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Abstract We consider the distribution of the values at real points of random functions
which belong to the Herglotz–Pick (HP) class of analytic mappings of the upper half
plane into itself. It is shown that under mild stationarity assumptions the individual
values of HP functions with singular spectra have a Cauchy type distribution. The
statement applies to the diagonal matrix elements of random operators, and holds
regardless of the presence or not of level repulsion, i.e. applies to both random matrix
and Poisson-type spectra.

Mathematics Subject Classification Primary 60E99; Secondary 15B52

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2 Cauchy distribution in shift amenable HP functions . . . . . . . . . . . . . . . . . . . . . . . . 63

2.1 Definition and main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2 Examples and the relation of the Cauchy law with Boole’s identity . . . . . . . . . . . . . 66

3 The spectral representation and related topology . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1 An alternative spectral representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 The topology of pointwise convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Stieltjes transforms of random measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1 A constructive criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 A pair of examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Random HP functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1 Shift invariance and shift amenability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

M. Aizenman
Departments of Physics and Mathematics, Princeton University, Princeton, NJ 08544, USA

S. Warzel (B)
Zentrum Mathematik,TU München, Boltzmannstr. 3, 85747 Garching, Germany
e-mail: warzel@ma.tum.de

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-014-0587-3&domain=pdf


62 M. Aizenman, S. Warzel

5.2 A cocycle criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6 Convergence criteria for the scaling limit of random HP functions . . . . . . . . . . . . . . . . 78

6.1 Convergence off the real axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Convergence of the distribution of the boundary values . . . . . . . . . . . . . . . . . . . 80
6.3 Examples from RMT and random operators . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Appendix A: Boole’s identity for the Stieltjes transform of singular measures . . . . . . . . . . 85
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

1 Introduction

In the study of spectral properties of random operators, generically denoted below
by Hω, one is led to consider random elements of a class of functions of a complex
variable z, which is variably named after Pick ([13]) or Herglotz ([12]). Included in
this class are functions of the form:

Rω,n(z) = 1

n
tr

1

Hω,n − z
= 1

n

n∑

j=1

1

E (n)
ω, j − z

Rφ
ω,n(z) =

〈
φ,

1

Hω,n − z
φ

〉
=

n∑

j=1

|〈φ|ψ(n)
ω, j 〉|2

E (n)
ω, j − z

. (1.1)

where Hω,n are operators acting in spaces of finite dimension, or alternatively n × n
matrices. In the second example φ is a vector in the space on which Hω,n acts and the
expressions on the right correspond to the operator’s spectral representation.

More generally, the Herglotz–Pick (HP) class, as defined here,1 consists of analytic
functions from the upper half plane C

+ := {z ∈ C | Im z > 0} into its closure
C+ = C

+ ∪ R. By the Herglotz representation theorem (cf. [12]) each such function
admits a unique spectral representation as

F(z) = b + az +
∫

R

(
1

u − z
− u

u2 + 1

)
μ(du). (1.2)

with a ≥ 0, b ∈ R, and μ a non-negative Borel measure on R, which is referred to as
the spectral measure of F , for which:

∫
(u2 + 1)−1μ(du) < ∞. (1.3)

Of particular interest here are the scaling limits in which spectra of finite dimen-
sional operators of increasing dimension are studied on a scale of the eigenvalue
spacing [2,4,6,7,18,23,27]. The functions of interest may be found to converge in an
appropriate distributional sense to random HP functions of singular spectrum which
in the simplest case consists of simple poles located along R. In the latter case, (1.2)
extends to a random meromorphic functions, whose spectra form a random point
process on R.

1 In a variant of the definition the range of the functions is occasionally restricted toC+. Its extension here
to C+ allows to include the degenerate case of functions of constant real value.
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On the ubiquity of the Cauchy distribution in spectral problems 63

Our main purpose here is two fold. One is to clarify some of the relations between
shift invariant scaling limits of point processes and the limits of the corresponding
random HP functions. The other is to present the general observation that translation
invariance, and more specifically ‘shift amenability’, of an HP function with singular
spectral measure carries the implication that the probability distribution of the bound-
ary values F(x) := F(x + i0) is a Cauchy distribution. The examples to which this
principle applies include scaling limits of eigenvalue point processes of a number of
random matrix models where the spectral statistics are of otherwise quite different
nature. This includes both limits of random diagonal matrices without level repulsion,
and those of randommatrix ensembles within the GXE domains of attraction. The lat-
ter case includes a class of randomWigner matrices for which the result is established
through a combination of the general criteria derived here with previous analytical
results derived in [16,17,29] on the convergence of the local law to the scaling limit
of the GUE ensemble.

The topics discussed here are of relevance for quantum transport in mesoscopic
quantum systems. In that context, an argument for the general appearance of the
Cauchy distribution was first presented by Mello [24],2 who proposed also an exten-
sion of this principle to a somewhat less universal law concerning the limiting (joint)
distribution of arbitrary size (k × k) resolvent subblocks of random matrices of much
larger size (n × n, with n � k)). Support for some of Mello’s reasoning was pre-
sented by Brouwer [9], who pointed out that also the statement is strictly true within
a Lorentzian matrix ensemble, where it holds for any k ≤ n, and in [19], [20, Ch.IV]
and [21, App. A] using supersymmetric calculations on other GXE ensembles in the
large n limit. Other, more recent results are mentioned in Sect. 6.3.

2 Cauchy distribution in shift amenable HP functions

2.1 Definition and main result

It is of relevance to recall here the following general result.

Proposition 2.1 (de la Vallée Poussin, see eg. [12,15]) For any function F(z) in the
HP class the limit

F(x + i0) := lim
η↓0 F(x + iη) (2.1)

exists for Lebesgue—almost every x ∈ R.

Definition 2.2 A measurable function K : R �→ C will be said here to be shift
amenable if there is a probability measure ν onC (supported necessarily on its range’s
closure Ran K ) such that for any continuous bounded function � : Ran K �→ C the
following limit exists and satisfies

2 We thank Y.V. Fyodorov for alerting us to the references.
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lim
L→∞

1

L

∫ L/2

−L/2
�(K (x)) dx =

∫

C

�(w) ν(dw) =: ν(�). (2.2)

We refer to ν ≡ νK as K ’s distribution under shifts.

In other words, a function is shift amenable if when sampled uniformly over the
range [−L/2, L/2], with L → ∞, the distribution of the values of K (x) is asymptot-
ically described by a probability measure ν on Ran K .

As it is noted in Sect. 5.1 shift amenable functions appear naturally among the typi-
cal realizations of random functions with shift invariant law. The following statement
is however deterministic in the sense that it applies to every shift amenable function.

Theorem 2.3 Let F(z) be a HP function whose boundary values satisfy:

1. Im F(x + i0) = 0 for Lebesgue almost every x ∈ R.
2. F0(x) := F(x + i0) is shift amenable.

Then under shifts F0(x) has a Cauchy distribution.

