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Abstract The main result of this paper is that, for κ ∈ (0, 4], whole-plane SLEκ

satisfies reversibility, which means that the time-reversal of a whole-plane SLEκ trace
is still a whole-plane SLEκ trace. In addition, we find that the time-reversal of a radial
SLEκ trace for κ ∈ (0, 4] is a disc SLEκ trace with a marked boundary point. The
main tool used in this paper is a stochastic coupling technique, which is used to couple
two whole-plane SLEκ traces so that they overlap. Another tool used is the Feynman–
Kac formula, which is used to solve a PDE. The solution of this PDE is then used to
construct the above coupling.

Mathematics Subject Classification 60G · 30C

1 Introduction

The stochastic Loewner evolution (SLE) introduced by Oded Schramm [1] describes
some random fractal curves in plane domains that satisfy conformal invariance and
Domain Markov Property. These two properties make SLEs the most suitable can-
didates for the scaling limits of many two-dimensional lattice models at criticality.
These models are proved or conjectured to converge to SLE with different parameters
(e.g., [2–7]). For basics of SLE, the reader may refer to [8] and [9].

There are several different versions of SLEs, among which chordal SLE and radial
SLE are the most well-known. A chordal or radial SLE trace is a random fractal curve
that grows in a simply connected plane domain from a boundary point. A chordal SLE
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562 D. Zhan

trace ends at another boundary point, and a radial SLE trace ends an interior point.
Their behaviors both depend on a positive parameter κ . When κ ∈ (0, 4], both traces
are simple curves, and all points on the trace other than the initial and final points lie
inside the domain. When κ > 4, the traces have self-intersections.

A stochastic coupling technique was introduced in [10] to prove that, for κ ∈ (0, 4],
chordal SLEκ satisfies reversibility, which means that if β is a chordal SLEκ trace in
a domain D from a to b, then after a time-change, the time-reversal of β becomes a
chordal SLEκ trace in D from b to a. The technique was later used [11,12] to prove
Duplantier’s duality conjecture, which says that, for κ > 4, the boundary of the hull
generated by a chordal SLEκ trace looks locally like an SLE16/κ trace. The technique
was also used to prove that the radial or chordal SLE2 can be obtained by erasing
loops on a planar Brownian motion [13], and the chordal SLE(κ, ρ) introduced in [2]
also satisfies reversibility for κ ∈ (0, 4] and ρ ≥ κ/2 − 2 [14].

Since the initial point and final point of a radial SLE are topologically different,
the time-reversal of a radial SLE trace can not be a radial SLE trace. However, we
may consider whole-plane SLE instead, which describes a random fractal curve in the
Riemann sphere ̂C = C ∪ {∞} that grows from one interior point to another interior
point. Whole-plane SLE is related to radial SLE as follows: conditioned on the initial
part of a whole-plane SLEκ trace, the rest part of such trace has the distribution of a
radial SLEκ trace that grows in the complementary domain of the initial part of this
trace. The main result of this paper is the following theorem.

Theorem 1.1 Whole-plane SLEκ satisfies reversibility for κ ∈ (0, 4].
The theorem in the case κ = 2 has been proved in [15]. The proof used the reversibil-

ity of loop-erased random walk (LERW for short, see [16]) and the convergence of
LERW to whole-plane SLE2. In this paper we will obtain a slightly more general
result: the reversibility of whole-plane SLE(κ, s) process, which is defined by adding
a constant drift to the driving function for the whole-plane SLEκ process. This is the
statement of Theorem 7.1.

To get some idea of the proof, let’s first review the proof of the reversibility of
chordal SLEκ in [10]. We constructed a pair of chordal SLEκ traces γ1 and γ2 in a
simply connected domain D, where γ1 grows from a boundary point a1 to another
boundary point a2, γ2 grows from a2 to a1, and these two traces commute in the
following sense. Fix j �= k ∈ {1, 2}, if Tk is a stopping time for γk , then conditioned
on γk(t), t ≤ Tk , the part of γ j before hitting γk(t)((0, Tk]) has the distribution of a
chordal SLEκ trace that grows from a j to γk(Tk) in Dk(Tk), which is a component of
D\γk(t)((0, Tk]). In the case κ ≤ 4, a.s. γ j hits γk(t)((0, Tk]) exactly at γk(Tk), so γ j

visits γk(Tk) before any γk(t), t < Tk . Since this holds for any stopping time Tk for
γk , the two traces a.s. overlap, which implies the reversibility.

To prove the reversibility of whole-plane SLEκ , we want to construct two whole-
plane SLEκ traces in D = ̂C, one is γ1 from a1 to a2, the other is γ2 from a2 to a1,
so that γ1 and γ2 commute. Here we can not expect that they commute in exactly the
same sense as in the above paragraph. Note that conditioned on γk(t), t ≤ Tk , the part
of γ j before hitting γk(t), t ≤ Tk , can not have the distribution of a whole-plane SLEκ

trace in Dk(Tk) from a1 to γk(Tk) because now the complementary domain Dk(Tk) is
topologically different from ̂C, while whole-plane SLEs are only defined in ̂C. Since
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Reversibility of whole-plane SLE 563

the conditional curve grows from an interior point to a boundary point, it is neither a
radial SLE trace nor a chordal SLE trace.

Thus, we need to define SLE traces in simply connected domains that grow from
an interior point to a boundary point. We use the idea of defining whole-plane SLE
using radial SLE. The situation here is a little different: after a positive initial part, the
rest part of the curve grows in a doubly connected domain. Another difference is that
there is a marked point on the boundary of the initial domain. In this paper, we use the
annulus Loewner equation introduced in [17] together with an annulus drift function
� = �(t, x) to define the so-called annulus SLE(κ,�) process in a doubly connected
domain D, which starts from a point a ∈ ∂ D, and whose growth is affected by a
marked point b ∈ ∂ D. In the case when a and b lie on different boundary components,
by shrinking the boundary component containing a to a singlet, we get the so called
disc SLE(κ,�), which describes a random curve that grows in a simply connected
domain and starts from an interior point.

We find that if � = κ �′
�

, where � is a positive differentiable function defined on
(0,∞) × R that solves a linear PDE and satisfies some periodic condition [see (4.1)
and (4.2)], then using the coupling technique we could construct a coupling of two
whole-plane SLEκ traces: γ1 and γ2, which commute in the sense that, conditioned
on one curve up to a finite stopping time T , the other curve is a disc SLE(κ,�) trace
in the remaining domain, and its marked point is the tip point of the first curve at T .

The main new idea in the current paper is an application of a Feynman–Kac repre-
sentation, which is used to get a formal solution of the PDE for � in the case κ ∈ (0, 4].
Using Fubini’s Theorem, Itô’s formula, and some estimations, we prove that the for-

mal solution �κ is smooth and solves the PDE. We then find that �κ :=κ
�′

κ

�κ
satisfies

the property that the marked point for an annulus or disc SLE(κ,�κ) process is a
subsequential limit point of the trace. This property implies that, if two whole-plane
SLEκ traces commute as in the previous paragraph, then they must overlap. So the
main theorem is proved. Moreover, from the relation between whole-plane SLEκ and
radial SLEκ , we conclude that, for κ ∈ (0, 4], the time-reversal of a radial SLEκ trace
is a disc SLE(κ,�κ) trace.

The marked point and the initial point of an annulus SLE(κ,�) process could
also lie on the same boundary component. In this case, if � = κ �′

�
, and � satisfies

a similar linear PDE [see (4.48)], then for a doubly connected domain D with two
boundary points a1 and a2 on the same boundary component, we can construct a pair
of annulus SLE(κ,�) traces γ1 and γ2 in D, which commute with each other. If an
SLE process in a doubly connected domain is the scaling limit of some random path
in a lattice, which satisfies reversibility at the discrete level, then such SLE should
satisfy reversibility. We hope that the work in this paper will shed some light on the
study of these processes.

The study on the commutation relations of SLE in doubly connected domains
continues the work in [18] by Dubédat, who used some tools from Lie Algebra to
obtain commutation conditions of SLE in simply connected domains. The annulus
SLE(κ,�κ) process used to prove the reversibility of whole-plane SLEκ was later
studied in [19]. When κ = 8/3, the process satisfies the restriction property, which is
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similar to the restriction property for chordal SLE8/3 (see [2]). For κ ∈ (0, 4]\{8/3},
it satisfies some “weak” restriction property.

Lawler [20] used a different method to define annulus SLEκ processes forκ ∈ (0, 4],
which agree with our annulus SLE(κ,�κ) processes. His construction uses the Brown-
ian loop measures. The “strong” (κ = 8/3) and “weak” (κ �= 8/3) restriction prop-
erties of Lawler’s annulus SLE processes are immediate from the definition; and
the reversibility of these processes follows from the chordal reversibility. However,
the reversibility of whole-plane SLE is not proved in [20]. To get the whole-plane
reversibility, some additional work is required based on Lawler’s work. In this paper,
the reversibility of annulus SLE(κ,�κ) and the reversibility of whole-plane SLEκ are
proved separately, and the coupling technique is applied in both proofs, which are
similar though.

Miller and Sheffield [21] recently proved the reversibility of whole-plane SLE for all
κ ∈ [0, 8]. Their proof uses the imaginary geometry of Gaussian free field developed
in their earlier papers (c.f. [22]).

This paper is organized as follows. In Sect. 2, we introduce some symbols and
notations. In Sect. 3, we review several versions of Loewner equations. In Sect. 3.4,
we define annulus SLE(κ,�) and disc SLE(κ,�) processes, whose growth is affected
by one marked boundary point. In Sect. 4 we prove that when � solves (4.1) or
(4.48), there is a commutation coupling of two annulus SLE(κ,�) processes, where
� = κ �′

�
. In Sect. 5, we construct a coupling of two whole-plane SLE processes,

which is similar to the coupling in the previous section. In Sect. 6, we solve PDE (4.1)
using a Feynman–Kac expression, and the solution is then used in Sect. 7 to prove the
reversibility of whole-plane SLEκ process. In fact, we obtain a slightly more general
result: the reversibility of skew whole-plane SLEκ processes for κ ∈ (0, 4]. In the last
section, we find some solutions to the PDE for � and � when κ ∈ {0, 2, 3, 4, 16/3},
which can be expressed in terms of well-known special functions.

2 Preliminary

2.1 Symbols

Throughout this paper, we will use the following symbols. Let ̂C = C ∪ {∞}, D =
{z ∈ C : |z| < 1}, T = {z ∈ C : |z| = 1}, and H = {z ∈ C : Im z > 0}. For
p > 0, let Ap = {z ∈ C : 1 > |z| > e−p} and Sp = {z ∈ C : 0 < Im z < p}. For
p ∈ R, let Tp = {z ∈ C : |z| = e−p} and Rp = {z ∈ C : Im z = p}. Then ∂D = T,
∂H = R, ∂Ap = T ∪ Tp, and ∂Sp = R ∪ Rp. Let ei denote the map z 	→ eiz . Then
ei is a covering map from H onto D, and from Sp onto Ap; and it maps R onto T and
maps Rp onto Tp. For a doubly connected domain D, we use mod(D) to denote its
modulus. For example, mod(Ap) = p.

A conformal map in this paper is a univalent analytic function. A conjugate confor-
mal map is defined to be the complex conjugate of a conformal map. Let I0(z) = 1/z
be the reflection w.r.t. T. Then I0 is a conjugate conformal map from ̂C onto itself,
fixes T, and interchanges 0 and ∞. Let ˜I0(z) = z be the reflection w.r.t. R. Then ˜I0
is a conjugate conformal map from C onto itself and satisfies ei ◦ ˜I0 = I0 ◦ ei . For
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Reversibility of whole-plane SLE 565

p > 0, let Ip(z):=e−p/z and˜Ip(z) = i p + z. Then Ip and˜Ip are conjugate conformal
automorphisms of Ap and Sp, respectively. Moreover, Ip interchanges Tp and T, ˜Ip

interchanges Rp and R, and Ip ◦ ei = ei ◦ ˜Ip.
We will frequently use functions cot(z/2), tan(z/2), coth(z/2), tanh(z/2), sin(z/2),

cos(z/2), sinh(z/2), and cosh(z/2). For simplicity, we write 2 as a subscript. For
example, cot2(z) means cot(z/2), and we have cot′2(z) = − 1

2 sin−2
2 (z).

An increasing function in this paper will always be strictly increasing. For a real
interval J , we use C(J ) to denote the space of real continuous functions on J . The
maximal solution to an ODE or SDE with initial value is the solution with the biggest
definition domain.

Many functions in this paper depend on two variables. In some of these functions,
the first variable represents time or modulus, and the second variable does not. In this
case, we use ∂t and ∂n

t to denote the partial derivatives w.r.t. the first variable, and use
′, ′′, and the superscripts (h) to denote the partial derivatives w.r.t. the second variable.
For these functions, we say that it has period r (resp. is even or odd) if it has period
r (resp. is even or odd) in the second variable when the first variable is fixed. Some
functions in Sects. 4 and 5 depend on two variables: t1 and t2, which both represent
time. In this case we use ∂ j to denote the partial derivative w.r.t. the j-th variable,
j = 1, 2.

In this paper, a domain is a connected open subset of ̂C, and a continuum is a
connected compact subset of ̂C that contains more than one point. A continuum K
is called a hull in C if K ⊂ C and ̂C\K is connected. In this case, there is a unique
conformal map fK from̂C\D ontôC\K and satisfies limz→∞ fK (z)/z = aK for some
positive number aK . Then aK is called the capacity of K , and is denoted by cap(K ).

A doubly connected domain in this paper is a domain whose complement is a
disjoint union of two continuums. Let D be a doubly connected domain. If K is a
relatively closed subset of D, has positive distance from one boundary component
of D, and if D\K is also doubly connected, then we call K a hull in D, and call
the number mod(D) − mod(D\K ) the capacity of K in D, and let it be denoted by
capD(K ).

2.2 Brownian motions

Throughout this paper, a Brownian motion means a standard one-dimensional Brown-
ian motion, and B(t), 0 ≤ t < ∞, will always be used to denote a Brownian motion.
This means that B(t) is continuous, B(0) = 0, and B(t) has independent increment
with B(t) − B(s) ∼ N (0, t − s) for t ≥ s ≥ 0. For κ ≥ 0, the rescaled Brownian
motion

√
κ B(t) will be used to define annulus SLEκ . The symbols B∗(t), ̂B∗(t), or

˜B∗(t) will also be used to denote a Brownian motion, where the ∗ stands for subscript.
Let (Ft )t≥0 be a filtration. By saying that B(t) is an (Ft )-Brownian motion, we mean
that (B(t)) is (Ft )-adapted, and for any fixed t0 ≥ 0, B(t0 + t) − B(t0), t ≥ 0, is a
Brownian motion independent of Ft0 .

Definition 2.1 Let κ > 0 and (Ft )t∈R be a right-continuous filtration. A process
B(κ)(t), t ∈ R, is called a pre-(Ft )-(T; κ)-Brownian motion if (ei (B(κ)(t))) is (Ft )-
adapted, and for any t0 ∈ R,
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566 D. Zhan

Bt0(t):=
1√
κ

(

B(κ)(t0 + t) − B(κ)(t0)
)

, 0 ≤ t < ∞, (2.1)

is an (Ft0+t )-Brownian motion. If (Ft ) is generated by (ei (B(κ)(t))), then we simply
call (B(κ)(t)) a pre-(T; κ)-Brownian motion.

Remark The name of the pre-(T; κ)-Brownian motion comes from the fact that
BT(t) := ei (B(κ)(t)), t ∈ R, is a Brownian motion on T with speed κ: for every
t0 ∈ R, BT(t0) is uniformly distributed on T; and BT(t0 + t)/BT(t0), t ≥ 0, has the
distribution of ei (

√
κ B(t)), t ≥ 0, and is independent of BT(t), t ≤ t0. One may

construct B(κ)(t) as follows. Let B+(t) and B−(t), t ≥ 0, be two independent Brown-
ian motions. Let x be a random variable uniformly distributed on [0, 2π), which is
independent of (B±(t)). Let B(κ)(t) = x + √

κ Bsign(t)(|t |) for t ∈ R. Then B(κ)(t),
t ∈ R, is a pre-(T; κ)-Brownian motion.

Definition 2.2 Let B(κ)(t), t ∈ R, be a pre-(Ft )-(T; κ)-Brownian motion, where
(Ft ) is right-continuous, and every Ft contains all eligible events w.r.t. the process
(ei (B(κ)(t))). Suppose T is an (Ft )-stopping time, and T > t0 for a deterministic
number t0 ∈ R. We say that X (t) satisfies the (Ft )-adapted SDE

d X (t) = a(t)d B(κ)(t) + b(t)dt, −∞ < t < T,

if ei (X (t)), a(t), and b(t) are continuous and (Ft )-adapted, and if for any deterministic
number t0 with t0 < T , Xt0(t) := X (t0 + t)− X (t0) satisfies the following (Ft0+t )t≥0-
adapted SDE with the traditional meaning (c.f. Chapter IV, Section 3 of [23]):

d Xt0(t) = at0(t)
√

κd Bt0(t) + bt0(t)dt, 0 ≤ t < T − t0,

where Bt0(t) is given by (2.1), at0(t) := a(t0+t), and bt0(t) := b(t0+t). Note that Bt0(t)
is an (Ft0+t )t≥0-Brownian motion, Xt0(t), at0(t) and bt0(t) are all (Ft0+t )t≥0-adapted.

2.3 Special functions

We now introduce some functions that will be used to define annulus Loewner equa-
tions. For t > 0, define

S(t, z) = lim
M→∞

M
∑

k=−M

e2kt + z

e2kt − z
= P. V.

∑

2|n

ent + z

ent − z
,

H(t, z) = −iS(t, ei (z)) = −i P. V.
∑

2|n

ent + eiz

ent − eiz
= P. V.

∑

2|n
cot2(z − int).

Then H(t, ·) is a meromorphic function in C, whose poles are {2mπ +i2kt : m, k ∈
Z}, which are all simple poles with residue 2. Moreover, H(t, ·) is an odd function and
takes real values on R\{poles}; Im H(t, ·) ≡ −1 on Rt ; H(t, z + 2π) = H(t, z) and
H(t, z + i2t) = H(t, z) − 2i for any z ∈ C\{poles}.
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Reversibility of whole-plane SLE 567

The power series expansion of H(t, ·) near 0 is

H(t, z) = 2

z
+ r(t)z + O(z3), (2.2)

where r(t) = ∑∞
k=1 sinh−2(kt) − 1

6 . As t → ∞, S(t, z) → 1+z
1−z , H(t, z) → cot2(z),

and r(t) → − 1
6 . So we define S(∞, z) = 1+z

1−z , H(∞, z) = cot2(z), and r(∞) = − 1
6 .

Then r is continuous on (0,∞], and (2.2) still holds when t = ∞. In fact, we have
r(t) − r(∞) = O(e−t ) as t → ∞, so we may define R on (0,∞] by R(t) =
− ∫∞

t (r(s) − r(∞))ds. Then R is continuous on (0,∞], R(t) = O(e−t ) as t → ∞,
and for 0 < t < ∞,

R′(t) = r(t) − r(∞). (2.3)

Let SI (t, z) = S(t, e−t z) − 1 and HI (t, z) = −iSI (t, eiz) = H(t, z + i t) + i . It is
easy to check:

SI (t, z) = P. V.
∑

2�n

ent + z

ent − z
, HI (t, z) = P. V.

∑

2�n

cot2(z − int). (2.4)

So HI (t, ·) is a meromorphic function in C with poles {2mπ + i(2k +1)t : m, k ∈ Z},
which are all simple poles with residue 2; HI (t, ·) is an odd function and takes real
values on R; and HI (t, z + 2π) = HI (t, z), HI (t, z + i2t) = HI (t, z) − 2i for any
z ∈ C\{poles}.

It is possible to express H and HI using classical functions. Let θ(ν, τ ) and θk(ν, τ ),
k = 1, 2, 3, be the Jacobi theta functions defined in Chapter V, Section 3 of [24].
Define (t, z) = θ

( z
2π

, i t
π

)

and I (t, z) = θ2
( z

2π
, i t

π

)

. Then I has period 2π , 

has antiperiod 2π , and

H = 2
′


, HI = 2

′
I

I
. (2.5)

These follow from the product representations of  and I . For example,

I (t, z) =
∞
∏

m=1

(1 − e−2mt )
(

1 − e−(2m−1)t ei z
) (

1 − e−(2m−1)t e−i z
)

. (2.6)

Both  and I solve the heat equation

∂t = ′′, ∂tI = ′′
I . (2.7)

So H and HI solve the PDE:

∂t H = H′′ + H′H, ∂t HI = H′′
I + H′

I HI . (2.8)

We rescale the functions H and HI as follows. For t > 0 and z ∈ C, let

̂H(t, z) = π

t
H
(

π2

t
,
π

t
z

)

+ z

t
, ̂HI (t, z) = π

t
HI

(

π2

t
,
π

t
z

)

+ z

t
. (2.9)
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Since ̂H and ̂HI have period 2π ,

̂H(t, z + 2kt) = ̂H(t, z) + 2k, ̂HI (t, z + 2kt) = ̂HI (t, z) + 2k, k ∈ Z. (2.10)

From the identities for θ in [24] or formula (3) in [25], we see H(t, z) =
i π

t H
(

π2

t , i π
t z
)

− z
t . So

̂H(t, z) = −iH(t,−i z) = P. V.
∑

2|n
coth2(z − nt). (2.11)

Since HI (t, z) = H(t, z + i t) + i ,

̂HI (t, z) = ̂H(t, z + π i) = P. V.
∑

2|n
tanh2(z − nt). (2.12)

From (2.8) and (2.9) we may check that

− ∂t̂H = ̂H′′ + ̂H′
̂H, −∂t̂HI = ̂H′′

I + ̂H′
I HI . (2.13)

From (2.11) and (2.12) we see that ̂H(t, ·) → coth2 and ̂HI (t, ·) → tanh2 as t → ∞.
From (2.4) we see that as t → ∞, HI (t, z) → 0, so its derivatives about z also

tend to 0. The following lemma gives some estimations of these limits.

Lemma 2.1 If | Im z| < t , then

|HI (t, z)| ≤ 4e| Im z|−t

(1 − e| Im z|−t )2(1 − e2(| Im z|−t))
. (2.14)

If t ≥ | Im z|+ 2, then |HI (t, z)| < 5.5e| Im z|−t . For any h ∈ N, if t ≥ | Im z|+ h + 2,
then |H(h)

I (t, z)| < 15
√

he| Im z|−t .

