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Abstract We consider a random walk on Z
d , d ≥ 2, in an i.i.d. balanced random

environment, that is a random walk for which the probability to jump from x ∈
Z

d to nearest neighbor x + e is the same as to nearest neighbor x − e. Assuming
that the environment is genuinely d-dimensional and balanced we show a quenched
invariance principle: for P almost every environment, the diffusively rescaled random
walk converges to a Brownian motion with deterministic non-degenerate diffusion
matrix. Within the i.i.d. setting, our result extend both Lawler’s uniformly elliptic
result (Comm Math Phys, 87(1), pp 81–87, 1982/1983) and Guo and Zeitouni’s elliptic
result (to appear in PTRF, 2010) to the general (non elliptic) case. Our proof is based
on analytic methods and percolation arguments.
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1 Introduction

This paper deals with a Random Walk in Random Environment (RWRE) on Z
d which

is defined as follows: Let Md denote the space of all probability measures on the
nearest neighbors of the origin {±ei }d

i=1 and let � = (Md)Z
d
. An environment is

a point ω ∈ �, we denote by P the distribution of the environment on �. For the
purposes of this paper, we assume that P is an i.i.d. measure, i.e.

P = νZ
d

for some distribution ν on Md . For a given environment ω ∈ �, the Random Walk on ω

is a time-homogenous Markov chain jumping to the nearest neighbors with transition
kernel

Pω ( Xn+1 = z + e| Xn = z) = ω(z, e) ≥ 0,
∑

e

ω(z, e) = 1.

The quenched law Pz
ω is defined to be the law on (Zd)N induced by the kernel Pω and

Pz
ω(X0 = z) = 1. We let Pz = P ⊗ Pz

ω be the joint law of the environment and the
walk, and the annealed law is defined to be its marginal

P
z =

∫

�

Pz
ωd P(ω).

A comprehensive account of the results and the remaining challenges in the under-
standing of RWRE can be found in Zeitouni’s Saint Flour lecture notes [22].

We are interested in the long-time asymptotic behavior of the walk. More precisely
considering the continuous rescaled trajectory X N ∈ C(R+, R

d),

X N
t = 1√

N
X[t N ] + t N − [t N ]√

N

(
X[t N ]+1 − X[t N ]

)
, t ≥ 0,

we want to know whether the quenched invariance principle holds, that is, if for P a.a.
ω, the law of {X N

t }t≥0 under P0
ω converges weakly on C(R+; R

d) (endowed with the
topology of uniform convergence on every compact interval) to a Brownian motion
with deterministic covariance matrix.

The invariance principle is a well known classical result for the simple random walk
(SRW), cf. [10].

A satisfying understanding of invariance principles exists for the random conduc-
tance model, which is a reversible RWRE, cf. [2,3,9,13,16,19] and many others.

However in general non-reversible random environments this question is still widely
open. Significant progress has been made in the perturbative regime, cf. [6,7,21], in
the ballistic regime cf [4,5,17,20] and others, and in the Dirichlet regime cf [18] and
others.

By looking at the references above, one can see that the problem of proving an
invariance principle is much harder when uniform ellipticity (i.e. that the transition
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Balanced RWRE 93

probability between nearest neighbors are bounded away from zero) does not hold.
Indeed, in the ballistic regime all the results are proven with the assumption of uni-
form ellipticity, the perturbative regime is by definition uniformly elliptic and in the
reversible regime it had been an open challenge to transfer the uniformly elliptic results
of [19] to less elliptic regimes.

In this paper we will focus on a special class of environments: the balanced environ-
ment. In particular, we solve the challenge of adapting the methods that were developed
for the elliptic case in [12] and [15] to non-elliptic cases.

Definition 1 An environment ω is said to be balanced if for every z ∈ Z
d and neighbor

e of the origin, ω(z, e) = ω(z,−e).

Of course we want to make sure that the walk really spans Z
d :

Definition 2 An environment ω is said to be genuinely d-dimensional if for every
neighbor e of the origin, there exists z ∈ Z

d such that ω(z, e) > 0.

Throughout this paper we make the following assumption.

Assumption 1 P-almost surely, ω is balanced and genuinely d-dimensional.

Note that whenever the distribution is ergodic, the above assumption is equivalent
with

P [ω(z, e) = ω(z,−e)] = 1, and P [ω(z, e) > 0] > 0

for every z ∈ Z
d and a neighbor e of the origin.

Note that unlike [12] we do not allow holding times in our model. We do this for
the sake of simplicity. Holding times in our case could be handled exactly as they are
handled in [12].

Our main result states.

Theorem 1.1 Assume that the environment is i.i.d., balanced and genuinely
d-dimensional, then the quenched invariance principle holds with a deterministic
non-degenerate diagonal covariance matrix.

The quenched invariance principle has been derived by Lawler in the 1980s [15]
for balanced uniform elliptic environments, i.e., when there exists ε0 > 0 such that

P
(∀z∈Zd ∀i=1,...,d , ω(z, ei ) > ε0

) = 1.

In fact, Lawler proved this result for general ergodic, uniformly elliptic, balanced
environments.

Recently Guo and Zeitouni improved this result in [12] for i.i.d elliptic environ-
ments, where

P
(∀z∈Zd ∀i=1,...,d , ω(z, ei ) > 0

) = 1.

Note that our genuinely d-dimensional assumption is much weaker than ellipticity, in
particular it applies to the following example
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94 N. Berger, J.-D. Deuschel

Fig. 1 An illustration of
Example 1.2 restricted to a small
box

Example 1.2 Take P = νZ
d

as above with

ν

[
ω(z, ei ) = ω(z,−ei ) = 1

2
, ω(z, e j ) = ω(z,−e j )

= 0, ∀ j �= i

]
= 1

d
, i = 1, . . . , d.

In this model, the environment chooses at random one of the ±ei direction, see Fig. 1).

[12] also shows the quenched invariance principle for ergodic elliptic environments
under the moment condition

E

⎡

⎣
(

d∏

i=1

ω(x, ei )

)−p/d⎤

⎦ < ∞ for some p > d.

Unlike the uniform elliptic case, one can find examples of ergodic elliptic balanced
environment, where the invariance principle fails, as in the following two-dimensional
example.

Example 1.3 For every point z ∈ Z
2 we have Bernoulli variables X z,ver

n , n = 1, 2, . . .

and X z,hor
n , n = 1, 2, . . .. Those variables are all independent, and P(X z,ver

n = 1) =
P(X z,hor

n = 1) = 3−n . Then, for every z ∈ Z
2, if X z,ver

n = 1, then the 2n vertices
directly above z all get chance 1 − e−2n to move in the vertical direction and chance
e−2n to move in the horizontal direction. If X z,hor

n = 1, then the 2n vertices directly
to the right of z all get chance 1 − e−2n−1 to move in the horizontal direction and
chance e−2n−1 to move in the vertical direction. If a point hasn’t been spoken for, it
gets probability 1

4 to go in each direction. If a point has been spoken for more than
once, it gets the highest value assigned to it.

It is not hard to prove that in Example 1.3, there exist α and β positive such that for
every large enough T , with probability at least α, all movements in the time interval
[(1 −β)T, T ] are in vertical directions, and with probability at least α, all movements
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in the time interval [(1 − β)T, T ] are in horizontal directions. Furthermore, a.s. one
can find infinitely many values of T such that all movements in the time interval
[(1 − β)T, T ] are in vertical directions and infinitely many values of T such that all
movements in the time interval [(1 − β)T, T ] are in horizontal directions. Obviously,
such process cannot converge to a Brownian Motion, not even a degenerate one. It is
also easy to show that the random walk in Example 1.3 is transient, even though it is
two-dimensional.

The balanced assumption is essential for our proof and simplifies the argument
greatly. In particular it implies that the walk is a martingale, which enables us to use
the vast theory of martingales.

In particular, unlike the case of random conductances, we do not have to define
and control a corrector. On the other hand, the existence and properties of an invariant
measure for the process w.r.t. the point of view of the particle is a serious difficulty in
our case, while it is simple in the case of random conductances.

We now define the process of the point of view of the particle, a notion which is
standard in the literature of random walk in random environment, and is used in this
paper. The environment viewed from the point of view of the particle is the Markov
chain {ω̄n}n∈N given by

ω̄n = τ−Xn ω,

where τ is the shift on �.
We can also view it as the Markov on � whose generator is

L f (ω) =
∑

e:‖e‖=1

ω(0, e)
[

f (τ−eω) − f (ω)
]
. (1.1)

The paper is organized as follows: in Sect. 2 we introduce the rescaled process
and give some estimate on the corresponding stopping times. Section 3 deals with
the maximum principle for the rescaled process, while Sect. 4 presents the stationary
measure for the periodized environment. Then in Sect. 4.6 we repeat the arguments
from [12] and [15] that lead to the existence of an invariant measure which is absolutely
continuous w.r.t. P . In Sect. 5 we finally prove Theorem 1.1.

2 The rescaled walk

In this section we define the rescaled walk, which is a useful notion in the study of
non-elliptic balanced RWRE, and prove some basic facts about it.

