,e))a

2
1,11{I<Dz,e}.

(6.19)
We next bound Eπe,≥ j Te, j (1 j−1, 1)2. Because Te, j (1 j−1, 1) only depends on ωe

through ωe,> j ,

Eπe Te, j (1 j−1, 1)
2 = 2 j

Eπe Te, j (1 j−1, 1)
21{ωe,≤ j=1 j } = 2 j

Eπe T
2
e 1{ωe,≤ j=1 j }.

Thus in (6.17),

2F(D−
z,e)Eπe,≥1Te,1(1)

21{I<Dz,e} ≤ 4F(D−
z,e)Eμt

2
e 1{I<Dz,e} (6.20)

and

(6.18) ≤ 2
∞∑

j=J (Dz,e)

[
Eπe min{Dz,e, Te}21{ωe,≤ j=1 j }

]
1{I<Dz,e}

We now consider two cases. If Dz,e ≤ a1,1 then we use (6.16) to obtain the upper
bound

(6.18) ≤ 2a21,1

∞∑

j=J (Dz,e)

πe(ωe,≤ j = 1 j )1{I<Dz,e} = 2a21,1

∞∑

j=J (Dz,e)

2− j1{I<Dz,e}

≤ 4a21,12
−J (Dz,e)1{I<Dz,e}

≤ 2a21,1F(D−
z,e)1{I<Dz,e}.
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On the other hand, if Dz,e > a1,1 then we use the bound

(6.18) ≤ 2
[
Eπe T

2
e N

]
1{I<Dz,e}, where N = max{ j ≥ 1 : ωe,≤ j = 1 j }.

This is bounded by the variational characterization of entropy, Proposition 2.2. The
expectation is no larger than

2 Entμt
2
e + 2Eμt

2
e logEπe e

N/2.

Because N has a geometric distribution, this is bounded by C29 independently of e.
As Dz,e > a1,1, one has F(D−

z,e) ≥ 1/2 and so we obtain

(6.18) ≤ 4C29F(D−
z,e)1{I<Dz,e}.

Combined with the case Dz,e ≤ a1,1, our final bound is

(6.18) ≤ (4C29 + 2a21,1)F(D−
z,e)1{I<Dz,e}. (6.21)

Putting together the pieces, (6.20) with (6.19) and (6.21),

Eπe

∞∑

j=1

(	e, jτz)
2 ≤ C30F(D−

z,e)1{I<Dz,e} − C31F(D−
z,e) log F(D−

z,e)1{I<Dz,e}.

(6.22)

To bound terms of the second form we use a lemma.

Lemma 6.5 For any y > I , we have

− F(y−) log F(y−) ≤ −
∫

[I,y)
log F(a) μ(da). (6.23)

Proof Let ε > 0. The function log F(x) is increasing on (I,∞). The usual Lebesgue
construction gives a measure ν on (I,∞) such that

ν(a, b] = log F(b) − log F(a) ≥ 0

for a, b ∈ (I,∞). Fix x ∈ (I + ε,∞), and consider the square

� = (I + ε, x] × (I + ε, x].

It has two parts:

{(a, b) : I + ε < a < b ≤ x}, (6.24)

{(a, b) : I + ε < b ≤ a ≤ x}. (6.25)
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Thus,

(μ × ν)(�) =
∫ ∫

(6.24)
(μ × ν)(dadb) +

∫ ∫

(6.25)
(μ × ν)(dadb).

By Fubini’s theorem, the double integrals may be computed as iterated integrals

∫ ∫

(6.24)
(μ × ν)(dadb) =

∫

(I+ε,x]
μ((I + ε, b))ν(db)

=
∫

(I+ε,x]
(F(b−) − F(I + ε)) log F(db) (6.26)

∫ ∫

(6.25)
(μ × ν)(dadb) =

∫

(I+ε,x]
ν((I + ε, a])μ(da)

=
∫

(I+ε,x]
(log F(a) − log F(I + ε))F(da). (6.27)

By definition of the product measure,

(μ × ν)(�) = (F(x) − F(I + ε)) · (log F(x) − log F(I + ε)).

