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Abstract Consider the Erdős–Renyi random graph on n vertices where each edge is
present independently with probability λ/n, with λ > 0 fixed. For large n, a typi-
cal random graph locally behaves like a Galton–Watson tree with Poisson offspring
distribution with mean λ. Here, we study large deviations from this typical behav-
ior within the framework of the local weak convergence of finite graph sequences.
The associated rate function is expressed in terms of an entropy functional on uni-
modular measures and takes finite values only at measures supported on trees. We
also establish large deviations for other commonly studied random graph ensembles
such as the uniform random graph with given number of edges growing linearly with
the number of vertices, or the uniform random graph with given degree sequence. To
prove our results, we introduce a new configuration model which allows one to sample
uniform random graphs with a given neighborhood distribution, provided the latter is
supported on trees. We also introduce a new class of unimodular random trees, which
generalizes the usual Galton Watson tree with given degree distribution to the case of
neighborhoods of arbitrary finite depth. These generalized Galton Watson trees turn
out to be useful in the analysis of unimodular random trees and may be considered to
be of interest in their own right.
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1 Introduction and main results

Consider the Erdős–Renyi ensemble G(n, p), where a random graph is obtained from
the vertex set [n] = {1, . . . , n} by adding each edge independently with probability p.
In the sparse regime with p = λ/n, for a fixed λ > 0, it is well known that, for large
n, a typical graph from G(n, p) locally looks like a Galton–Watson tree with Poisson
offspring distribution with mean λ. In this work we study large deviations from this
typical behavior. The problem is intimately related to the question: conditioned on
having a certain neighborhood distribution, what does a typical element of G(n, p)
locally look like?The samequestions can be asked for other commonly studied random
graph ensembles such as the uniform random graphs with fixed number of edges
growing linearly with the number of vertices, or with given degree sequence. We
formulate the problemwithin the theory of local weak convergence of graph sequences
that was recently introduced by Benjamini and Schramm [4] and Aldous and Steele
[2]. The associated local weak topology has now become a common tool for studying
sparse graphs, see Aldous and Lyons [1] and Bollobàs and Riordan [8]. A surprising
large variety of graph functionals are continuous for this topology. In Sect. 2 below,
we will give more details on local weak convergence. In order to present our result,
here we first introduce the main terminology.

1.1 Local weak convergence

A graph G = (V, E), with V a countable set of vertices, is said to be locally finite
if, for all v ∈ V , the degree of v in G is finite. A rooted graph (G, o) is a locally
finite and connected graph G = (V, E) with a distinguished vertex o ∈ V , called
the root. For t � 0, we denote by (G, o)t the induced rooted graph with vertex
set {u ∈ V : D(o, u) � t}, with D(·, ·) the natural graph distance. Two rooted
graphs (Gi , oi ) = (Vi , Ei , oi ), i ∈ {1, 2}, are isomorphic if there exists a bijection
σ : V1 → V2 such that σ(o1) = o2 and σ(G1) = G2, where σ acts on E1 through
σ({u, v}) = {σ(u), σ (v)}. We will denote this equivalence relation by (G1, o1) �
(G2, o2). An equivalence class of rooted graphs is often simply referred to as unlabeled
rooted graph. We denote by G∗ the set of (locally finite, connected) unlabeled rooted
graphs. T ∗ will be the set of unlabeled rooted trees. To each unlabeled rooted graph
g ∈ G∗, we may associate a labeled rooted graph (G, o) with vertex set V ⊂ Z+,
rooted at 0, in a canonical way; see e.g. [1]. For ease of notation, one sometimes
identifies g ∈ G∗ with its canonical rooted graph (G, o).

For γ ∈ G∗ and h ∈ N, we write γh for the truncation at h of the graph γ , namely
the unlabeled rooted graph obtained by removing all vertices (together with the edges
incident to them) that are at distance larger than h from the root. The local topology is
the smallest topology such that for any γ ∈ G∗ and h ∈ N, the G∗ → {0, 1} function
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Large deviations of empirical neighborhood distribution 151

Fig. 1 Example of a graph G and its empirical neighborhood distribution. Here U (G) = 1
6 (δα + 2δβ +

δχ + δγ + δε), where α, β, χ, γ, ε ∈ G∗ are the unlabeled rooted graphs depicted above (the black vertex
is the root), with [G, 1] = α, [G, 2] = [G, 3] = β, [G, 4] = χ , [G, 5] = γ , [G, 6] = ε

f (g) = 1(gh = γh) is continuous. Equivalently, a sequence gn ∈ G∗ converges
locally to g ∈ G∗ iff for all h ∈ N there exists n0(h) such that (gn)h = gh whenever
n � n0(h). This topology is metrizable and the space G∗ is separable and complete
[1]. The space of probability measures on G∗, denoted P(G∗), is equipped with the
topology of weak convergence. We often write ρn � ρ to indicate that a sequence
ρn ∈ P(G∗) converges weakly to ρ ∈ P(G∗).

For a finite graph G = (V, E) and v ∈ V , one writes G(v) for the connected
component of G at v. The empirical neighborhood distribution U (G) of G is the law
of the equivalence class of the rooted graph (G(o), o) where the root o is sampled
uniformly at random from V , i.e. U (G) ∈ P(G∗) is defined by

U (G) = 1

|V |
∑

v∈V
δ[G,v], (1)

where [G, v] ∈ G∗ stands for the equivalence class of (G(v), v) and δg is the Dirac
mass at g ∈ G∗; see Fig. 1 for an example. If {Gn} is a sequence of finite graphs, we
shall say that Gn has local weak limit ρ ∈ P(G∗) if U (Gn) converges to ρ in P(G∗)
as n → ∞. A measure ρ ∈ P(G∗) is called sofic if there exists a sequence of finite
graphs {Gn} whose local weak limit is ρ. In other words, the set of sofic measures is
the closure of the set {U (Gn) : Gn finite graph}. An example is the Dirac mass at the
infinite regular tree with degree d ∈ N, which is almost surely the local weak limit of
a sequence of uniformly sampled random d-regular graphs on n vertices [31]. Another
example is the law of the Galton–Watson tree with Poisson offspring distribution with
meanλ > 0,which is almost surely the localweak limit of a sequence of randomgraphs
sampled from G(n, p) when p = λ/n. Sofic measures form a closed subset of P(G∗).

Sofic measures share a stationarity property called unimodularity [1]. To define the
latter, consider the setG∗∗ of unlabeledgraphswith twodistinguished roots, obtained as
the set of equivalence classes of locally finite connected graphs with two distinguished
vertices (G, u, v). The notion of local topology extends naturally to G∗∗. A function
f on G∗∗ can be extended to a function on connected graphs with two distinguished
roots (G, u, v) through the isomorphism classes. Then, a measure ρ ∈ P(G∗) is called
unimodular if for any Borel measurable function f : G∗∗ → R+, we have

Eρ

∑

v∈V
f (G, o, v) = Eρ

∑

v∈V
f (G, v, o), (2)
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152 C. Bordenave, P. Caputo

where (G, o) is the canonical rooted graph whose equivalence class g ∈ G∗ has law
ρ. It is not hard to check that if G is a finite graph then its neighborhood distribution
U (G) is unimodular. In particular, all sofic measures are unimodular. The converse
is open; see [1]. We denote by Pu(G∗) the set of unimodular probability measures.
Similarly, we write Pu(T ∗) for unimodular probability measures supported by trees.

1.2 Unimodular Galton–Watson trees with given neighborhood

We now introduce a family of unimodular measures that will play a key role in what
follows. As we will see, this is the natural generalization of the usual Galton–Watson
trees with given degree distribution to the case of neighborhoods of arbitrary depth
h ∈ N. These measures will be shown to be sofic, and this fact can be used to give an
alternative proof of the Bowen–Elek theorem [3,13,19] asserting that all ρ ∈ Pu(T ∗)
are sofic, see Corollary 1.5 below.

Fix h ∈ N, and recall that gh denotes the truncation at depth h of g ∈ G∗. Call
G∗
h the set of unlabeled rooted graphs with depth h, i.e. the set of g ∈ G∗ such that

gh = g. Similarly, call T ∗
h the set of unlabeled rooted trees t ∈ T ∗ such that th = t .

Given ρ ∈ P(G∗), we write ρh ∈ P(G∗
h ) for the h-neighborhood marginal of ρ, i.e.

the law of gh when g has law ρ. Notice that if t ∈ T ∗ and h = 1, then th is simply
the number of children of the root. In particular, T ∗

1 can be identified with Z+. When
h = 0, it is understood that G∗

0 contains only the trivial graph consisting of a single
isolated vertex (the root), so that |G∗

0 | = 1.
If G = (V, E) is a graph and {u, v} ∈ E then define G(u, v) as the rooted graph

(G ′(v), v), where G ′ = (V, E\{u, v}), i.e. G(u, v) is the rooted graph obtained from
G by removing the edge {u, v} and taking the connected component at the root v.
Next, given a rooted graph (G, o), and g, g′ ∈ G∗

h−1, define

Eh(g, g
′) = ∣∣{v G∼ o : G(o, v)h−1 � g, G(v, o)h−1 � g′}∣∣. (3)

The notation v
G∼ u indicates that the vertex v is a neighbor of u in G. Thus,

Eh(g, g′) is the number of neighbors of the root in (G, o) which have the given
patterns G(o, v)h−1 � g and G(v, o)h−1 � g′. Notice that if h = 1, then necessarily
g, g′ = o and E1(o, o) = degG(o) is simply the degree of the root.

As an example, consider the the rooted graph α from Fig. 1. Fix h = 2, and call
g1, g2 the elements ofG∗

h−1 consisting respectively of a rooted single edge and a rooted
triangle. Then one has Eh(g1, g2) = 2 and Eh(g2, g1) = 0. Similarly, if the reference
graph is β from Fig. 1, then Eh(g1, g2) = 0 while Eh(g2, g1) = 1.

We call a measure P ∈ P(G∗
h ) admissible if EPdegG(o) < ∞ and for all

g, g′ ∈ G∗
h−1,

eP (g, g′) = eP (g′, g),

where
eP (g, g′) := EP Eh(g, g

′). (4)
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Large deviations of empirical neighborhood distribution 153

Fig. 2 In this example one has h = 2 and 1 + ∣∣{v τ∼ o : τ(o, v) � t ′
}∣∣ = 2. Notice that if t = τ1

denotes the rooted tree with two leaves, then in the rooted tree τ ∪ t ′+ one has Eh(t ′, t) = 2 according to
the definition (3)

Here it is understood that (G, o) represents the canonical rooted graph whose equiv-
alence class in G∗

h has law P . By applying the definition of unimodularity (2) to the
function

f (G, u, v) = 1
(
v

G∼ u
)
1
(
G(u, v)h−1 � g;G(v, u)h−1 � g′),

it is not hard to check that if ρ is unimodular andEρdegG(o) < ∞ then ρh ∈ P(G∗
h ) is

admissible. In particular, for any finite graph G, the neighborhood distributionU (G)h
truncated at depth h is admissible. Remark that, when h = 1, since |G∗

0 | = 1, all
P ∈ P(T ∗

1 ) = P(Z+) with finite mean are admissible.
We now define the measures UGWh(P) ∈ P(T ∗); see also Sect. 3 below for more

details. Fix P ∈ P(T ∗
h ) admissible. The probability UGWh(P) ∈ P(T ∗) is the law

of the equivalence class of the random rooted tree (T, o) defined below.
For t, t ′ ∈ T ∗

h−1 such that eP (t, t ′) �= 0 define, for all τ ∈ T ∗
h ,

P̂t,t ′(τ ) = P(τ ∪ t ′+)
(
1 + ∣∣{v τ∼ o : τ(o, v) � t ′

}∣∣
)1(τh−1 = t)

eP (t, t ′)
, (5)

where τ ∪ t ′+ denotes the tree obtained from τ by adding a new neighbor of the root
whose rooted subtree is t ′; see Fig. 2 for an example. The subtree τ(o, v) is defined
before Eq. (3) with the graph G replaced by τ .

It can be checked that P̂t,t ′ is a probability, i.e. P̂t,t ′ ∈ P(T ∗
h ); see Sect. 3. We

may now define the random rooted tree (T, o). First, (T, o)h is sampled according
to P . Next, for each vertex v in the first generation of (T, o)h , consider the subtree
t = T (o, v)h−1 with depth h−1 rooted at v obtained by removing the edge {o, v} and
retaining the connected component up to distance h − 1 from v. We add a layer to t
by replacing t with a new tree τ with depth h that coincides with t in the first h − 1
generations. The new tree τ is sampled according to P̂t,t ′ where t is as above while
t ′ denotes the subtree T (v, o)h−1 rooted at o obtained from (T, o)h by removing the
edge {o, v} and retaining the connected component up to distance h − 1 from o. This
operation is repeated for each v in the first generation independently. After this step,
we have overall added one layer to (T, o)h , and thus we have sampled (T, o)h+1.

We now proceed recursively, layer by layer, to obtain a sample of the full tree (T, o).
Formally, this construction can be stated as follows. If u is the parent of v, we say
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154 C. Bordenave, P. Caputo

that v has type (t, t ′), where t, t ′ ∈ T ∗
h−1, if T (u, v)h−1 � t and T (v, u)h−1 � t ′. The

subtrees T (u, v), and T (v, u) are defined before Eq. (3) withG replaced by T . Denote
by 1, . . . , d, with d = degT (o) the neighbors of the root in the canonical representation
of the random variable with law P . Given (T, o)h , the subtrees T (o, v), 1 � v � d,

are independent random variables and, given that v has type (t, t ′), then T (o, v)h has
distribution P̂t,t ′ . Once T (o, v)h is sampled, the type of a child v′ of v is determined
using only T (o, v)h and T (v, o)h−2. For each child v′ of v we sample the subtree
T (v, v′)h independently according to P̂t,t ′ where (t, t ′) is the type of v′ and so on,
recursively. This defines our random rooted tree (T, o).

If h = 1, then there is only one type possible and UGW1(P) is the unimodular
Galton–Watson tree with degree distribution P ∈ P(Z+), where the number d of chil-
dren of the root is sampled according to P , and conditionally on d, the subtrees of the
children of the root are independent Galton–Watson trees with offspring distribution
given by the size-biased law P̂:

P̂(k) = (k + 1)P(k + 1)∑∞
�=1 �P(�)

. (6)

If P = Poi(λ) is the Poisson distribution with mean λ, then P̂ = P and UGW1(P) is
the standard Galton–Watson tree with mean degree λ.

The following proposition summarizes the main properties of the measures
UGWh(P) for generic h ∈ N and P ∈ P(T ∗

h ) admissible.

Proposition 1.1 Fix h ∈ N and P ∈ P(T ∗
h ) admissible. The measure UGWh(P) is

unimodular. Moreover, the following consistency relation is satisfied: for any k � h,
(UGWh(P))k ∈ P(T ∗

k ) is admissible and

UGWh(P) = UGWk((UGWh(P))k).

1.3 Entropy of a measure ρ ∈ P(G∗)

It is convenient toworkwith uniformly distributed random graphswith a given number
of edges. For any n,m ∈ N, let Gn,m be the set of graphs on V = [n] with |E | = m
edges. Fix d > 0, and a sequence m = m(n) such that m/n → d/2, as n → ∞.
Since

∣∣Gn,m
∣∣ =

(
n(n − 1)/2

m

)
,

an application of Stirling’s formula shows that

log
∣∣Gn,m

∣∣ = m log n + s(d) n + o(n), s(d) := d

2
− d

2
log d. (7)

If ρ ∈ P(G∗), define

Gn,m(ρ, ε) = {G ∈ Gn,m : U (G) ∈ B(ρ, ε)
}
,
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Large deviations of empirical neighborhood distribution 155

where B(ρ, ε) denotes the open ball with radius ε around ρ with respect to the Lévy
metric on P(G∗). For ε > 0, define

(ρ, ε) = lim sup
n→∞

log
∣∣Gn,m(ρ, ε)

∣∣− m log n

n
.

Since ε �→ (ρ, ε) is non-decreasing, one defines

(ρ) = lim
ε→0

↓ (ρ, ε).

The extended real numbers (ρ, ε) and (ρ) are defined as above, with lim sup
replaced by lim inf. If ρ is such that (ρ) = (ρ), we set (ρ) := (ρ) = (ρ).
The number (ρ) can be interpreted, up to an overall constant, as a microcanonical
entropy associated to the stateρ. From (7), one has that(ρ) ∈ [−∞, s(d)], whenever
it is well defined.

Theorem 1.2 Fix d > 0 and choose a sequence m = m(n) such that m/n → d/2.
For any ρ ∈ P(G∗), the entropy (ρ) ∈ [−∞, s(d)] is well defined, it is upper semi-
continuous, and it does not depend on the choice of the sequence m(n). Moreover,
(ρ) = −∞ if at least one of the following is satisfied:

(i) ρ is not unimodular
(ii) ρ is not supported on rooted trees.
(iii) EρdegG(o) �= d.

Notice that the definition of (ρ) depends on the parameter d. For simplicity,
we do not write explicitly this dependence. In view of Theorem 1.2(iii), to avoid
trivialities, unless otherwise stated, (ρ) will refer to the value at d = EρdegG(o)
(provided that the latter is finite). The next theorem computes the actual value of
(ρ) for unimodular Galton–Watson trees and gives an expression for (ρ) for all
ρ ∈ Pu(T ∗). Moreover, it shows that unimodular Galton–Watson trees maximize
entropy under a h-neighborhood marginal constraint.

Let us introduce some additional notation. For any P ∈ P(T ∗
h ), define the Shannon

entropy

H(P) = −
∑

t∈T ∗
h

P(t) log P(t).

For h ∈ N, call Ph the set of all P ∈ P(T ∗
h ), with P admissible such that H(P) < ∞

and EP
[
degT (o) log

(
degT (o)

)]
< ∞.1 For P ∈ Ph , let πP denote the probability on

T ∗
h−1 × T ∗

h−1 defined by

πP (s, s′) = 1

d
eP (s, s′), (s, s′) ∈ T ∗

h−1 × T ∗
h−1,

1 We shall actually see with Lemma 5.10 below that P ∈ Ph is equivalent to P admissible and
EP
[
degT (o) log

(
degT (o)

)]
< ∞.
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where d = EPdegG(o), eP (s, s′) = EP Eh(s, s′), and Eh(s, s′) is defined in (3). We
write H(πP ) for the Shannon entropy of πP :

H(πP ) = −
∑

(t,t ′)∈T ∗
h−1×T ∗

h−1

πP (t, t ′) logπP (t, t ′).

Theorem 1.3 Fix h ∈ N. The expression

Jh(P) = −s(d) + H(P) − d

2
H(πP ) −

∑

(s,s′)∈T ∗
h−1×T ∗

h−1

EP log(Eh(s, s
′)!), (8)

defines a function Jh : Ph �→ [−∞, s(d)], satisfying

(UGWh(P)) = Jh(P),

for all P ∈ Ph. Define Jh : P(T ∗
h ) �→ [−∞, s(d)] by Jh(P) = Jh(P) if P ∈ Ph,

and Jh(P) = −∞ if P /∈ Ph. If ρ ∈ Pu(T ∗), then for all h ∈ N,

(ρ) � J h(ρh), (9)

and, if ρ1 has finite support, the inequality is strict unless ρ = UGWh(ρh). Finally,
for any ρ ∈ Pu(T ∗), J h(ρh) is non-increasing in h ∈ N, and

(ρ) = lim
h→∞ ↓ Jh(ρh). (10)

In Remark 5.13 below we provide an alternative expression for Jh(P) in terms of
relative entropies. Specializing to the case h = 1, we obtain the following corollary
of Theorem 1.3.

Corollary 1.4 If P ∈ P(Z+) has mean d, then

(UGW1(P)) = s(d) − H(P |Poi(d)),

where Poi(d) stands for Poisson distribution with mean d, and H(· | ·) is the relative
entropy.

In particular, the standard Galton–Watson tree ρ = UGW1(Poi(d)) maximizes the
entropy (ρ) among all measures ρ with mean degree d.

As a byproduct of our analysis, we will also obtain an alternative proof of the
Bowen–Elek Theorem [3,13,19].

Corollary 1.5 If ρ ∈ Pu(T ∗), then ρ is sofic.

We observe finally that, from its definition, the map : ρ �→ (ρ) is easily seen to
be upper semi-continuous for the local weak topology (see Lemma 5.3). In Proposition
5.14 below, wewill however prove that fails to be continuous at any ρ = UGW1(P)

whenever P ∈ P(Z+) has finite support and satisfies P(0) = P(1) = 0, P(2) < 1.
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Large deviations of empirical neighborhood distribution 157

1.4 Large deviations of uniform graphs with given degrees

Given a vector d ∈ Z
n+, let G(d) denote the set of graphs G = ([n], E) such that d is

the degree sequence ofG, i.e. if d = (d(1), . . . , d(n)), then for all v ∈ [n], degG(v) =
d(v). Consider a sequence d(n), n ∈ N, of degree vectors (d(n)(1), . . . , d(n)(n)) such
that, for some fixed θ ∈ N, and P ∈ P(Z+):

(C1)
∑n

v=1 d
(n)(v) is even,

(C2) max1�v�n d(n)(v) � θ ,
(C3) 1

n

∑
v∈[n] δd(n)(v) � P ,

where�denotesweak convergence inP(Z+).A consequenceofErdős andGallai [21]
is that if (C1)–(C3) above are satisfied, thenG(d(n)) is not empty for all n large enough.
We shall consider a random graph Gn sampled uniformly from G(d(n)). Models of
this type are well known in the random graph literature; see e.g. Molloy and Reed
[26]. In particular, it is a folklore fact that almost surely the neighborhood distribution
U (Gn) defined in (1) is weakly convergent to UGW1(P); see also Theorem 4.8 below
for a more general statement. One of our main results concerns the large deviations
of U (Gn). Here and below whenever we say that U (Gn) satisfies the large deviation
principle (LDP) in P(G∗) with speed n and good rate function I , we mean that the
function I : P(G∗) �→ [0,∞] is lower semi-continuous with compact level sets, and
for every Borel set B ⊂ P(G∗)

− inf
ρ∈B◦ I (ρ) � lim inf

n→∞
1

n
logP (U (Gn) ∈ B) � lim sup

n→∞
1

n
logP (U (Gn) ∈ B)

� − inf
ρ∈B

I (ρ), (11)

where B◦ denotes the interior of B and B denotes the closure of B.

Theorem 1.6 Let d(n) be a sequence satisfying conditions (C1)–(C3) above. Let Gn

be uniformly distributed on G(d(n)). Then U (Gn) satisfies the LDP in P(G∗) with
speed n and good rate function

I (ρ) =
{

(UGW1(P)) − (ρ) if ρ1 = P,

∞ otherwise.

It follows from Theorem 1.3 that for any integer h � 1, and Q ∈ Ph with Q1 = P ,
then

min{I (ρ) : ρh = Q} = J1(P) − Jh(Q),

and theminimum is uniquely attained for ρ = UGWh(Q). This allows one to compute
large deviations of neighborhood measuresU (Gn)h explicitly in terms of the function
Jh .

On the other hand, consider the special case of d-regular graphs, where d(n) is the
constant vector (d, . . . , d), and P = δd , for some fixed d ∈ N. To have (ρ) > −∞,
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158 C. Bordenave, P. Caputo

ρ must be supported on trees by Theorem 1.2, and because of the constant degree
constraint we find that the only ρ ∈ P(G∗) such that I (ρ) < ∞ is the Dirac mass
at the infinite rooted d-regular tree, which coincides with UGW1(P), where the rate
function is zero. Thus, for the d-regular random graph I (ρ) is either zero or infinite,
and one should look at faster speed than n here for non trivial large deviations.

