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Beltrán and Landim (J Stat Phys 149:598–618, 2012) an approach to derive the
metastable behavior of continuous-time Markov chains. We assumed in these arti-
cles that the Markov chains visit points in the time scale in which it jumps among the
metastable sets. We replace this condition here by assumptions on the mixing times
and on the relaxation times of the chains reflected at the boundary of the metastable
sets.
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268 J. Beltrán, C. Landim

1 Introduction

Cassandro et al. [13] proposed in a seminal paper a general method to derive the
metastable behavior of continuous-time Markov chains with exponentially small jump
rates, called the pathwise approach. In many different contexts these ideas permitted
to prove that the exit time from a metastable set has an asymptotic exponential law;
to provide estimates for the expectations of the exit times; to describe the typical
escape trajectory from a metastable set; to compute the distribution of the exit (saddle)
points from a metastable set; and to prove the convergence of the finite-dimensional
distributions of the order parameter, the macroscopic variable which characterizes the
state of the process, to the finite-dimensional distributions of a finite-state Markov
chain. This approach has known a great success, and it is impossible to review here
the main results. We refer to [24] for a recent account of this theory.

In Bovier et al. [9,10] proposed a new approach to prove the metastable behavior of
continuous-time Markov chains, known as the potential theoretic approach. Motivated
by the dynamics of mean field spin systems, the authors created tools, based on the
potential theory of reversible Markov processes, to compute the expectation of the
exit time from a metastable set and to prove that these exit times are asymptotically
exponential. They also expressed the expectation of the exit time from a metastable
set and the jump probabilities among the metastable sets in terms of eigenvalues and
right-eigenvectors of the generator of the Markov chain.

Compared to the pathwise approach, the potential theoretic approach does not
attempt to describe the typical exit path from a metastable set, but provides precise
asymptotic formulas for the expectation of the exit time from a metastable set. This
accuracy, not reached by the pathwise approach, whose estimates admit exponential
errors in the parameter, permits to encompass in the theory dynamics which present
logarithmic energy or entropy barriers such as [2,11,12]. Moreover, in the case of a
transition from a metastable set to a stable set, it characterizes the asymptotic dynamics:
the process remains at the metastable set an exponential time whose mean has been
estimated sharply and then it jumps to the stable set.

As the pathwise approach, the potential theoretic approach has been successfully
applied to a great number of models. We refer to the recently published paper [6] for
references.

Inspired by the evolution of sticky zero-range processes [2,22], dynamics which
have a finite number of stable sets with logarithmic energy barriers, we proposed
in [1,5] a third approach to metastability, now called the martingale approach. This
method was successfully applied to derive the asymptotic behavior of the condensate in
sticky zero-range processes [2,22], to prove that in the ergodic time scale random walks
among random traps [17,18] converge to K -processes, and to show that the evolution
among the ground states of the Kawasaki dynamics for the two dimensional Ising
lattice gas [4,16] on a large torus converges to a Brownian motion as the temperature
vanishes.

To depict the asymptotic dynamics of the order parameter, one has to compute the
expectation of the holding times of each metastable set and the jump probabilities
amid the mestastable sets. The potential theoretic approach permits to compute the
expectations of the holding times and yields a formula for the jump probabilities in
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A Martingale approach to metastability 269

terms of eigenvectors of the generator. This latter formula, although interesting from
the theoretical point of view, since it establishes a link between the spectral properties
of the generator and the metastable behavior of the process, is of little practical use
because one is usually unable to compute the eigenvectors of the generator.

The martingale approach replaces the formula of the jump probabilities written
through eigenvectors of the generator by one, [1, Remark 2.9 and Lemma 6.8],
expressed only in terms of the capacities, capacities which can be estimated using
the Dirichlet and the Thomson variational principles. We have, therefore, a precise
description of the asymptotic dynamics of the order parameter: a sharp estimate of
the holding times at each metastable set from the potential theoretical approach, and
an explicit expression for the jump probabilities among the metastable sets from the
aforementioned formula.

This informal description of the asymptotic dynamics of the order parameter among
the metastable sets has been converted in [1,5] into a theorem which asserts that the
order parameter converges to a Markov chain in a topology introduced in [18], weaker
than the Skorohod one. The proof of this result relies on three hypotheses, formulated
in terms of the stationary measure and of the capacities between sets, and it uses the
martingale characterization of a Markovian dynamics and the notion of the trace of a
Markov process on a subset of the configuration space.

In the martingale approach, the potential theory tools developed by Bovier et al.
[9,10] to prove the metastability of Markov chains can be very useful in some models
[2,22] or not needed at all, as in [17,18]. In these latter dynamics, the asymptotic jump
probabilities among the metastable sets, which, as we said, can be expressed through
capacities, are estimated by other means without reference to potential theory.

The proof of the convergence of the order parameter to a Markov chain presented
in [1,5] requires that in each metastable set the time it takes for the process to visit
a representative configuration of the metastable set is small compared to the time the
process stays in the metastable set. We introduced in [1] a condition, expressed in
terms of capacities, which guarantees that a representative point of the metastable
set is visited before the process reaches another metastable set. This quite strong
assumption, fulfilled by a large class of dynamics, fails in some cases, as in polymer
models in the depinned phase [11,12] or in the dog graph [25]. The main goal of this
article is to weaken this assumption.

More recently, Bianchi and Gaudillière [7] proposed still another approach based
on the fact that the exit time from a set starting from the quasi-stationary measure
associated to this set is an exponential random variable. The proof that the exit time
from a metastable set is asymptotically exponential is thus reduced to the proof that the
state of the process gets close to the quasi-stationary state before the process leaves the
metastable set. To derive this property the authors obtained estimates on the mixing
time towards the quasi-stationary state and on the asymptotic exit distribution with
errors expressed in terms of the ratio between the spectral radius of the generator
of the process killed when it leaves the metastable set and the spectral gap of the
process reflected at the boundary of the metastable set, a ratio which has to be small
if a metastable behavior is expected. They also introduced (κ, λ)-capacities, an object
which plays an important role in this article.
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270 J. Beltrán, C. Landim

After these historical remarks, we present the main results of this article. Consider
a sequence of continuous-time Markov chains ηN (t). To describe the asymptotic evo-
lution of the dynamics among the metastable sets, let X N

t be the functional of the
process which indicates the current metastable set visited:

X N
t =

κ∑

x=1

x 1{ηN (t) ∈ E x
N }.

In this formula, κ represents the number of metastable sets and E x
N , 1 ≤ x ≤ κ , the

metastable sets. The non-Markovian dynamics X N
t is called the order process or the

order in short.
The main result of [1,5] states that under certain conditions, which can be expressed

only in terms of the stationary measure and of the capacities between the metastable
sets, the order converges in some time scale and in some topology to a Markov process
on S = {1, . . . , κ}.

The main drawback of the method [1,5] is that it requires the process to visit
points. More precisely, we needed to assume that each metastable set Ex

N contains
a configuration ξ x

N which, once the process enters Ex
N , is visited before the process

reaches another metastable set:

lim
N→∞ sup

η∈Ex
N

Pη

[
HĔx

N
< Hξ x

N

]
= 0 (1.1)

for all x ∈ S. Here, HA, A ⊂ EN , stands for the hitting time of A, Ĕx
N = ∪y �=xE

y
N ,

and Pη represents the distribution of the process ηN (t) starting from the configuration
η. The configuration ξ x

N is by no means special. It is shown in [1] that if this property
holds for one configuration ξ in Ex

N , it holds for any configuration in Ex
N .

Property (1.1) is fulfilled by some dynamics, as sticky zero-range processes [2,22],
trap models [17,18] or Markov processes on finite sets [3,4], but it is clearly not
fulfilled in general.

The purpose of this paper is to replace condition (1.1) by assumptions on the
relaxation time of the process reflected at the boundary of a metastable set. We propose
two different set of hypotheses. The first set essentially requires only the spectral gap
of the process to be much smaller than the spectral gaps of the reflected processes on
each metastable set, and the average jump rates among the metastable sets to converge
when properly renormalized. Under these conditions, Theorem 2.2 states that the
finite-dimensional distributions of the order process converge to the finite-dimensional
distributions of a finite state Markov chain, provided the initial distribution is not too
far from the equilibrium measure.

On the other hand, if one is able to show that the mixing times of the reflected
processes on each metastable set are much smaller than the relaxation time of the
process, Theorem 2.4 and Lemma 2.6 affirm that the order process converges to a finite
state Markov chain. Hence, the condition that the process visits points is replaced in
this article by estimates on the mixing times of the reflected processes.
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A Martingale approach to metastability 271

In Sect. 8, we apply these results to two models. We show that the polymer in the
depinned phase considered by Caputo et al. in [11,12] satisfies the first set of conditions
and that the dog graph introduced by Diaconis and Saloff-Coste [25] fulfills the second
set of assumptions. Lacoin and Teixeira [21] proved that a polymer interface which
interacts with an attractive substrate satisfies both set of conditions.

2 Notation and results

Fix a sequence (EN : N ≥ 1) of countable state spaces. The elements of EN are
denoted by the Greek letters η, ξ . For each N ≥ 1 consider matrix RN : EN ×EN → R

such that RN (η, ξ) ≥ 0, η �= ξ , −∞ < RN (η, η) < 0,
∑

ξ RN (η, ξ) = 0, η ∈ EN .

Denote by {ηN (t) : t ≥ 0} the right-continuous, continuous-time strong Markov
process on EN whose generator L N is given by

(L N f )(η) =
∑

ξ∈EN

RN (η, ξ) { f (ξ) − f (η)} , (2.1)

for bounded functions f : EN → R. We assume that ηN (t) is positive-recurrent
and reversible. Denote by π = πN the unique invariant probability measure, by
λN (η), η ∈ EN , the holding rates, λN (η) = ∑

ξ �=η RN (η, ξ), and by pN (η, ξ),

η, ξ ∈ EN , the jump probabilities: pN (η, ξ) = λN (η)−1 RN (η, ξ) for η �= ξ , and
pN (η, η) = 0 for η ∈ EN . We assume that pN (η, ξ) are the transition probabil-
ities of a positive-recurrent discrete-time Markov chain. In particular the measure
MN (η) := πN (η)λN (η) is finite.

Throughout this article we omit the index N as much as possible. We write, for
instance, η(t), π for ηN (t), πN , respectively. Denote by D(R+, EN ) the space of
right-continuous trajectories with left limits endowed with the Skorohod topology.
Let Pη = P

N
η , η ∈ EN , be the probability measure on D(R+, EN ) induced by the

Markov process {η(t) : t ≥ 0} starting from η. Expectation with respect to Pη is
denoted by Eη.

For a subset A of EN , denote by HA the hitting time of A and by H+
A the return

time to A:

H+
A = inf{t > 0 : η(t) ∈ A, η(s) �= η(0) for some 0 < s < t},

HA := inf {t > 0 : η(t) ∈ A} , (2.2)

with the convention that HA = ∞, H+
A = ∞ if η(s) �∈ A for all s > 0. We sometimes

write H(A) for HA. Denote by capN (A,B) the capacity between two disjoint subsets
A, B of EN :

capN (A,B) =
∑

η∈A

π(η) λ(η) Pη

[
HB < H+

A

]
.

Denote by L2(π) the space of square summable functions f : EN → R endowed
with the scalar product 〈 f, g〉π = ∑

η∈EN
π(η) f (η)g(η). Let g = gN be the spectral
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272 J. Beltrán, C. Landim

gap of the generator L N :

g = inf
f

〈(−L N ) f, f 〉π
〈 f, f 〉π ,

where the infimum is carried over all functions f in L2(π) which are orthogonal to
the constants: 〈 f, 1〉π = 0.

Fix a finite number of disjoint subsets E1
N , . . . ,Eκ

N , κ ≥ 2, of EN : Ex
N ∩ E

y
N = ∅,

x �= y. The sets Ex
N have to be interpreted as wells for the Markov dynamics η(t). Let

EN = ∪x∈SEx
N and let �N = EN \EN so that

EN = E1
N ∪ · · · ∪ Eκ

N ∪ �N . (2.3)

In contrast with the wells Ex
N , �N is a set of small measure which separates the wells.

