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Abstract Let P be a set of n random points in R
d , generated from a probability

measure on a m-dimensional manifold M ⊂ R
d . In this paper we study the homology

of U(P, r)—the union of d-dimensional balls of radius r around P , as n → ∞, and
r → 0. In addition we study the critical points of dP—the distance function from the
set P . These two objects are known to be related via Morse theory. We present limit
theorems for the Betti numbers of U(P, r), as well as for number of critical points of
index k for dP . Depending on how fast r decays to zero as n grows, these two objects
exhibit different types of limiting behavior. In one particular case (nrm ≥ C log n),
we show that the Betti numbers of U(P, r) perfectly recover the Betti numbers of the
original manifold M, a result which is of significant interest in topological manifold
learning.
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652 O. Bobrowski, S. Mukherjee

1 Introduction

The incorporation of geometric and topological concepts for statistical inference is
at the heart of spatial point process models, manifold learning, and topological data
analysis. The motivating principle behind manifold learning is using low dimensional
geometric summaries of the data for statistical inference [4,10,21,47,50]. In topologi-
cal data analysis, topological summaries of data are used to infer or extract underlying
structure in the data [19,25,39,49,52]. In the analysis of spatial point processes, lim-
iting distributions of integral-geometric quantities such as area and boundary length
[23,35,41,48], Euler characteristic of patterns of discs centered at random points
[35,51], and the Palm mean (the mean number of pairs of points within a radius r )
[23,41,48,51] have been used to characterize parameters of point processes, see [35]
for a short review.

A basic research topic in both manifold learning and topological data analysis is
understanding the distribution of geometric and topological quantities generated by a
stochastic process. In this paper we consider the standard model in topological data
analysis and manifold learning—the stochastic process is a random sample of points
P drawn from a distribution supported on a compact m-dimensional manifold M,
embedded in R

d . In both geometric and topological data analysis, understanding the
local neighborhood structure of the data is important. Thus, a central parameter in any
analysis is the size r (radius) of a local neighborhood and how this radius scales with
the number of observations.

We study two different, yet related, objects. The first object is the union of the
r -balls around the random sample, denoted by U(P, r). For this object, we wish to
study its homology, and in particular its Betti numbers. Briefly, the Betti numbers are
topological invariants measuring the number of components and holes of different
dimensions. Equivalently, all the results in this paper can be phrased in terms of
the Čech complex Č(P, r). A simplicial complex is a collection of vertices, edges,
triangles, and higher dimensional faces, and can be thought of as a generalization of a
graph. The Čech complex Č(P, r) is a simplicial complex where each k-dimensional
face corresponds to an intersection of k + 1 balls in U(P, r) (see Definition 2.4). By
the famous ‘Nerve Lemma’ (cf. [15]), U(P, r) has the same homology as Č(P, r).
The second object of study is the distance function from the set P , denoted by dP , and
its critical points. The connection between these two objects is given by Morse theory,
which will be reviewed later. In a nutshell, Morse theory describes how critical points
of a given function either create or destroy homology elements (connected components
and holes) of sublevel sets of that function.

We characterize the limit distribution of the number of critical points of dP , as well
as the Betti numbers of U(P, r). Similarly to many phenomena in random geometric
graphs as well as random geometric complexes in Euclidean spaces [29,30,32,45],
the qualitative behavior of these distributions falls into three main categories based on
how the radius r scales with the number of samples n. This behavior is determined
by the term nrm , where m is the intrinsic dimension of the manifold. This term can
be thought of as the expected number of points in a ball of radius r . We call the
different categories—the sub-critical (nrm → 0), critical (nrm → λ) and super-
critical (nrm → ∞) regimes. The union U(P, r) exhibits very different limiting
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The topology of probability distributions on manifolds 653

behavior in each of these three regimes. In the sub-critical regime, U(P, r) is very
sparse and consists of many small particles, with very few holes. In the critical regime,
U(P, r) has O(n) components as well as holes of any dimension k < m. From the
manifold learning perspective, the most interesting regime would be the super-critical.
One of the main results in this paper (see Theorem 4.9) states that if we properly
choose the radius r within the super-critical regime, the homology of the random
space U(P, r) perfectly recovers the homology of the original manifold M. This
result extends the work in [44] for a large family of distributions on M, requires much
weaker assumptions on the geometry of the manifold, and is proved to happen almost
surely.

The study of critical points for the distance function provides additional insights on
the behavior of U(P, r) via Morse theory, we return to this later in the paper. While
Betti numbers deal with ‘holes’ which are typically determined by global phenomena,
the structure of critical points is mostly local in nature. Thus, we are able to derive
precise results for critical points even in cases where we do not have precise analysis of
Betti numbers. One of the most interesting consequence of the critical point analysis
in this paper relates to the Euler characteristic of U(P, r). One way to think about
the Euler characteristic of a topological spaces S is as an integer “summary” of the
Betti numbers given by χ(S) =∑k(−1)kβk(S). Morse theory enables us to compute
χ(U(P, r)) using the critical points of the distance function dP (see Sect. 4.2). This
computation may provide important insights on the behavior of the Betti numbers in
the critical regime. We note that the equivalent result for Euclidean spaces appeared
in [13].

In topological data analysis there has been work on understanding properties of ran-
dom abstract simplicial complexes generated from stochastic processes [1,2,5,13,28–
31,45,46] and non-asymptotic bounds on the convergence or consistency of topolog-
ical summaries as the number of points increase [11,17,18,20,22,43,44]. The central
idea in these papers has been to study statistical properties of topological summaries
of point cloud data. There has also been an effort to characterize the topology of a
distribution (for example a noise model) [1,2,30]. Specifically, the results in our paper
adapt the results in [13,29,30] from the setting of a distribution in Euclidean space to
one supported on a manifold.

There is a natural connection of the results in this paper with results in point
processes, specifically random set models such as the Poisson–Boolean model [36].
The stochastic process we study in this paper is an example of a random set model–
stochastic models that place probability distributions on regions or geometric objects
[33,40]. Classically, people have studied limiting distributions of quantities such as
volume, surface area, integral of mean curvature and Euler characteristic generated
from the random set model. Initial studies examined second order statistics, sum-
maries of observations that measure position or interaction among points, such as the
distribution function of nearest neighbors, the spherical contact distribution function,
and a variety of other summaries such as Ripley’s K-function, the L-function and the
pair correlation function, see [23,41,48,51]. It is known that there are limitations in
only using second order statistics since one can state different point processes that
have the same second order statistics [8]. In the spatial statistics literature our work
is related to the use of morphological functions for point processes where a ball of

123
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radius r is placed around each point sampled from the point process and the topology
or morphology of the union of these balls is studied. Our results are also related to
ideas in the statistics and statistical physics of random fields, see [3,7,14,53,54], a
random process on a manifold can be thought of as an approximation of excursion
sets of Gaussian random fields or energy landscapes.

The paper is structured as follows. In Sect. 2 we give a brief introduction to the
topological objects we study in this paper. In Sect. 3 we state the probability model
and define the relevant topological and geometric quantities of study. In Sect. 4 and 5
we state our main results and proofs, respectively.

2 Topological ingredients

In this paper we study two topological objects generated from a finite random point
cloud P ⊂ R

d (a set of points in R
d ).

1. Given the set P we define

U(P, ε) :=
⋃

p∈P
Bε(p), (2.1)

where Bε(p) is a d-dimensional ball of radius ε centered at p. Our interest in this
paper is in characterizing the homology—in particular the Betti numbers of this
space, i.e. the number of components, holes, and other types of voids in the space.

2. We define the distance function from P as

dP (x) := min
p∈P

‖x − p‖, x ∈ R
d . (2.2)

As a real valued function, dP : R
d → R might have critical points of different

types (i.e. minimum, maximum and saddle points). We would like to study the
amount and type of these points.

In this section we give a brief introduction to the topological concepts behind these
two objects. Observe that the sublevel sets of the distance function are

d−1
P ((−∞, r ]) :=

{
x ∈ R

d : dP (x) ≤ r
}

= U(P, r).

Morse theory, discussed later in this section, describes the interplay between critical
points of a function and the homology of its sublevel sets, and hence provides the link
between our two objects of study.

2.1 Homology and betti numbers

Let X be a topological space. The k-th Betti number of X , denoted by βk(X) is the rank
of Hk(X)—the k-th homology group of X . This definition assumes that the reader has
a basic grounding in algebraic topology. Otherwise, the reader should be willing to
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accept a definition of βk(X) as the number of k-dimensional ‘cycles’ or ‘holes’ in X ,
where a k-dimensional hole can be thought of as anything that can be continuously
transformed into the boundary of a (k+1)-dimensional shape. The zeroth Betti number,
β0(X), is merely the number of connected components in X . For example, the 2-
dimensional torus T 2 has a single connected component, two non-trivial 1-cycles, and
a 2-dimensional void. Thus, we have that β0(T 2) = 1, β1(T 2) = 2, and β2(T 2) = 1.
Formal definitions of homology groups and Betti numbers can be found in [27,42].