Let {Xn}∞n=0 be a nearest neighbor walk in Z
d , i.e. a sequence in Z

d such that
‖Xn+1 − Xn‖1 = 1 for every n. Let αn, n ≥ 1 be the coordinate that changes between
Xn−1 and Xn , i.e. α(n) = i whenever Xn − Xn−1 = ei or Xn − Xn−1 = −ei .

Definition 3 The stopping times Tk, k ≥ 0 are defined as follows: T0 = 0. Then

Tk+1 = min {t > Tk : {α(Tk + 1), . . . , α(t)} = {1, . . . , d}} ≤ ∞.
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96 N. Berger, J.-D. Deuschel

We then define the rescaled random walk to be the sequence (no longer a nearest
neighbor walk) Yn = XTn . {Yn} is defined as long as Tn is finite.

Lemma 2.1 P-almost surely, Tk < ∞ for every k.

Lemma 2.2 There exists a constant C such that for every n,

P(T1 > n) < e−Cn
1
3
.

Note that due to lack of stationarity, Lemma 2.2 does not directly say anything about
Tk+1 − Tk for large values of k. In Sect. 4 we will establish estimates for Tk+1 − Tk

for large values of k.

Proof of Lemma 2.2 Note that Wn = ∑d
i=1 X (i)

n is a simple random walk, and when-
ever Wn reaches a new value, Xn visits a new point. Since the environment is i.i.d.,
whenever the walk is at a new point, its (annealed) probability of going in any direction,
conditioned on its past, is bounded away from zero. Therefore,

P

(
T1 > n

∣∣∣∣max
k≤n

|Wk | ≥ n
1
3

)
≤ e−Cn

1
3
,

and from standard SRW estimates,

P

(
max
k≤n

|Wk | < n
1
3

)
≤ e−Cn

1
3
.

Combined, we get the desired result. ��
Proof of Lemma 2.1 Assume that almost surely Tk is finite, and we show that almost
surely Tk+1 < ∞. By the same argument as in the proof of Lemma 2.2, almost surely
after time Tk the walk {Xn} will visit infinitely many new points. For every coordinate
i , each time the walk visits a new point, conditioned on the past it has an annealed
probability bounded away from zero to make a step in the direction ei . Since infinitely
many new points are visited, P(Tk+1 < ∞|Tk < ∞) = 1. ��

The annealed estimate in Lemma 2.2 can easily be turned into a quenched one.

Lemma 2.3

P (ω : Eω(T1) > k) ≤ e−Ck
1
3
.

Proof Note that if Eω(T1) > k, then

A(ω) =
∞∑

j=k/2

Pω(T1 > j) > k/2.
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Now,

E(A(ω)) =
∞∑

j=k/2

P(T1 > j) ≤
∞∑

j=k/2

e−C j
1
3 ≤ Ck3e−Ck

1
3

Markov’s inequality completes the proof. ��

An immediate yet useful corollary of Lemma 2.3 is the following.

Lemma 2.4 For every 0 < p < ∞,

E
[
Eω

(
T p

1

)]
< ∞.

3 A maximum principle and a mean value inequality

In this section we prove a maximum principle which we will later use. It uses the same
basic idea as the maximum principle of Kuo and Trudinger [14], but the probabilistic
and non-elliptic setting requires a new way of estimating the size of the set of the
supporting hyperplanes, cf Lemma 3.4. We also state a mean value theorem, very
similar to Theorem 12 of Guo and Zeitouni [12]. The proof of the mean value theorem
is very similar to that of Theorem 12 of [12]. It appears in the arxiv version of this
paper, but not in the journal version.

For N ∈ N and k = k(N ) ∈ (0, N ) ∩ Z, let T (N )
1 = T (N ,k)

1 = min(T1, k). Let

h : Z
d → R be a real valued function, and for every z ∈ Z

d , let L(N )
ω h(z) :=

h(z) − Ez
ω[h(X

T (N )
1

)].
Let Q ⊆ Z

d be finite and connected, and let ∂(k)Q = {z ∈ Z
d − Q : ∃x∈Q‖z −

x‖∞ < k}.
We say that a point z ∈ Q is exposed if there exists β = β(z, h) ∈ R

d such that
h(z) − 〈β, z〉 ≥ h(x) − 〈β, x〉 for every x ∈ Q ∪ ∂(k)Q. We let Dh be the set of
exposed points. Further, we define the angle of vision Ih(z) as follows:

Ih(z) =
{
β ∈ R

d : ∀x∈Q∪∂(k) Qh(x) ≤ h(z) + 〈β, x − z〉
}

. (3.1)

This is the set of hyperplanes that touch the graph of h at (z, h(z)) and are above the
graph of h all over Q ∪ ∂(k)Q. A point z is exposed if and only if Ih(z) is not empty.

Theorem 3.1 (Maximum principle) There exists N0 such that for every N > N0 and
every 0 < k < N, every balanced environment ω and every Q of diameter N, if for
every z ∈ Q

Pz
ω (T1 > k) < e−(log N )3

(3.2)
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then

max
z∈Q

h(z) − max
z∈∂(k) Q

h(z) ≤ 6N

⎛

⎝
∑

z∈Q

1z∈Dh

∣∣∣L(N )
ω h(z)

∣∣∣
d

⎞

⎠

1
d

If 
N is a cube of side length N , then a more convenient way of writing the same
thing is

max
z∈
N

h(z) − max
z∈∂(k)
N

h(z) ≤ 6N 2
∥∥∥1Dh L(N )

ω h
∥∥∥


N ,d

≤ 6N 2
∥∥∥∥
(

L(N )
ω h

)+∥∥∥∥

N ,d

(3.3)

where, as in [12],

‖ f ‖
N ,p =
⎛

⎝ 1

|
N |
∑

z∈
N

| f (z)|p

⎞

⎠

1
p

is the L p norm with respect to the uniform probability measure on 
N .

Remark 1 Note that if ω is sampled according to an i.i.d. environment satisfying
Assumption 1, then by Lemma 2.3, (3.2) is almost surely satisfied for all large enough
N , k = (log N )100 and any connected Q of diameter N that contains the origin.
However, in this paper we also apply Theorem 3.1 to environments that are not i.i.d,
namely to environments that are the periodized versions of i.i.d. environments.

We now state a mean value theorem, whose proof, which is essentially the same
as the proof of Theorem 12 in [12], appears in the arxiv version of this paper. Let
BN (x) = {y ∈ Z

d : |x − y| ≤ N }, and B̄N = BN ∪ ∂(log N )100
BN . For u : B̄N → R

let Lωu(z) = u(z) − Ez
ω(u(X1)).

Theorem 3.2 For any σ ∈ (0, 1), 0 < p ≤ d and x0 ∈ Z
d we can find N0 =

N0(σ, p, d, x0) and C = C(σ, p, d) such that P almost surely if N ≥ N0 and u on
B̄N (x0) satisfy

Lωu(x) = 0, x ∈ BN (x0)

then

max
Bσ N (x0)

u ≤ C
∥∥u+∥∥

BN (x0),p .

Proof of Theorem 3.1 As in [14], we are mostly concerned with the angle of vision in
any vertex, defined as follows: Let z ∈ Q. Recall the angle of vision Ih(z) as defined
as in (3.1).
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Equivalently to [14], we will now state and use two simple geometrical lemmas.
The proofs of these lemmas are postponed to immediately after the end of the current
proof. ��
Lemma 3.3 For every N and 0 < k < N,

λ

⎛

⎝
⋃

z∈Q

Ih(z)

⎞

⎠ ≥
∣∣∣∣
maxz∈Q h(z) − maxz∈∂(k) Q h(z)

2N

∣∣∣∣
d

,

where λ is Lebesgue’s measure in d dimensions.

Lemma 3.4 Almost surely, for every large enough N, every Q of diameter N, every
ω satisfying (3.2) and every z ∈ Q ∩ Dh,

λ (Ih(z)) ≤
[(

3L(N )
ω h(z)

)+]d

. (3.4)

The theorem now follows once we note that

λ

⎛

⎝
⋃

z∈
N

Ih(z)

⎞

⎠ ≤
∑

z∈
N

λ (Ih(z)).

Proof of Lemma 3.3 This is identical to the proof of Lemma 2.2 in [14]. ��
Proof of Lemma 3.4 Let β ∈ Ih(z). Fix i ∈ {1, . . . , d}. For a walk {Xn} and
i = 1, . . . , d, let ui = min{n : α(n) = i} ≤ ∞. We define the events

A(+)
i = {

Xui − Xui −1 = ei and ui ≤ k
}

and

A(−)
i = {

Xui − Xui −1 = −ei and ui ≤ k
}

Let W be a random variable which takes +1 with probability 1/2 and −1 with the
same probability, and is independent of the walk. Let A0

i be the event A0
i = {ui > k}.

We define

A(+)
i,N = A(+)

i ∪
(
{W = +1} ∩

(
A0

i

))

and equivalently

A(−)
i,N = A(−)

i ∪
(
{W = −1} ∩

(
A0

i

))
.
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Note that Pz
ω(A(+)

i,N ) = Pz
ω(A(−)

i,N ) = 1/2 and that A(+)
i,N and A(−)

i,N are disjoint events.
Therefore,

Ez
ω

(
X

T (N )
1

|A(+)
i,N

)
− z = z − Ez

ω

(
X

T (N )
1

|A(−)
i,N

)
. (3.5)

Let O(i)
ω (z) = Ez

ω(X
T (N )

1
|A(+)

i,N ) − z.