A. Trace process. Denote by {ηE(t) : t ≥ 0} the EN -valued Markov process obtained
as the trace of {ηN (t) : t ≥ 0} on EN . This is a time-change of the original process
in which the clock is stopped when the process reaches a configuration outside of EN

and it is restarted when the process returns to EN . We refer to [1, Section 6.1] for
a precise definition. The rate at which the trace process jumps from η to ξ ∈ EN is
denoted by RE(η, ξ) and its generator by LE:

(LE f )(η) =
∑

ξ∈EN

RE(η, ξ) { f (ξ) − f (η)} , η ∈ EN .

By [1, Proposition 6.3], the probability measure π conditioned to EN , πE(η) =
π(η)/π(EN ) 1{η ∈ EN }, is reversible for the trace process.

Let P
E
η , η ∈ EN , be the probability measure on D(R+,EN ) induced by the trace

process {ηE(t) : t ≥ 0} starting from η. Expectation with respect to P
E
η is denoted by

E
E
η . Denote by gE the spectral gap of the trace process:

gE = inf
f

〈(−LE) f, f 〉πE

〈 f, f 〉πE

,

where the infimum is carried over all functions f in L2(πE) which are orthogonal to
the constants: 〈 f, 1〉πE = 0.

Proposition 2.1 presents an estimate of the spectral gap of the trace process in terms
of the spectral gap of the original process.

Proposition 2.1 Let f be an eigenfunction associated to g such that Eπ [ f 2] = 1,
Eπ [ f ] = 0. Then,

gE

{
1 − 1

π(EN )
Eπ

[
f 21{Ec

N }
]}

≤ g ≤ gE.

In the examples we have in mind π(EN ) converges to 1. In particular, if we show
that an eigenfunction associated to g is bounded, gE/g converges to 1. We provide in
Lemma 6.1 an upper bound for gE in terms of capacities.
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Denote by �N : EN → S = {1, . . . , κ}, the projection given by

�N (η) =
κ∑

x=1

x 1{η ∈ Ex
N }.

and by {X N
t : t ≥ 0} the stochastic process on S defined by X N

t = �N (ηE(t)).
Clearly, besides trivial cases, {X N

t : t ≥ 0} is not Markovian. We refer to X N
t as the

order process or order for short.
B. Reflected process. Denote by {ηr,x (t) : t ≥ 0}, 1 ≤ x ≤ κ , the Markov process
η(t) reflected at Ex

N . This is the process obtained from the Markov process η(t) by
forbidding all jumps from η to ξ if η or ξ do not belong to Ex

N . The generator Lr,x of
this Markov process is given by

(Lr,x f )(η) =
∑

ξ∈Ex
N

RN (η, ξ) { f (ξ) − f (η)} , η ∈ Ex
N .

Assume that the reflected process ηr,x (t) is irreducible for each 1 ≤ x ≤ κ . It is easy
to show that the conditioned probability measure πx defined by

πx (η) = π(η)

π(Ex
N )

, η ∈ Ex
N , (2.4)

is reversible for the reflected process. Let gr,x be the spectral gap of the reflected
process:

gr,x = inf
f

〈(−Lr,x ) f, f 〉πx

〈 f, f 〉πx

,

where the infimum is carried over all functions f in L2(πx ) which are orthogonal to
the constants: 〈 f, 1〉πx = 0.
C. Enlarged process. Consider an irreducible, positive recurrent Markov process ξ(t)
on a countable set E which jumps from a state η to a state ξ at rate R(η, ξ). Denote
by π the unique stationary state of the process. Let E	 be a copy of E and denote by
η	 ∈ E	 the copy of η ∈ E . Following [7], for γ > 0 denote by ξγ (t) the Markov
process on E ∪ E	 whose jump rates Rγ (η, ξ) are given by

Rγ (η, ξ) =

⎧
⎪⎨

⎪⎩

R(η, ξ) if η and ξ ∈ E,

γ if ξ = η	 or if η = ξ	,

0 otherwise.

Therefore, being at some state ξ	 in E	, the process may only jump to ξ and this
happens at rate γ . In contrast, being at some state ξ in E , the process ξγ (t) jumps with
rate R(ξ, ξ ′) to some state ξ ′ ∈ E , and jumps with rate γ to ξ	. We call the process
ξγ (t) the γ -enlargement of the process ξ(t).

The enlarged process permits to formulate in mathematical terms the idea that a
process reaches equilibrium inside a set before leaving this set. Let A, B = Ac be a
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274 J. Beltrán, C. Landim

partition of E and let g represent the spectral gap of the process reflected at A and
θ the time it takes to reach B starting from A. Assume that g−1 � θ and choose γ

so that g−1 � γ −1 � θ . Starting from A the enlarged process reaches A	 before B
with a probability close to 1 and its distribution at the hitting time of A	 is close to the
quasi-stationary state for the process killed when it reaches B.

Let π	 be the probability measure on E ∪ E	 defined by

π	(η) = (1/2) π(η), π	(η
	) = π	(η), η ∈ E .

The probability measure π	 is invariant for the enlarged process ξγ (t) and is reversible
whenever π is reversible.

Let E
	,x
N , 1 ≤ x ≤ κ , be a copy of the set Ex

N and let E	
N = ∪1≤x≤κE

	,x
N , Ĕ

	,x
N =

∪y �=xE
	,y
N . Fix a sequence γ = γN and denote by η	(t) = ηE,γ the γ -enlargement

of the trace process ηE(t). Denote the generator of this Markov chain by L	, by
R	(η, ξ) the rate at which it jumps from η to ξ , and by λ	(η) the holding rates,
λ	(η) = ∑

ξ∈EN ∪E	
N

R	(η, ξ).

Denote by P
	,γ
η , η ∈ EN ∪ E	

N , the probability measure on the path space
D(R+,EN ∪ E	

N ) induced by the Markov process η	(t) starting from η and recall the
definition of the hitting time and the return time introduced in (2.2). For x �= y ∈ S,
let rN (x, y) be the average rate at which the enlarged process η	(t) jumps from E

	,x
N

to E
	,y
N :

rN (x, y) = 1

π	(E
	,x
N )

∑

η∈E	,x
N

π	(η) λ	(η) P
	,γ
η

[
HE

	,y
N

< H+
Ĕ

	,y
N

]

= γ

πE(Ex
N )

∑

η∈Ex
N

πE(η) P
	,γ
η

[
HE

	,y
N

< HĔ
	,y
N

]
. (2.5)

By [1, Proposition 6.2], rN (x, y) corresponds to the average rate at which the trace of
the process η	(t) on E	

N jumps from E
	,x
N to E

	,y
N . This explains the terminology.

For two disjoint subsets A, B of EN ∪ E	
N , denote by cap	(A,B) the capacity

between A and B:

cap	(A,B) =
∑

η∈A

π	(η) λ	(η) P
	,γ
η

[
HB < H+

A

]
.

Let A, B be two disjoint subsets of S. Taking A = ∪x∈AE
	,x
N , B = ∪y∈BE

	,y
N in the

previous formula, since the enlarged process may only jump from η	 to η and since
π	(η

	) = π	(η) = (1/2)πE(η),

cap	

⎛

⎝
⋃

x∈A

E
	,x
N ,

⋃

y∈B

E
	,y
N

⎞

⎠= γ

2

∑

x∈A

∑

η∈Ex
N

πE(η) P
	,γ
η

⎡

⎣H

⎛

⎝
⋃

y∈B

E
	,y
N

⎞

⎠< H

⎛

⎝
⋃

x∈A

E
	,x
N

⎞

⎠

⎤

⎦ . (2.6)

123



A Martingale approach to metastability 275

It follows from this identity and some simple algebra that

π	(E
x
N )

∑

y �=x

rN (x, y) = γ

2

∑

η∈Ex
N

πE(η) P
	,γ
η

[
HĔ	,x

N
< HE	,x

N

]
= cap	

(
E

	,x
N , Ĕ

	,x
N

)
.

(2.7)
D. L2 theory. We show in this subsection that with very few assumptions one can
prove the convergence of the finite-dimensional distributions of the order X N

t . Let

Mx = min
{
πE(Ex

N ), 1 − πE(Ex
N )
}
, x ∈ S. (2.8)

Theorem 2.2 Suppose that there exist a non-negative sequence {θN : N ≥ 1} and
non-negative numbers r(x, y), x �= y ∈ S, such that

θ−1
N � min

x∈S
gr,x , (L1)

lim
N→∞ θN rN (x, y) = r(x, y), x �= y ∈ S.

Fix x0 ∈ S. Let {νN : N ≥ 1} be a sequence of probability measures concentrated on
E

x0
N , νN (E

x0
N ) = 1, and such that

EπE

[(
dνN

dπE

)2
]

≤ C0

maxx∈S Mx
(L2G)

for some finite constant C0. Then, under P
E
νN

the finite-dimensional distributions of

the time-rescaled order XN
t = X N

tθN
converge to the finite-dimensional distributions

of the Markov process on S which starts from x0 and jumps from x to y at rate r(x, y).

Let νN be the measure πx0 defined in (2.4). In this case condition (L2G) becomes

max
x∈S

Mx ≤ C0 πE(E
x0
N ). (2.9)

Since

min
x∈S

max
z �=x

πE(Ez
N ) ≤ max

x∈S
min

{
πE(Ex

N ), 1 − πE(Ex
N )
} ≤ κ min

x∈S
max
z �=x

πE(Ez
N ),

condition (2.9) holds for all x0 ∈ S if and only if

min
x∈S

max
z �=x

π(Ez
N ) ≤ C0 min

y∈S
π(E

y
N ) (L2)

for some finite constant C0. Condition (L2) is satisfied in two cases. Either if all
wells E

y
N are stable sets (there exists a positive constant c0 such that πE(E

y
N ) ≥ c0

for all y ∈ S, N ≥ 1), or if there is only one stable set and all the other ones have
comparable measures (there exists x ∈ S and C0 such that limN πE(Ex

N ) = 1 and
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276 J. Beltrán, C. Landim

πE(E
y
N ) ≤ C0πE(Ez

N ) for all y, z �= x). In particular, when there are only two wells,
|S| = 2, assumption (L2G) is satisfied by the measures νN = πx , x = 1, 2.

Theorem 2.2 describes the asymptotic evolution of the trace of the Markov η(t) on
EN . The next lemma shows that in the time scale θN the time spent on the complement
of EN is negligible.

Lemma 2.3 Assume that

lim
N→∞

π(�N )

π(Ex
N )

= 0 (L3)

for all x ∈ S. Let {νN : N ≥ 1} be a sequence of probability measures concentrated
on some well E

x0
N , x0 ∈ S, and satisfying (L2G). Then, for every t > 0,

lim
N→∞ EνN

⎡

⎣
t∫

0

1{η(sθN ) ∈ �N } ds

⎤

⎦ = 0 . (2.10)

E. Mixing theory. If one is able to show that the process mixes inside each well
before leaving the well, the assumptions on the initial state can be relaxed and the
convergence of the order can be derived. Let T mix

r,x , x ∈ S, be the mixing time of the
reflected process ηr,x (t).

Theorem 2.4 Fix x0 ∈ S. Suppose that there exist a non-negative sequence {θN : N ≥
1} and non-negative numbers r(x, y), x �= y ∈ S, satisfying conditions (L1). Assume
that condition (2.9) is fulfilled and that there exists a sequence TN , T mix

r,x0
� TN � θN ,

such that

lim
N→∞ P

E
πx0

[
HĔ

x0
N

≤ TN

]
= 0. (L4S)

Let {νN : N ≥ 1} be a sequence of probability measures concentrated on E
x0
N ,

νN (E
x0
N ) = 1 and such that

lim
N→∞ P

E
νN

[
HĔ

x0
N

≤ T ′
N

]
= 0 (L4)

for some sequence T ′
N , T mix

r,x0
� T ′

N � θN . Then, the finite-dimensional distributions

of the time-rescaled order XN
t = X N

tθN
under P

E
νN

converges to the finite-dimensional
distributions of the Markov process on S which starts from x0 and jumps from x to y
at rate r(x, y).

We assume in this latter theorem that the sequence of measures πx0 fulfills all the
hypotheses of Theorem 2.2. The unique advantage of Theorem 2.4 over Theorem 2.2
is that it replaces the condition (L2G) on the sequence νN by the somehow weaker
condition (L4).