We note finally that Theorem 1.6 establishes a large deviations principle with speed
n. Other interesting large deviation events occur at higher speed. For example, for the
proportion of vertices in a triangle in Gn , the speed would be n log n.

1.5 Large deviations of Erdős–Rényi graphs

Next, we describe our main results for sparse Erdős–Rényi graphs such as the uni-
form random graph from Gn,m , with m ∼ nd/2 and the G(n, p) where each edge
is independently present with probability p = d/n. It is well known that, in both
cases, with probability one, U (Gn) converges weakly to the standard Galton–Watson
tree with mean degree d, i.e. ρ = UGW1(Poi(d)), which by Corollary 1.4 satisfies
(ρ) = s(d).

Theorem 1.7 Fix d > 0 and a sequence m = m(n) such that m/n → d/2, as
n → ∞. Let Gn be uniformly distributed in Gn,m. Then U (Gn) satisfies the LDP in
P(G∗) with speed n and good rate function

I (ρ) =
{
s(d) − (ρ) if EρdegG(o) = d,

∞ otherwise.
(12)

Theorem 1.8 Fix λ > 0 and take Gn with law G(n, λ/n). Then U (Gn) satisfies the
LDP in P(G∗) with speed n and good rate function

I (ρ) = λ

2
− d

2
log λ − (ρ), (13)

where d := EρdegG(o), with the convention that if d = 0 then (ρ) = s(0) = 0.

In the special case of 1-neighborhoods, Theorem 1.7, Theorem 1.8 and Corollary
1.4 allow us to prove the following results. Let u(Gn) ∈ P(Z+) denote the empirical
distribution of the degree: u(Gn) = 1

n

∑n
i=1 δdegGn (i).

Corollary 1.9 Fix d > 0, a sequence m = m(n) such that m/n → d/2, and let Gn

be uniformly distributed in Gn,m. Then u(Gn) satisfies the LDP in P(Z+) with good
rate function

K (P) =
{
H(P |Poi(d)) if

∑
k kP(k) = d,

∞ otherwise.
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Corollary 1.10 Fix λ > 0 and take Gn with law G(n, λ/n). Then u(Gn) satisfies the
LDP in P(Z+) with speed n and good rate function

K (P) =
{

λ−d
2 − d

2 log
λ
d + H(P |Poi(d)) if d :=∑k kP(k) < ∞

∞ otherwise.

1.6 Plan and methods

The proof of the main results discussed above is organized as follows. In Sect. 2 we
review some basic facts about local weak convergence in the context of multi-graphs.
We also establish a compactness criterion which parallels recent results of Benjamini,
Lyons and Schramm [3]. In Sect. 3 we introduce the unimodular Galton Watson trees
with given h-neighborhood distribution and prove the properties stated in Proposition
1.1. In Sect. 5 we prove our main results concerning the entropy(ρ), cf. Theorem 1.2
and Theorem 1.3. These are crucially based on the possibility of counting asymptoti-
cally the number of graphs in Gn,m which have a certain h-neighborhood distribution.
To compute such things, we introduce what we call a generalized configuration model.

The standard configuration model, introduced in Bollobas [6], allows one to com-
pute asymptotically the number of graphs with a given degree sequence. Since here
we want to uncover the h-neighborhood of a vertex and not only its degree, we need to
generalize the usual construction. To keep track of the h-neighborhood structure, we
introduce directed multigraphs with colored edges and analyze the associated config-
uration model; see Sect. 4. This will allow us to sample a random graph with a given
sequence of h-neighborhoods, as long as these neighborhoods are rooted trees. As an
application, we prove Corollary 1.5 at the end of Sect. 4. It seems to us that this new
configuration model may turn out to be a natural tool in other applications as well.
Finally, Sect. 6 is devoted to the proof of large deviation principles in the classical ran-
dom graphs ensembles. We stress that our methods allow in principle a much greater
generality, since one could establish large deviation estimates for random graphs that
are uniformly sampled from the class of all graphs with a given h-neighborhood dis-
tribution and not only with given degree sequences; see Remark 6.1.

1.7 Related work

Large deviations in random graphs is a rapidly growing topic. For dense graphs,
e.g. G(n, p) with fixed p ∈ (0, 1), a thorough treatment has been given recently by
Chatterjee and Varadhan [14], in the framework of the cut topology introduced by
Lovász and Szegedy [24], see also Borgs, Chayes, Lovász, Sós and Vesztergombi
[10,11]. In the sparse regime, only a few partial results are known. O’Connell [27],
Biskup et al. [5] and Puhalskii [28] have proven large deviation asymptotics for the
connectivity and for the size of the connected components. Large deviations for degree
sequences of Erdős–Rényi graphs has been studied in Doku-Amponsah and Mörters
[17] and Boucheron et al. [12, Theorem 7.1]. Closer to our approach, large deviations
in the local weak topology were obtained for critical multi-type Galton–Watson trees
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by Dembo et al. [15]. Finally, large deviations for other models of statistical physics
on Erdős–Rényi graphs have been considered in Rivoire [29] and Engel et al. [20].

As far as we know, this is the first time that large deviations of the neighborhood
distribution are addressed in a systematic way. While our approach does not cover
results on connectivity and the size of connected components such as [27], it does yield
a simplification of some of the existing arguments concerning the large deviations for
degree sequences.We point out that our Corollary 1.10 gives a corrected version of [17,
Corollary 2.2]. Under a stronger sparsity assumption, large deviations of neighborhood
distributions for random networks have been used in [9] to study the large deviations
of the spectral measure of certain random matrices.

2 Local weak convergence

In this section, we first recall the basic notions of local weak convergence in the more
general context of rooted multi-graphs; see [4], [2], and [1]. Then, we give a general
tightness lemma.

2.1 Local convergence of rooted multi-graphs

LetV be a countable set, amulti-graphG = (V, ω) is a vertex setV togetherwith amap
ω from V 2 toZ+ such that for all (u, v) ∈ V 2,ω(u, u) is even andω(u, v) = ω(v, u).

For ease of notation, we sometimes set ω(v) = ω(v, v) for the weight of the loop at v.
If e = {u, v} is an unordered pair (u �= v), we may also write ω(e) in place of ω(u, v).
The edge set E of G is the set of unordered pairs e = {u, v} such that ω(e) � 1, ω(e)
being the multiplicity of the edge e ∈ E . Similarly, ω(v)/2 is the number of loops
attached to v. A multi-graph with no loop, and with no edge with multiplicity greater
than 1 is a graph.

The degree of v in G is defined by

deg(v) =
∑

u∈V
ω(v, u).

The multi-graph G is locally finite if for any vertex v, deg(v) < ∞.
We denote by Ĝ the set of all locally finite multi-graphs. For a multi-graph G ∈ Ĝ,

to avoid possible confusion, we will often denote by VG , ωG , degG the corresponding
vertex set, weight and degree functions.

Recall that a path π from u to v of length k is a sequence π = (u0, . . . , uk) with
u0 = u, uk = v and, for 0 � i � k − 1, {ui , ui+1} ∈ E . If such π : u → v exists,
the distance D(u, v) in G between u and v is defined as the minimal length of all
paths from u to v. If there is no path π : u → v, then the distance D(u, v) is set to be
infinite. A multi-graph is connected if D(u, v) < ∞ for any u �= v ∈ V .

Below, a rooted multi-graph (G, o) = (V, ω, o) is a locally finite and connected
multi-graph (V, ω) with a distinguished vertex o ∈ V , the root. For t � 0, we denote
by (G, o)t the induced rooted multi-graph with vertex set {u ∈ V : D(o, u) � t}.
Two rooted multi-graphs (Gi , oi ) = (Vi , ωi , oi ), i ∈ {1, 2}, are isomorphic if there
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exists a bijection σ : V1 → V2 such that σ(o1) = o2 and σ(G1) = G2, where σ

acts on G1 through σ(u, v) = (σ (u), σ (v)) and σ(ω) = ω ◦ σ . We will denote this
equivalence relation by (G1, o1) � (G2, o2). The associated equivalence classes can
be seen as unlabeled rooted multi-graphs. We call Ĝ∗ the set of all such equivalence
classes.

We define the semi-distance d between two rooted multi-graphs (G1, o1) and
(G2, o2) as

d((G1, o1), (G2, o2)) = 1

1 + T
,

where T is the supremum of those t > 0 such that (G1, o1)t and (G2, o2)t are iso-
morphic. On the space Ĝ∗, d is a distance. The associated topology will be referred to
as the local topology. The space (Ĝ∗, d) is Polish (i.e. separable and complete) [1].

Explicit compact subsets of Ĝ∗ can be constructed as follows. If g ∈ Ĝ∗, we define

|g| =
∑

v∈V
deg(v),

i.e. twice the total number of edges in g. For g ∈ Ĝ∗, t ∈ N, the truncation at distance
t , gt , is defined as the equivalence class of (G, o)t where the equivalence class of
(G, o) is g.

Lemma 2.1 Let t0 � 0 and ϕ : N → R+ be a non-negative function. Then

K = {g ∈ Ĝ∗ : ∀t � t0, |gt | � ϕ(t)
}
,

is a compact subset of Ĝ∗ for the local topology.

Proof For each t � t0, there is a finite number of elements in Ĝ∗, say ft,1, . . . , ft,nt ,
such that |g| � ϕ(t) and for any vertex the distance to the root is at most t . Therefore,
the collection At,1, . . . , At,nt where At,k = {g ∈ Ĝ∗ : gt = ft,k} is a finite covering
of K of radius 1/(1 + t). ��

The notions of local weak convergence introduced in Sect. 1.1 are immediately
extended to the present setting of multi-graphs. The definitions of U (G) in (1) and
unimodularity (2) easily carry over to P(Ĝ∗). The next simple lemma is proved in [4].

Lemma 2.2 The set Pu(Ĝ∗) is closed in the local weak topology.

2.2 Compactness lemma for the local weak topology

LetGn be a sequence of finitemulti-graphs.We nowgive a conditionwhich guarantees
that the sequenceU (Gn) is tight for the local weak topology. IfG = (V, ω) is a multi-
graph, we define the degree of a subset S ⊂ V as

degG(S) =
∑

v∈S
degG(v). (14)
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The next lemma is a sufficient condition for tightness in Pu(Ĝ∗). A similar result
appears in Benjamini et al. [3, Theorem 3.1]. We give an independent proof.

Lemma 2.3 Let δ : [0, 1] → R+ be a continuous increasing function such that
δ(0) = 0. There exists a compact set � = �(δ) ⊂ Pu(Ĝ∗) such that if a finite
multi-graph G = (V, ω) satisfies

degG(S) � |V |δ
( |S|

|V |
)

(15)

for all S ⊂ V , then U (G) ∈ �.

Considering a sequence U (Gn), n � 1, condition (15) amounts to a uniform inte-
grability of the degree sequences of the multi-graphs (Gn), n � 1. It may seem quite
paradoxical that a sole condition on the degrees implies the tightness of the whole
graph sequence. However, the unimodularity of U (G) yields enough uniformity for
this result to hold.

Proof of Lemma 2.3 Since Ĝ∗ is a Polish space, from Prohorov’s theorem, a set � ⊂
P(Ĝ∗) is relatively compact if and only if for any ε > 0, there exists a compact K ⊂ Ĝ∗
such that for all μ ∈ �, μ(Kc) � ε.

Set c = δ(1). Without loss of generality, we may assume c > 1. We consider the
increasing function [0, c] �→ [0, 1]

f = δ−1.

Now, for each ε > 0, and integer t � 1, we set

hε(t) = ( f ◦ · · · ◦ f )(ε2−t ) and ϕε(t) = (c/hε(t))t − 1

1 − hε(t)/c
,

where the composition holds t times. We now define � as being the closure of the set
of measures μ in Pu(Ĝ∗) such that for any ε > 0, μ(Kc

ε ) � ε where

Kε = {g ∈ Ĝ∗ : ∀t � 1, |gt | � ϕε(t)
}
.

By Lemma 2.1, Kε is a compact set of Ĝ∗. Hence, Prohorov’s theorem asserts that �
is a compact set of Pu(Ĝ∗).

We now check that ρ = U (G) ∈ �. This will conclude the proof of our lemma. It
is sufficient to prove that ρ(Kε) � 1 − ε for all ε > 0. Let t � 0 be an integer, for
S ⊂ V , B(S, t) denote the set of vertices at distance at most t from a vertex in S. In
particular, if v ∈ V and g is the equivalence class of (G(v), v) we have

deg(B(v, t)) = |gt |.
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Notice also that |B(S, 1)| � deg(S). Set |V | = n. By iteration on (15), it follows that
if S ⊂ V is such that |S| � hε(t)n then

|B(S, t)| � deg(B(S, t − 1)) � ( f ◦ · · · ◦ f )(|S|/n) � 2−tεn.

Moreover, from (15), we have

deg(V ) =
∑

v∈V
deg(v) � cn

Hence, using Markov inequality, we deduce that the set

St = {v ∈ V : deg(v) � c/hε(t)}

has cardinality at most hε(t)n. From what precedes, the set

Ut = {v ∈ V : ∃u ∈ B(v, t), degGn
(u) � c/hε(t)

}

has cardinality at most 2−tεn. Note that, if v /∈ Ut , then deg(B(v, t)) is bounded by

(c/hε(t))t − 1

c/hε(t) − 1
= ϕε(t).

This implies that the set

Vt = {v ∈ V : deg(B(v, t)) � ϕε(t)}

has cardinality at most 2−tεn. So finally, from the union bound, the set

W = {v ∈ V : ∀t � 1, deg(B(v, t)) � ϕε(t)}

has cardinality at least (1 − ε)n. We have thus checked that ρ(Kε) � 1 − ε. ��

3 Unimodular Galton–Watson trees with given neighborhood

The aim of this section is to prove Proposition 1.1. We thus fix h ∈ N and P ∈ P(T ∗
h )

admissible. We start with some simple observations which ensure that UGWh(P) is
indeed well defined.

First observe that if τ ∈ T ∗
h , t

′ ∈ T ∗
h−1 and S = τ ∪ t ′+, then (recall the definition

of τ ∪ t ′+ and Fig. 2)

1 + ∣∣{v τ∼ o : τ(o, v) � t ′
}∣∣ = ∣∣{v S∼ o : S(v, o) � τ, S(o, v) � t ′

}∣∣. (16)
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Therefore, for any t, t ′ ∈ T ∗
h−1,

∑

τ∈T ∗
h

P(τ ∪ t ′+)
(
1 + ∣∣{v τ∼ o : τ(o, v) � t ′

}∣∣
)
1(τh−1 = t)

=
∑

τ∈T ∗
h

∑

S∈T ∗
h

P(S)
∣∣{v S∼ o : S(v, o) � τ, S(o, v) � t ′

}∣∣1(S = τ ∪ t ′+)1(τh−1 = t)

=
∑

S∈T ∗
h

P(S)
∣∣{v S∼ o : S(v, o)h−1 � t, S(o, v) � t ′

}∣∣ = eP (t, t ′),

where eP was defined by (4).We thus have checked that P̂t,t ′ defined by (5) is indeed a
probability measure on T ∗

h . Consequently, the probability measure UGWh(P) is well
defined.

3.1 Unimodularity

The next lemma is a direct argument for the unimodularity of UGWh(P), which
establishes the first part of Proposition 1.1. We remark however that this fact could be
derived indirectly from Theorem 4.8 and Lemma 4.9 below, which ensure in particular
that UGWh(P) is sofic (and hence unimodular).

Lemma 3.1 Fix h ∈ N and P ∈ P(T ∗
h ) admissible. The measure UGWh(P) is

unimodular.

Proof It is sufficient to check the so-called involution invariance, i.e. that (2) holdswith
f restricted to functions f : G∗∗ → R+ such that f (G, u, v) = 0 unless {u, v} ∈ EG ;
see [1]. Recall that we may extend f : G∗∗ → R+ to all connected graphs with two
distinguished roots (G, u, v) through the isomorphism class.

Let (T, o) be the random rooted tree defined in the introduction whose equiva-
lence class has law UGWh(P). Recall that the neighbors of the root o are indexed
by 1, . . . , degT (o) and that the vector of subtrees (T (o, 1), . . . , T (o, degT (o))) is
exchangeable. We write

E

∑

v
T∼o

f (T, o, v) =
∑

g∈T ∗
h

P(g)
∑

v
g∼o

E[ f (T, o, v) | (T, o)h � g]

=
∑

τ∈T ∗
h , t ′∈T ∗

h−1

P(S)
∣∣{v S∼ o : S(o, v) � t ′, S(v, o) � τ

}∣∣

× E[ f (T, o, 1) | T (o, 1)h−1 � t ′, T (1, o)h � τ ],
where, in the summand, S = τ ∪ t ′+. Now, (5) and (16) imply

E

∑

v
T∼o

f (T, o, v) =
∑

t,t ′
eP (t, t ′)

∑

τ : τh−1=t

P̂t,t ′(τ )E[ f (T, o, 1) | T (o, 1)h−1

� t ′, T (1, o)h � τ ].
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For (t, t ′) ∈ T ∗
h−1, we introduce a new random tree H = Ht,t ′ defined as follows.

Start with two vertices o and o′ which are connected by an edge. Attach the tree t
to o and the tree t ′ to o′, so that the type of o is (t, t ′) and the type of o′ is (t ′, t).
Sample independently H(o′, o)h according to P̂t,t ′ and H(o, o′)h according to P̂t ′,t .
The subtrees H(o′, o)h and H(o, o′)h define the types of the children of o and o′. Next,
sample independently their rooted subtrees, according to their types, i.e. H(o, v)h
(resp. H(o′, v)h) is sampled according to P̂a,b if v ∼ o (resp. v ∼ o′) has type (a, b).
Repeating recursively for all children defines the random tree H . From the definition
of UGWh(P), one has

∑

τ : τh−1=t

P̂t,t ′(τ )E[ f (T, o, 1)|T (o, 1)h−1 � t ′, T (1, o)h � τ ] = Et,t ′ [ f (H, o, o′)],

wherewe useEt,t ′ for expectation over the random H = Ht,t ′ defined above. It follows
that

E

∑

v
T∼o

f (T, o, v) =
∑

t,t ′
eP (t, t ′)Et,t ′ [ f (H, o, o′)].

Similarly,

E

∑

v
T∼o

f (T, v, o) =
∑

t,t ′
eP (t, t ′)Et,t ′ [ f (H, o′, o)] =

∑

t,t ′
eP (t, t ′)Et ′,t [ f (H, o, o′)],

where the second identity follows from the symmetry in o, o′ in the definition in H ,
which implies that Et,t ′ [ f (H, o′, o)] = Et ′,t [ f (H, o, o′)].

Finally, the assumption eP (t, t ′) = eP (t ′, t) yields

E

∑

v
T∼o

f (T, v, o) =
∑

t,t ′
eP (t ′, t)Et ′,t [ f (H, o, o′)] = E

∑

v
T∼o

f (T, o, v).

��

3.2 Consistency lemma

We turn to the second part of Proposition 1.1. The following lemma computes the law
of the (h + 1)-neighborhood of a Galton–Watson tree with a given h-neighborhood.

Lemma 3.2 Fix h ∈ N, P ∈ P(T ∗
h ) admissible and set ρ = UGWh(P). For any

τ ∈ T ∗
h+1 with degτ (o) = d, we have

Pρ((T, o)h+1 = τ) = P(τh)
∏

a∈A

(
na

(ka,b)b∈Ba

) ∏

b∈Ba

P̂sa ,s−a (ta,b)ka,b ,

where
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• (t i ∈ T ∗
h , 1 � i � d) are the subtrees of τ attached to the offspring of the root,

and for 1 � i � d, si = (t i )h−1;
• {sa}a∈A is set of distinct elements of (si , 1 � i � d), and, for eacha ∈ A, {ta,b}b∈Ba

is the set the distinct elements of (t i , 1 � i � d), such that (ta,b)h−1 = sa;
• na is the cardinality of si ’s equal to sa and ka,b is the cardinality of t i ’s equal to
ta,b;

• s−a = (t−a)h−1 and t−a ∈ T ∗
h is the tree obtained from τh by removing one offsping

with subtree equal to sa.

Proof Using ρh = P , for a fixed τ ∈ T ∗
h+1, the above definitions allow us to write

Pρ

(
(T, o)h+1 = τ

) = P(τh)Pρ

(
(T, o)h+1 = τ |(T, o)h = τh

)

= P(τh)Pρ

(
∀a ∈ A, b ∈ Ba : ∣∣{v T∼ o : T (o, v)h = ta,b}∣∣ = ka,b

∣∣ (T, o)h = τh

)
.

Observe that T (o, v)h = ta,b implies that T (o, v)h−1 = sa . Moreover, given
(T, o)h = t , T (o, v)h−1 = sa implies that T (v, o)h−1 = s−a , i.e. the type of vertex v

is (sa, s−a). The lemma is then a consequence of the conditional independence of the
subtrees attached to the offspring of the root given (T, o)h . ��
Lemma 3.3 Fix integers k > h � 1, P ∈ P(T ∗

h ) admissible and set ρ = UGWh(P).
Then

ρ = UGWk(ρk).

Proof By recursion, it suffices to prove the statement for k = h + 1. For s ∈ T ∗
h−1

such that eP (s, s′) > 0 for some s′ ∈ T ∗
h−1, we may define the probability measure

P̂s(·) = Eρ

∣∣{v T∼ o : T (o, v) ∈ · , T (v, o)h−1 = s
}∣∣

Eρ

∣∣{v T∼ o : T (v, o)h−1 = s
}∣∣

.

In words, P̂s ∈ P(T ∗) is the law of the whole subtree T (o, v) of a neighbor v of
the root given that T (v, o)h−1 = s, where (T, o) has law ρ. Next, we show that, for
s, s′ ∈ T ∗

h−1, t ∈ T ∗
h such that th−1 = s and eP (s, s′) > 0, one has

P̂s,s′(t) = P̂s′((T, o)h = t)

P̂s′((T, o)h−1 = s)
, (17)

where (T, o) is now the random variable with law P̂s′ . Since P = ρh one has

eP (s, s′) = Eρ

∣∣{v T∼ o : T (o, v)h−1 = s , T (v, o)h−1 = s′}∣∣, and therefore

P̂s′((T, o)h = t)

P̂s′((T, o)h−1 = s)
= Eρ

∣∣{v T∼ o : T (o, v)h = t , T (v, o)h−1 = s′}∣∣
eP (s, s′)

.
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However, with n = ∣∣{v t∼ o : t (o, v) = s′}∣∣, we deduce from the unimodularity of ρ

and (16) that

Eρ

∣∣{v T∼ o : T (o, v)h = t , T (v, o)h−1 = s′}∣∣

= Eρ

∣∣{v T∼ o : T (v, o)h = t , T (o, v)h−1 = s′}∣∣
= (n + 1)P(t ∪ s′+). (18)

This proves (17).
Now we set Q = ρh+1 and ρ′ = UGWh+1(Q). Our aim is to prove that ρ′ = ρ.

It is sufficient to prove that for any t, t ′ ∈ T ∗
h and τ ∈ T ∗

h+1 such that τh = t and
eQ(t, t ′) > 0,

Q̂t,t ′(τ ) = P̂s′((T, o)h+1 = τ)

P̂s′((T, o)h = t)
, (19)

where s′ = t ′h−1. Indeed, since ρ′ and ρ have the same h + 1 neighborhood, this
would prove that they have in fact the same h + 2 neighborhood and, by conditional
independence, we would deduce that ρ = ρ′.