2.2 Critical points of the distance function

The classical definition of critical points using calculus is as follows. Let f : R
d → R

be a C2 function. A point c ∈ R is called a critical point of f if ∇ f (c) = 0, and the real
number f (c) is called a critical value of f . A critical point c is called non-degenerate
if the Hessian matrix H f (c) is non-singular. In that case, the Morse index of f at c,
denoted by μ(c) is the number of negative eigenvalues of H f (c). A C2 function f is
a Morse function if all its critical points are non-degenerate, and its critical levels are
distinct.

Note, the distance function dP is not everywhere differentiable, therefore the defi-
nition above does not apply. However, following [26], one can still define a notion of
non-degenerate critical points for the distance function, as well as their Morse index.
Extending Morse theory to functions that are non-smooth has been developed for a
variety of applications [9,16,26,34]. The class of functions studied in these papers
have been the minima (or maxima) of a functional and called ‘min-type’ functions. In
this section, we specialize those results to the case of the distance function.

We start with the local (and global) minima of dP , the points of P where dP = 0,
and call these critical points with index 0. For higher indices, we have the following
definition.

Definition 2.1 A point c ∈ R
d is a critical point of index k of dP , where 1 ≤ k ≤ d,

if there exists a subset Y of k + 1 points in P such that:

1. ∀y ∈ Y : dP (c) = ‖c − y‖, and, ∀p ∈ P\Y we have ‖c − p‖ > dP (p).
2. The points in Y are in general position (i.e. the k + 1 points of Y do not lie in a

(k − 1)-dimensional affine space).
3. c ∈ conv◦(Y), where conv◦(Y) is the interior of the convex hull of Y (an open

k-simplex in this case).

The first condition implies that dP ≡ dY in a small neighborhood of c. The second
condition implies that the points in Y lie on a unique (k − 1)-dimensional sphere. We
shall use the following notation:

S(Y) = The unique (k − 1)-dimensional sphere containing Y, (2.3)

C(Y) = The center of S(Y) in R
d , (2.4)

R(Y) = The radius of S(Y), (2.5)

B(Y) = The open ball in R
d with radius R(Y) centered at C(Y). (2.6)
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Fig. 1 Generating a critical point of index 2 in R
2, a maximum point. The small blue disks are the points

of P . We examine three subsets of P : Y1 = {y1, y2, y3}, Y2 = {y4, y5, y6}, and Y3 = {y7, y8, y9}. S(Yi )

are the dashed circles, whose centers are C(Yi ) = ci . The shaded balls are B(Yi ), and the interior of the
triangles are conv◦(Yi ). (1) We see that both C(Y1) ∈ conv◦(Y1) (CP1) and P ∩ B(Y1) = ∅ (CP2).
Hence c1 is a critical point of index 2. (2) C(Y2) �∈ conv◦(Y2), which means that (CP1) does not hold,
and therefore c2 is not a critical point (as can be observed from the flow arrows). (3) C(Y3) ∈ conv◦(Y3),
so (CP1) holds. However, we have P ∩ B(Y3) = {p}, so (CP2) does not hold, and therefore c3 is also
not a critical point. Note that in a small neighborhood of c3 we have dP ≡ d{p}, completely ignoring the
existence of Y3 (color figure online)

Note that S(Y) is a (k − 1)-dimensional sphere, whereas B(Y) is a d-dimensional
ball. Obviously, S(Y) ⊂ B(Y), but unless k = d, S is not the boundary of B. Since
the critical point c in Definition 2.1 is equidistant from all the points in Y , we have
that c = C(Y). Thus, we say that c is the unique index k critical point generated by
the k + 1 points in Y . The last statement can be rephrased as follows:

Lemma 2.2 A subset Y ⊂ P of k + 1 points in general position generates an index
k critical point if, and only if, the following two conditions hold:

CP1 C(Y) ∈ conv◦(Y),
CP2 P ∩ B(Y) = ∅.

Furthermore, the critical point is C(Y) and the critical value is R(Y).

Figure 1 depicts the generation of an index 2 critical point in R
2 by subsets of 3

points. We shall also be interested in ‘local’ critical points, points where dP (c) ≤ ε.
This adds a third condition,

CP3 R(Y) ≤ ε.

The following indicator functions, related to CP1–CP3, will appear often.

Definition 2.3 Using the notation above,

hc(Y) := 1
{
C(Y) ∈ conv◦(Y)

}
(CP1) (2.7)

hc
ε(Y) := hc(Y)1[0,ε](R(Y)) (CP1 + CP3) (2.8)

gc
ε (Y,P) := hc

ε(Y)1 {P ∩ B(Y) = ∅} (CP1 + CP2 + CP3) (2.9)
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2.3 Morse theory

The study of homology is strongly connected to the study of critical points of real
valued functions. The link between them is called Morse theory, and we shall describe
it here briefly. For a deeper introduction, we refer the reader to [38].

Let M be a smooth manifold embedded in R
d , and let f : M → R be a Morse

function (see Sect. 2.2).
The main idea of Morse theory is as follows. Suppose that M is a closed manifold

(a compact manifold without a boundary), and let f : M → R be a Morse function.
Denote

Mρ := f −1((−∞, ρ]) = {x ∈ M : f (x) ≤ ρ} ⊂ M

(sublevel sets of f ). If there are no critical levels in (a, b], then Ma and Mb are
homotopy equivalent, and in particular have the same homology. Next, suppose that
c is a critical point of f with Morse index k, and let v = f (c) be the critical value at
c. Then the homology of Mρ changes at v in the following way. For a small enough
ε we have that the homology of Mv+ε is obtained from the homology of Mv−ε by
either adding a generator to Hk (increasing βk by one) or terminating a generator of
Hk−1 (decreasing βk−1 by one). In other words, as we pass a critical level, either a new
k-dimensional hole is formed, or an existing (k − 1)-dimensional hole is terminated
(filled up).

Note, that while classical Morse theory deals with Morse functions (and in particu-
lar, C2) on compact manifolds, its extension for min-type functions presented in [26]
enables us to apply these concepts to the distance function dP as well.

2.4 Čech complexes and the nerve lemma

The Čech complex generated by a set of points P is a simplicial complex, made up
of vertices, edges, triangles and higher dimensional faces. While its general definition
is quite broad, and uses intersections of arbitrary nice sets, the following special case
using intersection of Euclidean balls will be sufficient for our analysis.

Definition 2.4 (Čech complex) Let P = {x1, x2, . . .} be a collection of points in R
d ,

and let ε > 0. The Čech complex Č(P, ε) is constructed as follows:

1. The 0-simplices (vertices) are the points in P .
2. An n-simplex [xi0 , . . . , xin ] is in Č(P, ε) if

⋂n
k=0 Bε(xik ) �= ∅.

Figure 2 depicts a simple example of a Čech complex in R
2. An important result,

known as the ‘Nerve Lemma’, links the Čech complex Č(P, ε) and the neighborhood
set U(P, ε), and states that they are homotopy equivalent, and in particular they have
the same homology groups (cf. [15]). Thus, for example, they have the same Betti
numbers.

Our interest in the Čech complex is twofold. Firstly, the Čech complex is a high-
dimensional analogue of a geometric graph. The study of random geometric graphs
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Fig. 2 The Čech complex
Č(P, ε), for
P = {x1, . . . , x6} ⊂ R

2, and
some ε. The complex contains 6
vertices, 7 edges, and a single
2-dimensional face

is well established (cf. [45]). However, the study of higher dimensional geometric
complexes is at its early stages. Secondly, many of the proofs in this paper are combi-
natorial in nature. Hence, it is usually easier to examine the Čech complex Č(P, ε),
rather than the geometric structure U(P, ε).

3 Model specification and relevant definitions

In this section we specify the stochastic process on a manifold that generates the point
sample and topological summaries we will characterize.

The point processes we examine in this paper live in R
d and are supported on a

m-dimensional manifold M ⊂ R
d (m < d). Throughout this paper we assume that

M is closed (i.e. compact and without a boundary) and smooth.
Let M be such a manifold, and let f : M → R be a probability density function

on M, which we assume to be bounded and measurable. If X is a random variable in
R

d with density f , then for every A ⊂ R
d

F(A) := P (X ∈ A) =
∫

A∩M
f (x) dx,

where dx is the volume form on M.
We consider two models for generating point clouds on the manifold M:

1. Random sample: n points are drawn Xn = {X1, X2, . . . , Xn} i id∼ f ,

2. Poisson process: the points are drawn from a spatial Poisson process with intensity
function λn := n f . The spatial Poisson process has the following two properties:
(a) For every region A ⊂ M, the number of points in the region NA := |Pn ∩ A|

is distributed as a Poisson random variable

NA ∼ Poisson (nF(A));

(b) For every A, B ⊂ M such that A ∩ B = ∅, the random variables NA and NB

are independent.

123



The topology of probability distributions on manifolds 659

These two models behave very similarly. The main difference is that the number of
points in Xn is exactly n, while the number of points in Pn is distributed Poisson (n).
Since the Poisson process has computational advantages, we will present all the results
and proofs in this paper in terms of Pn . However, the reader should keep in mind that
the results also apply to samples generated by the first model (Xn), with some minor
adjustments. For a full analysis of the critical points in the Euclidean case for both
models, see [12].