The next result asserts that condition (L4S) can be derived from one on the mean
jump rate of the trace process.
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Lemma 2.5 Assume that there exist a non-negative sequence {θN : N ≥ 1} such that
T mix

r,x0
� θN and such that

lim sup
N→∞

θN Eπx0
[RE(η, Ĕx0)] < ∞. (2.11)

Then, (L4S) holds for any sequence TN such that T mix
r,x0

� TN � θN .

Assumption (2.11) is not difficult to be verified. By [1, Lemma 6.7],

Eπx

[
RE(η, Ĕx

N )
]

= 1

π(Ex
N )

capN (Ex
N , Ĕx

N ) , (2.12)

The Dirichlet principle [14,15] provides a variational formula for the capacity and a
bound for the expression in (2.11). We show in (3.21) below that

∑
y �=x rN (x, y) ≤

Eπx [RE(η, Ĕx
N )].

A uniform version of assumption (L4) gives tightness of the speeded-up order. For
a probability measure νN on EN , denote by QνN the probability measure on the path
space D(R+, S) induced by the time-rescaled order XN

t = �N (ηE(tθN )) starting
from νN .

Lemma 2.6 Let {θN : N ≥ 1} be a sequence such that θ−1
N � minx∈S gr,x and such

that for all x ∈ S,
lim sup

N→∞
θN Eπx [RE(η, Ĕx

N )] < ∞. (2.13)

Assume that there exists a sequence TN such that maxx∈S T mix
r,x � TN and such that

for all x ∈ S,

lim
N→∞ sup

η∈Ex
N

P
E
η

[
HĔx

N
≤ TN

]
= 0. (L4U)

Let νN be a sequence of probability measures on EN . Then, the sequence (QνN : N ≥
1) is tight.

In Sect. 4 we present a bound for the probability appearing in condition (L4U). Let
Fx

N , x ∈ S, be subsets of EN containing Ex
N , Ex

N ⊂ Fx
N . Denote by T mix

r,Fx
N

the mixing

time of the process η(t) reflected at Fx
N .

Lemma 2.7 Fix x ∈ S and suppose that there exist a set Dx
N ⊂ Ex

N and a sequence
TN , T mix

r,Fx
N

� TN � θN , such that

lim
N→∞ max

η∈Dx
N

Pη

[
H(Fx

N )c ≤ TN

]
= 0. (L4E)

Then, (2.10) holds for any t > 0 and any sequence of probability measures νN con-
centrated on Dx

N provided condition (L3) is in force.
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Even if we are not able to prove the pointwise versions (L4U) or (L4E) of the
mixing condition, we can still show that the measures of the wells converge in the
Cesaro sense.

Proposition 2.8 Fix x0 ∈ S. Assume that conditions (L1), (L2) and (2.11) are fulfilled.
Let {νN : N ≥ 1} be a sequence of probability measures concentrated on E

x0
N and

satisfying conditions (2.10) and (L4). Denote by {SN (r) | r ≥ 0} the semigroup of the
process η(r). Then, for every t > 0 and x ∈ S,

lim
N→∞

t∫

0

[νN SN (θN r)] (Ex
N ) dr =

t∫

0

[δx0 S(r)](x) dr, (2.14)

where S(r) stands for the semigroup of the continuous-time Markov chain on S which
jumps from y to z at rate r(y, z), and where δx0 stands for the probability measure on
S concentrated at x0.

F. Two valleys. We suppose from now on that there are only two valleys, E1
N = AN

and E2
N = BN . It is possible in this case to establish a relation between the spectral

gap of the trace process and the capacities of the enlarged process, and to re-state
Theorems 2.2 and 2.4 in a simpler form. Assume that the sets Ex

N , x = 1, 2, have an
asymptotic measure:

lim
N→∞ πE(Ex

N ) = m(x),

and suppose, to fix ideas, that m(1) ≤ m(2).

Theorem 2.9 Assume that gE � minx=1,2 gr,x and consider a sequence γN such that
gE � γN � minx=1,2 gr,x . Then,

lim
N→∞

cap	(A
	
N ,B	

N )

gEπE(AN ) πE(BN )
= 1

2
·

This result follows from [7, Theorem 2.12]. Under the assumptions of Proposition
2.1 we may replace in this statement the spectral gap of the trace process by the spectral
gap of the original process. Moreover, in view of (2.7),

lim
N→∞ g−1

E rN (x, y) = m(y). (2.15)

When there are only two valleys, the right hand side of Eq. (L2G) is equal to
C0 min{πE(E1

N ), πE(E2
N )}−1. Condition (L2G) then becomes

EπE

[(
dνN

dπE

)2
]

≤ max
x=1,2

C0

πE(Ex
N )

(2.16)

for some finite constant C0. The measures νN = π1, π2 clearly fulfill this condition.
We summarize in the next lemma the observations just made.
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Lemma 2.10 Suppose that there are only two wells, S = {1, 2}, and set θN = g−1
E .

Then, condition (L1) is reduced to the condition that

gE � min{gr,1, gr,2}, (L1B)

the asymptotic rates r(x, y) are given by r(x, y) = m(y), and condition (L2) is always
in force.

In the case of two wells, there are two different asymptotic behaviors. Assume first
that m(1) > 0. In this case E1

N and E2
N are stable sets and XN

t jumps asymptotically
from x to 3− x at rate m(3− x). If m(1) = 0 and if νN is a sequence of measures con-
centrated on E1

N , E1
N is a metastable set, E2

N a stable set, and XN
t jumps asymptotically

from 1 to 2 at rate 1, remaining forever at 2 after the jump.

Remark 2.11 The average rates rN (x, y) introduced in (2.5) are different from those
which appeared in [1], but can still be expressed in terms of the star-capacities:

π	(E
x
N ) rN (x, y)

= 1

2

{
cap	(E

	,x
N , Ĕ

	,x
N ) + cap	(E

	,y
N , Ĕ

	,y
N ) − cap	(E

	,x
N ∪ E

	,x
N ,∪z �=x,yE

	,z
N )

}
.

To prove this identity observe that by (2.6) the right hand side is equal to

γ

4

∑

η∈Ex
N

πE(η) P
	,γ
η

[
HE

	,y
N

< HĔ
	,y
N

]
+ γ

4

∑

η∈E
y
N

πE(η) P
	,γ
η

[
HE	,x

N
< HĔ	,x

N

]
.

By (2.5), the first term is equal to (1/2)π	(E
x
N )rN (x, y). By definition of the enlarged

process, the second term can be written as

γ

2

∑

η∈E
	,y
N

π	(η) P
	,γ
η

[
HE	,x

N
= H+

E	
N

]
.

By reversibility, π	(η) P
	,γ
η [Hξ = H+

E	
N
] = π	(ξ) P

	,γ
ξ [Hη = H+

E	
N
], η ∈ E

	,y
N , ξ ∈

E
	,x
N . This concludes the proof of the remark.
We conclude this section pointing out an interesting difference between Markov

processes exhibiting a metastable behavior and a Markov processes exhibiting the
cutoff phenomena [23]. On the level of trajectories, after remaining a long time in a
metastable set, the first ones perform a sudden transition from one metastable set to
another, while on the level of distributions, as stated in Proposition 2.8 below, in the
relevant time scale these processes relax smoothly to the equilibrium state. In contrast,
processes exhibiting the cutoff phenomena do not perform sudden transitions on the
path level, but do so on the distribution level, moving quickly in a certain time scale
from far to equilibrium to close to equilibrium.

123



280 J. Beltrán, C. Landim

3 Convergence of the finite-dimensional distributions

We prove in this section the main results of the article. We start this section with an
important estimate which allows the replacement of the time integral of a function
f : EN → R by the time integral of the conditional expectation of f with respect to
the σ -algebra generated by the partition E1

N , . . . ,Eκ
N .

Local Ergodicity. Denote by ‖ f ‖−1 the H−1 norm associated to the generator LE of
a function f : EN → R which has mean zero with respect to πE:

‖ f ‖2−1 = sup
h

{
2〈 f, h〉πE − 〈h, (−LE)h〉πE

}
,

where the supremum is carried over all functions h : EN → R with finite support. By
[19, Lemma 2.4], for every function f : EN → R which has mean zero with respect
to πE, and every T > 0,

E
E
πE

[
sup

0≤t≤T

(∫ t

0
f (ηE(s)) ds

)2
]

≤ 24 T ‖ f ‖2−1. (3.1)

Similarly, for a function f : EN
x → R which has mean zero with respect to πx ,

denote by ‖ f ‖x,−1 the H−1 norm of f with respect to the generator Lr,x of the
reflected process at Ex

N :

‖ f ‖2
x,−1 = sup

h

{
2〈 f, h〉πx − 〈h, (−Lr,x )h〉πx

}
, (3.2)

where the supremum is carried over all functions h : Ex
N → R with finite support. It

is clear that ∑

x∈S

πE(Ex
N ) 〈h, (−Lr,x )h〉πx ≤ 〈h, (−LE)h〉πE

for any function h : EN → R with finite support. Note that the generator of the trace
process LE may have jumps from the boundary of a set EN

x to its boundary which do
not exist in the original process. There are therefore two types of contributions which
appear on the right hand side but do not on the left hand side. These ones, and jumps
from one set Ex

N to another. It follows from the previous inequality that for every
function f : EN → R which has mean zero with respect to each measure πx ,

‖ f ‖2−1 ≤
∑

x∈S

πE(Ex
N )‖ f ‖2

x,−1. (3.3)

Proposition 3.1 Let {νN : N ≥ 1} be a sequence of probability measures on EN .
Then, for every function f : EN → R which has mean zero with respect to each
measure πx and for every T > 0,
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⎛

⎝E
E
νN

⎡

⎣sup
t≤T

∣∣∣∣∣∣

t∫

0

f (ηE(s)) ds

∣∣∣∣∣∣

⎤

⎦

⎞

⎠
2

≤ 24 T EπE

[(
νN

πE

)2
]
∑

x∈S

πE(Ex
N )‖ f ‖2

x,−1 .

Proof By Schwarz inequality, the expression on the left hand side of the previous
displayed equation is bounded above by

EπE

[(
νN

πE

)2
]

E
E
πE

⎡

⎢⎣sup
t≤T

⎛

⎝
t∫

0

f (ηE(s)) ds

⎞

⎠
2
⎤

⎥⎦ .

By (3.1) and by (3.3), the second expectation is bounded by

24 T
∑

x∈S

πE(Ex
N ) ‖ f ‖2

x,−1 ,

which concludes the proof of the proposition.

By the spectral gap, for any function f : Ex
N → R which has mean zero with respect

to πx , ‖ f ‖2
x,−1 ≤ g−1

r,x 〈 f, f 〉πx . The next result follows from this observation and
the previous proposition.

Corollary 3.2 Let {νN : N ≥ 1} be a sequence of probability measures on EN . Then,
for every function f : EN → R which has mean zero with respect to each measure
πx and for every T > 0,

⎛

⎝E
E
νN

⎡

⎣sup
t≤T

∣∣∣∣∣∣

t∫

0

f (ηE(s)) ds

∣∣∣∣∣∣

⎤

⎦

⎞

⎠
2

≤ 24T EπE

[(
νN

πE

)2
]
∑

x∈S

πE(Ex
N ) g−1

r,x 〈 f, f 〉πx .

We have seen in (2.7) that cap	(E
	,x
N , Ĕ

	,x
N ) = π	(E

x
N )

∑
y �=x rN (x, y). For similar

reasons, cap	

(
E

	,x
N , Ĕ

	,x
N

)
= ∑

y �=x π	(E
y
N ) rN (y, x). If θN rN (x, y) converges, as

postulated in assumption (L1), we obtain from these identities that

cap	(E
	,x
N , Ĕ

	,x
N ) ≤ C0 θ−1

N Mx (3.4)

for some finite constant C0, where Mx has been introduced in (2.8).
The equilibrium potentials. Fix a sequence γ = γN such that θ−1

N � γ �
minx∈S gr,x and recall that we denote by η	(t) the γ -enlargement of the trace process
ηE(t). Denote by Vx , x ∈ S, the equilibrium potential between the sets E

	,x
N and Ĕ

	,x
N ,

Vx (η) = P
	,γ
η [HE	,x

N
< HĔ	,x

N
]. Since L	Vx = 0 on EN , we deduce that
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(LEVx )(η) = −γ [1 − Vx (η)], η ∈ Ex
N ,

(LEVx )(η) = γ Vx (η), η ∈ Ĕx
N . (3.5)

Moreover, since π	(η) = (1/2)πE(η), η ∈ EN ,

cap	(E
	,x
N , Ĕ

	,x
N )

= 1

2

⎧
⎪⎨

⎪⎩
γ
∑

η∈Ex
N

πE(η)[1 − Vx (η)]2 + 〈(−LE)Vx , Vx 〉πE + γ
∑

η∈Ĕx
N

πE(η) Vx (η)2

⎫
⎪⎬

⎪⎭
.