By a Cauchy distribution we refer here to a probability law, parameterized by
� ∈ C+, of the form

P (d F) = π−1 Im � d F

(F − Re �)2 + (Im �)2
, (2.3)

which for � ∈ R is to be interpreted as a δ-measure located at Re �. We refer to
� ∈ C

+ as the Cauchy distribution’s ‘analytic baricenter’. More is said on its value in
the present context in Theorem 5.5 below.

Condition (1) in Theorem2.3 is equivalent to the statement that the spectralmeasure
μ of F has no absolutely continuous component, as the latter is in general given by
π−1 Im F(x + i0) dx . In the theorem’s proof use is made of the following auxiliary
statements. In the first one, the range of K is limited to C

+
in order to make the

statement applicable to functions such as �(z) = 1/(z + i).

Lemma 2.4 If K is a shift amenable function with range Ran K = C
+

then for
any bounded continuous function � : C

+ �→ C, and any monotone decreasing
g : R+ �→ R+ satisfying the normalization condition

∫
R

g(|u|) du = 1:

νK (�) = lim
η→∞

∫

R

�(K (u)) g(|u − x |/η)
du

η
, (2.4)

where the limit does not depend on x ∈ R.

Proof For g(x) = 2−11[|x | < 1] the statement holds by the definition of shift
amenability. The extension to more general g is by a standard application of Abel’s
lemma, which can be deduced through the ‘layer-cake’ representation: g(t) =∫ ∞
0 1[g(t) ≥ τ ] dτ . ��
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On the ubiquity of the Cauchy distribution in spectral problems 65

Lemma 2.5 Let F(z) : C
+ �→ C+ be a Herglotz–Pick function whose boundary

value function F0(x) := F(x + i0) is shift amenable. Then the following limits exist
and satisfy:

1. for any bounded continuous � : C+ → C which is analytic on C
+, and any

x ∈ R:

νF0(�) = lim
η→∞ �(F(x + iη)), (2.5)

2. for every x ∈ R (which however does not affect the limit):

lim
η→∞ F(x + iη) =

{∫
νF0(dw)

w + i

}−1

− i =: �. (2.6)

Proof 1. Since z �→ �(F(z)) is bounded and analytic over C+, its values where
Im z > 0 admit the Poisson integral representation (cf. [15, Thm. 11.2]):

�(F(x + iη)) =
∫

�(F(u + i0))
π−1 η du

(u − x)2 + η2
, (2.7)

By Lemma 2.4, with g(u) = π−1/(u2 + 1), in the limit η → ∞ the expression
on the right converges to νF0(�).

2. The second statement, (2.6), follows by applying (2.5) to the function �(w) :=
−[w + i]−1.

��
Proof of Theorem 2.3 By (2.5), applied to the function�(w) = eitw with t ∈ (0,∞),
we learn that:

∫
eitwνF0(dw) = lim

η→∞ eit F(x+iη) = eit� (2.8)

where the limit is evaluated using (2.6).
The above argument yields the generating function of the probability measure νF0

for t > 0 (that part being applicable regardless of the first assumption of the theorem).
However, under the assumption that F0(x) is a.s. real for x ∈ R the generating function
at t < 0 can also be obtained from (2.8) through complex conjugation. Thus, under
this assumption, for any t ∈ R:

∫
eitzνF0(dz) = eit Re �−|t | Im �. (2.9)

Since probability measures on R are uniquely determined by their characteristic
functions, (2.9) implies that the probability distribution νF0 coincides with that of
Re � + ξ Im � where ξ is the standard Cauchy random variable of the probability
distribution π−1dξ/[ξ2 + 1]. ��
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2.2 Examples and the relation of the Cauchy law with Boole’s identity

Following are someexamples of functions towhichTheorem2.3 applies.Onemaynote
that these functions differ quite significantly in the structure of the higher correlations,
which however do not affect the common Cauchy law.

1. The periodic function (cf. [1, Ch. 19])

F Per (z) = −π cot(π z) = −1

z
−

∞∑

n=1

(
1

z − n
+ 1

z + n

)
(2.10)

2. Quasi-periodic functions of the form

F Q P (z) = −
M∑

j=1

α j cot(β j z + θ j ) (2.11)

with α j ≥ 0 and β j , θ j ∈ R.
3. The random function with Poisson distributed poles:

F Poi
ω (z) = lim

N→∞
∑

u∈ω∩[−N ,N ]

1

u − z
(2.12)

where ω ⊂ R is a random configuration of the Poisson point process on R with
intensity dx . In this case, the assumptions of Theorem 2.3 hold for almost every
ω (cf. Sect. 4.2).

4. A function whose singularities have the β-ensemble statistics, e.g.

FGU E
ω (z) = lim

N→∞
∑

u∈ω∩[−N ,N ]

1

u − z
(2.13)

where ω is a configuration of the shift invariant determinantal point process asso-
ciated with the kernel K (x, y) = sin π(x−y)

π(x−y)
(cf. Sect. 4.2).

5. More generally than the previous two examples, F(z) could be a random HP
function of shift invariant distribution, as defined in Sect. 5.1 below. The almost-
sure shift amenability of such functions is the consequence of Birkhoff’s ergodic
theorem.

The universality of the first order statistics, which holds regardless of the differences
in the second order statistics expresses the fact that the fraction of the Lebesgue
measure (L):

L({x ∈ [−L/2, L/2] : F(x) > t})
L

(2.14)

is not affected by a wide range of rearrangements of the singularities. These may
include both shifts of the singularities locations and splits of their mass. A similar
“integrability” condition can be spotted to lie behind an identitywhichBoole presented
to the Royal Society in 1857. In a slightly generalized form, the Boole identity may
be stated as follows.
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On the ubiquity of the Cauchy distribution in spectral problems 67

Proposition 2.6 (Extension of Boole [8]) For any finite singular measure μ(dx)

which has no absolutely continuous component the function

F(z) =
∫

R

μ(du)

u − z
(2.15)

satisfies, for all for any t > 0:

L({x ∈ R : F(x + i0) > t}) = μ(R)

t
(2.16)

Boole’s original Theorem was stated and proven for point measures of finite support.
For convenience, a proof of this generalization is enclosed in Appendix 7.

3 The spectral representation and related topology

3.1 An alternative spectral representation

As an alternative to (1.2), each HP function can also be written as

F(z) = G(w(z)) with z = i
1 + w

1 − w
, w = z − i

z + i
, (3.1)

with

G(w) = b +
∫

S
σ(dθ) i

eiθ + w

eiθ − w
(3.2)

where σ is a uniquely defined finite measure on the unit circle S and w is a point in
the unit disk D. The correspondence between the two representations is:

μ(dx)

x2 + 1
= σ(dθ)1[θ �= 0], a = σ({0}). (3.3)

with x = − cot(θ/2), where the coefficient a of (1.2) is incorporated as a δ-point
mass of σ .