Proof From (2.4), if | Im z| < t , then

|HI (t, z)| =
∣

∣

∣

∣

∣

∞
∑

k=0

(

e(2k+1)t + eiz

e(2k+1)t − eiz
+ e−(2k+1)t + eiz

e−(2k+1)t − eiz

)∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∞
∑

k=0

2 sin(z)

cosh((2k + 1)t) − cos(z)

∣

∣

∣

∣

∣

≤
∞
∑

k=0

2e| Im z|

cosh((2k + 1)t) − cosh(| Im z|) . (2.15)

Here we use the facts that | sin(z)| ≤ e| Im z| and | cos(z)| ≤ cosh(| Im z|) < cosh(t).
Let h0 = t − | Im z| > 0. Then for k ≥ 0,

cosh((2k + 1)t) − cosh(| Im z|)
= 2 sinh2((2k + 1)t + | Im z|) sinh2((2k + 1)t − | Im z|)
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= 1

2
e((2k+1)t+| Im z|)/2(1 − e−(2k+1)t−| Im z|)e((2k+1)t−| Im z|)/2(1 − e−(2k+1)t+| Im z|)

≥ 1

2
e((2k+1)t+| Im z|)/2e((2k+1)t−| Im z|)/2

(

1 − e−h0
)2 = 1

2
e(2k+1)t

(

1 − e−h0
)2

.

So the RHS of (2.15) is not bigger than

∞
∑

k=0

4e| Im z|e−(2k+1)t

(1 − e−h0)2 = 4e| Im z|−t

(1 − e−h0)2(1 − e−2t )
≤ 4e−h0

(1 − e−h0)2(1 − e−2h0)
.

So we proved (2.14).
If t ≥ | Im z| + 2, then 4/((1 − e| Im z|−t )2(1 − e2(| Im z|−t))) ≤ 4/((1 − e−2)2(1 −

e−4)) < 5.5. From (2.14) we have |HI (t, z)| < 5.5e| Im z|−t . Now we assume h ∈ N

and t ≥ | Im z|+h+2. Then for any w ∈ C with |w−z| = h, we have t ≥ | Im w|+2,
so |HI (t, w)| < 5.5e| Im w|−t ≤ 5.5ehe| Im z|−t . From Cauchy’s integral formula and
Stirling’s formula, we have

|H(h)
I (t, z)| ≤ 5.5

h!eh

hh
e| Im z|−t ≤ 5.5

√
2πhe1/(12h)e| Im z|−t < 15

√
he| Im z|−t .

��

3 Loewner equations

3.1 Whole-plane Loewner equation

To motivate the definition of the whole-plane Loewner equation, let’s start with the
well-known radial Leowner equation with reflection about the unit circle T. Let T ∈
(0,∞]. Let βI : [0, T ) → C be a simple curve with βI (0) ∈ T and βI (t) ∈ C\D for
t ∈ (0, T ). Let K I (t) = D ∪ βI ((0, t]), 0 ≤ t < T . Then each K I (t) is a hull in C,
and the capacity increases continuously in t . After a time-change, we may assume that
cap(K I (t)) = et , 0 ≤ t < T . Let gI (t, ·) be the unique conformal map from C\K I (t)
conformally onto C\D with normalization limz→∞ z/gI (t, z) = et . It turns out that
there is ξ ∈ C([0, T )) such that gI (t, ·) satisfies the radial Loewner equation

∂t gI (t, z) = gI (t, z)
eiξ(t) + gI (t, z)

eiξ(t) − gI (t, z)
(3.1)

with initial value gI (0, z) = z. In fact, each gI (t, ·)−1 extends continuously to T, and
maps eiξ(t) to βI (t), and the function ξ is determined by βI up to an integer multiple
of 2π .

Let a ∈ R and T ∈ (a,∞]. Now suppose a simple curve βI : [a, T ) → C satisfies
βI (0) ∈ ea

T and βI (t) ∈ C\ea
D for t ∈ (a, T ). Let K I (t) = ea

D ∪ βI ((a, t]),
a ≤ t < T . Assume that cap(K I (t)) = et , a ≤ t < T . Then the mappings gI (t, ·)
determined by K I (t) also satisfy (3.1) for some ξ ∈ C([a, T )), and the initial value
now is gI (0, z) = e−az. Let a tend to −∞, then the initial point of βI approaches 0.
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570 D. Zhan

So let’s consider a simple curve βI : [−∞, T ) → C with βI (−∞) = 0. Let K I (t) =
βI ([−∞, t]), −∞ < t < T . Assume that cap(K I (t)) = et , −∞ < t < T . Then the
mappings gI (t, ·) determined by K I (t) still satisfy (3.1) for some ξ ∈ C((−∞, T )),
and they have an asymptotic initial value at t = −∞:

lim
t→−∞ et gI (t, z) = z, z ∈ C\{0}. (3.2)

For this reason, we also call (3.1) the whole-plane Loewner equation.
We now reverse the above process. Let T ∈ (−∞,∞] and ξ ∈ C((−∞, T )). Let

gI (t, ·), −∞ < t < T , be the solution of the whole-plane Loewner equation (3.1)
with the asymptotic initial value (3.2). Note that for each fixed z, (3.1) is an ODE in t .
For each t ∈ (−∞, T ), let K I (t) be the set of z ∈ C at which gI (t, ·) is not defined.
Then K I (t) and gI (t, ·), −∞ < t < T , are called the whole-plane Loewner hulls and
maps driven by ξ .

Remark Since the asymptotic initial value is used, the existence and uniqueness of the
solution is not trivial. From Proposition 4.21 in [8] we know that K I (t) and gI (t, ·) exist
and are determined by eiξ(s), −∞ < s ≤ t . Moreover, each gI (t, ·) maps ̂C\K I (t)
conformally ontôC\D and fixes ∞, and gI (t, z) = e−t z+O(1) near ∞. So each K I (t)
is a hull in C with cap(K I (t)) = et . The whole-plane Loewner equation can be viewed
as a mapping which takes the driving function ξ to a family of hulls (K I (t)) or confor-
mal maps (gI (t, ·)). The family (K I (t)) increases in t , but may not be simple curves.

We say that ξ generates a whole-plane Loewner trace βI if

βI (t) := lim
|z|>1,z→eiξ(t)

gI (t, ·)−1(z)

exists for t ∈ (−∞, T ), and if βI (t), −∞ ≤ t < T , is a continuous curve in C.
Such a trace, if it exists, starts from 0, i.e., βI (−∞) := limt→−∞ βI (t) = 0. The trace
is called simple if βI (t), −∞ ≤ t < T , has no self-intersection. If ξ generates a
whole-plane Loewner trace βI , then for each t , C\K I (t) is the unbounded component
of C\βI ([−∞, t]). In particular, if βI is simple, then K I (t) = βI ([−∞, t]) for each
t , and we recover an earlier picture.

Let κ > 0. A pre-(T; κ)-Brownian motion a.s. generates a whole-plane Loewner
trace, which is called a standard whole-plane SLEκ trace. The trace goes from 0 to ∞,
i.e., limt→∞ βI (t) = ∞. If κ ∈ (0, 4], the trace is simple. If the driving function is the
sum of a pre-(T; κ)-Brownian motion and s0t for some constant s0 ∈ R, then we also
get a whole-plane Loewner trace, which is called a standard whole-plane SLE(κ, s0)

trace. The trace still goes from 0 to ∞ as t → ∞, and is simple when κ ≤ 4. For any
z1 �= z2 ∈ ̂C, we may define whole-plane SLEκ and SLE(κ, s0) trace from z1 to z2
via Möbius transform.

Remark Whole-plane SLEκ is related to radial SLE in the way that, if T ∈ R is fixed,
then conditioned on K I (t), −∞ < t ≤ T , the curve βI (T + t), t ≥ 0, is the radial
SLEκ trace in̂C\K I (T ) from βI (T ) to ∞. Whole-plane SLE(κ, s0) is related to radial
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Reversibility of whole-plane SLE 571

SLE(κ,−s0) (the radial Loewner process driven by
√

κ B(t) − s0t) in a similar way.
The additional negative sign is due to the reflection about T.

We will need the following inverted whole-plane Loewner process, which grows
from ∞. For −∞ < t < T , let K (t) = I0(K I (t)) and g(t, ·) = I0 ◦ gI (t, ·) ◦ I0.
Then for each t , g(t, ·) maps ̂C\K (t) conformally onto D and fixes 0. Moreover,
g(t, ·) satisfies (3.1) with some initial value at −∞. We call K (t) and g(t, ·) the
inverted whole-plane Loewner hulls and maps driven by ξ . If ξ generates a whole-
plane Loewner trace βI , then β(t) := I0 ◦βI (t) is a continuous curve in̂C that satisfies
β(−∞) = ∞ and β(t) = limD�z→eiξ(t) g(t, ·)−1(z), −∞ < t < T . We call β the
inverted whole-plane Loewner trace driven by ξ .

Let K I (t) and gI (t, ·), −∞ < t < T , be as before. Let ˜K I (t) = (ei )−1(K I (t)),
−∞ < t < T . It is easy to see that there exists a unique family g̃I (t, ·), −∞ < t < T ,
such that, g̃I (t, ·) maps C\˜K I (t) conformally onto −H, ei ◦ g̃I (t, ·) = gI (t, ·) ◦ ei ,
and g̃I satisfies

∂t g̃I (t, z) = cot2(g̃I (t, z) − ξ(t)), −∞ < t < T, (3.3)

and the initial value at −∞:

lim
t→−∞(g̃I (t, z) − i t) = z.

Then we call ˜K I (t) and g̃I (t, ·) the covering whole-plane Loewner hulls and maps
driven by ξ .

For −∞ < t < T , let ˜K (t) = ˜I0(˜K I (t)) and g̃(t, ·) = ˜I0 ◦ g̃I (t, ·) ◦ ˜I0. Then
˜K (t) = (ei )−1(K (t)) and ei ◦ g̃(t, ·) = g(t, ·) ◦ ei . We call ˜K (t) and g̃(t, ·) the
inverted covering whole-plane Loewner hulls and maps driven by ξ . Then for each
t ∈ (−∞, T ), g̃(t, ·) maps C\˜K (t) conformally onto H, and satisfies (3.3) for t ∈
(−∞, T ) and the initial value at −∞:

lim
t→−∞(g̃(t, z) + i t) = z. (3.4)

3.2 Annulus Loewner equation

The annulus Loewner equation was introduced in [17] to describe curves in a doubly
connected domain. Let p ∈ (0,∞). To motivate the definition, we consider a simple
curve β(t), 0 ≤ t < T , with β(0) ∈ T and β(t) ∈ Ap, 0 < t < T . Let K (t) =
β((0, t]), 0 ≤ t < T . Then each K (t) is a hull in Ap, and capAp

(K (t)) increases
continuously. After a time-change, we may assume that capAp

(K (t)) = t for all t . For
each t , there exists g(t, ·), which maps Ap\K (t) conformally onto Ap−t , and maps
Tp onto Tp−t . Such g(t, ·) is unique only up to a rotation. There are different ways
to make g(t, ·) unique. For example, we may fix a point on w0 ∈ Tp and require
that e−t g(t, ·) fixes w0. The normalization used here does not have a clear geometric
meaning. The work in [17] shows that the g(t, ·) can be chosen to satisfy annulus
Loewner equation of modulus p for some ξ ∈ C([0, T )):
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∂t g(t, z) = g(t, z)S(p − t, g(t, z)/eiξ(t)), 0 ≤ t < T, g(0, z) = z, (3.5)

We now reverse the above process. Let ξ ∈ C([0, T )) where 0 < T ≤ p. Let g(t, ·)
be the solution of the ODE (3.5). For 0 ≤ t < T , let K (t) denote the set of z ∈ Ap

such that the solution g(s, z) blows up before or at time t . We call K (t) and g(t, ·),
0 ≤ t < T , the annulus Loewner hulls and maps of modulus p driven by ξ . It turns out
that, fo each t , K (t) is a hull in Ap with capAp

(K (t)) = t , and g(t, ·) maps Ap\K (t)
conformally onto Ap−t and maps Tp onto Tp−t . To see that g(t, ·) maps Tp onto
Tp−t , one may note that (3.5) implies that ∂t ln |g(t, z)| = Re S(p − t, g(t, z)/eiξ(t)),
and Re S(r, ·) ≡ 1 on Tr because Im H(r, ·) ≡ −1 on Rr and H(r, z) = −iS(t, ei (z)).

We say that ξ generates an annulus Loewner trace β of modulus p if

β(t) := lim
Ap−t �z→eiξ(t)

g(t, ·)−1(z) (3.6)

exists for all t ∈ [0, T ), and if β(t), 0 ≤ t < T , is a continuous curve. The curve
lies in Ap ∪ T and starts from eiξ(0) ∈ T. The trace is called simple if β has no self-
intersection and stays inside Ap for t > 0. In that case, we have K (t) = β((0, t]) for
each t , and recover the picture at the beginning of this subsection.

Remark 1. If ξ generates an annulus Loewner trace β, then for each t , Ap\K (t) is
the component of Ap\β((0, t]) whose boundary contains Tp. If the trace is simple,
then K (t) = β((0, t]) for each t .

2. Let β(t), 0 ≤ t < T , be a simple curve with β(0) ∈ T and β(t) ∈ Ap for
0 < t < T . If it is parameterized by capacity in Ap, i.e., capAp

(β((0, t])) = t for
each t , then it is an annulus Loewner trace of modulus p. In the general case, let
u(t) = capAp

(β((0, t])). Then β(u−1(t)) is an annulus Loewner trace of modulus
p.

3. If ξ(t) = √
κ B(t), 0 ≤ t < p, then a.s. ξ generates an annulus Loewner trace.

If κ ∈ (0, 4], the trace is simple. From Girsanov theorem, the above still hold if
ξ is a semimartingale, whose stochastic part is

√
κ B(t), and whose drift part is a

continuously differentiable function.

The covering annulus Loewner equation of modulus p driven by the above ξ is

∂t g̃(t, z) = H(p − t, g̃(t, z) − ξ(t)), g̃(0, z) = z. (3.7)

For 0 ≤ t < T , let ˜K (t) denote the set of z ∈ Sp such that the solution g̃(s, z) blows up
before or at time t . Then for 0 ≤ t < T , g̃(t, ·) maps Sp\˜K (t) conformally onto Sp−t

and maps Rp onto Rp−t . We call ˜K (t) and g̃(t, ·), 0 ≤ t < T , the covering annulus
Loewner hulls and maps of modulus p driven by ξ . Let K (t) and g(t, ·) be the notations
appeared above. Then we have ˜K (t) = (ei )−1(K (t)) and ei ◦ g̃(t, ·) = g(t, ·) ◦ ei for
0 ≤ t < T .

Since g̃(t, ·) maps Rp onto Rp−t and HI (t, z) = H(t, z + i t) + i , we have

∂t Re g̃(t, z) = HI (p − t, Re g̃(t, z) − ξ(t)), z ∈ Rp.
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Differentiating the above formula w.r.t. z, we obtain

∂t g̃
′(t, z) = g̃′(t, z)H′

I (p − t, Re g̃(t, z) − ξ(t)), z ∈ Rp. (3.8)

If ξ generates an annulus Loewner trace β of modulus p, then a.s.

˜β(t) := lim
Sp−t �z→ξ(t)

g̃(t, ·)−1(z)

exists for 0 ≤ t < T , and ˜β(t), 0 ≤ t < T , is a continuous curve in Sp ∪ R started
from ˜β(0) = ξ(0) ∈ R. Such ˜β is called the covering annulus Loewner trace of
modulus p driven by ξ . And we have β = ei ◦ ˜β. If β is a simple trace, then ˜β has no
self-intersection, stays inside Sp for t > 0, and ˜K (t) = ˜β((0, t]) + 2πZ for each t .

Let K I (t) = Ip(K (t)), gI (t, ·) = Ip−t ◦ g(t, ·) ◦ Ip, ˜K I (t) = ˜Ip(˜K (t)), and
g̃I (t, ·) = ˜Ip−t ◦ g̃(t, ·) ◦ ˜Ip. Then K I (t) is a hull in Ap with capAp

(K I (t)) = t ,
and gI (t, ·) maps Ap\K I (t) conformally onto Ap−t and maps T onto T. Moreover,
˜K I (t) = (ei )−1(K I (t)), g̃I (t, ·) maps Sp\˜K I (t) conformally onto Sp−t , maps R onto
R, satisfies ei ◦ g̃I (t, ·) = gI (t, ·) ◦ ei , and the equation

∂t g̃I (t, z) = HI (p − t, g̃I (t, z) − ξ(t)), g̃(0, z) = z. (3.9)

We call K I (t) and gI (t, ·) (resp. ˜K I (t) and g̃I (t, ·)) the inverted annulus (resp. inverted
covering annulus) Loewner hulls and maps of modulus p driven by ξ . The inverted
hulls grow from the smaller circle Tp instead of the unit circle T.

3.3 Disc Loewner equation

We now review the definition of the disc Loewner equation, which is used to describe a
simple curve in a simply connected domain started from an interior point. The relation
between the disc Loewner equation and the annulus Loewner equation is similar to
that between the whole-plane Loewner equation and the radial Loewner equation.
Intuitively, one considers the inverted annulus Loewner equations of modulus p so
that the hulls start from Tp, and then lets p → ∞.

Let T ∈ (−∞, 0] and ξ ∈ C((−∞, T )). Let gI (t, ·), −∞ < t < T , be the solution
of

∂t gI (t, z) = gI (t, z)SI

(

−t, gI (t, z)/eiξ(t)
)

, −∞ < t < T ;
lim

t→−∞ gI (t, z) = z, ∀z ∈ D\{0}. (3.10)

For each t ∈ (−∞, T ), let K I (t) be the set of z ∈ D at which gI (t, ·) is not defined.
Then K I (t) and gI (t, ·), −∞ < t < T , are called the disc Loewner hulls and maps
driven by ξ .

Remark From Proposition 4.1 and 4.2 in [17] we know that K I (t) and gI (t, ·) exist
and are determined by eiξ(s), −∞ < s ≤ t . Moreover, each gI (t, ·) maps D\K I (t)
conformally onto A−t and maps T onto T.
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We say that ξ generates a disc Loewner trace β if

βI (t) := lim
A−t �z→et+iξ(t)

gI (t, ·)−1(z)

exists for every t ∈ (−∞, T ), and if βI (t), −∞ ≤ t < T , is a continuous curve in D

withβI (−∞) = 0. The trace is called simple if it has no self-intersection. If ξ generates
a disc Loewner trace βI , then for each t , C\K I (t) is the unbounded component of
C\βI ([−∞, t]). In particular, if βI is simple, then K I (t) = βI ([−∞, t]) for each t .

Let βI (t), −∞ ≤ t < T , be a simple curve in D with βI (−∞) = 0. If it is
parameterized by capacity in D, i.e., mod(D\βI ([−∞, t])) = −t for each t , then βI

is a disc Loewner trace. In the general case, let u(t) = − mod(D\βI ([−∞, t])), then
βI (u−1(t)) is a disc Loewner trace.

We will need the following inverted disc Loewner process, which grows from ∞.
For −∞ < t < T , let K (t) = I0(K I (t)) and g(t, ·) = I−t ◦ g(t, ·) ◦ I0. Then each
g(t, ·) mapŝC\D\K (t) conformally onto A−t and maps T onto T−t . Moreover, g(t, ·)
satisfies (3.10) with SI replaced by S. We call K (t) and g(t, ·), −∞ < t < T , the
inverted disc Loewner hulls and maps driven by ξ . If ξ generates a disc Loewner trace
βI , then β:=I0 ◦ βI is called the inverted disc Loewner trace driven by ξ .

The covering disc Loewner hulls and maps are defined as follows. Let ˜K I (t) =
(ei )−1(K I (t)), −∞ < t < T . There is a unique family g̃I (t, ·), −∞ < t < T , which
satisfy that, for each t , g̃I (t, ·) maps H\˜K I (t) conformally onto S−t and maps R onto
R, ei ◦ g̃I (t, ·) = gI (t, ·) ◦ ei , and the following hold:

∂t g̃I (t, z) = HI (−t, g̃I (t, z) − ξ(t)); (3.11)

lim
t→−∞ g̃I (t, z) = z. (3.12)

We call ˜K I (t) and g̃I (t, ·) the covering disc Loewner hulls and maps driven by ξ .
Let ˜K (t) = ˜I0(˜K I (t)) and g̃(t, ·) = ˜I−t ◦ g̃I (t, ·) ◦ ˜I0. Then g̃(t, ·) maps −H\˜K (t)
conformally onto S−t , maps R onto R−t , ei ◦ g̃(t, ·) = g(t, ·) ◦ ei , and satisfies
∂t g̃(t, z) = H(−t, g̃(t, z) − ξ(t)). We call ˜K (t) and g̃(t, ·) the inverted covering disc
Loewner hulls and maps driven by ξ .

Remark Now we summarize the conformal maps that appear in the this section so far.
The relations between a (inverted) whole-plane, annulus, or disc Loewner map g(t, ·)
or gI (t, ·) and its corresponding covering map g̃(t, ·) or g̃I (t, ·) are g(t, ·) ◦ ei =
ei ◦ g̃(t, ·) and gI (t, ·) ◦ ei = ei ◦ g̃I (t, ·). The relation between the inverted pair
g̃(t, ·) and g̃I (t, ·) depends on the three cases. For the whole-plane Loewner maps,

g̃I (t, ·) : C\˜K I (t)
Conf� −H, g̃(t, ·) : C\˜K (t)

Conf� H, ˜I0 ◦ g̃(t, ·) = g̃I (t, ·) ◦ ˜I0.

For the annulus Loewner maps of modulus p,

g̃(t, ·) : (Sp\˜K (t); Rp)
Conf
� (Sp−t ; Rp−t ), g̃I (t, ·) : (Sp\˜K I (t); R)

Conf
� (Sp−t ; R),

˜Ip−t ◦ g̃I (t, ·) = g̃(t, ·) ◦ ˜Ip, t ∈ [0, p).
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For the disc Loewner maps,

g̃I (t, ·) : (H\˜K I (t); R)
Conf
� (S−t ; R), g̃(t, ·) : (−H\˜K (t); R)

Conf
� (S−t ; R−t ),

˜I−t ◦ g̃(t, ·) = g̃I (t, ·) ◦ ˜I0, t ∈ (−∞, 0).

The relation between g(t, ·) and gI (t, ·) depends on the three cases in a similar way.

3.4 SLE with marked points

Definition 3.1 A covering crossing annulus drift function is a real valued C0,1 differ-
entiable function defined on (0,∞) × R. A covering crossing annulus drift function
with period 2π is called a crossing annulus drift function.

Definition 3.2 Suppose � is a covering crossing annulus drift function. Let κ > 0,
p > 0, and x0, y0 ∈ R. Let ξ(t), 0 ≤ t < p, be the maximal solution to the SDE

dξ(t) = √
κd B(t) + �(p − t, ξ(t) − Re g̃(t, y0 + pi))dt, ξ(0) = x0, (3.13)

where g̃(t, ·), 0 ≤ t < p, are the covering annulus Loewner maps of modulus p driven
by ξ . Then the covering annulus Loewner trace of modulus p driven by ξ is called the
covering (crossing) annulus SLE(κ,�) trace in Sp started from x0 with marked point
y0 + pi .