(3.6)

By assumption (L1), for all x �= y ∈ S, rN (x, y) ≤ C0θ
−1
N for some finite constant

C0 and for all N large enough. Hence, by (3.4) and by (3.6), for all x ∈ S

γ
∑

η∈Ex
N

πE(η) [1 − Vx (η)]2 + 〈(−LE)Vx , Vx 〉πE + γ
∑

η∈Ĕx
N

πE(η)Vx (η)2 ≤ C0 Mx

θN
.

(3.7)
Uniqueness of limit points. Recall the definition of the measure QνN introduced just
before Lemma 2.6, and let L be the generator of the S-valued Markov process given
by

(LF)(x) =
∑

y∈S

r(x, y)[F(y) − F(x)].

Proposition 3.3 Assume that the hypotheses of Theorem 2.2 are in force. Then, the
sequence QνN has at most one limit point, the probability measure on D(R+, S)

induced by the Markov process with generator L starting from x0.

Proof To prove the uniqueness of limit points, we use the martingale characterization
of Markov processes. Fix a function F : S → R and a limit point Q∗ of the sequence
QνN . We claim that

M F
t := F(Xt ) − F(X0) −

t∫

0

(LF)(Xs) ds (3.8)

is a martingale under Q∗.
Fix 0 ≤ s < t and a bounded function U : D(R+, S) → R depending only on

{Xr : 0 ≤ r ≤ s} and continuous for the Skorohod topology. We shall prove that

EQ∗

[
M F

t U
]

= EQ∗

[
M F

s U
]
. (3.9)
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Let G(η) = ∑
x∈S F(x)Vx (η), η ∈ EN . By the Markov property of the trace

process ηE(t),

M N
t = G(ηE(tθN )) − G(ηE(0)) −

tθN∫

0

(LEG)(ηE(s)) ds

is a martingale. Let U N := U (X N· ). As {M N
t : t ≥ 0} is a martingale,

E
E
νN

[
M N

t U N
]

= E
E
νN

[
M N

s U N
]

so that

E
E
νN

⎡

⎢⎣U N

⎧
⎪⎨

⎪⎩
G(ηE(tθN )) − G(ηE(sθN )) −

tθN∫

sθN

(LEG)(ηE(r)) dr

⎫
⎪⎬

⎪⎭

⎤

⎥⎦ = 0 .

(3.10)
Claim A For all x ∈ S,

lim
N→∞ sup

t≥0
E

E
νN

[
|1Ex

N
(ηE(tθN )) − Vx (η

E(tθN ))|
]

= 0.

Indeed, denote by SE(t), t ≥ 0, the semigroup associated to the trace processηE(t), and
by ht the Radon-Nikodym derivative dνN SE(t)/dπE. It is well known that EπE [h2

t ] ≤
EπE [h2

0]. Hence, by Schwarz inequality, the square of the expectation appearing in
the previous displayed formula is bounded above by

EπE

[(
dνN

dπE

)2
]

EπE

[
|1Ex

N
− Vx |2

]
.

To conclude the proof of the claim it remains to recall the definition of the sequence
γ , the estimate (3.7) and the assumption on the sequence of probability measures νN .

It follows from Claim A that

lim
N→∞ sup

t≥0
E

E
νN

[
|(F ◦ �)(ηE(tθN )) − G(ηE(tθN ))|

]
= 0.

Therefore, by (3.10),

lim
N→∞ E

E
νN

[
U N

{
�s,t F −

∫ tθN

sθN

(LEG)(ηE(r)) dr

}]
= 0 . (3.11)

where �s,t F = (F ◦ �)(ηE(tθN )) − (F ◦ �)(ηE(sθN )) = F(X N
tθN

) − F(X N
sθN

).
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Claim B Denote by P the σ−algebra generated by the partition Ez
N , z ∈ S. For all

T > 0, x ∈ S,

lim
N→∞ E

E
νN

⎡

⎣ sup
t≤T θN

∣∣
t∫

0

{
(LEVx )(η

E(s)) − E
[
LEVx

∣∣P] (ηE(s))
}

ds
∣∣

⎤

⎦ = 0.

By the assumption on the sequence νN and by Proposition 3.1, the square of the
expectation appearing in the previous formula is bounded by

C0 T θN

maxz∈S Mz

∑

y∈S

πE(E
y
N ) ‖LEVx‖2

y,−1 (3.12)

for some finite constant C0, where G stands for G − Eπy [G]. By (3.5), on the set Ex
N ,

LEVx = −γ [1 − Vx (η)]. Hence, by the spectral gap o the reflected process and by
(3.7),

‖LEVx‖2
x,−1 = γ 2 ‖1 − Vx‖2

x,−1 ≤ γ 2

gr,x
‖1 − Vx‖2

πx
≤ C0 γ Mx

πE(Ex
N ) gr,x θN

for some finite constant C0. Similarly, since LEVx = γ Vx (η) on the set E
y
N , y �= x ,

‖LEVx‖2
y,−1 ≤ C0 γ Mx

πE(E
y
N ) gr,y θN

·

Therefore, the sum appearing in (3.12) is bounded by C0T |S| γ maxz∈S g−1
r,z which

vanishes as N ↑ ∞ by definition of γ , proving Claim B.
It follows from (3.11) and Claim B that

lim
N→∞ E

E
νN

⎡

⎣U N

⎧
⎨

⎩�s,t F −
t∫

s

θN E
[
LEG

∣∣P] (ηE(rθN )) dr

⎫
⎬

⎭

⎤

⎦ = 0 . (3.13)

We affirm that

E
[
LEG

∣∣P] (η) =
∑

x∈S

1{η ∈ Ex
N }
∑

y∈S

rN (x, y)[F(y) − F(x)]. (3.14)

Indeed, by (3.5),

E
[
LEVx

∣∣P] =

⎧
⎪⎪⎨

⎪⎪⎩

−γ
∑

η∈Ex
N

πE(η)

πE(Ex
N )

P
	,γ
η

[
HĔ	,x

N
< HE	,x

N

]
, η ∈ Ex

N ,

γ
∑

η∈E
y
N

πE(η)

πE(E
y
N )

P
	,γ
η

[
HE	,x

N
< HĔ	,x

N

]
, η ∈ E

y
N , y �= x .
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By (2.7), on the set Ex
N , E[LEVx | P] = − ∑

y �=x rN (x, y), and by (2.5), on the set

E
y
N , E[LEVx | P] = rN (y, x). To conclude the proof of (3.14) it remains to recall the

definition of G.
By (3.13), (3.14) and by definition of X N

t ,

lim
N→∞ E

E
νN

⎡

⎣U N

⎧
⎨

⎩�s,t F −
t∫

s

∑

y∈S

θN rN (X N
rθN

, y) [F(y) − F(X N
rθN

)] dr

⎫
⎬

⎭

⎤

⎦ = 0 .

Since �s,t F = F(X N
tθN

) − F(X N
sθN

), since U has been assumed to be continuous
for the Skorohod topology and since Q∗ is a limit point of the sequence QνN , by
assumption (L1)

EQ∗

⎡

⎣U

⎧
⎨

⎩F(Xt ) − F(Xs) −
∫ t

s

∑

y∈S

r(Xr , y) [F(y) − F(Xr )] dr

⎫
⎬

⎭

⎤

⎦ = 0,

proving (3.8) and the proposition. ��
Proof of Theorem 2.2 The proof is similar to the one of Proposition 3.3. We prove the
convergence of the one-dimensional distributions. The extension to higher dimensional
distributions is clear. Fix a function F : S → R. We claim that for every T ≥ 0,

lim sup
N→∞

sup
0≤s<t≤T

∣∣∣∣∣∣
EνN

⎡

⎣F(X N
tθN

) − F(X N
sθN

) −
t∫

s

(LF)(X N
rθN

)dr

⎤

⎦

∣∣∣∣∣∣
= 0.

(3.15)
Recall the definition of the function G : EN → R introduced in the proof of the
previous proposition. By Claim A and since G(ηE(tθN ))−∫ t

0 θN (LEG)(ηE(sθN )) ds
is a martingale, to prove (3.15), it is enough to show that

lim sup
N→∞

sup
0≤t≤T

∣∣∣∣∣∣
EνN

⎡

⎣
t∫

0

θN (LEG)(ηE(rθN )) dr −
t∫

0

(LF)(X N
rθN

) dr

⎤

⎦

∣∣∣∣∣∣
= 0.

By Claim B, by the identity (3.14) and by the definition of X N
t , the proof of (3.15) is

further reduced to the proof that

lim sup
N→∞

sup
0≤t≤T

∣∣∣∣∣∣
EνN

⎡

⎣
t∫

0

(LN F)(X N
rθN

) dr −
t∫

0

(LF)(X N
rθN

) dr

⎤

⎦

∣∣∣∣∣∣
= 0,

where (LN F)(x) = ∑
y∈S θN rN (x, y) [F(y) − F(x)]. To conclude the proof of

(3.15), it remains to recall assumption (L1).
It follows from (3.15) that the sequence fN (t) = EνN [F(X N

tθN
)] is equicontinuous

in any compact interval [0, T ]. Moreover, if F is an eigenfunction of the operator L
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associated to an eigenvalue λ, all limit points f (t) of the subsequence fN (t) are such
that

f (t) − F(x0) =
t∫

0

λ f (r) dr, 0 ≤ t ≤ T,

which yields uniqueness of limit points. ��
Proof of Lemma 2.5 Let TN be a sequence such that T mix

r,x0
� TN � θN . The proba-

bility P
E
πx0

[HĔ
x0
N

≤ TN ] can be written as

∑

η∈E
x0
N

{
πx0(η) − π∗

x0
(η)

}
P

E
η

[
HĔ

x0
N

≤ TN

]
+ P

E
π∗

x0

[
HĔ

x0
N

≤ TN

]
, (3.16)

where π∗
x0

is the quasi-stationary measure associated to the trace process ηE(t) killed

when it hits Ĕ
x0
N . The first term is less than or equal to

∑

η∈E
x0
N

πx0(η)

∣∣∣∣
π∗

x0
(η)

πx0(η)
− 1

∣∣∣∣ ≤

⎧
⎪⎨

⎪⎩

∑

η∈E
x0
N

πx0(η)

(
π∗

x0
(η)

πx0(η)
− 1

)2

⎫
⎪⎬

⎪⎭

1/2

.

By Proposition 2.1, (17) and Lemma 2.2 in [7], the expression inside the square
root on the right hand side of the previous formula is bounded by εx0/[1 − εx0 ],
where εx0 = Eπx0

[RE(η, Ĕ
x0
N )]/gr,x0 . By (2.11), εx0 ≤ C0(θN gr,x0)

−1 for some finite

constant C0 and by hypothesis, θ−1
N � (T mix

r,x0
)−1 ≤ C0gr,x0 . This shows that the first

term in (3.16) vanishes as N ↑ ∞.
On the other hand, since π∗

x0
is the quasi-stationary state, under Pπ∗

x0
, the hitting

time of Ĕ
x0
N , denoted by HĔx0 , has an exponential distribution whose parameter we

represent by φ∗
x0

. By [7, Lemma 2.2], φ∗
x0

is bounded by Eπx0
[RE(η, Ĕx )] ≤ C0/θN ,

for some finite constant C0. Hence,

P
E
π∗

x0

[
HĔx0 ≤ TN

] = 1 − e−φ∗
x0

TN ≤ 1 − e−C0(TN /θN ),

an expression which vanishes as N ↑ ∞. ��
Proof of Theorem 2.4 Recall that T mix

r,x , x ∈ S, stands for the mixing time of
the reflected process ηr,x (t). We prove that the one-dimensional distributions con-
verge. The extension to higher dimensional distributions is straightforward. Since the
sequence of measures πx0 satisfies the assumptions of Theorem 2.2, in view of its
assertions it is enough to show that for each function F : S → R,

lim
N→∞

∣∣∣EE
νN

[
F(X N

tθN
)
]

− E
E
πx0

[
F(X N

tθN
)
] ∣∣∣ = 0. (3.17)
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Let TN be a sequence satisfying the assumptions of the theorem. We may write
E

E
νN

[F(X N
tθN

)] as

E
E
νN

[
1
{

HĔ
x0
N

> TN

}
F(X N

tθN
)
]

+ E
E
νN

[
1
{

HĔ
x0
N

≤ TN

}
F(X N

tθN
)
]
.

