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Abstract Consider d uniformly random permutation matrices on n labels. Consider
the sum of these matrices along with their transposes. The total can be interpreted as
the adjacency matrix of a random regular graph of degree 2d on n vertices. We consider
limit theorems for various combinatorial and analytical properties of this graph (or
the matrix) as n grows to infinity, either when d is kept fixed or grows slowly with n.
In a suitable weak convergence framework, we prove that the (finite but growing in
length) sequences of the number of short cycles and of cyclically non-backtracking
walks converge to distributional limits. We estimate the total variation distance from
the limit using Stein’s method. As an application of these results we derive limits of
linear functionals of the eigenvalues of the adjacency matrix. A key step in this latter
derivation is an extension of the Kahn–Szemerédi argument for estimating the second
largest eigenvalue for all values of d and n.
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1 Introduction

We consider several asymptotic enumeration and analytic problems for sparse random
regular graphs and their adjacency matrices. A graph is called regular if every vertex
has the same degree; a sparse regular graph is typically one for which the degree d
is either constant or of a far smaller order than the number of vertices n. A classical
model is the uniform distribution over all d-regular graphs on n labeled vertices; a
thorough survey on properties of the uniform model can be found in [49].

Our model of choice is the more recent permutation model: Consider d many
iid uniformly random permutations {π1, . . . , πd} on n vertices labeled {1, 2, . . . , n}.
A graph can be constructed by adding one edge between each pair (i, π j (i)); thus
every vertex i has edges to π j (i) and π−1

j (i) for every permutation π j , for a total
degree of 2d. As the reader will note, this allows multiples edges and self-loops, with
each self-loop contributing two to the degree of its vertex. However, one can still ask
the usual enumeration questions about this graph, e.g., the distribution of the number
of cycles.

Another way to represent this graph is by its adjacency matrix, which is an n ×
n matrix whose (i, j)th entry is the number of edges between i and j , with self-
loops counted twice. This random matrix can be now studied in it own right; for
example, one can ask about the distribution of its eigenvalues. Note that—trivially—
the top eigenvalue is 2d; the distribution of the rest of the eigenvalues is an interesting
question. For the uniform model of random regular graphs (or Erdős-Rényi graphs)
such questions have been studied since the pioneering work [37]. Among the more
recent articles, see [22,46], and [18]. We refer the reader to [18] for a more exhaustive
review of the vast related literature.

Our results touch on both aspects. We consider two separate scenarios, either when
d is independent of n, or when d grows slowly with n. We will assume throughout
that d ≥ 2; the reason for this is that the d = 1 case has been dealt with (in a larger
context) by [4].

The paper is divided into three thematically separate but mathematically dependent
parts.

(i) Section 3: Joint asymptotic distribution of a growing sequence of short cycles.
It is well known in the classical models of random regular graphs that the number
of cycles of length k, where k is small (typically logarithmic in n), is approxi-
mately Poisson. See [10] or [49] for an account of older results, or [39] for the
best result in this direction. In Theorem 11, we prove this fact for the permuta-
tion model, using Stein’s method along with ideas from [34] to estimate the total
variation distance between a vector of the number of cycles of lengths 1 to r and
a corresponding vector of independent Poisson random variables. This theorem
holds for nearly the same regime of r, d, and n as in [39, Theorem 1], and unlike
that theorem gives an explicit error bound on the approximation. This bound is
essential to our analysis of eigenvalue statistics in Sect. 5.
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Functional limit theorems 923

The mean number of cycles is somewhat interesting. When d is fixed, for the
uniform model of random 2d-regular graphs, the limiting mean of the number of
short cycles of length k is (2d − 1)k/2k. For the permutation model, the limiting
mean is the slightly different quantity a(d, k)/2k, where

a(d, k) =
{

(2d − 1)k − 1 + 2d, when k is even,

(2d − 1)k + 1, when k is odd.