The stochastic objects we study in this paper are the union U(Pn, ε) (defined in
(2.1)), and the distance function dPn (defined in (2.2)). The random variables we
examine are the following. Let rn be a sequence of positive numbers, and define

βk,n := βk(U(Pn, rn)), (3.1)

to be the k-th Betti number of U(Pn, rn), for 0 ≤ k ≤ d − 1. The values βk,n form a
set of well defined integer random variables.

For 0 ≤ k ≤ d, denote by Ck,n the set of critical points with index k of the distance
function dPn . Let rn be positive , and define the set of ‘local’ critical points as

CL
k,n := {c ∈ Ck,n : dPn (c) < rn

} = Ck,n ∩ U(Pn, rn); (3.2)

and its size as
Nk,n :=

∣
∣
∣CL

k,n

∣
∣
∣ . (3.3)

The values Nk,n also form a set of integer valued random variables. From the discussion
in Sect. 2.3 we know that there is a strong connection between the set of values
{
βk,n

}d−1
k=0 and

{
Nk,n

}d
k=0. We are interested in studying the limiting behavior of these

two sets of random variables, as n → ∞, and rn → 0.

4 Results

In this section we present limit theorems for the random variables βk,n and Nk,n ,
as n → ∞, and rn → 0. Similarly to the results presented in [13,29], the limiting
behavior splits into three main regimes. In [13,29] the term controlling the behavior is
nrd

n , where d is the ambient dimension. This value can be thought of as representing
the expected number of points occupying a ball of radius rn . Generating samples from
a m-dimensional manifold (rather than the entire d-dimensional space) changes the
controlling term to be nrm

n . This new term can be thought of as the expected number of
points occupying a geodesic ball of radius rn on the manifold. We name the different
regimes the sub-critical (nrm

n → 0), the critical (nrm
n → λ), and the super-critical

(nrm
n → ∞). In this section we will present limit theorems for each of these regimes

separately. First, however, we present a few statements common to all regimes.
The index 0 critical points (minima) of dPn are merely the points in Pn . Therefore,

N0,n = |Pn| ∼ Poisson (n), so our focus is on the higher indexes critical points.
Next, note that if the radius rn is small enough, one can show that U(Pn, rn) can

be continuously transformed into a subset M′ of M (by a ‘deformation retract’), and
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this implies that U(Pn, rn) has the same homology as M′. Since M is m-dimensional,
βk(M) = 0 for every k > m, and the same goes for every subset of M. In addition,
except for the coverage regime (see Sect. 4.3), M′ is a union of strict subsets of the
connected components of M, and thus must have βm(M′) = 0 as well. Therefore, we
have that βk,n = 0 for every k ≥ m. By Morse theory, this also implies that Nk,n = 0
for every k > m. The results we present in the following sections therefore focus on
β0,n, . . . , βm−1,n and N1,n, . . . , Nm,n only.

4.1 The sub-critical range (nrm
n → 0)

In this regime, the radius rn goes to zero so fast, that the average number of points
in a ball of radius rn goes to zero. Hence, it is very unlikely for points to connect,
and U(Pn, rn) is very sparse. Consequently this phase is sometimes called the ‘dust’
phase. We shall see that in this case β0,n is dominating all the other Betti numbers,
which appear in a descending order of magnitudes.

Theorem 4.1 (Limit mean and variance) If nrm
n → 0, then

1. For 1 ≤ k ≤ m − 1,

lim
n→∞

E
{
βk,n

}

nk+2rm(k+1)
n

= lim
n→∞

Var
(
βk,n

)

nk+2rm(k+1)
n

= μb
k ,

and

lim
n→∞ n−1

E
{
β0,n

} = 1.

2. For 1 ≤ k ≤ m,

lim
n→∞

E
{

Nk,n
}

nk+1rmk
n

= lim
n→∞

Var
(
Nk,n

)

nk+1rmk
n

= μc
k .

where

μb
k = 1

(k + 2)!
∫

M
f k+2(x)dx

∫

(Rm )k+1

hb
1(0, y)dy,

μc
k = 1

(k + 1)!
∫

M
f k+1(x)dx

∫

(Rm )k

hc
1(0, y)dy.

The function hb
ε is an indicator function on subsets Y of size k +2, testing that a subset

forms a non-trivial k-cycle, i.e.

hb
ε (Y) := 1 {βk(U(Y, ε)) = 1}, (4.1)

The function hc
ε is defined in (2.8).
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Finally, we note that for y = (y1, . . . , yk+1) ∈ (Rd)k+1, hb
ε (0, y) := hb

ε (0, y1, . . . ,

yk+1), and for y = (y1, . . . , yk) ∈ (Rd)k, hc
ε(0, y) := hc

ε(0, y1, . . . , yk).

Note that these results are analogous to the limits in the Euclidean case, presented in
[30] (for the Betti numbers) and [13] (for the critical points). In general, as is common
for results of this nature, it is difficult to express the integral formulae above in a more
transparent form. Some numerics as well as special cases evaluations are presented in
[13].

Since nrm
n → 0, the comparison between the different limits yields the following

picture,

E
{

N0,n
} � E

{
N1,n

} � E
{

N2,n
} � E

{
N3,n

} � · · · � E
{

Nm,n
}

≈ ≈ ≈ ≈

E
{
β0,n

} � E
{
β1,n

} � E
{
β2,n

} � · · · � E
{
βm−1,n

}
,

where by an ≈ bn we mean that an/bn → c ∈ (0,∞) and by an � bn we mean that
an/bn → ∞. This diagram implies that in the sub-critical phase the dominating Betti
number is β0. It is significantly less likely to observe any cycle, and it becomes less
likely as the cycle dimension increases. In other words, U(Pn, rn) consists mostly of
small disconnected particles, with relatively few holes.

Note that the limit of the term nk+1rmk
n can be either zero, infinity, or anything in

between. For each of these cases, the limiting distribution of either βk−1,n or Nk,n is
completely different. The results for the number of critical points are as follows.

Theorem 4.2 (Limit distribution) Let nrm
n → 0, and 1 ≤ k ≤ m,

1. If limn→∞ nk+1rk
n = 0, then

Nk,n
L2−→ 0.

If, in addition,
∑∞

n=1 nk+1rmk
n < ∞, then

Nk,n
a.s.−−→ 0.

2. If limn→∞ nk+1rmk
n = α ∈ (0,∞), then

Nk,n
L−→ Poisson

(
αμc

k

)
.

3. If limn→∞ nk+1rmk
n = ∞, then

Nk,n − E
{

Nk,n
}

(nk+1rmk
n )1/2

L−→ N (0, μc
k).

For βk,n the theorem above needs two adjustments. Firstly, we need to replace
the term nk+1rmk

n with nk+2rm(k+1)
n , and μc

k with μb
k (similarly to Theorem 4.1).

Secondly, the proof of the central limit theorem in part 3 is more delicate, and requires
an additional assumption that nrm

n ≤ n−ε for some ε > 0.
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4.2 The critical range (nrm
n → λ ∈ (0,∞))

In the dust phase, β0,n was O(n), while the other Betti numbers of U(Pn, rn) were of
a much lower magnitude. In the critical regime, this behavior changes significantly,
and we observe that all the Betti numbers (as well as counts of all critical points) are
O(n). In other words, the behavior of U(Pn, rn) is much more complex, in the sense
that it consists of many cycles of any dimension 1 ≤ k ≤ m − 1.

Unfortunately, in the critical regime, the combinatorics of cycle counting becomes
highly complicated. However, we can still prove the following qualitative result, which
shows that E

{
βk,n

} = O(n).

Theorem 4.3 If nrm
n → λ ∈ (0,∞), then for 1 ≤ k ≤ m − 1,

0 < lim inf
n→∞ n−1

E
{
βk,n

} ≤ lim sup
n→∞

n−1
E
{
βk,n

}
< ∞.

Fortunately, the situation with the critical points is much better. A critical point of
index k is always generated by subsets Y of exactly k + 1 points. Therefore, nothing
essentially changes in our methods when we turn to examine the limits of Nk,n . We
can prove the following limit theorems.

Theorem 4.4 If nrm
n → λ ∈ (0,∞), then for 1 ≤ k ≤ m,

lim
n→∞

E
{

Nk,n
}

n
= γk(λ),

lim
n→∞

Var
(
Nk,n

)

n
= σ 2

k (λ),

Nk,n − E
{

Nk,n
}

√
n

L−→ N (0, σ 2
k (λ)).

where

γk(λ) := λk

(k + 1)!
∫

M

∫

(Rm)k

f k+1(x)hc
1(0, y)e−λωm Rm (0,y) f (x)dydx,

R, hc
ε , are defined in (2.5), (2.8), respectively. The expression defining σ 2

k (λ) is rather
complicated, and will be discussed in the proof.