β ∈ Ih(z), and therefore 〈β, x − z〉 ≥ h(x) − h(z) for every x ∈ Q ∪ ∂(k)Q.
In particular, using the definition of O(i)

ω (z) and (3.5),

〈
β, O(i)

ω (z)
〉
=

∑

x∈Q∪∂(k) Q

〈β, x − z〉 Pz
ω

(
X

T (N )
1

= x |A(+)
i

)

≥
∑

x∈Q∪∂(k) Q

(h(x) − h(z))Pz
ω

(
X

T (N )
1

= x |A(+)
i

)
(3.6)

Equivalently,

〈
β,−O(i)

ω (z)
〉
=

∑

x

〈β, x − z〉 Pz
ω

(
X

T (N )
1

= x |A(−)
i

)

≥
∑

x∈Q∪∂(k) Q

(h(x) − h(z))Pz
ω

(
X

T (N )
1

= x |A(−)
i

)
(3.7)

in other words,

∑

x∈Q∪∂(k) Q

(h(x) − h(z)) Pz
ω

(
X

T (N )
1

= x |A(−)
i

)
≤

〈
β, O(i)

ω (z)
〉

≤ −
∑

x∈Q∪∂(k) Q

(h(x) − h(z)) Pz
ω

(
X

T (N )
1

= x |A(+)
i

)
, (3.8)

so whenever β exists, 〈β, O(i)
ω (z)〉 is in an interval of length bounded by

−
[
∑

x

(h(x) − h(z)) Pz
ω

(
X

T (N )
1

= x |A(+)
i

)

+
∑

x

(h(x) − h(z)) Pz
ω

(
X

T (N )
1

= x |A(−)
i

)]

= 2
∑

x

(h(z) − h(x)) Pz
ω

(
X

T (N )
1

= x
)

= 2L(N )
ω h(z),

where the summation is over x ∈ Q ∪ ∂(k)Q. In particular, L(N )
ω h(z) is non-negative

if β exists.
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Therefore, λ(Ih(z)) is bounded by the volume of the parallelogram

L =
{
γ ∈ R

d : ∀i 0 ≤
〈
γ, O(i)

ω (z)
〉
≤ 2L(N )

ω h(z)
}
.

We thus need to estimate the volume of the parallelogram L . By standard linear algebra,

λ(L) =
(

2L(N )
ω h(z)

)d
det(M−1)

where M is the matrix whose columns are the vectors O(i)
ω (z), 0 ≤ i ≤ d. Therefore,

we need to estimate the values of the vectors O(i)
ω (z). ��

Claim 3.5 For every i ∈ {1, . . . , d},
∥∥∥ei − O(i)

ω (z)
∥∥∥ < e−(log N )2

.

Noting that the determinant is a continuous function, we get that (3.4) holds for all
large enough N .

Proof of Claim 3.5 We calculate separately Oi = 〈O(i)
ω (z), ei 〉 and O �i = O(i)

ω (z) −
Oi ei .

By the optional sampling theorem,

Oi = Pz
ω

(
A(+)

i |A(+)
i,N

) 〈
Ez

ω

(
X

T (N )
1

|A(+)
i

)
− z, ei

〉

+Pz
ω

(
A0

i |A(+)
i,N

) 〈
Ez

ω

(
X

T (N )
1

|A0
i,N

)
− z, ei

〉

= Pz
ω

(
A(+)

i |A(+)
i,N

)
,

and therefore, by (3.2),

|Oi − 1| < e−(log N )3
. (3.9)

Using the optional sampling theorem one more time,

O �i = 0. (3.10)

The claim follows from (3.9) and (3.10). ��
Remark 2 Note that the rescaled walk is balanced in the following sense: For every
x , ω, N and k,

∑

y

(y − x)Px
ω

(
X

T (N )
1

= y
)

= 0.
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4 Stationary measure for the periodized environment

As in [12] and [15], in this section we analyze the stationary measure of the walk on a
periodized environment. Unlike those papers, here we consider a slight variation of the
periodized environment, namely the reflected periodized environment, see Fig. 2. The
advantage of the choice of the reflected periodized environment over the one appearing
in [12] and [15] is that every walk in the reflected periodized environment is (up to,
possibly, some holding times) a legal walk in the original environment, which is not
the case for the periodized environment appearing in [12] and [15]. This property of
the reflected periodized environment will turn out to be very useful in Sect. 5.

The conclusion of this section is that for some p > 1, the L p norm of the Radon-
Nikodym derivative of a stationary measure with respect to the uniform measure on
the period-cube is bounded as a function of the size of the period. As in [12] and [15]
this will turn out to be the crucial step in the way of proving a CLT.

Differently from [12] and [15], we do it here with the stationary measure w.r.t.
the rescaled walk and not w.r.t. the original walk, because the original walk does not
necessarily obey the maximum principle (Theorem 3.1). The main idea is an idea that
we learned from Theorem 5 of [12], but as we work with the rescaled walk, which is
less regular than the original walk, the whole argument becomes significantly more

A B

C

Fig. 2 The configuration under the letter A is the original configuration. The configuration under the letter
B is the (reflected) periodized configuration with period 4, and the configuration under the letter C is the
effective environment for the reflected random walk in the 4×4 box. In places where there is only an arrow
pointing in one direction, the walker stays put with probability 1

2 . The origin in this picture is at the upper
left corner
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complex. In Sect. 4.5 we transfer the result from stationary measures w.r.t. the rescaled
walk to stationary measures w.r.t. the original walk.

4.1 Definition of the periodized environment

For every environment ω ∈ � and N ∈ N, we define the periodized environment ω(N )

as follows:
First we define ω(N )(z) for z in the cube [0, 2N − 1]d : for z = (z1, z2, . . . , zd) we

define ω(N )(z) = ω(z′) where

z′ = (min (z1, 2N − 1 − z1) , min (z2, 2N − 1 − z2) , . . . , min (zd , 2N − 1 − zd)).

Then for general z we define ω(N )(z) = ω(N )(z mod 2N ) where for every coor-
dinate i we define (z mod 2N )i := zi − 2N · � zi

2N �. For a given environment ω and
N ∈ N, let Pω,N be the uniform distribution over all (2N )d shifts of ω(N ). By Eω,N

we denote the expectation with respect to the distribution Pω,N . As in [12], due to
the ergodic theorem and to the fact that the planes of reflection are a negligible set,
P-almost surely Pω,N converges weakly to P .

Note that the random walk in Z
d under ω(N ) corresponds to the reflected random

walk on 
N = [0, N )d under ω, with some holding times. Indeed, if we define the
function f : Z

d → 
N to be

f (z) = (g(z1), . . . , g(zd)), where

g(x) := min (x mod 2N , 2N − 1 − (x mod 2N )), (4.1)

then { f (Xn)}∞n=1 follows the law of a random walk on 
N under ω which is reflected
at the boundaries of the cube, with a holding time when the random walker wants to
leave the cube (again, see Fig. 2).

Therefore, we can state and prove lemmas similar to Lemmas 2.2 and 2.3.

Lemma 4.1 There exists a constant C such that for every z, every N and every k <

2N,

∫

�

Pz
ω(N ) (T1 > k)d P(ω) < e−Ck

1
3
.

Lemma 4.2 There exists a constant C such that for every z, every N and every
k < 2N,

P

(
ω : Ez

ω(N )

[(
T1 ∧ N

2

)2
]

> k

)
≤ e−Ck

1
6
.

Proof of Lemma 4.1 The proof of Lemma 4.1 is basically the same as that of Lemma
2.2, except that we need to handle the fact that the environment is not i.i.d. and not even
locally i.i.d. (consider, for example, any neighborhood of the point 0). As in the proof
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of Lemma 2.2, let Wn = ∑d
i=1 X (i)

n . It is enough to show that, for two appropriate
constants C1 and C2, the probability that the reflected walk f (Xk) (see display (4.1)
for the definition) visits less than C1k1/3 points up to time k is bounded by e−C2k1/3

.
To this end we consider separately the coordinates for which the point z is closer

than k1/3

d to the boundary of 
N and those for which the point z is further than k1/3

d from

the boundary. Without loss of generality, assume that 0 ≤ z(i) < k1/3

d for 1 ≤ i ≤ �,

and that k1/3

d ≤ z(i) ≤ N − k1/3

d for � < i ≤ d.
Let Zn = Wn − W0 be the change in (W·). With probability greater than 1 −

exp(−C2k1/3), we get that

max
n≤k

|Zn| > 3k1/3.

Therefore, there exists a coordinate i such that

max
n≤k

∣∣∣X (i)
n − z(i)

∣∣∣ >
3k1/3

d
.