See also [32, Theorem 4.1], in which the authors consider a different model of
random regular graph and find that the limiting mean number of cycles of length
k differs slightly from both of these.
Next we consider the number of short non-backtracking walks on the graph; a
non-backtracking walk is a closed walk that never follows an edge and imme-
diately retraces that same edge backwards. We actually consider cyclically
non-backtracking walks (CNBWs), whose definition will be given in Sect. 3.2.
Non-backtracking walks are important in both theory and practice as can be seen
from the articles [1] and [25]. We consider the entire vector of cyclically non-
backtracking walks of lengths 1 to rn , where rn is the “boundary length” of short
walks/cycles, and is growing to infinity with n. In Theorem 21, we assume that d
is independent of n. We prove that the vector of CNBWs, as a random sequence
in a weighted �2 space, converges weakly to a limiting random sequence whose
finite-dimensional distributions are linear sums of independent Poisson random
variables.
When d grows slowly with n (slower than any fixed power of n, which is the same
regime studied in [18]), a corresponding result is proved in Theorem 22. Here, we
center the vector of CNBW for each n. The resulting random sequence converges
weakly to an infinite sequence of independent, centered normal random variables
with unequal (σ 2

k = 2k) variances.
(ii) Section 4: An estimate of C

√
2d − 1 for the second largest (in absolute value)

eigenvalue for any (d, n). The spectral gap of the permutation model, for fixed
d, has been intensely studied recently in [25] for the resolution of the Alon
conjecture. This conjecture states that the second largest eigenvalue of ‘most
random regular graphs’ of degree 2d is less than 2

√
2d − 1+ε; the assumption is

that d is kept fixed while n grows to infinity. This important conjecture implies that
‘most’ sparse random regular graphs are nearly Ramanujan (see [35]). Friedman’s
work builds on earlier work [11,20], and [24]. Although [25] and related works
consider the permutation model, for fixed d, their results also apply to other
models due to various contiguity results; see [49, Section 4] and [26].
To develop the precise second eigenvalue control that we require in Sect. 5, we
have followed a line of reasoning that originates with Kahn and Szemerédi [21].
This approach has been used recently to great effect by [8,22], and [36], to name
a few. With this technique we are able to show that the second largest eigenvalue
is bounded by 40000

√
2d − 1 with a probability at least 1 − Cn−1 for some

universal constant C (see Theorem 24). We have not attempted to find an optimal
constant, and instead we focus on extricating the d and n dependence in the
bound.
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924 I. Dumitriu et al.

Both [8] and [36] provide examples of how the Kahn–Szemerédi argument can
be used to control the second eigenvalue when d grows with n. In [8], the authors
work in the configuration model to obtain the O(

√
d) bound for d = O(

√
n),

essentially the largest d for which the configuration model represents the uni-
form d-regular graph well enough to prove eigenvalue concentration. In [36], the
authors study the spectra of random covers. The permutation model is an example
of such a cover, where the base graph is a single point with d self loops. Using
the Kahn–Szemerédi machinery, they are able to show an O(

√
d log d) bound

with d(n) = poly(n) growth. The adaptations to the original Kahn–Szemerédi
argument made in [36], especially the usage of Freedman’s martingale inequal-
ity, are similar to the ones made here. However, as we do not need to consider
the geometry of the base graph, we are able to push this argument to prove a
non-asymptotic bound of the correct order.