The term ωm stands for the volume of the unit ball in R
m . As mentioned above, in

general it is difficult to present a more explicit formula for γk(λ). However, for m ≤ 3
and f ≡ 1 (the uniform distribution) it is possible to evaluate γk(λ) (using tedious
calculus arguments which we omit here). For m = 3 these computations yield—

γ1(λ) = 4
(

1 − e− 4
3 πλ
)

,

γ2(λ) =
(

1 + π2

16

)(
3 − 3e− 4

3 πλ − 4πλe− 4
3 πλ
)

,

123



The topology of probability distributions on manifolds 663

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

λ

 

 

γ
1

γ
2

γ
3

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

14

16

18

λ

 

 

(d/dλ)γ
1

(d/dλ)γ
2

(d/dλ)γ
3

0 0.5 1 1.5 2 2.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ

 

 

1 − γ
1
 + γ

2
 − γ

3(a) (b) (c)

Fig. 3 The graphs of the γk functions for the case where m = 3, and f ≡ 1. a The graphs for the limiting
number of critical points γk (λ). b The graphs for the rate of appearance of critical points given by d

dλ
γk (λ).

c The limiting (normalized) Euler characteristic given by 1 − γ1(λ) + γ2(λ) − γ3(λ)

γ3(λ) = π2

48

(
9 − 9e− 4

3 πλ − 12πλe− 4
3 πλ − 8π2λ2e− 4

3 πλ
)

,

and

d

dλ
γ1(λ) = 16

3
πe− 4

3 πλ,

d

dλ
γ2(λ) = (16 + π2)

π2

3
λe− 4

3 πλ,

d

dλ
γ3(λ) = 2

9
π5λ2e− 4

3 πλ,

where d
dλ

γk(λ) can be thought of as the rate at which critical points appear. Figure 3a,
b are the graphs of these curves.

As mentioned earlier, in this regime we cannot get exact limits for the Betti num-
bers. However, we can use the limits of the critical points to compute the limit of
another important topological invariant of U(Pn, rn)—its Euler characteristic. The
Euler characteristic χn of U(Pn, rn) (or, equivalently, of Č(Pn, rn)) has a number of
equivalent definitions. One of the definitions, via Betti numbers, is

χn =
m∑

k=0

(−1)kβk,n . (4.2)

In other words, the Euler characteristic “summarizes” the information contained in
Betti numbers to a single integer. Using Morse theory, we can also compute χn from
the critical points of the distance function by

χn =
m∑

k=0

(−1)k Nk,n .

Thus, using Theorem 4.4 we have the following result.
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Corollary 4.5 If nrm
n → λ ∈ (0,∞), then

lim
n→∞ n−1

E {χn} = 1 +
m∑

k=1

(−1)kγk(λ).

This limit provides us with partial, yet important, topological information about the
complex U(Pn, rn) in the critical regime. While we are not able to derive the precise
limits for each of the Betti numbers individually, we can provide the asymptotic result
for their “summary”. In addition, numerical experiments (cf. [30]) seem to suggest that
at different ranges of radii there is at most a single degree of homology which dominates
the others. This implies that χn ≈ (−1)kβk,n for the appropriate range. If this heuristic
could be proved in the future, the result above could be used to approximate βk,n in
the critical regime. In Fig. 3c we present the curve of the limit Euler characteristic
(normalized) for m = 3 and f ≡ 1. Finally, we note that while we presented the limit
for the first moment of the Euler characteristic, using Theorem 4.4 one should be able
to prove stronger limit results as well.

4.3 The super-critical range (nrm
n → ∞)

Once we move from the critical range into the super-critical, the complex U(Pn, rn)

becomes more and more connected, and less porous. The “noisy” behavior (in the
sense that there are many holes of any possible dimension) we observed in the critical
regime vanishes. This, however does not happen immediately. The scale at which
major changes occur is when nrm

n ∝ log n.
The main difference between this regime and the previous two, is that while the

number of critical points is still O(n), the Betti numbers are of a much lower magnitude.
In fact, for rn big enough, we observe that βk,n ∼ βk(M), which implies that these
values are O(1).

For the super-critical phase we have to assume that fmin := infx∈M f (x) > 0.
This condition is required for the proofs, but is not a technical issue only. Having a
point x ∈ M where f (x) = 0 implies that in the vicinity of x we expect to have
relatively few points in Pn . Since the radius of the balls generating U(Pn, rn) goes to
zero, this area might become highly porous or disconnected , and look more similar
to other regimes. However, we postpone this study for future work.

We start by describing the limit behavior of the critical points, which is very similar
to that of the critical regime.

Theorem 4.6 If rn → 0, and nrm
n → ∞, then for 1 ≤ k ≤ m,

lim
n→∞

E
{

Nk,n
}

n
= γk(∞),

lim
n→∞

Var
(
Nk,n

)

n
= σ 2

k (∞),

Nk,n − E
{

Nk,n
}

√
n

L−→ N (0, σ 2
k (∞)).
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where

γk(∞) = lim
λ→∞ γk(λ) = 1

(k + 1)!
∫

(Rm )k

hc(0, y)e−ωm Rm (0,y) dy,

R, hc, are defined in (2.5), (2.7), respectively.

ωm is the volume of the unit ball in R
m . The combinatorial analysis of the Betti

numbers βk,n in the super-critical regime suffers from the same difficulties described in
the critical regime. However, in the special case that rn is big enough so that U(Pn, rn)

covers M, we can use a different set of methods to derive limit results for βk,n .

The Coverage Regime
In [45](Section 13.2), it is shown that for samples generated on a m-dimensional

torus, the complex U(Pn, rn) becomes connected when nrm
n ≈ (ωm fmin2m)−1 log n.

This result could be easily extended to the general class of manifolds studied in this
paper (although we will not pursue that here). While the complex is reaching a finite
number of components (β0,n → β0(M)), it is still possible for it to have very large
Betti numbers for k ≥ 1. In this paper we are interested in a threshold for which we
have βk,n = βk(M) for all k (and not just β0). We will show that this threshold is when
nrm

n = (ωm fmin)
−1 log n, so that rn is twice than the radius required for connectivity.

To prove this result we need two ingredients. The first one is a coverage statement,
presented in the following proposition.

Proposition 4.7 (Coverage) If nrm
n ≥ C log n, then:

1. If C > (ωm fmin)
−1, then

lim
n→∞ P (M ⊂ U(Pn, rn)) = 1.

2. If C > 2(ωm fmin)
−1, then almost surely there exists M > 0 (possibly random),

such that for every n > M we have M ⊂ U(Pn, rn).

The second ingredient is a statement about the critical points of the distance func-
tion, unique to the coverage regime. Let r̂n be any sequence of positive numbers such
that (a) r̂n → 0, and (b) r̂n > rn for every n. Define N̂k,n to be the number of critical
points of dPn with critical value bounded by r̂n . Obviously, N̂k,n ≥ Nk,n , but we will
prove that choosing rn properly, these two quantities are asymptotically equal.

Proposition 4.8 If nrm
n ≥ C log n, then:

1. If C > (ωm fmin)
−1, then

lim
n→∞ P

(
Nk,n = N̂k,n, ∀1 ≤ k ≤ m

) = 1.

2. If C > 2(ωm fmin)
−1, then almost surely there exists M > 0 (possibly random),

such that for n > M

Nk,n = N̂k,n, ∀1 ≤ k ≤ m.
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In other words, if rn is chosen properly, then U(Pn, rn) contains all the ‘local’
(small valued) critical points of dPn .

Combining the fact that M is covered, the deformation retract argument in [44], and
the fact that there are no local critical points outside U(Pn, rn), using Morse theory,
we have the desired statement about the Betti numbers.

Theorem 4.9 (Convergence of the Betti numbers) If rn → 0, and nrm
n ≥ C log n,

then:

1. If C > (ωm fmin)
−1, then

lim
n→∞ P

(
βk,n = βk(M), ∀0 ≤ k ≤ m

) = 1.

2. If C > 2(ωm fmin)
−1, then almost surely there exists M > 0, such that for n > M

βk,n = βk(M), ∀0 ≤ k ≤ m.

Note that M (the exact point of convergence) is random.

A common problem in topological manifold learning is the following:
Given a set of random points P , sampled from an unknown manifold M, how can one
infer the topological features of M?
The last theorem provides a possible solution. Draw balls around P , with a radius r
satisfying the condition in Theorem 4.9. As the sample size grows it is guaranteed
that the Betti numbers computed from the union of the balls will recover those of the
original manifold M. This solution is in the spirit of the result in [44], where a bound
on the recovery probability is given as a function of the sample size and the condition
number of the manifold, for a uniform measure on M. The result in 4.9 applies for a
larger class of probability measures on M, require much weaker assumptions on the
geometry of the manifold (the result in [44] requires the knowledge of the condition
number, or the reach, of the manifold), and convergence is shown to occur almost
surely.

5 Proofs

In this section we provide proofs for the statements in this paper. We note that the
proofs of theorems 4.1–4.6 are similar to the proofs of the equivalent statements in
[29,30] (for the Betti numbers), and in [13] (for the critical points). There are, however,
significant differences when dealing with samples on a closed manifold. We provide
detailed proofs for the limits of the first moments, demonstrating these differences,
and refer the reader to [13,29,30] for the rest of the details.

5.1 Some notation and elementary considerations

In this section we list some common notation and note some simple facts that will be
used in the proofs.
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• Henceforth, k will be fixed, and whenever we use Y,Y ′ or Yi we implicitly assume
(unless stated otherwise) that either |Y| = ∣

∣Y ′∣∣ = |Yi | = k + 2 for k-cycles, or
|Y| = ∣∣Y ′∣∣ = |Yi | = k + 1 for index k critical points.