Let us prove (19). Set

k = ∣∣{v τ∼ o : τ(o, v) = t ′
}∣∣ � n = ∣∣{v t∼ o : t (o, v) = s′}∣∣,

where, as above, t = τh and s′ = t ′h−1. Since (τ ∪ t ′+)h = t ∪ s′+, and ρ′
h+1 = ρh+1,

we have

Q(τ ∪ t ′+) = P(t ∪ s′+)Pρ′((T, o)h+1 = τ ∪ t ′+|(T, o)h = t ∪ s′+)

= P(t ∪ s′+))Pρ((T, o)h+1 = τ ∪ t ′+|(T, o)h = t ∪ s′+).

As in Lemma 3.2, let t i ∈ T ∗
h , 1 � i � d be the subtrees of τ attached to the offspring

of the root and call si their restriction to T ∗
h−1. By construction, k elements of the t i ’s

are equal to t ′ and n elements of the si ’s are equal to s′. Let (sa)a be the set of distinct
elements of the set {s′}∪{si , 1 � i � d}, and, for each a, let (ta,b)b denote the distinct
elements of {t ′} ∪ {t i , 1 � i � d}, such that ta,b restricted to T ∗

h−1 is s
a . We denote

by na the cardinality of si ’s equal to sa and ka,b the cardinality of t i ’s equal to ta,b.
We set n′

a = na + 1(sa = s′) and k′
a,b = ka,b + 1(ta,b = t ′). Then, Lemma 3.2 yields

Pρ((T, o)h+1 = τ ∪ t ′+|(T, o)h = t ∪ s′+) =
∏

a

(
n′
a

(k′
a,b)b

)∏

b

P̂sa ,s−a (ta,b)
k′
a,b

= n + 1

k + 1
P̂s′,s(t

′)
∏

a

(
na

(ka,b)b

)∏

b

P̂sa ,s−a (ta,b)ka,b , (20)
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where, s−a = [(t ∪ s′+)−a]h−1 and (t ∪ s′+)−a ∈ T ∗
h is the tree obtained from t ∪ s′+

by removing one of the offspring with subtree equal to sa . Thus, we find

Q(τ ∪ t ′+) = P(t ∪ s′+)
n + 1

k + 1
P̂s′,s(t

′)
∏

a

(
na

(ka,b)b

)∏

b

P̂sa ,s−a (ta,b)ka,b . (21)

Since ρh+1 = ρ′
h+1, one has

eQ(t, t ′) = eQ(t ′, t) = Eρ

∣∣{v T∼ o : T (o, v)h = t ′ , T (v, o)h = t
}∣∣.

By sampling the h-neighborhood (T, o)h first, and using the number n as above, one
has

eQ(t, t ′) = (n + 1)P(t ∪ s′+)P̂s′,s(t
′). (22)

From (21) and (22) we find

Q̂t,t ′(τ ) = (k + 1)Q(τ ∪ t ′+)

eQ(t, t ′)
=
∏

a

(
na

(ka,b)b

)∏

b

P̂sa ,s−a (ta,b)ka,b . (23)

Next, we show that the right hand side in (19) equals the above expression. We have

P̂s′((T, o)h+1 = τ)

P̂s′((T, o)h = t)
= Eρ

∣∣{v T∼ o : T (o, v)h+1 = τ , T (v, o)h−1 = s′}∣∣

Eρ

∣∣{v T∼ o : T (o, v)h = t , T (v, o)h−1 = s′}∣∣

= Eρ

∣∣{v T∼ o : T (v, o)h+1 = τ , T (o, v)h−1 = s′}∣∣
(n + 1)P(t ∪ s′+)

,

where we have used unimodularity and (18). Now, by sampling first the h-
neighborhood (T, o)h , one finds that

Eρ

∣∣{v T∼ o : T (v, o)h+1 = τ , T (o, v)h−1 = s′
}∣∣

= P(t ∪ s′+)
∑

t ′:t ′h−1=s′
Eρ

⎡

⎢⎣
∑

v
T∼o

1(T (v, o)h+1 = τ, T (o, v)h = t ′)
∣∣ (T, o)h = t ∪ s′+

⎤

⎥⎦

= P(t ∪ s′+)
∑

t ′:t ′h−1=s′
(k + 1)Pρ

(
(T, o)h+1 = τ ∪ t ′+ | (T, o)h = t ∪ s′+

)
,

123



Large deviations of empirical neighborhood distribution 169

where, as before, k = k(t ′) stands for the number of v
τ∼ o such that τ(o, v) = t ′.

Using Lemma 3.2 in the form (20), and the fact that
∑

t ′:t ′h−1=s′ P̂s′,s(t
′) = 1, we find

Eρ

∣∣{v T∼ o : T (v, o)h+1 = τ , T (o, v)h−1 = s′}∣∣

= (n + 1)P(t ∪ s′+)
∏

a

(
na

(ka,b)b

)∏

b

P̂sa ,s−a (ta,b)ka,b .

Hence,
P̂s′((T, o)h+1 = τ)

P̂s′((T, o)h = t)
=
∏

a

(
na

(ka,b)b

)∏

b

P̂sa ,s−a (ta,b)ka,b . (24)

The identity (19) follows from (24) and (23). ��
Remark 3.4 From (22) one deduces the identity

eQ(t, t ′) = eP (s, s′)P̂s,s′(t)P̂s′,s(t ′),

for any t, t ′ ∈ T ∗
h , with s = th−1, s′ = t ′h−1, for any P ∈ P(T ∗

h ) admissible, with
Q = [UGWh(P)]h+1.

4 Configuration model for directed graphs with colored edges

This section introduces a generalized configuration model, to be used later on to count
the number of graphs with a given tree-like neighborhood distribution.

4.1 Directed multi-graphs with colors

We are now going to define a family of directed multi-graphs with colored edges. Let
L be a fixed integer. Each pair (i, j)with 1 � i, j � L is interpreted as a color. Define
the sets of colors

C = {(i, j) : 1 � i, j � L}
C< = {(i, j) : 1 � i < j � L}, C= = {(i, i) : 1 � i � L}.

Also, define C� = C< ∪ C=, C> = C\C� and C�= = C\C=. If c = (i, j) ∈ C, then set
c̄ = ( j, i) for the conjugate color.

We consider the class Ĝ(C) of directed multi-graphs with C-colored edges defined
as follows. We say that a directed multi-graph G is an element of Ĝ(C) if G = (V, ω)

where V = [n] for some n ∈ N, ω = {ωc}c∈C and for each c ∈ C, ωc is a map
ωc : V 2 → Z+ with the following properties: if c ∈ C=, then ωc(u, u) is even for all
u ∈ V , and ωc(u, v) = ωc(v, u) for all u, v ∈ V ; if c ∈ C�=, then ωc(u, v) = ωc̄(v, u)

for all u, v ∈ V . The interpretation is that, for any c ∈ C, if u �= v then ωc(u, v)

is the number of directed edges of color c from u to v; if u = v and c ∈ C=, then
1
2ωc(u, u) is the number of loops of color c at u, while if u = v and c ∈ C< then
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Fig. 3 An example of directed colored multi-graph in Ĝ(C). Here n = 5, L = 3, with: ω(2,1)(4, 1) =
ω(1,2)(1, 4) = ω(2,1)(1, 5) = ω(1,2)(5, 1) = 1; ω(2,3)(2, 3) = ω(3,2)(3, 2) = ω(2,3)(2, 1) =
ω(3,2)(1, 2) = 1; ω(3,3)(4, 5) = ω(3,3)(5, 4) = 1; ω(2,2)(1, 1) = 2; ω(1,1)(5, 5) = 4; ω(2,2)(1, 1) = 2;
ω(1,2)(2, 2) = ω(2,1)(2, 2) = 1; all other entries of ω are zero

ωc(u, u) = ωc̄(u, u) is the number of loops of color c at u; we adopt the convention
that there are no loops of color c ∈ C> at any vertex. We call G(C) the subset of Ĝ(C)

consisting of graphs, i.e. G = (V, ω) such that ωc(u, v) ∈ {0, 1} for all c ∈ C and
u, v ∈ V (no multiple edges) and ωc(u, u) = 0 for all c ∈ C and u ∈ V (no loop). See
Fig. 3 for an example of an element of Ĝ(C).

If G ∈ Ĝ(C), one can define the colorblind multi-graph Ḡ = (V, ω̄), by setting

ω̄(u, v) =
∑

c∈C
ωc(u, v). (25)

The multi-graph Ḡ = (V, ω̄) can be identified with an undirected multi-graph, in that
by construction ω̄(u, v) = ω̄(v, u) for all u, v ∈ V . We say that G is a simple graph if
Ḡ has no loops and no multiple edges. Clearly, if L = 1 then there is only one color,
so that any multi-graph G ∈ Ĝ(C) coincides with its own Ḡ.

If G ∈ Ĝ(C), c ∈ C and u ∈ V , set

Dc(u) =
∑

v

ωc(u, v), (26)

and write D(u) = {Dc(u), c ∈ C}. Note that D(u) is an element of ML , defined
as the set of L × L matrices with nonnegative integer valued entries. The vector
D = {D(u), u ∈ V } of such matrices will be called the degree sequence of G.

4.2 Directed colored multi-graphs with given degree sequence

Fix n ∈ N, and let Dn denote the set of all vectors (D(1), . . . , D(n)) such that
D(i) = {Dc(i), c ∈ C} ∈ ML for all i ∈ [n], and such that

S =
n∑

i=1

D(i) (27)
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is a symmetric matrix with even coefficients on the diagonal, i.e. S = {Sc, c ∈ C},
Sc = Sc̄ for all c ∈ C, and Sc ∈ 2Z+ for all c ∈ C=. Clearly, if G ∈ Ĝ(C) then the
vectorD defined by (26) yields an element ofDn for some n. Next, for a givenD ∈ Dn

we consider the set of all elements of Ĝ(C) which have D as their degree sequence.

Definition 4.1 Fix n ∈ N and D ∈ Dn .

• Ĝ(D) is the set of multi-graphs G ∈ Ĝ(C) with V = [n] such that the degree
sequence of G defined by (26) coincides with D.

• G(D, h) is the set of G ∈ Ĝ(D) such that the colorblind graph Ḡ defined in (25)
contains no cycle of length � � h.

We also use the notation G(D) for the set of simple graphs in Ĝ(D). This set
coincides with G(D, 2), since loops are cycles with length 1 and multiple edges are
cycles with length 2. The main goal of this section is to provide asymptotic formulas
for the cardinality of G(D) and more generally of G(D, h), for any h ∈ N. To this end
we introduce a natural extension of the usual configuration model from [7], see also
[23].

Fix a multi-graph G ∈ Ĝ(D). For a fixed c ∈ C=, let Gc denote the subgraph of
G obtained by removing all edges but the ones with color c. If c ∈ C< instead, then
define Gc as the subgraph ofG obtained by removing all edges but the ones with color
c or c̄. Thus, every G ∈ Ĝ(D) is the result of the superposition of the multi-graphs Gc,
c ∈ C�. We may then analyze each color separately.

4.2.1 Configuration model for c ∈ C=

When c ∈ C=, every pair u, v satisfies ωc(u, v) = ωc(v, u), so Gc is actually a
multi-graph with undirected edges, and we may use the usual construction [7, Section
2.4]. We provide the details for completeness. The degrees of Gc are fixed by the
sequence Dc(1), . . . , Dc(n). LetWc = ∪n

i=1Wc(i), be a fixed set of Sc =∑n
i=1 Dc(i)

points, with the subsets Wc(i) satisfying |Wc(i)| = Dc(i). Recall that Sc is even by
assumption. Let c be the set of all perfect matchings of the complete graph over the
points of Wc, i.e. the set of all partitions of Wc into disjoint edges. Then,

|c| = (Sc − 1)!! = (Sc − 1)(Sc − 3) · · · 1 = Sc!
(Sc/2)!2Sc/2 .

Elements of c are called configurations. For any configuration σc ∈ c, call �(σc)

the multi-graph on [n] with undirected edges obtained by including an edge {i, j} iff
σc has a pair with one element in Wc(i) and the other in Wc( j). Notice that �(σc) has
the same degree sequence Dc(1), . . . , Dc(n) of Gc. Moreover, any multi-graph with
that degree sequence equals �(σc) for some σc ∈ c.

Lemma 4.2 Fix c ∈ C=. Let H be a multi-graph on [n] with undirected edges and
with degree sequence Dc(1), . . . , Dc(n). The number of σc ∈ c such that�(σc) = H
is given by

nc(H) =
∏n

i=1 Dc(i)!∏n
i=1 (ωc(i, i)/2)!2(ωc(i,i)/2)

∏
i< j ωc(i, j)! (28)
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where ωc(i, j) is the number of edges between nodes {i, j} in H, while ωc(i, i)/2 is
the number of loops at node i in H.

Proof Weneed to count the number ofmatchingsσc ∈ c such that for every i < j one
has ωc(i, j) edges between Wc(i) and Wc( j), and such that for all i one has 1

2ωc(i, i)
edges withinWc(i). Fix i < j . Once we choose theωc(i, j) elements ofWc(i) and the
ωc(i, j) elements ofWc( j) to be matched together to produce the ωc(i, j) edges, then
there are ωc(i, j)! distinct matchings that produce the same graph. Similarly, once we
fix theωc(i, i) elements ofWc(i) to bematched together to produce the 1

2ωc(i, i) loops
at i , then there are (ωc(i, i)− 1)!! distinct matchings that produce the same graph. On
the other hand, for every node i there are

(
Dc(i)

ωc(i, 1), . . . , ωc(i, n)

)
= Dc(i)!

ωc(i, 1)! · · · ωc(i, n)!

distinct ways of choosing the elements ofWc(i) to bematched withWc(1), . . . ,Wc(n)

respectively. Putting all together we arrive at the following expression for the total
number of configurations producing the graph H :

n∏

i=1

(
Dc(i)

ωc(i, 1), . . . , ωc(i, n)

)∏

i< j

ωc(i, j)!
n∏

i=1

(ωc(i, i) − 1)!!,

which can be rewritten as (28). ��

4.2.2 Configuration model for c ∈ C<

When c ∈ C<, every pair u, v satisfies ωc(u, v) = ωc̄(v, u), so for the multi-graph
Gc, Dc(i) represents the number of outgoing edges at node i , which equals the num-
ber of incoming edges at that node. Here we use a bipartite version of the previous
construction. Let Wc = ∪n

i=1Wc(i), be a fixed set of Sc = ∑n
i=1 Dc(i) points, with

the subsets Wc(i) satisfying |Wc(i)| = Dc(i). Similarly, set W̄c = ∪n
i=1W̄c(i), with

|W̄c(i)| = Dc̄(i). Consider the set c of all perfect matchings of the complete bipar-
tite graph over the sets (Wc, W̄c), i.e. the set of perfect matchings containing only
edges connecting an elements of Wc with an element of W̄c. Since Sc = Sc̄, one has
|Wc| = |W̄c|, and c can be identified with the set of permutations of Sc objects, or
the set of bijective maps Wc �→ W̄c, and |c| = Sc!. A configuration is an element
σc ∈ c. For any configuration σc, let �(σc) denote the directed multi-graph on [n]
obtained by including the directed edge (i, j) with color c and the edge ( j, i) with
color c̄ iff σc has a pair with one element in Wc(i) and the other in W̄c( j). Notice that
�(σc) has the same degree sequence Dc(1), . . . , Dc(n) of Gc, and any multi-graph
with directed edges with colors with the same degree sequence equals �(σc) for some
σc ∈ c.

Lemma 4.3 Fix c ∈ C<. Let H be amulti-graph on [n]with directed edges with colors
(c, c̄) only and with degree sequence Dc(1), . . . , Dc(n). The number of σc ∈ c such
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that �(σc) = H is given by

nc(H) =
∏n

i=1 Dc(i)!Dc̄(i)!∏
i, j ωc(i, j)! (29)

where ωc(i, j) = ωc̄( j, i) is the number of edges from i to j with color c in H.

Proof We have to count the number of bijective maps Wc �→ W̄c such that for every
i, j ∈ [n] (including the case i = j),ωc(i, j) elements ofWc(i) are mapped to W̄c( j).
We begin by choosing, for every fixed node i , the subsets of Wc(i) that are mapped
into W̄c(k), k = 1, . . . , n, and the subsets of W̄c(i) that are mapped into Wc(k),
k = 1, . . . , n. This can be done in

n∏

i=1

(
Dc(i)

ωc(i, 1), . . . , ωc(i, n)

)(
Dc̄(i)

ωc̄(i, 1), . . . , ωc̄(i, n)

)

distinct ways. Once these subsets are chosen there remain, for every i, j , ωc(i, j)!
distinct bijections producing the same graph. Therefore, the total number of bijections
from Wc to W̄c which preserve the numbers ωc(i, j) = ωc̄( j, i) is given by

n∏

i=1

(
Dc(i)

ωc(i, 1), . . . , ωc(i, n)

)(
Dc̄(i)

ωc̄(i, 1), . . . , ωc̄(i, n)

)∏

i, j

ωc(i, j)!

The latter expression can be rewritten as (29). ��

4.2.3 Generalized configuration model

We now define the configuration model for a generic degree sequence D ∈ Dn by
putting together the configuration models for all the colors. Let denote the cartesian
product of c, c ∈ C�, where, as defined above, c are the sets of configurations
associated to the degree sequence Dc(1), . . . , Dc(n), that isc is the set of matchings
ofWc if c ∈ C= and c is the set of bijectionsWc �→ W̄c if c ∈ C<. A configuration is
an element σ = (σc)c∈C� of. The map �(·) :  �→ Ĝ(D) is defined by calling �(σ)

the multi-graph obtained by superposition of the multi-graphs �(σc) defined above.
The configuration model, denoted CM(D), is the law of �(σ) when σ ∈  is chosen
uniformly at random.

Lemma 4.4 Let D ∈ Dn, G with distribution CM(D) and H ∈ Ĝ(D). We have

P(G = H) =
∏

c∈C
∏n

i=1 Dc(i)!
b(H)

∏
c∈C<

Sc!∏c∈C=(Sc − 1)!! , (30)

where Sc =∑n
i=1 Dc(i), and b(H) is defined by

b(H) =
∏

c∈C<

∏

i, j

ωc(i, j)!
∏

c∈C=

n∏

i=1

(ωc(i, i)/2)!2(ωc(i,i)/2)
∏

i< j

ωc(i, j)! (31)
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In particular, for any h � 2, if G(D, h) is not empty, the law of G conditioned on
G(D, h) is the uniform distribution on G(D, h).

Proof The cardinality of  is given by
∏

c∈C<
Sc!∏c∈C=(Sc − 1)!!. Thus, it suffices

to check that �−1(H) has cardinality b(H)−1∏
c∈C
∏

i Dc(u)!. This follows from
Lemmas 4.2 and 4.3 by observing that |�−1(H)| =∏c∈C� nc(Hc), where Hc denotes

the multi-graph H after all edges with color c′ /∈ {c, c̄} are removed. This proves (30).
If H ∈ G(D, h), h � 2, then ωc(i, i) = 0 and ωc(i, j) ∈ {0, 1} for all i, j ∈ [n] and
c ∈ C, so that b(H) = 1. This proves the last assertion. ��

4.3 Probability of having no cycles of length � � h

Fix θ ∈ N and call M(θ)
L the set of L × L matrices with nonnegative integer entries

bounded by θ . Fix P ∈ P(M(θ)
L ), a probability on M(θ)

L . We consider a sequence
D(n) = (D(n)(u))u∈[n] ∈ Dn , n � 1 such that

(H1) for all u ∈ [n], D(n)(u) ∈ M(θ)
L ;

(H2) as n → ∞, 1
n

∑n
u=1 δD(n)(u) � P.

The main result of this section is the following

Theorem 4.5 Fix θ ∈ N, P ∈ P(M(θ)
L ), and a sequence D(n) satisfying (H1)–(H2).

Take Gn ∈ Ĝ(D(n)) with distribution CM(D(n)). For every h ∈ N, there exists αh > 0
such that

lim
n→∞ P

(
Gn ∈ G(D(n), h)

)
= αh . (32)

The actual value of αh could be in principle computed in terms of P (see proof of
Theorem 4.5). We will however not need that.

Corollary 4.6 In the setting of Theorem 4.5, writing S(n)
c = ∑u∈[n] D

(n)
c (u), for all

h � 2:

|G(D(n), h)| ∼ αh

∏
c∈C<

S(n)
c !∏c∈C=(S(n)

c − 1)!!
∏

c∈C
∏

u D
(n)
c (u)!

.

Proof By definition of CM(D(n)), one has

P

(
Gn ∈ G(D(n), h)

)
= 1

||
∑

σ∈

1
(
�(σ) ∈ G(D(n), h)

)
.

As in Lemma 4.4, for each H ∈ G(D(n), h), |�−1(H)| = ∏c∈C
∏

u D
(n)
c (u)!. Hence

the sum in the right hand side above equals |G(D(n), h)|∏c∈C
∏

u D
(n)
c (u)!. The con-

clusion follows from Theorem 4.5 and || =∏c∈C<
S(n)
c !∏c∈C=(S(n)

c − 1)!!. ��
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The proof of Theorem 4.5 will follow a well known strategy; see e.g. Bollobás [7,
proof of Theorem 2.16] for a similar result. Our first lemma computes the number of
copies of a subgraph in a graph sampled from CM(D(n)). To formulate it, we need to
introduce some more notation. Let Ĝn denote the set of G ∈ Ĝ(C) with vertex set [n].
If G ∈ Ĝn , and H ∈ Ĝ(C) has vertex set V ⊂ [n], we let Y (H,G) be the number of
times that H ⊂ G. When G is not a simple graph, then Y (H,G) may be larger than
1. Indeed, one has

Y (H,G) = 1(H ⊂ G)
∏

c∈C<

∏

u,v

BH,G
c (u, v)

∏

c∈C=

∏

u�v

BH,G
c (u, v) (33)

where we use the notation BH,G
c (u, v) for the binomial coefficient

(ωG
c (u,v)

ωH
c (u,v)

)
, with the

convention that if u = v and c ∈ C=, then BH,G
c (u, u) equals

((ωG
c (u,u)/2)

(ωH
c (u,u)/2)

)
.

Next, for G ∈ Ĝn and H ∈ Ĝk , 1 � k � n, define X (H,G) as the number of
distinct subgraphs of G that are isomorphic to H . If a(H) denotes the cardinality of
the automorphism group of H , i.e. the number of permutations of the vertex labels
which leave H invariant, then

X (H,G) = 1

a(H)

∑

τ

Y (τ (H),G), (34)

where the sum is over all injective maps τ from [k] to [n], and τ(H) represents the
multi-graph obtained by embedding H in [n] through τ .

For H ∈ Ĝk , the c-degree at vertex u is denoted

dH
c (u) =

∑

v

ωH
c (u, v).

The excess of H is defined by

exc(H) =
(
1

2

∑

c∈C

k∑

i=1

dH
c (i)

)
− k,

Notice that exc(H) = |E(H)| − k, where E(H) is the total number of edges of H̄
(counting 1 for each loop) where H̄ is the colorblind undirected multi-graph obtained
from H by (25). Notice that for H connected, then exc(H) � −1, and exc(H) = −1
iff H̄ is a tree. If n � k are positive integers, we use the notation (n)k = n!/(n − k)!
for the number of injective maps [k] �→ [n], with (n)0 = 1.