Definition 3.3 Suppose � is a crossing annulus drift function. Let κ > 0, p > 0,
a ∈ T and b ∈ Tp. Choose x0, y0 ∈ R such that a = eix0 and b = e−p+iy0 . Let ξ(t),
0 ≤ t < p, be the maximal solution to (3.13). The annulus Loewner trace β driven by
ξ is called the (crossing) annulus SLE(κ,�) trace in Ap started from a with marked
point b.

The above definition does not depend on the choices of x0 and y0 because � has
period 2π , and for any n ∈ Z, the annulus Loewner objects driven by ξ(t) + 2nπ

agree with those driven by ξ(t).
A covering chordal-type annulus drift function is a real valued C0,1 differentiable

function defined on (0,∞)×(R\2πZ). The word “covering” is omitted if the function
has period 2π . If � is a chordal-type annulus drift function, using the same idea, we
may define the annulus SLE(κ,�) processes, where the initial point a = eix0 and
marked point b = eiy0 both lie on T and are distinct. The driving function ξ is the
solution to (3.13) with Re g̃(t, y0 + pi) replaced by g̃(t, y0).

Via conformal maps, we can then define annulus SLE(κ,�) process and trace in
any doubly connected domain started from one boundary point with another bound-
ary point being marked. Here � is a chordal-type or crossing annulus drift function
depending on whether or not the initial point and the marked point lie on the same
boundary component. Let �I (p, x) = −�(p,−x), then �I is called the dual of �. If
W is a conjugate conformal map of Ap, and �I is the dual of �, then (W (K (t))) is an
annulus SLE(κ,�I ) process in W (Ap) started from W (a) with marked point W (b).
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Definition 3.4 Let κ ≥ 0, b ∈ T, and � be a crossing annulus drift function. Choose
y0 ∈ R such that eiy0 = b. Let B(κ)∗ (t), t ∈ R, be a pre-(T; κ)-Brownian motion.
Suppose ξ(t),−∞ < t < 0, satisfies the following SDE with the meaning in Definition
2.2:

dξ(t) = d B(κ)∗ (t) + �(−t, ξ(t) − g̃I (t, y0))dt, −∞ < t < 0,

where g̃I (t, ·) are the disc Loewner maps driven by ξ . Then we call the disc Loewner
trace driven by ξ the disc SLE(κ,�) trace in D started from 0 with marked point b.

Via conformal maps, we can define disc SLE(κ,�) trace in any simply connected
domain started from an interior point with a marked boundary point.

4 Coupling of two annulus SLE traces

The goal of this section is to prove Theorem 4.1 below, which says that when certain
PDE is satisfied, we may couple two annulus SLE(κ;�) processes such that they
commute with each other. Although this result will not be used directly in the proof of
the whole-plane reversibility, we prove this theorem because on the one hand, the result
may be used in the future, and on the other hand, the proof will serve as a reference
for a more complicated proof of the theorem about coupling two whole-plane SLE
processes.

After some preparation in Sect. 4.1, the construction formally starts from Sect. 4.2,
which resembles Section 3 of [10]. The extra complexity comes from the appearance
of covering maps and inverted maps. Then we construct a two-dimensional local mar-
tingale M in Sect. 4.3, which resembles Section 4 of [10]. In the same subsection, we
derive the boundedness of M when the two processes are stopped at some exiting time.
In Sect. 4.4, we first construct local commutation couplings using M , then construct
the global commutation coupling using the coupling technique, and finishes the proof.

Theorem 4.1 Let κ > 0 and s0 ∈ R. Suppose � is a positive C1,2 differentiable
function on (0,∞) × R that satisfies

∂t� = κ

2
�′′ + HI �

′ +
(

3

κ
− 1

2

)

H′
I �; (4.1)

�(t, x + 2π) = e
2πs0

κ �(t, x), t > 0, x ∈ R. (4.2)

We call � a partition function following Gregory Lawler’s terminology in [20]. Let
� = κ �′

�
. Then � is a crossing annulus drift function. Let �1 = � and �2 be the

dual of �. Then for any p > 0, a1, a2 ∈ T, there is a coupling of two curves: β1(t),
0 ≤ t < p, and β2(t), 0 ≤ t < p, such that for j �= k ∈ {1, 2}, the following hold.

(i) β j is an annulus SLE(κ,� j ) trace in Ap started from a j with marked point
aI,k :=Ip(ak).

(ii) If tk < p is a stopping time w.r.t. (βk(t)), then conditioned on βk(t), 0 ≤ t ≤ tk ,
after a time-change, β j (t), 0 ≤ t < Tj (tk) is the annulus SLE(κ,� j ) process in
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Reversibility of whole-plane SLE 577

a connected component of Ap\Ip(βk((0, tk])) started from a j with marked point
Ip(βk(tk)), where Tj (tk) is the first time that β j visits Ip ◦βk((0, tk]), which is set
to be p if such time does not exist.

Remark 1. The � satisfies the PDE:

∂t� = κ

2
�′′ +

(

3 − κ

2

)

H′′
I + �H′

I + HI �
′ + ��′. (4.3)

On the other hand, if � satisfies (4.3), then there is � such that � = κ �′
�

and (4.1)
holds.

2. The theorem also holds for κ = 0 if � satisfies (4.3) with κ = 0.

4.1 Transformations of PDE

Lemma 4.1 Letσ, s0 ∈ R. Suppose�,�, and�s0 are functions defined on (0,∞)×R,

which satisfy � = �
2
κ

I , �s = �s
2
κ

I , and �s0(t, x) = e− s0x
κ

− s2
0 t
2κ �(t, x). Then the

following PDEs are equivalent:

∂t� = κ

2
�′′ + HI �

′ +
(

σ − 1

κ
+ 1

2

)

H′
I �; (4.4)

∂t� = κ

2
� ′′ + σH′

I �; (4.5)

∂t�s0 = κ

2
� ′′

s0
+ s0�

′
s0

+ σH′
I �s0 . (4.6)

Proof This follows from (2.5), (2.7), and some straightforward computations. ��
Remark When σ = 4

κ
− 1, (4.4) agrees with (4.1).

Lemma 4.2 Let σ, s0 ∈ R. Suppose �s0 is positive, has period 2π , and solves (4.6)
in (0,∞) × R. Then �s0(t, x) → C as t → ∞ for some constant C > 0, uniformly
in x ∈ R.

Proof Fix t0 > 0 and x0 ∈ R. For 0 ≤ t < t0, let Xx0(t) = x0 + √
κ B(t) + st and

M(t) = �s0(t0 − t, Xx0(t)) exp

⎛

⎝σ

t
∫

0

H′
I (t0 − r, Xx0(r))dr

⎞

⎠ .

From (4.6) and Itô’s formula, M(t), 0 ≤ t < t0, is a local martingale. Since �s0 and
H′

I are continuous on (0,∞)×R and have period 2π , we see that, for any t1 ∈ (0, t0],
M(t), 0 ≤ t ≤ t0 − t1, is uniformly bounded, so it is a bounded martingale. Thus,

�s0(t0, x0) =

M(0) = E

⎡

⎣�s0(t1, Xx0(t0−t1)) exp

⎛

⎝σ

t0−t1
∫

0

H′
I (t0−r, Xx0(r))dr

⎞

⎠

⎤

⎦. (4.7)
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Now suppose t0 > t1 ≥ 3. From Lemma 2.1, we see that,

t0−t1
∫

0

|H′
I (t0 − r, Xx0(r))|dr ≤

t0−t1
∫

0

15er−t0 dr ≤ 15e−t1 . (4.8)

Let ε > 0. Choose t1 ≥ 3 such that 15σe−t1 < ε/3. For t ∈ [t1,∞) and x ∈ R,
define

�s0,t1(t, x) = E [�s0(t1, Xx (t − t1))].

As t → ∞, the distribution of ei (Xx (t − t1)) tends to the uniform distribution on
T. Since �s0 is positive, continuous, and has period 2π , we see that �s0,t1(t, x) →

1
2π

∫ 2π

0 �s0(t1, x)dx > 0 as t → ∞, uniformly in x ∈ R. Thus, limt→∞ ln(�s0,t1)

converges uniformly in x ∈ R. So there is t2 > t1 such that if ta, tb ≥ t2 and xa, xb ∈ R,
then | ln(�t1(ta, xa)) − ln(�t1(tb, xb))| < ε/3. From (4.7) and (4.8) we see that

| ln(�s0(t, x)) − ln(�s0,t1(t, x))| ≤ 15σe−t1 < ε/3, t ≥ t1, x ∈ R.

Thus, | ln(�s0(ta, xa)) − ln(�s0(tb, xb))| < ε if ta, tb ≥ t2 and xa, xb ∈ R. So
limt→∞ ln(�s0) converges uniformly in x ∈ R, which implies the conclusion of the
lemma. ��
Lemma 4.3 Let s0 ∈ R. Suppose � is positive, satisfies (4.2), and solves (4.4). Then

there is C > 0 such that �s0(t, x):=C−1e− s0x
κ

− s2
0 t
2κ �(t, x) has period 2π and satisfies

limt→∞ �s0(t, x) = 1, uniformly in x ∈ R.

Proof Let �s0 be given by Lemma 4.1. Since I > 0, �s0 is positive and solves
(4.6). Since � satisfies (4.2) and I has period 2π , �s0 also has period 2π . From
Lemma 4.2, there is C > 0 such that �s0 → C as t → ∞, uniformly in x ∈ R.

Let �s0(t, x):=C−1e− s0x
κ

− s2
0 t
2κ �(t, x). Then �s0 = C−1�s0I (t, x)− 2

κ . From (2.6),
I → 1 as t → ∞, uniformly in x ∈ R. Since I has period 2π , we get the desired
conclusion. ��

4.2 Ensemble

Let p > 0 and ξ1, ξ2 ∈ C([0, p)). For j = 1, 2, let g j (t, ·) (resp. gI, j (t, ·)), 0 ≤ t < p,
be the annulus (resp. inverted annulus) Loewner maps of modulus p driven by ξ j .
Let g̃ j (t, ·) and g̃I, j (t, ·), 0 ≤ t < p, j = 1, 2, be the corresponding covering
Loewner maps. Suppose ξ j generates a simple annulus Loewner trace of modulus p:
β j , j = 1, 2. Let βI, j = Ip ◦ β j , j = 1, 2, be the inverted trace. Define

D = {(t1, t2) : β1((0, t1]) ∩ βI,2((0, t2]) = ∅}
= {(t1, t2) : βI,1((0, t1]) ∩ β2((0, t2]) = ∅}. (4.9)
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For (t1, t2) ∈ D, we define

m(t1, t2) = mod(Ap\β1([0, t1])\βI,2([0, t2]))
= mod(Ap\βI,1([0, t1])\β2([0, t2])). (4.10)

Fix any j �= k ∈ {1, 2} and tk ∈ [0, p). Let Tj (tk) be the maximal number such that
for any t j < Tj (tk), we have (t1, t2) ∈ D. As t j → Tj (tk)−, the spherical distance
between β j ((0, t j ]) and βI,k((0, tk]) tends to 0, so m(t1, t2) → 0. For 0 ≤ t j < Tj (tk),
let β j,tk (t j ) = gI,k(tk, β j (t j )). Then β j,tk (t j ), 0 ≤ t j < Tj (tk), is a simple curve that
starts from gI,k(tk, eiξ j (t j )) ∈ T, and stays inside Ap for t j > 0. Let

v j,tk (t j ) = capAp−tk
(β j,tk ((0, t j ])) = p − tk − m(t1, t2). (4.11)

Then v j,tk is continuous and increasing and maps [0, Tj (tk)) onto [0, S j,tk ) for
some S j,tk ∈ (0, p − tk]. Since m → 0 as t j → Tj (tk), S j,tk = p − tk . Then
γ j,tk (t):=β j,tk (v

−1
j,tk

(t)), 0 ≤ t < p − tk , are the annulus Loewner trace of modulus
p − tk driven by some ζ j,tk ∈ C([0, p − tk)). Let γI, j,tk (t) be the corresponding
inverted annulus Loewner trace. Let h j,tk (t, ·) and hI, j,tk (t, ·) be the corresponding
annulus and inverted annulus Loewner maps. Let ˜h j,tk (t, ·), and ˜hI, j,tk (t, ·) be the
corresponding covering maps.

For 0 ≤ t j < Tj (tk), let ξ j,tk (t j ), βI, j,tk (t j ), g j,tk (t j , ·), gI, j,tk (t j , ·), g̃ j,tk (t j , ·), and
g̃I, j,tk (t j , ·) be the time-changes of ζ j,tk (t), γI, j,tk (t), h j,tk (t, ·), hI, j,tk (t, ·),˜h j,tk (t, ·),
and˜hI, j,tk (t, ·), respectively, via the map v j,tk . For example, this means that ξ j,tk (t j ) =
ζ j,tk (v j,tk (t j )) and g j,tk (t j , ·) = h j,tk (v j,tk (t j ), ·).

For 0 ≤ t j < Tj (tk), let

G I,k,tk (t j , ·) = g j,tk (t j , ·) ◦ gI,k(tk, ·) ◦ g j (t j , ·)−1, (4.12)

˜G I,k,tk (t j , ·) = g̃ j,tk (t j , ·) ◦ g̃I,k(tk, ·) ◦ g̃ j (t j , ·)−1. (4.13)

Then G I,k,tk (t j , ·) maps Ap−t j \g j (t j , βI,k((0, tk])) conformally onto Am(t1,t2) and
maps T onto T; ei ◦ ˜G I,k,tk (t j , ·) = G I,k,tk (t j , ·) ◦ ei ; and ˜G I,k,tk (t j , ·) maps R onto
R. Since γ j,tk (t) = β j,tk (v

−1
j,tk

(t)), from (3.6) and a similar formula for γ , we find

that eiξ j,tk (t j ) = G I,k,tk (t j , eiξ j (t j )) for 0 ≤ t j < Tj (tk). So there is n ∈ Z such
that ˜G I,k,tk (t j , ξ j (t j )) = ξ j,tk (t j ) + 2nπ for 0 ≤ t j < Tj (tk). Since ζ j,tk + 2nπ

generates the same annulus Loewner hulls as ζ j,tk , we may choose ζ j,tk such that for
0 ≤ t j < Tj (tk),

ξ j,tk (t j ) = ˜G I,k,tk (t j , ξ j (t j )). (4.14)

For 0 ≤ t j < Tj (tk), let

A j,h(t1, t2) = ˜G(h)
I,k,t j

(tk, ξ j (t j )), h = 1, 2, 3, (4.15)

A j,S(t1, t2) = A j,3(t1, t2)

A j,1(t1, t2)
− 3

2

(

A j,2(t1, t2)

A j,1(t1, t2)

)2

. (4.16)
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Then A j,S(t1, t2) is the Schwarzian derivative of ˜G I,k,t j (tk, ·) at ξ j (t j ). A standard
argument using Lemma 2.1 in [17] shows that, for 0 ≤ t j < Tj (tk),

v′
j,tk (t j ) = |G ′

I,k,tk (t j , ξ j (t j ))|2 = ˜G ′
I,k,tk (t j , ξ j (t j ))

2 = A j,1(t1, t2)
2, (4.17)

so from (4.11) we have

∂ j m = −A2
j,1. (4.18)

Moreover, for 0 ≤ t j < Tj (tk),

∂t g̃ j,tk (t j , z) = A j,1(t1, t2)
2H(m(t1, t2), g̃ j,tk (t j , z) − ξ j,tk (t j )); (4.19)

∂t g̃I, j,tk (t j , z) = A j,1(t1, t2)
2HI (m(t1, t2), g̃I, j,tk (t j , z) − ξ j,tk (t j )). (4.20)

From (4.13) we have

˜G I,k,tk (t j , ·) ◦ g̃ j (t j , z) = g̃ j,tk (t j , ·) ◦ g̃I,k(tk, z). (4.21)

Differentiate (4.21) w.r.t. t j . Let w = g̃ j (t j , z) → ξ j (t j ). From (3.7), (4.14), (4.19),
and (2.2) we get

∂t˜G I,k,tk (t j , ξ j (t j )) = −3˜G ′′
I,k,tk (t j , ξ j (t j )) = −3A j,2(t1, t2). (4.22)

Differentiate (4.21) w.r.t. t j and z, and let w = g̃ j (t j , z) → ξ j (t j ). Then we get

∂t˜G ′
I,k,tk

(t j , ξ j (t j ))

˜G ′
I,k,tk

(t j , ξ j (t j ))
= 1

2
·
(

A j,2

A j,1

)2

− 4

3
· A j,3

A j,1
+ A2

j,1r(m) − r(p − t j ). (4.23)

Note that both G I,k,tk (t j , ·) and gI,k,t j (tk, ·) map Ap−t j \βI,k,t j ((0, tk]) conformally
onto Am(t1,t2) and maps T onto T. So they differ by a multiplicative constant of modulus
1. Thus, there is Ck(t1, t2) ∈ R such that

˜G I,k,tk (t j , ·) = g̃I,k,t j (tk, ·) + Ck(t1, t2). (4.24)

Interchanging j and k in (4.24), we see that there is C j (t1, t2) ∈ R such that

˜G I, j,t j (tk, ·) = g̃I, j,tk (t j , ·) + C j (t1, t2). (4.25)

From (4.13) we have

g̃I, j,tk (t j , ·) ◦ g̃k(tk, ·) + C j = g̃k,t j (tk, ·) ◦ g̃I, j (t j , ·), (4.26)

g̃I,k,t j (tk, ·) ◦ g̃ j (t j , ·) + Ck = g̃ j,tk (t j , ·) ◦ g̃I,k(tk, ·). (4.27)
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From the definition of inverted annulus Loewner maps, we have

g̃ j,tk (t j , ·) = ˜Im(t1,t2) ◦ g̃I, j,tk (t j , ·) ◦ ˜Ip−tk , g̃ j (t j , ·) = ˜Ip−t j ◦ g̃I, j (t j , ·) ◦ ˜Ip;
g̃I,k,t j (tk, ·) = ˜Im(t1,t2) ◦ g̃k,t j (tk, ·) ◦ ˜Ip−t j , g̃I,k(tk, ·) = ˜Ip−tk ◦ g̃k(tk, ·) ◦ ˜Ip.

From (4.27) and the above formulas, we get g̃k,t j (tk, ·) ◦ g̃I, j (t j , ·) + Ck =
g̃I, j,tk (t j , ·) ◦ g̃k(tk, ·). Comparing this formula with (4.26), we see that C1 + C2 ≡ 0.
Now we define X1 and X2 on D by

X j (t1, t2) = ξ j,tk (t j ) − g̃I, j,tk (t j , ξk(tk))

= ˜G I,k,tk (t j , ξ j (t j )) − g̃I, j,tk (t j , ξk(tk)). (4.28)

From (4.24), (4.25), and C1 + C2 ≡ 0, we have

X1 + X2 ≡ 0. (4.29)

Since H′′′
I is even, we may define Q on D by

Q = H′′′
I (m, X1) = H′′′

I (m, X2). (4.30)

Differentiate (4.20) w.r.t. z twice. We get

∂t g̃′
I, j,tk

(t j , z)

g̃′
I, j,tk

(t j , z)
= A2

j,1H′
I (m, g̃I, j,tk (t j , z) − ξ j,tk (t j )). (4.31)

∂t

(

g̃′′
I, j,tk

(t j , z)

g̃′
I, j,tk

(t j , z)

)

= A2
j,1H′′

I (m, g̃I, j,tk (t j , z) − ξ j,tk (t j ))g̃
′
I, j,tk (t j , z). (4.32)

Let z = ξk(tk) in (4.20), (4.31), and (4.32). Since HI and H′′
I are odd and H′

I is
even, from (4.25) and (4.28) we have

∂ j g̃I, j,tk (t j , ξk(tk)) = −A2
j,1HI (m, X j ). (4.33)

∂ j Ak,1

Ak,1
= A2

j,1H′
I (m, X j ). (4.34)

∂ j

(

Ak,2

Ak,1

)

= −A2
j,1H′′

I (m, X j )Ak,1. (4.35)

Differentiate (4.32) w.r.t. z again, and let z = ξk(tk). Since H′′′
I is even, we get

∂ j

(

Ak,3

Ak,1
−
(

Ak,2

Ak,1

)2
)

= A2
j,1[H′′′

I (m, X j )A2
k,1 − H′′

I (m, X j )Ak,2],

which together with (4.30) and (4.35) implies that

∂ j Ak,S = A2
j,1 A2

k,1 Q. (4.36)
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Define F on D by

F(t1, t2) = exp

⎛

⎝

t2
∫

0

t1
∫

0

A1,1(s1, s2)
2 A2,1(s1, s2)

2 Q(s1, s2)ds1ds2

⎞

⎠ , (4.37)

Since g̃I, j,tk (0, ·) = ˜hI, j,tk (0, ·) = id, when t j = 0, we have Ak,1 = 1, Ak,2 =
Ak,3 = 0, hence Ak,S = 0. From (4.36), we see that

∂ j F

F
= A j,S . (4.38)

Remark There is an explanation of F in terms of Brownian loop measure. If R is a
function on (0,∞) that satisfies R′(t) = r(t) + 1

t , then

−1

3
ln F(t1, t2) − R(t1, t2) + R(t1, 0) + R(0, t2) − R(0, 0)

is the Brownian loop measure of the loops in Ap that intersect both β1([0, t1]) and
βI,2([0, t2]).

4.3 Martingales in two time variables

Let a1, a2 ∈ T be as in Theorem 4.1. Let aI, j = Ip(a j ) ∈ Tp, j = 1, 2. Choose
x1, x2 ∈ R such that a j = eix j , j = 1, 2. Let B1(t) and B2(t) be two independent

Brownian motions. For j = 1, 2, let (F j
t ) be the complete filtration generated by

(B j (t)). Let �, �, �1, and �2 be as in Theorem 4.1. Since � satisfies (4.2), � j ,
j = 1, 2, has period 2π , which implies that they are annulus drift functions. For
j = 1, 2, let ξ j (t j ), 0 ≤ t j < p, be the solution to the SDE:

dξ j (t j ) = √
κd B j (t j ) + � j (p − t j , ξ j (t j ) − g̃I, j (t j , x3− j ))dt j , ξ j (0) = x j .

(4.39)

Then (ξ1) and (ξ2) are independent. For simplicity, suppose κ ∈ (0, 4] (for the case
κ > 4, we may work on Loewner chains and apply Proposition 2.1 in [17]). Then for
j = 1, 2, a.s. (ξ j ) generates a simple annulus Loewner trace β j , which is an annulus
SLE(κ,� j ) trace β j in Ap started from a j with marked point aI,3− j . We may apply
the results in the prior subsection.