(iii) Section 5: Limiting distribution of linear eigenvalue statistics of the rescaled
adjacency matrix. Our final section is in the spirit of Random Matrix Theory
(RMT). Let An denote the adjacency matrix of a random regular graph on n
vertices. By linear statistics of the spectrum we mean random variables of the
type

∑n
i=1 f (λi ), where λ1 ≥ · · · ≥ λn are the n eigenvalues of the symmetric

matrix (2d − 1)−1/2 An . We do this rescaling of An irrespective of whether d
is fixed or growing so as to keep all but the first eigenvalue bounded with high
probability.
The limiting distribution of linear eigenvalue statistics for various RMT models
such as the classical invariant ensembles or the Wigner/Wishart matrices has been
(and continues to be) widely studied. For the sake of space, we give here only
a brief (and therefore incomplete) list of methods and papers which study the
subject. For a more in-depth review, we refer the reader to [2].
The first, and still one of the most widely used methods of approach is the method
of moments, introduced in [48], used in [29] and perfected in [43] for Wigner
matrices (it also works for Wishart); this method is also used here in conjunction
with other tools. Explicit moment calculations alongside Toeplitz determinants
have also been used in determining the linear statistics of circular ensembles
[17,27,44].
Other methods include the Stieltjes transform method (also known as the method
of resolvents), which was employed with much success in a series of papers
of which we mention [12] and [33]; the (quite analytical) method of potentials,
which works on a different class of random matrices including the Gaussian
Wigner ones [28]; stochastic calculus [13]; and free probability [30]. Finally, a
completely different set of techniques were explored in [15].
Recently and notably, for a single permutation matrix, such a study has been
approached in [47] and completed in [4]; our results share several features with
the latter paper.
A noteworthy aspect in all these is that when the function f is smooth enough
(usually analytic), the variance of the random variables

∑n
i=1 f (λi ) typically

remains bounded. This is attributed to eigenvalue repulsion; see [5, Section
21.2.2] for further discussion. Even more interestingly, there is no process con-
vergence of the cumulative distribution function. This can be guessed from the
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fact that when the function f is rough (e.g., the characteristic function of an
interval), the variance of the linear statistics grows slowly with n (as seen for
example in [16] and [42]). One major difference our models have with the clas-
sical ensembles is that our matrices are sparse; their sparsity affects the behavior
of the limit.
In Theorems 35 and 39 we prove limiting distributions of linear eigenvalue statis-
tics. For fixed d, the functions we cover are those that are analytically continuable
to a large enough ellipse containing a compact interval of spectral support. When
d grows we need functions that are slightly more smooth. Let (Tk)k∈N be the
Chebyshev polynomials of the first kind on a certain compact interval; since they
constitute a basis for L2 functions, any such function admits a decomposition
in a Fourier-like series expressed in terms of the Chebyshev polynomials. The
required smoothness is characterized in terms of how quickly the truncated series
converges in the supremum norm to the actual function on the given interval.
In Theorem 35, we consider d to be fixed. The limiting distribution of the linear
eigenvalue statistics is a non-Gaussian infinitely divisible distribution. This is
consistent with the results in [4]. Theorem 39 proves a Gaussian limit in the case
of a slowly growing d after we have appropriately centered the random variables.
This transition is expected. In [18] the authors consider the uniform model of
random regular graphs and show that when d is growing slowly, the spectrum of
the adjacency matrix starts resembling that of a real symmetric Wigner matrix.
Similar techniques, coupled with estimates proved in this paper, could be used
to extend such results to the present model.
The proofs in this section follow easily from the results in parts (i) and (ii) above.
As in [18], the proofs display interesting combinatorial interpretations of analytic
quantities common in RMT.

2 A weak convergence set-up

The following weak convergence set-up will be used to prove the limit theorems in the
later text. Let ω := (ωm)m∈N be a sequence of positive weights that decay to zero at a
suitable rate as m tends to infinity. Let L2(ω) denote the space of sequences (xm)m∈N

that are square-integrable with respect to ω, i.e.,
∑∞

m=1 x2
mωm < ∞. Our underlying

complete separable metric space will be X = (L2(ω), ‖·‖), where ‖·‖ denotes the
usual norm.

Remark 1 Although we have chosen to work with L2 for simplicity, any Lp space
would have worked as well.