This gives the equality:

(F(x) − F(I + ε)) · (log F(x) − log F(I + ε)) =
∫

(I+ε,x]
F(b−) log F(db)

+
∫

(I+ε,x]
log F(a)F(da) − F(I + ε)(log F(x) − log F(I + ε))

− log F(I + ε)(F(x) − F(I + ε)).

After performing cancellations, we obtain

F(x) log F(x) − F(I + ε) log F(I + ε) =
∫

(I+ε,x]
F(b−) log F(db)

+
∫

(I+ε,x]
log F(a)F(da). (6.28)

Since F(b−) ≥ 0, this implies the estimate

−
∫

(I+ε,x]
log F(a) μ(da) − F(I + ε) log F(I + ε) ≥ −F(x) log F(x).

Taking ε ↓ 0 and using the right continuity of F ,

−
∫

(I,x]
log F(a) μ(da) − F(I ) log F(I ) ≥ −F(x) log F(x),
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where the second term is interpreted as 0 if F(I ) = 0. Since F(I ) = μ({I }),

−F(x) log F(x) ≤ −
∫

[I,x]
log F(a)μ(da).

Taking x ↑ y, (6.23) is proved. 
�
Apply the last lemma in (6.22) with y = Dz,e:

∑

e

Eπ

∞∑

j=1

(	e, jτz)
2 ≤ C32

∑

e

Eec

∫

[I,Dz,e)

(1 − log F(a)) μ(da)

= C32E
∑

e

(1 − log F(te))1{I≤te<Dz,e}.

By Lemma 5.2, if te < Dz,e then e is in Geo(z, z + x), so this is bounded above by

C32E
∑

e

(1 − log F(te))1{e∈Geo(z,z+x)}.

Translating back from z to 0 and putting this in (6.7) proves the proposition. 
�

6.2.3 Lattice animals

To bound the right side of the inequality in Proposition 6.4 we need finer control than
what is given by Kesten’s geodesic length estimates, due to the possible singularity of
log F(te) as te ↓ I . The idea will be that very few edges e on a geodesic have te close
to I . To bound the precise number, we give the main result of this section:

Theorem 6.6 Assume (1.7) and EY α < ∞ for some α > 1, where Y is the minimum
of 2d i.i.d. variables distributed as te. There exists C33 such that for all x ∈ Z

d and
any Borel set B ⊂ R,

E#{e ∈ Geo(0, x) : te ∈ B} ≤ C33‖x‖1μ(B)
α−1
αd .

The proof will require an excursion into the theory of greedy lattice animals. We
say that a finite set of vertices α ⊆ Z

d is a lattice animal if it is connected (under graph
connectedness on Z

d ). One fundamental result on lattice animals is the following,
taken from [11, Lemma 1], which describes how a lattice animal may be covered by
boxes. We set the notation B(l) = [−l, l]d .
Lemma 6.7 (Cox–Gandolfi–Griffin–Kesten) Let α be a lattice animal with 0 ∈ α

and #α = n, and let 1 ≤ l ≤ n. There exists a sequence x0, x1, . . . , xr ∈ Z
d , where

r = �2n/ l�, such that x0 = 0,

α ⊆
r⋃

i=0

(lxi + B(2l)), (6.29)
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and

‖xi+1 − xi‖∞ ≤ 1, 0 ≤ i ≤ r − 1.

We will use the above theorem in a similar setting to the original model for which
it is proved. Let �n denote the set of all self-avoiding paths

γ = (0 = v0, e1, v1, . . . , en, vn)

which begin at the origin and contain n edges. Denote by V (γ ) the vertex set of γ.

Assume that we have an edge-indexed set of i.i.d. variables {Xe}e, where Xe = 1
with probability p and 0 otherwise, and denote the joint distribution of {Xe} by Pp;
we denote expectation under this measure by Ep. If γ ∈ �n for some n, we define
X (γ ) = ∑

e∈γ Xe. Last, let
Nn := max

γ∈�n
X (γ ). (6.30)

The following lemma (and the proof thereof) is an adaptation of Martin’s [24, Prop.
2.2] extension of a theorem of Lee [22].