As the annulus Loewner objects driven by ξ j , β j , βI, j = Ip ◦ β j , (gI, j (t j , ·)),
(g̃ j (t j , ·)), and (g̃I, j (t j , ·)) are all (F j

t j
)-adapted. Fix j �= k ∈ {1, 2}. Since β j is

(F j
t j
)-adapted and (gI,k(tk, ·)) is (Fk

tk )-adapted, we see that (t1, t2) 	→ β j,tk (t j ) =
gI,k(tk, β j (t j )) defined on D is (F1

t1 ×F2
t2)-adapted. Since g̃ j,tk (t j , ·) and g̃I, j,tk (t j , ·)

are determined by β j,tk (s j ), 0 ≤ s j ≤ t j , they are (F1
t1 × F2

t2)-adapted. From (4.13),
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(˜G I,k,tk (t j , ·)) is (F1
t1 × F2

t2)-adapted. From (4.14), (ξ j,tk (t j )) is also (F1
t1 × F2

t2)-
adapted. From (4.10), (4.28), (4.15), and (4.16), we see that (m), (X j ), (A j,h), h =
1, 2, 3, and (A j,S) are all (F1

t1 × F2
t2)-adapted.

Fix j �= k ∈ {1, 2} and any (Fk
t )-stopping time tk ∈ [0, p). Let F j,tk

t j
= F j

t j
× Fk

tk ,

0 ≤ t j < p. Then (F j,tk
t j

)0≤t j <p is a filtration. Since (B j (t j )) is independent of Fk
tk ,

it is also an (F j,tk
t j

)-Brownian motion. Thus, (4.39) is an (F j,tk
t j

)-adapted SDE. From

now on, we will apply Itô’s formula repeatedly, all SDE will be (F j,tk
t j

)-adapted, and
t j ranges in [0, Tj (tk)).

From (4.22), (4.28), (4.15), and (4.33), we see that X j satisfies

∂ j X j = A j,1∂ξ j (t j ) +
(κ

2
− 3

)

A j,2∂t j + A2
j,1HI (m, X j )∂t j . (4.40)

Let �1 = � and �2(t, x) = �(t,−x). Then for j = 1, 2, � j = �′
j

� j
and � j satisfies

(4.1). From (4.29), we may define Y on D by

Y = �1(m, X1) = �2(m, X2). (4.41)

From (4.1), (4.18), (4.40), and (4.41), we have

∂ j Y

Y
= 1

κ
� j (m, X j )A j,1∂ξ j (t j )

−
(

3

κ
− 1

2

)

(

A2
j,1H′

I (m, X j ) + � j (m, X j )A j,2

)

∂t j . (4.42)

From (4.23) we have

∂ j A j,1

A j,1
= A j,2

A j,1
· ∂ξ j (t j ) +

(

1

2
·
(

A j,2

A j,1

)2

+
(

κ

2
− 4

3

)

· A j,3

A j,1

)

∂t j

+A2
j,1r(m)∂t j − r(p − t j )∂t j .

Let

α = 6 − κ

2κ
, c = (8 − 3κ)(κ − 6)

2κ
.

Actually, c is the central charge for SLEκ . Then we compute

∂ j Aα
j,1

Aα
j,1

= α · A j,2

A j,1
· ∂ξ j (t j ) + c

6
A j,S∂t j + αA2

j,1r(m)∂t j − αr(p − t j )∂t j .

(4.43)

Recall the R defined in Sect. 2.3. Define ̂M on D by

̂M = Aα
1,1 Aα

2,1 F− c
6 Y exp(αR(m)). (4.44)
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Then ̂M is positive. From (2.3), (4.18), (4.34), (4.38), (4.42), and (4.43), we have

∂ j ̂M
̂M

= α
A j,2

A j,1
∂ξ j (t j ) + A j,1

κ
� j (m, X j )∂ξ j (t j )

−αr(p − t j )∂t j + αA2
j,1r(∞)∂t j . (4.45)

When tk = 0, we have A j,1 = 1, A j,2 = 0, m = p−t j , and X j = ξ j (t j )−g̃I, j (t j , xk),
so the RHS of (4.45) becomes 1

κ
� j (p − t j , ξ j (t j ) − g̃I, j (t j , xk))∂ξ j (t j ). Define M

on D by

M(t1, t2) = ̂M(t1, t2)̂M(0, 0)

̂M(t1, 0)̂M(0, t2)
. (4.46)

Then M is also positive, and M(·, 0) ≡ M(0, ·) ≡ 1. From (4.39) and (4.45) we have

∂ j M

M
=
[

(

3 − κ

2

) A j,2

A j,1
+ � j (m, X j )A j,1 − � j (p − t j , ξ j (t j ) − g̃I, j (t j , xk))

]

∂ B j (t j )√
κ

.

(4.47)

So when tk ∈ [0, p) is a fixed (Fk
t )-stopping time, M is a local martingale in t j .

Let J denote the set of Jordan curves in Ap that separate T and Tp. For J ∈ J and
j = 1, 2, let Tj (J ) be the first time that β j visits J . It is also the first time that βI, j

visits Ip(J ). Let JP denote the set of pairs (J1, J2) ∈ J 2 such that Ip(J1) ∩ J2 = ∅
and Ip(J1) is surrounded by J2. This is equivalent to that Ip(J2) ∩ J1 = ∅ and Ip(J2)

is surrounded by J1. Then for every (J1, J2) ∈ JP, βI,1((0, t1])∩β2((0, t2]) = ∅ when
t1 ≤ T1(J1) and t2 ≤ T2(J2), so [0, T1(J1)] × [0, T2(J2)] ⊂ D.

Lemma 4.4 There are positive continuous functions NL(p) and NS(p) defined on
(0,∞) that satisfies NL(p), NS(p) = O(pe−p) as p → ∞ and the following
properties. Suppose K is an interior hull in D containing 0, g maps D\K confor-
mally onto Ap for some p ∈ (0,∞) and maps T onto T, and g̃ is an analytic
function that satisfies ei ◦ g̃ = g ◦ ei . Then for any x ∈ R, | ln(g̃′(x))| ≤ NL(p)

and |Sg̃(x)| ≤ NS(p), where Sg̃(x) is the Schwarzian derivative of g̃ at x, i.e.,
Sg̃(x) = g̃′′′(x)/g̃′(x) − 3

2 (g̃′′(x)/g̃′(x))2.

Proof Let f = g−1 and ˜f = g̃−1. Then ei ◦ ˜f = f ◦ ei . Since ˜f ′(g̃(x)) = 1/g̃′(x)

and S ˜f (g̃(x)) = −Sg̃(x)/g̃′(x)2, we suffice to prove the lemma for ˜f . Let P(p, z) =
− Re SI (p, z) − ln |z|/p and ˜P(p, z) = P(p, eiz) = Im HI (p, z) + Im z/p. Then
P(p, ·) vanishes on T and Tp\{e−p} and is harmonic inside Ap. Moreover, when

z ∈ Ap is near e−p, P(p, z) behaves like − Re( e−p+z
e−p−z ) + O(1). Thus, −P(p, ·) is a

renormalized Poisson kernel in Ap with the pole at e−p. Since ln | f | is negative and
harmonic in Ap and vanishes on T, there is a positive measure μK on [0, 2π) such
that
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Reversibility of whole-plane SLE 585

ln | f (z)| = −
∫

P(p, z/eiξ )dμK (ξ), z ∈ Ap,

which implies that

Im ˜f (z) =
∫

P(p, eiz/eiξ )dμK (ξ) =
∫

˜P(p, z − ξ)dμK (ξ), z ∈ Sp

So for any x ∈ R and h = 1, 2, 3, ˜f (h)(x) = ∫

∂h

∂xh−1∂y
˜P(p, x − ξ)dμK (ξ). Let

m p = inf
x∈R

∂

∂y
˜P(p, x), Mp = sup

x∈R

∂

∂y
˜P(p, x),

M (h)
p = sup

x∈R

∣

∣

∣

∣

∂h

∂h−1
x ∂y

˜P(p, x)

∣

∣

∣

∣

, h = 2, 3.

We have 0 < m p < Mp < ∞ and m p|μK | ≤ ˜f ′ ≤ Mp|μK | on R. Since ˜f (2π) =
˜f (0) + 2π , we get 1/Mp ≤ |μK | ≤ 1/m p. Thus, m p/Mp ≤ ˜f ′ ≤ Mp/m p and

|˜f (h)| ≤ M (h)
p /m p, h = 2, 3, from which follows that |S ˜f | ≤ M(3)

p Mp

m2
p

+ 3
2

(

M(2)
p Mp

m2
p

)2

on R. Since ˜P(p, z) = Im HI (p, z)+Im z/p, we see that ∂
∂y
˜P(p, x) = H′

I (p, x)+ 1
p

and ∂h

∂xh−1∂y
˜P(p, x) = H(h)

I (p, x), h = 2, 3. From Lemma 2.1, Mp, m p = 1
p +

O(e−p) and M (h)
p = O(e−p), h = 2, 3, as p → ∞. So we have ln(Mp/m p) =

O(pe−p) and
M(3)

p Mp

m2
p

+ 3
2

(

M(2)
p Mp

m2
p

)2

= O(pe−p). ��

Proposition 4.1 (Boundedness) Fix (J1, J2) ∈ JP. Then | ln(M)| is bounded on
[0, T1(J1)] × [0, T2(J2)] by a constant depending only on J1 and J2.

Proof In this proof, we say a function is uniformly bounded if its values on
[0, T1(J1)] × [0, T2(J2)] are bounded in absolute value by a constant depending only
on p, J1, and J2. If there is no ambiguity, let �(A, B) denote the domain bounded
by sets A and B, and let mod(A, B) denote the modulus of this domain if it is dou-
bly connected. Let JI,2 = I0(J2). Let p0 = mod(J1, JI,2) > 0. If t1 ≤ T1(J1) and
t2 ≤ T2(J2), since �(J1, JI,2) disconnects K1(t1) and K I,2(t2) in Ap, m(t1, t2) ≥ p0.
Since m ≤ p always holds, m ∈ [p0, p] on [0, T1(J1)] × [0, T2(J2)]. Since R is
continuous on (0,∞), R(m) is uniformly bounded. Since Q = H′′′

I (m, X1) and H′′′
I

is continuous and has period 2π , Q is uniformly bounded. From Lemma 4.4, for
j = 1, 2, | ln(A j,1)| ≤ NL(m), so it is uniformly bounded. From (4.38), ln(F) is uni-
formly bounded. Let s0 ∈ R be as in Theorem 4.1. Let �s0 > 0 be defined by Lemma
4.3, and Ys0 = �s0(X1). Then �s0 has period 2π . So ln(Ys0) is uniformly bounded.
Define ̂Ms0 and Ms0 using (4.44) and (4.46) with Y and ̂M replaced by Ys0 and ̂Ms0 ,
respectively. Then ln(̂Ms0) and ln(Ms0) are uniformly bounded because their factors
are. Now it suffices to show that ln(M) − ln(Ms0) is uniformly bounded. We have
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ln(M(t1, t2)) − ln(Ms0(t1, t2)) = s0

κ
(X1(t1, t2) − X1(t1, 0) − X1(0, t2) + X1(0, 0))

+ s2
0

2κ
(m(t1, t2) − m(t1, 0) − m(0, t2) + m(0, 0)).

The second term on the RHS of the above formula is uniformly bounded because
m ∈ [p0, p]. So it suffices to show that X1(t1, t2) − X1(t1, 0) − X1(0, t2) + X1(0, 0)

is uniformly bounded. Let

˜G(t1, t2) = ˜G I,2,t2(t1, ξ1(t1)), g̃(t1, t2) = g̃I,1,t2(t1, ξ2(t2)).

From (4.28) we have X1 = ˜G − g̃. So it suffices to show that ˜G(t1, t2) − ˜G(t1, 0) −
˜G(0, t2) + ˜G(0, 0) and g̃(t1, t2) − g̃(t1, 0) − g̃(0, t2) + g̃(0, 0) are both uniformly
bounded. From (4.20) we have ∂1g̃(t1, t2) = A2

1,1HI (m(t1, t2), g̃(t1, t2) − ξ1,t2(t1)).

Since A2
1,1 is uniformly bounded, m ∈ [p0, p], and HI is continuous and has period 2π ,

g̃(t1, t2)− g̃(0, t2) is uniformly bounded. Thus, g̃(t1, t2)− g̃(t1, 0)− g̃(0, t2)+ g̃(0, 0)

is uniformly bounded. Let ˜Gd(t1, t2) = ˜G(t1, t2)−ξ1(t1). Then ˜G(t1, t2)−˜G(t1, 0)−
˜G(0, t2) + ˜G(0, 0) = ˜Gd(t1, t2) − ˜Gd(t1, 0) − ˜Gd(0, t2) + ˜Gd(0, 0). To finish the
proof it suffices to show that ˜Gd is uniformly bounded.

Let J be a Jordan curve which is disjoint from J1 and Ip(J2), and separates these
two curves. Let ˜J = (ei )−1(J ). Since ˜Gd(t1, t2) = ˜G I,2,t2(t1, ξ1(t1)) − ξ1(t1), from
the Maximum principle, we suffice to show that supz∈g̃1(t1,˜J )(

˜G I,2,t2(t1, z) − z) is

uniformly bounded. Recall from (4.13) that ˜G I,2,t1(t1, ·) = g̃1,t2(t1, ·) ◦ g̃I,2(t2, ·) ◦
g̃1(t1, ·)−1. So we suffice to show that the following three quantities are uniformly
bounded:

sup
z∈˜J

|̃g1(t1, z) − z|, sup
z∈˜J

|̃gI,2(t2, z) − z|, sup
z∈g̃I,2(t2,˜J )

|̃g1,t2(t1, z) − z|.

The uniformly boundedness of these quantities follow from similar arguments. We
only work on the last one since it is the hardest. From (4.19) we have

g̃1,t2(t1, z) − z =
t1
∫

0

A1,1(s, t2)
2H(m(s, t2), g̃1,t2(s, z) − ξ1,t2(s))ds.

Since
∫ t1

0 A1,1(s, t2)2ds = m(0, t2) − m(t1, t2) is uniformly bounded, we suffice to
show that

sup
z∈g̃I,2(t2,˜J )

|H(m(t1, t2), g̃1,t2(t1, z) − ξ1,t2(t1))|

is uniformly bounded. From the properties of H, we suffice to show that there is a
constant h > 0 such that Im g̃1,t2(t1, ·) ◦ g̃I,2(t2, z) ≥ h for any z ∈ ˜J . This is
equivalent to that |g1,t2(t1, ·) ◦ gI,2(t2, z)| ≤ e−h for any z ∈ J . We suffice to show
that the extremal distance (c.f. [26]) between T and g1,t2(t1, ·)◦ gI,2(t2, J ) is bounded
below by a positive constant depending only on p, J , J1 and J2. From conformal
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Reversibility of whole-plane SLE 587

invariance, that is equal to the extremal distance between J and Tp ∪ βI ((0, t2]),
which is not smaller than the extremal distance between J and Ip(J2) since Ip(J2)

separates J from Tp ∪ βI ((0, t2]). So we are done. ��

4.4 Local couplings and global coupling

Let μ j denote the distribution of (ξ j ), j = 1, 2. Let μ = μ1 × μ2. Then μ

is the joint distribution of (ξ1) and (ξ2), since ξ1 and ξ2 are independent. Fix
(J1, J2) ∈ JP. From the local martingale property of M and Proposition 4.1, we
have E μ[M(T1(J1), T2(J2))] = M(0, 0) = 1. Define νJ1,J2 by dνJ1,J2/dμ =
M(T1(J1), T2(J2)). Then νJ1,J2 is a probability measure. Let ν1 and ν2 be the two
marginal measures of νJ1,J2 . Then dν1/dμ1 = M(T1(J1), 0) = 1 and dν2/dμ2 =
M(0, T2(J2)) = 1, so ν j = μ j , j = 1, 2. Suppose temporarily that the joint distrib-
ution of (ξ1) and (ξ2) is νJ1,J2 instead of μ. Then the distribution of each (ξ j ) is still
μ j .

Fix an (F2
t )-stopping time t2 ≤ T2(J2). From (4.39), (4.47), and Girsanov theorem

(c.f. Chapter VIII, Section 1 of [23]), under the probability measure νJ1,J2 , there is an
(F1

t1 ×F2
t2)t1≥0-Brownian motion ˜B1,t2(t1) such that ξ1(t1), 0 ≤ t1 ≤ T1(J1), satisfies

the (F1
t1 × F2

t2)t1≥0-adapted SDE:

dξ1(t1) = √
κd˜B1,t2(t1) +

(

3 − κ

2

) A1,2

A1,1
dt1 + �1(m, X1)A1,1dt1,

which together with (4.14), (4.22), and Itô’s formula implies that

dξ1,t2(t1) = A1,1
√

κd˜B1,t2(t1) + A2
1,1�1(m, ξ1,t2(t1) − g̃I,1,t2(t1, ξ2(t2)))dt1.

Recall that ζ1,t2(s1) = ξ1,t2(v
−1
1,t2

(s1)) and˜hI,1,t2(s1, ·) = g̃I,1,t2(v
−1
1,t2

(s1), ·). So from

(4.11) and (4.17), there is another Brownian motion ̂B1,t2(s1) such that for 0 ≤ s1 ≤
v1,t2(T1(J1)),

dζ1,t2(s1) = √
κd̂B1,t2(s1) + �1(p − t2 − s1, ζ1,t2(s1) −˜hI,1,t2(s1, ξ2(t2)))ds1.

Moreover, the initial values is ζ1,t2(0) = ξ1,t2(0) = ˜G I,2,t2(0, x1) = g̃I,2(t2, x1).
Thus, after a time-change, gI,2(t2, β1(t1)), 0 ≤ t1 ≤ T1(J1), is a partial annu-
lus SLE(κ,�1) trace in Ap−t2 started from gI,2(t2, a1) with marked point Ip−t2 ◦
ei (ξ2(t2)). This means that, conditioning on F2

t2 , after a time-change, β1(t1), 0 ≤ t1 ≤
T1(J1), is a partial annulus SLE(κ,�1) trace in Ap\βI,2((0, t2]) started from a1 with
marked point βI,2(t2). Similarly, the above statement holds true if the subscripts “1”
and “2” are exchanged.

The joint distribution νJ1,J2 is a local coupling such that the desired properties in
the statement of Theorem 4.1 holds true up to the stopping time T1(J1) and T2(J2).
Then we can apply the coupling technique developed in Section 7 of [10] to construct
a global coupling using the local couplings for different pairs (J1, J2).
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The coupling technique is composed of several steps. First, let {(J k
1 , J k

2 ) : k ∈ N}
denote the set of all pairs in JP such that J k

j , k ∈ N, j = 1, 2, are polygonal curves,
whose vertices have rational coordinates. Second, for every n ∈ N, one may find a
coupling of β1 and β2 such that, for every 1 ≤ k ≤ n, if β1 is stopped at τJ k

1
, and

β2 is stopped at τJ k
2

, then the joint distribution is νJ k
1 ,J k

2
. To construct such coupling,

we work on the two-dimensional random process M . One may prove that there is a
process Mn defined on [0, p]2, which satisfies the following properties:

1. Mn is a martingale in one variable, when the other variable is fixed;
2. Mn = 1 when either variable is 0;
3. Mn = M on [0, τJ k

1
] × [0, τJ k

2
], 1 ≤ k ≤ n.

To construct Mn , we use vertical lines {t1 = τJ k
1
} and horizontal lines {t2 = τJ k

2
},

1 ≤ k ≤ n, to divide the square [0, p]2 into smaller rectangles. First define Mn on

n
⋃

k=1

[0, τJ k
1
] × [0, τJ k

2
] ∪ ({0} × [0, p]) ∪ ([0, p] × {0})

according to 2 and 3. Then we extend Mn to other smaller rectangles one by one in such
a way that in each rectangle R not contained in any [0, τJ k

1
] × [0, τJ k

2
], Mn(t1, t2) =

fR(t1)gR(t2) for some suitable functions fR and gR . Such extension exists, is unique,
and satisfies the desired properties. The reader is referred to Theorem 6.1 in [10] for
details. The νn is then defined by dνn/dμ = Mn(p, p). Finally, the global coupling
measure ν is any subsequential weal limit of the sequence (νn) in some suitable
topology.

4.5 Other results

Here we state without proofs some other results which can be proved using the idea
in the proof of Theorem 4.1.

Theorem 4.2 Let κ > 0. Suppose � is a C1,2 differentiable function on (0,∞) ×
(R\2πZ) that satisfies

∂t� = κ

2
�′′ + H�′ +

(

3

κ
− 1

2

)

H′�. (4.48)

Let � = κ �′
�

, �1 = �, and �2 be the dual of �. Then for any p > 0 and a1 �= a2 ∈ T,
there is a coupling of two curves: β1(t), 0 ≤ t < T1, and β2(t), 0 ≤ t < T2, such that
for j �= k ∈ {1, 2} the following hold.

(i) β j is an annulus SLE(κ,� j ) trace in Ap started from a j with marked point ak .
(ii) If tk ∈ [0, Tk) is a stopping time w.r.t. (Kk(t)), then conditioned on βk(t), 0 ≤ t ≤

tk , after a time-change, β j (t), 0 ≤ t < Tj (tk), is a partial annulus SLE(κ,� j )

process in a component of Ap\βk((0, tk]) started from a j with marked point
βk(tk), where Tj (tk) is the first time that β j hits βk([0, tk]), and is set to be Tj if
such time does not exist. If κ ∈ (0, 4], the word “partial” could be removed.
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Remark 1. The � in the theorem satisfies the following partial differential equation:

∂t� = κ

2
�′′ +

(

3 − κ

2

)

H′′ + �H′ + H�′ + ��′. (4.49)

On the other hand, if � satisfies (4.49), then there is �, which satisfies � = κ �′
�

and (4.48).
2. Theorem 4.2 also holds for κ = 0 if � solves (4.48).
3. We may also derive similar results for radial SLE(κ,�) process and strip

SLE(κ,�) process. In these two cases, � and � are functions of a single variable,
and � = κ �′

�
. If � = ρ

2 cot2 or � = ρ
2 coth2, respectively, in these two cases, then

we get the radial SLE(κ, ρ) and strip SLE(κ, ρ) processes, respectively (c.f. [27]).
For the radial SLE(κ,�) process, to have the commutation relation, we need that
� solves the ODE

0 = κ

2
�′′ + cot2 �′ +

(

3

κ
− 1

2

)

cot′2 � + C�, (4.50)

where C is a constant. For the strip SLE(κ,�) process, � must solves (4.50) with
cot2 replaced by coth2 to guarantee the existence of the commutation coupling.

5 Coupling of whole-plane SLE

The goal of this section is to prove Theorem 5.1 below, which is about commutation
couplings of two whole-plane SLE processes. This result will later be used to prove
the whole-plane reversibility. Since the proof is similar to the proof of Theorem 4.1,
we will frequently quote the arguments in the previous section.

Theorem 5.1 Let κ > 0 and s0 ∈ R. Suppose � is a positive C1,2 differentiable
function on (0,∞)×R that satisfies (4.1) and (4.2). We also call � a partition function.
Let � = κ �′

�
, �1 = �, and �2 be the dual of �1. Let s1 = s0 and s2 = −s0. Then

there is a coupling of two curves βI,1(t), −∞ < t < ∞, and βI,2(t), −∞ < t < ∞,
such that for j �= k ∈ {1, 2}, the following hold.