The second term is absolutely bounded by C0P
E
νN

[HĔ
x0
N

≤ TN ] for some finite constant

C0 independent of N and which may change from line to line. By hypothesis, this
latter probability vanishes as N ↑ ∞. By the Markov property, the first term in the
previous displayed equation is equal to

E
E
νN

[
1{HĔ

x0
N

> TN } E
E
η(TN )

[
F(X N

tθN −TN
)
]]

.

On the set {HĔ
x0
N

> TN } we may couple the trace process with the reflected process in

such a way that ηE(t) = ηr,x0(t) for t ≤ TN . The previous expectation is thus equal
to

E
E
νN

[
E

E
ηr,x0 (TN )

[
F(X N

tθN −TN
)
]]

− E
E
νN

[
1{HĔ

x0
N

≤ TN } E
E
ηr,x0 (TN )

[
F
(

X N
tθN −TN

)]]
.

As before, the second term vanishes as N ↑ ∞. The first expectation is equal to

E
E
πx0

[
F(X N

tθN −TN
)
]

+ RN (t),

where RN (t) is absolutely bounded by C0‖νN Sr,x0(TN ) − πx0‖TV. In this formula,
‖μ−ν‖TV stands for the total variation distance between μ and ν and Sr,x (t) represents
the semi-group of the reflected process. By definition of the mixing time, this last
expression is less than or equal to (1/2)(TN /T mix

r,x ), which vanishes as N ↑ ∞ by
assumption.

Repeating the same arguments presented above with the measure νN replaced by
the local equilibrium πx0 we conclude the proof of (3.17). ��

Proof of Lemma 2.3 Let νN be a sequence of probability measures satisfying (L2G).
By Schwarz inequality, the square of the expectation appearing in the statement of the
lemma is bounded above by

1

π(EN )
EπE

[(
dνN

dπE

)2
]

Eπ

⎡

⎢⎣

⎛

⎝
t∫

0

1{η(sθN ) ∈ �N } ds

⎞

⎠
2
⎤

⎥⎦

By assumption (L2G), the first expectation is bounded by C0 minx∈S M−1
x . Since

Mx ≥ miny πE(E
y
N ), minx∈S M−1

x ≤ maxy∈S πE(E
y
N )−1. On the other hand, by
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Schwarz inequality, the second expectation is less than or equal to

t Eπ

⎡

⎣
t∫

0

1{η(sθN ) ∈ �N } ds

⎤

⎦ = t2π(�N ),

which concludes the proof. ��
Proof of Lemma 2.7 The proof of this result is similar to the previous one with obvious
modifications. Consider a sequence of initial states ηN in Dx

N . By the Markov property,
the expectation appearing in (2.10) with νN = δηN is bounded above by

EηN

⎡

⎣1
{

H(Fx
N )c > TN

}
Eη(TN )

⎡

⎣
t∫

0

1{η(sθN ) ∈ �N } ds

⎤

⎦

⎤

⎦

+ TN /θN + t PηN

[
H(Fx

N )c ≤ TN

]
,

where we replaced t − TN by t in the time integral. By assumption, the second and
the third term vanish as N ↑ ∞. On the set {H(Fx

N )c > TN } we may replace η(TN )

by ηr,Fx
(TN ), where ηr,Fx

(t) stands for the process η(t) reflected at Fx
N . After this

replacement, we may remove the indicator and estimate the expectation by

t ‖δηN Sr,Fx
(TN ) − πFx ‖TV + EπFx

⎡

⎣
t∫

0

1{η(sθN ) ∈ �N } ds

⎤

⎦ ,

where Sr,Fx
(t) represents the semigroup of the reflected process ηr,Fx

(t) and πFx the
measure π conditioned to Fx

N . The first term vanishes by definition of TN , while the
second one is bounded by tπ(�N )/π(Fx

N ), which vanishes in view of condition (L3).
��

Proof of Proposition 2.8 The proof of this proposition relies on a comparison between
the original process and the trace process presented below in Eqs. (3.18) and (3.19).
Let {TE(t) | t ≥ 0} be the time spent on the set EN by the process η(s) in the time
interval [0, t],

TE(t) =
t∫

0

1{η(s) ∈ EN } ds.

Denote by SE(t) the generalized inverse of TE(t), SE(t) = sup{s ≥ 0 | TE(s) ≤ t},
and recall that the trace process is defined as ηE(t) = η(SE(t)).

By definition of the trace process, for every t ≥ 0,

t∫

0

1{η(s) ∈ Ex
N } ds ≤

t∫

0

1{ηE(s) ∈ Ex
N } ds. (3.18)
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On the other hand,

t∫

0

1{ηE(r) ∈ Ex
N } dr =

t∫

0

1{η(SE(r)) ∈ Ex
N } dr.

By a change of variables, the previous integral is equal to

SE(t)∫

0

1{η(r) ∈ Ex
N } dr.

Let T�(t), t ≥ 0, be the time spent by the process η(s) on the set �N in the time
interval [0, t], T�(t) = ∫ t

0 1{η(s) ∈ �N } ds. Since TE(t) + T�(t) = t , on the set
T�(t0) < δ and for t ≤ t0 − δ, TE(t + δ) > t , so that SE(t) ≤ t + δ. Putting together
all previous estimates we get that on the set T�(t0) < δ and for t ≤ t0 − δ,

t∫

0

1{ηE(s) ∈ Ex
N } ds ≤

t+δ∫

0

1{η(s) ∈ Ex
N } ds. (3.19)

We turn now to the proof of the proposition. We may rewrite the time integral
appearing on the left hand side of (2.14) as

EνN

⎡

⎣
t∫

0

1{η(rθN ) ∈ Ex
N } dr

⎤

⎦ . (3.20)

By (3.18), this expectation is bounded above by

EνN

⎡

⎣
t∫

0

1{ηE(rθN ) ∈ Ex
N } dr

⎤

⎦ = EνN

⎡

⎣
t∫

0

1{X N
rθN

= x} dr

⎤

⎦ .

By Theorem 2.4, the right hand side converges as N ↑ ∞ to the right hand side of
(2.14).

Fix δ > 0. The expectation (3.20) is bounded below by

EνN

⎡

⎣1{T�(tθN ) < δθN }
t∫

0

1{η(rθN ) ∈ Ex
N } dr

⎤

⎦ .

By (3.19), this expression is bounded below by
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EνN

⎡

⎣1{T�(tθN ) < δθN }
t−δ∫

0

1{ηE(rθN ) ∈ Ex
N } dr

⎤

⎦

≥ EνN

⎡

⎣
t−δ∫

0

1{ηE(rθN ) ∈ Ex
N } dr

⎤

⎦ − t PνN [T�(tθN ) ≥ δθN ] .

By (2.10), the second term vanishes as N ↑ ∞, while by Theorem 2.4 the second one
converges to the right hand side of (2.14) as N ↑ ∞ and then δ ↓ 0. ��

The jump rates. Recall the definition (2.5) of the rates rN (x, y). For all x ∈ S,

∑

y �=x

rN (x, y) ≤ Eπx

[
RE(η, Ĕx

N )
]
. (3.21)

Indeed, by (2.7) and by the Dirichlet principle,

π	(E
x
N )
∑

y �=x

rN (x, y) = cap	(E
	,x
N , Ĕ

	,x
N ) = inf

f
〈(−L	 f ), f 〉π	,

where the infimum is carried over all functions f : EN ∪ E	
N → R equal to 1 on E

	,x
N

and equal to 0 on Ĕ
	,x
N . Taking f = 1{Ex

N ∪ E
	,x
N } and computing the Dirichlet form

of this function we get (3.21).

4 On assumptions (L4) and (L4U)

We present in this section two estimates of P
E
η [HĔx

N
≤ TN ]. We start with a bound of

this probability in terms of an equilibrium potential. Denote by W 	
x,γ , x ∈ S, γ > 0,

the equilibrium potential between Ĕx
N ∪ Ĕ

	,x
N and E

	,x
N for the γ -enlargement of the

trace process ηE(t):

W 	
x,γ (η) = P

	,γ
η

[
HĔx

N ∪Ĕ	,x
N

< HE	,x
N

]
= P

	,γ
η

[
HĔx

N
< HE	,x

N

]
.

Lemma 4.1 Fix x ∈ S. Then, for all η ∈ Ex
N , γ > 0 and A > 0,

P
E
η

[
HĔx

N
≤ γ −1

]
≤ e W 	

x,γ (η) ,

W 	
x,γ (η) − e−A

1 − e−A
≤ P

E
η

[
HĔx

N
≤ Aγ −1

]
.
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Proof Fix x ∈ S. By definition of the equilibrium potential,

⎧
⎪⎨

⎪⎩

(L	W 	
x,γ )(η) = 0 η ∈ Ex

N ,

W 	
x,γ (η) = 1 η ∈ Ĕx

N ∪ Ĕ
	,x
N ,

W 	
x,γ (η) = 0 η ∈ E

	,x
N .

By definition of the generator L	 and since the equilibrium potential W 	
x,γ vanishes

on the set E
	,x
N , on the set Ex

N , we have that

(LEW 	
x,γ )(η) = γ W 	

x,γ (η), η ∈ Ex
N .

Since W 	
x,γ is equal to 1 on the set Ĕx

N , we conclude that

W 	
x,γ (η) = E

E
η [exp{−γ HĔx

N
}], η ∈ EN .

On the other hand, by Tchebychev inequality and by the previous identity,

P
E
η

[
HĔx

N
≤ γ −1

]
= P

E
η

[
e
−γ HĔx

N ≥ e−1
]

≤ e E
E
η

[
e
−γ HĔx

N

]
= e W 	

x,γ (η).

Conversely, fix A > 0 and let T (γ ) be an exponential time of parameter γ inde-
pendent of the trace process ηE(s). It is clear that for η ∈ Ex

N ,

W 	
x,γ (η) = P

	,γ
η

[
HĔx

N
< HE	,x

N

]
= P

E
η

[
HĔx

N
< T (γ )

]
.

By definition of T (γ ), the last probability is equal to

∞∫

0

P
E
η

[
HĔx

N
< t

]
γ e−γ t dt ≤ P

E
η

[
HĔx

N
≤ Aγ −1

]
(1 − e−A) + e−A.

An elementary computation permits to conclude the proof of the lemma. ��

The second assertion of the previous lemma shows that we do not lose much in the
first one.

Corollary 4.2 Let νN be a probability measure concentrated on the set Ex
N . Then, for

all γ > 0,

P
E
νN

[
HĔx

N
≤ γ −1

]2 ≤ 2 e2

γ
EπE

[(
νN

πE

)2
]

cap	(E
	,x
N , Ĕx

N ).
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Proof Recall that we denote by η	 the copy of the state η. By definition of the enlarged
process and by Schwarz inequality,

P
	,γ
νN

[
HĔx

N
< HE	,x

N

]
=

∑

η∈Ex
N

νN (η) P
	,γ
η	

[
HĔx

N
< H+

E	,x
N

]

≤
{

EπE

[(
νN

πE

)2
]
∑

η∈Ex
N

πE(η) P
	,γ
η	

[
HĔx

N
< H+

E	,x
N

] }1/2
.