Thus, any HP function is uniquely associated with the pair (σ, G(0)) in the space

� =
{
σ ∈ M(S) :

∫
σ(dθ) < ∞

}
× C+ (3.4)

or equivalently with the pair (μ, F(i)) in the space

�̃ =
{
μ ∈ M(R) :

∫
μ(du)

u2 + 1
< ∞

}
× C+, (3.5)

and correspondingly the space of HP functions can be identified with either � or �̃,
and we shall be frequently switching between the two.
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68 M. Aizenman, S. Warzel

3.2 The topology of pointwise convergence

A natural topology on the collection of HP functions is that of uniform convergence
on compact subsets of C+ (uniform convergence preserves analyticity as well as the
restriction Im F(z) ≥ 0). However, it is a known consequence of the Montel theorem
that under an added restriction on the range of the functions the conditions can be
simplified. In particular, for HP functions uniformity on compacta follows from just
pointwise convergence overC+ (as can also be seen from the bounds presented below).
In this section our goal is to clarify the expression of this topology in terms of the
spectral representation. Particularly convenient for this purposes is the representation
of HP functions in the space �, in terms of (3.2).

The parameter b, as well as the total mass of the measure σ(S) are continuous in
the topology of pointwise convergence, since

b = Re G(0), σ (S) = Im G(0), (3.6)

where G(0) ≡ F(i).
For a pair of measures on S the variational distance is

|m1 − m2| = sup

{∫

S
f (eiθ ) [m1(dθ) − m2(dθ)] ∣∣ f ∈ C(S); ‖ f ‖∞ ≤ 1

}
, (3.7)

and in case of measures of equal mass the Wasserstein distance is

W (m1, m2) = sup

{∫

S
f (eiθ ) [m1(dθ) − m2(dθ)] ∣∣Lip(f) ≤ 1

}
. (3.8)

To make this applicable to pairs of HP functions G j with spectral measures σ j (dθ) of
different masses, let us first consider the case σ j (S) �= 0 and denote the corresponding
probability measures by

σ̃ j (dθ) = σ j (dθ)

σ j (S)
. (3.9)

By direct estimates, for all w ∈ D and all θ ∈ S,

∣∣∣∣

(
eiθ + w

eiθ − w

)∣∣∣∣ ≤ 2

1 − |w| ,
∣∣∣∣

d

dθ

(
eiθ + w

eiθ − w

)∣∣∣∣ ≤ 2 |w|
(1 − |w|)2 , (3.10)

one may hence conclude:

|G1(w) − G2(w)| ≤ |Re G1(0) − Re G2(0)|
+| Im (G1(0) − G2(0))| 2

1 − |w|
+ σ1(S) + σ2(S)

2
W (̃σ1, σ̃2)

2 |w|
(1 − |w|)2 . (3.11)
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On the ubiquity of the Cauchy distribution in spectral problems 69

If one (or both) of the measures is of zero mass the last term can be dropped, since then
its “normalized” measure can be selected arbitrarily, and “by fiat” it can be arranged
so that σ̃ j are equal and thus W (̃σ1, σ̃2) = 0.

These bounds are of help in establishing the following equivalence.

Theorem 3.1 For a sequence of HP functions Gn : D �→ C+ the following are
equivalent:

A. The pair of conditions:
1. the single-site limit exists: limn→∞ Gn(0) =: G(0).
2. the spectral measures σn on S (defined by 3.2) converge weakly to a measure

σ ∈ M(S), in the sense that σn(g) → σ(g) for every continuous g ∈ C(S).
B. There exists a HP function G such that for all w ∈ D: Gn(w) → G(w), uniformly

on compact subsets of D.
C. The functions Gn converge pointwise over D.

Proof “A ⇒ B”: Set b = Re G(0), and let G : D �→ C+ be the function
which corresponds to (Re G(0), σ ) under (3.2). (The definition is consistent with
the previously determined G(0), since under the assumption [A1–A2], the condition
Im Gn(0) = σn(S) persists also in the limit n → ∞.)

The claim that [Gn(w) − G(w)] → 0 uniformly on compact subsets of D will be
verified separately for two cases:

i. σ(S) = 0: The claim follows from (3.11) (without the last term) and Im Gn(0) =
σn(S) → σ(S) = 0.

ii. σ(S) �= 0: In this case the weak convergence of the measures implies that also the
normalized measures converge weakly, and by implication also in the Wasserstein
distance. Thus

lim
n→∞ W (̃σn, σ̃ ) = 0. (3.12)

The claim then follows from (3.11).
“B ⇒ C”: is evident.
“C ⇒ A”: The convergence of Gn(0) directly implies [A1]. By (3.6) this implies

convergence of bn as well as that of the total mass σn(S).
By the compactness of the set ofmeasures on S with σ(S) ≤ Im G(0), the sequence

σn(dθ) has accumulation points, to which it converges over suitable subsequences
(nk). All these measures share the values of the following integrals:

∫

S

σ(dθ)

eiθ − w
= lim

k→∞

∫

S

σnk (dθ)

eiθ − w
= 1

2iw
lim

k→∞(Gnk (w) − Gnk (0)), (3.13)

for all w ∈ D\{0} (in addition to w = 0 which was established already).
A standard argument [11], based on the Stone-Weierstrass theorem (and resolvent

identities), allows to conclude that: i. along each such subsequence the measures
converge weakly, ii. the limit is uniquely characterized by (3.13), and thus σn is a
convergent sequence. ��
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70 M. Aizenman, S. Warzel

Remarks on Theorem 3.1 1. The equivalence B ⇔ C is a known consequence of the
more general Montel theorem.

2. For [A1] the point 0 is convenient, but with a minor adjustment in the argument it
can be replaced by any other (pre selected) w0 ∈ D.

3. The statement can be alternatively expressed in terms of the functions Fn ≡ Gn ◦w

which are defined overC+, and the corresponding spectral measuresμn onR. The
main difference is that [A2] is to replaced by the condition: [A2’] The measures
μn( f ) converge vaguely, in the sense that μn( f ) → μ( f ) for all continuous,
compactly supported functions f ∈ Cc(R).
In terms of σ(dθ), the condition [A2’] corresponds to vague convergence on S\{0},
which is a weaker statement that [A2] (since that guarantee the preservation of
the total mass σ(S)). The two are however equivalent under the assumption [A1],
since [A2] may be concluded from [A2’] plus the convergence σn(g) → σ(g) of
a single function g ∈ C(S) with g(1) �= 0.
In view of the rather direct correspondence between the representations of HP

functions as Gω,n : D �→ C+ versus Fω,n = Gω,n ◦ w : C+ �→ C+, from here on we
shall not be duplicating the various statements of interest and instead use the language
which locally appears to be convenient.

It may be worth noting that in contrast to b, the parameter

a = Im F(i) −
∫

R

μF (dx)

x2 + 1
= σ({0}) (3.14)

is not a continuous function on �. That is clearly seen in the circle representation,
where it corresponds to the fact that weak convergence of measures on C allows for
the build up of a δ-function at {1} (which corresponds to θ = 0).