Lemma 4.7 Let Gn ∈ Ĝ(D(n)) with distribution CM(D(n)), where D(n) satisfies
assumptions (H1)–(H2). For any fixed k ∈ N, H ∈ Ĝk , as n → ∞:

EX (H,Gn) ∼
∏k

i=1 E
∏

c∈C(Dc)dH
c (i)

a(H)b(H)
∏

c∈C (EDc)
sHc /2

n−exc(H),
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where D ∈ M(θ)
L has distribution P and sHc :=∑k

i=1 d
H
c (i).

Proof From (34), EX (H,Gn) = a(H)−1∑
τ EY (τ (H),Gn). Below, we fix a map τ

and write H instead of τ(H) for simplicity. We start by showing that

EY (H,Gn) =
∏

c∈C
∏k

i=1(D
(n)
c (i))dH

c (i)

b(H)
∏

c∈C<
(S(n)

c )sHc

∏
c∈C=((S(n)

c ))sHc

, (35)

where we use the notation ((n))k = (n−1)!!/(n−k−1)!!. Since CM(D(n)) is a product
measure over c ∈ C�, we may analyze one color at a time.

Consider first the case c ∈ C<. Set

Yc(H,G) = 1(Hc ⊂ G)
∏

u,v

(
ωG
c (u, v)

ωH
c (u, v)

)
,

where Hc is the graph H with all edges removed except for edges of color c or c̄, and
the condition G ⊃ Hc indicates that ωG

c (u, v) � ωH
c (u, v) for all u, v ∈ [n]. Then, as

in Lemma 4.4

EYc(H,Gn) =
∑

G: G⊃Hc

∏n
i=1 Dc(i)!Dc̄(i)!

Sc!∏i, j ω
G
c (i, j)!

∏

u,v

(
ωG
c (u, v)

ωH
c (u, v)

)

where we drop the superscript (n) from Dc(i) and Sc, and the sum runs over allG ∈ Ĝn
with (c, c̄) colors only, with degree sequence given by (Dc(i), Dc̄(i))i∈[n]. Therefore,

EYc(H,Gn) =
∏n

i=1 Dc(i)!Dc̄(i)!
Sc!∏i, j ω

H
c (u, v)!

∑

G: G⊃Hc

∏

u,v

1

(ωG
c (u, v) − ωH

c (u, v))!

On the other hand, applying (29) to the multi-graph G�H defined by (ωG
c (u, v) −

ωH
c (u, v)), one has

∑

G: G⊃Hc

∏

u,v

1

(ωG
c (u, v) − ωH

c (u, v))! = (Sc − sHc )!
∏

i (Dc(i) − dH
c (i))!(Dc̄(i) − dH

c̄ (i))!

Thus, for c ∈ C< one has

EYc(H,Gn) =
∏

i (D
(n)
c (i))dH

c (i)(D
(n)
c̄ (i))dH

c̄ (i)

(Sc)sHc
∏

i, j ω
H
c (u, v)! . (36)

Next, consider the case c ∈ C=. Here

Yc(H,G) = 1(Hc ⊂ G)
∏

u<v

(
ωG
c (u, v)

ωH
c (u, v)

)∏

u

(
(ωG

c (u, u)/2)

(ωH
c (u, u)/2)

)
,
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where Hc is the graph H with all edges removed except for edges of color c. Then,

EYc(H,Gn) =
∑

G: G⊃Hc

∏
i Dc(i)!∏u<v

(ωG
c (u,v)

ωH
c (u,v)

)∏
u

((ωG
c (u,u)/2)

(ωH
c (u,u)/2)

)

(Sc − 1)!!∏i< j ω
G
c (i, j)!∏i

(
ωG
c (i, i)/2

)!2(ωG
c (i,i)/2)

Applying (28) to the multi-graph G�H and simplifying, one arrives at

EYc(H,Gn) =
∏

i (D
(n)
c (i))dH

c (i)

((Sc))sHc
∏

i< j ω
H
c (i, j)!∏i

(
ωH
c (i, i)/2

)!2(ωH
c (i,i)/2)

. (37)

Finally, taking products over c ∈ C< of (36) together with products over c ∈ C= of
(37), we arrive at (35).

Summing over the injective maps τ : [k] �→ [n], we deduce that

EX (H,Gn) = (n)k E
∏

c∈C
∏k

i=1(Mc(i))dH
c (i)

a(H)b(H)
∏

c∈C<
(S(n)

c )sHc

∏
c∈C=((S(n)

c ))sHc

, (38)

where (M(1), . . . , M(k)) is uniformly sampledwithout replacement on (D(n)(1), . . . ,
D(n)(n)). From assumptions (H1)–(H2), for every fixed k and H ∈ Ĝk , as n → ∞:

E

∏

c∈C

k∏

i=1

(Mc(i))dH
c (i) →

k∏

i=1

E

∏

c∈C
(Dc)dH

c (i),

where D ∈ M(θ)
L has law P . Moreover, for c ∈ C< and c ∈ C= respectively,

(S(n)
c )sHc

∼ ns
H
c (EDc)

sHc and ((S(n)
c ))sHc

∼ ns
H
c /2(EDc)

sHc /2.

The desired conclusion now follows by using these asymptotics in (38) together with
(n)k ∼ nk and

∑

c∈C<

sHc + 1

2

∑

c∈C=
sHc = 1

2

∑

c∈C
sHc = exc(H) + k.

��

Proof of Theorem 4.5 For every � ∈ N, call L� the set of all H ∈ Ĝ� such that the
undirected graph H̄ defined by (25) is a cycle of length �. If � = 1, then L� is the
union over c ∈ C of the single loop graph at vertex {1} with color c, if � = 2,
then L� is the union over c, c′ ∈ C of the double edge graph at vertices {1, 2} with
ωc(1, 2) = ωc̄(2, 1) = 1, ωc′(1, 2) = ωc̄′(2, 1) = 1, and so on. Let L�h = ∪h

�=1L�.
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We define the random variable

Z =
∑

H∈L�h

X (H,Gn), (39)

where Gn ∈ Ĝ(D(n)) has distribution CM(D(n)). With this notation, we need to show
that under the assumptions of the theorem one has

lim
n→∞ P(Z = 0) = αh, (40)

for some αh > 0.
If H ∈ L�h , then exc(H) = 0. By Lemma 4.7, for some λH � 0, as n → ∞, one

has
EX (H,Gn) → λH , (41)

and, setting λ(h) =∑H∈L�h
λH , one finds

lim
n→∞ EZ = λ(h). (42)

We are going to prove that Z converges weakly to a Poisson random variable with
mean λ(h). This will prove (40) with αh = e−λ(h). To this end, by the well known
moment method, it is sufficient to prove that for any integer p � 1:

lim
n→∞ E

[
(Z)p

] = λ(h)p, (43)

where (Z)p = Z !/(Z − p)!. The case p = 1 is (42). Below, we establish (43) for all
p � 2.

For any H ∈ L�h , letHH denote the set of multi-graphs F ∈ Ĝ(C) with vertex set
VF ⊂ [n] which are isomorphic to H . IfH = ∪H∈L�hHH , then one has

Z =
∑

F∈H
YF ,

where YF := Y (F,Gn) is defined by (33). The proof of (43) uses two elementary
topological facts:

(i) if F �= F ′ ∈ H and F ∩ F ′ �= ∅, i.e. VF ∩ VF ′ �= ∅, then exc(F ∪ F ′) � 1,
(ii) if H ∈ Ĝk and H ′ ∈ Ĝk′ , then exc(H ∪ H ′) � exc(H) + exc(H ′) and exc(H ⊕

H ′) = exc(H) + exc(H ′),

where H ⊕ H ′ ∈ Ĝk+k′ is the multigraph obtained from the disjoint union of H
and an isomorphic copy of H ′ with vertex set {k + 1, . . . , k + k′}. We also use two
consequences of Lemma 4.7:

(iii) if H ∈ Ĝk and exc(H) � 1 then EX (H,Gn) = o(1);
(iv) if H ∈ Ĝk and H ′ ∈ Ĝk′ , then EX (H ⊕ H ′,Gn) ∼ EX (H,Gn) EX (H ′,Gn).
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We start by showing that for all q � 1, there exists c = c(q) > 0 such that

E
[
Zq] � c. (44)

Write

Zq =
∑

(F1,...,Fq )∈Hq

q∏

i=1

YFi .

By assumption (H1), YF � c0 for some c0 = c0(θ, h), and hence, for some c1 =
c1(θ, h, q), one has the crude bound

Zq � c1

q∑

k=1

∑

∗

k∏

i=1

YFi ,

where the sum
∑

∗ is over all choices of pairwise distinct F1, . . . , Fk in H. We now
decompose

∑
∗ into the sum

∑
∗∗ over all choices of k pairwise disjoint sets Fi inH,

and the sum
∑

∗∗∗ over all choices of k pairwise distinct Fi in H such there exists
i �= j with Fi ∩ Fj �= ∅. Notice that this last summation satisfies

∑

∗∗∗

k∏

i=1

YFi � c0
∑

K

X (K ,Gn)

for some c0 = c0(θ, h), where K ranges over a finite collection (with cardinality inde-
pendent of n) of multi-graphs which by facts (i–ii) satisfy exc(K ) � 1. In particular,
fact (iii) implies that E

∑
∗∗∗
∏k

i=1 YFi = o(1) as n → ∞. On the other hand,

∑

∗∗

k∏

i=1

YFi =
∑

(H1,...,Hk )∈(L�h)
k

X (H1 ⊕ · · · ⊕ Hk,Gn).

Fact (iv) and (41) then imply that

E

∑

∗

k∏

i=1

YFi =
∑

(H1,...,Hk )∈(L�h)
k

k∏

i=1

λHi + o(1) = λ(h)k + o(1). (45)

This ends the proof of (44).
Next, define ỸF = 1(YF = 1) and Z̃ = ∑F∈H ỸF . Let E be the event that for all

F ∈ H, YF = ỸF . Note that Z̃ = Z if E holds and 1Ec �
∑

K X (K ,Gn), where
K ranges over a finite collection of multi-graphs with exc(K ) � 1. From fact (iii), it
follows that P(Ec) = o(1).
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Clearly, Z̃ � Z and (Z)p � Z p. Cauchy-Schwarz’ inequality yields

∣∣∣E(Z)p − E(Z̃)p

∣∣∣ � E[(Z)p1Ec ] �
√

E(Z2p)P(Ec).

Therefore, using (44) and P(Ec) = o(1), we see that it suffices to prove that E(Z̃)p

converges to λ(h)p. Since ỸF ∈ {0, 1}, we write

(Z̃)p =
∑

∗

p∏

i=1

ỸFi ,

where the sum
∑

∗ is over all choices of p pairwise distinct Fi in H. By assumption
(H1), YF is uniformly bounded, and therefore

∑

∗

∣∣∣∣∣

p∏

i=1

ỸFi −
p∏

i=1

YFi

∣∣∣∣∣

can be bounded by c1
∑

K X (K ,G) where K ranges over a finite collection of multi-
graphs with exc(K ) � 1 and c1 = c1(θ, h, p). Therefore from fact (iii) we get

E(Z̃)p = E

∑

∗

p∏

i=1

YFi + o(1).

The conclusion E(Z̃)p → λ(h)p, n → ∞, then follows from (45). ��

4.4 Unimodular Galton–Watson trees with colors

Let Ĝ∗(C) denote the set of equivalence classes of rooted directed locally finite colored
multi-graphs, i.e. the set of connected multi-graphs G ∈ Ĝ(C) with a distinguished
vertex o (the root) where two rooted multi-graphs are identified if they only differ by
a relabeling of the vertices. An element of Ĝ∗(C) is called a rooted directed colored
tree if the corresponding colorblind multi-graph defined via (25) has no cycles. We
now introduce a probability measure on Ĝ∗(C) supported on rooted colored directed
trees. Let P ∈ P(ML) be a probability measure on ML , |C| = L2, such that for all
c ∈ C,

EDc = EDc̄, (46)

where D ∈ ML has distribution P . For each c ∈ C such that EDc > 0, define the
probability measure P̂c ∈ P(ML) such that, for M ∈ ML ,

P̂c(M) = (Mc̄ + 1) P(M + Ec̄)

EDc
,
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where D has distribution P , and for any c ∈ C, Ec denotes the matrix with all entries
equal to 0 except for the entry at c, which equals 1.Notice that P̂c is indeed a probability
since

∑

M∈ML

(Mc̄ + 1) P(M + Ec̄) =
∑

M∈ML

Mc̄ P(M) = EDc̄ = EDc.

If EDc = 0 then we set P̂c(M) = 1(M = 0).
In a rooted directed colored tree (T, o), for all v �= o, call a(v) the parent of v in T .

The type of a vertex v �= o in (T, o) is defined as the color of the edge (a(v), v). The
probabilitymeasureUGW(P) ∈ P(Ĝ∗(C)) is the lawof themulti-typeGalton–Watson
tree defined as follows. The root o produces offspring according to the distribution
P , i.e. the root has Dc children of type c, for all c ∈ C, where D ∈ ML has law P .
Recursively, and independently, any v �= o of type c, produces offspring according to
the distribution P̂c, i.e. v has Dc′ children of type c′, for all c′ ∈ C, where D ∈ ML

has law P̂c. Notice that in the case of a single color (L = 1 and C = {(1, 1)}), then P
is a probability measure on Z+ and UGW(P) coincides with the Galton–Watson tree
UGW1(P) with degree distribution P , cf. (6).

Following the argument ofLemma3.1, it couldbeproved that themeasureUGW(P)

is unimodular. However, in the next paragraph, Theorem 4.8 implies that UGW(P) is
sofic (and hence unimodular).

4.5 Local weak convergence

It is straightforward to extend the local topology introduced in Sect. 2 to the case of
rooted directed multi-graphs with colored edges Ĝ∗(C). The only difference is that the
weight function ω is now matrix-valued.

Theorem 4.8 If Gn ∈ Ĝ(D(n)) has distribution CM(D(n)), with D(n) such that
assumptions (H1)–(H2) hold, then with probability one U (Gn) � UGW(P). More-
over the same result holds if Gn is uniformly sampled on G(D(n), h), for any fixed
h � 2.

In the case of a single color L = 1, Theorem 4.8 is folklore; see e.g. themonographs
[18,23]. The proof of Theorem 4.8 in the general case is given in the appendix.

4.6 Graphs with given tree-like neighborhood

Here we show how the configuration model can be used to count the number of graphs
with a given tree-like neighborhood structure.

Fix n and a graph G = (V, E) with V = [n]. Call Gn the set of all such graphs.
For h ∈ N, define the h-neighborhood vector

ψh(G) = ([G, 1]h, . . . , [G, n]h), (47)
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Fig. 4 A 3-tree-like graph G ∈ G9 (left). When h = 3, the associated setF of equivalence classes is given
by the L = 5 rooted unlabeled graphs depicted on the right (the black vertex is the root). Here G(2, 9)2 =
(β, α), G(9, 2)2 = (α, β); G(1, 2)2 = (χ, η), G(2, 1)2 = (η, χ); G(5, 2)2 = (χ, η), G(2, 5)2 = (η, χ);
G(7, 5)2 = (χ, δ), G(5, 7)2 = (δ, χ); G(6, 7)2 = G(7, 6)2 = G(3, 6)2 = G(6, 3)2 = G(3, 8)2 =
G(8, 3)2 = G(4, 8)2 = G(8, 4)2 = (χ, χ); G(4, 1)2 = (χ, δ), G(1, 4)2 = (δ, χ)

Fig. 5 The graph G̃ ∈ Ĝ(C)

defined by (48) when G is the
graph from Fig. 4. It is
understood that if the directed
edge (u, v) has color
(g, g′) ∈ C, then the opposite
edge (v, u) has color (g′, g)

where [G, u]h stands for the equivalence class of the h-neighborhood of G at vertex
u. We say that G is h-tree-like if [G, u]h is a tree for all u ∈ [n].

We describe now a procedure which turns the given graph G into a directed colored
graph G̃ in G(C). The color set C is defined as follows. Let F ⊂ G∗

h−1 denote the
collection of all equivalence classes of the subgraphsG(u, v)h−1, where we recall that
G(u, v) is the rooted graph obtained from G by removing the edge {u, v} and taking
the root at v. For simplicity, below we will identify G(u, v)h−1 with its equivalence
class. If L = |F | denotes the cardinality of F , we call C the set of L2 pairs (g, g′),
with g, g′ ∈ F ; see Fig. 4 for an example. To construct the directed colored graph,
for every pair u, v such that {u, v} is an edge of G, we include a directed edge (u, v)

with color
(g, g′) = (G(u, v)h−1,G(v, u)h−1), (48)

together with the directed edge (v, u) with color (g′, g) = (G(v, u)h−1,G(u, v)h−1).
This defines an element G̃ of G(C); see Fig. 5. As such, we can define its degree
sequence D = D(G̃) as in (26) above. Notice that if G is h-tree-like, then the above
construction yields an element of G(D, 2h + 1) since being h-tree-like is equivalent
to having no cycles with length 1 � � � 2h + 1; see Fig. 6. A crucial property to be
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Fig. 6 Two examples of multigraphs �1, �2 ∈ Ĝ(D), where D = D(G̃) is the degree sequence of G̃ from
Fig. 5. Notice that �1 (left) yields a colorblind multigraph �̄1 with a double edge at {3, 6}, while �2 (right)
yields a 3-tree-like graph �̄2, i.e. �2 ∈ G(D, 7). In particular, as guaranteed by Lemma 4.9, �̄2 has the
same 3-neighborhoods of G

used below is that, for this particular choice of D, all elements of G(D, 2h + 1) have
the same h-neighborhoods.

Lemma 4.9 Let h ∈ N, let G ∈ Gn be a fixed h-tree-like graph and let D = D(G̃) be
the associated degree sequence as above. For any � ∈ G(D, 2h + 1), the colorblind
graph �̄ ∈ Gn defined via (25) satisfies ψh(�̄) = ψh(G).

Proof Consider first the case h = 1. If � ∈ G(D, 3), then for any node i ∈ [n], the
1-neighborhood (�̄, i)1 at i is uniquely determined by the number of edges exiting
node i . By (25), this number equals

∑
c∈C Dc(i), which is independent of �. Thus, all

� ∈ G(D, 3) satisfy necessarily ψ1(�̄) = ψ1(G).
Next, we assume that any � ∈ G(D, 2h + 1) satisfies ψh−1(�̄) = ψh−1(G), and

show that ψh(�̄) = ψh(G). Since G(D, 2h + 1) ⊂ G(D, 2(h − 1) + 1), by induction
over h this will prove the desired result.

Since there are no cycles of length � � 2h+1 in G,F consists of unlabeled rooted
trees of depth h − 1. For any t ∈ F we write tk for the k-neighborhood of the root
in t (truncation of t at depth k). Moreover, if t is a rooted tree, we write tk,+ for the
unlabeled rooted tree of depth k + 1 obtained from tk by adding a new edge to the
root and taking the other endpoint of that edge as the new root. If t, t ′ are finite rooted
trees, we write t ∪ t ′ for the rooted tree obtained by joining t, t ′ at the common root.
Since there are no cycles of length � � 2h + 1 in �̄, to prove ψh(�̄) = ψh(G) it is
sufficient to show that for any edge (u, v) with color (t, t ′) in �, with t, t ′ ∈ F , one
has �̄(u, v)h−1 = t ′ and �̄(v, u)h−1 = t .

Let (u, v) be an edge in � with color (t, t ′). Notice that in G̃, u must have an edge
(u, ṽ) with color (t, t ′) going out of u, and v must have an edge (v, ũ) with color
(t ′, t) going out of v. Therefore, [G, u]h−1 = t ∪ t ′h−2,+ and [G, v]h−1 = t ′ ∪ th−2,+.
By assumption, (�̄, u)h−1 = [G, u]h−1 and (�̄, v)h−1 = [G, v]h−1. Therefore, the
rooted trees T := �̄(v, u)h−1 and T ′ := �̄(u, v)h−1 must satisfy

T ∪ T ′
h−2,+ = t ∪ t ′h−2,+, T ′ ∪ Th−2,+ = t ′ ∪ th−2,+. (49)
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We need to show that t = T and t ′ = T ′. From (49), one has that it is sufficient to
show that T ′

h−2 = t ′h−2 and Th−2 = th−2. Truncating (49) at depth h − 2 one has

Th−2 ∪ T ′
h−3,+ = th−2 ∪ t ′h−3,+, T ′

h−2 ∪ Th−3,+ = t ′h−2 ∪ th−3,+.

Thus, it is sufficient to show that T ′
h−3 = t ′h−3 and Th−3 = th−3. Iterating this rea-

soning, one finds that it suffices to show that T ′
1 = t ′1 and T1 = t1. However, this is

guaranteed by the fact that the degree of u in G and �̄ is the same, for any u ∈ [n].
��

We turn to the problem of counting the number of graphs G ′ ∈ Gn whose h-
neighborhood distribution coincides with that of a given h-tree-like graph G. The
following is an important corollary of Lemma 4.9.

Corollary 4.10 Fix an arbitrary h-tree-like graph G ∈ Gn, and define

Nh(G) = ∣∣{G ′ ∈ Gn : U (G ′)h = U (G)h
}∣∣. (50)

One has
Nh(G) = n(D)|G(D, 2h + 1)|, (51)

where D = (D(1), . . . , D(n)) is the degree sequence associated to G via (48), and
n(D) denotes the number of distinct vectors (D(π1), . . . , D(πn)) ∈ Dn as π : [n] �→
[n] ranges over permutations of the labels.
Proof For a permutation π : [n] �→ [n], let Dπ = (D(π1), . . . , D(πn)). Since the
cardinality of G(Dπ , 2h + 1) does not depend on π , n(D)|G(Dπ , 2h + 1)| coincides
with the cardinality of ∪πG(Dπ , 2h + 1). By Lemma 4.9, any two distinct elements
�1, �2 ∈ ∪πG(Dπ , 2h + 1) yield two distinct graphs �̄1, �̄2 such that U (�̄i )h =
U (G)h , i = 1, 2. This proves that Nh(G) � n(D)|G(D, 2h + 1)|. On the other hand,
any two distinct elements G1,G2 ∈ Gn with U (Gi )h = U (G)h , i = 1, 2, yield two
distinct elements G̃1, G̃2 ∈ ∪πG(Dπ , 2h + 1) with the map G �→ G̃ defined by (48).
This proves the other direction. ��
Lemma 4.11 Fix h ∈ N, and P ∈ P(T ∗

h ) admissible, with finite support and
EPdeg(o) = d. Let m = m(n) be a sequence such that m/n → d/2 as n → ∞.
Then, there exist a finite set � ⊂ T ∗

h and a sequence of graphs �n ∈ Gn,m such that
the support of U (�n)h is contained in � for all n and U (�n)h � P as n → ∞.

Proof Let S := {t1, . . . , tr } ⊂ T ∗
h be the finite support of P . We define the vec-

tor g(n) = (g(n)(1), . . . , g(n)(n)) with g(n)(i) ∈ S by setting g(n)(i) = tk if∑
��k P(t�) > (i − 1)/n and

∑
��k−1 P(t�) � (i − 1)/n with the convention that

the sum over an empty set is −∞. The empirical measure of g(n), say P(n), converges
weakly to P .