Lemma 6.8 There is a constant Cd < ∞ depending only on the dimension d such
that, for all p ∈ (0, 1] and all n ∈ N,

EpNn

np1/d
< Cd . (6.31)

Proof Let p ∈ (0, 1] be arbitrary. We first consider the case that np1/d ≤ 1. In this
case, we have

EpNn

np1/d
≤ 1

np1/d
∑

e∈[−n,n]d
Ep Xe ≤ 2d(2n + 1)d p

np1/d
≤ 2d(3d)(p1/dn)d−1 ≤ 3d+1d.

In the case that np1/d > 1, we set l = �p−1/d�. Note that for any γ ∈ �n, V (γ ) is a
lattice animal with n + 1 vertices. In particular, it can by covered using the results of
Theorem 6.7. So for any s ≥ 0,

Pp

(
Nn

np1/d
≥ s

)
= Pp

(
max
γ∈�n

X (γ ) ≥ np1/ds

)

≤ Pp

⎛

⎜⎜⎜⎝ max
x0,...,xr

∑

e={x,y}
x,y∈∪r

i=0(lxi+B(2l))

Xe ≥ np1/ds

⎞

⎟⎟⎟⎠

≤
∑

x0,...,xr

Pp

⎛

⎜⎜⎜⎝
∑

e={x,y}
x,y∈∪r

i=0(lxi+B(2l))

Xe ≥ np1/ds

⎞

⎟⎟⎟⎠ , (6.32)
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where the outer sum is over all connected subsets of Zd of cardinality r + 1 =
1 + �2(n + 1)/ l� ≤ 5np1/d which contain the origin.

The expression in (6.32) is bounded above by

∑

x0,...,xr

exp(−np1/ds)Ep exp

⎛

⎜⎜⎜⎝
∑

e={x,y}
x,y∈∪r

i=0(lxi+B(2l))

Xe

⎞

⎟⎟⎟⎠

≤
∑

x0,...,xr

exp(−np1/ds)
[
Ep exp(Xe)

]#{e={x,y}:x,y∈∪r
i=0(lxi+B(2l))}

. (6.33)

Now, note that

• Ep exp(Xe) = 1 − p + pe;
• The number of vertices in B(2l) is (4l + 1)d , so

#{e = {x, y} : x, y ∈ ∪r
0(lxi + B(2l))} ≤ (r + 1)(2d)(4l + 1)d ≤ C34(d)np1/d−1.

• The number of terms in the sum (6.33) is at most 3d(r+1) ≤ 35dnp
1/d

.

Putting the above into (6.33), we have

Pp

(
Nn

np1/d
≥ s

)
≤ exp(−np1/ds)35dnp

1/d
[1 − p + pe]C34(d)np1/d−1

= exp(−np1/ds)35dnp
1/d
(
[1 − p + pe]1/p

)C34(d)np1/d

≤ exp(−np1/ds)35dnp
1/d
[
ee−1

]C34(d)np1/d

=: exp(−np1/ds + C35np
1/d), (6.34)

where C35 = C35(d) again does not depend on p or n. Then we have, for np1/d > 1,

Ep

(
Nn

np1/d

)
≤ C35 + Ep

[
Nn

np1/d
− C35

]

+
= C35 +

∫ ∞
C35

Pp

(
Nn

np1/d
≥ s

)
ds

≤ C35 +
∫ ∞
C35

exp
(
−np1/d (s − C35)

)
ds

≤ C35 +
∫ ∞
C35

exp (−(s − C35)) ds ≤ C36

for some C36 = C36(d). 
�
We are now ready to prove the theorem.