4 Stieltjes transforms of random measures

4.1 A constructive criterion

Spectral measures of interest often come in the form of random Borel measures, μω

on R (a concept discussed e.g. in [22]), with the indexing parameter ω ranging over
a probability space (�,A,P) over which we have the action of the group of shifts
of R, represented by measurable transformations {Ta}a∈R for which μTaω coincides
with the shifted measure Taμω, the action of shifts on measures being defined by:

Taμ(I ) = μ(I + a). (4.1)

The following deterministic result presents conditions under which the Stieltjes
transform may be constructed for such measures as the pointwise limit, Fμ(z) :=
limn→∞ F (n)

μ (z), of

F (n)
μ (z) :=

∫ n

−n

μ(dx)

x − z
. (4.2)
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On the ubiquity of the Cauchy distribution in spectral problems 71

It is worth noting that under the conditions listed there the functional μ �→ Fμ is shift
covariant, even though this property may at first be questioned since the “principal
value”-like integral seen in (4.2) is centered at x = 0.

In the statement we compare the Stieltjes transform of μ with a reference measure
μ, which in applications to random measure may be the mean value of μ averaged
over that source of randomness. Let Nμ(x) be the counting function, and δN (x) the
difference (which in the above example corresponds to the fluctuating part) defined
by:

Nμ(x) :=
∫ x

0
μ(dy), Nμ(x) :=

∫ x

0
μ(dy), δN (x) := Nμ(x) − Nμ(x). (4.3)

Through integration by parts:

F (n)
μ (z) = F (n)

μ (z) +
[
δN (n)

n − z
− δN (−n)

−n − z

]
+

∫ n

−n

δN (x)

(x − z)2
dx . (4.4)

Using this representation one has the the following criterion for the existence of the
Stieltjes transform.

Theorem 4.1 Let μ and μ be a pair of Borel measures on R with the properties:

i. for the reference measure the following limit exists for all (or equivalently, by
Theorem 3.1, for some) z ∈ C

+:

lim
n→∞

∫ n

−n

μ(dx)

x − z
=: Fμ(z), (4.5)

ii. the difference in the pair’s counting functions, defined by (4.3), satisfies:

lim
n→±∞

δN (n)

n
= 0 and

∫ |δN (x)|
x2 + 1

dx < ∞. (4.6)

Then:

1. the limit (to which we refer as the Stieltjes transform)

Fμ(z) := lim
n→∞ F (n)

μ (z) (4.7)

exists for all z ∈ C
+.

2. for each t ∈ R:

lim
η→∞[Fμ(t + iη) − Fμ(t + iη)] = 0. (4.8)

If in addition

lim|n|→∞
μ([n, n + 1])

n
= 0 (4.9)
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72 M. Aizenman, S. Warzel

then

3. the resulting Stieltjes transform is a shift-covariant functional of μ, in the sense
that the limit in (4.7) exists also for μ replaced by any of the shifted measures
defined by (4.1) and for all a ∈ R and z ∈ C

+

FTaμ(z) = Fμ(z + a). (4.10)

Proof 1. Since the truncated measures 1[−n, n] μ(dx) converge to μ in the vague
topology, byTheorem3.1 the limit (4.7) exists or not simultaneously for all z ∈ C

+,
and hence it suffices to test the convergence at z = i .
Applying the representation (4.4) at z = i , the first term on the right converges
by (4.5). The second and third terms converge almost surely to zero by the first
assumption in (4.6). The integral in the forth term is absolutely convergent, which
ensures the convergence of this term.

2. From the first part of this proof and (4.4) we learn that for any z ∈ C
+:

Fμ(z) − Fμ(z) =
∫

R

δN (x)

(x − z)2
dx . (4.11)

Monotone convergence implies limη→∞
∫ |δN (x)|/[(x − t)2+η2]dx = 0 for any

t ∈ R and hence the claim (4.8).
3. In order to establish the shift-covariance we note that it is straightforward to show

that for all n ∈ N, a ∈ R and z ∈ C
+:

F (n)

Taμ
(z) = F (n)

μ (z + a) +
∫ n+a

n

μ(dx)

x − a − z
−

∫ −n+a

−n

μ(dx)

x − a − z
. (4.12)

Each of the two terms on the right side converge to zero as n → ∞. This is seen
through the representation

∫ n+a

n

μ(dx)

x − z
=

∫ n+a

n

μ(dx)

x − z
+ δN (n + a)

n + a − z
− δN (n)

n − z
+

∫ n+a

n

δN (x)

(x − z)2
dx

(4.13)

(and analogously for the second term). The first term goes to zero as n → ∞
by (4.9). The remaining three terms converge to zero using (4.6). ��

4.2 A pair of examples

The criterion of Theorem 4.1 apply in particular to the following examples of random
spectral measures on R, which are rather different nature.

1. Poisson–Stieltjes function: In this example μω is a Poisson process with constant
intensity 1. Picking for the reference measure μ(dx) = dx (the Lebesgue mea-
sure), one finds that for every ε > 0:

|δNω(x)| ≤ Cω(ε) (|x | 12+ε + 1). (4.14)
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for all x ∈ R, with Cω(ε)which is almost surely finite. Consequently, the assump-
tions (4.6) are almost surely met in this case. We refer to the function defined by
the corresponding limit (4.2) as the Poisson–Stieltjes function.

2. The sine-kernel Stieltjes function: The determinantal point process with the kernel
K (x, y) = sin(π(x − y))/[π(x − y)] defines an ergodic random measure μω

whose intensity is 1 (cf. [5,28]). To verify (4.6) for this case, with μ(dx) = dx ,
one may use the observation that by an explicit computation (cf. [5, Ex. 4.2.40]),
for |x | → ∞:

E[δN (x)2] =
∫ x

0
K (s, s)ds −

∫ x

0

∫ x

0
K (s, t) dsdt = log(|x |)

π2 + O(1).

(4.15)

Consequently, also in this case the integral in (4.6) is absolutely convergent. More-
over, a Chebychev estimate shows that

∑
n P(|δN (n)|/|n| > ε) < ∞ for any

ε > 0, and hence, by the Borel–Cantelli lemma, also the first condition in (4.6) is
met. We refer to the function defined through the limit (4.2) with μ corresponding
to this process as the sine-kernel Stieltjes function FGU E

ω .

In both cases the measure are stationary and even ergodic. The functions which are
defined through the almost-sure limit (2.12) provide examples of random stationary
HP functions, a term to whose further exploration we turn next. It should be added that
a construction related to (4.6) was studied (for the Poisson process) in [3]. However,
the approach presented there breaks the shift covariance.

5 Random HP functions

Standard considerations imply that the function space � (and equivalently �̃) whose
topology is discussed in Sect. 3.2 is metrizable and can be presented as a complete
separable metric space (cf. [22]). Estimates which are somewhat similar to (3.11)
(though less explicit) are facilitated by the “flat metric” (c.f. [14,25]):

d(σ1, σ2) = inf
σ̂1 ,̂σ2∈M(S);|̂σ1|=|̂σ2|

[|σ1 − σ̂1| + |σ1 − σ̂1| + W (̂σ1, σ̂2)]. (5.1)

Definition 5.1 (Random HP functions)

1. Denoting by B the Borel σ -algebra on � which corresponds to the topology dis-
cussed above, a random Herglotz–Pick function is given by a probability measure
on (�,B).