• Usually, finite subsets of R
d will be denoted calligraphically (X ,Y). However

inside integrals we use boldfacing and lower case (x, y).
• For every x ∈ M we denote by TxM the tangent space of M at x , and define

expx : TxM → M to be the exponential map at x . Briefly, this means that for
every v ∈ TxM, the point expx (v) is the point on the unique geodesic leaving x in
the direction of v, after traveling a geodesic distance equal to ‖v‖.

• For x ∈ R
d , x ∈ Mk+1 and y ∈ (Rm)k , we use the shorthand

f (x) := f (x1) f (x2) · · · f (xk+1),

f (x, expx (v)) := f (x) f (expx (v1)) · · · f (expx (vk)),

h(0, y) := h(0, y1, . . . , yk).

Throughout the proofs we will use the following notation. Let x ∈ M, and let
v ∈ TxM be a tangent vector. We define

∇ε(x, v) = expx (εv) − x

ε
.

By definition, it follows that

lim
ε→0

∇ε(x, v) = v.

The following lemmas will be useful when we will be required to approximate geodesic
distances and volumes by Euclidean ones.

Lemma 5.1 Let δ > 0. If ‖∇ε(x, v)‖ ≤ C for all ε > 0, and for some C > 0. Then
there exists a small enough ε̃ > 0 such that for every ε < ε̃

‖v‖ ≤ C(1 + δ).

Proof If ‖∇ε(x, v)‖ ≤ C , then the (Cε)-tube around M, contains the line segment
connecting x and expx (εv). Therefore, using Theorem 5 in [37] we have that

‖εv‖
∥
∥x − expx (εv)

∥
∥

≤ 1 + C ′√ε.

This implies that

‖v‖ ≤ (1 + C ′√ε) ‖∇ε(x, v)‖,

for some C ′ > 0. Therefore, if ε is small enough we have that

‖v‖ ≤ C(1 + δ),

which completes the proof. ��
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Throughout the proofs we will repeatedly use two different occupancy probabilities,
defined as follows,

pb(Y, ε) :=
∫

U(Y,ε)∩M
f (ξ)dξ (5.1)

pc(Y) :=
∫

B(Y)∩M
f (ξ)dξ, (5.2)

where B(Y) is defined in (2.6). The next lemma is a version of Lebesgue differentiation
theorem, which we will be using.

Lemma 5.2 For every x ∈ M and y ∈ (Tx (M))k , if rn → 0, then

1.

lim
n→∞

pb((x, expx (rny)), rn)

rm
n V (0, y)

= f (x),

where V (Y) = Vol(U(Y, 1)).
2.

lim
n→∞

pc(x, expx (rny))

rm
n ωm Rm(0, y)

= f (x),

where ωm is the volume of a unit ball in R
m.

Proof We start with the proof for pc. Set Bn := B(x, expx (rny)) ⊂ R
d . Then

pc(x, expx (rny)) =
∫

Bn∩M
f (ξ)dξ.

Next, use the change of variables ξ → expx (rnv), for v ∈ TxM � R
m . Then,

pc(x, expx (rny)) = rm
n

∫

Rm

f (expx (rnv))1
{
expx (rnv) ∈ Bn

}
Jx (rnv)dv, (5.3)

where Jx (v) = ∂ expx
∂v

.
We would like to apply the Dominated Convergence Theorem (DCT) to this integral,

to find its limit. First, assuming that the DCT condition holds, we find the limit.

• By definition, expx (rnv) → x , and therefore,

lim
n→∞ f (expx (rnv)) = f (x).

• Note that the function H(v, y) := 1 {v ∈ B(0, y))} is almost everywhere continuous
in R

d × (Rd)k , and also that
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1
{
expx (rnv) ∈ Bn

} = H(∇rn(x, v),∇rn(x, y)).

Since ∇rn(x, v) → v, and ∇rn(x, y) → y (when n → ∞), we have that for almost
every v, y,

lim
n→∞1

{
expx (rnv) ∈ Bn

} = H(v, y) = 1 {v ∈ B(0, y)} .

• By definition,

lim
n→∞ Jx (rnv) = 1.

Putting it all together, we have that

lim
n→∞ r−m

n pc(x, expx (rny)) = f (x) Volm(B(0, y)) = f (x)ωm Rm(0, y),

which is the limit we are seeking.
To conclude the proof we have to show that the DCT condition holds for the inte-

grand in (5.3). For a fixed y, for every v for which the integrand is nonzero, we have
that expx (rnv) ∈ Bn which implies that

∥
∥∇rn (x, v)

∥
∥ ≤ 2R(0,∇rn (x, y)).

Since R(0,∇rn (x, y)) → R(0, y), we have that n for large enough

∥
∥∇rn (x, v)

∥
∥ ≤ 3R(0, y),

Using Lemma 5.1 we then have that

‖v‖ ≤ 3(1 + δ)R(0, y),

for some δ > 0. This means that the support of the integrand in (5.3) is bounded. Since
f is bounded, and Jx is continuous, we deduce that the integrand is well bounded, and
we can safely apply the DCT to it.

The proof for pb follows the same line of arguments, replacing Bn with

Un := U((x, expx (rny)), rn).

To bound the integrand we use the fact that if expx (rnv) ∈ Un , then

∥
∥∇rn (x, v)

∥
∥ ≤ diam(U(0,∇rn (x, y), 1)),

and as n → ∞, we have diam(U(0,∇rn (x, y), 1)) → diam(U(0, y), 1). ��
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In [13,29,30] full proofs are presented for statements similar to those in this paper,
only for sampling in Euclidean spaces rather than compact manifolds. The general
method of proving statements on compact manifold is quite similar, but important
adjustments are required. We are going to present those adjustments for proving the
basic claims, and refer the reader to the proofs in [13,29,30] taking into consideration
the necessary adjustments.

5.2 The sub-critical range (nrm
n → 0)

Proof of Theorem 4.1 We give a full proof for the limit expectations for both the Betti
numbers and critical points, and then discuss the limit of the variances.

The expected number of critical points:
From the definition of Nk,n (see (3.3)), using the fact that index-k critical points are
generated by subsets of size k + 1 (see Definition 2.1), we can compute Nk,n by
iterating over all possible subsets of Pn of size k + 1 in the following way,

Nk,n =
∑

Y⊂Pn

gc
rn

(Y,Pn),

where gε is defined in (2.9). Using Palm theory (Theorem 6.1), we have that

E
{

Nk,n
} = nk+1

(k + 1)!E
{
gc

rn
(Y ′,Y ′ ∪ Pn)

}
, (5.4)

where Y ′ is a set of i.i.d. random variables, with density f , independent of Pn . Using
the definition of grn , we have that

E
{
gc

rn
(Y ′,Y ′ ∪ Pn)

} = E
{
E
{
gc

rn
(Y ′,Y ′ ∪ Pn) | Y ′}} = E

{
hc

rn
(Y ′)e−npc(Y ′)

}
,

where pc is defined in (5.2). Thus,

E
{
gc

rn
(Y ′,Y ′ ∪ Pn)

} =
∫

Mk+1

f (x)hc
rn

(x)e−npc(x)dx.

To evaluate this integral, recall that x = (x0, . . . , xk) ∈ Mk+1 and use the following
change of variables

x0 → x ∈ M, xi → expx (vi ), vi ∈ TxM � R
m,
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then,

E
{
gc

rn
(Y ′,Y ′ ∪ Pn)

}

=
∫

M

∫

(TxM)k

f (x, expx (v))hc
rn

(x, expx (v))e−npc(x,expx (v)) Jx (v)dvdx .

where v = (v1, . . . , vk), expx (v) = (expx (v1), . . . , expx (vk)), and Jx (v) = ∂expx
∂v

.
From now on we will think of vi as vectors in R

m . Thus, the change of variables
vi → rn yi yields,

E
{
gc

rn
(Y ′,Y ′ ∪ Pn)

}

= rmk
n

∫

M

∫

(Rm )k

f (x, expx (rny))hc
rn

(x, expx (rny))e−npc(x,expx (rny)) Jx (rny)dydx .

(5.5)

The integrand above admits the DCT conditions, and therefore we can take a point-
wise limit. We compute the limit now, and postpone showing that the integrand is
bounded to the end of the proof.

Taking the limit term by term, we have that:

• f is continuous almost everywhere in M, therefore

lim
n→∞ f (expx (rn yi )) = f (x)

for almost every x ∈ M.
• The discontinuities of the function hc

1 : (Rd)k+1 → {0, 1} are either subsets x for
which C(x) is on the boundary of conv(x), or where R(x) = 1. This entire set has
a Lebesgue measure zero in (Rd)k+1. Therefore, we have

lim
n→∞ hc

rn
(x, expx (rny)) = lim

n→∞ hc
1(0,∇rn (x, y)) = h1(0, y),

for almost every x, y.
• Using Lemma 5.2, and the fact that nrm

n → 0, we have that

lim
n→∞ e−npc(x,expx (rny)) = 1.

• Finally, limn→∞ Jx (rn yi ) = Jx (0) = 1.

Putting all the pieces together (rolling back to (5.4) and (5.5)), we have that

lim
n→∞(nk+1rmk

n )−1
E
{

Nk,n
} = μc

k .