Proof of Theorem 6.6 Consider any deterministic ordering of all finite self-avoiding
lattice paths and denote by π(x, y) the first geodesic from x to y in this ordering.
Writing YB(0, x) for the number of edges in π(x, y) with weight in B, note that it
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suffices to give the bound for EYB(0, x). Define a set of edge weights Xe as a function
of te:

Xe =
{
1 if te ∈ B

0 otherwise

and build the random variables Nn for these weights as in (6.30).
On the event {#π(0, x) ≤ i}, we have YB(0, x) ≤ Ni . Therefore, for all x ∈ Z

d

and κ ∈ N,

EYB(0, x) ≤ ENκ‖x‖1 + E
[
#π(0, x)1{#π(0,x)>κ‖x‖1}

]

= ENκ‖x‖1 +
∫ ∞

κ‖x‖1
P (#π(0, x) > s) ds

≤ Cdκ‖x‖1μ(B)1/d +
∫ ∞

κ‖x‖1
P (#π(0, x) > s) ds.

To bound the integral above, we use the technique of Kesten (see Eq. (2.26)–(2.27)
in [21]). For b, j > 0, denote by D( j, b, x) the event that there exists a self-avoiding
path r starting at the origin of at least j‖x‖1 steps but τ(r) < jb‖x‖1. Then for any
b > 0,

P (#π(0, x) > j‖x‖1) ≤ P (τ (0, x) ≥ bj‖x‖1) + P(D( j, b, x)). (6.35)

By our assumption EY α < ∞, [10, Lemma 3.1] implies that there exists C37 such
that for all x , Eτ(0, x)α ≤ C37‖x‖α

1 . Thus for arbitrary x ∈ Z
d ,

P (τ (0, x) ≥ bj‖x‖1) ≤ C37/(bj)
α.

Due to assumption (1.7), we may use Theorem 1.5 to see that, for b smaller than
some b0 > 0 (which depends on d and μ), the probability of D( j, b, x) is bounded
above uniformly in j and x by exp(−C38 j‖x‖1). Inserting this bound into (6.35), we
see that for b small enough,

P (#π(0, x) > j‖x‖1) ≤ C37

(bj)α
+ exp(−C38 j‖x‖1).

In particular, setting r = s/‖x‖1,

EYB(0, x) ≤ Cdκ‖x‖1μ(B)1/d + ‖x‖1
∫ ∞

κ

(
C37

(br)α
+ exp(−C38r‖x‖1)

)
dr

≤ Cdκ‖x‖1μ(B)1/d + C39‖x‖1
κα−1

for some constant C39. Choosing κ = �μ(B)−1/(αd)� completes the proof. 
�
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6.2.4 Finishing the proof of Theorem 6.2

We use Theorem 6.6, with a dyadic partition of [I,∞): let

x0 = ∞ and xn = min{x : F(x) ≥ 2−n} for n ∈ N.

Note that for any edge e, te almost surely lies in one of the intervals [xi , xi−1) for
i ≥ 1. This is clear if I < te. Otherwise we must have μ({I }) > 0 and we simply take
i to be minimal such that 2−i ≤ μ({I }).

Now the right side of the inequality in Proposition 6.4 can be rewritten as

C28

∞∑

i=1

∑

e

E
[
(1 − log F(te))1{e∈Geo(z,z+x)}1{te∈[xi ,xi−1)}

]

≤ C28

∞∑

i=1

(1 − log F(xi ))E#{e ∈ Geo(z, z + x) : te ∈ [I, xi−1)}.

By Theorem 6.6 with α = 2, this is bounded by

C28C33‖x‖1
∞∑

i=1

(1 − log F(xi ))F(x−
i−1)

1/(2d)

≤ C28C33‖x‖1
∞∑

i=1

1 + i

2(i−1)/(2d)
≤ C27‖x‖1.

6.3 Proof of Theorem 1.1

For x ∈ Z
d , if Var Fm ≤ ‖x‖7/81 then by Proposition 3.1, we are done. Otherwise,

under assumptions (1.6) and (1.7) we can use (6.1) to find for some C3

Var τ(0, x) ≤ C3‖x‖3/41 +
[
log
[
‖x‖1/81

]]−1 ∞∑

k=1

Ent (V 2
k ).

By Theorem 6.2,
∑∞

k=1 Ent (V
2
k ) ≤ C27‖x‖1, so

Var τ(0, x) ≤ C3‖x‖3/41 + 8C27‖x‖1
log ‖x‖1 ≤ C40‖x‖1

log ‖x‖1 .
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