Let C denote the set of all pairs c = (t, t ′) ∈ T ∗
h−1×T ∗

h−1 associated to any element
g ∈ S as in (48). In this manner, we associate to any g(n)(i) an integer valued matrix
D(n)(i) ∈ ML where |C| = L2. We denote by S(n)

c = ∑n
i=1 D

(n)
c (i). We finally

123



Large deviations of empirical neighborhood distribution 185

set, for c ∈ C=, S̃(n)
c = 2�S(n)

c /2� and, for c ∈ C�=, S̃(n)
c = S(n)

c ∧ S(n)
c̄ . We may fix

a sequence of integer-valued matrices D̃(n) = (D̃(n)(i))1�i�n such that component-

wise D̃(n)(i) � D(n)(i) and, for all c ∈ C,
∑n

i=1 D̃
(n)
c (i) = S̃(n)

c . The properties

P(n) � P and supp(P(n)) ⊂ S imply that for all c ∈ C, S̃(n)
c − S(n)

c = o(n) and for
all but o(n) vertices D̃(n)(i) = D(n)(i). Moreover,

m̃ = 1

2

∑

c∈C
S̃(n)
c = m + o(n).

We consider the generalized configuration model on D̃(n). Corollary 4.6 implies
the existence, for all n large enough, of an directed colored graph �̃n with girth at
least 2h + 1 and whose colored degree sequence is precisely given by D̃(n). Let �̄n

be the associated color-blind graph. The proof of Lemma 4.9 actually shows that if a
vertex v of �̃n is such that all vertices u in (�̃n, v)h satisfy D̃(n)

c (u) = D(n)
c (u) then the

equivalence class of (�̄n, v)h is precisely g(n)(v). Now, let θ be the maximal degree
of vertices in t ∈ S and set κ = ∑h

�=0 θh . Any vertex is in the h-neighborhood of at
most κ vertices. Since for all but o(n) vertices D̃(n)(v) = D(n)(v), we deduce that for
all but o(n) vertices, the equivalence class of (�̄n, v)h is g(n)(v). We thus have proved
that U (�̄n)h � P . Also, by construction, the support of U (�̄n)h is contained in the
finite set �h,θ of unlabeled rooted trees t ∈ T ∗

h such that all degrees of vertices in t
are bounded by θ .

A last modification is needed: we have �̄n ∈ Gn,m̃ and we need a graph �n ∈ Gn,m .
However, since the number of vertices in (�̄n, v)h is bounded by κ , adding or removing
one edge in �̄n will change the value of (�̄n, v)h for at most 2κ vertices. Let δ(n) =
|m̃ −m| = o(n). Assume first that m̃ < m, then we need to add edges to �̄n . We may
add δ(n) new edges to �̄n such that any vertex has a most one new adjacent edge.
From what precedes, we obtain a graph �n ∈ Gn,m such thatU (�n)h � P . Moreover
the support U (�n)h is contained in �h,θ+1. If m̃ > m, we need to remove edges. We
remove an arbitrary subset of them of cardinality δ(n). We get a graph �n ∈ Gn,m such
that U (�n)h � P and the support of U (�n)h is contained in �h,θ . ��
4.7 Proof of Corollary 1.5

We note that the set, say S, of sofic measures supported on trees is a closed subset of
Pu(T ∗). Let B be the set of measures of the form ρ = UGWh(P) with P ∈ P(T ∗

h )

admissible with finite support and h ∈ N. A consequence of Lemma 4.11 and Theorem
4.8 is that B is a subset of S.

Let us first check that for any h ∈ N and P ∈ P(T ∗
h ) admissible, ρ = UGWh(P) ∈

S. For each n ∈ N, consider the forest Fn obtained from (T, o), with law ρ, by
removing all edges adjacent to a vertex with degree higher than n. We may define ρ(n)

as the the lawof (Fn(o), o), the connected component of the root. It is easy to check that
ρ(n) is a unimodular measure. We define Qn = ρ

(n)
h , the law of its h-neighborhood.

By construction, UGWh(Qn) ∈ B and Qn converges weakly to P . We deduce that
UGWh(Qn) � UGWh(P) and UGWh(P) ∈ S.

Moreover, if ρ ∈ Pu(T ∗), then UGWh(ρh) � ρ, as h → ∞. From what precedes
UGWh(ρh) ∈ S. Therefore, ρ ∈ S and S = Pu(T ∗).
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5 Graph counting and entropy

In this section we prove Theorem 1.2 and Theorem 1.3. The strategywill be as follows.
We first establish the cases (ρ) = −∞ in Theorem 1.2. We then prove Theorem
1.3, and later complete the proof of Theorem 1.2. In what follows, we fix d > 0 and
a sequence m = m(n) such that m/n → d/2 as n → ∞.

5.1 Measures with (ρ) = −∞

Since unimodular measures form a closed subset of P(G∗), if ρ /∈ Pu(G∗), then
for some ε > 0 one has B(ρ, ε) ⊂ P(G∗)\Pu(G∗). Since U (Gn) ∈ Pu(G∗), then
|Gn,m(ρ, ε)| = 0. Therefore (ρ) = −∞ for all ρ /∈ Pu(G∗).

Next, we show that (ρ) = −∞ whenever Eρdeg(o) �= d. We start with the case
Eρdeg(o) > d. Let ρ ∈ Pu(G∗) and assume that(ρ) > −∞. Then, by an extraction
argument, there must exist a sequence of graphs Gn ∈ Gn,m such that U (Gn) � ρ.
Weak convergence then implies that EU (Gn)[deg(o) ∧ t] → Eρ[deg(o) ∧ t] for any
t > 0, and therefore, letting n → ∞ and then t → ∞:

lim inf
n→∞ EU (Gn)deg(o) � Eρdeg(o).

On the other hand, by construction,

EU (Gn)deg(o) = 1

n

n∑

v=1

degGn
(v) = 2m

n
= d + o(1). (52)

We thus have checked that if Eρdeg(o) > d, then (ρ) = −∞.
The case Eρdeg(o,G) < d requires a little more care.

Lemma 5.1 If Eρdeg(o) < d, then (ρ) = −∞.

Proof From (7), it is sufficient to prove that, for any sequence εn → 0,

lim
n→∞

1

n
logP(U (Gn) ∈ B(ρ, εn)) = −∞, (53)

whereGn is a uniform random graph in Gn,m . Define d ′ = Eρdeg(o) and δ = d−d ′ >

0. If U (Gn) ∈ B(ρ, εn) for all n, then for any t > 0:

EU (Gn)[deg(o)1(deg(o) � t)] → Eρ[deg(o)1(deg(o) � t)].

Therefore, for some sequence tn → ∞, one has

1

n

∑

v∈[n]
degGn

(v)1(degGn
(v) � tn) → d ′.
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Define An = {i ∈ [n] : degGn
(i) > tn}. Using (52) one has

1

n

∑

v∈An

degGn
(v) → δ.

On the other hand, by Markov’s inequality and (52), the cardinality of An satisfies
|An| � αnn,whereαn = 2d/tn for alln large enough.ThusU (Gn) ∈ B(ρ, εn) implies
that there exists S ⊂ [n] with |S| � αnn such that degGn

(S) := ∑
v∈S degGn

(v) is
larger than δn/2 for all n large enough. By the union bound one has

P(U (Gn) ∈ B(ρ, εn)) �
(

n

αnn

)
P
(
degGn

([αnn]) � δn/2
)
,

where [αnn] = {1, . . . , αnn}. Next, we check that

lim
n→∞

1

n
logP

(
degGn

([αnn]) � δn/2
) = −∞. (54)

To this end, observe that degGn
([αnn]) is stochastically dominated by 2N , where N

denotes the binomial random variable N = Bin(αnn2, 2d/n). Indeed, the number of
potential edges incident to the set [αnn] is trivially bounded by αnn2 and each potential
edge can be included in Gn recursively, where at each step the probability of inclusion
is bounded above by

m(n
2

)− αnn2
� 2d

n
,

if n is large enough, where we use m/n → d/2 and αn → 0. Therefore, from
Chernov’s bound, for any x > 0,

P
(
degGn

([αnn]) � δn/2
)

� P(2N � δn/2) � e−δnx
E[e4xN ]

= e−δnx
(
1 + (2d/n)(e4x − 1)

)αnn2

� e−δnx+2dαnne4x .

Taking e.g. x = − 1
4 logαn , one obtains (54). Moreover, Stirling’s formula implies

1

n
log

(
n

nαn

)
∼ −αn logαn → 0.

This implies (53). ��

We turn to the claim that (ρ) = −∞ whenever ρ is not supported on trees.
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Lemma 5.2 Suppose ρ ∈ Pu(G∗) is such that ρ(T ∗) < 1. Then there exists ε0 > 0
such that if 0 < ε < ε0, then

lim sup
n→∞

log |Gn,m(ρ, ε)|
n log n

<
d

2
. (55)

In particular, (ρ, ε) = −∞, for any 0 < ε < ε0.

Proof Once (55) is established, the last assertion follows from (7) and m/n → d/2.
Let us prove (55). By assumption, there exist integers t and � � 3 such that

Pρ((G, o)t contains a cycle of length �) > 0.

For integer k � 2, let us say that a cycle is a (k, �)-cycle if its length is � and the degree
of all vertices on the cycle is bounded by k. Since (G, o)t is ρ-a.s. locally finite, there
exists an integer k � 2 such that

Pρ((G, o)t contains a (k, �)-cycle) > 0.

Consider the function f (G, o, v) = 1(distG(o, v) � t ; v is in a (k, �)-cycle).
From what precedes

Eρ

∑

v∈V (G)

f (G, o, v) > 0.

Since ρ is unimodular, equation (2) applied to f implies that for some η > 0,

Pρ(o is in a (k, �)-cycle) > 2η.

Thus, if G ∈ Gn,m(ρ, ε) and ε is small enough,

PU (G)(o is in a (k, �)-cycle) > η.

By definition of U (G), this implies that the number of vertices in a (k, �)-cycle in
G is at least ηn. Since degrees are bounded by k in a (k, �)-cycle, we deduce that G
contains at least δn mutually disjoint cycles of length �, for some δ = δ(�, k) > 0.
Therefore,

∣∣Gn,m(ρ, ε)
∣∣ � Cn,�

∣∣Gn,m−��δn�
∣∣,

whereCn,� is the number of ways to place �δn� disjoint cycles of length � on n vertices.
One has

Cn,� � (n)��δn�
�δn�! � n��δn�

�δn�! .
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Indeed (n)��δn� counts the number of ordered choices of the � vertices for each of �δn�
labeled cycles (the first � vertices define the first cycle and so on), while division by
�δn�! is used to remove cycle labels. By Stirling’s formula,

log(Cn,�) � �δn log n − δn log n + o(n log n).

On the other hand, from (7), we have

log
∣∣Gn,m−��δn�

∣∣ =
(d
2

− �δ
)
n log n + o(n log n).

So finally,

log
∣∣Gn,m(ρ, ε)

∣∣ � d

2
n log n − δn log n + o(n log n).

This proves (55). ��

5.2 Proof of Theorem 1.3 and Theorem 1.2

Notice that if P ∈ Ph , then Jh(P) is a well defined extended real number in [−∞,∞).
The fact that Jh(P) � s(d) follows from Proposition 5.6 below and from the upper
bound (ρ) � s(d), cf. (7).

As before, we fix d > 0 and an integer sequence m = m(n) such that m/n → d/2
as n → ∞. We start with three preliminary lemmas.

Lemma 5.3 The function ρ �→ (ρ) on Pu(G∗) is upper semi-continuous.

Proof Consider a sequence (ρk) converging to ρ. We should check that (ρ) �
lim sup(ρk). Observe that for any ε > 0, for all k large enough, B(ρ, ε) ⊃
B(ρk, ε/2). We get for k large enough,

(ρ, ε) � (ρk, ε/2) � (ρk).

Letting k tend to infinity and then ε to 0, we obtain the claim. ��
We will also need two general lemmas.

Lemma 5.4 Let P = {px , x ∈ X } be a probability measure on a discrete space X
such that H(P) < ∞. Let (�x )x∈X be a sequence with �x ∈ Z+, x ∈ X , such that∑

x px�x log �x < ∞. Then −∑x px�x log px < ∞.

Proof We can assume without loss of generality that px �= 0 for all x ∈ X . We look
for the sequence (�x ) which maximizes the linear function −∑x px�x log px < ∞
under the constraints �x � 1 and

∑
x px�x log �x = c. If the constraint �x � 1 is

not saturated, taking derivative, we find 0 = −px log px − λpx − λpx log �x where
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λ is the Lagrange mutliplier associated to the constraint
∑

x px�x log �x = c. We get

�x = e−1 p−1/λ
x . Let X1 be the set of x such that �x = 1. We thus find

−
∑

x

px�x log px = −
∑

x∈X1

px log px −
∑

x /∈X1

px�x log px

� H(P) −
∑

x /∈X1

px�x log e
−λ�−λ

x

� H(P) + λ
∑

x

px�x + λ
∑

x

px�x log �x .

The conclusion follows. ��

Lemma 5.5 Let p, κ be integers andAκ ⊂ P(Zp) the set of probability measures P
on Z

p such that E
∑p

i=1 |Xi | � κ where X = (X1, . . . , X p) has law P. Then the map
P �→ H(P) is continuous on Aκ for the weak topology.

Proof A simple truncation argument shows that Aκ is weakly closed. Let Qn (resp.
Q) be the law of ‖X‖1 =∑p

i=1 |Xi | where X has law Pn (resp. P). If Pk
n (resp. Pk)

is the conditional law of Pn (resp. P) conditioned on ‖X‖1 = k, we have

H(Pn) =
∑

k�0

Qn(k)H(Pk
n ) + H(Qn),

and similarly for P . Since Pk
n is a probability measure on a finite set of size ck �

(2k + 1)p, we have for any k, Qn(k) → Q(k), H(Pk
n ) → H(Pk) as n → ∞. Also,

H(Pk
n ) � log(ck) � p log(2k + 1). Since

∑
k kQn(k) � κ , using that x/ log(2x + 1)

is increasing for x � 1, it follows that for θ � 1,

∑

k�θ

Qn(k)H(Pk
n ) � p log(2θ + 1)

θ

∑

k�θ

kQn(k) � pκ log(2θ + 1)

θ
.

This proves the uniform integrability of k �→ H(Pk
n ) for the measures Qn . Hence

letting first n and then θ tend to infinity, we get

lim
n→∞

∑

k�0

Qn(k)H(Pk
n ) =

∑

k�0

Q(k)H(Pk).

It thus remains to prove that limn→∞ H(Qn) = H(Q). The proof is similar. First, for
any θ ,

lim
n→∞ −

∑

k<θ

Qn(k) log Qn(k) = −
∑

k<θ

Q(k) log Q(k).
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Then, we need to upper bound −∑k�θ Qn(k) log Qn(k), uniformly in n. It can be

done as follows. Observe that
∑

k�θ

√
kQn(k) � κ/

√
θ . We then compute

L(δ) = sup−
∑

k�0

xk log xk,

under the linear constraints, xk � 0,
∑

k xk � 1 and
∑

k�0

√
kxk = δ. UsingLagrange

multipliers denoted by λ and μ, the solution of this convex optimization problem is
of the form xk = e−μ−λ

√
k for k � 0 and

∑
k xk = 1. It is then easy to check that

as δ → 0, λδ → 0 and μ → 0. It follows that L(δ) = μ + λδ → 0. It implies that
−∑k�θ Qn(k) log Qn(k) � L(κ/

√
θ) goes to 0 as θ → ∞ uniformly in n. Letting

n tend to infinity and then θ , it proves that limn→∞ H(Qn) = H(Q). This concludes
the proof of Lemma 5.5. ��

We now compute the entropy of UGWh(P).

Proposition 5.6 For h ∈ N, P ∈ Ph and EPdeg(o) = d:

(UGWh(P)) = Jh(P). (56)

Proof Lower bound, finite support Consider first the lower bound (UGWh(P)) �
Jh(P) when P has finite support. By Lemma 4.11, we may choose a sequence �n ∈
Gn,m such that U (�n)h � P , n → ∞ and U (�n)h has support contained � :=
{t1, . . . , tr } ⊂ T ∗

h for all n. Let Nh(�n) denote the number of graphs G ∈ Gn such
that U (G)h = U (�n)h . Clearly, all such graphs have the same number m of edges.
From Corollary 4.10, we know that Nh(�n) = n(D)|G(D, 2h + 1)|, where D is the
neighborhood sequence associated to �n , i.e. if c = (t, t ′) ∈ T ∗

h−1 ×T ∗
h−1, then Dc(i)

is the number of j ∼ i in �n such that �n(i, j)h−1 = t ′ and �n( j, i)h−1 = t ; see (48).
Then,

n(D) =
(

n

α1n, . . . , αr n

)
,

where αk = αk(n) stands for the probability of tk under U (�n)h . Since αk → P(tk)
as n → ∞, Stirling’s formula yields

lim
n→∞

1

n
log n(D) = −

∑

t

P(t) log P(t) = H(P) (57)

On the other hand, from Corollary 4.6 we have

log |G(D, 2h + 1)| = 1

2

∑

c∈C
(Sc log Sc − Sc) −

∑

u∈[n]

∑

c∈C
log Dc(u)! + o(n), (58)

where C denotes the set of all pairs c = (t, t ′) ∈ T ∗
h−1 × T ∗

h−1 associated to �n as
in (48), Sc = Sc̄ = ∑

u∈[n] Dc(u), c̄ = (t ′, t) if c = (t, t ′). Note that the size of C
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is finite and independent of n. For a given c = (t, t ′), using the notation (3) one has
Sc/n → eP (t, t ′). Also, writing 2m =∑c∈C Sc, (58) can be rewritten as

m log n−m+1

2
n
∑

(t,t ′)
eP (t, t ′) log eP (t, t ′)−n

∑

(t,t ′)
EP log Eh(t, t

′)!+o(n). (59)

From (57) and (59),

lim
n→∞

1

n
(log Nh(�n) − m log n) = Jh(P). (60)

To prove the desired lower bound on (UGWh(P)), we may restrict to graphs
G ∈ Gn,m with U (G)h = U (�n)h to obtain

|Gn,m(UGWh(P), ε)| � Nh(�n) P(U (Gn) ∈ B(UGWh(P), ε)),

where Gn is uniformly distributed in G(D, 2h + 1) with D as above. From Theorem
4.8, for all ε > 0 one has

lim
n→∞

1

n
logP (U (Gn) ∈ B(UGWh(P), ε)) = 0.

Using (60), we have proved that for all ε > 0, (UGWh(P), ε) � Jh(P). Therefore,

(UGWh(P)) � Jh(P). (61)

Lower bound, general case Set ρ = UGWh(P). We can assume that Jh(P) > −∞.
For each n ∈ N, consider the forest Fn obtained from (T, o) with law ρ by removing
all edges adjacent to a vertex with degree higher than n. We may define ρ(n) as the
the law of (Fn(o), o), the connected component of the root. It is not hard to check that
ρ(n) is a unimodular measure. We define Pn = ρ

(n)
h , the law of its h-neighborhood.

By construction, Pn is finitely supported, admissible, Pn converges weakly to P and
dn = EQndegG(o) � d converges to d. We pick some fixed integer D > d ∨ 2 and
define R = δt� as the Dirac mass of the h-neighborhood of the D-regular tree. If n is
large enough, there exists pn → 1 such that Qn = pn Pn + (1 − pn)R has mean root
degree equal to d. Also, Qn ∈ P(T ∗

h ) is admissible (the set of admissible measures is
convex) and has finite support. We apply Lemma 5.3 and the lower bound for finitely
supported measures, to obtain

(ρ) � lim sup
n→∞

(UGWh(Qn)) � lim sup
n→∞

Jh(Qn).

By definition, Jh(Qn) = −s(d) + H(Qn) − d
2 H(πQn ) −∑(s,s′) EQn log Eh(s, s′)!.

We need to prove that lim sup Jh(Qn) � Jh(P). It suffices to prove that

lim inf
n→∞ Jh(Pn) � Jh(P). (62)
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First, the lower semi-continuity of the entropy gives lim infn→∞ H(Pn) � H(P). We
now check that

lim
n→∞

∑

t,t ′
EPn log Eh(t, t

′)! =
∑

t,t ′
EP log Eh(t, t

′)!. (63)

For ease of notation, we write C = T ∗
h−1×T ∗

h−1, c = (t, t ′) ∈ C and Eh(c)(τ ) to make
explicit the dependence in τ ∈ T ∗

h . As above, Fn is the forest obtained from (T, o)
with law ρ, so that

∑

t,t ′
EPn log Eh(t, t

′)! = EP ϕ((Fn(o), o)),

where ϕ(τ) =∑c log (Eh(c)(τ )!) satisfies:

ϕ(τ) �
∑

c

Eh(c)(τ ) log Eh(c)(τ )

�
∑

c

Eh(c)(τ ) log

(
∑

c′
Eh(c

′)(τ )

)
= degτ (o) log degτ (o). (64)

In particular, ϕ((Fn(o), o)) � ϕ̄(T, o) := degT (o) log degT (o). The assumption
P ∈ Ph implies that EP ϕ̄(T, o) < ∞. Therefore (63) follows from the dominated
convergence theorem.

To conclude the proof of (62), it remains to check that lim sup H(πPn ) � H(πP ),
i.e.

lim inf
n→∞

∑

c∈C
ePn (c) log ePn (c) �

∑

c∈C
eP (c) log eP (c). (65)

For θ ∈ N, we denote by Fθ ⊂ T ∗
h the subset of trees whose root vertex has

degree bounded by θ + 1 and by Cθ ⊂ C, the finite subset of pairs of trees with
vertex degrees bounded by θ . The assumption P ∈ Ph and Lemma 5.4 imply that
−∑τ degτ (o)P(τ ) log P(τ ) < ∞. Also, the assumption Jh(P) > −∞ implies that
H(πP ) < ∞ and

∑
c |eP (c) log eP (c)| < ∞. It follows that for any ε > 0, there

exists θ such that

∣∣∣∣∣∣

∑

c/∈Cθ

eP (c) log eP (c)

∣∣∣∣∣∣
� ε and −

∑

τ /∈Fθ

degτ (o)P(τ ) log P(τ ) � ε.

By dominated convergence, for any c ∈ C, ePn (c) → eP (c). Since Cθ is finite, we
find

lim sup
n→∞

∣∣∣∣∣∣

∑

c∈Cθ

ePn (c) log ePn (c) −
∑

c∈C
eP (c) log eP (c)

∣∣∣∣∣∣
� ε.
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Since ε > 0 is arbitrarily small, in order to complete (65), it suffices to prove that for
any n ∈ N,

∑

c/∈Cθ

ePn (c) log ePn (c) � −ε.

We write

ePn (c) log ePn (c) =
∑

τ

Pn(τ )Eh(c)(τ ) log

(
∑

τ ′
Pn(τ

′)Eh(c)(τ
′)
)

�
∑

τ

Pn(τ )Eh(c)(τ ) log (Pn(τ )Eh(c)(τ ))

�
∑

τ

Pn(τ )Eh(c)(τ ) log Pn(τ ).

It follows that

∑

c/∈Cθ

ePn (c) log ePn (c) �
∑

τ

Pn(τ ) log Pn(τ )
∑

c/∈Cθ

Eh(c)(τ )

�
∑

τ

degτ (o)1(τ /∈ Fθ )Pn(τ ) log Pn(τ ),

where we use that
∑

c Eh(c)(τ ) = degτ (o), and that if τ /∈ Fθ and c ∈ Cθ then
Eh(c)(τ ) = 0. Now, by construction, there exists a partition ∪iX i

n of T ∗
h and τ in ∈ X i

n
such that if (T, o) ∈ X i

n then (Fn(o), o) = τ in . Also, Pn(τ
i
n) = P(X i

n) � P(τ in), and
for all τ ∈ X i

n , degτ (o) � degτ in
(o), 1(τ /∈ Fθ ) � 1(τ in /∈ Fθ ). It follows that

∑

c/∈Cθ

ePn (c) log ePn (c) �
∑

i

∑

τ∈X i
n

degτ (o)1(τ /∈ Fθ )P(τ ) log Pn(τ
i
n)

�
∑

τ /∈Fθ

degτ (o)P(τ ) log P(τ ) � −ε.