Finally, to justify the use of the DCT, we need to find an integrable bound for the
integrand in (5.5).
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The main step would be to show that the integration over (y1, . . . , yk) is done over a
bounded region in (Rm)k . First, note that if hc

rn
(x, expx (rny)) = hc

1(0,∇rn (x, y)) = 1,
then necessarily R(0,∇rn (x, y)) < 1. This implies that

∥
∥∇rn (x, yi )

∥
∥ < 2. Using

Lemma 5.1, and the fact that rn → 0, we can choose n large enough so that ‖yi‖ < 3
for every i . In other words, we can assume that the integration dyi is over B3(0) ⊂ R

m

only.
Next, we will bound each of the terms in the integrand in (5.5).

• The density function f is bounded, therefore,

f (x, expx (rny)) = f (x) f (expx (rny)) ≤ f (x) f k
max,

where fmax := supx∈M f (x).
• The term hc

rn
(x, expx (rny))e−npc(x,expx (rny)) is bounded from above by 1.

• The function Jx (v) is continuous in x, v. Therefore, it is bounded in the compact
subspace M × B3(0), by some constant C . Since we know that yi ∈ B3(0), then
for n large enough (such that rn < 1 we have that Jx (rny) ≤ Ck .

Putting it all together, we have that the integrand in (5.5) is bounded by f (x)×const,
and since we proved that the yi -s are bounded, we are done.

The expected Betti numbers:
As mentioned in Sect. 2.4, most of the results for βk,n will be proved using the Čech
complex Č(Pn, rn) rather than the union U(Pn, rn). From the Nerve theorem, the Betti
numbers of these spaces are equal.

The smallest simplicial complex forming a non-trivial k-cycle is the boundary of a
(k + 1)-simplex which consists of k + 2 vertices. Recall that for Y ∈ (Rd)k+2, hb

ε (Y)

is an indicator function testing whether Č(Y, ε) forms a non-trivial k-cycle (see (4.1)),
and define

gb
ε (Y,P) := hb

ε (Y)1
{

Č(Y, ε) is a connected component of Č(P, ε)
}

.

Then iterating over all possible subsets Y of size k + 2 we have that

Sk,n :=
∑

Y⊂Pn

gb
rn

(Y,Pn), (5.6)

is the number of minimal isolated cycles in Č(Pn, rn). Next, define Fk,n to be the
number of k dimensional faces in Č(Pn, rn) that belong to a component with at least
k + 3 vertices. Then

Sk,n ≤ βk,n ≤ Sk,n + Fk,n . (5.7)

This stems from three main facts:

1. Every cycle which is not accounted for by Sk,n belongs to a components with at
least k + 3 vertices.
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2. If C1, C2, . . . , Cm are the different connected components of a space X , then

βk(X) =
m∑

i=1

βk(Ci ).

3. For every simplicial complex C it is true that βk(C) ≤ Fk(C), where Fk is the
number of k-dimensional simplices.

For more details regarding the inequality in (5.7), see the proof of the analogous
theorem in [30].

Next, we should find the limits of Sk,n and Fk,n . For Sk,n , from (5.6) using Palm
theory (Theorem 6.1) we have that

E
{

Sk,n
} = nk+2

(k + 2)!E
{

gb
rn

(Y ′,Y ′ ∪ Pn)
}

,

where Y ′ is a set of k + 2 i.i.d. random variables with density f , independent of Pn .
Using the definition of gb

rn
we have that

E

{
gb

rn
(Y ′,Y ′ ∪ Pn)

}
= E

{
E

{
gb

rn
(Y ′,Y ′ ∪ Pn) | Y

}}
= E

{
hb

rn
(Y ′)e−npb(Y ′,2rn)

}
,

where pb is defined in (5.1). Following the same steps as in the proof for the number
of critical points, leads to

lim
n→∞

(
nk+2rm(k+1)

n

)−1
E
{

Sk,n
} = μb

k .

Thus, to complete the proof we need to show that (nk+2rm(k+1)
n )−1

E
{

Fk,n
}→ 0. To

do that, we consider sets Y of k + 3 vertices, and define

h f
ε (Y) := 1

{
Č(Y, ε) is connected and contains a k-simplex

}
.

Then,

Fk,n ≤
(

k + 3

k + 1

) ∑

Y⊂Pn

h f
rn (Y).

Using Palm Theory, we have that

E
{

Fk,n
} ≤ nk+3

2(k + 1)!E
{

h f
rn (Y)

}
.
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Since h f
rn requires that Č(Y, rn) is connected, similar localizing arguments to the ones

used previously in this proof show that

lim
n→∞(nk+3rm(k+2)

n )−1
E
{

Fk,n
}

< ∞.

Thus, since nrm
n → 0, we have that

lim
n→∞(nk+2rm(k+1)

n )−1
E
{

Fk,n
} = 0,

which completes the proof.
For β0,n , using Morse theory we have that N0,n − N1,n ≤ β0,n ≤ N0,n . Since

E
{

N0,n
} = n, and n−1

E
{

N1,n
}→ 0, we have that limn→∞ n−1

E
{
β0,n

} = 1.

The limit variance:
To prove the limit variance result, the computations are similar to the ones in [13,30].
The only adjustment required is to change the domain of integration to be M instead
of R

d , the same way we did in proving the limit expectations. We refer the reader to
‘Appendix C’ for an outline of these proofs. ��
Proof of Theorem 4.2 We start with the case when nk+1rmk

n → 0. In this case, the L2

convergence is a direct result of the fact that

lim
n→∞ E

{
Nk,n

} = lim
n→∞ Var

(
Nk,n

) = 0.

Next, observe that

P
(
Nk,n > 0

) ≤ E
{

Nk,n
}
,

and since (nk+1rmk
n )−1

E
{

Nk,n
}→ 0, there exists a constant C such that

P
(
Nk,n > 0

) ≤ Cnk+1rmk
n .

Thus, if
∑∞

n=1 nk+1rmk
n < ∞, we can use the Borel-Cantelli Lemma, to conclude that

a.s. there exists M > 0 such that for every n > M we have Nk,n = 0. This completes
the proof for the first case.

For the other cases, we refer the reader to [13,30]. The proofs in these papers use
Stein’s method (see Appendix B), and mostly rely on moments evaluation (up to the
forth moment). We observed in the previous proof that moment computation in the
manifold case is essentially the same as in the Euclidean case, and therefore all that
is needed are a few minor adjustments. ��

5.3 The critical range (nrm
n → λ)

We prove the result for the number of critical points first.
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Proof of Theorem 4.4 For the critical phase, we start the same way as in the proof of
Theorem 4.6. All the steps and bounds are exactly the same, the only difference is in
the limit of the exponential term inside the integral in (5.5). Using Lemma (5.2), and
the fact that nrm

n → λ we conclude that,

lim
n→∞ e−npc(x,expx (rny)) = e−λωm Rm (0,y) f (x).

Thus, we have

lim
n→∞(nk+1rmk

n )−1
E
{

Nk,n
}

= 1

(k + 1)!
∫

M

∫

(Rm )k

f k+1(x)hc
1(0, y)e−λωm Rm(0,y) f (x)dydx,

and using the fact that nk+1rmk
n ∼ nλk completes the proof.

For the proofs for the variance and the CLT we refer the reader to Appendix C and
[13]. ��
Proof of Theorem 4.3 From the proof of Theorem 4.1 we know that

Sk,n ≤ βk,n ≤ Sk,n + Fk,n .

Similar methods to the ones we used above, can be used to show that

lim
n→∞ (nk+2rm(k+1)

n )−1
E
{

Sk,n
}

= 1

(k + 2)!
∫

M

∫

(Rm )k+1

f k+2(x)hb
1(0, y)e−λ2m V (0,y) f (x)dydx,

where V (Y) = Vol(U(Y, 1)) (see Lemma 5.2), and also that

lim
n→∞ (nk+3rm(k+2)

n )−1
E
{

Fk,n
}

< ∞.

Since nrm
n → λ, we have that nk+2rm(k+1)

n ∼ nλk+1. Thus we have shown that

An ≤ E
{
βk,n

} ≤ Bn,

for some positive constants A, B, which completes the proof.

5.4 The super-critical range (nrm
n → ∞)

Proof of Theorem 4.6 For the super-critical regime, we repeat the steps we took in
the other phases, with the main difference being that instead of using the change of
variables xi → expx (rn yi ), we now use xi → expx (sn yi ) where sn = n−1/m . Thus,
instead of the formula in (5.5) we now have
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E

{
hrn (Y)e−npc(Y)

}

= n−k
∫

M

∫

(Rm)k

f (x, expx (sny))hc
rn

(x, expx (sny))e−npc(x,expx (sny)) Jx (sny)dydx .

(5.8)

As we did before, we wish to apply the DCT to the integral in (5.8). We will compute
the limit first, and show that the integrand is bounded at the end.

• As before we have

lim
n→∞ f (x, expx (sny)) = f k+1(x).

• The limit of the indicator function is now a bit different.

hc
rn

(x, expx (sny)) = hc
1(0, r−1

n sn∇sn (x, y))

= hc(0,∇sn (x, y))1
{

r−1
n sn R(0,∇sn (x, y)) < 1

}
.

Now, since R(0,∇sn (x, y)) → R(0, y) and r−1
n sn → 0, we have that

lim
n→∞ hc

rn
(x, expx (sny)) = hc(0, y).