Now, if � < i ≤ d, then the first k1/3

d times that |X (i)
n − z(i)| reaches a new maximum,

f (Xn) visits a new point. If 1 ≤ i ≤ �, then whenever |X (i)
n − z(i)| reaches 2k1/3

d +
1, 2k1/3

d + 2, . . . , 3k1/3

d , the process f (Xn) visits a new point. ��
Lemma 4.2 follows from Lemma 4.1 using the exact same calculation that yields

Lemma 2.3 from Lemma 2.2. The different power (1/6 instead of 1/3) stems from the
power 2 inside the expectation.

4.2 Empirical distribution of Ez
ω(T1 ∧ N

2 )

For a number N and an environmentω, we denote T =T (ω, N ) :=
√

E0
ω(min(T1,

N
2 )2)

and for z ∈ Z
d we denote T z = T z(ω, N ) :=

√
Ez

ω(min(T1,
N
2 )2).

Lemma 4.3 Fix 1 ≤ p < ∞. P-almost surely, for all N large enough, for all k ≤
(log log N )100,

Eω,N (T p ; T > k) ≤ e−Ck1/3
(4.2)

where E(X ; A) is defined to be E(X · 1A).

Proof First, we show that there exists c such that P-almost surely for all N large
enough,

Eω,N (T 2p) < c. (4.3)
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Indeed, the LHS of (4.3) equals

1

|
2N |
∑

z∈
2N

[
T z(ω(N ), N )

]2p = 1

|
2N |
∑

z∈
2N

[
Ez

ω(N )

(
min

(
T1,

N

2

)2
)]p

(4.4)

Let DN = {z ∈ 
2N : dist(z, ∂
2N > N 0.7)}. Then for all z ∈ DN , the probability
that the random walk starting at z reaches the boundary of 
2N before time N

2 decays

like e−cN 0.4
. Therefore, for every z ∈ DN , we get that

Ez
ω(N )

[
min(T1, N/2)2

]
≤ Ez

ω

[
min(T1, N/2)2

]
+ N 2e−N 0.4 ≤ Ez

ωT 2
1 + N 2e−N 0.4

and by applying Lemma 2.4 and the ergodic Theorem to the i.i.d. environment ω we
get that a.s.

sup

⎧
⎨

⎩
1

|
2N |
∑

z∈DN

[
Ez

ω(N )

(
min

(
T1,

N

2

)2
)]p

: N ∈ N

⎫
⎬

⎭ < ∞. (4.5)

We thus need to bound

1

|
2N |
∑

z∈
2N \DN

[
Ez

ω(N )

(
min

(
T1,

N

2

)2
)]p

.

To this end, we use the fact that |
2N\DN |/|
2N | < C N−0.3, Lemma 4.2 with choice
of parameter k = (log N )20 and Borel–Cantelli.

Now that (4.3) has been established, by Cauchy-Schwarz, all we need to show is
that P-almost surely, for all N large enough, for all k ≤ (log log N )100,

Pω,N (T > k) ≤ e−Ck1/3
. (4.6)

Note that

Pω,N (T > k) = 1

|
2N |
∑

z∈
2N

1{T z(ω(N ))>k}.

To prove (4.6), we need a second moment estimate. Let � be an integer number,
whose value will be determined later. Then

T z(ω) =
N/2∑

h=1

h Pz
ω(T1 = h) =

�−1∑

h=1

h Pz
ω(T1 = h) +

N/2∑

h=�

h Pz
ω(T1 = h). (4.7)
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Write

B�,N/2
ω (z) =

N/2∑

h=�

h Pz
ω(T1 = h)

and

B1,�
ω (z) =

�−1∑

h=1

h Pz
ω(T1 = h).

By Lemma 4.1,

E
(

B�,N/2
ω (z)

)
= E

⎛

⎝
N/2∑

h=�

h Pz
ω(T1 = h)

⎞

⎠

=
N/2∑

h=�

hP
z(T1 = h) ≤ C�3e−�1/3

. (4.8)

Now set � = [(log N )60]. Using Markov’s inequality and a union bound, from (4.8)
we see that

P
(
∃z∈
2N B�,N/2

ω (z) > 1
)

C ≤ |
2N |�3e−�1/3 ≤ Ce−(log N )18

and by Borel–Cantelli, with probability 1, B�,N/2
ω (z) ≤ 1 for all N large enough and

every z ∈ 
2N .
Therefore, it is sufficient to show that almost surely for all large enough N and all

k ≤ (log log N )100,

TN ,k := 1

|
2N |

⎡

⎣
∑

z∈
2N

1{
B1,�

ω(N )
(z)>k−1

}

⎤

⎦ ≤ e−Ck1/3
. (4.9)

From Lemma 4.2, for every z ∈ 
2N ,

P
(

B1,�

ω(N ) (z) > k − 1
)

≤ P
(

T z(ω(N )
)

> k − 1) ≤ e−Ck1/3 := f (k). (4.10)

Clearly, for every z and w,

P
(

B1,�

ω(N ) (z) > k − 1
)
; P

(
B1,�

ω(N ) (w) > k − 1
)

≤ P
(

B1,�

ω(N ) (z) > k − 1
)

≤ f (k). (4.11)
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If, in addition, ||z − w|| > �, then by the i.i.d. nature of P we get that

P
(

B1,�

ω(N ) (z) > k − 1 ; B1,�

ω(N ) (w) > k − 1
)

= P
(

B1,�

ω(N ) (z) > k − 1
)

· P
(

B1,�

ω(N ) (w) > k − 1
)
. (4.12)

Therefore, for N large enough,

var(TN ,k) ≤ 1

(2N )2d

[
�d f (k)(2N )d

]
≤ N−3d/4 f (k).

Thus by Chebichev’s inequality,

P(TN ,k > 2 f (k)) ≤ N−3d/4/ f (k),

and a union bound says that

P
(∃k≤(log log N )100 : TN ,k > 2 f (k)

)

≤ N−3d/4 · (log log N )100 · eC(log log N )100/3

≤ N−3d/5.

Remembering that d ≥ 2, Borel–Cantelli now finishes the proof. ��

4.3 Stationary measure

Let PN be the uniform distribution on 
N . Let HN = HN (ω) be a stationary measure
for the Markov process { f (Yn)}∞n=1 on 
N where {Yn}∞n=1 is the rescaled walk on Z

d

under the environment ω(N ) and f is as in (4.1) (note that due to the non irreducibility
of the Markov chain, there may be more than one stationary measure. In this case, HN

is arbitrarily chosen among the stationary measures. Also note that by Lemma 4.2,
P-almost surely for all large enough N , the process {Yn}∞n=0 is well defined), and let
�N = �N (ω) = d HN

d PN
be the Radon-Nikodym derivative of HN . The main purpose

of this section is the following lemma, whose proof will be completed in the next
subsection.

Lemma 4.4 Fix p = d
d−1 . There exists a constant C4.13 such that for almost every ω,

we have that

lim sup
{‖�N ‖
N ,p : N = 1, 2, . . .

} ≤ C4.13. (4.13)

We begin with three definitions and a basic lemma, which will serve as the input
for the main step.
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Definition 4 The average step size at scale N , denoted by ON = ON (ω) is defined
to be

ON :=
√

EHN

[
(T1 ∧ N/2)2] =

⎛

⎝ 1

|
N |
∑

z∈
N

�N (z)Ez
ω(N )

[
(T1 ∧ N/2)2

]
⎞

⎠
1/2

.

(4.14)

At this point we remind the reader that {Xn} denotes the original walk, while {Yn}
denotes the rescaled walk. As in [12] we define the following stopping times.

Definition 5 We define S1 = S1(N ) := inf{n : ‖Yn − Y0‖∞ ≥ 2N } and recursively
Sk+1 = Sk+1(N ) := inf{n > Sk : ‖Yn − YSk ‖∞ ≥ 2N }. We also define S0 = 0
along the same lines. If Sk is not well defined (either because the rescaled walk is not
well defined or because the walk never leaves the neighborhood of Sk−1), we set Sk

to infinity, as well as S j , j > k.

We also define corresponding stopping times for the original walk {Xn}.
Definition 6 We define �k = �k(N ) = TSk , i.e. the time when Sk occurs in the clock
of the original walk.

From the fact that {Xn} is a martingale whose step size is one, we get the following
simple estimate.

Lemma 4.5 There exists a constant C such that for every N and almost every ω,

∞∑

k=1

Pω(N )

(
�k < Ck N 2

)
< ∞. (4.15)

Furthermore,

esssup

{ ∞∑

k=1

Pω(N )

(
�k < Ck N 2

)}
< ∞, (4.16)

where the essential supremum is taken w.r.t. the measure P on ω.

Proof Note that �k is a stopping time for every k, and that ‖X�k+1 − X�k ‖ ≥ 2N .
Now remember that {Xn} is a martingale, and that the variance of its increments is 1.
By Doob’s inequality, there exists C4.17 such that for every balanced ω and all k,

Pω

(
�k+1 − �k > C4.17 N 2

∣∣∣ X1, . . . , X�k

)
> 1/2. (4.17)
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If we now take C = C4.17/4, then by (4.17) and Cramèr’s Theorem we get that for
every balanced ω,

Pω(�k < Ck N 2)

≤ Pω

(
There exist more than 3k

4 values of n up to k s.t. �n+1 − �n ≤ C4.17 N 2
)

≤ e−C4.18k . (4.18)

(4.16) follows. ��

4.4 A bootstrap argument

In this subsection we perform a bootstrap argument that will simultaneously control
ON and prove Lemma 4.4. The argument is composed of two lemmas. The first,
Lemma 4.7, an adaptation of Theorem 5 of [12], bounds ‖�N ‖
N ,p in terms of ON

and the second, Lemma 4.8, bounds ON in terms of ‖�N ‖
N ,p.
We start with an a priori bound.