(i) βI, j is a whole-plane SLE(κ, s j ) trace in ̂C from 0 to ∞;
(ii) Let tk be a finite stopping time w.r.t. (K I,k(t)). Then conditioned on βI,k(s), −∞ <

s ≤ tk , after a time-change, the curve βI, j (t j ), −∞ < t j < Tj (tk), is a disc
SLE(κ,� j ) process in a component of ̂C\I0(βI, j ([−∞, t j ])) started from 0 with
marked point I0(βI, j (t j )), where Tj (tk) is the first time that β j hits βk([−∞, tk]),
or ∞ if such time does not exist.

5.1 Estimations on Loewner maps

Let g̃(t, ·), t ∈ R, be the inverted covering whole-plane Loewner maps driven by some
ξ ∈ C(R). Let z ∈ C and h(t) = Im g̃(t, z) > 0 for t ∈ (−∞, τz), the interval on
which g̃(t, z) is defined. From (3.3) we have − tanh2(h(t)) ≥ h′(t) ≥ − coth2(h(t)),
and
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|∂t g̃(t, z) + i | ≤ 2

eIm g̃(t,z) − 1
= 2

eh(t) − 1
, t ∈ (−∞, τz). (5.1)

So h(t) decreases, and d
dt ln(cosh2(h(t))) ≥ −1/2, which together with (3.4) and

integration implies that cosh2(h(t)) ≥ 1
2 e

Im z
2 − t

2 . Then we have eh(t) ≥ eIm z−t − 3.
From (5.1) we see that, if t < Im z − ln(8), then |∂t g̃(t, z)+ i | ≤ 2

eIm z−t −4
≤ 4et−Im z .

From (3.4) and integration we have

|̃g(t, z) + i t − z| ≤ 4et−Im z ≤ 1/2, if t ≤ Im z − ln(8). (5.2)

If g̃(t, ·) are the covering whole-plane Loewner maps, then from g̃(t, ·) = ˜I0◦ g̃I (t, ·)◦
˜I0, we have

|̃gI (t, z) − i t − z| ≤ 4et+Im z ≤ 1/2, if t ≤ − Im z − ln(8). (5.3)

Let g̃I (t, ·), −∞ < t < 0, be the covering disc Loewner maps driven by some
ξ ∈ (−∞, 0). Let z ∈ H and h(t) = Im g̃I (t, z) > 0 for t ∈ (−∞, τz). From Lemma
2.1 and (3.11) we see that if −t ≥ h(t) + 2 then |h′(t)| ≤ 5.5eh(t)+t , so | d

dt e−h(t)| ≤
5.5et . From (3.12) we see that −t ≥ h(t) + 2 when t is close to −∞. Suppose that
−t ≥ h(t) + 2 does not hold for all t ∈ (−∞, τz), and let t0 be the first t such that
−t = h(t) + 2. Then | d

dt e−h(t)| ≤ 5.5et on (−∞, t0]. From (3.12) and integration we
have et0+2 = e−h(t0) ≥ e− Im z − 5.5et0 , which implies that e− Im z ≤ (e2 + 5.5)et0 <

13et0 . Thus, if t ≤ − Im z − ln(13) then −t ≥ h(t) + 2, so |h′(t)| ≤ 5.5eh(t)+t .
From (3.12) and integration, we see that, if t ≤ − Im z − ln(13), then e− Im g̃I (t,z) ≥
7.5
13 e− Im z , which implies that Im g̃I (t, z) ≤ Im z + ln(13/7.5) < −t − 2, which,
together with Lemma 2.1, implies that |HI (−t, g̃I (t, z) − ξ(t))| ≤ 5.5 13

7.5 eIm z+t <

10eIm z+t . From (3.11), (3.12) and integration we have |̃gI (t, z) − z| ≤ 10eIm z+t , if
t ≤ − Im z − ln(13). If g̃(t, ·) are the inverted covering disc Loewner maps, then from
g̃(t, ·) = ˜I−t ◦ g̃I (t, ·) ◦ ˜I0, we have

|̃g(t, z) + i t − z| ≤ 10e− Im z+t ≤ 10/13, if t ≤ Im z − ln(13). (5.4)

5.2 Ensemble

The argument in this subsection is parallel to that in Sect. 4.2. Let ξ1, ξ2 ∈ C(R). For
j = 1, 2, let gI, j (t, ·) (resp. g j (t, ·)), t ∈ R, be the whole-plane (resp. inverted whole-
plane) Loewner maps driven by ξ j . Let g̃I, j (t, ·) and g̃ j (t, ·), t ∈ R, j = 1, 2, be the
corresponding covering Loewner maps. Suppose ξ j generates a simple whole-plane
Loewner trace: βI, j , j = 1, 2. Let βI, j = I0 ◦ β j , j = 1, 2, be the inverted trace. Let
K j (t) and K I, j (t) be the corresponding hulls. Define D and m using (4.9) and (4.10)
with 0 replaced by −∞ and Ap replaced by ̂C. Fix any j �= k ∈ {1, 2} and tk ∈ R.
Let Tj (tk) be as defined as before. Then for any t j < Tj (tk), we have (t1, t2) ∈ D.
Moreover, as t j → Tj (tk)−, m(t1, t2) → 0.

For −∞ ≤ t j < Tj (tk), let βI, j,tk (t j ) = gk(tk, βI, j (t j )). Then β j,tk is a sim-
ple curve in D starts from 0. For −∞ < t j < Tj (tk), let v j,tk (t j ) = − mod(D\
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βI, j,tk ([−∞, t j ])) = − m(t1, t2). Then v j,tk is continuous and increasing and maps
(−∞, Tj (tk)) onto (−∞, 0). Let γI, j,tk (t) = βI, j,tk (v

−1
j,tk

(t)), −∞ ≤ t < 0. Then
γI, j,tk is the disc Loewner trace driven by some ζ j,tk ∈ C((−∞, 0)). Let γ j,tk be
the corresponding inverted disc Loewner trace. Let hI, j,tk (t, ·) and h j,tk (t, ·) be the
corresponding disc and inverted disc Loewner maps. Let˜hI, j,tk (t, ·) and˜h j,tk (t, ·) be
the corresponding covering Loewner maps.

For −∞ < t j < Tj (tk), let ξ j,tk (t j ), β j,tk (t j ), gI, j,tk (t j , ·), g j,tk (t j , ·), g̃I, j,tk (t j , ·),
and g̃ j,tk (t j , ·) be the time-changes of ζ j,tk (t), γ j,tk (t), hI, j,tk (t, ·), h j,tk (t, ·),
˜hI, j,tk (t, ·), and˜h j,tk (t, ·), respectively, via v j,tk .

Define G I,k,tk (t j , ·) and ˜G I,k,tk (t j , ·) by (4.12) and (4.13). Then we could choose
the driving function ζ j,tk such that (4.14) holds. Define A j,h and A j,S using (4.15) and
(4.16). A standard argument using Lemma 2.1 in [17] shows (4.17) and (4.18) hold
here. From the definition of ˜G I,k,tk (t j , ·), we get (4.21), which can be differentiated to
conclude that (4.22) holds here, and (4.23) holds with p− t j replaced by ∞. Let X j be
defined by (4.28). Then (4.29) holds. Let Q be defined by (4.30). Then (4.31)–(4.36)
still hold.

From Lemma 2.1, we have

Q = O(e− m), as m → ∞. (5.5)

From Lemma 4.4, we see that, for j = 1, 2,

ln(A j,1), A j,S = O(m e− m), as m → ∞. (5.6)

Since et j is the capacity of K I, j (t j ), which contains 0, we have K I, j (t j ) ⊂ {|z| ≤
4et j }. This then implies that K j (t j ) ⊂ {|z| ≥ e−t j /4}, ˜K I, j (t j ) ⊂ {Im z ≥ −t j −
ln(4)}, and ˜K j (t j ) ⊂ {Im z ≤ ln(4) + t j }. Thus,

{(t1, t2) ∈ R
2 : t1 + t2 < − ln(16)} ⊂ D, (5.7)

m(t1, t2) ≥ −t1 − t2 − ln(16), if (t1, t2) ∈ D. (5.8)

From (5.5)–(5.8), we see that A2
1,1 A2

2,1 Q = O(et1+t2) as t1+t2 → −∞. Define F onD
using (4.37) with the lower bounds 0 replaced by −∞. From Lemma 4.4, Ak,S → 0

as t j → −∞. Thus, (4.38) still holds here, and ln(F(t1, t2)) = ∫ t1
−∞

A1,S(s1,t2)
A1,1(s1,t2)2 ·

A1,1(s1, t2)2ds1. Changing variable with x(s1) = m(s1, t2), and using (4.18) and
(5.6),we conclude that

ln(F) = O(m e− m), as m → ∞. (5.9)

5.3 Martingales in two time variables

The argument in this subsection is parallel to that in Sect. 4.3. Let (B(κ)
1 (t)) and

(B(κ)
2 (t)) be two independent pre-(T; κ)-Brownian motion. Let ξ j (t) = B(κ)

j (t)+s j t ,
t ∈ R, j = 1, 2. For simplicity, suppose κ ∈ (0, 4]. Then for j = 1, 2, a.s. (ξ j )

generates a simple whole-plane Loewner trace βI, j , which is a whole-plane SLE(κ, s0)
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trace in ̂C from 0 to ∞. We may apply the results in the prior subsection. For j =
1, 2, let (F j

t )t∈R be the complete filtration generated by ei (ξ j ). The whole-plane

Loewner objects driven by ξ j are all (F j
t )-adapted, because they are all determined

by (ei (ξ j (t))). It is easy to check that for j �= k ∈ {1, 2}, the processes (βI, j,tk ),
(g̃I, j,tk (t j , ·)), (A j,h), h = 1, 2, 3, (A j,S), (G I, j,t j (tk, ·)), (˜G I, j,t j (tk, ·)), (ei (ξ j,tk )),

(ei (X j )), (m), (H(h)
I (m, X1)), (� j (m, X j )), (� j (m, X j )), (Q) and (F) defined on D

are all (F1
t1 ×F2

t2)-adapted. This is not true for (ξ j,tk (t j )) and (X j ), but is true for their
images under the map ei . Define Y using (4.41). Then (Y ) is also (F1

t1 ×F2
t2)-adapted

since � j has period 2π .
In this section we work on SDE with the meaning as in Definition 2.2: the stochastic

part contains pre-(T; κ)-Brownian motions, and the time intervals start from −∞.
The traditional Itô’s formula works only for time intervals that start from 0 or a finite
number. To derive the results in this section, we may truncate the interval “(−∞, T )”
by an arbitrary real number c (and we work on the interval [c, T )), which is close to
−∞. Fix j �= k ∈ {1, 2} and any (Fk

t )-stopping time tk ∈ R. Let F j,tk
t j

= F j
t j

× Fk
tk ,

t j ∈ R. From now on, all SDE will be (F j,tk
t j

)-adapted (with the meaning as in
Definition 2.2), and t j ranges in [0, Tj (tk)).

First, we find that (4.40) still holds here, which then implies (4.42). From the
modified (4.23), we see that (4.43) holds here with p − t j replaced by ∞. Let ̂M be
defined by (4.44). Then (4.45) holds with p − t j replaced by ∞.

Define M on D by

M = ̂M exp

⎛

⎝αr(∞)(m +t1 + t2) +
∑

j=1,2

− s j

κ
ξ j (t j ) + s2

j

2κ
t j

⎞

⎠ . (5.10)

Then M is (F1
t1 ×F2

t2)-adapted. From the modified (4.45) and that ξ j (t j ) = B(κ)
j (t j )+

s j t j , we compute

∂ j M

M
=
[

(

3 − κ

2

) A j,2

A j,1
+ A j,1� j (m, X j ) − s j

]

∂ B(κ)
j (t j )

κ
. (5.11)

So M is a local martingale in t j when tk is a finite stopping time.
Let J denote the set of Jordan curves in C\{0} that surround 0. For J ∈ J and

j = 1, 2, let Tj (J ) denote the first time that β j hits J . Then Tj (J ) is also the first
time that βI, j hits I0(J ). Let HJ denote the closure of the domain bounded by I0(J ),
and let CJ denote the capacity of HJ . If K I, j (t) ⊂ HJ , then et ≤ CJ . So we have
Tj (J ) ≤ ln(CJ ).

Let JP denote the set of pairs (J1, J2) ∈ J 2 such that I0(J1)∩ J2 = ∅ and I0(J1) is
surrounded by J2. This is equivalent to that I0(J2)∩J1 = ∅ and I0(J2) is surrounded by
J1. Then for every (J1, J2) ∈ JP, βI,1(t1) �= β2(t2) when t1 ≤ T1(J1) and t2 ≤ T2(J2),
so (−∞, T1(J1)] × (−∞, T2(J2)] ⊂ D.

Proposition 5.1 (Boundedness) Fix (J1, J2) ∈ JP. (i) | ln(M)| is bounded on
(−∞, T1(J1)] × (−∞, T2(J2)] by a constant depending only on J1 and J2. (ii) Fix
any j �= k ∈ {1, 2}. Then ln(M) → 0 as t j → −∞ uniformly in tk ∈ (−∞, Tk(Jk)].

123



Reversibility of whole-plane SLE 593

Proof Let �s0 be given by Lemma 4.3. Let �s0,1 = �s0 , and �s0,2(t, x) = �s0(t,−x).
Define Ys0 on D by Ys0 = �s0,1(m, X1) = �s0,2(m, X2). Then Ys0 = Y exp(− s0

κ
X1 −

s2
0 m
2κ

). From Lemma 4.3,

ln(Ys0) = o(m) as m → ∞. (5.12)

Define ̂Ms0 using (4.44) with Y replaced by Ys0 . From (5.10) we have

M = Ms0 exp

((

αr(∞) + s2
0

2κ

)

(m +t1 + t2) + s0

κ
(X1 − ξ1(t1) + ξ2(t2))

)

.

(5.13)

From (5.6), (5.9), (5.12), and that R(p) = O(e−p) as p → ∞, we see that there is
a positive continuous function f on (0,∞) with limx→∞ f (x) = 0 such that

| ln(Ms0(t1, t2))| ≤ f (m(t1, t2)). (5.14)

Let �(I0(J1), J2) denote the doubly connected domain bounded by I0(J1) and
J2. Let p0 > 0 denote its modulus. For (t1, t2) ∈ (−∞, T1(J1)] × (−∞, T2(J2)],
since �(I0(J1), J2) disconnects K I,1(t1) from K2(t2), we have m(t1, t2) ≥ p0. On
the other hand, m ≤ p. From (5.14) we see that ln(Ms0) is uniformly bounded. From
(5.7), (5.8), (5.14), and that Tk(Jk) ≤ CJk < ∞, we see that ln(M) → 0 as t j → −∞
uniformly in tk ∈ (−∞, Tk(Jk)]. The rest of the proof follows from (5.13) and the
following proposition. ��
Proposition 5.2 Fix (J1, J2) ∈ JP. (i) |X1 − ξ1 + ξ2| and | m +t1 + t2| are bounded
on (−∞, T1(J1)] × (−∞, T2(J2)] by constants depending only on J1 and J2. (ii) For
any j �= k ∈ {1, 2}, X1 − ξ1 + ξ2 → 0 and m +t1 + t2 → 0 as t j → −∞, uniformly
in tk ∈ (−∞, Tk(Jk)].
Proof Recall that Tj (J j ) ≤ CJj < ∞ for j = 1, 2, and m ≥ p0 > 0 on
(−∞, T1(J1)] × (−∞, T2(J2)]. If there is no ambiguity, let �(A, B) denote the
domain bounded by sets A and B, and let mod(A, B) denote the modulus of this
domain if it is doubly connected.

From (4.28) we have X1(t1, t2) = ˜G I,2,t2(t1, ξ1(t1)) − g̃I,1,t2(t1, ξ2(t2)). So

|X1(t1, t2) − ξ1(t1) + ξ2(t2)| ≤ |̃gI,1,t2(t1, ξ2(t2)) − ξ2(t2)|
+|˜G I,2,t2(t1, ξ1(t1)) − ξ1(t1)|. (5.15)

From (3.12) we have limt1→−∞ g̃I,1,t2(t1, ξ2(t2)) = ξ2(t2). From (4.18), (4.20), and
Lemma 2.1, we see that there is a deterministic positive decreasing function f (x) with
limx→∞ f (x) = 0 such that |̃gI,1,t2(t1, ξ2(t2))−ξ2(t2)| ≤ f (m(t1, t2)). Since m ≥ p0
on (−∞, T1(J1)]×(−∞, T2(J2)], |̃gI,1,t2(t1, ξ2(t2))−ξ2(t2)| is uniformly bounded by
f (p0). From (5.8) and that T2(J2) ≤ CJ2 , we see that g̃I,1,t2(t1, ξ2(t2)) − ξ2(t2) → 0
as t1 → −∞, uniformly in t2 ∈ (−∞, T2(J2)].
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Let J be a Jordan curve separating J1 and JI,2. Let p1 = mod(J, J1) and p2 =
mod(J, JI,2). Let ˜J = (ei )−1(J ). Let hm = inf{Im z : z ∈ ˜J } and hM = sup{Im z :
z ∈ ˜J }. Then both hm and hM are finite. For j = 1, 2, there is h j > 0 depending
only on p j , such that, if K ⊂ D is an interior hull with 0 ∈ K and mod(D\K ) ≥
p j , then K ⊂ {|z| ≤ e−h j }. If t1 ≤ T1(J1), then J1 disconnects J from K1(t1),
so mod(J, K1(t1)) ≥ p1. Since �(J, K1(t1)) is mapped by g1(t1, ·) conformally
onto �(g1(t1, J ), T) ⊂ D, mod(g1(t1, J ), T) ≥ p1. Since g1(t1, J ) surrounds 0,
g1(t1, J ) ⊂ {|z| ≤ e−h1}. Since g̃1(t1, ˜J ) = (ei )−1(g1(t1, J )), g̃1(t1, ˜J ) ⊂ {Im z ≥
h1}. Similarly, if t2 ≤ T2(J2), then g̃I,2(t2, ˜J ) ⊂ {Im z ≤ −h2}. If t1 ≤ T1(J1) and
t2 ≤ T2(J2), then g1,t2(t1, ·) ◦ gI,2(t2, ·) maps C\K1(t1)\K I,2(t2) conformally onto
Am. A similar argument shows that the image of J under this map lies in {e− m +h2 ≤
|z| ≤ e−h1}. Thus, g̃1,t2(t1, g̃I,2(t2, ˜J )) ⊂ {h1 ≤ Im z ≤ m −h2}, if t1 ≤ T1(J1) and
t2 ≤ T2(J2).

Let z0 ∈ C\˜K1(t1)\˜K I,2(t2), w1 = g̃1(t1, z0), w2 = g̃I,2(t2, z0), and w3 =
g̃1,t2(t1, w2). From (5.2), (5.3), and (5.4) we see that

|w1 − (z0 − i t1)| ≤ 4et1−Im z0 ≤ 1/2, if t1 ≤ Im z0 − ln(8); (5.16)

|w2 − (z0 + i t2)| ≤ 4et2+Im z0 ≤ 1/2, if t2 ≤ − Im z0 − ln(8); (5.17)

|w3 − (w2 + i m)| ≤ 10e− m − Im w2 < 1, if Im w2 + m ≥ ln(13). (5.18)

Now let z0 ∈ ˜J . From the prior paragraph, Im g̃1(s, z0) ≥ h1 for s ≤ t1,
Im g̃I,2(s, z0) ≤ −h2 for s ≤ t2, and m(s, t2) − h2 ≥ g̃1,t2(s, w2) ≥ h1 for
s ≤ t1. From (5.1) we have |∂t g̃1(s, z0) + i | ≤ 2

eh1−1
, for s ≤ t1. Similarly,

|∂t g̃I,2(s, z0) − i | ≤ 2
eh2 −1

for s ≤ t2. If t1 ≤ Im z0 − ln(8), then from (5.16),

|w1 − (z0 − i t1)| ≤ 1/2. If t1 > Im z0 − ln(8), we let t ′1 = Im z0 − ln(8),
and w′

1 = g̃1(t ′1, z0). Then we have |w′
1 − (z0 − i t ′1)| ≤ 1/2. From the bound of

|∂t g̃1(s, z0) + i |, we see that

|(w1 + i t1) − (w′
1 + i t ′1)| ≤ 2(t1 − t ′1)

eh1 − 1
≤ 2CJ1 − 2(Im z0 − ln(8))

eh1 − 1

≤ 2CJ1 + 2 ln(8) − 2hm

eh1 − 1
.

Let A1 = 1
2 + max

{

0,
2CJ1+2 ln(8)−2hm

eh1−1

}

. Then in all cases we have

|w1 − (z0 − i t1)| ≤ A1. (5.19)

Similarly, let A2 = 1
2 + max

{

0,
2CJ2 +2 ln(8)+2hM

eh2 −1

}

. Then we always have

|w2 − (z0 + i t2)| ≤ A2. (5.20)

Since Im z0 ≥ hm , we have

t2 − Im w2 ≤ A2 − Im z0 ≤ A2 − hm . (5.21)
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If Im w2 + m(t1, t2) ≥ ln(13), from (5.18), we have |w3 − (w2 + i m(t1, t2))| < 1.
Now suppose that Im w2 + m(t1, t2) < ln(13). We may choose t ′1 < t1 such that
Im w2 + m(t ′1, t2) = ln(13). Let w′

3 = g̃1,t2(t
′
1, w2). Then we have |w′

3 − (w2 +
i m(t ′1, t2))| < 1. For s ≤ t1, since h1 ≤ Im g̃1,t2(s, w2) ≤ m(s, t2) − h2, from
Lemma 2.1 we have

|HI (m(s, t2), i m(s, t2) − g̃1,t2(s, w2) + ξ1,t2(s))| ≤ 4e−h1

(1 − e−h1)3 .

Since HI (m, z) + i = HI (m, z − i m) = −HI (m, i m −z), we have

|H(m(s, t2), g̃1,t2(s, w2) − ξ1,t2(s)) + i | ≤ 4e−h1

(1 − e−h1)3 , if s ≤ t1.

Let C0 = 4e−h1

(1−e−h1 )3 . From (4.18), (4.20), (5.8), (5.21), and the above inequality, we
have

|(w3 − i m(t1, t2)) − (w′
3 − i m(t ′1, t2))| ≤ C0(m(t ′1, t2) − m(t1, t2))

≤ C0(ln(13) − Im w2 + t1 + t2 + ln(16))

≤ C0(ln(13) + ln(16) + CJ1 + A2 − hm).