This concludes the proof of (65).
Upper bound The upper bound (UGWh(P)) � Jh(P) is a consequence of the
general estimate of Lemma 5.7 below. ��

Lemma 5.7 Fix h ∈ N. If ρ ∈ Pu(T ∗) is such that ρh ∈ Ph, then

(ρ) � Jh(ρh). (66)

Proof Finite support For clarity, we first assume that P = ρh has finite support. The
definition of local weak topology implies that for any h ∈ N, any ε > 0, there exists
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η > 0 such that B(ρ, η) ⊂ {μ ∈ P(G∗) : dTV (μh, ρh) � ε}, where dTV denotes the
total variation distance. Define

An,m(P, ε) = {G ∈ Gn,m : dTV (U (G)h, P) � ε
}
.

Therefore, (66) follows if we prove

lim
ε→0

lim sup
n→∞

1

n

(
log
∣∣An,m(P, ε)

∣∣− m log n
)

� Jh(P). (67)

Let � ⊂ T ∗
h be the support of P . Define F ⊂ T ∗

h−1 as the set of unlabeled rooted
trees t ∈ T ∗

h−1 such that either T (o, v)h−1 = t or T (v, o)h−1 = t for some T ∈ �.
Set L = |F |. Also, by adding a fictitious point � to F , define F̄ = F ∪ {�}, and call
C̄ the associated set of (L + 1) × (L + 1) colors c = (t, t ′), t, t ′ ∈ F̄ . To any graph
G ∈ Gn,m we may associate a degree sequence D̄ = (D̄(1), . . . , D̄(n)), where D̄(i)
is a (L + 1) × (L + 1) matrix for each i , obtained as in (48) by identifying with � all
neighborhoods that do not belong toF . The precise construction is defined as follows.
Fix an edge {u, v} of G: if G(u, v)h−1 = t ′ and G(v, u)h−1 = t , with t, t ′ ∈ F , then
we say that the oriented pair (u, v) has color c = (t, t ′) ∈ C̄; if either G(u, v)h−1 or
G(v, u)h−1 are not inF , then we say that the oriented pair (u, v) has color (�, �) ∈ C̄.
This defines a directed colored graph G̃ with colors from the set C̄. We call D̄ the
corresponding degree sequence, i.e. D̄c(i) is the number of directed edges with color
c going out of vertex i . Note that by construction, if (u, v) has color c, then (v, u) has
color c̄, and that there is no edge with color (t, �) or (�, t) for any t ∈ F .

In this way a graph G ∈ Gn,m yields an element G̃ of Ĝ(D̄). Let Q̄(G) denote the
empirical degree law

1

n

n∑

i=1

δD̄(i). (68)

Thus Q̄(G) is a probability measure on the set ML+1; see Eq. (26). Also, let P̄
denote the probability measure on ML+1 induced by P . Namely, P̄ is the law of the
random matrix D ∈ ML+1 defined as follows: for all c = (t, �), or c = (�, t) or
c = (�, �), set Dc = 0; and for c = (t, t ′) with t, t ′ ∈ F , set Dc = Eh(t ′, t), where
Eh(t ′, t) is defined by (3) if the rooted graph (G, o) has law P . By contraction, one
has H(P̄) � H(P) and

dTV (Q̄(G), P̄) � dTV (U (G)h, P).

Let Pn,m(P, ε) denote the set of probability measures Q ∈ P(ML+1) of the form
(68), satisfying

∑
i∈[n]

∑
c∈C̄ D̄c(i) = 2m, and such that dTV (Q, P̄) � ε. The above

discussion shows that if G ∈ An,m(P, ε), there must exist Q ∈ Pn,m(P, ε) such that
Q̄(G) = Q. Therefore, one obtains

|An,m(P, ε)| � |Pn,m(P, ε)| max
Q∈Pn,m (P,ε)

n(D̄)
∣∣Ĝ(D̄)

∣∣ (69)
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where n(D̄) is defined as in Corollary 4.10, and D̄ is the degree vector associated to
Q as in (68).

Next, we claim that for each ε > 0,

lim
n→∞

1

n
log |Pn,m(P, ε)| = 0. (70)

Indeed, let p = |C̄| and fix a vector � ∈ Z
p
+. An integer partition of the vector �

is an unordered sequence {d(1), . . . , d(k)}, with d(i) ∈ Z
p
+ for all i , and such that

d(1) + · · · + d(k) = � componentwise. By [17, Lemma 4.2], if
∑p

i=1 �i = 2m
then the number of integer partitions of � is exp(o(m)). The number of vectors � ∈
Z
p
+ such that

∑p
i=1 �i = m is bounded by (m + 1)p. It follows that the number of

unordered sequences {d(1), . . . , d(n)} in Z
p
+ such that

∑n
i=1
∑p

c=1 dc(i) = 2m is
at most exp(o(n)), for m = O(n). Now, if Q is of the form (68) we may define
dc(i) = D̄c(i), for every c ∈ C̄ and i ∈ [n], which yields an injective map from
Pn,m(P, ε) to the unordered sequences {d(1), . . . , d(n)}, with d(i) ∈ Z

p
+ such that∑n

i=1
∑

c∈C̄ dc(i) = 2m. This proves (70).
From (69) and (70), to prove (67), it remains to show that

lim sup
n→∞

max
Q∈Pn,m (P,ε)

1

n

[
log
(
n(D̄)

∣∣Ĝ(D̄)
∣∣)− m log n

]
� Jh(P) + η(ε), (71)

wherewe use the notation η(ε) for an arbitrary function satisfying η(ε) → 0 as ε → 0.
Since C̄ is finite, reasoning as in (57) and using Lemma 5.5, it is easily seen that

lim sup
n→∞

max
Q∈Pn,m (P,ε)

1

n
log n(D̄) � H(P̄) + η(ε) � H(P) + η(ε). (72)

Moreover, as in (58) one has

log
∣∣Ĝ(D̄)

∣∣ = 1

2

∑

c∈C̄
(S̄c log S̄c − S̄c) −

∑

u∈[n]

∑

c∈C̄
log D̄c(u)! + o(n),

where S̄c =∑i∈[n] D̄c(i). Observe that

lim sup
n→∞

max
Q∈Pn,m (P,ε)

|S̄c/n − eP (c)| � η(ε). (73)

Indeed, if Qn is a sequence with Qn ∈ Pn,m(P, ε), then S̄c/n = EQn Dc, where
D ∈ ML+1 has law Qn . Then, for any k ∈ N, S̄c/n � EQn [Dc ∧ k], and since
Qn ∈ Pn,m(P, ε) and Dc ∧ k is a bounded function, taking first ε → 0 and then
k → ∞, one has S̄c/n � eP (c)−η(ε) uniformly in n. Moreover, since

∑
c∈C̄ S̄c/n =

2m/n = d + o(1), one has S̄c/n = d + o(1) −∑c′ �=c S̄c′/n. Therefore, from the

lower bound S̄c/n � eP (c) − η(ε) and the fact that
∑

c eP (c) = d, one finds S̄c/n �
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eP (c)+|C̄|η(ε)+o(1). This ends the proof of (73).Moreover, with the same truncation
argument as above one has that

1

n

∑

u∈[n]
log D̄c(u)! � EP [log Eh(c)!] − η(ε),

for all c ∈ C̄. This, together with (72)–(73) and the argument in (59) allows us to
conclude the proof of (71). This ends the proof of (67).

General case We now come back to the case of arbitrary P ∈ Ph . For any finite
set � ⊂ T ∗

h , we associate the sets C = C(�) and C̄ as above. The above argument
establishes that

lim
ε→0

lim sup
n→∞

1

n

(
log
∣∣An,m(P, ε)

∣∣− m log n
)

� J�
h (P), (74)

where J�
h (P) := −s(d) + H(P) − d

2 H(πP̄ ) − ∑
(t,t ′)∈C EP log Eh(t, t ′)! −

EP log Eh(�, �)! and πP̄ ∈ P(C̄) is defined as follows: for c = (t, t ′) ∈ C,
πP̄ (t, t ′) = πP (t, t ′) and for c = (�, �),

πP̄ (�, �)=1 −
∑

(t,t ′)∈C
πP (t, t ′)= 1

d
EP

∣∣∣∣

{
v

T∼ o : T (o, v) or T (v, o)h−1 is not in C
}∣∣∣∣ .

Assume first that Jh(P) > −∞. Using (64) at the second line, one has

J�
h (P) � Jh(P) − d

2

∑

(t,t ′)/∈C
πP (t, t ′) logπP (t, t ′) +

∑

(t,t ′)/∈C
EP log Eh(t, t ′)!

� Jh(P) − d

2

∑

(t,t ′)/∈C
πP (t, t ′) logπP (t, t ′) + EP

[
1(T /∈ �)degT (o) log degT (o)

]
.

We may then consider a sequence (�k) of finite subsets in T ∗
h such that P(T /∈

�k) → 0, and
∑

c/∈C(�k )
πP (c) logπP (c) → 0, as k → ∞. Then as k → ∞, the

above expression converges to Jh(P). This proves that (66) holds when P ∈ Ph and
Jh(P) > −∞.

If P ∈ Ph and Jh(P) = −∞ then either H(πP ) = ∞ or
∑

(t,t ′) EP log Eh(t, t)! =
∞. We use the upper bound

J�
h (P)�−s(d) + H(P) + d

2

∑

(t,t ′)∈C
πP (t, t ′) logπP (t, t ′) −

∑

(t,t ′)∈C
EP log Eh(t, t

′)!

We may consider a sequence (�k) of finite subsets of T ∗
h such that, as k → ∞,

one has
∑

c∈C(�k )
πP (c) logπP (c) → −H(πP ) and

∑
c∈C(�k )

EP log Eh(c)! →
∑

c EP log Eh(c)!, and therefore J�k
h (P) → −∞, k → ∞. This completes the proof

of (66). ��
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Next, we extend Lemma 5.7 to the case ρh /∈ Ph , i.e. H(ρh) = ∞ or
EρdegT (o) log degT (o) = ∞. We start with the latter case.

Lemma 5.8 If ρ ∈ Pu(T ∗) is such that EρdegT (o) = d and EρdegT (o) log degT (o)
= ∞ then

(ρ) = −∞.

Proof We set P = ρ1 which can be identified with a probability measure onZ+. Since
P has finite first moment, H(P) is finite. The proof of Lemma 5.7 can be simplified
for h = 1: since T ∗

h−1 has a unique element (the isolated root), one has H(πP ) = 0
and it is not necessary to consider the extra state �. The bound (67) gives

lim
ε→0

lim sup
n→∞

1

n

(
log
∣∣An,m(P, ε)

∣∣− m log n
)

� −s(d) + H(P) − EP log degT (o)!

Now, from Stirling’s approximation, for n � 1, n! � c
√
ne−nnn for some constant

c > 0. We deduce that log n! � c′ − n + n log n for some constant c′ > 0. In
particular, from EPdegT (o) = d < ∞ and EρdegT (o) log degT (o) = ∞, we get that
EP log degT (o)! = ∞. ��

The following statement is the extension of Lemma 5.7 to the case ρh /∈ Ph .

Proposition 5.9 If ρ ∈ Pu(T ∗), then for any h ∈ N,

(ρ) � J h(ρh), (75)

where Jh(ρh) = Jh(ρh) if ρh ∈ Ph, and Jh(ρh) = −∞ otherwise.

In view of Lemma 5.7 and Lemma 5.8, Proposition 5.9 is a consequence of the
following lemma.

Lemma 5.10 Let ρ ∈ Pu(T ∗) be such that EρdegT (o) log degT (o) < ∞. Then for
any h ∈ N, H(ρh) < ∞. Consequently, for any P ∈ P(T ∗

h ), P ∈ Ph is equivalent to
P admissible and EPdegT (o) log degT (o) < ∞.

Proof The second statement follows from the first applied to ρ = UGWh(P) with P
admissible. We now prove the first statement. Since d := Eρdeg(o) is finite, one has
H(ρ1) < ∞. To prove the lemma, we proceed by induction, and show that for any
h ∈ N, if H(ρh) < ∞ and EρdegT (o) log degT (o) < ∞ then H(ρh+1) < ∞. Set
P = ρh , Q = ρh+1, and Q∗ = [UGWh(P)]h+1. Assume that H(P) < ∞. We are
going to prove that H(Q) < ∞. Observe that

H(Q) = H(P) +
∑

γ∈T ∗
h

P(γ )H(Q(·|γ )),

123



Large deviations of empirical neighborhood distribution 199

where Q(·|γ ) stands for the conditional distribution of the (h+1)-neighborhood given
the h-neighborhood γ . Also,

∑

γ∈T ∗
h

P(γ )H(Q(·|γ )) = −
∑

τ∈T ∗
h+1

Q(τ ) log
Q(τ )

P(τh)

= −
∑

τ∈T ∗
h+1

Q(τ ) log
Q∗(τ )

P(τh)
− H(Q|Q∗)

� −
∑

τ∈T ∗
h+1

Q(τ ) log
Q∗(τ )

P(τh)
.

Now recall that τ ∈ T ∗
h+1 determines all the coefficients Eh+1(t, t ′), (t, t ′) ∈ T ∗

h ×T ∗
h ,

and these can be partitioned according to the pairs (s, s′) ∈ T ∗
h−1 × T ∗

h−1 such that
th−1 = s, t ′h−1 = s′. With this notation, by definition of Q∗, one has, for τ ∈ T ∗

h+1
such that τh = γ :

Q∗(τ )

P(τh)
= Q∗(τ |γ ) =

∏

(s,s′)∈T ∗
h−1×T ∗

h−1

(
Eh(s, s′)

{Eh+1(t, t ′)}
) ∏

t∈T ∗
h

P̂s,s′(t)
kt,s′ (τ ), (76)

where the terms {Eh+1(t, t ′)} in the multinomial coefficient are all such that th−1 = s,

t ′h−1 = s′, and we write kt,s′(τ ) := |{v τ∼ o : τ(o, v)h = t, τ (v, o)h−1 = s′}|, with
th−1 = s. Therefore,

−
∑

τ

Q(τ ) log
Q∗(τ )

P(τh)
� −

∑

s,s′

∑

t : th−1=s

∑

τ

Q(τ )kt,s′(τ ) log P̂s,s′(t).

Moreover, unimodularity yields

∑

τ

Q(τ ) kt,s′(τ )=Eρ |{v ∼ o : T (o, v)h−1=s′, T (v, o)h = t}| = P̂s,s′(t)eP (s, s′)

(77)
Thus,

−
∑

τ

Q(τ ) log
Q∗(τ )

P(τh)
� −

∑

s,s′

∑

t : th−1=s

eP (s, s′)P̂s,s′(t) log P̂s,s′(t)

=
∑

s,s′
eP (s, s′) H(P̂s,s′).

In conclusion, we have obtained that

H(Q) � H(P) +
∑

s,s′
eP (s, s′) H(P̂s,s′).
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The proofwill be complete oncewe show that H(P) < ∞ andEρdegT (o) log degT (o)
< ∞ imply that

∑
s,s′ eP (s, s′) H(P̂s,s′) < ∞.

Now, by definition, if γ = t ∪ s′+ and nt,s′ = ∣∣{v γ∼ o : γ (v, o) = t, γ (o, v) = s′}∣∣,
we have

∑

s,s′
eP (s, s′)H(P̂s,s′) =

∑

s,s′

∑

t : th−1=s

nt,s′ P(t ∪ s′+) log
eP (s, s′)

nt,s′ P(t ∪ s′+)

�
∑

s,s′

∑

t : th−1=s

nt,s′ P(t ∪ s′+) log
d

P(t ∪ s′+)

=
∑

γ∈T ∗
h

P(γ ) log

(
d

P(γ )

)∑

s,s′
Eh(s

′, s)(γ ),

where we have used that eP (s, s′) � d nt,s′ , and that 1 � nt,s′ � Eh(s′, s)(γ ) where
γ = t ∪ s′+ and th−1 = s. Since degγ (o) =∑s,s′ Eh(s, s′)(γ ), we find

∑

s,s′
eP (s, s′)H(P̂s,s′) � d log d −

∑

γ∈T ∗
h

degγ (o)P(γ ) log P(γ ).

It remains to apply Lemma 5.4 with X = T ∗
h and �x = degx (o) together with the

assumption EρdegT (o) log degT (o) < ∞. ��

Lemma 5.11 Suppose ρ ∈ Pu(T ∗). Then J k(ρk), k ∈ N, is a non-increasing
sequence. Assume moreover that ρ1 has finite support. Then for fixed k > h, one
has J k(ρk) < Jh(ρh) if and only if ρk �= [UGWh(ρh)]k . In particular, if ρ1 has finite
support, then for any h ∈ N, one has (ρ) < Jh(ρh) if and only if ρ �= UGWh(ρh).

Proof Fix h ∈ N. To prove that Jh+1(ρh+1) � Jh(ρh), we may assume that ρh+1 ∈
Ph+1. In this case one has also that ρh ∈ Ph . From Proposition 5.6, we know that
(UGWk(ρk)) = Jk(ρk) for both k = h and k = h + 1. Therefore, using Lemma 5.7
one has

Jh+1(ρh+1) = (UGWh+1(ρh+1)) � Jh([UGWh+1(ρh+1)]h) = Jh(ρh),

where we use [UGWk(ρk)]h = ρh , k � h. This proves that J k(ρk) is non-increasing
in k.

We now assume that ρ1 has finite support. Then, by unimodularity it follows that
ρh has finite support for all h ∈ N. In particular, ρh ∈ Ph and Jh(ρh) > −∞ for all
h ∈ N. Fix k > h. Suppose that J k(ρk) < Jh(ρh). One has (UGWk(ρk)) = Jk(ρk)
by Proposition 5.6. From the consistency property of Lemma 3.3, one must then have
ρk �= [UGWh(ρh)]k .

Next, suppose that ρ1 has finite support and that ρk �= [UGWh(ρh)]k and let us
show that Jk(ρk) < Jh(ρh). If �n ∈ Gn,m is a sequence with U (�n)k � ρk , then also
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U (�n)h � ρh and by (60) one has

Jk(ρk) − Jh(ρh) = lim
n→∞

1

n
(log Nk(�n) − log Nh(�n)) . (78)

Using Corollary 4.10, if Ĝn denotes a random graph with uniform distribution in
G(D(n), 2h+1),D(n) being the degree vector associated to the h-neighborhood of �n ,
one also has

Jk(ρk) − Jh(ρh) = lim
n→∞

1

n
logP

(
U (Ĝn)k = U (�n)k

)
. (79)

Since ρk �= γk := [UGWh(ρh)]k , there exist ε > 0 and an event A of the form
A = {g ∈ G∗ : gk = t} for some t ∈ T ∗

k , such that |ρk(A) − γk(A)| > ε. Therefore,
U (�n)k � ρk implies that

Jk(ρk) − Jh(ρh) � lim sup
n→∞

1

n
logP

(|U (Ĝn)k(A) − γk(A)| > ε/2
)
.

By Proposition 7.1, EU (Ĝn)(A) converges to γk(A). It follows that

Jk(ρk) − Jh(ρh) � lim sup
n→∞

1

n
logP

(|U (Ĝn)(A) − EU (Ĝn)(A)| > ε/3
)
.

The desired conclusion Jk(ρk) − Jh(ρh) < 0 now follows from (99) (in Appendix).
Finally, the assertion concerning(ρ) follows easily from the results above. Indeed,

from Proposition 5.6 we know that (ρ) < Jh(ρh) implies that ρ �= UGWh(ρh). For
the opposite direction, observe that if ρ �= UGWh(ρh), then ρk �= [UGWh(ρh)]k
for some k > h. From Lemma 5.7 one has (ρ) � Jk(ρk), and the above implies
(ρ) < Jh(ρh). ��
Lemma 5.12 Suppose ρ ∈ Pu(T ∗). Then

(ρ) = J∞(ρ) := lim
k→∞ J k(ρk). (80)

Proof The limit J∞(ρ) is well defined by themonotonicity in Lemma 5.11. The upper
bound in Proposition 5.9 shows that (ρ) � J∞(ρ). Thus, all we have to prove is

(ρ) � J∞(ρ). (81)

We may assume that ρk ∈ Pk for all k ∈ N. Fix η > 0 and set ρh = UGWh(ρh). By
the lower bound in Proposition 5.6, for any h ∈ N, ε > 0 and n � n0(ε, h, η),

x(n, h, ε) := 1

n

(
log
∣∣∣Gn,m(ρh, ε)

∣∣∣− m log n
)

� J∞(ρ) − η.
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By diagonal extraction, there exist sequences hn → ∞ and εn → 0 such that

lim inf
n→∞ x(n, hn, εn) � J∞(ρ) − η.

Since ρhn � ρ, for any fixed ε > 0 and all n large enough, B(ρhn , εn) ⊂ B(ρ, ε).

In particular,
∣∣Gn,m(ρ, ε)

∣∣ �
∣∣Gn,m(ρhn , εn)

∣∣. It follows that (ρ, ε) � J∞(ρ) − η.

The latter holding for all ε > 0 and η > 0, we have checked that (81) holds. ��
All the statements in Theorem 1.3 are contained in Proposition 5.6, Proposition

5.9, Lemma 5.11 and Lemma 5.12. Moreover, Lemma 5.12 implies that (ρ) is well
defined and equals J∞(ρ) for every ρ ∈ Pu(T ∗), independently of the choice of the
sequence m = m(n) with m/n → d/2. This completes the proof of Theorem 1.2 and
Theorem 1.3.

5.3 Proof of Corollary 1.4

In the special case h = 1, one has P ∈ P(Z+), and the condition
∑∞

n=0 nP(n) = d
implies H(P) < ∞. By Proposition 5.6 one has (UGW1(P)) = J1(P). Moreover,
since |T ∗

0 | = 1, there exists a unique type (s, s′) ∈ T ∗
0 × T ∗

0 with eP (s, s′) = d and
therefore H(πP ) = 0, and

∑

(s,s′)∈T ∗
h−1×T ∗

h−1

EP log(Eh(s, s
′)!) =

∞∑

n=0

P(n) log(n!).

It follows that

J1(P) = −s(d) −
∞∑

n=0

P(n) log P(n) −
∞∑

n=0

P(n) log(n!)

= −s(d) + d − d log d −
∞∑

n=0

P(n) log
P(n)n!
dne−d

= s(d) − H(P |Poi(d)).

This ends the proof of Corollary 1.4.

Remark 5.13 Fix h ∈ N, and suppose that ρ ∈ Pu(T ∗) is such that ρh ∈ Ph . One can
derive the following alternative expression for Jh(ρh) in terms of relative entropies:

Jh(ρ) = s(d) −
h∑

k=1

�k(ρ), (82)

where �1(ρ) = H(ρ1 |Poi(d)) and, for k � 2:

�k(ρ) = H(ρk | ρ∗
k ) − d

2
H(πρk | πρ∗

k
) � 0, (83)
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where ρ∗
k := [UGWk−1(ρk−1)]k . To prove (82), thanks to Corollary 1.4, it suffices to

prove that the increment Jk−1(ρk−1) − Jk(ρk) equals (83) for k � 2. This in turn can
be checked as follows.