• Using Lemma 5.2 we have that

lim
n→∞

pc(x, expx (sny))

sm
n ωm Rm(0, y)

= f (x).

This implies that

lim
n→∞ e−npc(x,expx (sny)) = e−ωm Rm (0,y) f (x).

These computations yield,

lim
n→∞ n−1

E
{

Nk,n
} = 1

(k + 1)!
∫

M

∫

(Rm )k

f k+1(x)hc(0, y)e−ωm Rm (0,y) f (x)dydx .

Finally, for the inner integral, use the following change of variables—yi →
( f (x))−1/mvi , so that dy = f −k(x)dv. This yields,

lim
n→∞ n−1

E
{

Nk,n
} = 1

(k + 1)!
∫

M

∫

(Rm)k

f (x)hc(0, v)e−ωm Rm(0,v)dvdx .

Using the fact that
∫
M f (x)dx = 1 completes the proof.
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It remains to show that the DCT condition applies to the integral in (5.8). The main
difficulty in this case stems from the fact that the variables yi are no longer bounded.
Nevertheless, we can still bound the integrand, taking advantage of the exponential
term.

• As before, we have f (x, expx (sn, y)) ≤ f (x) f k
max.

• Being an indicator function, it is obvious that hc
rn

(x, expx (sny)) ≤ 1.
• To bound the exponential term from above, we will find a lower bound to

pc(x, expx (sny)). Define a function G : M × (Rm)k × [0, 1] → R as follows,

G(x, v, ρ) =
{

pc(x,expx (ρv))

ωm Rm(0,ρv) f (x)
ρ > 0,

1 ρ = 0.

From Lemma 5.2 we know that G is continuous in the compact subspace M ×
(B3(0))k ×[0, 1], and thus uniformly continuous. Therefore, for every α > 0, x ∈
M, v ∈ (B3(0))k , there exists ρ̃ > 0 such that for every ρ < ρ̃ we have

G(x, v, ρ) ≥ 1 − α.

Now, consider v = sn
rn

y, then as we proved in the sub-critical phase, v ∈ (B3(0))k .
Thus, for n large enough (such that rn < ρ̃), we have that for every x, y

pc(x, expx (sny))

ωm Rm(0, sny) f (x)
≥ 1 − α,

which implies that

pc(x, expx (sny)) ≥ (1 − α)n−1ωm Rm(0, y) f (x).

Therefore, we have

e−npc(x,expx (sny)) ≤ e−(1−α)ωm Rm(0,y) fmin . (5.9)

Finally, note that R(0, y) ≥ ‖yi‖ /2 for every i . Thus,

Rm(0, y) ≥ 1

2mk

k∑

i=1

‖yi‖m .

Overall, we have that the integrand in (5.8) is bounded by

f k
max f (x)e− (1−α)ωm fmin

2m k

∑k
i=1‖yi ‖m

.

This function is integrable in M × (Rm)k , and therefore we are done. For the proof
of the limit variance and CLT, see Appendix C and [13]. ��
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Proof of Proposition 4.7 Since M is m-dimensional, it can be shown that there exists
D > 0 such that for every ε we can find a (deterministic) set of points S ⊂ M such
that (a) M ⊂ U(S, ε), i.e.S is ε-dense in M, and (b) |S| ≤ Dε−m (cf. [24]).

If M is not covered by U(Pn, rn), then there exists x ∈ M, such that ‖x − X‖ > rn

for every X ∈ Pn . For α > 0, let Sn be a (αrn)-dense set in M, and let s ∈ Sn be the
closest point to x in Sn . Then,

‖x − X‖ ≤ ‖x − s‖ + ‖s − X‖ .

Since ‖x − s‖ ≤ αrn , then necessarily ‖s − X‖ > (1 − α)rn . Thus,

P (M �⊂ U(Pn, rn)) ≤
∑

s∈Sn

P
(
B(1−α)rn (s) ∩ Pn = ∅) =

∑

s∈Sn

e−nF(B(1−α)rn (s)),

where

F(B(1−α)rn (s)) =
∫

B(1−α)rn (s)∩M
f (x)dx .

Similarly to Lemma 5.2 we can show that for every x ∈ M

lim
n→∞

F(B(1−α)rn (x))

ωm(1 − α)mrm
n

= f (x).

Denoting

G(x, ρ) =
{

F(B(1−α)ρ)

ωm (1−α)mρ f (x)
ρ > 0,

1 ρ = 0,

then G : M×[0, 1] → R is continuous on a compact space, and therefore uniformly
continuous. Thus, for every β > 0 there exists ρ̃ > 0 such that for all ρ < ˜rho we
have G(x, ρ) ≥ 1 − β for every x ∈ M. In other words, for n large enough, we have
that

F(B(1−α)rn (x)) ≥ (1 − β)(1 − α)mrm
n ωm f (x),

for every x ∈ M. Since f (x) ≥ fmin > 0, we have that,

P (M �⊂ U(Pn, rn)) ≤ D(αrn)
−me−(1−α)m (1−β) fminωm nrm

n .

We can now prove the two parts of the proposition.

1. If we take nrm
n ≥ C log n with C ≥ 1

(1−α)m (1−β) fminωm
, then we have

P (M �⊂ U(Pn, rn)) ≤ D̃
1

log n
→ 0.

123



The topology of probability distributions on manifolds 679

Since we can choose α, β to be arbitrarily small, this statement holds for every
C > 1

fminωm
.

2. Similarly, if we take nrm
n ≥ C log n with C ≥ 2+ε

(1−α)m (1−β) fminωm
, then we have

P (M �⊂ U(Pn, rn)) ≤ D̃
1

n(1+ε) log n
.

Therefore, we have that

∞∑

n=1

P (M �⊂ U(Pn, rn))) < ∞,

and from the Borel-Cantelli Lemma, we conclude that a.s.there exists M > 0 such
that for every n > M we have M ⊂ U(Pn, rn).

��
To prove the result on N̂k,n , we first prove the following lemma.

Lemma 5.3 For every ε > 0, if C > 1+ε
fminωm

, and nrm
n ≥ C log n, then there exists

D ≥ 0, such that

E
{

N̂k,n − Nk,n
} ≤ Dn−ε .

Proof Similarly to the computation of Nk,n , we have that

E
{

N̂k,n
} = nk+1

(k + 1)!E
{

hc
r̂n

(Y)e−pc(Y)
}

.

Thus,

E
{

N̂k,n − Nk,n
} = n

(k + 1)!
∫

M

∫

(Rm )k

f (x, expx (sny))

× (hc
r̂n

(x, expx (sny)) − hc
rn

(x, expx (sny)))e−npc(x,expx (sny))dydx .

Next, using Lemma 5.2 we have that

lim
n→∞

pc(x, expx (sny))

ωm Rm(x, expx (sny))
= lim

n→∞
pc(x, expx (sny))

ωmsm
n R(0, y)

= f (x).

We can use similar uniform continuity arguments to the ones used in the proof of
Theorem 4.4, to show that for a large enough n we have that both

pc(x, expx (sny)) ≥ (1 − α)ωm Rm(x, expx (sny)) f (x), (5.10)
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and
pc(x, expx (sny)) ≥ (1 − α)ωmsm

n Rm(0, y) f (x), (5.11)

for any α > 0. Now, if

hc
r̂n

(x, expx (sny)) − hc
rn

(x, expx (sny)) �= 0,

then necessarily R(x, expx (sny)) ≥ rn , and from (5.10) we have that

pc(x, expx (sny)) ≥ (1 − α) fminωmrm
n .

Combining that with (5.11), for every β ∈ (0, 1) we have that

npc(x, expx (sny)) ≥ β(1 − α) fminωm Rm(0, y) + (1 − β)(1 − α) fminωmnrm
n .

Thus, we have that

E
{

N̂k,n − Nk,n
}

≤ ne−(1−α)(1−β)ωm fminnrm
n

(k + 1)!
∫

M

∫

(Rm )k

f k
min f (x)e−β(1−α) fminωm Rm (0,y)dydx .

The integral on the RHS is bounded. Thus, for any ε > 0, if C ≥ 1
(1−α)(1−β)

1+ε
fminωm

,
and nrm

n ≥ C log n, then

E
{

N̂k,n − Nk,n
} ≤ Dn−ε .

This is true for any α, β > 0. Therefore, the statement holds for any C > 1+ε
fminωm

. ��
Proof of Proposition 4.8 1. For every 1 ≤ k ≤ m,

P
(
Nk,n �= N̂k,n

) ≤ E
{

N̂k,n − Nk,n
}
.

From Lemma 5.3 we have that if nrd
n ≥ C log n with C > ( fminωm)−1 then

lim
n→∞ P

(
Nk,n �= N̂k,n

) = 0.

Since

P
(∃k : Nk,n �= N̂k,n

) ≤
m∑

k=1

P
(
Nk,n �= N̂k,n

)→ 0,

we have that

lim
n→∞ P

(
Nk,n = N̂k,n, ∀1 ≤ k ≤ m

) = 1.
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2. Next, if C > 2( fminωm)−1, then there exists ε > 0 such that 2C > 2+ε
fminωm

. Using
Lemma 5.3 we have that for 1 ≤ k ≤ d there exists Dk > 0 such that

P
(
Nk,n �= N̂k,n

) ≤ Dkn−(1+ε),

Thus,

∞∑

n=1

P
(
Nk,n �= N̂k,n

) ≤ Dk

∞∑

n=1

n−(1+ε) < ∞.