Claim 4.6 P-almost surely, ON ≤ (log N )4 for all N large enough.

Proof This follows from the fact that |
N | = N d and from Lemma 4.1, the same way
Lemma 2.3 is proven. ��

Lemma 4.7 P-almost surely, there exists a constant C1 such that for every N large
enough,

‖�N ‖
N ,p < C1 · ON ,

where, as before, p = d
d−1 .

Lemma 4.8 P-almost surely, there exists a constant C2 such that for every N large
enough and every k < (log N )5, if

‖�N ‖
N ,p < k

then

ON < C2(log k)4.

Proof of Lemma 4.4 The combination of Claim 4.6 and Lemmas 4.7 and 4.8 yields
that for all N large enough, ON ≤ C1C2(log ON )4, and therefore sup{ON : N = 1,

2, . . .} < ∞. Another application of Lemma 4.7 yields (4.13). ��
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Proof of Lemma 4.8 Let j = (log k)4, and let f (z) = Ez
ω(N )

[
(T1 ∧ N/2)2

]
. Then

O2
N = 1

N d

∑

z∈
N

�N (z) f (z) = 1

N d

∑

z∈
N

�N (z) f (z)1 f (z)≤ j

+ 1

N d

∑

z∈
N

�N (z) f (z)1 f (z)> j ≤ j + ‖�N ‖
N ,p‖ f (z)1 f (z)> j‖
N ,d

≤ j + ke−C j1/3 ≤ 2 j

where the one before last inequality follows from Hölder’s inequality, Lemma 4.3 and
the assumption that ‖�N ‖
N ,p < k, and the last inequality follows from the fact that
j1/3 > log k. ��
Proof of Lemma 4.7 The argument is based on the proof of Theorem 5 in [12]. Let
h : 
2N → R

+ be a test function. We extend h to the entire Z
d by h(x) := h(x

mod 2N ).
We remember that {Y·} is the rescaled walk, and extend �N to 
2N by �N (x) :=

�N ( f (x)) for f as in (4.1). The extended �N is the Radon-Nikodym derivative w.r.t.
P2N of the measure H̃ defined as H̃(x) = 1

2d HN ( f (x)). Note that H̃ is stationary
with respect to the (periodized) random walk on 
2N . Then

1

(2N )d

∑

z∈
2N

�N (z)h(z)

= ON

N 2

∑

z∈
2N

�N (z)

(2N )d

∞∑

j=0

Ez
ω(N )

(
1 − ON

N 2

) j

h(Y j )

= ON

N 2

∑

z∈
2N

�N (z)

(2N )d

∞∑

m=0

Sm+1−1∑

j=Sm

Ez
ω(N )

(
1 − ON

N 2

) j

h(Y j )

≤ ON

N 2

∑

z∈
2N

�N (z)

(2N )d

∞∑

m=0

Ez
ω(N )

(
1 − ON

N 2

)Sm

E
YSm
ω(N )

S1−1∑

j=0

h(Y j )

≤ ON

N 2

⎛

⎝ max
z∈
2N

Ez
ω(N )

S1−1∑

j=0

h(Y j )

⎞

⎠

⎛

⎝
∑

z∈
2N

�N (z)

(2N )d

∞∑

m=0

Ez
ω(N )

(
1 − ON

N 2

)Sm

⎞

⎠

(4.19)

��
We use the following claim, whose proof will be given at the end of the proof of

the lemma.

Claim 4.9

max
z∈
2N

Ez
ω(N )

S1−1∑

j=0

h(Y j ) ≤ C N 2‖h‖
2N ,d . (4.20)
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We now estimate the remaining term, namely

∑

z∈
2N

�N (z)

(2N )d

∞∑

m=0

Ez
ω(N )

(
1 − ON

N 2

)Sm

.

Note that this is

∞∑

m=0

EH̃

(
1 − ON

N 2

)Sm

=
∞∑

m=0

EHN

(
1 − ON

N 2

)Sm

,

and that HN is a stationary distribution for { f (Y·)}. In particular, the sequence
{Tk − Tk−1} is stationary under HN , and

EHN

[
((Tk − Tk−1) ∧ N/2)2

]
= EHN

[
(T1 ∧ N/2)2

]
= O2

N

for every k. Note furthermore that P-a.s. for all N large enough,

EHN

[
(T1)

2
]

≤ 2O2
N .

Indeed, using Lemma 4.1, and a union bound, P-a.s. for all N large enough, for all z ∈

N , we have that Pz

ω(N ) (T1 > N/4) < N−100. In particular, �T1/(N/4)� is dominated

by a geometric variable with parameter N−100. Noting that T1 = T11{T1≤N/2} +
T11{T1>N/2}, we get, using Cauchy Schwarz and the domination by geometric variable,
that

EHN

[
T 2

1

]
= EHN

[(
T11{T1≤N/2} + T11{T1>N/2}

)2
]

= EHN

[(
T11{T1≤N/2}

)2
]

+ EHN

[(
T11{T1>N/2}

)2
]

≤ O2
N +

(
EHN

[
T 4

1

])1/2 (
PHN (T1 > N/2)

)1/2

≤ O2
N +

(
1 + 11N−100 + 11N−200 + N−300

(
1 − N−100

)4

)1/2

· N−50

Remembering that ON > 1, this shows that EHN [T 2
1 ] ≤ 2O2

N .
Now, for a given m > 0,

EHN

(
1 − ON

N 2

)Sm

≤
(

1 − ON

N 2

) N2
ON

(log m)4

+ PHN

(
Sm <

N 2

ON
(log m)4

)

≤ 2e−(log m)4 + PHN

(
Sm <

N 2

ON
(log m)4

)
. (4.21)
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Let C4.5 be the constant from Lemma 4.5. Then

PHN

(
Sm <

N 2

ON
(log m)4

)

≤ PHN

(
�m < C4.5m N 2

)
+ PHN

(
Sm <

N 2

ON
(log m)4 ; �m ≥ C4.5m N 2

)

(4.22)

Lemma 4.5 takes care of the first summand, so all we have left to do is to control
the second summand. By Markov’s inequality,

PHN

(
Sm <

N 2

ON
(log m)4 ; �m ≥ C4.5m N 2

)

≤ PHN

(
T[

N2
ON

(log m)4
] ≥ C4.5m N 2

)

≤
EHN

[(
T[

N2
ON

(log m)4
]
)2

]

C2
4.5m2 N 4

(4.23)

and

EHN

[(
T[

N2
ON

(log m)4
]
)2

]
= EHN

⎡

⎢⎢⎢⎣

⎛

⎜⎜⎝

[
N2
ON

(log m)4
]

∑

i=1

Ti − Ti−1

⎞

⎟⎟⎠

2
⎤

⎥⎥⎥⎦

=

[
N2
ON

(log m)4
]

∑

i=1

[
N2
ON

(log m)4
]

∑

j=1

EHN [(Ti − Ti−1)(Tj − Tj−1)]

≤ N 4

O2
N

(log m)8 · 4O2
N = 4N 4(log m)8

Substituting in (4.23), we get that

PHN

(
Sm <

N 2

ON
(log m)4 ; �m ≥ C4.5m N 2

)
≤ 4

(log m)8

m2C2
4.5

and combined with (4.21), (4.22) and Lemma 4.5, we get that for every test function
h,

1

(2N )d

∑

z∈
2N

�N (z)h(z) ≤ C1‖h‖
2N ,d ON .

The duality of Ld and L p now gives that ‖�N ‖
N ,p = ‖�N ‖
2N ,p ≤ C1 ON . ��
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Proof of Claim 4.9 We need to show (4.20). We first estimate

max
z∈
2N

Ez
ω(N )

S1−1∑

j=0

h
(

Y (N )
j

)

where the walk Y (N )
j is defined by Y (N )

j = X
T (N )

j
, with T (N )

1 := min(T1, N/2) and

T (N )
k+1 := min

{{
t > T (N )

k :
{
α
(

T (N )
k + 1

)
, . . . , α(t)

}

= {1, . . . , d}} ∪
{

T (N )
k + N/2

}}
.

We fix z ∈ 
2N , and define the stopping time T z = min{ j : Y (N )
j /∈ z + 
2N }

and the function

f z(x) = E x
ω(N )

T z−1∑

j=0

h
(

Y (N )
j

)
.

Then L(N )

ω(N ) f z = h. Almost surely, for all N large enough, Condition (3.2) with
k = N/2 is satisfied by Lemma 4.2, and therefore by Theorem 3.1,

Ez
ω(N )

S1−1∑

j=0

h
(

Y (N )
j

)
= f z(z) ≤ C N 2‖h‖
2N ,d .