In the previous sum we may replace πE(η) by 2 π	(η
	). After the replacement, the

sum becomes 2γ −1cap	(E
	,x
N , Ĕx

N ). This estimate together with Lemma 4.1 concludes
the proof of the corollary. ��

Comments on assumption (L4U). We present in this subsection two strategies to
prove that the equilibrium potential W 	

x,γ (η) vanishes. We apply the first technique in
Example A of Sect. 8.
A. Monotonicity. It is always possible to couple two trace processes ηE(t) starting
from different initial states in such a way that both reach the set E	

N at the same time.
Assume that the equilibrium potential W 	

x,γ satisfies some property P. For example,
suppose that the equilibrium potential is monotone with respect to some partial order
defined on EN . By the Dirichlet principle,

cap	(E
	,x
N , Ĕx

N ∪ Ĕ
	,x
N ) = 〈W 	

x,γ , (−L	)W 	
x,γ 〉π	 = inf

f
〈 f, (−L	) f 〉π	,

where the supremum is carried over all functions f vanishing at E
	,x
N , equal to 1 on

Ĕx
N ∪ Ĕ

	,x
N and satisfying condition P. Fix a configuration η ∈ Ex

N and denote by
RN (ε), ε > 0, the right hand side of the previous formula when we impose the further
restriction that f (η) ≥ ε.

To prove that W 	
x,γ (η) vanishes as N ↑ ∞, it is enough to show that for every ε > 0,

cap	(E
	,x
N , Ĕx

N ∪ Ĕ
	,x
N ) � RN (ε). Indeed, suppose by contradiction that W 	

x,γ (η) does
not vanish as N ↑ ∞. There exists in this case ε > 0 and a subsequence N j , still
denoted by N , for which W 	

x,γ (η) ≥ ε for all N . Therefore,

RN (ε) ≤ 〈W 	
x,γ , (−L	)W 	

x,γ 〉π	 = cap	(E
	,x
N , Ĕx

N ∪ Ĕ
	,x
N ),

proving our claim.
B. Capacities. To present the second form of estimating the equilibrium potential, we
start with a general result which expresses the equilibrium potential as a ratio between
capacities. Consider a reversible Markov chain η(t) on some countable state space E .
Denote by Pξ , ξ ∈ E , the probability measure on the path space D(R+, E) induced
by the Markov process η(t) starting from ξ , and by cap(A, B) the capacity between
two disjoint subsets, A, B, of E . Next result is Lemma 1.15 in [20].
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Lemma 4.3 Let A, B be two disjoint subsets of E, A ∩ B = ∅, and let η �∈ A ∪ B.
Then,

Pη [HB < HA] = cap(η, A ∪ B) + cap(B, A ∪ {η}) − cap(A, B ∪ {η})
2 cap(η, A ∪ B)

≤ cap(η, B)

cap(η, A ∪ B)
·

In some cases the estimate presented in the previous lemma has no content. On the
one hand,

capT (η, B) = μT (η) RT (η, B) + μT (η) λT (η) PT
η

[
HA < HB < H+

η

]
.

The second term on the right hand side is the expression we added to the numerator to
transform the identity presented in Lemma 4.3 into an inequality. On the other hand,
since HA ∧ HB < H+

η PT
η -a.s.,

PT
η

[
HA < HB < H+

η

]
= ET

η

[
1{HA < HB} PT

ηT (HA)

[
HB < Hη

] ]
.

and

μT (η) RT (η, B) + μT (η) λT (η) PT
η [HA < HB]

= μT (η) RT (η, B) + μT (η) RT (η, A) = capT (η, A ∪ B),

which is the expression which appears in the denominator in the proof of the
lemma. Therefore, the statement of the lemma may have some interest only if
PT

ηT (HA)

[
HB < Hη

] = PηT (HA)

[
HB < Hη

]
is negligible, i.e., if the process starting

from A reaches B before η with a vanishing probability.

We apply Lemma 4.3 to our context to obtain a bound on P
E
η [HĔx

N
≤ γ −1]. For

γ > 0, consider the Markov process {ηN ,	(t) : t ≥ 0} on EN ∪ E	
N whose jump rates

RN ,	(η, ξ) = Rγ

N ,	(η, ξ) are given by

RN ,	(η, ξ) =

⎧
⎪⎨

⎪⎩

RN (η, ξ) if η and ξ ∈ EN ,

γ if η ∈ E	
N ∪ EN and if [ξ = η	or η = ξ	],

0 otherwise.

Note that the process η	(t) is the trace of the process ηN ,	(t) on E	
N ∪ EN . Denote by

capN ,	 the capacity associated to the process ηN ,	(t). Next result provides a bound for
condition (L4U) in terms of capacities which can be estimated through the Dirichlet
and the Thomson principles.
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Corollary 4.4 For every x ∈ S, η ∈ Ex
N and γ > 0,

P
E
η

[
HĔx

N
≤ γ −1

]
≤ e capN (η, Ĕx

N )

2 capN ,	(η,E
	,x
N )

·

Proof By Lemmas 4.1 and 4.3,

P
E
η

[
HĔx

N
≤ γ −1

]
≤ e P

	,γ
η

[
HĔx

N
< HE	,x

N

]
≤ e cap	(η, Ĕx

N )

cap	(η,E
	,x
N )

·

It is clear from the Dirichlet principle and from the definition of the enlarged process
that cap	(η, Ĕx

N ) = (1/2) capE(η, Ĕx
N ), where capE stands for the capacity asso-

ciated to the trace process ηE(t). By [1, Lemma 6.9], once more, capE(η, Ĕx
N ) =

π(EN )−1capN (η, Ĕx
N ) and cap	(η,E

	,x
N ) = π(EN )−1capN ,	(η,E

	,x
N ). This concludes

the proof of the lemma. ��

5 Tightness

We prove in this section tightness of the process XN
t . By Aldous criterion (see Theorem

16.10 in [8]) we just need to show that for every ε > 0 and T > 0

lim
δ↓0

lim
N→∞ sup

a≤δ

sup
τ∈TT

P
E
νN

[
|XN

τ+a − XN
τ | > ε

]
= 0, (5.1)

where TT is the set of stopping times bounded by T .
In fact, in the present context of a finite state space, we do not need to consider

all stopping times, but just the jump times. More precisely, the process XN
t is tight

provided
lim
δ→0

lim sup
N→∞

sup
i≥0

P
E
νN

[
τi+1 − τi ≤ δ

] = 0,

where τ0 = 0 and τi , i ≥ 1, represent the jumping times of the process XN
t .

Proof of Lemma 2.6 We will prove that (5.1) holds. Fix T > 0, ε > 0 and δ > 0. By
the strong Markov property, for every 0 < a ≤ δ and stopping time τ ≤ T ,

P
E
νN

[ ∣∣∣XN
τ+a − XN

τ

∣∣∣ > ε
]

≤ P
E
νN

[
P

E
η(τ)

[ ∣∣∣XN
a − XN

0

∣∣∣ > ε
] ]

≤ sup
η∈EN

P
E
η

[ ∣∣∣XN
a − XN

0

∣∣∣ > ε
]

≤ max
x∈S

sup
η∈Ex

N

P
E
η

[
HĔx ≤ δθN

]
.

To conclude the proof we need to show that the last term vanishes as N ↑ ∞ and then
δ ↓ 0. The arguments used are similar to the ones used in the proof of Theorem 2.4.
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Let TN be a sequence satisfying the assumptions (L4U). Fix x ∈ S and η ∈ Ex
N .

The probability P
E
η [HĔx ≤ δθN ] is bounded above by

P
E
η

[
HĔx ≤ TN

] + E
E
η

[
1
{

HĔx > TN
}

P
E
η(TN )

[
HĔx ≤ δθN

] ]
. (5.2)

The first term vanishes in view of assumption (L4U). On the set {HĔx > TN }, we may
couple the process η(t) with the reflected process ηr,x (t) in a way that η(t) = ηr,x (t)
for 0 ≤ t ≤ TN . In particular, we may replace in the previous term P

E
η(TN )[HĔx ≤ δθN ]

by P
E
ηr,x (TN )[HĔx ≤ δθN ]. After this replacement we may bound the second term in

(5.2) by

∑

ξ∈Ex
N

{(
δηSr,x (TN )

)
(ξ) − πx (ξ)

}
P

E
ξ

[
HĔx ≤ δθN

] + P
E
πx

[
HĔx ≤ δθN

]
, (5.3)

where Sr,x (t) represents the semi-group of the reflected process. The first term of this
sum is bounded by‖δηSr,x (TN )−πx‖TV, where‖μ−ν‖TV stands for the total variation
distance between μ and ν. By definition of the mixing time, this last expression is less
than or equal to (1/2)(TN /T mix

r,x ), which vanishes as N ↑ ∞ by definition of the sequence
TN .

It remains to estimate the second term in (5.3). It can be written as

∑

η∈Ex
N

{
πx (η) − π∗

x (η)
}

P
E
η

[
HĔx ≤ δθN

] + P
E
π∗

x

[
HĔx ≤ δθN

]
, (5.4)

where π∗
x is the quasi-stationary measure associated to the trace process ηE(t) killed

when it hits Ĕx . The first term is less than or equal to

∑

η∈Ex
N

πx (η)

∣∣∣∣
π∗

x (η)

πx (η)
− 1

∣∣∣∣ ≤
⎧
⎨

⎩
∑

η∈Ex
N

πx (η)

(
π∗

x (η)

πx (η)
− 1

)2
⎫
⎬

⎭

1/2

.

By Proposition 2.1, (17) and Lemma 2.2 in [7], the expression inside the square root on
the right hand side is bounded by εx/[1 − εx ], where εx = Eπx [RE(η, Ĕx )]/gr,x . By
(2.13), εx ≤ C0(θN gr,x )

−1 for some finite constant C0 and by hypothesis, θ−1
N � gr,x

. This shows that the first term in (5.4) vanishes as N ↑ ∞.
Finally, since π∗

x is the quasi-stationary state, under Pπ∗
x
, the hitting time of Ĕx

N ,
HĔx , has an exponential distribution whose parameter we denote by φ∗

x . By [7, Lemma

2.2], φ∗
x is bounded by Eπx [RE(η, Ĕx )] ≤ C0/θN , for some finite constant C0. Hence,

P
E
π∗

x

[
HĔx ≤ δθN

] = 1 − e−φ∗
x δθN ≤ 1 − e−C0δ,

an expression which vanishes as δ ↓ 0. This proves (5.1) and concludes the proof of
the lemma. ��
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By a version of [23, Theorem 12.3] for continuous-time reversible Markov chains,
T mix

r,x ≤ g−1
r,x log(4/ minη∈Ex

N
πx (η)). Hence, maxx∈S T mix

r,x � TN if

lim
N→∞

1

TN gr,x
log

1

minη∈Ex
N

πx (η)
= 0. (5.5)

6 The spectral gap of the trace process

We prove in this section Proposition 2.1. We start with an elementary result which
provides an upper bound for the spectral gap of the trace process in terms of capacities.
Recall that η(t) is a positive recurrent, reversible, continuous-time Markov chain on
a countable state space EN , whose embedded discrete-time chain is also positive
recurrent. Let EN a subset of EN and denote by gE the spectral gap of the trace of η(t)
on EN .

Lemma 6.1 We have that

gE ≤ inf
A⊂EN

π(EN ) cap(A,B)

π(A) π(B)
,

where B = EN \A.

Proof Fix a subset A of EN , and let B = EN \A. By definition,

gE = inf
f

〈 f, (−LE) f 〉πE

VarπE ( f )
≤ 〈1{A}, (−LE)1{A}〉πE

VarπE (1{A}) ,

where VarπE ( f ) stands for the variance of f with respect to the measure πE.
Since EN = A ∪ B, 1{A} is the equilibrium potential between A and B so that
〈1{A}, (−LE)1{A}〉πE = capE(A,B). Hence, by [1, Lemma 6.9],

gE ≤ capE(A,B)

πE(A) πE(B)
= π(EN ) cap(A,B)

π(A) π(B)
·

��
Proof of Proposition 2.1 Let F : EN → R be a function in L2(πE) and denote by
F̂ : EN → R the harmonic extension of F to EN , defined by

F̂(η) =
{

F(η) if η ∈ EN ,

Eη[F(η(HEN ))] if η �∈ EN .