Fix h ∈ N, and write Q = ρh+1, Q∗ = ρ∗
h+1, P = ρh . Simple manipulations show

that

Jh(P) − Jh+1(Q) = −
∑

t

P(t)H(Q(·|t)) + d

2

∑

(s,s′)
πP (s, s′)H(q(·|s, s′))

−
∑

(s,s′)
EQ

[
log

(
Eh(s, s′)

{Eh+1(t, t ′)}
)]

, (84)

where t ∈ T ∗
h while (s, s′) ∈ T ∗

h−1 × T ∗
h−1, we use the multinomial coefficients

introduced in (76), and we define the conditional probability q(·|s, s′) on T ∗
h−1×T ∗

h−1
by πQ(t, t ′) = πP (s, s′)q(t, t ′|s, s′). Using (76) and (77), one finds

H(Q|Q∗) = −
∑

t

P(t)H(Q(·|t)) −
∑

(s,s′)
EQ

[
log

(
Eh(s, s′)

{Eh+1(t, t ′)}
)]

+ d
∑

(s,s′)
πP (s, s′)H(P̂s,s′).

Therefore,

Jh(P) − Jh+1(Q) = H(Q|Q∗) + d

2

∑

(s,s′)
πP (s, s′)[H(q(·|s, s′)) − 2H(P̂s,s′)].

(85)

Next observe that ifq∗(·|s, s′) := P̂s,s′(t)P̂s′,s(t ′), thenπQ∗(t, t ′)=πP (s, s′)q∗(·|s, s′),
see Remark 3.4. Moreover, using

∑

t ′∈T ∗
h : t ′h−1=s′

q(t, t ′|s, s′) = P̂s,s′(t) =
∑

t ′∈T ∗
h : t ′h−1=s′

q∗(t, t ′|s, s′),

one finds

H(q(·|s, s′)) − 2H(P̂s,s′) = −H(q(·|s, s′)|q∗(·|s, s′)).

It follows that

d

2

∑

(s,s′)
πP (s, s′)H(q(·|s, s′) | q∗(·|s, s′)) = 1

2

∑

(t,t ′)
EQ(Eh+1(t, t

′)) log EQ(Eh+1(t, t
′))

Eρ̄ (Eh+1(t, t ′))

= d

2

∑

(t,t ′)
πQ(t, t ′) log πQ(t, t ′)

πQ∗(t, t ′) = d

2
H(πQ | πQ∗),
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where (s, s′) ∈ T ∗
h−1 × T ∗

h−1, while (t, t ′) ∈ T ∗
h × T ∗

h . From (85) we then obtain
the desired conclusion Jh(P) − Jh+1(Q) = �h+1(ρ). Clearly, the monotonicity in
Lemma5.11 implies that�h+1(ρ) � 0. This yields the seemingly nontrivial inequality
d
2 H(πQ | πQ∗) � H(Q|Q∗).

5.4 Discontinuity of the entropy

The aim of this section is to prove that the P(G∗) → [−∞,∞) map ρ �→ (ρ)

is discontinuous for the weak topology at ρ = UGW1(P) for any finitely supported
P ∈ P(Z+) with P(0) = P(1) = 0 and P(2) < 1.

Let P1, P2 be two probability measures on Z+ with finite positive means, say d1
and d2. For i = 1, 2, we set pi = dī/(d1 + d2), where 1̄ = 2, 2̄ = 1. We define
UGW(P1, P2) as the law of the rooted tree (T, o) obtained as follows. We first build a
rooted multi-type Galton–Watson tree (Ť , o). The vertices can be of type 1 or of type
2. The root has type i with probability pi . All offspring of a vertex of type i are of
type ī . Conditioned on being of type i , the root has a number of offspring distributed
according to Pi . Conditioned on being of type i , a vertex different from the root has a
number of offspring distributed according to the size-biased law P̂i given by (6). The
tree (T, o) is finally obtained from (Ť , o) by removing the types.

The distribution of (Ť , o) is unimodular. It implies that UGW(P1, P2) is also uni-
modular. It can be checked directly from the definition of unimodularity or by proving
that it is the local weak limit of bipartite configuration models (they are especially of
interest in coding theory, see e.g. Montanari and Mézard [25]).

Now, let S ⊂ Z+ be a finite set and P be a probability measure on S. Observe that
UGW(P, P) = UGW1(P) and that if Pn is a sequence of probability measures on S
such that Pn � P then P̂n → P̂ and

UGW(P, Pn) � UGW1(P).

However, we have the following discontinuity result:

Proposition 5.14 Assume that S ⊂ Z+\{0, 1}, P, Pn ∈ P(S), and Pn � P as
n → ∞. Assume further that P(2) < 1 and that Pn �= P for all n large enough.
Then,

lim sup
n→∞

(UGW(P, Pn)) < (UGW(P)).

The proposition is a consequence of the following upper bound on(UGW(P, Q))
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Lemma 5.15 Let S ⊂ Z+\{0, 1} be a finite set and P1 �= P2 be two probability
measures on S. We have

(UGW(P1, P2)) � H((p1, p2))+
2∑

i=1

pi H(Pi )+ d

2
log

(
d

2

)
− d

2

−
2∑

i=1

piEPi log(D!),

where D is the random variable with law P1, P2 respectively, and H((p1, p2)) =
−∑2

i=1 pi log pi .

The idea will be to prove that if U (Gn) � UGW(P1, P2), then Gn needs to be
approximately bipartite. The constraint of being bipartite will be costly in terms of
entropy.

Proof of Proposition 5.14 Using Lemma 5.15, with P1 = Pn and P2 = P , we may
upper bound (UGW(P, Pn)) by

H((p1(n), p2(n))) + p1(n)H(Pn) + p2(n)H(P) + d

2
log

(
d

2

)
− d

2

− p1(n)EPn log(D!) − p2(n)EP log(D!).

Since Pn and P have support in the finite set S, p1(n) → 1/2, p2(n) → 1/2,
H(Pn) → H(P) and EPn log(D!) → EP log(D!). So finally

lim sup
n→∞

(UGW(P, Pn)) � log(2) + H(P) + d

2
log

(
d

2

)
− d

2
− EP log(D!)

= (UGW1(P)) −
(
d

2
− 1

)
log(2).

Since P(0) = P(1) = 0 and P(2) < 1, we have d > 2. ��
Proof of Lemma 5.15 Let us start by a remark. We denote by di and d̂i the mean of
Pi and P̂i . Since {0, 1} /∈ S, the support of P̂i is included in {1, . . . , θ} for some θ . It
follows that d̂i � 1. Also, d̂i = 1 implies that P̂i = δ1, hence Pi = δ2. Since P1 �= P2,
we have that either P̂1 or P̂2 is different from δ1. In particular,

α =
√
d̂1d̂2 > 1.

Let (T, o) be a rooted tree with distribution ρ = UGW(P1, P2) obtained from a
multi-type rooted tree (Ť , o) as above whose law is denoted by ρ̌. We will assign to
all vertices of T a type {a, b}: type a (resp. b) is supposed to be a good approximation
for type 1 (resp. 2) in Ť .

Let A1 ∪ A2 be a partition of P(Z+) such that P̂i is in the interior of Ai (it is
possible since P̂1 �= P̂2). Now, for v ∈ V (T ) and integer h � 1, ∂B(v, h) is the set of
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vertices at distance h from v in T . The assumption {0, 1} /∈ S implies that ∂B(V, h)

is not empty. Hence, we define

μh
v = 1

|∂B(v, 2h)|
∑

u∈∂B(v,2h)

δdegT (u)−1.

Moreover α > 1 implies that ρ̌-a.s.

lim
h→∞

1

h
log |∂B(o, h)| = logα > 0. (86)

Indeed, we consider a tree T ′ whose vertex set are the vertices at even distance (in T )
from the root. T ′ is obtained by connecting vertices at distance 2h from the root to
their grandchildren (the offspring of its own offspring), at distance 2(h + 1). Then, by
construction, all vertices have the same type in T ′. Moreover, conditioned on the root
being of type i , T ′ is a Galton–Watson tree where the root has offspring distribution
Qi , the distribution of

∑N
k=1 Nk , where N has law Pi , independent of (Nk)k an i.i.d.

sequence with law P̂2 if i = 1 and P̂1 if i = 2, and any other vertex in T ′ has offspring
distribution Q′

i , the distribution of
∑N̂

k=1 Nk , where N̂ has law P̂i , independent of
(Nk)k as above. By construction, Q′

i has mean α2 = d̂1d̂2 and T ′ has extinction
probability 0. Then (86) is a consequence of the Seneta–Heyde Theorem [22,30].

Also, conditioned on the root being of type i , all vertices u ∈ B(o, 2h) are of type i .
It follows that, conditioned on |∂B(o, 2h)| the vector (degT (u) − 1)u∈∂B(o,2h) is i.i.d.
with common law P̂i . Hence, the strong law of large numbers implies that, ρ̌-a.s.

μh
o � P̂c(o).

where c(o) is the type of the root.
In the sequel, we fix δ > 0 and take h large enough such that

min
i=1,2

Pρ̌ (μh
o ∈ Ai | c(o) = i) � 1 − δ.

Now, to a locally finite graph G = (V, E), we attach to each vertex v ∈ V the type
ω(v) = a (resp. ω(v) = b) if ∂B(v, 2h) is not empty, deg(v) ∈ S and μh

v ∈ A1 (resp.
μh

v ∈ A2). Otherwise, we set set ω(v) = •.
Let ā = b, b̄ = a, θ = max(s ∈ S) and � = {0, . . . , θ}. We also attach on

the vertices of G a new type in the set R = {•, (a, k), (b, k) : k ∈ �} defined, for
c ∈ {a, b}, by τ(u) = (c, k) if

(i) ω(u) = c;
(ii)

∑
v
G∼u

1(ω(v) = c̄) = k.

Otherwise, ω(u) = • and we also set τ(u) = •. In words: a vertex has τ -type (c, k) if
its ω-type is c and it has exactly k of its neighbors having ω-type c̄. We may call this
scalar k the ab-degree of the vertex.
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By construction, Pρ̌ (ω(o) = c(o)) � 1 − δ. Also, using the union bound and
unimodularity,

Pρ̌ (∃ v
T∼ o : ω(v) �= c(v)) � Eρ̌

∑

v

1(v
T∼ o)1(ω(v) �= c(v))

= Eρ̌

∑

v

1(v
T∼ o)1(ω(o) �= c(o))

� θ Pρ̌ (ω(o) �= c(o)) � θ δ.

We thus have proved that

Pρ̌ (τ (o) = (c(o), deg(o))) � 1 − (θ + 1)δ.

It follows that, for any k ∈ S, c ∈ {a, b},
∣∣Pρ(ω(o) = c) − pi

∣∣ � δ and
∣∣Pρ(τ (o) = (c, k)) − pi Pi (k)

∣∣ � (θ + 1)δ, (87)

where i = 1 if c = a and i = 2 if c = b. Equation (87) shows that we can nearly
reconstruct the types and the bipartite structure from 2h-neighborhoods.

Also, by construction, the maps (G, o) → ω(o) and (G, o) → τ(o) are continuous
for the local topology. Hence, there exists η(ε) > 0 with η(ε) → 0, ε → 0, such that
μ ∈ B(ρ, ε) implies that

max
c∈{a,b,•}

∣∣Pμ(ω(o) = c) − Pρ(ω(o) = c)
∣∣ � η(ε), and

max
r∈R

∣∣Pμ(τ(o) = r) − Pρ(τ (o) = r)
∣∣ � η(ε).

For all ε � ε(δ) small enough, η(ε) � δ.
All ingredients are now in order. Consider a sequence m = m(n) such that

m(n)/n → d/2 where d = 2p1d1 = 2p2d2 = 2d1d2/(d1+d2). LetGn ∈ Gn,m(ρ, ε)

with ε � ε(δ). For c ∈ {a, b, •} and r ∈ R, we set

nc =
n∑

v=1

1(ω(v) = c) and Nr =
n∑

v=1

1(τ (v) = r).

From what precedes and (87), for c ∈ {a, b} and k ∈ �,

|nc − npi | � 2δn and
∣∣N(c,k) − npi Pi (k)

∣∣ � 2(θ + 1)δn, (88)

where i = 1 if c = a and i = 2 if c = b. We notice also that (na, nb, n•) is an integer
partition ofn of length 3 and (nr )r∈R is an integer partition of length |R| = 2(θ+1)+1.

We now compute an upper bound for |Gn,m(ρ, ε)|. Fix n = ((nc)c∈{a,b}, (Nr )r∈R).
We denote by A(n) the set of vertex-labeled graphs G = ([n], E, ω′, τ ′) such that for
any c ∈ {a, b}, r ∈ R and v ∈ [n],
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(i) ω′(v) ∈ {a, b, •} and τ ′(v) ∈ R;
(ii) τ ′(v) = (c, k) iif ω′(v) = c and

∑
u
G∼v

1(ω′(u) = c̄) = k;

(iii) nc =∑v 1(ω
′(v) = c) and Nr =∑n

v=1 1(τ
′(v) = r).

From what precedes,

|Gn,m(ρ, ε)| � n2n|R|−1 max
n

|A(n)|,

where the maximum is over all pairs of integer partitions ((nc)c∈{a,b,•}, (Nr )r∈R)

satisfying (88).
We set

m◦ =
∑

k∈�

kN(a,k) =
∑

k∈�

kN(b,k) and m• = m − m◦.

In words, m◦ is the number of ab-edges (i.e. adjacent to a vertex of ω′-type a and a
vertex of ω′-type b), m• counts all the other edges. Summing (88) over c ∈ {a, b},
k ∈ �, yields

n• = n − na − nb � 4nδ,

and

∣∣∣m◦ − nd

2

∣∣∣ =
∣∣∣
∑

k∈�

(
kN(a,k) − np1kP1(k)

)∣∣∣ � 2θ(θ + 1)2δn = O(δn).

Since m = m• + m◦ = nd/2 + o(n). It follows that

m• = O(δn) + o(n),

where O(·) depends only on θ .
We find

|A(n)| �
(

n

(na, nb, n•)

)(
na

(N(a,k))k∈�

)(
nb

(N(b,k))k∈�

)

× m◦!∏
k∈�(k!)N(a,k)+N(b,k)

( n(n−1)
2
m•

)
,

where: the first term counts the number of ways to partition [n] into three blocks of
sizes na, nb and n•; the second and third terms subdivide each of the blocks in terms
of the ab-degrees of the vertices; the fourth term upper bounds the number of ways to
realize the ab-degree sequence (reasoning as in Lemma 4.3); the last term bounds the
number of ways to put the remaining m• edges.
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We set p = (pa, pb, p•) with pc = nc/n and for r = (c, k) ∈ R, Pc(k) =
N(c,k)/nc. Using Stirling’s approximation, we obtain

log |A(n)| � nH(p) + npaH(Pa) + npbH(Pb) + m◦ log n + m◦ log
(m◦
n

)
− m◦

− npaEPa log(D!) − npbEPb log(D!) + m• log n − m• log
(

2m•
n(n − 1)

)

+ m• + o(n),

where o(·) depends only on θ . Using our estimates in terms of δ, we get

log |A(n)|−m log n � nH((p1, p2))+np1H(P1)+np2H(P2)+ nd

2
log

(
d

2

)
− nd

2

− np1EP1 log(D!) − np2EP2 log(D!)+O(nδ log δ−1)+o(n).

Letting n → ∞ and then δ → 0, the lemma follows. ��

6 Large deviation principles

6.1 Proof of Theorem 1.6

Fix a sequence d = d(n) as in (C1)–(C3), set Pn := 1
n

∑n
i=1 δd(i). The measure

Pn ∈ P(Z+) may be viewed as a measure on rooted graphs with depth 1, i.e. G∗
1 , by

assigning probability zero to any g ∈ G∗
1\T ∗

1 , and by assigning the weight Pn(k) to
the unlabeled star with k neighbors (rooted at the center of the star). Define

m = 1

2

n∑

i=1

di (n),

so that m/n → d/2 as n → ∞, and define the set

GPn = {G ∈ Gn,m : U (Gn)1 = Pn}.

Each element of G(dn) is isomorphic to exactly n(d) graphs in GPn , i.e. n(d)|G(d)| =
|GPn |, where n(d) denotes the number of distinct vectors (d(π1), . . . , d(πn)) as π :
[n] �→ [n] ranges over permutations of the vertex labels. Since U (G) is invariant
under isomorphisms, Theorem 1.6 is equivalent to the same statement where Gn is a
random graph uniformly distributed in GPn rather than in G(d). Thus, for the rest of
this proof Gn will denote a uniform graph in GPn .

Since U (Gn) is unimodular, we may restrict to the closed subspace Pu(G∗). Let
K ⊂ Pu(G∗) denote the compact set of unimodular probability measures supported
by graphs with degree bounded by θ . Unimodularity implies that ρ ∈ K is equivalent
to ρ being supported by graphs such that the degree at the root is bounded by θ . By
construction, U (Gn) ∈ K and P ∈ K. Therefore, if ρ ∈ Pu(G∗) is such that ρ1 = P ,
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then ρ ∈ K. From general principles, see e.g. [16, Ch. 4], the theorem follows if we
prove that: (i) for any ρ ∈ K with ρ1 = P , δ > 0,

lim inf
n→∞

1

n
logP(U (Gn) ∈ B(ρ, δ)) � (ρ) − (UGW1(P)); (89)

and (ii) for any ρ ∈ K

lim
ε↓0 lim sup

n→∞
1

n
logP(U (Gn) ∈ B(ρ, ε)) �

{
(ρ) − (UGW1(P)) if ρ1 = P,

−∞ otherwise.
(90)

To prove the lower bound (89), write

P(U (Gn) ∈ B(ρ, δ)) = |{G ∈ Gn,m : U (Gn)1 = Pn, U (Gn) ∈ B(ρ, δ)}|
|{G ∈ Gn,m : U (Gn)1 = Pn}| . (91)

As a consequence of (67)

1

n

(
log |{G ∈ Gn,m : U (Gn)1 = Pn}| − m log n

)
� J1(P) + o(1).

On the other hand, the lower bound in Proposition 5.6 proves that for fixed δ > 0, one
has

1

n

(
log |{G ∈ Gn,m : U (Gn)1 = Pn, U (Gn) ∈ B(ρ, δ)}| − m log n

)
� Jh(ρh) + o(1)

for all h large enough. From Theorem 1.3 one has (ρ) = limh→∞ Jh(ρh), and
(UGW1(P)) = J1(P), and (89) follows.

We turn to the proof of the upper bound (90). We start with the case ρ1 �= P . For
δ > 0, consider the closure, say F(δ), of the probability measures ρ ∈ K such that
dTV (ρ1, P) � δ. For all n large enough, U (Gn) ∈ F(δ), since U (Gn)1 = Pn � P .
If ρ1 �= P , then ρ /∈ F(δ) for some δ > 0, and P(U (Gn) ∈ B(ρ, ε)) = 0, for all ε

small enough and n large enough. It follows that (90) is−∞ in this case. Suppose now
that ρ1 = P . For the upper bound one may drop the constraint U (Gn)1 = Pn in the
numerator of (91). Then, using the lower bound in Proposition 5.6 for the denominator
and Theorem 1.3 for the numerator, one has the desired estimate.

Remark 6.1 The result of Theorem 1.6 can be extended with no difficulty to the case
whereGn is uniformly distributed in the set of all graphsGwith vertex set [n] satisfying
U (G)h = Pn , where Pn is supported on some fixed set � = {t1, . . . , tr } ⊂ T ∗

h for
all n, and such that Pn � P for some admissible P . Theorem 1.6 is the special case
h = 1. With the same proof, for any fixed h ∈ N, one obtains thatU (Gn) satisfies the
large deviation principle with speed n and good rate function I (ρ) = Jh(P) − (ρ)

if ρh = P , and I (ρ) = +∞ otherwise.
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6.2 Proof of Theorem 1.7

We start with a proof of exponential tightness. Let c � 1 and letGn be a random graph
sampled uniformly on Gn,m , where m = m(n) is an arbitrary sequence satisfying

m(n)

n
� c

2
.

The random probability measure ρn := U (Gn) is an element of Pu(G∗).

Lemma 6.2 The sequence of random variables ρn is exponentially tight in Pu(G∗),
i.e. for any z � 1, there exists a compact set �z ⊂ Pu(G∗) such that

lim sup
n→∞

1

n
logP(U (Gn) /∈ �z) � −z.

Proof For y � 1 and x ∈ (0, 1), we define

δy(x) = − 2y

log(cx)
,

and consider the event,

Ey(n) =
{
∀S ⊂ [n] : |degGn

(S)| � n δy

( |S|
n

)}
,

where degGn
(S)was defined in (14). We are going to prove that there exists a constant

L > 0 such that for any real y � 1, for any integer n � 1,

1

n
logP

(
Ey(n)c

)
� −y + L . (92)

In view of Lemma 2.3, (92) implies the lemma.
To prove (92), we may restrict ourself to subsets S ⊂ [n] of cardinality at most

|S| � nε0, with ε0 = δ−1
y (1) = e−2y/c � e−2y . From the union bound,

P
(
Ey(n)c

)
� n max

0<ε�ε0
P
(∃S ⊂ [n] : |S| = εn, degGn

(S) > nδy(ε)
)
.

By choosing y large enough we may assume that ε0 > 0 is small enough. Choose ε ∈
(0, ε0] and δ := δy(ε). We note that, as in the proof of (54), degGn

(S) is stochastically
dominated by 2N , where N has distribution Bin(εn2, 2d/n). It follows that

P
(
Ey(n)c

)
� n max

0<ε�ε0

(
n

εn

)
P(N � δn/2).

123



212 C. Bordenave, P. Caputo

For x > 0,

P(N � δn/2) � e−δnx
E[e2xN ] = e−δnx

(
1 + (2d/n)(e2x − 1)

)εn2

� e−δnx+2dεne2x .

Taking x = − 1
2 log(cε) one finds

1

n
logP(N � nδ/2) � δ

2
log (cε) + 2d

c
= −y + 2d

c
.

On the other hand, from Stirling’s formula, there exists a constant C such that

(
n

nε

)
� C

√
nenH(ε),

where H(ε) = −ε log ε − (1 − ε) log(1 − ε). Since ε � ε0 = e−2y , these bounds
imply the desired conclusion (92). ��

We turn to the proof of Theorem 1.7. Fix d > 0 and a sequence m = m(n) such
that m/n → d/2, as n → ∞. Thanks to Lemma 6.2, from general principles, see e.g.
[16, Ch. 4], it is sufficient to establish: (i) for any ρ ∈ Pu(G∗) and δ > 0,

lim inf
n→∞

1

n
logP(U (Gn) ∈ B(ρ, δ)) � (ρ) − s(d); (93)

and (ii) for any ρ ∈ Pu(G∗)

lim
ε↓0 lim sup

n→∞
1

n
logP(U (Gn) ∈ B(ρ, ε)) � (ρ) − s(d). (94)

However, both the lower bound (93) and the upper bound (94) follow immediately
from the definition of (ρ), Theorem 1.2 and (7). This ends the proof.

6.3 Proof of Theorem 1.8

Theorem 1.8 is a simple consequence of Theorem 1.7. We argue as in [17]. Let Gn

denote the random graphwith distributionG(n, λ/n), and letM(n) be the total number
of edges in Gn . Then M(n) is the binomial random variable Bin(n(n − 1)/2, λ/n).
Conditioned on a given value M(n) = m, Gn has uniform distribution over Gn,m .
It follows that G(n, λ/n) is a mixture of the uniform distribution on Gn,m , where m
is sampled according to Bin(n(n − 1)/2, λ/n). We use the following simple lemma,
whose proof is omitted.