Therefore, all we need is to control

Ez
ω(N )

⎡

⎣

∣∣∣∣∣∣

S1−1∑

j=0

h(Y (N )
j ) −

S1−1∑

j=0

h
(
Y j

)
∣∣∣∣∣∣

⎤

⎦ .

Now,

Ez
ω(N )

⎡

⎢⎣

∣∣∣∣∣∣

S1−1∑

j=0

h
(

Y (N )
j

)
−

S1−1∑

j=0

h
(
Y j

)
∣∣∣∣∣∣

2
⎤

⎥⎦ ≤ C N 4 max
z∈
2N

h2(z)

and

Pz
ω(N )

⎡

⎣

∣∣∣∣∣∣

S1−1∑

j=0

h
(

Y (N )
j

)
−

S1−1∑

j=0

h
(
Y j

)
∣∣∣∣∣∣
�= 0

⎤

⎦ ≤ N 2e−cN 1/3
.
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From Cauchy-Schwarz, we see that

Ez
ω(N )

⎡

⎣

∣∣∣∣∣∣

S1−1∑

j=0

h
(

Y (N )
j

)
−

S1−1∑

j=0

h
(
Y j

)
∣∣∣∣∣∣

⎤

⎦ ≤ C N 4e−cN 1/3
max

z∈
2N
h(z). (4.24)

Noting that the size of the space 
2N is (2N )d , we get that

max
z∈
2N

h(z) = ‖h‖
2N ,∞ ≤ (2N )d‖h‖
N ,d .

With (4.24) we are now done. ��

4.5 A stationary measure for the original random walk on 
N

Fix p′ to be strictly between 1 and p. In Lemma 4.4 we controlled the L p norm of a
stationary measure w.r.t. the rescaled random walk. We now use Lemma 4.4 to control
the L p′

norm of a stationary measure w.r.t. the original random walk.

Lemma 4.10 There exists C such that P-almost surely for all N large enough, every
probability measure QN which is stationary with respect to the original reflected
random walk on 
N satisfies

∥∥∥∥
d QN

d PN

∥∥∥∥

N ,p′

< C.

Proof First note that due to the convexity of the norm ‖ · ‖
N ,p′ , we may assume
without loss of generality that the measure QN is ergodic. Then the random walk is
irreducible on suppQN . It is also clear that if the random walk starts at a point in
suppQN , it will stay in suppQN forever. Therefore, there exists a measure HN which
is supported on (a subset of) suppQN and is stationary with respect to the rescaled
random walk.

Now consider the following random walk {Xn}∞n=0 on 
N : the initial point X0 is
determined according to the distribution HN , and the walk continues according to the
quenched kernel ω on 
N , reflected at the boundary as in (4.1).

For i = 0, . . . , we define the measure (not a probability measure) Fi on 
N by

Fi (x) =
∑

z∈
N

HN (z)Pz
ω(N ) [ f (Xi ) = x ; T1 > i] .

��
Claim 4.11 For P-almost every ω and all N large enough, the sum

∞∑

i=0

Fi
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converges to a finite measure F. Furthermore, ‖F‖1 = EHN (T1) and F is stationary
w.r.t. the random walk {Xn}∞n=0 as defined in the proof of Lemma 4.10.

Since the random walk is irreducible on suppQN , there is a unique stationary mea-
sure for the original random walk, and therefore QN = F/EHN (T1). As EHN (T1) > 1,
we get that

∥∥∥∥
d QN

d PN

∥∥∥∥

N ,p′

≤
∞∑

i=0

∥∥∥∥
d Fi

d PN

∥∥∥∥

N ,p′

.

Therefore, we want to estimate ‖ d Fi
d PN

‖
N ,p′ for given i .

We first estimate ‖ d Fi
d PN

‖
N ,p. Note that

Fi (x) ≤ Gi (x) :=
∑

z∈
N

HN (z)Pz
ω(N ) [ f (Xi ) = x] ,

Gi (x) =
∑

z∈
N : |z−x |≤i

HN (z)Pz
ω(N ) [ f (Xi ) = x]

≤
∑

z∈
N : |z−x |≤i

HN (z).

Therefore

(Gi (x))p ≤ (2i + 1)d(p−1)
∑

z∈
N : |z−x |≤i

(HN (z))p,

so
∥∥∥∥

d Fi

d PN

∥∥∥∥

N ,p

≤
∥∥∥∥

dGi

d PN

∥∥∥∥

N ,p

≤ (2i + 1)d
∥∥∥∥

d HN

d PN

∥∥∥∥

N ,p

. (4.25)

Let p′′ be such that 1
p′′ + p′

p = 1.

We also want to estimate ‖ d Fi
d PN

‖
N ,1.

∥∥∥∥
d Fi

d PN

∥∥∥∥

N ,1

=
∑

x∈
N

Fi (x) =
∑

x∈
N

∑

z∈
N

HN (z)Pz
ω(N ) [ f (Xi ) = x ; T1 > i]

=
∑

z∈
N

HN (z)Pz
ω(N ) (T1 > i) ≤ e−Ci1/3

,

where the last inequality follows from Lemma 4.1.
Now let

Y (x) = 1{ Fi (x)

PN (x)
>1

}

123



116 N. Berger, J.-D. Deuschel

and let Z1(x) = Y (x) · Fi (x)
PN (x)

and Z2(x) = (1 − Y (x)) · Fi (x)
PN (x)

. Since d Fi
d PN

= Z1 + Z2,
we need to estimate ‖Z1‖
N ,p′ and ‖Z2‖
N ,p′ .

Note that Z2(x) ≤ 1 for every x , and therefore, Z p′
2 (x) ≤ Z2(x). Therefore,

‖Z2‖
N ,p′ ≤ ‖Z2‖1/p′

N ,1 ≤ exp(−(C/p′)i1/3).

Note also that Y (x) ∈ {0, 1} and thus Y p′′ = Y , so, using Markov’s inequality,

‖Y‖p′′

N ,p′′ = ‖Y‖
N ,1 ≤

∥∥∥∥
d Fi

d PN

∥∥∥∥

N ,1

≤ exp
(
−Ci1/3

)
,

so ‖Y‖
N ,p′′ ≤ exp(−(C/p′′)i1/3). Then by Hölder’s inequality, using (4.25),

‖Z1‖p′

N ,p′ ≤

∥∥∥∥
d Fi

d PN

∥∥∥∥
p′


N ,p
· ‖Y‖
N ,p′′ ≤‖�N ‖p′


N ,p · (2i +1)dp′
exp

(
−(C/p′′)i1/3

)
.

We get that for appropriate constants C1 and C2,

∥∥∥∥
d Fi

d PN

∥∥∥∥
p′,
N

≤ C1(2i + 1)d exp
(
−C2i1/3

)
· ‖�N ‖
N ,p.

The lemma now follows from Lemma 4.4 and the fact that

∞∑

i=0

C1(2i + 1)d exp
(
−C2i1/3

)
< ∞.

Proof of Claim 4.11 First of all, ��

‖Fi‖
N ,1 =
∑

x∈
N

Fi (x) =
∑

x∈
N

∑

z∈
N

HN (z)Pz
ω(N ) [ f (Xi ) = x ; T1 > i]

=
∑

z∈
N

HN (z)Pz
ω(N ) (T1 > i) = PHN (T1 > i).

Therefore
∑∞

i=1 Fi converges and ‖F‖
N ,1 = EHN (T1).
To show stationarity, we do the following calculation. Fix x ∈ 
N .

∑

y∈
N

F(y)P y
ω(N ) [ f (X1) = x] =

∞∑

i=0

∑

y∈
N

Fi (y)P y
ω(N ) [ f (X1) = x]

=
∞∑

i=0

∑

z∈
N

HN (z)Pz
ω(N )

[
f (Xi+1) = x ; T1 > i

]

=
∞∑

j=1

∑

z∈
N

HN (z)Pz
ω(N )

[
f (X j ) = x ; T1 ≥ j

]
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=
∞∑

j=1

∑

z∈
N

HN (z)Pz
ω(N )

[
f (X j ) = x ; T1 > j

]

+
∞∑

j=1

∑

z∈
N

HN (z)Pz
ω(N )

[
f (X j ) = x ; T1 = j

]

=
∞∑

j=1

Fj (x) +
∑

z∈
N

HN (z)Pz
ω(N )

[
f (XT1) = x

] =
∞∑

j=1

Fj (x) + HN (x) = F(x),

where in the one before last step we used the stationarity of HN with respect to the
rescaled random walk. ��

We get a useful corollary.

Corollary 4.12 There exists � > 0 which depends only on P such that P-almost
surely for all large enough N, every stationary measure QN with respect to the reflected
random walk in 
N under the environment ω satisfies |suppQN | ≥ �|
N |.
Proof By Lemma 4.10,

∥∥∥∥
d QN

d PN

∥∥∥∥

N ,p′

< C ′.

Now, by Hölder’s inequality, for p′′ such that 1/p′ + 1/p′′ = 1,

1 =
∥∥∥∥

d QN

d PN

∥∥∥∥

N ,1

≤
∥∥∥∥

d QN

d PN

∥∥∥∥

N ,p′

· ∥∥1suppQN

∥∥

N ,p′′ ≤ C ′

( |suppQN |
|
N |

)1/p′′

.