2. A sequence of random HP function Fω,n : C
+ �→ C+ is said to converge in

distribution to Fω iff the probability measure on �̃ = M(R) × C+ which forms
the distribution of (μω,n, Fω,n(i)) converges (weakly) to that of the (μω, Fω(i)).

Such convergence will be denoted (μω,n( f ), Fω,n(i))
D→ (μω, Fω(i)).

By general theory of probability measures on complete separable metric spaces, of
a finite diameter, the convergence of measures on � is equivalent to the condition that
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for any ε > 0, there is N (ε) < ∞ such that for all n ≥ N (ε) the measures can be
coupled so that:

∫
dμn(ω, ω′) [|Gω(0) − Gω′(0)| + d(σω, σω′)] ≤ ε (5.2)

with the marginals of μn(ω, ω′) yielding the distributions of Fω and Fω′ , correspond-
ingly. (In case the distance function is unbounded, (5.2) is to be replaced by the
statement that [...] is small in probability, though possibly not in the mean.)

For future purpose let us also add

Lemma 5.2 Let Fω,n : C
+ �→ C+ be a sequence of random HP functions which

converges in distribution to a random HP function Fω, and for which the support of
the spectral measures stays away from an interval [a, b] ⊂ R, in the sense that for
some ε > 0, and almost all ω and all n:

μω,n([a − ε, b + ε]) = 0. (5.3)

Then the functions Fω,n and Fω are (almost surely) analytic and real along [a, b], and

the convergence in distribution extends to: (μω,n, Fω,n(x))
D→ (μω, Fω(x)) for any

x ∈ [a, b].
Proof The analyticity of the functions Fω,n within spectral gaps is a simple conse-
quence of the spectral representation. Analyticity at x ∈ [a, b] allows to applying the
harmonic average principle to the analytic continuation of Fω,n through the spectral
gap which includes [a, b], by which:

Fω,n(x) =
∫

[0,2π ]
Fω,n(x + eiθ ε/2)

dθ

2π
(5.4)

The convergence in distribution then readily follows from the coupling estimate (5.2)
and the uniform pointwise bound (3.11) (and the observation that the analytic contin-
uation of such a HP function into C− is given by the natural extension of the spectral
representation to that regime). ��

5.1 Shift invariance and shift amenability

In the language of probabilistic ergodic theory, the subject may be presented in the
following terms.

Random functions are parameterized by a variable ω taking values in a probability
space (�0,A,P) (for which a possible choice is itself the suitable space of functions
such as � discussed above). The random functions are given by a C-valued kernel
Kω(x) defined over�×R such that Kω(x) is jointly measurable over�×R (to which
may optionally be added topological properties, such as discussed above). Translation
invariance, or the more limited invariance under discrete shifts, is expressed in the two
additional properties:
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1. acting on �0 is a group of measurable mappings {Tu}u∈R which provides a repre-
sentation of the group of translations of R, with

KTuω(x) = Kω(x + u) (for almost every (ω, x)), (5.5)

2. the probability measure P is invariant under the action of the shifts Tu , or at least
under the action of a discrete sub group {Tnτ }n∈Z of period τ .

In the above setup, let �ω(dw) be the pullback measure of the conditional distrib-
ution of the values of Kω(x) with x averaged with the Lebesgue measure over [0, τ ]
at given ω. In other words, �ω(dw) is defined so that for each continuous bounded
function � : C �→ C

∫

C

�(w)�ω(dw) =
∫ τ

0
�(Kω(x)) dx =: A�,K (ω). (5.6)

The average seen in (2.2) can be presented through the relation:

1

L

∫ Lτ

0
�(K (x)) dx = 1

L

L−1∑

n=0

A�,K (Tnτω), (5.7)

Birkhoff’s ergodic theorem allows then to conclude that forP-almost everyω the func-
tion Kω is shift-amenable (over x). Furthermore, νKω = τ limL→∞ 1

L

∑L−1
n=0 �Tnτ ω,

and as is easily seen:

νKω = νKTτ ω (5.8)

This implies also that in the ergodic case νKω is almost surely given by a common
measure (on Ran K ).

In a slight abuse of notation we shall generically use the symbol Tu for translations
corresponding to shifts of R, i.e. for both the transformations on �0 and for their
induced actions on functions and measures on R. The explicit form of this mapping
in the representation of random H P functions which was introduced in Sect. 5, for
which �0 = �̃ and ω = (μ, F(i)) is easily seen to take the form of the co-cycle
evolution:

Tu(μ, β) = (Tuμ, β + Q(u, μ) + u a) (5.9)

with

a := Im β −
∫

μ(dx)

x2 + 1
, Q(u, μ) =

∫ [
1

x − u − i
− 1

x − i

]
μ(dx), (5.10)

and Tuμ the usual shift of measure, i.e. (Tuμ)(I ) = μ(I +u) for every bounded Borel
set I ⊂ R.

Focusing on this case we take as definition:
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Definition 5.3 A probability measure on �̃ is stationary (or translation invariant)
if and only if it is invariant under the mapping induced on it by the above defined
mappings {Tu}u∈R.

Equivalently, we will refer to the corresponding random HP function as stationary.

The following observation makes the results of Sect. 2 applicable to stationary HP
functions.

Lemma 5.4 Let Fω be a stationary random HP function, and F0,ω(x) := Fω(x + i0).
Then:

1. With probability one the function F0,ω(x) is shift amenable and the corresponding
measures νF0,ω are constant on ergodic components of the probability measure.

2. For each bounded continuous � : C+ → C which is analytic on C
+:

E[�(F(z))] = E[�(F(x + i0))] (5.11)

for all z ∈ C
+ and x ∈ R.

Proof The first assertion is readily implied by Birkhoff’s ergodic theorem, as is
explained above (5.7).

For the second, we note that by translation invariance E[�(F(z))] does not depend
on x := Re z. Since under the assumptions it forms an analytic function of z ∈ C

+, it
follows that it also does not depend on y = Im z. One may then deduce (5.11) using
Proposition 2.1 and applying the dominated convergence theorem to the limit y ↓ 0.

��
Thus Theorem 2.3 is applicable to such functions. Let us note also the following

implications of stationarity.

Theorem 5.5 Let Fω be a stationary random HP function for which Im F(x+i0) = 0
almost surely (separately at each x ∈ R). Then:

1. for almost all ω: aω = 0.
2. If the process is also ergodic then for each x ∈ R the random variable Fω(x + i0)

has the Cauchy distribution of width:

Im � ≡ lim
η→∞ Im Fω(x + iη) = πρ, (5.12)

where � is the distribution’s analytic baricenter, as defied in (2.3), and ρ =
E (μF ([0, 1)).