Lemma 6.3 The sequence 2M(n)/n satisfies the LDP in [0,∞) with speed n and
good rate function

j (x) = 1

2
(λ − x + x log(x/λ)).
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We need to prove that ρn = U (Gn) satisfies a LDP on Pu(G∗) with speed n and good
rate function

I (ρ) = j (d) − (ρ) + s(d) = inf { j (r) − r (ρ) + s(r) : r � 0},

where ρ ∈ Pu(G∗), d = EρdegG(o) and r (ρ) is the entropy of ρ associated to the
mean degree r (which is equal to−∞ if r �= d byTheorem1.2). A simple adaptation of
the proof of Lemma 6.2 shows that the random variable ρn = U (Gn) is exponentially
tight. The conclusion follows from a general result on large deviations for mixtures;
see Biggins [? , Theorem 5(b)].

6.4 Proof of Corollary 1.9 and Corollary 1.10

The proof is an application of the contraction principle, cf. [16]. Concerning Corollary
1.9, by Theorem 1.7 one has that u(Gn) satisfies the LDP in P(Z+) with speed n and
good rate function

K (P) = inf{s(d) − (ρ), ρ ∈ P(G∗) : ρ1 = P}.

From Theorem 1.3 and Corollary 1.4 this expression equals s(d) − J1(P) =
H(P |Poi(d)).

As for Corollary 1.10, by Theorem 1.8 u(Gn) satisfies the LDP in P(Z+) with
speed n and good rate function

K (P) = inf{φ(λ, d) − (ρ), ρ ∈ P(G∗) : ρ1 = P},

where φ(λ, d) = λ
2 − d

2 log λ. Since all ρ ∈ P(G∗) with ρ1 = P have the same
expected degree at the root, this equals φ(λ, d) − J1(P) = φ(λ, d) − s(d) +
H(P |Poi(d)).
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for a discussion on the discontinuity of the entropy. This work was supported by the GDRE GREFI-MEFI
CNRS-INdAM. Partial support of the European Research Council through the Advanced Grant PTRELSS
228032 and ANR-11-JS02-005-01 is also acknowledged.

7 Appendix : Local convergence for generalized configuration model

In this section we prove Theorem 4.8.

7.1 The exploration process

The first step is to prove convergence of the average measure EU (Gn), where Gn has
distribution CM(D(n)).

Proposition 7.1 Let Gn ∈ Ĝ(D(n)) with distribution CM(Dn) such that assumptions
(H1)–(H2) hold (see Sect. 4.3). Then, EU (Gn) � UGW(P).
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The proof of Proposition 7.1 is based on an exploration process of the neighborhood
of a vertex.We shall use the notation of Sect. 4. For ease of notation, wewill often omit
the dependence on n from our notation. LetD = (D(1), . . . , D(n)) ∈ Dn , σ ∈  and
G = �(σ) the associated multigraph. To be precise, we specify the set W = ∪c∈CWc

to be Wc = {(c, i, j) : i ∈ [n], 1 � j � Dc(i)} and W (i) = {(c, i, j) : c ∈ C, 1 �
j � Dc(i)} the set of half-edges of all colors starting from i . With a slight abuse of
notation, we will sometimes write for e = (c, i, j) ∈ W , σ(e) in place of σc(i, j).

Let N
f = ∪k�0N

k where N
0 = o. We consider the total order on N

f : i < j
with i = (i1, . . . , ik), j = ( j1, . . . , j�) if either k < � or k = � and i < j for the
lexicographical order. We will define a bijective map φ from a finite set S ⊂ N

f to
the vertex set of G(v). The value of φ is defined iteratively and if i < j are in S then
the value of φ(i) will be determined before the value of φ(j). Moreover φ(S ∩ N

k)

will be the set of vertices at distance k from v.
The exploration is on the set of half-edgesW and it is defined recursively. At integer

step t , we partition W in 3 sets: an half-edge may belong to the active set A(t), to
the unexplored set U (t) or to the connected set C(t) = W\(A(t) ∪ U (t)). At stage
t , a vertex with an half-edge in C(t) ∪ A(t) will have a pre-image via φ in N

f . We
start with a given v ∈ [n], and fix the initial conditions A(0) = W (v), C(0) = ∅,
U (0) = W\W (v), and φ(o) = v.

For integer t � 0, if A(t) �= ∅, let et+1 = (ct , φ(it ), jt ) be an half-edge in A(t) such
that it isminimal for the total order onN

f . Let I (t+1) = (W (vt+1)\{σ(et+1)})∩U (t)
where vt+1 is the vertex such that σ(et+1) ∈ W (vt+1). It+1 is the set of new half-edges
and our partition of W is updated as

⎧
⎪⎪⎨

⎪⎪⎩

A(t + 1) = A(t)\{et+1, σ (et+1)}⋃ It+1

U (t + 1) = U (t)\ (I (t + 1) ∪ {σ(et+1)})
C(t + 1) = C(t) ∪ {et+1, σ (et+1)}.

(95)

If σ(et+1) /∈ A(t), we also set φ((it , jt )) = vt+1. Finally, if A(t) = ∅, then the
exploration process stops.

We notice that the elements in C(t) are the half-edges for which we know by step
t their matched half-edge. It implies that σ(et+1) ∈ A(t) ∪ U (t). Moreover, for any
vertex u, we cannot have simultaneouslyW (u)∩U (t) �= ∅ andW (u)∩A(t) �= ∅.With
a slight abuse, wemay thuswrite u ∈ U (t) or u ∈ A(t) if, respectively,W (u)∩U (t) �=
∅ or W (u) ∩ A(t) �= ∅. Now, if vt+1 ∈ U (t), then I (t + 1) = W (vt+1)\{σ(et+1)},
otherwise vt+1 ∈ A(t) and I (t + 1) = ∅. Note also that for integer k, the image by φ

of the vertices of generation k in S, φ(S ∩ N
k), are the set of vertices in G at distance

k from v (by recursion, this comes from the fact that it is minimal for the total order
on N

f ).
We now define X (0) = D(v) and for integer t � 1, Xc(t+1) = |{(i, j) : (c, i, j) ∈

It+1}|. Hence X (t) ∈ ML gives the new colored half-edges attached to vt . For ease
of notation, we also set

εc(t + 1) = 1(vt+1 ∈ A(t), ct = c̄) , δc(t + 1) = 1(ct = c),
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and

τ = inf{t : A(t) = ∅}.

Setting Ac = A ∩ Wc, Uc = U ∩ Wc and Cc = C ∩ Wc, we get

|Ac(t)| = Dc(v) +
t∑

k=1

(Xc(k) − δc(k) − εc(k))

|Uc(t)| = |Wc| − Dc(v) −
t∑

k=1

(Xc(k) + δc̄(k) − εc(k))

|Cc(t)| =
t∑

k=1

(δc(k) + δc̄(k)). (96)

Note that |Cc(t)| = |Cc̄(t)| and, if c ∈ C=, |Cc(t)| is even.
Now, as in the statement of Proposition 7.1, consider a random multi-graph Gn

with distribution CM(D(n)). For integer t � 0, we consider the filtration

Ft = σ((A(0),U (0),C(0)), . . . , (A(t),U (t),C(t))).

The hitting time τ is a stopping time for this filtration. Also, given Ft , if {t < τ } and
ct = c ∈ C�=, then σ(et+1) is uniformly distributed on Uc̄(t) ∪ Ac̄(t). It follows that
for u ∈ [n],

P(vt+1 = u|Ft ) = |Wc̄(u) ∩ (Uc̄(t) ∪ Ac̄(t))|
|Uc̄(t)| + |Ac̄(t)|

= 1u∈U (t)Dc̄(u)

|Uc̄(t)| + |Ac̄(t)| + 1u∈A(t)|Wc̄(u) ∩ A(t)|
|Uc̄(t)| + |Ac̄(t)| .

Similarly, given Ft , if {t < τ } and ct = c ∈ C=, σ(et+1) is uniformly distributed on
Uc(t) ∪ Ac(t)\{et+1}. We find in this case,

P(vt+1 = u|Ft ) = |Wc(u) ∩ (Uc(t) ∪ Ac(t)\{et+1})|
|Uc(t)| + |Ac(t)| − 1

= 1u∈U (t)Dc(u)

|Uc(t)| + |Ac(t)| − 1
+ 1u∈A(t)(|Wc(u) ∩ Ac(t)| − 1et+1∈Wc(u))

|Uc(t)| + |Ac(t)| − 1
.

In either case, for c ∈ C, if σ(et+1) ∈ U (t), then X (t+1) = D(vt+1)− Ec̄ otherwise,
σ(et+1) ∈ A(t) and X (t + 1) = 0. We recall also that |Uc(t)| + |Ac(t)| = |Wc| −
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|Cc(t)| = |Wc̄| − |Cc̄(t)|. We get, for M ∈ ML , if ct = c then

P(X (t + 1) = M |Ft )

=
⎧
⎨

⎩

∑
u∈U (t)

1D(u)=M+Ec̄ (Mc̄+1)

|Wc|−|Cc(t)|−1(c∈C=)
M �= 0,

∑
u∈U (t)

1D(u)=Ec̄

|Wc|−|Cc(t)|−1(c∈C=)
+ |Ac̄(t)|−1(c∈C=)

|Wc|−|Cc(t)|−1(c∈C=)
M = 0.

(97)

Observe that, from (96) and assumption (H1), we find for any c ∈ C,

|Ac(t)| � θ(t + 1) and |Cc(t)| � 2t. (98)

The next lemma computes the limiting marginals of the exploration process.

Lemma 7.2 Under the assumption of Proposition 7.1, let o be uniformly distributed
on [n], independently of Gn, and consider the exploration process on the rooted graph
(Gn(o), o). For any integer t � 0, as n → ∞:

(i) X (0) converges weakly to P.
(ii) Let c ∈ C be such that EDc > 0. Given Ft , if {t < τ } and ct = c, then the

conditional law of X (t + 1) given Ft converges weakly to P̂c.
(iii) The probability that there exist c ∈ C and an integer 1 � s � t ∧ τ such that

EDc = 0 and cs = c goes to 0.

Proof Since X (0) = D(o), statement (i) is simply a restatement of the assumption
(H2).

For statement (ii), we first note that the set {i ∈ [n] : i /∈ U (t)} has cardinality
bounded by 1 + θL2t . It follows by (97) that, if {t < τ } and ct = c hold, for any
M ∈ ML ,
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∣∣∣P(X (t + 1) = M |Ft ) − Mc̄ + 1

|Wc| − |Cc(t)| − 1(c ∈ C=)

n∑

i=1

1D(i)=M+Ec̄

∣∣∣

�
(Mc̄ + 1)

(
1 + θL2t + |Ac̄(t)|

)

|Wc| − |Cc(t)| − 1(c ∈ C=)
.

Now, assumptions (H1)–(H2) imply that |Wc|/n converges toEDc,where D has law P .
Similarly, assumption (H2) implies that 1n

∑n
i=1 1D(i)=M+Ec̄ converges to P(M+Ec̄).

Hence, from (98), if EDc > 0, then P(X (t + 1) = M |Ft ) converges to P̂c(M). This
proves statement (ii).

We now turn to statement (iii). We set C0 = {c ∈ C : Dc ≡ 0} and AC0(t) =
∪c∈C0 Ac(t). We recall that EDc̄ = EDc, hence c ∈ C0 is equivalent to c̄ ∈ C0. We
should prove that for any integer t � 0, P(|AC0(t ∧ τ)| � 1) → 0. First, statement (i)
and the union bound implies that P(|AC0(0)| � 1) �

∑
c∈C0 P(Xc(0) � 1) → 0. By

recursion, it is thus sufficient to prove that for any integer t � 0, c ∈ C0, c′ ∈ C\C0, if
{t < τ } and ct = c′ hold, then

P(Xc(t + 1) � 1|Ft ) → 0.

The latter follows from statement (ii) (recall that c̄ ∈ C0). ��

We introduce a variable that counts the number of times that two elements in the
active sets are matched by step t :

E(t) =
t∑

k=1

∑

c∈C
εc(k).

Lemma 7.3 Under the assumption of Proposition 7.1, let o be uniformly distributed
on [n], independently of Gn, and consider the exploration process on the rooted graph
(Gn(o), o). For every integer t � 0, we have

lim
n→∞ P (E(t ∧ τ) �= 0) = 0.

If t � τ and E(t) = 0, the subgraph of Gn spanned by the vertices with all their
half-edges in C(t) is an directed colored tree.

Proof We start with the second statement. To every vertex u with an half-edge in
C(t) ∪ A(t), there is an element i in N

f such that φ(i) = u. We may thus order these
vertices by the order through φ−1 in N

f . Every such vertex is adjacent to its parent.
By construction if E(t) = 0 or equivalently if for all 1 � s � t , all c ∈ C, εc(s) = 0,
then every vertex with an half-edge in C(t)∪ A(t) has a unique adjacent vertex with a
smaller index. It follows that there cannot be a cycle in the subgraph spanned by these
vertices.
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If E(t ∧ τ) �= 0, there exists an integer 1 � s � t ∧ τ such that σ(es) ∈ A(s − 1).
Using (97), it follows from the union bound and the fact that {s < τ } ∈ Fs ,

P(∃1 � s � t ∧ τ : σ(es) ∈ A(s − 1)) � E

⎡

⎣
∑

s�0

1s<t∧τ P(vs+1 ∈ A(s)|Fs)

⎤

⎦

� E

t−1∑

s=0

|Ac̄s (s)|
|Wcs | − |Ccs (s)| − 1(cs ∈ C=)

.

From (98), for each t � 0, |Ac(t)| � θ(t + 1). Also, by assumptions (H1)–(H2),
|Wc|/n converges to EDc, where D has law P . If EDc = 0, we may appeal to Lemma
7.2(iii). ��

All ingredients of the proof of Proposition 7.1 are now gathered.

Proof of Proposition 7.1 Let o be uniformly distributed on [n], independently of Gn .
We set ρn = EU (Gn), and ρ = UGW(P). Define B = {g ∈ Ĝ∗ : gt = γ } where γ

is the equivalence class of a finite rooted directed colored tree of depth at most t . It
is sufficient to prove that for any integer t � 1 and any such γ , ρn(B) converges to
ρ(B).

For some m = ∑t−1
k=0(θL

2)k , (Gn(o), o)t has at most m vertices. However, by
Lemma 7.3, with high probability, Em∧τ = 0 and (Gn(o), o)t is a rooted directed
colored tree. Applying now Lemma 7.2, we deduce that

lim
n→∞

∣∣ρn(B) − ρ(B)
∣∣ = lim

n→∞ |P((Gn(o), o)t � γ ) − ρ(B)| = 0.

The conclusion follows. ��

A.2 Concentration inequalities

We are going to state a concentration inequality for the configuration model. We
use the notation of Sect. 4. We fix an integer L � 1 and consider a set of colors
C = {(i, j) : 1 � i, j � L}, D = (D(1), . . . , D(n)) ∈ Dn and  = (D) be the set
of configurations. We shall say that m ∈  and m′ ∈  differ by at most one switch
if there exists c ∈ C� such that for all c′ �= c, mc′ = m′

c′ and a set J ⊂ Wc, with
|J | � 2 if c ∈ C�= or |J | � 4 if c ∈ C=, and for all x ∈ Wc\J , m(x) = m′(x). In other
words, if c ∈ C�=,m′

c ◦m−1
c is either the identity (|J | = 0) or a transposition (|J | = 2).

Similarly, for c ∈ C=, m′
c ◦ m−1

c is either the identity (|J | = 0) or the composition of
two disjoint transpositions (|J | = 4).

In the special case L = 1, the next proposition appears in Wormald [31, Theorem
2.19].

Proposition 7.4 Let D = (D(1), . . . , D(n)) ∈ Dn,  = (D) be the set of configu-
rations, S = ∑n

i=1 D(i) and N = ∑c∈C Sc. Let F :  → R be a function such that
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for some κ > 0 and any m,m′ ∈  which differ by at most one switch, we have

|F(m) − F(m′)| � κ.

Then, if σ is uniformly sampled from , for any t > 0,

P (|F(σ ) − EF(σ )| � t) � 2 exp

( −t2

κ2N

)
.

The proof will be given in Sect. 7.1.2 below.

Corollary 7.5 Let D = (D(1), . . . , D(n)) ∈ Dn such that (H1) holds (see Sect. 4.3).
Let k � 0, γ be a rooted directed colored multigraph and A = {g : gk = γk}. There
exists a constant δ = δ(θ, k, L) > 0, such that, if Gn

d∼ CM(D), ρn = U (Gn) and
t > 0,

P (|ρn(A) − Eρn(A)| � t) � 2 exp
(
−δnt2

)
.

Proof By assumption we have for any c ∈ C, i ∈ [n], Dc(i) � θ . Wemay thus assume
without loss of generality that γ has degrees bounded by θ . We set

f (σ ) := nρn(A) =
n∑

i=1

1((Gn(i), i)k � γk).

The number of vertices in Gn which are at distance at most k from both endpoints
of any given edge is bounded by κ = 2

∑k−1
s=0(θL

2)s . If two configurations m,m′ in
 differ by at most one switch then | f (m) − f (m′)| � 4κ . Indeed, a switch changes
the status at most 4 edges and the addition or the removal of an edge can modify for at
most κ vertices the value of 1((Gn(i), i)k � γk). It remains to apply Proposition 7.4,
with F(σ ) = f (σ )/n and N = O(n). ��

7.1.1 Proof of Theorem 4.8

Let us start with the case Gn
d∼ CM(D(n)). We set ρn = U (Gn) and ρ = UGW(P).

Let k � 0, γ ∈ Ĝ∗ and A = {g ∈ Ĝ∗ : gk = γk}. Corollary 7.5, Proposition 7.1
and Borel–Cantelli’s Lemma imply that with probability one, ρn(A) → ρ(A). The
collection of sets A = A(k, γ ), k � 0, γ ∈ Ĝ∗, being a basis of the topology on Ĝ∗,
this proves the first statement of Theorem 4.8.

For the second statement, we notice that ifGn is uniformly distributed onG(D(n), h)

and Ĝn
d∼ CM(D(n)), then Lemma 4.4 implies for any subset B ⊂ G(D(n), h) that

P(Gn ∈ B) � P(Ĝn ∈ B)/P(Ĝn ∈ G(D(n), h)).

By Corollary 4.6, P(Ĝn ∈ G(D(n), h)) is lower bounded by some α > 0, uniformly
in n (depending of the sequence D(n) and h). Then, if ρn = U (Gn) and ρ̂n = U (Ĝn),
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from what precedes, for any t > 0, and A as above

∑

n

P(|ρn(A) − Eρ̂n(A)| > t) � α−1
∑

n

P(|ρ̂n(A) − Eρ̂n(A)| > t) < ∞.

It remains to apply again Borel-Cantelli’s lemma and Proposition 7.1. ��

Remark 7.6 The proof of Theorem 4.8 actually shows that for a sequence D(n) satis-
fying (H1)–(H2) the following holds. Let k � 0, γ fixed and A = {g : gk = γk}.
There exists a constant δ > 0 (depending of the sequence D(n), h and k), such that,

if Gn is uniformly distributed on G(D(n), h) and Ĝn
d∼ CM(D(n)), we have for any

t > 0
P (|ρn(A) − Eρ̂n(A)| � t) � δ−1 exp

(
−δnt2

)
, (99)

where ρn = U (Gn) and ρ̂n = U (Ĝn).

7.1.2 Proof of Proposition 7.4

The proof is a consequence of Azuma–Hoeffding’s inequality.

Case of randommatchings For clarity,we startwith the case L = 1, i.e.C = {(1, 1)}.
Then N = S(1,1). We order the elements of W = W(1,1) in the lexicographic order.
We may identify a matching of W as the set of N/2 matched pairs. We order these
N/2 pairs by the index of their smallest element. We then define F0 as the trivial
σ -algebra and for 1 � k � N/2, we define Fk as the σ -algebra generated by the first
k pairs of matched elements of σ . We set Zk = E[F(σ )|Fk], so that Z0 = EF(σ ),
ZN/2−1 = F(σ ). By construction, Zk is a Doob martingale.

If A is a finite set, we denote byM(A) the set of perfect matchings on A. With our
previous notation  = M(W ). For 1 � k � N/2, an element σ of M(W ) can be
uniquely decomposed into (σ−

k−1, σ
+
k ) where σ−

k−1 is the restriction of σ to the k − 1
smallest pairs and σ+

k is the rest. Let Wk−1 denote the subset of W such that σ−
k−1 is

a perfect matching on Wk−1.
If vk is the smallest element of W\Wk−1, we set wk = σ(vk) ∈ W\Wk−1, so

that Wk = Wk−1 ∪ {vk, wk}. Now, for w ∈ W\(Wk−1 ∪ {vk}), let Mw denote
the set of matchings of W\Wk−1 such that m(vk) = w. Then for any w,w′ ∈
W\(Wk−1 ∪ {vk}), each m ∈ Mw corresponds to a unique m′ ∈ Mw′ through the
switch {{vk, w}, {w′, z}} → {{vk, w′}, {w, z}}, where m(w′) = z. This gives a bijec-
tion between Mw and Mw′ , and we set Nk = |Mw|. By assumption, we deduce that
for any w,w′,

∣∣∣∣∣∣

∑

m∈Mw

F(σ−
k ,m) −

∑

m∈Mw′
F(σ−

k ,m)

∣∣∣∣∣∣
� κ.
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Applying the above inequality to wk , we deduce that

∣∣∣∣∣∣
1

Nk

∑

m∈Mwk

F(σ−
k ,m) − 1

N − 2k + 1

∑

w∈W\(Wk−1∪{vk })

1

Nk

∑

m∈Mw

F(σ−
k ,m)

∣∣∣∣∣∣

= |Zk − Zk−1| � κ.

We may then apply Azuma–Hoeffding’s inequality to the martingale Zk . We obtain
that for any t > 0,

P (Zn − Z0 � t) � exp

(
−t2

2
∑N/2−1

i=1 κ2

)
� exp

( −t2

Nκ2

)
.

This proves the proposition when L = 1.

Case of random bijections Now, let σ be a uniformly drawn bijection from the setW
to W̄ of common cardinality N . We order the elements of the set W as (x1, . . . , xN ).
We introduce the filtrationFk generated by σ(x1), . . . , σ (xk). Now let F be a function
on the set of bijections from W to W̄ such that for any m, m′ such that m′ ◦ m−1 is a
transposition, we have |F(m) − F(m′)| � κ . We set Zk = E[F(σ )|Fk].

With minor modifications, the above argument shows that, for 1 � k � N , |Zk−1−
Zk | � κ . Then, by Azuma–Hoeffding’s inequality, we find for t � 0,

P (F(σ ) − EF(σ ) � t) � exp

( −t2

2Nκ2

)
. (100)

General case It suffices to combine the two results. We first order the elements
of C� in an arbitrary way, say c1, . . . , c� with � = L(L + 1)/2. Let N0 = 0, for
1 � k � �, Nk = ∑k

i=1 Sci /(1 + 1ci∈C=). We have N� = N/2. We define the
filtration, (Ft ), 0 � t � N�, built as follows. F0 is the trivial σ -algebra, FNk is
the filtration generated by the independent variables (σci ), 1 � i � k. Finally for
1 � i < Nk+1 − Nk , FNk+i is the filtration generated by FNk and the first i matched
pairs of σck+1 .

As above, we set Zk = E[F(σ )|Fk], so that Z0 = EF(σ ), ZN�
= F(σ ). By

construction, using the independence of (σ )c, c ∈ C, we find, for 1 � k � N�,
|Zk−1 − Zk | � κ . Hence, Azuma–Hoeffding’s inequality implies that (100) holds for
σ uniform in , with N replaced by N� = N/2. This ends the proof of Proposition
7.4.
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