Therefore,

|suppQN |
|
N | ≥ 1

C ′ p′′ =: �.

��

4.6 Existence of an invariant measure

Identically to [12] and [15], from Lemma 4.10 we can prove that there exists a measure
Q on � such that Q � P and Q is stationary with respect to the random walk viewed
from the point of view of the particle. We state it explicitly as Proposition 4.14 below.
The proof of this proposition is in the arxiv version of the paper.

Once we established Q, using Feller-Lindeberg’s central limit theorem, see e.g.
[11], we get the following fact.

Fact 4.13 If in addition Q is ergodic, then Q almost surely the quenched law P0
ω sat-

isfies an invariance principle with a non-random diagonal, non-degenerate diffusion
matrix.
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Fig. 3 A configuration that has
a positive P-measure, but zero
Q-measure. The Q-measure is
zero because the configuration
presented here cannot occur at
the second step, and Q is
stationary (i.e. the second step
has the same distribution as the
first step)

Proof that the matrix is diagonal and non-degenerate The proof that the matrix is
diagonal is easy: For every balanced ω ∈ �, every 1 ≤ i �= j ≤ d and every
two times n, m,

Eω

[〈Xn − Xn−1, ei 〉 · 〈Xm − Xm−1, e j
〉] = 0

and therefore the covariance matrix of Xn is diagonal for every n, and therefore the
diffusion matrix is diagonal. Let M be the diffusion matrix. Since it is diagonal, in
order to see that it is non-degenerate, all we need is to show that Mi,i �= 0 for every i .
Now, by the stationarity and ergodicity of Q,

Mi,i = lim
n→∞

1

n

n∑

j=1

1〈X j −X j−1,ei〉�=0

≥ lim
n→∞

1

n

n∑

j=1

1∃k s.t. j=Tk
= 1

EQ(T1)
> 0.

��
Note that even though Q � P , in the non-elliptic case it is not necessarily the case

that P � Q, as is illustrated in Fig. 3.
In Sect. 5 we show how the two remaining problems (i.e. the question of ergodicity

and the fact that the measures are not equivalent) are dealt with.

Proposition 4.14 There exists a probability measure Q on � such that

(1) Q � P.
(2) Q is invariant w.r.t. the point of view of the particle.

5 Proof of Theorem 1.1

In this section we prove Theorem 1.1. This follows from two statements: the first is
that there exists a unique measure Q which is invariant w.r.t. the point of view of the
particle and is absolutely continuous w.r.t. P , and the second is that for every z ∈ Z

d

the random walk starting from z a.s. reaches the support (which we define below) of
this measure Q within finite time.
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5.1 The support of a stationary measure

For a measure Q which is invariant w.r.t. the point of view of the particle and is
absolutely continuous w.r.t. P , we define

suppQ =
{
ω : d Q

d P
(ω) > 0

}
,

where the derivative is the Radon–Nikodym derivative. This is well defined up to a
set of P-measure zero.

For an ω ∈ � and a measurable set A ⊆ � we define Aω = {z ∈ Z
d : τ−z(ω) ∈ A}.

For improvement of notation we write suppω Q for (suppQ)ω.

Claim 5.1 For P-almost every ω, every z ∈ Z
d and every neighbor e of the origin, if

z ∈ suppω Q and ω(z, e) > 0 then z + e ∈ suppω Q.

Proof Due to shift invariance, it is sufficient to show this claim for z = 0 and e =
e1. Let D = {ω ∈ suppQ : ω(0, e1) > 0 and τ−e1(ω) /∈ suppQ}. Then, for the
generator L of the process viewed from the point of view of the particle and the function
f = 1suppQ ,

0 = −
∫

L f d Q ≥
∫

D

ω(0, e1)d Q(ω)

The first equality follows from the stationarity of Q. This implies that D is of measure
zero, as desired. ��

5.2 Ergodicity

In this subsection we prove that there exists a unique measure Q which is invariant
w.r.t. the point of view of the particle and is absolutely continuous w.r.t. P .

Lemma 5.2 For every probability measure Q which is stationary w.r.t. the point of
view of the particle and is absolutely continuous w.r.t. P,

P(suppQ) > �,

where � is as in Corollary 4.12.

Proof By Claim 5.1, suppω Q is closed under the random walk (i.e. if z ∈ suppω Q then
Pz

ω(∀n Xn ∈ suppω Q) = 1) and therefore suppω Q ∩ 
N is closed under the reflected
random walk in 
N . Therefore, for every N , there exists a stationary measure QN

which is supported on suppω Q ∩ 
N and by Corollary 4.12, P-a.s. for all N large
enough |suppQN | ≥ �|
N |. Therefore by the Ergodic Theorem P(suppQ) ≥ �. ��
Corollary 5.3 There are finitely many probability measures that are stationary and
ergodic w.r.t. the point of view of the particle and are absolutely continuous w.r.t. P.
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Further more, every Q which is stationary w.r.t. the point of view of the particle and
is absolutely continuous w.r.t. P, is a convex combination of these ergodic measures.

We now study the connectivity structure of suppω Q for Q ergodic. We start with a
definition and then state and prove a few lemmas.

Definition 7 For ω ∈ � and x, y ∈ Z
d , we denote by x

ω→y the occurrence

Px
ω (∃n Xn = y) > 0.

We say that a set A ⊆ Z
d is strongly connected w.r.t. ω if for every x and y in A, x

ω→y.
A set A ⊆ Z

d is called a sink w.r.t. ω if it is strongly connected and x � ω→y for every
x ∈ A and y /∈ A.

Proposition 5.4 There exists κ > 0 such that for every probability measure Q which
is stationary and ergodic w.r.t. the point of view of the particle and is absolutely
continuous w.r.t. P, for P-a.e. ω, suppω Q contains a subset A which is a sink w.r.t. ω

and has upper density at least κ , i.e.

lim sup
N→∞

∣∣A ∩ [−N , N ]d
∣∣

∣∣[−N , N ]d
∣∣ ≥ κ.

Proof For P-a.s. ω for all N large enough the set 
N ∩ suppω Q is non-empty and
closed for the reflected random walk. Therefore there exists an ergodic measure QN

for the reflected random walk on 
N ∩ suppω Q. Note that suppQN satisfies three nice
properties:

(1) |suppQN | ≥ �|
N |,
(2) suppQN ⊆ suppω Q, and
(3) suppQN is a sink with respect to the reflected random walk under the environment

ω on 
N (obviously, it cannot be a sink w.r.t. ω on the entire Z
d ).

Fix K ∈ N and κ > 0. We now define an event BK ,κ as follows: BK ,κ is the event
that the following things occur:

(1) 0 ∈ suppω Q (note that this is the same as ω ∈ suppQ).
(2) There exists a set A ⊆ [−K , K ]d ∩ suppω Q such that

(a) |A| ≥ κ|[−K , K ]d |.
(b) 0 ∈ A. In addition, 0

ω→x and x
ω→0 for every x ∈ A.

(c) x � ω→y for every x ∈ A and y ∈ [−K , K ]d \ A.

��
Claim 5.5 There exists α > 0 and κ > 0 such that P(BK ,κ ) > α for all K ≥ 1.

We postpone the proof of Claim 5.5.
Let Bκ := {BK ,κ occurs for infinitely many values of K }. Using Claim 5.5,

P(Bκ) ≥ α.
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On the event Bκ , for every K such that BK ,κ occurs, let AK be the appropriate set.
Then

⋃

K :BK ,κ occurs
AK

is a sink as required.

Proof of Claim 5.5 By Corollary 4.12, for every N large enough there is a stationary
measure QN for the reflected random walk on 
N ∩ suppω Q which is ergodic and
such that |suppQN | > �|
N |. Fix some γ and β strictly between 0 and �/2. Take N
large which is divisible by K , and divide 
N into disjoint cubes D1, . . . , D(N/K )d .

For a cube Dk , we say that Dk is good if at least β|Dk | of the points in Dk belong to
suppQN . We claim that at least proportion γ of the cubes are good. Indeed, otherwise
we get |suppQN | ≤ γ K d(N d/K d) + βK d(N d/K d) ≤ (γ + β)N d < �|
N | which
is a contradiction.

Now, by the ergodic theorem,

P(BK ,κ ) = lim
N→∞

1

|
N |
∑

z∈
N

1BK ,κ (τ−z(ω))

Now note that if we choose κ = β · 2−d , then τ−z(ω) ∈ BK ,κ for every z which is
in the intersection of suppHN and a good cube. In this case, the set A is simply the
intersection of HN and z +[−K , K ]d . Now take α = γβ. Then for all N large enough
which is divisible by K ,

lim
N→∞

1

|
N |
∑

z∈
N

1BK ,κ
(τ−z(ω)) ≥ α

and therefore P(BK ,κ ) ≥ α. ��
Lemma 5.6 (1) For P-almost every ω, every sink has lower density at least �/2d .
(2) For every ergodic Q which is invariant w.r.t. the point of view of the particle and is

absolutely continuous w.r.t. P, P-a.s. there are only finitely many sinks contained
in suppω Q.