Proof 1. For any x ∈ R and t > 0:

P(a = 0) = E(1[a = 0]) ≥ lim
y→∞E[eit F(x+iy)] = E[eit F(i)], (5.13)

where the inequality is by the observation that Im F(x + iy) ≥ ay, and the last
equality by Lemma 5.4 Taking now t → 0 we conclude (applying again the
dominated convergence theorem):

P (a = 0) ≥ lim
t→0

E[eit F(i)] = 1. (5.14)
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2. ByBirkhoff’s theorem, for ergodic processes averages overω yield (almost surely)
the same result as averages over shifts, and thus the Cauchy nature of the distribu-
tion follows from Theorem 2.3. The value of the distribution’s analytic baricenter
is determined from the spectral representation (1.2) applying Lemma 2.4 with
g(u) = π−1/(u2 + 1) as in (2.7):

Im � = lim
η→∞ Im Fω(x + iη) = lim

η→∞
π

η

∫
g(|u − x |/η)μω(du)

a.s.= πρ.

(5.15)

��

Remarks 1. The center Re � ∈ R of the Cauchy distribution of Fω(x + i0) is not
determined from the spectral measure alone, since adding a real constant to a
random, ergodic HP function produces another such function with a different
value of this parameter.

2. Inspecting the above proof shows that one may exchange the assumption of ergod-
icity in the above theorem by requiring (i) stationarity of the HP function together
with (ii) the distributional convergence F(iη) → � with some � ∈ C

+.

5.2 A cocycle criterion

Clearly, for any shift invariant random HP function Fω the spectral measure μω forms
a stationary random measure on R, which in the discrete case corresponds to a point
process. One may ask about the converse direction: under what conditions would a
randommeasure onRwith a translation invariant distribution (and a.s. satisfying (1.3))
be the spectral measure of a stationary random HP function?

It is easy to see that (1.3) suffices for the association with μω of the function

Kω(z) =
∫

μω(dx)

(x − z)2
, (5.16)

which is holomorphic over C+ and which inherits the stationarity of μω. The above
question can therefore be rephrased as asking under what conditions would Kω(z) be
the derivative of a stationary random HP function. For that a standard ergodic theory
argument is of relevance.

Theorem 5.6 Let μω be a stationary random measure on R (given by a measurable
function from a probability space to M(R)), satisfying (almost surely) (1.3). Then μω

may be extended to the spectral measure of a random stationary HP function if and
only if the cocycle

Re Q(u, μω) = Re
∫ [

1

x − u − i
− 1

x − i

]
μω(dx) (5.17)
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is tight. That is, if and only if:

lim
t→∞ sup

u∈R
P

(∣∣∣∣Re
∫ [

1

x − u − i
− 1

x − i

]
μ(dx)

∣∣∣∣ > t

)
= 0 (5.18)

Proof By a general result in ergodic theory [26] the tightness condition (5.18) allows
to conclude that the cocycle is a coboundary, i.e. there exists a measurable map b :
�̃ → R such that for all u ∈ R:

Re Q(u, μω) = bTuω − bω. (5.19)

The HP function given by

Fω(z) = bω +
∫ [

1

x − z
− x

x2 + 1

]
μω(dx) (5.20)

is then (i) almost surely well defined by (1.3) and (ii) easily seen to be stationary.
Conversely, if the random HP function Fω is stationary, it is of the form (5.20) with

bω = Re Fω(i) and Im Fω(i) = ∫
μω(dx)

x2+1
(by Theorem 5.5). Therefore Q(u, μω) =

Fω(i + u) − Fω(i) forms a tight collection of random variables indexed by u ∈ R.
��

6 Convergence criteria for the scaling limit of random HP functions

HP functions often appear as the resolvent functions of random hermitian n × n
matrices Hω,n for which it is of interest to gain understanding of the behavior of the
spectra in the limit n → ∞. Examples were given in (1.1). If the norm ‖Hω,n‖ remains
uniformly bounded, the relevant spectra consist of n points whose gaps may typically
be of order O(n−1). To study this function at that level of resolution in the vicinity
of an energy E0 (which in principle could also depend on n, or be randomized in the
vicinity of a target value), it is natural to enquire about the possible convergence in
distribution of the random HP functions

Fω,n(z) := Rω,n(E0 + z/n). (6.1)

6.1 Convergence off the real axis

For the examples (1.1), the convergence of the distribution of the spectral measure
μω,n = ∑

j δxω,n( j) in essence is a local statement about the behavior of the function’s
singularities. The information which is added to it through Fω,n(i) reflects the local
effect of the tails of the spectral measure, which affect its Stieltjes transform in the
vicinity of E0. In many cases of interest one may expect the contribution from the
“distant” values of the spectrum to have only asymptotically vanishing fluctuations. In
such situations, the following theorem provides a handy criterion for the convergence
in distribution of a sequences of HP functions.
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Theorem 6.1 A sufficient condition for a sequence Fω,n of random HP functions to

converge in distribution to a random HP function Fω (i.e. for (μω,n, Fω,n(i))
D→

(μω, Fω(i))) is that:

1. the corresponding random spectral measures μω,n converge in distribution to the
random spectral measure μω in the sense that for all f ∈ Cc(R):

μn( f ) :=
∫

f (x)μn(dx)
D→ μ( f ) (6.2)

2. there exists � ∈ C
+ such that for all ε > 0:

lim
η→∞P(|F(iη) − �| ≥ ε) = 0. (6.3)

lim
η→∞ lim sup

n→∞
P(|Fn(iη) − �| ≥ ε) = 0, (6.4)

Proof We will write

Fω,n(i) = Fω,n(iη) +
∫ (

1

x − i
− 1

x − iη

)
μω,n(dx)

=: Fω,n(iη) +
∫

gη(x)μω,n(dx). (6.5)

In a first step we establish that distributional convergence of the pair

(
μω,n,

∫
gη(x)μω,n(dx)

)
D→

(
μω,

∫
gη(x)μω(dx)

)
(6.6)

for all η ∈ [1,∞). To do so, we split the integral into two parts by inserting a
smooth indicator function χW ∈ Cc(R) of the interval |x | ≤ W with the property that
χc

W (x) := 1 − χη(x) = 0 for all |x | ≤ W . The pair (μω,n ,
∫

gη(x)χW (x)μω,n(dx))

converges in distribution by assumption. The contribution to the integral from |x | ≥ W
is bounded:

∣∣∣∣
∫

χc
W (x)gη(x)μω,n(dx)

∣∣∣∣ ≤ η

∫

|x |≥W

μω,n(dx)√
x2 + 1

√
x2 + η2

≤ 2η

W
Im Fω,n(iW ).

(6.7)

Choosing W = η1+α with some α > 0, assumption (6.4) ensures that for any ε > 0:

lim
η→∞ lim sup

n→∞
P

(∣∣∣∣
∫

χc
Wη

(x)gη(x)μω,n(dx)

∣∣∣∣ ≥ ε

)
= 0. (6.8)

This establishes (6.6).
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The second assumption allows to convert (6.6) to the statement that the pair
(μω,n, Fω,n(i)) is asymptotically close (in distribution) to (μω, Fω(i)), since the extra
terms Fω,n(iη) and Fω(iη) are asymptotic (in probability) to the same constant �.