Using the Borel-Cantelli Lemma, we deduce that almost surely there exists Mk > 0
(possibly random) such that for every n > Mk we have

Nk,n = N̂k,n .

Taking M = max1≤k≤m Mk , yields that for every n > M

Nk,n = N̂k,n, ∀1 ≤ k ≤ m,

which completes the proof.
��

Proof of Theorem 4.9 If nrm
n ≥ C log n, and C > (ωm fmin)

−1, then from Proposition
4.7 we have that

lim
n→∞ P (M ⊂ U(Pn, rn)) = 1.

The deformation retract argument in [44] (Proposition 3.1) states that if M ⊂
U(Pn, rn), then U(Pn, 2rn) deformation retracts to M, and in particular—βk(U(Pn,

2rn)) = βk(M) for all k. Thus, we have that

lim
n→∞ P (βk(U(Pn, 2rn)) = βk(M)) = 1. (5.12)

Next,from Proposition 4.8 we have that

lim
n→∞ P

(
Nk,n = N̂k,n,∀1 ≤ k ≤ m

) = 1.

By Morse theory, if Nk,n = N̂k,n for every k, then necessarily βk(U(Pn, rn)) =
βk(U(Pn, r̂n)) for every 0 ≤ k ≤ m (no critical points between rn and r̂n implies no
changes in the homology). Choosing r̂n = 2rn , we have that

lim
n→∞ P (βk(U(Pn, rn)) = βk(U(Pn, 2rn))) = 1. (5.13)
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Combining (5.12) with (5.13) yields

lim
n→∞ P

(
βk,n = βk(M), ∀0 ≤ k ≤ m

) = 1,

which completes the proof of the first part. For the second part of the theorem , repeat
the same arguments using the second part of Propositions 4.7 and 4.8. ��
Acknowledgments The authors would like to thank: Robert Adler, Shmuel Weinberger, John Harer, Paul
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Appendix A: Palm theory for poisson processes

This appendix contains a collection of definitions and theorems which are used in the
proofs of this paper. Most of the results are cited from [45], although they may not
necessarily have originated there. However, for notational reasons we refer the reader
to [45], while other resources include [6,51]. The following theorem is very useful
when computing expectations related to Poisson processes.

Theorem 6.1 (Palm theory for Poisson processes, [45] Theorem 1.6) Let f be a
probability density on R

d , and let Pn be a Poisson process on R
d with intensity λn =

n f . Let h(Y,X ) be a measurable function defined for all finite subsets Y ⊂ X ⊂ R
d

with |Y| = k. Then

E

⎧
⎨

⎩

∑

Y⊂Pn

h(Y,Pn)

⎫
⎬

⎭
= nk

k! E
{
h(Y ′,Y ′ ∪ Pn)

}

where Y ′ is a set of k iid points in R
d with density f , independent of Pn.

We shall also need the following corollary, which treats second moments:

Corollary 6.2 With the notation above, assuming |Y1| = |Y2| = k,

E

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

Y1,Y2⊂Pn|Y1∩Y2|= j

h(Y1, Pn)h(Y2,Pn)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= n2k− j

j !((k − j)!)2 E
{
h(Y ′

1, Y ′
12 ∪ Pn)h(Y ′

2, Y ′
12 ∪ Pn)

}

where Y ′
12 = Y ′

1 ∪Y ′
2 is a set of 2k − j i id points in R

d with density f (x), independent
of Pn, and

∣
∣Y ′

1 ∩ Y ′
2

∣
∣ = j .

Appendix B: Stein’s method

In this paper we omitted the proofs for the limit distributions in Theorems 4.2, 4.4, and
4.6, referring the reader to [13], where these results were proved for point processes
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in a Euclidean space. These proof mainly rely on moment computations similar to the
ones presented in this paper, but technically more complicated. In this section we wish
to introduce the main theorems used in these proofs.

The theorems below are two instances of Stein’s method, used to prove limit distrib-
ution for sums of weakly dependent variables. To adapt these method to the statements
in this paper, one can think of the random variables ξi as some version of the Bernoulli
variables gb

rn
(Y,Pn), gc

rn
(Y,Pn) used in this paper.

Definition 7.1 Let (I, E) be a graph. For i, j ∈ I we denote i ∼ j if (i, j) ∈ E .
Let {ξi }i∈I be a set of random variables. We say that (I,∼) is a dependency graph for
{ξi } if for every I1 ∩ I2 = ∅, with no edges between I1 and I2, the set of variables
{ξi }i∈I1

is independent of {ξi }i∈I2
. We also define the neighborhood of i as Ni :=

{i} ∪ { j ∈ I j ∼ i}.
Theorem 7.2 (Stein-Chen Method for Bernoulli Variables, Theorem 2.1 in [45]) Let
{ξi }i∈I be a set of Bernoulli random variables, with dependency graph (I,∼). Let

pi := E {ξi } , pi, j := E
{
ξiξ j

}
, λ :=

∑

i∈I

pi , W :=
∑

i∈I

ξi , Z ∼ Poisson (λ).

Then,

dTV (W, Z) ≤ min(3, λ−1)

⎛

⎝
∑

i∈I

∑

j∈Ni \{i}
pi j +

∑

i∈I

∑

j∈Ni

pi p j

⎞

⎠ .

Theorem 7.3 (CLT for sums of weakly dependent variables, Theorem 2.4 in [45])
Let (ξi )i∈I be a finite collection of random variables, with E {ξi } = 0. Let (I,∼) be
the dependency graph of (ξi )i∈I , and assume that its maximal degree is D − 1. Set
W :=∑i∈I ξi , and suppose that E

{
W 2
} = 1. Then for all w ∈ R,

|FW (w) − �(w)| ≤ 2(2π)−1/4
√

D2
∑

i∈I

E
{|ξi |3

}+ 6

√

D3
∑

i∈I

E
{|ξi |4

}
,

where FW is the distribution function of W and � that of a standard Gaussian.

Appendix C: Second moment computations

In this section we briefly review the steps required to evaluate the second moment of
either βk,n or Nk,n in order to compute the limit variance in Theorems 4.2, 4.4, and
4.6. Similar computations are required to evaluate higher moments, which are needed
in order to apply Stein’s method for the limit distributions. The proofs follow the
same steps as the proofs in both [29] and [13]. These proofs are long and technically
complicated, and since repeating them again for the manifold case should add no
insight, we refer the reader to these papers for the complete proofs.
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We present the statements in terms of Nk,n , but the same line of arguments can be
applied to Sk,n as well (defined in 5.6).

The variance of Nk,n is

Var
(
Nk,n

) = E{N 2
k,n} − (E {Nk})2. (5.14)

The first term on the right hand side can be written as

E

{
N 2

k,n

}
= E

⎧
⎨

⎩

∑

Y1⊂Pn

∑

Y2⊂Pn

grn (Y1,Pn)grn (Y2,Pn)

⎫
⎬

⎭

=
k+1∑

j=0

E

⎧
⎨

⎩

∑

Y1⊂Pn

∑

Y2⊂Pn

grn (Y1,Pn)grn (Y2,Pn)1 {|Y1 ∩ Y2| = j}
⎫
⎬

⎭

:=
k+1∑

j=0

E
{

I j
}
. (5.15)

Note that
Ik+1 =

∑

Y1⊂Pn

grn (Y1,Pn) = Nk,n, (5.16)

and we know the limit of the expectation of this term in each of the regimes.
Next, for 0 ≤ j < k + 1, using Corollary 6.2 we have

E
{

I j
} = n2k+2− j

j !((k + 1 − j)!)2 E
{
grn (Y ′

1,Y ′
12 ∪ Pn)grn (Y ′

2,Y ′
12 ∪ Pn)

}
, (5.17)

where Y ′
12 = Y ′

1 ∪ Y ′
2 is a set of (2k − j) i id points in R

d with density f (x),
independent of Pn,

∣
∣Y ′

1

∣
∣ = ∣

∣Y ′
2

∣
∣ = k, and

∣
∣Y ′

1 ∩ Y ′
2

∣
∣ = j . For j > 0, the functional

inside the expectation is nonzero for subsets Y ′
1,2 contained in a ball of radius 4rn .

Thus, a change of variables similar to the ones used in the proof of Theorems 4.2, 4.4
and 4.6, can be used to show that this expectation on the right hand side of (5.17) is
O(rm(2k+1− j)

n ). If j = 0 the sets are disjoint, and given Y ′
1 and Y ′

2 we have two options:
If B(Y ′

1) ∩ B(Y ′
2) �= ∅, then a similar bound to the on above applies. Otherwise, the

two balls are disjoint, and therefore the processes B(Y ′
1) ∩ Pn and B(Y ′

1) ∩ Pn are
independent. In this case it can be show that the expected value cancels with E{N 2

k,n}
in (5.14).

In the subcritical regime, the dominated term in (5.15) would be E {Ik+1}, and from
(5.16) we have that Var (Nk) ≈ E {Nk}. In the other regimes, all the terms in (5.15)
are O(n), and thus the limit variance is O(n) as well.
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