We claim that
〈(−L N )F̂, F̂〉π = π(EN ) 〈(−LE)F, F〉πE . (6.1)
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Indeed, since L N F̂ = 0 on Ec
N and since F̂ and F coincide on EN , the Dirichlet form

〈L N F̂, F̂〉π is equal to

∑

η∈EN

π(η) F(η)
∑

ξ∈EN

RN (η, ξ){F̂(ξ) − F(η)}. (6.2)

We decompose the previous sum in two expressions, the first one including all terms
for which ξ belongs to EN and the second one including all terms for which ξ belongs
to EN \EN . When ξ belongs to EN , we may replace F̂ by F . The other expression, by
definition of F̂ is equal to

∑

η∈EN

∑

ξ �∈EN

π(η) F(η) RN (η, ξ)
∑

ζ∈EN

Pξ

[
HEN = Hζ

] {F(ζ ) − F(η)}.

Since for η ∈ EN ,

Pη

[
H+

EN
= Hζ

]
= pN (η, ζ ) +

∑

ξ �∈EN

pN (η, ξ) Pξ

[
HEN = Hζ

]
,

and since by [1, Proposition 6.1] RE(η, ζ ) = λN (η)Pη

[
H+

EN
= Hζ

]
the previous

sum is equal to

∑

η∈EN

∑

ζ∈EN

π(η) F(η)
{

RE(η, ζ ) − RN (η, ζ )
}

{F(ζ ) − F(η)}.

Adding this sum to the first expression in our decomposition of (6.2) as the sum of
two terms, we get that the left hand side of (6.1) is equal to

∑

η∈EN

∑

ζ∈EN

π(η) F(η) RE(η, ζ ) {F(ζ ) − F(η)}.

To conclude the proof of Claim (6.1), it remains to recall that πE(η) = π(η)/π(EN ).
Fix a function F : EN → R. We claim that

inf
g

〈(−L N )g, g〉π = 〈(−L N )F̂, F̂〉π , (6.3)

where the infimum is carried over all functions g : EN → R which are equal to F
on EN . Indeed, it is simple to show that any function f which solves the variational
problem on the left hand side of (6.3) is harmonic on Ec

N and coincides with F on EN ,

L N f = 0 on Ec
N and f = F on EN . The unique solution to this problem is F̂ , which

proves (6.3).
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Fix an eigenfunction F associated to gE such that EπE [F2] = 1, EπE [F] = 0. By
(6.1) we have that

gE = 〈(−LE)F, F〉πE = 1

π(EN )
〈(−L N )F̂, F̂〉π .

By the spectral gap, the Dirichlet form on the right hand side is bounded below by g
times the variance of F̂ . This latter variance, in view of the definition of F̂ and the
properties of F , is equal to

π(EN ) +
∑

η �∈EN

π(η)F̂(η)2 −
⎛

⎝
∑

η �∈EN

π(η)F̂(η)

⎞

⎠
2

≥ π(EN ).

This proves that g ≤ gE.
Fix an eigenfunction f associated to g such that Eπ [ f 2] = 1, Eπ [ f ] = 0. Let

F : EN → R be the restriction to EN of f : F(η) = f (η)1{η ∈ EN }. By definition of
g,

g = 〈(−L N ) f, f 〉π ≥ inf
g

〈(−L N )g, g〉π ,

where the infimum is carried over all functions g which coincide with F on EN . By
(6.3), by (6.1) and by definition of the spectral gap gE, the right hand side of the
previous term is equal to

〈(−L N )F̂, F̂〉π = π(EN )〈(−LE)F, F〉πE ≥ gEπ(EN )
{

EπE [F2] − EπE [F]2
}

.

Since F = f 1{EN }, up to this point we proved that

gEπ(EN )
{

EπE [ f 21{EN }] − EπE [ f 1{EN }]2
}

≤ g

Since the eigenfunction f associated to g is such that Eπ [ f 2] = 1, Eπ [ f ] = 0, we
may rewrite the previous inequality as

gE

{
1 −

[
Eπ

[
f 21{Ec

N }
]

+ 1

π(EN )
Eπ

[
f 1{Ec

N }]2
]}

≤ g.

By Schwarz inequality, Eπ [ f 1{Ec
N }]2 ≤ Eπ [ f 21{Ec

N }]π(Ec
N ) so that

gE

{
1 − 1

π(EN )
Eπ

[
f 21{Ec

N }
]}

≤ g,

which proves the proposition. ��
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7 Proof of Theorem 2.9

We assume in this section that the state space EN has been divided in three disjoint
sets E1

N = A, E2
N = B and �N = EN \EN , where EN = A ∪ B. Recall that ηE(t)

represents the trace of the process η(t) on the set EN and η	(t) the γ -enlargement of
the process ηE(t) to the set EN ∪E	

N , where γ = γN is a sequence of positive numbers
and E	

N = A	 ∪ B	, A	, B	 being copies of the sets A, B, respectively. Denote by
gA, gB the spectral gap of the process η(t) reflected at A, B, respectively.

Let ĉap	(A
	,B	) be the normalized capacity between A	 and B	:

ĉap	(A
	,B	) = cap	(A

	,B	)

πE(A) πE(B)
·

By [7, Theorem 2.12],

(
1 − 2 ĉap	(A

	,B	)

γ

)2

≤ 2 ĉap	(A
	,B	)

gE
≤ 1 + γ + 2 ĉap	(A

	,B	)

min{gA, gB} · (7.1)

The factor 2, which is not present in [7], appears because we consider the capacity
with respect to the probability measure π	, while [7] defines the capacity with πE as
reference measure.

Theorem 2.9 is a simple consequence of (7.1). For sake of completeness, we present
a proof of the lower bound of (7.1). Let V be the equilibrium potential between A	

and B	: V (η) = P
	,γ
η [HA	 < HB	 ]. We sometimes consider below V as a function

on EN . By definition of the spectral gap,

gE ≤ 〈V, (−LE)V 〉πE

VarπE (V )
,

where VarπE (V ) stands for the variance of V with respect to the measure πE. We
estimate the numerator and the denominator separately.

Since the capacity between A	 and B	 is equal to the Dirichlet form of the equilib-
rium potential,

(1/2)〈V, (−LE)V 〉πE ≤ cap	(A
	,B	) .

A martingale decomposition of the variance of V gives that

VarπE (V ) ≥ πE(A) πE(B)
(
EπA [VA] − EπB [VB])2

,

where VA = V 1{A}, VB = V 1{B}. Since cap	(A
	,B	) = 〈V, (−L	)V 〉π	 , since

(L	V )(η	) = γ [V (η) − 1], where η	 is the state in E	
N corresponding to the

state η ∈ EN , and since π	(η
	) = (1/2)πE(η), 2cap	(A

	,B	) = γπE(A) −
γ
∑

η∈AπE(η)V (η). Therefore,

EπA [VA] = 1 − 2 cap	(A
	,B	)

γ πE(A)
·
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Repeating the previous argument with 1 − V in place of V we obtain that

EπB [VB] = 2 cap	(A
	,B	)

γ πE(B)
·

Putting together the previous estimates, we conclude the proof of the lower bound of
(7.1). ��

8 Applications

We present in this section two applications of Theorems 2.2 and 2.4. Both processes
do not visit points in the time scale where tunneling occurs, in the sense that the
probability that the process visits a specific configuration, in a time interval whose
length is of the order of the tunneling time, vanishes. In particular, these models
do not satisfy the hypotheses of the theory developed in [1,5]. Furthermore, these
models have logarithmic energy or entropy barriers, restraining the application of large
deviations methods. On the other hand, both dynamics are monotone with respect to a
partial order, allowing the use of coupling techniques. The first model, which has only
entropy barriers, was suggested by A. Gaudillière to the authors as a model for testing
metastability techniques. We prove for to this model the mixing conditions introduced
in Section 2. E. The second one has been examined in details in [11,12]. We apply to
this model the L2-theory presented in Sect. 2. D.

8.1 The dog graph [25]

For N ≥ 1 and d ≥ 2, let QN = {0, . . . , N }d be a d-dimensional cube of length N , let
Q̆N be the reflection of QN through the origin, Q̆N = {η ∈ Z

d : −η ∈ QN }, and let
VN = QN ∪ Q̆N . Denote by EN the set of edges formed by pairs of nearest-neighbor
sites of VN , EN = {(η, ξ) ∈ VN × VN : |η − ξ | = 1}. The graph G N = (VN , EN ) is
called the dog graph [25].

Let {η(t) : t ≥ 0} be the continuous-time Markov chain on G N which jumps from
η to ξ at rate 1 if (η, ξ) ∈ EN . The uniform measure on VN , denoted by π , is the
unique stationary state. Diaconis and Saloff Coste [25, Example 3.2.5] proved that
there exist constants 0 < c(d) < C(d) < ∞ such that for all N ≥ 1,

c(2)

N 2 log N
≤ g ≤ C(2)

N 2 log N
in d = 2 and

c(d)

N d
≤ g ≤ C(d)

N d
(8.1)

in dimension d ≥ 3.
Fix a sequence αN , (log N )−1/2 � αN � 1, and let BN = {η = (η1, . . . , ηd) ∈

VN : min j η j ≥ αN N }, AN = −BN = {η ∈ VN : −η ∈ BN }. Denote by gA and
T mix

r,A (resp. gB and T mix
r,B) the spectral gap and the mixing time of the continuous-time

random walk η(t) reflected at AN (resp. BN ). It is well known that there exist finite
constants 0 < c(d) < C(d) < ∞ such that for all N ≥ 1,

c(d)

N 2 ≤ gA ≤ C(d)

N 2 , c(d) N 2 ≤ T mix
r,A ≤ C(d)N 2, (8.2)
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with similar inequalities if B replaces A.
Condition (2.11). Let EN = AN ∪ BN , and recall the notation introduced in Sect.
2. We claim that condition (2.11) is fulfilled for θN = N 2 log N in dimension 2 and
for θN = N d in dimension d ≥ 3. Indeed, if πAN , πBN , πE represent the uniform
measure π conditioned to AN , BN , EN , respectively, by (2.12),

EπAN
[REN (η,BN )] = 1

π(AN )
capN (AN ,BN ).

By the Dirichlet principle, the capacity is bounded by the Dirichlet form of any function
which vanishes on AN and is equal to 1 on BN . In dimension d ≥ 3 we simply choose
the indicator of the set QN . In dimension 2, let Dk = {η ∈ QN : η1 +η2 = k}, k ≥ 0.
Fix 1 ≤ L ≤ N and consider the function fL : QN → R+ defined by f (0) = 0,

fL(η) = 1

�(L)

k∑

j=1

1

j
η ∈ Dk, 1 ≤ k ≤ L , (8.3)

where �(L) = ∑
1≤ j≤L j−1, and fL(η) = 1 otherwise. It is easy to see that the

Dirichlet form of fL is bounded by C0(N 2 log L)−1 for some finite constant C0.
Choosing L = N a , for some 0 < a < 1, we conclude that there exists a finite
constant C0 such that

capN (AN ,BN ) ≤ C0

N 2 log N
, d = 2, capN (AN ,BN ) ≤ C0

N d
, d ≥ 3. (8.4)

Condition (2.11) follows from this estimate and the definition of the sequence θN .
Condition (L1B) in Lemma 2.10. By Lemma 6.1 and by the previous estimate of the
capacity, there exists a finite constant C0 such that gE ≤ C0[N 2 log N ]−1 in dimension
2 and gE ≤ C0 N−d in dimension d ≥ 3. Condition (L1B) is thus fulfilled in view of
(8.2).
Condition (L4) in Theorem 2.4. We claim that there exists a sequence TN satisfying
the conditions (L4) if νN is a sequence of measures concentrated on AN and such that

lim
N→∞

1

RN
EπE

[(
νN

πE

)2
]

= 0, (8.5)

where RN = log N in dimension d = 2, and RN = N d−2 in dimension d ≥ 3. Let
MN be an increasing sequence, MN � 1, for which (8.5) still holds if multiplied by
MN . Since cap	(A

	
N ,BN ) ≤ capE(AN ,BN ), by Corollary 4.2, by [1, Lemma 6.9],

by (8.4) and by (8.5) multiplied by MN ,

lim
N→∞ P

E
νN

[
HBN ≤ N 2 MN

]
= 0.