This finishes the proof of the distributional convergence in the sense discussed in
Sect. 3.2. ��

6.2 Convergence of the distribution of the boundary values

To follow up on the convergence criterion of Theorem 6.1, more needs to be said to
address the convergence of the distribution of the random function along the boundary
R. Following are some useful criteria, which will allow to apply the analysis of this
paper to a number of cases of interest.

Theorem 6.2 Let Fω,n be a sequence of random HP functions which converges in
distribution, to a random function Fω (the sense discussed in Sect. 3.2), and suppose
that in an interval [a, b] ⊂ R the spectral measures of both Fω,n and Fω consist only
of simple point processes. Then also

Fω,n(x + i0)
D→ Fω(x + i0) (6.9)

for any x ∈ (a, b) for which

E (μ({x})) = 0. (6.10)

Remarks There is a reason here for the restriction on the nature of the spectra: (6.9)
fails when the spectral measures of Fω,n are discrete but converge to an absolutely
continuous measure. In such case there will be a positive measure set of x ∈ R at
which Im Fω(x + i0) > 0, while Im Fω,n(x + i0) = 0 for all n < ∞.

Proof of Theorem 6.2 In the proof we decompose each HP function Fn(z) to a sum of
two components, one due to the near part of the spectral measureμF (du) and the other
due to its far part. The distributional continuity (6.9) of the first component is where
the limitation to discrete spectra is being used. This condition however places the
statement within the reach of standard continuity arguments. The second contribution
is continuous byLemma5.2. In addition to the separate continuity statements oneneeds
to notice that we have here a joint distributional convergence of the two components.

Due to the freedom to shift and scale the result, it suffices to prove the assertions
for the case [a, b] = [−1, 1], and sites x ∈ [−1/2, 1/2]. Focusing on that case, let
χ : R �→ [0, 1] be the interpolated projection onto [−1, 1]:

χ(x) =

⎧
⎪⎨

⎪⎩

1 for |x | < 1

1 − 2(|x | − 1) if 1 < |x | < 1.5

0 for |x | > 1.5

(6.11)
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Using it, for each measure μ ∈ M(R) we denote its “near” and “far” parts as:

μ(1)(dx) := χ(x) μ(dx), and μ(2)(dx) := [1 − χ(x)] μ(dx). (6.12)

Correspondingly, we decompose any HP function F(z) into:

F(z) = F (1)(z) + F (2)(z) (6.13)

breaking the spectral representation (1.2) into:

F (1)(z) =
∫

[−1.5,1.5]

[
1

u − z
− u

u2 + 1

]
χ(x) μ

(1)
F (du) (6.14)

F (2)(z) = b + az +
∫

R\[−1,1]

[
1

u − z
− u

u2 + 1

]
[1 − χ(x)] μ

(1)
F (du). (6.15)

It is easy to see that the assumed convergence in distribution of Fω, n implies the
joint convergence of their two components as a pair of HP functions, in the natural
extension of this notion to pairs of functions:

(F (1)
ω,n, F (2)

ω,n)
D−→ (F (1)

ω , F (2)
ω ). (6.16)

(In essence: the corresponding spectral measures converge for each value of j , and
since F (1) falls off at infinity the second requirement for convergence is of relevance
only for j = 2.)

The assumed structure of the spectral measure of F (1)
ω,n(z)within [−1, 1]means that

for each n these random measures corresponds to a random probability distribution
on the disjoint union of compact sets Y := ∪k=0,1,2,...[−1, 1]k , the point of each
we shall denote by yk = (yk, j )

k
j=1, with measures νω,n(dyk) (on k labeled particles)

which are symmetric under permutations. In particular, the probability that there are
k particles in [−1, 1]k is

pn(k) :=
∫

[−1,1]k
νω,n(d yk)/k! (6.17)

In this notation:

F (1)
ω,n(z) =

∞∑

k=1

∫

[−1,1]k
χ(y j )

[
1

z − y j
− y j

y2j + 1

]
νω,n(d yk)/k!. (6.18)

In the natural topology on Y , the number of particles in [−1, 1] may change discon-
tinuously due the appearance or disappearance of a particle at the boundary of the set.
Otherwise, the configuration depends continuously on the position of the particles in
[−1, 1]. Thus functions of the form
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∞∑

k=1

∫

[−1,1]k
φ(y j ) χ(y j )νω,n(d yk)/k! (6.19)

with φ ∈ C([−1, 1]) whose supported lies in (−1, 1) are continuous.
Under the assumption of convergence in distribution of the random spectral mea-

sures, the sequence of probability measures pn on N is tight, and the integrals of
functions which are continuous in [−1, 1]k and vanish at the boundary have distri-
bution which converges to that of the limiting measure. By the continuous mapping
theorem, this extends to functionswhich are continuous on a complement of a setwhich
is not charged by the limiting measure. In the representation (6.18) of Fn(x + i0) for
a given x the integrand is a continuous function of the configuration except at config-
urations with a particle at x . Thus, the assumed convergence of the spectral measure
allows to deduce the continuity of the probability distribution of F (1)

ω,n(x + i0) for sites
x ∈ [−1/2, 1/2] at which (6.10) holds.

The probability distribution of F (2)
ω,n(x +i0) is continuous in the limit n → ∞ by an

application of Lemma 5.2. Furthermore, combined with (6.16), the arguments imply
that the joint distribution of the pair of random variables (F (1)

ω,n(x + i0), F (2)
ω,n(x)) is

continuous in the limit, and hence (6.9) holds. ��
Theorem 6.2 has implications for the random matrix models which are discussed

next, and for the Šeba process [3,6,23,27] on which more is said in [2]. Following is
another continuity criterion which may be of interest beyond the cases covered by it,
in particular when the spectral measures are singular but with dense support and not
of uniform masses. An example to keep in mind are the possible scaling limits of the
Green functions of random operators in the regime of Anderson localization.

In discussing continuity of HP functions along the line it is natural to regard the
range of F as the Riemann sphere C, i.e. the one point compactification of C. This
suggests the following terminology.

Definition 6.3 (∗-continuity) 1. A function F : C �→ C is said (here) to be
∗continuous at z iff the mapping z �→ −1

F(z+i0)+i is continuous at that point.
2. For a random HP function, we define as its (mean) modulus of ∗continuity, at

x ∈ R, the function

κ(x, δ) := E

(∣∣∣∣
1

F(x + δ + i0) + i
− 1

F(x + i0) + i

∣∣∣∣

)
. (6.20)

(which for almost all x ∈ R is defined for almost all δ ∈ R).