Let A3 = 1 + max{0, C0(ln(13) + ln(16) + CJ1 + A2 − hm)}. Then |w3 − (w2 +
i m)| ≤ A3 always holds, which together with (5.19) and (5.20) implies that, for any
t1 ≤ T1(J1) and t2 ≤ T2(J2),

|˜G I,2,t2(t1, w1) − w1 − i(m +t1 + t2)| ≤ A1 + A2 + A3, w1 ∈ g̃1(t1, ˜J ). (5.22)

Now g̃1(t1, ˜J ) is a curve with period 2π above R, the function w 	→ ˜G I,2,t2(t1, w)−w

has period 2π , is analytic in �(g̃1(t1, ˜J ), R), and its imaginary part vanishes on R.
Applying the maximum principle to the real part of this function, and using (5.22), we
conclude that

|˜G I,2,t2(t1, ξ1(t1)) − ξ1(t1)| ≤ A1 + A2 + A3, if t1 ≤ T1(J1) and t2 ≤ T2(J2).

This together with (5.15) and the estimation of |̃gI,1,t2(t1, ξ2(t2)) − ξ2(t2)| implies
that |X1 − ξ1 + ξ2| is uniformly bounded on (−∞, T1(J1)] × (−∞, T2(J2)].

Since G I,2,t2(t1, ·) maps T onto T, and is conformal in the domain that con-
tains the region between g1(t1, J ) and T, there must exist z1 ∈ g1(t1, J ) such
that |G I,2,t2(t1, z1)| = |z1|. Choose w1 ∈ g̃1(t1, ˜J ) such that ei (w1) = z1. Then
Im ˜G I,2,t2(t1, w1) = Im w1. From (5.22) we get | m +t1 + t2| ≤ A1 + A2 + A3, if
t1 ≤ T1(J1) and t2 ≤ T2(J2), which finishes the proof of (i).

Now suppose t1 + t2 ≤ −1 − 2 ln(13) − 2 ln(16) and Im z0 = t1−t2
2 . Then

Im z0 − t1 = − Im z0 − t2 = − t1 + t2
2

≥ 1

2
+ ln(13) + ln(16) ≥ ln(8).
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Since ˜K1(t1) ⊂ {Im z ≤ ln(4) + ln(t1)} and ˜K I,2(t2) ⊂ {Im z ≥ − ln(t2) − ln(4)},
we have z0 ∈ C\˜K1(t1)\˜K I,2(t2). From (5.16) and (5.17) we have

|w1 − (z0 − i t1)|, |w2 − (z0 + i t2)| ≤ 4e
t1+t2

2 ≤ 1/2. (5.23)

From (5.8), (5.23), and the upper bound of t1 + t2, we have

Im w2 + m ≥ Im z0 + t2 − 1

2
− t1 − t2 − ln(16) = − t1 + t2+ 1

2
− ln(16) ≥ ln(13).

Thus, from (5.18) and the above inequality we have

|̃g1,t2(t1, w2) − (w2 + i m)| ≤ 10e− m − Im w2 ≤ 264e
t1+t2

2 . (5.24)

From (4.13), (5.23), and (5.24) we see that if t1 + t2 ≤ −1 − 2 ln(13)− 2 ln(16), then

|˜G I,2,t2(t1, w1) − w1 − i(m +t1 + t2)| ≤ 272e
t1+t2

2 , w1 ∈ g̃1(t1, R(t1−t2)/2).

The argument between (5.22) and the end of part (i) can be used here to show that,

if t1 + t2 ≤ −1 − 2 ln(13) − 2 ln(16), then |˜G I,2,t2(t1, ξ1(t1)) − ξ1(t1)| ≤ 272e
t1+t2

2

and | m +t1 + t2| ≤ 272e
t1+t2

2 . These inequalities together with the uniform limit
of g̃I,1,t2(t1, ξ2(t2)) − ξ2(t2) and the fact that T2(J2) ≤ CJ2 imply that (ii) hold
for j = 1 and k = 2. Interchanging t1 and t2, we find that m +t1 + t2 → 0 and
X2 − ξ2 + ξ1 → 0 as t2 → 0, uniformly in t1 ∈ (−∞, T1(J1)]. From (4.29) we see
that X2 − ξ2 + ξ1 = −(X1 − ξ1 + ξ2), so we have X1 − ξ1 + ξ2 → 0 as t2 → 0,
uniformly in t1 ∈ (−∞, T1(J1)]. This completes the proof of part (ii). ��

Let ̂D = D ∪ {(t1,−∞) : t1 ∈ [−∞,∞)} ∪ {(−∞, t2) : t2 ∈ [−∞,∞)}, and
extend M to ̂D such that M = 1 if t1 or t2 equals −∞. From Proposition 5.1, we
see that M is positive and continuous on ̂D. So for any fixed j �= k ∈ {1, 2} and any
(Fk

t )-stopping time tk which is uniformly bounded above, M is a local martingale in
t j ∈ [−∞, Tj (tk)).

5.4 Local coupling and global coupling

Let μ j denote the distribution of (ξ j ), j = 1, 2. Let μ = μ1 × μ2. Then μ

is the joint distribution of (ξ1) and (ξ2), since ξ1 and ξ2 are independent. Fix
(J1, J2) ∈ JP. From the local martingale property of M and Proposition 5.1, we
have E μ[M(T1(J1), T2(J2))] = M(−∞,−∞) = 1. Define νJ1,J2 by dνJ1,J2 =
M(T1(J1), T2(J2))dμ. Then νJ1,J2 is a probability measure. Let ν1 and ν2 be the two
marginal measures of νJ1,J2 . Then dν1/dμ1 = M(T1(J1),−∞) = 1 and dν2/dμ2 =
M(−∞, T2(J2))= 1, so ν j =μ j , j = 1, 2. Suppose temporarily that the distribution
of (ξ1, ξ2) is νJ1,J2 instead of μ. Then the distribution of each (ξ j ) is still μ j .
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Reversibility of whole-plane SLE 597

We may now use the argument in Sect. 4.4 with a few changes. Here M(t1, t2)
satisfies (5.11) instead of (4.47); ξ j (t j ) does not satisfy (4.39), but is a pre-(T; κ)-
Brownian motion with drift s j ·t . The traditional Girsanov theorem needs to be modified
to work for the current setting. Eventually, we can conclude that, under the probability
measure νJ1,J2 , for any j �= k ∈ {1, 2}, if tk is a fixed (Fk

t )-stopping time with
tk ≤ Tk(Jk), and gk(t, ·), −∞ < t < ∞, are the inverted whole-plane Loewner
maps driven by ξk , then conditioned on Fk

tk , after a time-change, gk(tk, K I, j (t j )),
−∞ < t j ≤ Tj (J j ), is a partial disc SLE(κ,� j ) process in D started from 0 with
marked point ei (ξk(tk)).

The proof of Theorem 5.1 can be now completed by applying the coupling tech-
nique.

6 Partial differential equations

With Theorem 5.1 at hand, to prove the main theorem we need to find particular
solutions to (4.1) that satisfy certain properties. This section serves this purpose. From
Lemma 4.1 we see that solving (4.1) is equivalent to solving (4.5) with σ = 4

κ
− 1.

Throughout this section, we assume that κ > 0 and σ ∈ [0, 4
κ
), and will find solutions

to (4.5) in these cases. In particular, we will obtain solutions to (4.1) when κ ∈ (0, 4].
The solutions to (4.5) is obtained by construction. We will transform (4.5) into a

similar PDE (6.26), where HI is replaced bŷHI . We know that as t → ∞,̂HI (t, ·) →
coth2, and PDE (6.26) tends to another PDE (6.27), which has a simple solution ̂�∞
given by (6.28). Then we let ̂�q = ̂�/̂�∞, and find that ̂� solves (6.26) if and only
if ̂�q solves PDE (6.29). A formal solution to (6.29) is expressed by a Feynman–
Kac formula (6.30), which involves diffusion processes. Such diffusion processes are
introduced and studied in Sect. 6.1. In Sect. 6.2 we describe how close is ̂HI (t, ·) to
coth2 when t is big. In Sect. 6.3 we transform the PDE (4.5) for � into the PDE (6.29)
for ̂�q , and give an intuitive reason why the formula (6.30) gives a solution to (6.29).
In Sect. 6.4 we prove that the ̂�q given by (6.30) is smooth, and solves (6.29). So we
obtain a solution � to (4.1). However, such � does not satisfy (4.2). For this purpose,
note that (4.1) is a linear PDE, and HI has period 2π , so any translation of � by an
integer multiple of 2π also solves (4.1). The solutions to (4.1) which also satisfy (4.2)
will be obtained by summing over all translations of � with suitable weights.

The following symbols will be used in this section. For any n, j ∈ N, we call an j-
tuple λ = (λ1, . . . , λ j ) ∈ N

j a partition of n if λ1 ≥ · · · ≥ λ j and
∑ j

k=1 λk = n. The
length of such partition is denoted by l(λ) = j . Let Pn denote the set of all partitions
of n. For example, (n) is the only element in Pn with length 1. Let PN = ⋃

n∈N
Pn

denote the set of all partitions.

6.1 Diffusion processes

Fix τ ≤ 0. For x ∈ R, let u(t, x), t ≥ 0, be the solution to

∂t u(t, x) = τ tanh2(u(t, x) + √
κ B(t)); u(0, x) = x . (6.1)
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598 D. Zhan

Then Xx (t):=u(t, x) + √
κ B(t) satisfies the SDE

d Xx (t) = √
κd B(t) + τ tanh2(Xx (t))dt, Xx (0) = x . (6.2)

Lemma 6.1 For any x ∈ R, we have a.s.
∫∞

0 tanh′
2(Xx (t))dt = ∞ and

lim sup
t→∞

Xx (t) = +∞, lim inf
t→∞ Xx (t) = −∞. (6.3)

Proof Fix x ∈ R. Let X (t) = Xx (t). Define f (t) = ∫ t
0 cosh2(s)−

4
κ
τ ds, t ∈ R. Then

f is a differentiable increasing odd function and satisfies κ
2 f ′′ + τ tanh2 f ′ = 0. Let

Y (t) = f (X (t)). From (6.2) and Itô’s formula, we have dY (t) = f ′(X (t))
√

κd B(t).
Define a time-change function u(t) = ∫ t

0 κ f ′(X (s))2ds. Since τ ≤ 0, f ′(t) ≥ 1,
t ∈ R. Thus, u(t) ≥ t for all t ∈ R. So u maps [0,∞) onto [0,∞), and Y (u−1(t)),
0 ≤ t < ∞, has the distribution of a Brownian motion. Thus, (6.3) holds with X
replaced by Y , which then implies (6.3). Since X is recurrent, and tanh′

2 > 0 on R,
we immediately have a.s.

∫∞
0 tanh′

2(Xx (t))dt = ∞. ��
Lemma 6.2 For any b, c > 0 and x ∈ R,

P[∃t ≥ 0, |Xx (t)| > ct + b] ≤ 2e
2c
κ

(|x |−b). (6.4)

Proof First, it is well known that (6.4) holds with Xx (t) replaced by x +√
κ B(t). So it

suffices to show that (|Xx (t)|) is bounded above by a process that has the distribution
of (|x + √

κ B(t)|). This can be proved by using Theorem 4.1 in [28]. Here we give a
direct proof.

Let Y (t) = |Xx (t)| From (6.2) and Tanaka–Itô’s formula, we have

Y (t) = |x | + √
κ B0(t) + κ

2
τ

t
∫

0

tanh2(Y (s))ds + L(t), t ≥ 0, (6.5)

where B0(t) is a Brownian motion, L(t) is a non-decreasing function, which satisfies
L(0) = 0 and is constant on every interval of {Y (t) > 0}.

Fix t0 ≥ 0. There is t ′0 ∈ [0, t0] such that L(t) is constant on [t ′0, t0]. We may
assume t ′0 is the smallest such number. There are two cases. Case 1: t ′0 = 0. Then
L(t0) = L(t ′0) = L(0) = 0. Since τ ≤ 0, from (6.5), Y (t0) ≤ |x | + √

κ B0(t). Case 2:
t ′0 > 0. Then Y (t ′0) = 0. Since τ ≤ 0, from (6.5),

Y (t0) − |x | − √
κ B0(t0) ≤ Y (t ′0) − |x | − √

κ B0(t
′
0) = −|x | − √

κ B0(t
′
0).

Thus, in either case, we have

Y (t0) ≤ |x | + √
κ B0(t0) + max

{

0, sup
0≤s≤t0

{−|x | − √
κ B0(s)}

}

.
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Reversibility of whole-plane SLE 599

The RHS of the above inequality defines a process that has the distribution of |x +√
κ B(t0)|, t0 ≥ 0 (c.f. Chapter VI, Section 2 of [23]), so the proof is completed. ��

Lemma 6.3 There are Cn > 0, n ∈ N, with C1 = 1, such that

∣

∣

∣tanh(n)
2 (x)

∣

∣

∣ ≤ Cn tanh′
2(x) ≤ Cn

2
, x ∈ R, n ∈ N.

Proof Note that tanh′
2(x) = 1

2 cosh−2
2 (x) ∈ (0, 1/2]. So the second “≤” holds. By

induction, one can prove that for every n, there are a(n)
j ∈ R, 0 ≤ j ≤ n − 1, such that

tanh(n)
2 (x) =

n−1
∑

j=0

a(n)
j cosh−2− j

2 (x) sinh j
2(x) =

n−1
∑

j=0

a(n)
j cosh−2

2 (x) tanh j
2(x).

Since
∣

∣

∣tanh j
2(x)

∣

∣

∣ ≤ 1 and cosh−2
2 = 2 tanh′

2, we may choose Cn = 2
∑

j

∣

∣

∣a
(n)
j

∣

∣

∣. ��

Lemma 6.4 For every m ∈ N, there is a polynomial Pm(t) of degree m − 1 such that
for any t > 0 and x ∈ R, | ∂m

∂xm Xx (t)| ≤ Pm(t).

Proof Since Xx (t) = u(t, x) + √
κ B(t), ∂n

∂xn Xx (t) = u(n)(t, x). It suffices to show
that for every m ∈ N, there is some polynomial Pm(t) of degree m − 1, such that

|u(m)(t, x)| ≤ Pm(t), t > 0, x ∈ R. (6.6)

Let fx (t) = τ tanh′
2(Xx (t)). Since τ ≤ 0 and tanh′

2 > 0, fx (t) ≤ 0. Differentiating
(6.1) w.r.t. x and using u′(0, x) = 1, we get u′(t, x) = exp(

∫ t
0 fx (s)ds) ∈ (0, 1].

Thus, (6.6) holds in the case n = 1 with P1(t) ≡ 1.
Let n ∈ N, n ≥ 2. Suppose that (6.6) holds for any m ≤ n −1. Differentiating (6.1)

n times, by induction we find that there are bn(λ) ∈ R for λ ∈ Pn with bn((n)) = τ

such that

∂t u
(n)(t, x)=

∑

λ∈Pn

bn(λ) tanh(l(λ))
2 (Xx (t))

l(λ)
∏

k=1

u(λk )(t, x), u(n)(0, x)=0. (6.7)

Observe that the term u(n)(t, x) appears only once in (6.7), i.e, in the case λ = ((n)),
and the coefficient is τ tanh′

2(Xx (t)) = fx (t). From Lemma 6.3 and induction hypoth-
esis, there is a polynomial gx (t) of degree n − 2 such that

∂t u
(n)(t, x) = fx (t)u

(n)(t, x) + gx (t), u(n)(0, x) = 0.

Solving this inequality using the fact that fx (t) ≤ 0, we can conclude that (6.6)
holds in the case m = n, which finishes the proof. ��
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6.2 Some estimations

We will need some estimations about the limits of ̂HI − tanh2 as t → ∞. Let

̂HI,q(t, z) = ̂HI (t, z) − tanh2(z). (6.8)

From (2.12) we have

̂H′
I,q(t, x) =

∑

2|n �=0

tanh′
2(x − nt) =

∑

2|n �=0

1

2
cosh−2

2 (x − nt) > 0. (6.9)

Lemma 6.5 Let Cn, n ∈ N, be as in Lemma 6.3. Note that C1 = 1. Then

|̂HI,q(t, x)| ≤ |x |
t

+ 3 + 2e−t

1 − e−2t
, t > 0, x ∈ R. (6.10)

∣

∣

∣

̂H(n)
I,q(t, x)

∣

∣

∣ ≤ Cn

(

1

2
+ 4e−t

1 − e−2t

)

, t > 0, x ∈ R, n ∈ N. (6.11)

Moreover, for any c > 0,

|̂HI,q(t, x)| ≤ 2e(c−2)t

1 − e−2t
, if t > 0, x ∈ R, |x | ≤ ct. (6.12)

∣

∣

∣

̂H(n)
I,q(t, x)

∣

∣

∣ ≤ Cn
4e(c−2)t

1 − e−2t
, if t > 0, x ∈ R, |x | ≤ ct, n ∈ N. (6.13)

Proof We first show (6.12). From (2.12) and (6.8) we have

̂HI,q(t, x) =
∞
∑

m=1

(tanh2(x − 2mt) + tanh2(x + 2mt))

=
∞
∑

m=1

(

−e2mt − ex

e2mt + ex
+ e2mt − e−x

e2mt + e−x

)

=
∞
∑

m=1

2(ex − e−x )

e2mt + e−2mt + ex + e−x
.

Thus,

|̂HI,q(t, x)| ≤
∞
∑

m=1

2e|x |

e2mt
= 2e|x |−2t

1 − e−2t
. (6.14)

Then (6.12) is a direct consequence of this inequality.
Secondly, we show (6.10). Since | tanh2(x)| ≤ 1, from (6.8) it suffices to show

|̂HI (t, x)| ≤ |x |
t

+ 2 + 2e−t

1 − e−2t
. (6.15)
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We first consider the case |x | ≤ t . From (6.14) we have

|̂HI (t, x)| ≤ | tanh2(x)| + |̂HI,q(t, x)| ≤ 1 + 2e|x |−2t

1 − e−2t
≤ 1 + 2e−t

1 − e−2t
. (6.16)

Thus, (6.15) holds in this case.
Then we consider the case |x | ≥ t . There exists m ∈ N such that (2m − 1)t ≤

|x | ≤ (2m + 1)t . Since ̂HI is odd, we only need to consider the case that (2m −
1)t ≤ x ≤ (2m + 1)t . Let x0 = x − 2mt . Then |x0| ≤ t . From (2.10) we have
̂HI (t, x) = 2m + ̂HI (t, x0). From (6.16) with x = x0 we have

|̂HI (t, x)| ≤ 2m + |̂HI (t, x0)| ≤ 2m + 1 + 2e−t

1 − e−2t
≤ |x |

t
+ 2 + 2e−t

1 − e−2t
,

where the last inequality uses |x |
t ≥ 2m − 1. So we have (6.15) and (6.10).

Now we prove (6.11) and (6.13). From (6.9) we have

0 < ̂H′
I,q(t, x) =

∑

2|n �=0

1

2
cosh−2

2 (|nt − x |) ≤
∑

2|n �=0

1

2
cosh−2

2 (|n|t − |x |)

=
∞
∑

m=1

cosh−2
2 (2mt − |x |) ≤ 4

∞
∑

m=1

e|x |−2mt = 4e|x |−2t

1 − e−2t
. (6.17)

which implies (6.13) in the case n = 1. From (6.17) we have ̂H′
I (t, x) < 1

2 + 4e−t

1−e−2t if

|x | ≤ t . Since ̂H′
I has period 2t , this inequality holds for all x ∈ R. Since ̂H′

I,q < ̂H′
I ,

(6.11) holds in the case n = 1. From (6.9) and Lemma 6.3 we have |̂H(n)
I,q(t, x)| ≤

Cn̂H′
I,q(t, x). So (6.11) and (6.13) in the case n ≥ 2 follow from those in the case

n = 1. ��
Lemma 6.6 For every n ∈ N ∪ {0}, there is a constant Dn > 0 such that for any
j ∈ {1, 2}, t > 0, and x ∈ R,

∣

∣

∣∂
j

t
̂H(n)

I,q(t, x)

∣

∣

∣ ≤ Dn

( |x |
t

+ 3 + 2e−t

1 − e−2t

) j (1

2
+ 4e−t

1 − e−2t

)

. (6.18)

Moreover, for any n ∈ N ∪ {0} and c > 0, there is a constant Dn > 0, such that

∣

∣

∣∂
j

t
̂H(n)

I,q(t, x)

∣

∣

∣ ≤ Dn

(

2e(c−2)t

1 − e−2t

) j+1

, if t > 0, x ∈ R, |x | ≤ ct; (6.19)

Proof Let A(t, x) = |x |
t + 3 + 2e−t

1−e−2t , B(t, x) = 1
2 + 4e−t

1−e−2t , and Cc(t, x) = 2e(c−2)t

1−e−2t .
In this proof, by X � Y we mean that there is a constant C such that X ≤ CY . Here
C may depend on n if X depends on n. From (6.10), (6.11), (6.12), and (6.13), we see
that
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|HI,q(t, x)| � A(t, x),

∣

∣

∣H(n)
I,q(t, x)

∣

∣

∣ � B(t, x) � A(t, x), x ∈ R, n ∈ N.

(6.20)
∣

∣

∣H(n)
I,q(t, x)

∣

∣

∣ � Cc(t, x), if x ∈ R, |x | ≤ ct, n ∈ N ∪ {0}. (6.21)

As t → ∞, ̂HI → tanh2. Then (2.13) becomes 0 = tanh′′
2 + tanh′

2 tanh2, which
can be proved directly. From (2.13), (6.8), and the above equation, we get

∂t̂HI,q = ̂H′′
I,q + ̂H′

I,q
̂HI,q + tanh′

2
̂HI,q + ̂H′

I,q tanh2 . (6.22)

Then (6.18) and (6.19) in the case j = 1 and n = 0 follow from (6.20), (6.21), (6.22),
and Lemma 6.3.

Differentiating (2.13) w.r.t. x twice, we get

∂t̂H′
I = ̂H′′′

I + ̂H′′
I
̂HI + (̂H′

I )
2.

∂t̂H′′
I = ̂H(4)

I + ̂H′′′
I
̂HI + 3̂H′′

I
̂H′

I .

Differentiating (2.13) w.r.t. t and using the above two displayed formulas, we obtain

∂2
t
̂HI = ̂H(4)

I + 2̂H′′′
I
̂HI + 4̂H′′

I
̂H′

I + ̂H′′
I (
̂HI )

2 + 2(̂H′
I )

2
̂HI .

As t → ∞, this equation tends to the following equation, which can also be checked
directly.

0 = tanh(4)
2 + 2 tanh′′′

2 tanh2 + 4 tanh′′
2 tanh′

2 + tanh′′
2 tanh2

2 + 2(tanh′
2)

2 tanh2 .

From (6.8), and the above two equations, we compute

∂2
t
̂HI,q = ̂H(4)

I,q + 2̂H′′′
I,q
̂HI,q + 2 tanh′′′

2
̂HI,q

+2̂H′′′
I,q
̂HI,q + 4̂H′′

I,q
̂H′

I,q

+4̂H′′
I,q tanh′

2 + tanh′′
2(
̂HI,q)2 + 2̂H′′

I,q
̂HI,q tanh2 +2 tanh′′

2
̂HI,q tanh2

+̂H′′
I,q(tanh2)

2 + ̂H′′
I,q(̂HI,q)2 + 2(̂H′

I,q)2
̂HI,q + 4̂H′

I,q tanh′
2
̂HI,q

+2(tanh′
2)

2
̂HI,q + 2(̂H′

I,q)2 tanh2 +4̂H′
I,q tanh′

2 tanh2 . (6.23)

Then (6.18) and (6.19) in the case j = 2 and n = 0 follow from (6.20), (6.21), (6.23),
and Lemma 6.3.