The strategy proposed in Sect. 6 permits to weaken assumption (8.5).
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Lemma 8.1 Let TN be a sequence such that TN � α2
N N 2 log N in dimension 2, and

TN � αd
N N d in dimension d ≥ 3. Then,

lim
N→∞ max

η∈AN

Pη

[
HQN ≤ TN

] = 0.

Proof In view of the definition of αN , we may assume that TN � N 2. We present the
arguments in dimension 2, the case of higher dimension being similar. Fix a sequence
ηN ∈ AN . Let γN = T −1

N and denote by η	(t) the γ -enlargement of the process η(t)
on VN ∪ V 	

N , as defined in Sect. 2. Here, V 	
N represents a copy of VN , and the process

η	(t) jumps from η to η	 (and from η	 to η) at rate γN . Denote by P
γ
η the probability

measure on the path space D(R+, VN ∪ V 	
N ) induced by the Markov process η	(t)

starting from η.
Let W be the equilibrium potential W (η) = P

γ
η [H0 < HQ̆	

N
], where 0 represents

the origin. In view of Lemma 4.1, it is enough to show that W (ηN ) vanishes as N ↑ ∞.
By the Dirichlet principle,

〈W, (−L	)W 〉π	 = cap	(0, Q̆	
N ) = inf

f
〈 f, (−L	) f 〉π	, (8.6)

where the infimum is carried over all functions f which vanish on Q̆	
N and which are

equal to 1 at the origin. Using the function fL introduced in (8.3), we may show that
the last term is bounded by C0(N 2 log N )−1 for some finite constant C0. We used here
the fact that γN � (N log N )−1.

Denote by ≺ the partial order of Z
d so that η ≺ ξ if η j ≤ ξ j for 1 ≤ j ≤ d.

A coupling argument shows that the equilibrium potential W is monotone on Q̆N :
W (η) ≤ W (ξ) for η ≺ ξ , η, ξ ∈ Q̆N . Suppose that W (ηN ) does not vanish as
N ↑ ∞. In this case there exists ε > 0 and a subsequence N j , still denoted by N ,
such that W (ηN ) ≥ ε for all N . Let UN = {ξ ∈ Q̆N : ηN ≺ ξ}. By monotonicity of
the equilibrium potential, W (ξ) ≥ W (ηN ) ≥ ε for all ξ ∈ UN . Therefore,

〈W, (−L	)W 〉π	 ≥ γN

∑

ξ∈UN

π	(ξ)W (ξ)2 ≥ c0 γN ε2 α2
N

for some positive constant c0. This contradicts the estimate (8.6) because γN �
(α2

N N 2 log N )−1. ��
Condition (L4U) The proof of Lemma 8.1 shows that condition (L4U) is in force.

Lemma 8.2 let TN be a sequence such that TN � α2
N N 2 log N in dimension 2, and

TN � αd
N N d in dimension d ≥ 3. Then,

lim
N→∞ max

η∈AN

P
E
η

[
HBN ≤ TN

] = 0.

Proof Consider the case of dimension 2. In view of the definition of αN , we may
assume that TN � N 2. Let γN = T −1

N , and fix a sequence ηN ∈ AN . By the proof of
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Lemma 8.1, it is enough to show that P
	,γ

ηN [HBN < HA	
N
] vanishes as N ↑ ∞, where

P
	,γ
η has been introduced in Sect. 2 just after the definition of enlargements. Clearly,

P
	,γ

ηN

[
HBN < HA	

N

]
= P

γ

ηN

[
HBN < HA	

N

]
≤ P

γ

ηN

[
H0 < HA	

N

]
,

where P
γ
η is the probability measure introduced in the proof of Lemma 8.1. Denote

by ηr,Q̆(t) the process η(t) reflected at Q̆N and by ηr,Q̆,γ (t) the γ -enlargement of the

process ηr,Q̆(t) on Q̆N ∪ Q̆	
N . The last probability is clearly equal to P

r,Q̆,γ

ηN [H0 <

HA	
N
], where P

r,Q̆,γ
η is the law of the process ηr,Q̆,γ (t) starting from η.

Let A
j
N = {η ∈ Q̆N : η j > −αN N }, j = 1, 2, so that Q̆N = AN ∪ A1

N ∪ A2
N and

P
r,Q̆,γ

ηN

[
H0 < HA	

N

]
≤ P

r,Q̆,γ

ηN

[
H0 < HQ̆	

N

]
+

2∑

j=1

P
r,Q̆,γ

ηN

[
H

A
j,	
N

< HA	
N

]
.

We have shown in the proof of Lemma 8.1 that the first term on the right hand side
of the previous formula vanishes as N ↑ ∞. The other two are one-dimensional
problems.

Let W (η) be the equilibrium potential P
r,Q̆,γ
η [HA1,	

N
< HA	

N
]. We claim that

lim
N→∞ max

η∈Q̆N

W (η) = 0.

Let RN be a sequence such that N 2 � RN � TN . With respect to the measure

P
r,Q̆,γ
η , HQ̆	

N
is a mean TN exponential time. Hence, P

r,Q̆,γ
η [HQ̆	

N
< RN ] vanishes as

N ↑ ∞. It is therefore enough to show that

lim
N→∞ P

r,Q̆,γ
η

[
HA1,	

N
< HA	

N
, HQ̆	

N
≥ RN

]
= 0.

By the Markov property, the previous probability is equal to

E
r,Q̆,γ
η

[
1{HQ̆	

N
≥ RN } P

r,Q̆,γ

ηr,Q̆(RN )

[
HA1,	

N
< HA	

N

] ]
,

where ηr,Q̆(t) is the process η(t) reflected at Q̆N . We bound last expectation by
removing the indicator of the set HQ̆	

N
≥ RN and we estimate the remaining term by

P
r,Q̆,γ
πQ̆

[
HA1,	

N
< HA	

N

]
+ ‖δηSr,Q̆(RN ) − πQ̆‖V T ,

where πQ̆ is the uniform measure on Q̆ and Sr,Q̆(t) the Markov semigroup of the

process ηr,Q̆(t). As RN � N 2, which is the mixing time of ηr,Q̆(t), the second term
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vanishes as N ↑ ∞, while the first term is the expectation of the equilibrium potential
W with respect to the measure πQ̆ . If Lr,Q̆ represents the generator of the Markov

process ηr,Q̆(t), we have that Lr,Q̆ W − γ W = −γ 1{A1
N }. Taking the expectation

with respect to πQ̆ , we conclude that EπQ̆
[W ] = πQ̆(A1

N ), which vanishes as N ↑ ∞.
This concludes the proof of the lemma.

In view of Lemma 2.10, we have just shown that all assumptions of Theorem 2.4
and Lemma 2.6 are in force. Moreover, by (8.2) and Lemma 8.1, the hypotheses of
Lemma 2.7 are fulfilled for DN = AN , FN = Q̆N and N 2 � TN � α2

N (log N ) N 2.
Hence,

Proposition 8.3 Consider the Markov process η(t) on the dog graph. Assume that
the initial state νN is concentrated on AN . Then, the time-rescaled order XN

t = X N
g−1

E t

converges to the Markov process on {1, 2} which starts from 1 and jumps from x to
3−x at rate 1/2. Moreover, in the time scale g−1

E the time spent by the original process
η(t) on the set �N = VN \EN is negligible.

As a last step, we replace in the previous statement the spectral gap gE of the trace
process by the spectral gap g of the original process. Let TN be a sequence such that
N 2 � TN � α2

N N 2 log N in dimension 2, and N 2 � TN � αd
N N d in dimension

d ≥ 3. It follows from Lemma 8.1 and from (8.2) that

lim
N→∞ min

η∈AN

Pη

[
η(TN ) ∈ Q̆N

]
= 1,

lim
N→∞ max

η∈AN

‖δηS(TN ) − πQ̆N
‖T V = 0,

where S(t) is the semigroup of the Markov process η(t). These estimates are the two
ingredients needed, together with monotonicity, in the proof of [11, Proposition 2.9],
a result which states, among other things, that there exists an eigenfunction fN of the
generator L N associated to the eigenvalue g such that Eπ [ fN ] = 0, Eπ [ f 2

N ] = 1,
limN ‖ fN ‖∞ = 1. Here and below ‖h‖∞ represents the sup norm of a function h. By
this result and by Proposition 2.1, limN (g/gE) = 1.

8.2 A polymer in the depinned phase [11,12]

Fix N ≥ 1 and denote by EN the set of all lattice paths starting at 0 and ending at 0
after 2N steps:

EN = {η ∈ Z
2N+1 : η−N = ηN = 0, η j+1 − η j = ±1, −N ≤ j < N }.

Fix 0 < α < 1 and consider the dynamics on EN induced by the generator L N defined
by

(L N f )(η) =
N−1∑

j=−N+1

c j,+(η)[ f (η j,+)− f (η)] +
N−1∑

j=−N+1

c j,−(η)[ f (η j,−)− f (η)],
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for every function f : EN → R. In this formula η j,± represents the configuration
which is equal to η at every site k �= j and which is equal to η j ± 2 at site j . The
jump rate c j,+(η) vanishes at configurations η which do not satisfy the condition
η j−1 = η j+1 = η j + 1, and it is given by

c j,+(η) =

⎧
⎪⎨

⎪⎩

1/2 if η j−1 = η j+1 �= ±1,

1/[(1 + α)] if η j−1 = η j+1 = 1,

α/[(1 + α)] if η j−1 = η j+1 = −1

for configurations which fulfill the condition η j−1 = η j+1 = η j +1. Let −η stand for
the configuration η reflected around the horizontal axis, (−η) j = −η j , −N ≤ j ≤ N .
The rates c j,−(η) are given by c j,−(η) = c j,+(−η).

Denote by �(η) the number of zeros in the path η, �(η) = ∑
−N≤ j≤N 1{η j = 0}.

The probability measure πN on EN defined by πN (η) = Z−1
2N α�(η), where Z2N is

a normalizing constant, is easily seen to be reversible for the dynamics generated by
L N .

By [12, Theorem 3.5], the spectral gap g is bounded above by C(α)(log N )8/N 5/2

for some finite constant C(α). Following [11], let E1
N be the set of configurations in

EN such that η j > 0 for all −(N − �) < j < (N − �), where � = �N is a sequence
such that 1 � �N � N , and let E2

N = {η ∈ EN : −η ∈ E1
N }, �N = EN \(E1

N ∪ E2
N ).

By equation (2.27) in [11], π(E1
N ) = π(E1

N ) = (1/2) + O(�−1/2). Moreover, taking
�N = (log N )1/4, by [11, Proposition 2.6], for every ε > 0, there exists N0 such that
for all N ≥ N0, gr,1 = gr,2 ≥ N−(2+ε). In conclusion, choosing ε small enough and
�N = (log N )1/4,

g � min
{
gr,1, gr,2

}

for all N large enough, which proves that condition (L1B) is in force.
By [11, Proposition 2.9], there exists an eigenfunction f of the generator L N such

that Eπ [ f ] = 0, Eπ [ f 2] = 1, L N f = g f and ‖ f ‖∞ = 1 + oN (1) where oN (1)

represents an expression which vanishes as N ↑ ∞. Therefore, since π(�N ) → 0,
by Proposition 2.1, g/gE converges to 1 as N ↑ ∞.

Let νN be a sequence of probability measures concentrated on E1
N and satisfying

condition (2.16). For example, one may define νN ( · ) as π( · | F ), where F is a subset
of E1

N such that lim inf N→∞ π(F) ≥ c0 for some positive constant c0. Define the trace
process ηE(t) and the order X N

t as in Section 2. By Proposition 2.1 and Lemma 2.10,
and in view of the previous remarks, the time-rescaled process XN

t = X N
t/g converges

to a Markov process on {1, 2} which starts from 1 and jumps from x to 3 − x at rate
1/2. Moreover, by Lemma 2.3, the time spent by the process η(t) on the time scale
g−1 outside the set EN is negligible.

The difference between this result, derived from a general statement, and Theorems
1.3 and 1.5 in [11] is that we require in Theorem 2.2 the initial state to be close to
the stationary state of the reflected process in one of the wells, while [11] allows the
process to start from any state in one of the wells. This strong assumption on the initial
condition permits to consider larger wells and to have an explicit description of these
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wells. To prove tunneling for a process starting from a state, one needs to show that
the mixing conditions (L4U) are in force.
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