(3) P-a.s., every point in suppω Q is contained in a sink.

In other words, the lemma says that a.s. suppω Q is a finite union of sinks, each of
which has lower density at least �/2d .

Proof Part 1: Let S be a sink. Then for all N large enough, 
N ∩ S �= ∅. Therefore
there is a stationary measure HN w.r.t. the reflected walk on 
N which is supported
on S, and therefore, by Corollary 4.12, |S ∩ [−N , N ]d | ≥ |S ∩ 
N | ≥ |suppHN | ≥
�|
N | = (�/2d)|[−N , N ]d |. Part 2 follows immediately from part 1 and the fact
that distinct sinks are disjoint. To see Part 3, note that if 0 is in a sink then any point
reachable from 0 is in a sink. Thus, if A is the event that 0 is in a sink, then A is
closed under the walk from the point of view of the particle. Therefore, A ∩ suppQ is
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invariant under the walk from the point of view of the particle, and thus by ergodicity
of Q, we get Q(A) ∈ {0, 1}. Since we already proved Q(A)>0 we get Q(A)=1. ��

Remark 3 In fact, we can also prove that suppω Q is a sink (i.e. the finite number of
sinks is one), but we do not do this now since we do not need it for our purposes.

Proposition 5.7 There exists a unique ergodic measure Q.

In what follows we use the following notation: For a set A ⊆ Z
d , we denote its

lower density by dens(A), and its density, if such exists, by dens(A).

Proof We use an adaptation of the easy part of the percolation argument of Burton
and Keane [8]. Even though the finite energy condition is not satisfied, a very similar
yet slightly weaker condition holds. In combination with the positive density of sinks
(Lemma 5.6 Part 1) we can produce the percolation argument. Let Q1 and Q2 be two
distinct ergodic measures. Define dist(Q1, Q2) := min(|z − w| : z ∈ suppω Q1, w ∈
suppω Q2). Note that due to shift invariance it is a P-almost sure constant, and therefore
ω is rightfully omitted from the notation. Let z and w be two points such that |z−w| =
dist(Q1, Q2), and such that the event U = U (z, w) = {z ∈ suppω Q1, w ∈ suppω Q2}
has a positive P probability. Let i be a direction s.t. 〈ei , z − w〉 �= 0. Let R be the
following measure on � × �: we sample ω and ω′. For all x �= z, we take ω(x) =
ω′(x) to be sampled i.i.d. according to ν. We then take ω(z) ∼ (ν|ω(ei ) = 0) and
ω′(z) ∼ (ν|ω(ei ) �= 0). Again, everything is independent. Let P1 be the distribution of
ω and P2 be the distribution of ω′. Note that P1 and P2 are both absolutely continuous
w.r.t. P , and that P1(U ) > 0 and P2(U ) = 0. Now let ε < �/2d+5, and let A ⊆ � be
an approximation of suppQ1, i.e. P(A � suppQ1) < ε and A ∈ σ(ω(x) : |x | < K )

for some finite K . Now, for all x s.t. |x − z| > K , we have that x ∈ Aω if and only if
x ∈ Aω′ . Since both P1 and P2 are absolutely continuous w.r.t. P , we get that R almost
surely, by the ergodic theorem, dens(Aω − suppω Q1) = dens(Aω′ − suppω′ Q1) < ε

and equivalently dens(suppω Q1 − Aω) = dens(suppω′ Q1 − Aω′) < ε. Therefore,
a.s. conditioned on the event ω ∈ U , we get dens(suppω Q1 − suppω′ Q1) < 2ε <

dens(Sω) where Sω is the sink containing z in ω. Therefore, R-a.s. on ω ∈ U there

exists a point x in suppω′ Q1 such that x
ω→z. But then we also get x

ω′→z, and thus
z ∈ suppω′ Q1. Equivalently we get that w ∈ suppω′ Q2, and therefore P2(U ) > 0
which is a contradiction. Therefore there exists a unique ergodic measure. ��

5.3 The probability of hitting suppω Q

In this subsection we show that with probability 1 the walk has to hit suppω Q.

Lemma 5.8 Let Q be the probability measure which is stationary w.r.t. the point of
view of the particle and is absolutely continuous w.r.t. P. Then for P-a.e. ω and every
z ∈ Z

d ,

Pz
ω

(∃N s.t. ∀n>N Xn ∈ suppω Q
)

> 0.
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Proof Assume for contradiction that there exists B ⊆ � such that P(B) > 0 and for
ω ∈ B, there exists z ∈ Z

d such that

Pz
ω

(∃N s.t. X N ∈ suppω Q
) = 0.

Then there exists S ⊆ � with P(S) > 0 such that for every ω ∈ S,

P0
ω

(∃N s.t. X N ∈ suppω Q
) = 0.

For every ε > 0 there exist K ∈ N and A ⊆ � such that A is measurable w.r.t.
σ(ω(z) : ‖z‖ < K ) and P(A � S) < ε.

S is closed under the random walk and therefore S∩
N is closed under the reflected
random walk in 
N . Therefore, for every N , there exists a stationary measure HN

which is supported on S∩
N and P-a.s. for all N large enough satisfies ‖ d HN
d PN

‖
N ,p <

C ′ for some C ′. Also, for N large enough, HN (τ−z(ω
(N )) /∈ A) < 2C ′ε. As in

Sect. 4.6, let H be a subsequential limit of HN . Then H is stationary w.r.t. the point
of view of the particle. By Proposition 5.7, H = Q. In addition, P(suppH) > C and
P(suppH\A) < 2C ′ε. However, P(A ∩ suppQ) ≤ P(A\S) ≤ ε, which is clearly a
contradiction. ��
Proposition 5.9 Let Q be the probability measure which is stationary w.r.t. the point
of view of the particle and is absolutely continuous w.r.t. P. Then for P-a.e. ω and
every z ∈ Z

d ,

Pz
ω

(∃N s.t. ∀n>N Xn ∈ suppω Q
) = 1.

Proof Let

h(z) = hω(z) = 1 − Pz
ω

(∃N s.t. X N ∈ suppω Q
)
.

It suffices to show that h ≡ 0. Assume for contradiction that with positive
P-probability there exists z such that h(z) > 0. Then by the ergodicity of P w.r.t. the
shifts, P(∃zh(z) > 0) = 1. We now show that P-almost surely, supz h(z) = 1.

Indeed, h is a harmonic function w.r.t. the transition kernel, and therefore h(Xn) is
a martingale. Let z be such that h(z) > 0 and let A be the (positive probability) event
that the random walk starting at z never hits suppω Q. By standard Martingale Theory,
under the event A, the sequence h(Xn) has to converge to 1.

Thus sup h = 1, but by Lemma 5.8 the supremum is never attained. Now for η > 0,
let hη(z) = η + h(z) − 1. Then, P-almost surely,

sup hη = η. (5.1)

However, for every large enough ball Br around the origin, by Theorem 3.2 with power
p = 1,

max
Br

hη ≤ C · max
B2r

hη · #{z ∈ B2r : hη(z) > 0}
|B2r | .
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By taking a limit and using the ergodic theorem, we get

sup
Zd

hη ≤ C · sup
Zd

hη · P(hη(0) > 0).

As limη→0 P(hη(0) > 0) = 0, we get a contradiction for all η small enough.
Therefore, h ≡ 0. ��
Proof of Theorem 1.1 The theorem follows from Fact 4.13 and Propositions 5.7 and
5.9. ��

6 Concluding remarks

We end this paper with a number of remarks and open questions.

Remark 1 Our result is also true for time continuous balanced RWRE generated by
Lω. One way of seeing it is that by the Ergodic theorem the time scales of both
processes are comparable.

Remark 2 Although not done here, we believe that our result extends easily to i.i.d.
genuinely d-dimensional (appropriately defined) finite range balanced environments,
that is for which

∑

z∈Zd

ω(x, z)(z) = 0

with

ω(x, z) = 0, if |z| ≥ R

for some R ≥ 1, since the essential analytical tools work for such generators. Note
that this is less restrictive than strongly balanced

ω(x, z) = ω(x,−z), ∀z.

Of course both definitions agree in the nearest neighbor case.

Remark 3 A much more challenging problem is to add a deterministic drift. For exam-
ple take for ε ∈ (0, 1)

ω(x, e) = (1 − ε)ω0(x, e) + ε1e=ei

where ω0 is i.i.d. balanced, genuinely d-dimensional.

Remark 4 Replacing the i.i.d. hypothesis with a strongly mixing condition on the
environment is also a natural question. Example 1.3 shows that general ergodic (and
even mixing) media do not satisfy the quenched invariance principle, but things could
be manageable if the environment has strong enough mixing conditions.
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Remark 5 The percolation problem in higher dimensions on its own is a source of open
questions. One interesting questions is: are all infinite strongly connected components
sinks or are there also other components? This is essentially the question of uniqueness
of the infinite strongly connected component.

And finally,

Remark 6 Can we get heat kernel bounds of the Aronson type at large scale or Harnack
inequalities? See e.g. [1] where this is done in a non-elliptic reversible setting.
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