Differentiate (6.22) and (6.23) n times w.r.t. x . We see that ∂t̂H
(n)
I,q can be expressed

as a sum of finitely many terms, whose factors are H(k)
I,q or tanh(k)

2 , k ∈ N ∪ {0}. In

every term, the factors of the kind H(k)
I,q appear at most twice, and the factor HI,q

appears at most once. So we derive (6.18) and (6.19) in the case j = 1 and n ∈ N

from (6.20), (6.21), and Lemma 6.3. We see that ∂2
t
̂H(n)

I,q can be expressed as a sum

of finitely many terms, whose factors are constant, H(k)
I,q , or tanh(k)

2 . In every term, the
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factors of the kind H(k)
I,q appear at most three times, and the factor HI,q appears at most

twice. So we derive (6.18) and (6.19) in the case j = 2 and n ∈ N from (6.20), (6.21),
and Lemma 6.3. ��

6.3 Feynman–Kac expression

We begin with a lemma, which can be proved directly. Recall the definition of ̂HI in
(2.9).

Lemma 6.7 Let � and ̂� be functions defined on (0,∞) × R. The following expres-
sions are equivalent:

̂�(t, x) = e
x2
2κt

(π

t

)σ+ 1
2
�

(

π2

t
,

π

t
x

)

. (6.24)

�(t, x) = e− x2
2κt

(π

t

)σ+ 1
2
̂�

(

π2

t
,

π

t
x

)

. (6.25)

If the above two equalities hold, then � satisfies (4.5) if and only if ̂� satisfies

− ∂t̂� = κ

2
̂� ′′ + σ̂H′

I
̂�. (6.26)

As t → ∞, ̂H′
I → tanh′

2, so (6.26) tends to

− ∂t̂�∞ = κ

2
̂� ′′∞ + σ tanh′

2(x)̂�∞. (6.27)

Let τ be the non-positive root of the equation τ 2

2κ
= τ

4 + σ
2 , i.e., τ = κ/4 −

√

κ2/16 + κσ . Then τ = κ
2 − 2 when σ = 4

κ
− 1. It is easy to check that (6.27)

has a simple solution:

̂�∞(t, x) = e− τ2 t
2κ cosh

2
κ
τ

2 (x). (6.28)

Recall the ̂HI,q defined in (6.8). The proof of the following lemma is straightfor-
ward.

Lemma 6.8 Let ̂� and ̂�q be defined on (0,∞)×R, and satisfy ̂� = ̂�∞̂�q , where
�∞ is defined by (6.28). Then ̂� satisfies (6.26) if and only if ̂�q satisfies

− ∂t̂�q = κ

2
̂� ′′

q + τ tanh2 ̂�
′
q + σ̂H′

I,q
̂�q . (6.29)

Suppose ̂�q solves (6.29). Let Xx0(t) be as in (6.2). Fix t0 > 0 and x0 ∈ R. Let

M(t) = ̂�q(t0 + t, Xx0(t)) exp

⎛

⎝σ

t
∫

0

̂H′
I,q(t0 + s, Xx0(s))ds

⎞

⎠.
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From (6.2), (6.29), and Itô’s formula, we see that M(t) is a local martingale. If M(t) is
a martingale on [0,∞], and ̂�q → 1 as t → ∞, then from M0 = ̂�q(t0, x0) we have

̂�q(t0, x0) = E

⎡

⎣exp

⎛

⎝σ

∞
∫

0

̂H′
I,q(t0 + s, Xx0(s))ds

⎞

⎠

⎤

⎦. (6.30)

This Feynman–Kac formula holds under many additional assumptions. We do not try
to prove it. Instead, we now define ̂�q by (6.30). We will prove that ̂�q is finite and
differentiable, and solves (6.29).

6.4 Regularity

Fix c0 ∈ (1 + κ
4 σ, 2). This is possible because σ ∈ [0, 4

κ
). Then we have

exp

(

σ

2(c0 − 1)
− 2

κ

)

< 1. (6.31)

Throughout this subsection, we use C to denote a positive constant, which depends
only on κ, σ, c0, and could change between lines. The symbol X � Y means that
X ≤ CY for some C . Let α(t) = 4

1−e−2t . Then t−1 + 1 � α(t) � t−1 + 1. For
m ∈ N ∪ {0}, let Em denote the event that |Xx (s)| ≤ s + m for all s ≥ 0. From (6.4)
we have

P[Ec
m] ≤ 2e

2
κ
(|x |−m), m ∈ N ∪ {0}. (6.32)

Proposition 6.1 ̂�q is finite and satisfies

1 ≤ ̂�q(t, x) ≤ exp
(

C(t−1 + 1)e(c0−2)t
)

(1 + Ce
2
κ
|x |− 2

κ
c0t ). (6.33)

Proof Fix t > 0 and x ∈ R. Assume that Em occurs for some m ∈ N ∪ {0}. If
s ≥ m−c0t

c0−1 then |Xx (s)| ≤ s + m ≤ c0(s + t), so from (6.13) with C1 = 1 we have

̂H′
I,q(t + s, Xx (s)) ≤ 4e(c0−2)(s+t)

1 − e−2(s+t)
≤ α(t)e(c0−2)(s+t).

If 0 ≤ s ≤ m−c0t
c0−1 , from −1 ≤ c0 − 2 and (6.11) with C1 = 1, we have

̂H′
I,q(t + s, Xx (s)) <

1

2
+ 4e−(s+t)

1 − e−2(s+t)
≤ 1

2
+ α(t)e(c0−2)(s+t),

Since c0 − 2 < 0, at the event Em ,

∞
∫

0

̂H′
I,q(t + s, Xx (s))ds ≤ 1

2
· (m − c0t) ∨ 0

c0 − 1
+ α(t)e(c0−2)t

2 − c0
; (6.34)
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Let H(t) = exp(σ
∫∞

0
̂H′

I,q(t + s, Xx (s))ds). From (6.32) and (6.34) we have

̂�q(t, x) = E [1E�c0 t� H(t)] +
∞
∑

m=�c0t�
E [1Em+1\Em H(t)]

≤ exp

(

σα(t)e(c0−2)t

2 − c0

)

+
∞
∑

m=�c0t�
2e

2
κ
(|x |−m) exp

(

1

2

σ(m + 1 − �c0t�)
c0 − 1

+ σα(t)e(c0−2)t

2 − c0

)

.

(6.35)

Change index using m = l + �c0t�. The second term of the RHS of (6.35) equals

2 exp

(

2|x |
κ

− 2�c0t�
κ

+ σ

2(c0 − 1)
+ σα(t)e(c0−2)t

2 − c0

) ∞
∑

l=0

exp

(

σ

2(c0 − 1)
− 2

κ

)l

.

(6.36)

From (6.31), the infinite sum is finite. Thus, from ̂H′
I,q > 0, σ ≥ 0, and (6.35), we

have

1 ≤ ̂�q(t, x) ≤ exp

(

σα(t)e(c0−2)t

2 − c0

)

(

1 + Ce
2|x |
κ

− 2c0 t
κ

)

.

Then (6.33) follows from this formula and that α(t) � t−1 + 1. ��
Let n ∈ N. Formally differentiate (6.30) n times w.r.t. x . If the differentiation

commutes with the integration and expectation at every time, then we should have

̂�(n)
q (t, x) = E

⎡

⎣exp

⎛

⎝σ

∞
∫

0

̂H′
I,q(t + s, Xx (s))ds

⎞

⎠ · Q0,n(v0,k,λ(t, x))

⎤

⎦, (6.37)

where Q0,n is a polynomial of degree ≤ n without constant term in the following
variables:

v0,k,λ(t, x):=
∞
∫

0

̂H(k)
I,q(t + s, Xx (s))

l(λ)
∏

r=1

∂λr

∂xλr
Xx (s)ds, k ∈ N, λ ∈ PN. (6.38)

With Q0,0 ≡ 1, (6.37) becomes (6.30). Let n ∈ N ∪ {0}. Formally differentiate (6.37)
w.r.t. t . If the differentiation commutes with the integration and expectation, then we
should have
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∂t̂�
(n)
q (t, x)=E

⎡

⎣exp

⎛

⎝σ

∞
∫

0

̂H′
I,q(t+s, Xx (s))ds

⎞

⎠ · Q1,n(v0,k,λ, v1,k,λ)

⎤

⎦, (6.39)

where Q1,n is a polynomial of degree ≤ n + 1 without constant term in the variables
v0,k,λ defined by (6.38) and

v1,k,λ(t, x):=
∞
∫

0

∂t̂H
(k)
I,q(t + s, Xx (s))

l(λ)
∏

r=1

∂λr

∂xλr
Xx (s)ds, k ∈ N, λ ∈ PN ∪ {N0}.

(6.40)

Here by λ ∈ N
0 we mean that the factor

∏

∂λr

∂xλr Xx (s) disappears. Moreover, in every
term of Q1,n , factors v1,k,λ appear at most once.

Formally differentiate (6.39) w.r.t. t . If the differentiation commutes with the inte-
gration and expectation, then we should have

∂2
t
̂�(n)

q (t, x) = E

⎡

⎣exp

⎛

⎝σ

∞
∫

0

̂H′
I,q(t+s, Xx (s))ds

⎞

⎠ · Q2,n(v0,k,λ, v1,k,λ, v2,k,λ)

⎤

⎦,

(6.41)

where Q2,n is a polynomial of degree ≤ n + 2 without constant term in the variables
v0,k,λ defined by (6.38), v1,k,λ defined by (6.40), and

v2,k,λ(t, x):=
∞
∫

0

∂2
t
̂H(k)

I,q(t + s, Xx (s))
l(λ)
∏

j=1

∂λ j

∂xλ j
Xx (s)ds, k ∈ N, λ ∈ PN ∪ {N0}.

Moreover, in every term of Q2,n , factors v2,k,λ appears at most once; when a factor
v2,k,λ appears, factors v1,k,λ disappear; and when factors v2,k,λ disappear, factors v1,k,λ

appear at most twice.
Now we suppose Em occurs for some m ∈ N ∪ {0}. Using (6.11), (6.13), (6.38),

Lemma 6.4, and the argument in (6.34), we conclude that, for any k ∈ N and λ ∈ PN,
there is a polynomial Pk,λ with no constant term such that

|v0,k,λ(t, x)| ≤ Pk,λ((m − c0t) ∨ 0) + Cα(t)e(c0−2)t . (6.42)

Let j ∈ {1, 2} and n ∈ N ∪ {0}. If s ≥ m−c0t
c0−1 then |Xx (s)| ≤ s + m ≤ c0(s + t), so

from (6.19) we have

|∂ j
t
̂H(n)

I,q(t + s, Xx (s))| ≤ Dn

(

2e(c0−2)(t+s)

1 − e−2t

) j+1

� α(t) j+1e(c0−2)(t+s).

If m ≥ c0t and 0 ≤ s ≤ m−c0t
c0−1 , from (6.18) and the definition of Em , we see that for

j = 1, 2,
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|∂ j
t
̂H(n)

I,q(t, Xx (s))| ≤ Dn

( |Xx (s)|
t + s

+ 3 + 2e−t

1 − e−2t

) j (1

2
+ 4e−t

1 − e−2t

)

≤ Dn

(

m − c0t

t
+ c0 + 4 + 2e−t

1 − e−2t

) j (1

2
+ 4e−t

1 − e−2t

)

� ((m − c0t) j + 1)α(t) j+1.

Thus, from Lemma 6.4, for k ∈ N and λ ∈ PN ∪ {N0},

|v j,k,λ(t, x)| � α(t) j+1(e(c0−2)t + Pj,k,λ((m − c0t) ∨ 0)), j = 1, 2, (6.43)

where Pj,k,λ is a polynomial with no constant term.
Let ( j, n) ∈ {0, 1, 2} × (N ∪ {0})\{(0, 0)}. From (6.42), (6.43), and the properties

of Q0,n , n ∈ N, Q1,n and Q2,n , n ∈ N ∪ {0}, we see that, at the event Em ,

|Q j,n| � α(t)2 j [Pj,n((m − c0t) ∨ 0) + Q j,n((m − c0t) ∨ 0)α(t)ne(c0−2)t ], (6.44)

where Pj,n and Q j,n are polynomials, and Pj,n(0) = 0.

Proposition 6.2 For ( j, n) ∈ {0, 1, 2} × (N ∪ {0})\{(0, 0)},

E

⎡

⎣exp

⎛

⎝σ

∞
∫

0

̂H′
I,q(t + s, Xx (s))ds

⎞

⎠ · |Q j,n|
⎤

⎦

� exp
(

C(t−1 + 1)e(c0−2)t
)

(t−n−2 j + 1)(e(c0−2)t + e
2|x |
κ

− 2c0 t
κ ), (6.45)

Proof Let Hj,n(t) = exp
(

σ
∫∞

0
̂H′

I,q(t + s, Xx (s))ds
)

· |Q j,n|. Recall that (6.34)

and (6.44) hold at the event Em . Using (6.32) and the argument in (6.35) and (6.36),
we see that

E [Hj,n(t)] = E [1E�c0 t� Hj,n(t)] +
∞
∑

m=�c0t�
E [1Em+1\Em Hj,n(t)]

� exp
(

Cα(t)e(c0−2)t
)

α(t)2 j+ne(c0−2)t + exp

(

2|x |
κ

− 2c0t

κ
+ Cα(t)e(c0−2)t

)

·

·
∞
∑

l=0

α(t)2 j (Pj,n(l + 1) + Q j,n(l + 1)α(t)ne(c0−2)t ) exp

(

σ

2(c0 − 1)
− 2

κ

)l

.

Then (6.45) follows from (6.31) and that α(t) � t−1 + 1 and α(t)2 j+n � t−n−2 j + 1.
��

Theorem 6.1 The function ̂�q is C∞,∞ differentiable and solves (6.29). Moreover,
for j ∈ {0, 1, 2}, n ∈ N∪{0}, there is a positive continuous function c j,n(t) on (0,∞)

such that for any t ∈ (0,∞) and x ∈ R, |∂ j
t
̂�

(n)
q (t, x)| ≤ c j,n(t)e

2
κ
|x |.
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Proof For n ∈ N ∪ {0}, define ̂�[0,n]
q , ̂�[1,n]

q (t, x) and ̂�[2,n]
q (t, x) to be equal to

the RHS of (6.37), (6.39) and (6.41), respectively. From the above two propositions,
these functions are well defined, and there are positive continuous functions c j,n(t)
on (0,∞) such that

|̂�[ j,n]
q (t, x)| ≤ c j,n(t)e

2
κ
|x |, j = 0, 1, 2, n ∈ N ∪ {0}. (6.46)

Let n ∈ N ∪ {0}, j ∈ {0, 1, 2}, t ∈ (0,∞), and x1 < x2 ∈ R. Since |̂�[ j,n+1]
q |

satisfies (6.46), from Fubini’s Theorem, we have

x2
∫

x1

̂�
[ j,n+1]
q (t, x)dx = ̂�

[ j,n]
q (t, x2) − ̂�

[ j,n]
q (t, x1). (6.47)

Thus, ̂�[ j,n]
q is absolutely continuous in x when t is fixed, and its partial derivative

w.r.t. x is a.s. equal to ̂�[ j,n+1]
q . Since ̂�[ j,n+1]

q is continuous in x for fixed t , we see

that ̂�[ j,n]
q is continuously differentiable in x , and the partial derivative exactly equals

̂�
[ j,n]
q . The above holds for any n ∈ N, so ̂�[ j,0]

q is C∞ differentiable in x when t is

fixed, and ̂�[ j,n]
q is its n-th partial derivative w.r.t. x . Especially, since ̂�q = ̂�

[0,0]
q ,

we see that ̂�q is C∞ differentiable in x when t is fixed, and ̂�[0,n]
q is its n-th partial

derivative w.r.t. x .
A similar argument using Fubini’s Theorem shows that, for any n ∈ N ∪ {0},

j ∈ {0, 1},̂�[ j,n]
q is absolutely continuous in t when x is fixed, and its partial derivative

w.r.t. t is a.s. equal to ̂�[ j+1,n]
q . So ̂�[0,n]

q is continuously differentiable in t when x is

fixed, and the partial derivative exactly equals ̂�[1,n]
q . From (6.46) and (6.47), we see

that ̂�[ j,n]
q is locally uniformly Lipschitz continuous in x . We have seen that ̂�[ j,n]

q

is continuous in t for every fixed x . So ̂�[ j,n]
q is continuous in both t and x . Thus,

̂�q = ̂�
[0,0]
q is C1,∞ differentiable.

Fix t0 ∈ (0,∞) and x0 ∈ R. Let M(t) = E
[

exp
(

σ
∫∞

0
̂H′

I,q(t0 + s, Xx0(s))ds
)

∣

∣

∣Ft

]

, t ≥ 0. Then M(t), 0 ≤ t < ∞, is a uniformly integrable martingale. From

(6.30) we have

M(t) = ̂�q(t0 + t, Xx0(t)) exp

⎛

⎝σ

t
∫

0

̂H′
I,q(t0 + s, Xx0(s))ds

⎞

⎠ . (6.48)

From (6.2), Itô’s formula, and the differentiability of ̂�q , we see that ̂�q solves (6.29)
for t ≥ t0. Since this is true for any t0 ∈ (0,∞), ̂�q solves (6.29).

Since ̂�q is C1,∞ differentiable, the same is true for the RHS of (6.29). Thus, ∂t̂�q

is also C1,∞ differentiable. So ̂�q is C2,∞ differentiable. Iterating this argument, we

conclude that ̂�q is C∞,∞ differentiable. The previous argument shows that ∂ j
t
̂�

(n)
q =

̂�
[ j,n]
q for any j ∈ {0, 1, 2} and n ∈ N∪{0}. The bounds of |∂ j

t
̂�

(n)
q | then follow from

(6.46). ��
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Theorem 6.2 Let ̂�0 = ̂�q · ̂�∞, where ̂�∞ is defined by (6.28). Then ̂�0 is a
positive C∞,∞ differentiable function on (0,∞) × R and solves (6.26). Moreover,
j ∈ {0, 1, 2}, for n ∈ N∪{0}, there is a positive continuous function c j,n(t) on (0,∞)

such that, for any t ∈ (0,∞) and x ∈ R, |∂ j
t
̂�

(n)
0 (t, x)| ≤ c j,n(t)e

2
κ
|x |.

Proof Since ̂�q and ̂�∞ are both positive and C∞,∞ differentiable, the same is true
for ̂�0 = ̂�q · ̂�∞. Since ̂�q solves (6.29), from Lemma 6.8, ̂�0 solves (6.26). From

Lemma 6.3, (6.28), and that τ ≤ 0, we see that for any j, n ∈ N ∪ {0}, |∂ j
t
̂�

(n)∞ (t, x)|
is bounded by a positive continuous function in t , which, together with Theorem 6.1,
implies the upper bounds of |∂ j

t
̂�

(n)
0 (t, x)|. ��

Theorem 6.3 Let �0 be the transformation of the above ̂�0 via (6.25) (with ̂�

replaced by ̂�0). Then �0 is a C∞,∞ differentiable positive function on (0,∞) × R

and solves (4.5). Moreover, for j ∈ {0, 1, 2}, n ∈ N ∪ {0}, there is a function
h j,n(t, |x |), which is a polynomial in |x | for any fixed t, and every coefficient is
a positive continuous function in t, such that for any t ∈ (0,∞) and x ∈ R,

|∂ j
t �

(n)
0 (t, x)| ≤ h j,n(t, |x |)e− x2

2κt + 2π |x |
κt .

Proof Since ̂�0 > 0, �0 > 0 also. The differentiability of �0 is obvious. Since ̂�0

solves (6.29), from Lemma 6.7, �0 solves (4.5). Let �a(t, x) = ̂�0(
π2

t , π
t x). From

Theorem 6.2, it is straightforward to check that for every j ∈ {0, 1, 2}, n ∈ N ∪ {0},
there is a function f j,n(t, |x |), which is a polynomial in |x | of degree j when t is fixed,
and every coefficient is a positive continuous function in t , such that

∣

∣

∣∂
j

t �
(n)
0 (t, x)

∣

∣

∣ ≤ f j,n(t, |x |)e 2
κ

π
t |x |, t > 0, x ∈ R. (6.49)

It is easy to verify that for every j ∈ {0, 1, 2}, n ∈ N ∪ {0}, there is a function
g j,n(t, |x |), which is a polynomial in |x |, and every coefficient is a positive continuous
function in t , such that

∣

∣

∣

∣

∂
j

t ∂n
x

(

e− x2
2κt

(π

t

)σ+ 1
2
)∣

∣

∣

∣

≤ g j,n(t, |x |)e− x2
2κt , t > 0, x ∈ R. (6.50)

From (6.25), �0(t, x) = e− x2
2κt (π

t )σ+ 1
2 �a(t, x). So we get the upper bounds of

|∂ j
t �

(n)
0 (t, x)| from (6.49) and (6.50). ��

Theorem 6.4 Let �0 be as in the above theorem. Let �0 = �0
− 2

κ

I and �m(t, x) =
�0(t, x − 2mπ), m ∈ Z. For s0 ∈ R, let �〈s0〉 = ∑

m∈Z
e

2π
κ

ms0�m. Then �〈s0〉 is a
C∞,∞ differentiable positive function on (0,∞) × R, satisfies (4.2), and solves (4.4).

Proof Let �m(t, x) = �0(t, x − 2mπ) for m ∈ Z and �〈s0〉 = ∑

m∈Z
e

2π
κ

ms0�m .