Theorem 6.4 If a sequence of random HP functions converges in distribution, Fω,n
D→

Fω, and the moduli of ∗-continuity of Fω,n and Fω are bounded uniformly in n by
κ(x, δ), then for any x ∈ R for which:

lim
δ→0

κ(x, δ) = 0 (6.21)
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the distributions of the random variables Fω,n(x + i0) converge:

Fω,n(x + i0)
D→ Fω(x + i0). (6.22)

Proof We already know, under the theorem’s first assumption, that for each x ∈ R
and δ > 0:

Fω,n(x + iδ)
D→ Fω(x + iδ). (6.23)

To related this to the values at δ = 0, we note that by the Cauchy integral formula, for
each δ > 0:

1

π

∫
1

Fω,n(u + i0) + i

δ du

(x − u)2 + δ2
= Fω,n(x + iδ), (6.24)

with similar relation holding for the limiting function Fω. The difference can by
estimated in the L1-sense by:

E

(∣∣∣∣
1

F(x + i0) + i
− 1

π

∫
1

F(u + i0) + i

δ du

(x − u)2 + δ2

∣∣∣∣

)

≤ 1

π

∫
κ(x, u − x)

δ du

(x − u)2 + δ2
=: κ̂(x, δ) (6.25)

Under the assumption (6.21) also: κ̂(x, δ) → 0 as δ → 0. Thus, a standard three step

comparison allows to conclude the distributional convergence (Fω,n(x +i0)+i)−1 D→
(Fω(x + i0) + i)−1 and hence the claim (6.22). ��

6.3 Examples from RMT and random operators

The above criterion can be verified for the rescaled trace functions defined in (6.1) for
randommatrices corresponding to the two exampleswhichwere discussed in Sect. 4.2,
whose spectra are rather different.

GUE and Wigner ensembles The spectra of n ×n hermitian matrices with complex
Gaussian entries, which form the GUE random Gaussian ensemble, are well known
to have for n → ∞ the asymptotic density

�sc(E0) := π−1
√
1 − (E0/2)2. (6.26)

It is also known that the rescaled eigenvalue point process, amplified in the vicinity of
energy |E0| < 2,

μω,n =
∑

j

δn �sc(E0) (E j,n(ω)−E0), (6.27)
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converges in distribution to the “sine-kernel process”, which is a shift invariant deter-
minantal point process μω of kernel K (x, y) = sin(π(x − y))/(π(x − y)) (cf. [5]).

In celebrated works [17, Thm. 1.3], [29, Thm. 5] the above statement was recently
generalized to the broader class ofWigner matrices, which are random hermitian n×n
matrices whose entries {h j j , {Re h jk} j<k , and {Im h jk} j<k are independent, centered
and of variance 1/2. The quoted results imply that in the above case the rescaled trace
function (cf. (1.1))

Fω,n(z) :=
∫

μω,n(dx)

x − z
= 1

�sc(E0)
Rω,n

(
E0+ z

n �sc(E0)

)
, (6.28)

satisfies the first condition of Theorem 6.1, i.e. (6.2) holds.
Of the criterion’s second condition, (6.3), holds for the shifted random sine-kernel

Stieltjes function FGU E
ω (z) + Re � (cf. (2.13) and Sect. 4) with:

� := 1

�sc(E0)

∫
�sc(v) dv

v − E0 − i0
= − E0

2�sc(E0)
+ iπ. (6.29)

The assertion that (6.4) holds also in the generality ofWignermatrices, of distributions
with subgaussian tails, is implied by the statement derived in [16, Theorem 3.1] that
at this generality, for all small enough ε > 0:

lim
η→∞ lim sup

n→∞
P(|Fω,n(iη) − �| ≥ ε) ≤ lim

η→∞ Ce−cε
√

η = 0 (6.30)

at some c, C < ∞ (while this suffices for our purpose, an improved boundwas recently
presented in [10]).

Combining these statements with the general criterion provided by Theorem 6.2,
one gets:3

Corollary 6.5 For Wigner matrices Hω,n whose entries have a common subgaussian

distribution ν, i.e.,
∫

eδx2ν(dx) < ∞ for some δ > 0, the rescaled trace Fω,n(x),
defined by (6.28), converges in distribution, for n → ∞ and any fixed x, to a Cauchy
random variable whose analytic baricenter � is given by (6.29).

Random diagonal matrices A similar statement is valid also for the much simpler
ensemble of n × n random diagonal matrices, whose diagonal entries (Vj ) are of a
common probability distribution with a smooth density ρ ∈ C1(R). In this case the
rescaled trace function

Fω,n(z) :=
n∑

j=1

1

n ρ(E0)[Vj − E0] − z
= 1

ρ(E0)
Rω,n

(
E0+ z

n ρ(E0)

)
, (6.31)

3 Erdös and Knowles also noted that such conclusion may be drawn from our Theorem 2.3 combined
with previous RMT analysis, basing their argument on the more recent results of [10] followed by some
additional analysis.
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with E0 such that ρ(E0) > 0, converges in distribution for any z ∈ C+ to the shifted
Poisson–Stieltjes function F Poi

ω (z) + Re � with

� := 1

ρ(E0)

∫
ρ(v)

v − E0 − i0
dv = 1

ρ(E0)
P.V .

∫
ρ(v) dv

v − E0
+ iπ. (6.32)

In particular, for any x ∈ R the random variables Fω,n(x) converge in distribution as
n → ∞ to a Cauchy random variable with baricenter � given by (6.32).

Here, the assertion can be easily proven by a direct computation of the characteristic
functional E[eit Fω,n(x)]. Alternatively, it also follows from Theorems 6.1 and 6.2 and
the fact that F Poi

ω (x) has a Cauchy distribution with baricenter (i Im �), cf. Theo-
rem 4.1 and 2.3.
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7 Appendix A: Boole’s identity for the Stieltjes transform of singular measures

Following is the proof of Proposition 2.6, which we assume is known to experts. For
convenience we restate the result, which extends an identity of Boole [8] from the case
of pure-point measure μ to general singular measures.

Theorem 7.1 Let

F(z) =
∫

μF (du)

u − z
(7.1)

with the spectral measure μF which is finite and purely singular with respect to the
Lebesgue measure L (or equivalently: Im F(x + i0) = 0 for a.e. x ∈ R). Then for
any t > 0:

L({x ∈ R | F(x + i0) ≥ t}) = μF (R)

t
. (7.2)

Proof The monotone convergence theorem implies that

L({x ∈ R | F(x + i0) ≥ t}) = lim
η→∞

∫
η2

x2 + η2
1[F(x + i0) ≥ t] dx . (7.3)

The proof is based on the observation that the distribution of the randomvariable F(x+
i0)with respect to the Cauchy probability measure η

x2+η2
dx
π

is uniquely characterized
by its characteristic function, which by contour integration is:

∫
eiτ F(x+i0) η

x2 + η2

dx

π
= eiτ Re F(iη) e−|τ | Im F(iη), (7.4)
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where the integral was evaluated for τ > 0 using a contour integration argument
using the analyticity of F in the upper half plane C

+. For τ < 0 the characteristic
function is obtained by complex conjugation from the one for τ > 0 (since F(x + i0)
is real). Equation (7.4) shows that with respect to the Cauchy probability measure, the
distribution of the variable F(x + i0) is itself Cauchy centered at Re F(iη) of width
Im F(iη). As a consequence,

lim
η→∞

∫
η

x2 + η2
1[F(x + i0) ≥ t] dx = lim

η→∞
η Im F(iη)

t − Re F(iη)
= μF (R)

t
, (7.5)

since limη→∞ Re F(iη) = limη→∞ Im F(iη) = 0 and limη→∞ η Im F(iη) =
μF (R). ��
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