Since I has period 2π , we have �〈s0〉 = �〈s0〉
− 2

κ

I . Since I is a C∞,∞ differ-
entiable positive function with period 2π , from Lemma 4.1 we suffice to show that
�〈s0〉 is a C∞,∞ differentiable positive function, satisfies (4.2), and solves (4.5). It is
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610 D. Zhan

clear from the definition that �〈s0〉 satisfies (4.2). Since �0 is a C∞,∞ differentiable
positive function that solves (4.5), and HI has period 2π , every �m also satisfies
these properties. So �〈s0〉 is positive. The upper bounds of |∂ j

t �
(n)
0 (t, x)| imply that

�〈s0〉 is finite, and the series
∑

m∈Z
e

2π
κ

ms0∂
j

t �
(n)
m converges locally uniformly for

every j, n ≥ 0. Fubini’s Theorem implies that �〈s0〉 is C∞,∞ differentiable and

∂
j

t �
(n)
〈s0〉 = ∑

m∈Z
e

2π
κ

ms0∂
j

t �
(n)
m Thus, �〈s0〉 also solves (4.5). ��

6.5 Distributions

Proposition 6.3 Let p > 0, s0 ∈ R, and x0, y0 ∈ R. Let �m, m ∈ Z, and �〈s0〉 be as

in Theorem 6.4. Let �∗ = κ
�′∗
�∗ for ∗ ∈ {m, 〈s0〉}. For m ∈ Z, let ˜βm be the covering

annulus SLE(κ,�0) trace in Sp started from x0 with marked point y0 +2mπ + pi . Let
˜β〈s0〉 be the covering annulus SLE(κ,�〈s0〉) trace in Sp started from x0 with marked
point y0 + pi . Let P

˜β,m, m ∈ Z, and P
˜β,〈s0〉 denote the distributions of ˜βm, m ∈ Z,

and ˜β〈s0〉, respectively. Then

P
˜β,〈s0〉 =

∑

m∈Z

e
2π
κ

ms0
�m(p, x0 − y0)

�〈s0〉(p, x0 − y0)
P
˜β,m . (6.51)

Proof For m ∈ Z, let ξm(t), 0 ≤ t < p, be the solution to (3.13) with � = �0
and y0 replaced by y0 + 2mπ . Let ξ〈s0〉(t) be the solution to (3.13) with � = �〈s0〉.
Then the covering annulus Loewner traces of modulus p driven by ξm , m ∈ Z, and
ξ〈s0〉 have distributions P

˜β,m , m ∈ Z, and P
˜β,〈s0〉, respectively. Let Xm(t) = ξm(t) −

Re g̃ξm (t, y0+2mπ+pi)+2mπ , m ∈ Z, and X〈s0〉(t) = ξ〈s0〉(t)−Re g̃ξ〈s0〉(t, y0+pi).
Since �m(t, x) = �0(t, x − 2mπ), we have �m(t, x) = �0(t, x − 2mπ). Since
Re g(t, y + pi) = g̃I (t, y) for y ∈ R, and HI is odd and has period 2π , from (3.9),
we find that, for ∗ ∈ {m, 〈s0〉}, with �∗:=�∗ + HI , X∗(t) satisfies

d X∗(t) = √
κd B(t) + �∗(p − t, X∗(t))dt, X∗(0) = x0 − y0.

Let PX,∗ denote the distributions of (X∗(t)). Since ξ∗(t) = X∗(t) + y0 − ∫ t
0 HI (p −

r, X∗(r))dr , 0 ≤ t < p, we suffice to show that (6.51) holds with the subscripts
“˜β” replaced by “X”. The rest of the proof is a standard application of Girsanov

theorem. One may check that for every m ∈ Z, Mm(t):=e
2π
κ

ms0
�m (p−t,X〈s0〉(t))

�〈s0〉(p−t,X〈s0〉(t)) is a

nonnegative martingale w.r.t. PX,〈s0〉, and satisfies that d Mm (t)
Mm (t) = (�m − �〈s0〉)

d B(t)√
κ

and
∑

m∈Z
Mm(t) = 1; and we have dPX,m

dPX,〈s0〉 = Mm (∞)
Mm (0)

. ��

Remark Since �〈s0〉 satisfies (4.2), �〈s0〉 has period 2π . So �〈s0〉 is a crossing annulus
drift function, and we could define the annulus SLE(κ,�〈s0〉) process. However, each
�m does not have period 2π . It only makes sense to define the covering annulus
SLE(κ,�m) processes.
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Proposition 6.4 Let p > 0 and x0, y0 ∈ R. Let �0 be as in Theorem 6.4, and �0 =
κ

�′
0

�0
. Let ˜β(t), 0 ≤ t < p, be the covering annulus SLE(κ,�0) trace in Sp started

from x0 with marked point y0 + pi . Then a.s. dist(y0 + pi,˜β([0, p)) + 2πZ) = 0.

Proof Let ξ(t) be the driving function, and g̃(t, ·), 0 ≤ t < p, be the covering
Loewner maps. Then g̃(t, ·) maps Sp\(˜β([0, p)) + 2πZ) conformally onto Sp−t ,
and maps Rp onto Rp−t . From Koebe’s 1/4 Theorem, we suffice to show that a.s.
g̃′(t, y0 + pi) · p

p−t → ∞ as t → p.
Let X (t) = ξ(t) − Re g̃(t, y0 + pi) and �0 = �0 + HI . Then X (t) satisfies the

SDE:

d X (t) = √
κd B(t) + �0(p − t, X (t)) dt, 0 ≤ t < p.

From (3.8) we have ln(g̃′(t, y0 + pi) · p
p−t ) = ∫ t

0 (H′
I (p − s, X (s)) + 1

p−s )ds. Let

̂�0 = κ
̂� ′

0
̂�0

. Since �0 and̂�0 satisfy (6.24), we havê�0(s, z) = π
s �0(

π2

s , π
s z)+ z

s . Let

p̂ = π2

p and ̂X(t) = p̂+t
π

X (p− π2

p̂+t ), 0 ≤ t < ∞. Then ̂X(0) = p̂
π

X (0) = π
p (x0−y0).

Applying Itô’s formula and time-change of a semimartingale, we see that ̂X(t) satisfies
the SDE:

d̂X(t) = √
κ̂B(t) + ̂�0( p̂ + t, ̂X(t))dt, 0 ≤ t < ∞,

for some standard Brownian motion ̂B(t). Changing variables using ŝ = π2

p−s − p̂, we
get

t
∫

0

(

H′
I (p − s, X (s)) + 1

p − s

)

ds

=
t̂
∫

0

(

H′
I

(

π2

p̂ + ŝ
, X

(

p − π2

p̂ + ŝ

))

+ p̂ + s

π2

)

π2

( p̂ + ŝ)2 dŝ

=
t̂
∫

0

(

π2

( p̂ + ŝ)2 H′
I

(

π2

p̂ + ŝ
,

π

p̂ + ŝ
̂X (̂s)

)

+ 1

p̂ + s

)

dŝ

=
t̂
∫

0

̂H′
I ( p̂ + ŝ, ̂X (̂s))dŝ,

where t̂ = π2

p−t − p̂, and the last equality follows from (2.9). So we have

lim
t→p− ln(g̃′(t, y0 + pi) · p

p − t
) =

∞
∫

0

̂H′
I ( p̂ + ŝ, ̂X (̂s))dŝ ≥

∞
∫

0

tanh′
2(
̂X (̂s))dŝ,

where the last inequality follows from (2.12).
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From Girsanov theorem and the fact that κ
̂� ′

0
̂�0

= κ
̂� ′

q
̂�q

+ τ tanh2, we find

that the distribution of (̂X(t)) is equivalent to that of (X π
p (x0−y0)(t)) defined by

(6.2), and the Radon-Nikodym derivative is M(∞)/M(0), where M(t) is defined
by (6.48). Since (X π

p (x0−y0)(t)) is homogeneous and recurrent, we have a.s.
∫∞

0 tanh′
2(X π

p (x0−y0)(t))dt = ∞, which implies that a.s.
∫∞

0 tanh′
2(
̂X (̂s))dŝ = ∞.

Thus, a.s. g̃′(t, y0 + pi) · p
p−t → ∞ as t → p−. ��

Corollary 6.1 Let p > 0, s0 ∈ R, and x0, y0 ∈ R. Let �〈s0〉 be as in Theorem 6.4,

and �〈s0〉 = κ
�′〈s0〉
�〈s0〉 . Let β(t), 0 ≤ t < p, be the annulus SLE(κ,�〈s0〉) trace in Sp

started from eix0 with marked point e−p+iy0 . Then a.s. dist(e−p+iy0 , β([0, p))) = 0.

Proof This follows immediately from the above two propositions. ��
Remark For the reader’s convenience, we now make a list of the functions defined
in this section. First, ̂�q is defined by a Feynman–Kac formula (6.30) depending
on κ > 0 and σ ∈ [0, 4

κ
). Second, ̂�0 is defined to be the product ̂�q̂�∞, where

̂�∞ is a simple solution of (6.27) given by (6.28). Third, �0 is the transformation

of the ̂�0 via (6.25). Fourth, the partition functions are defined by �0 = �0
− 2

κ

I ,

�m(t, x) = �0(t, x − 2mπ), and �〈s0〉 = ∑

m∈Z
e

2π
κ

ms0�m . Fifth, the annulus drift

functions are defined by �∗ = κ
�′∗
�∗ .

7 Reversibility

The main result of this section is the theorem below which generalizes Theorem 1.1.

Theorem 7.1 Let κ ∈ (0, 4] and s0 ∈ R. If β(t), −∞ ≤ t < ∞, is a whole-plane
SLE(κ, s0) trace in ̂C from a to b, then the reversal of β, up to a time-change, has the
distribution of a whole-plane SLE(κ, s0) trace in ̂C from b to a.

Proof From conformal invariance, we only need to consider the case a = 0 and
b = ∞. Let �〈s0〉 be given by Theorem 6.4 with σ = 4

κ
− 1. Then �〈s0〉 solves

(4.1) and satisfies (4.2). We now apply Theorem 5.1 to � = �〈s0〉. Let � j , s j and
βI, j (t), j = 1, 2, be given by Theorem 5.1. Then for j = 1, 2, βI, j is a whole-plane
SLE(κ, s j ) trace in ̂C from 0 to ∞, and satisfies that, for any t2 ∈ Q, conditioned on
βI,2(s), −∞ ≤ s ≤ t2, after a time-change, the curve βI,1(t1), −∞ ≤ t1 < T1(t2),
has the distribution of a disc SLE(κ,�1) trace in C\I0(βI,2([−∞, t2])) started from 0
with marked point βI,2(t2), where T1(t2) is the maximal number in (−∞,+∞] such
that β1(t) ∩ β2([−∞, t2]) = ∅ for −∞ < t < T1(t2).

Let ξ2 be the driving function for (βI,2(t)), and g2(t, ·), −∞ < t < ∞,
be the inverted whole-plane Loewner maps driven by ξ2. Then g2(t, ·) maps
C\I0(βI,2([−∞, t2])) conformally onto D, fixes 0, and takes βI,2(t2) to ei (ξx (t2)).
Thus, conditioned on βI,2(s), −∞ ≤ s ≤ t2, g2(t, βI,1(t1)), 0 ≤ t1 < T1(t2), is
a time-change of a disc SLE(κ,�1) trace in D started from 0 with marked point
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Reversibility of whole-plane SLE 613

ei (ξx (t2)). Since �1 = � = κ
�′〈s0〉
�〈s0〉 , from Corollary 6.1 and the relation between

the disc SLE(κ,�) process and the annulus SLE(κ,�) process, we conclude that
a.s. ei (ξ2(t2)) is a subsequential limit of g2(t2, βI,1(t)) as t → T1(t2)−. Thus,
β2(t2) is a subsequential limit of βI,1(t) as t → T1(t2)−. If T1(t2) = ∞, then
limt→T1(t2)− βI,1(t) = ∞ = β2(−∞) �= β2(t2), which is a.s. a contradiction. So
T1(t2) < ∞ a.s., and we have βI,1(T1(t2)) = limt→T1(t2)− βI,1(t) = β2(t2) a.s. Since
Q is countable, we conclude that, a.s. βI,1(T1(t2)) = β2(t2) for every t2 ∈ Q, which
implies that a.s. β2(R) ⊂ βI,1(R). Since both βI,1 and β2 are simple, and the initial
(resp. final) point of βI,1 agrees with the final (resp. initial) point of β2, we see that
β2 is a reversal of βI,1. Now βI,1 is a whole-plane SLE(κ, s0) trace in ̂C from 0 to
∞, and βI,2 is a whole-plane SLE(κ,−s0) trace in ̂C started from 0 to ∞. Since I0 is
conjugate conformal, β2 = I0(βI,2) is a whole-plane SLE(κ, s0) trace in ̂C from ∞
to 0. So we proved the theorem in the case a = 0 and b = ∞. ��
Theorem 7.2 If β(t), 0 ≤ t < ∞, is a radial SLE(κ,−s0) trace in a simply connected
domain D from a to b, then a.s. limt→∞ β(t) = b, and after a time-change, the reversal
of β becomes a disc SLE(κ,�〈s0〉) trace in D started from b with marked point a.

Proof This follows from the property of the coupling in Theorem 7.1 and the relation
between whole-plane SLE(κ, s0) and radial SLE(κ,−s0). ��
Theorem 7.3 Let D be a doubly connected domain with two boundary points a, b
lying on different boundary components. If β(t), 0 ≤ t < p, is an annulus
SLE(κ,�〈s0〉) trace in D started from a with marked point b, then limt→p β(t) = b,
and after a time-change, the reversal of β becomes an annulus SLE(κ,�〈s0〉) trace in
D started from b with marked point a.

Proof This follows from the property of the coupling in Theorem 7.1, and the relation
between disc SLE(κ,�〈s0〉) and annulus SLE(κ,�〈s0〉). ��
Remark For κ ∈ (0, 6) and σ = 1

2 + 1
κ

∈ [0, 4
κ
), the �〈0〉 given by Proposition

6.3 can be used to decompose an annulus SLEκ process (without marked point). The
statement is similar to Lemma 3.1 in [12].

8 Some particular solutions

In this section, for κ ∈ {4, 2, 3, 0, 16/3}, we will find solutions to the PDE for � ((4.3)
and (4.49)) and the PDE for � ((4.1) and (4.48)), which can be expressed in terms of
H and HI . Since � = κ �′

�
, multiplying a function in t to � does not change the value

of �. So we may as well consider the following PDEs for �, where C(t) is some real
valued continuous depending only on t :

∂t� = κ

2
�′′ + HI �

′ +
(

3

κ
− 1

2

)

H′
I � + C(t)�. (8.1)

∂t� = κ

2
�′′ + H�′ +

(

3

κ
− 1

2

)

H′� + C(t)�. (8.2)
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614 D. Zhan

8.1 κ = 4

Let κ = 4. From Lemma 4.1 we see that if � solves.

∂t� = 2� ′′, (8.3)

then � = �
−2/κ
I solves (4.1). Similarly, � = �−2/κ solves (4.48) if � solves (8.3).

The solutions to (8.3) are well-known. For example, we have the following solutions:

e2c2t+cx , 1√
8π t

e− (x−c)2
8t , e−t/2 sin2(x−c), (2t, x−c), and I (2t, x−c). The function

I (2t, x − π) corresponds to the solution �(t, x) = I (2t, x − π)I (t, x)−1/2 of
(8.1), which agrees with the solution given by Sect. 6.3 for κ = 4 and σ = 4

κ
−1 = 0.

Some of these solutions are related to the Gaussian free field ([5]) in doubly connected
domains.

8.2 κ = 2

Let κ = 2. In this case if � on (0,∞) × R solves

∂t� = �′′ + �′HI + C(t)� (8.4)

then �:=�′ solves (8.1). Similarly, if � on (0,∞) × (R\{2nπ : n ∈ Z}) solves

∂t� = �′′ + �′H + C(t)�. (8.5)

then �:=�′ solves (8.2).
From (2.8) we see that �1 = HI solves (8.4) and �2 = H solves (8.5) with

C(t) = 0. It is also easy to check that �3(t, x) = tHI (t, x) + x solves (8.4) and
�4(t, x) = tH(t, x) + x solves (8.5) with C(t) = 0. The �3 corresponds to the
solution �(t, x) = tH′

I (t, x) + 1, which agrees with the solution given by Sect. 6.3
for κ = 2 and σ = 4

κ
− 1 = 1. Such � is also the density function of the distribution

of the limit point of an annulus SLE2 trace.
We now derive more solutions. Fix t > 0. Let Lt = {2nπ + i2kt : n, k ∈ Z}. Let

F1,t denote the set of odd analytic functions f on C\Lt such that each z ∈ Lt is a simple
pole of f , 2π is a period of f , and i2t is an antiperiod of f , i.e., f (z + i2t) = − f (z).
Let F2,t denote the set of odd analytic functions f on C\Lt such that each z ∈ Lt is
a simple pole of f , 2π is an antiperiod of f , and i2t is a period of f . Let F3,t denote
the set of odd analytic functions f on C\Lt such that each z ∈ Lt is a simple pole of
f , and both 2π and i2t are antiperiods of f . Define

�1(t, z) = H(2t, z) − HI (2t, z), �2(t, z) = 1

2
H
(

t

2
,

z

2

)

− 1

2
H
(

t

2
,

z

2
+ π

)

,

�3(t, z) = 1

2
H
(

t,
z

2

)

− 1

2
HI

(

t,
z

2

)

− 1

2
H
(

t,
z

2
+ π

)

+ 1

2
HI

(

t,
z

2
+ π

)

.
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From the properties of H and HI , it is easy to check that Fj,t is the linear space spanned
by � j (t, ·) for j = 1, 2, 3. For j = 1, 2, 3, Define

J j = ∂t� j − �′′
j − �′

j H, C j (t) = 1

2
Resz=0 J j (t, ·).

Fix t > 0. Note that 0 is a simple pole of both H(t, ·) and �1(t, ·) of residue 2. It is
easy to conclude that 0 is also a simple pole of J1(t, ·). From that �1(t, ·) ∈ F1,t , that
H(t, ·) has period 2π , and that H(t, z + 2π) = H(t, z) − 2i , it is easy to check that
J1(t, ·) ∈ F1,t as well. So J1(t, ·) = C1(t)�1(t, ·). Thus, �1 solves (8.5). Similarly,
�2 and �3 both solve (8.5).

8.3 κ = 3

Let κ = 3. Let � j , j = 1, 2, 3, be as in the previous subsection. For j = 1, 2, 3, let
� j = � j , and define

Hj = ∂t� j − 3

2
�′′

j − H�′
j − 1

2
H′� j , C j (t) = 1

2
Resz=0 Hj (t, ·).

Using the argument in the last subsection, we find that Hj (t, ·) ∈ Fj,t for any t > 0. So
Hj (t, ·) = C j (t)� j (t, ·). Thus, �1, �2, �3 solve (8.2). For j = 4, 5, 6, let � j (t, z) =
� j−3(t, z + i t). Since HI (t, z) = H(t, z + i t) + i , �4, �5, �6 solve (8.1).

For j = 2, 3, � j takes positive real values on (0, 2π) + 4πZ, takes negative real

values on (−2π, 0) + 4πZ, and has antiperiod 2π . So � j :=3
�′

j
� j

is a chordal-type
annulus drift function that solves (4.49) for κ = 3. It is worth to mention that the
annulus SLE(κ;� j ) process preserves the following local martingale, which resem-
bles the G(�, a, b, z) in Proposition 11 of [7]. The proof uses the fact that � j solves
(8.2) for z ∈ C\{poles}.
Proposition 8.1 Let j ∈ {2, 3} and p > 0. Let x0 ∈ R and z0 ∈ R\(x0 + 2πZ). Let
ξ(t), 0 ≤ t < T , be the driving function for the covering annulus SLE(κ;� j ) process
in Sp started from x0 with marked point z0. Let g̃t , 0 ≤ t < T , be the covering annulus
Loewner maps of modulus p driven by ξ . Then for every z ∈ Sp,

Mt (z):= � j (p − t, g̃t (z) − ξ(t))

� j (p − t, g̃t (z0) − ξ(t))
· g̃′

t (z)
1/2

g̃′
t (z0)1/2

is a local martingale for 0 ≤ t < T .

For j = 1, �1(t, ·) takes nonzero pure imaginary values on Rt , the related function
�4 agrees with the solution given by Sect. 6.3 for κ = 3 and σ = 4

κ
− 1 = 1

3 up

to a pure imaginary multiplicative constant, and �4:=3
�′

4
�4

is a crossing annulus drift
function that solves (4.3) for κ = 3. The annulus SLE(κ;�4) process also preserves
a local martingale. In fact, Proposition 8.1 holds with z0 ∈ Rp, � j replaced by �4,
and � j replaced by �1.
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8.4 κ = 0

Let κ = 0. Let Lt be as in Sect. 8.2. Let H2(t, z) = H(t, z/2). From (2.8) we have

∂t H2 = 4H′′
2 + 2H′

2H2. (8.6)

Let �1 = H − 2H2. Then for each t > 0, �1(t, ·) is an odd analytic function on
C\Lt , and each z ∈ Lt is a simple pole of �1. From H(t, z + 2π) = H(t, z) and
H(t, z + i2t) = H(t, z) − 2i we see that both 4π and i4t are periods of �1(t, ·). Fix
t > 0, and define

J (z) = �1(t, z)2

2
− 2�′

1(t, z) + 3H′(t, z).

Then J is an even analytic function on C\Lt and has periods 4π and i4t . Fix
any z0 = 2n0π + i2k0t ∈ Lt for some n0, k0 ∈ Z. Then 2z0 is a period of J , so
Jz0(z):=J (z − z0) is an even function. Thus, Resz=z0 J (z) = 0. The degree of z0 as
a pole of J is at most 2. The principal part of J at z0 is C(z0)

(z−z0)2 for some C(z0) ∈ C.
Note that Resz0 H(t, z) = 2 and Resz0 �1(t, z) = −6 or 2. In either case, we compute
C(z0) = 0. Thus, every z0 ∈ Lt is a removable pole of J , which, together with the
periods 4π and i4t , implies that J is a constant depending only on t . Differentiating
J w.r.t. z, we conclude that

2�′′
1 = �′

1�1 + 3H′′. (8.7)

From �1 = H − 2H2 we have 2H2 = H − �1. So from (8.6) and (8.7), we have

∂t H − ∂t�1 = 2∂t H2 = 8H′′
2 + 4H′

2H2 = 4H′′ − 4�′′
1 + (H′ − �′

1)(H − �1)

= 4H′′ − 2(�′
1�1 + 3H′′) + (H′ − �′

1)(H − �1)

= −2H′′ − �′
1�1 + H′H − �′

1H − H′�1.

From the above formula and (2.8), we have

∂t�1 = 3H′′ + �′
1�1 + H′�1 + �′

1H. (8.8)

Thus, �1 solves (4.49). Note that HI (t, z/2) also satisfies (8.6). Let �2(t, z)
:= H(t, z)−HI (t,

z
2 ). Then �2(t, ·) is also an odd analytic function on C\Lt and has

periods 4π and i4t . The principal part of �2(t, ·) at every z0 ∈ Lt is also either −6
z−z0

or 2
z−z0

. Using a similar argument, we conclude that �2 also solves (4.49).

8.5 κ = 16/3

Let κ = 16/3. Let �1 and �2 be as in the last subsection. Let �3 = −�1/3. From
(8.7) we have

0 = 8

3
�′′

3 + 4�′
3�3 + 4

3
H′′.
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From (8.8) we have

∂t�3 = −H′′ − 3�′
3�3 + H′�3 + �′

3H.

Summing up the above two equalities, we get

∂t�3 = 8

3
�′′

3 + 1

3
H′′ + H′�3 + �′

3H + �′
3�3.

Thus, �3 solves (4.49). Similarly, �4:= − �2/3 also solves (4.49). Here �3 and
�4 have period 4π instead of 2π . If we want a solution to (4.3) with period 2π , we
may first restrict �3 or �4 to the interval (0, 2π) or (−2π, 0), and then extend it to
R\{2nπ : n ∈ Z} so that the function has period 2π .
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