Let us denote the space of probability measures on the Borel σ -algebra of X by
P(X). We will skip mentioning the Borel σ -algebra and refer to a member of P(X) as
a probability measure on X . We equip P(X) with the Prokhorov metric for weak con-
vergence; for the standard results on weak convergence we use below, please consult
Chapter 3 in [19]. Let ρ denote the Prokhorov metric on P(X)×P(X) as given in [19,
eqn. (1.1) on page 96].
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926 I. Dumitriu et al.

Lemma 2 The metric space (P(X), ρ) is a complete separable metric space.

Proof The claim follows from [19, Thm. 1.7, p. 101] since X is a complete separable
metric space. ��

To prove tightness of subsets of P(X) we will use the following class of compact
subsets of L2(ω).

Lemma 3 (The infinite cube) Let (am)m∈N ∈ L2(ω) be such that am ≥ 0 for every
m. Then the set

{
(bm)m∈N ∈ L2(ω) : 0 ≤ |bm | ≤ am f or all m ∈ N

}

is compact in (L2(ω), ‖·‖).
Proof First observe that the cube is compact in the product topology by Tychonoff’s
theorem. Norm convergence to the limit points now follows by the Dominated Con-
vergence Theorem. ��

We now explore some consequences of relative compactness.

Lemma 4 Suppose {Xn} and X are random sequences taking values in L2(ω) such
that Xn converges in law to X. Then, for any b ∈ L2(ω), the random variables 〈b, Xn〉
converges in law to 〈b, X〉.
Proof This is a corollary of the usual Continuous Mapping Theorem. ��

Our final lemma shows that finite-dimensional distributions characterize a proba-
bility measure on the Borel σ -algebra on X .

Lemma 5 Let x be a typical element in X. Let P and Q be two probability measures
on X. Suppose for any finite collection of indices (i1, . . . , ik), the law of the random
vector (xi1 , . . . , xik ) is the same under both P and Q. Then P = Q on the entire Borel
σ -algebra.

Proof Our claim will follow once we show that P and Q give identical mass to every
basic open neighborhood determined by the norm; however, the norm function x �→
‖x‖ is measurable with respect to the σ -algebra generated by coordinate projections.
Now, under our assumption, every finite-dimensional distribution is identical under
P and Q; hence the probability measures P and Q are identical on the coordinate
σ -algebra. This proves our claim. ��

3 Some results on Poisson approximation

3.1 Cycles in random regular graphs

Let Gn be the 2d-regular graph on n vertices sampled from Gn,2d , the permutation
model of random regular graphs. The graph Gn is generated from the uniform random
permutations π1, . . . , πd as described in the introduction. Assume that the vertices of
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Gn are labeled by {1, . . . , n}, and let C (n)
k denote the number of (simple) cycles of

length k in Gn .
We start by giving the limiting distribution of C (n)

k as n → ∞. Suppose that
w = w1 · · ·wk is a word on the letters π1, . . . , πd and π−1

1 , . . . , π−1
d . We call w

cyclically reduced if w1 �= w−1
k and wi �= w−1

i+1 for 1 ≤ i < k. Let a(d, k) denote the
number of cyclically reduced words of length k on this alphabet.

Proposition 6 As n →∞ while k and d are kept fixed,

C (n)
k

L−→ Poi

(
a(d, k)

2k

)
.

We will actually give a stronger version of this result in Theorem 8, but we include
this proposition nevertheless because it has a more elementary proof, and because in
proving it we will develop some lemmas that will come in handy later. We also note
the following exact expression for a(d, k),

a(d, 2k) = (2d − 1)2k − 1 + 2d, and a(d, 2k + 1) = (2d − 1)2k+1 + 1, (1)

whose proof we provide in the Appendix (see Lemma 41).
Our argument heavily uses the concepts of [34], but we will try to make our proof

self-contained. Let W be the set of cyclically reduced words of length k on letters
π1, . . . , πd and π−1

1 , . . . , π−1
d . For w ∈ W , we define a closed trail with word w to

be an object of the form

s0
w1 �� s1

w2 �� s2
w3 �� · · · wk �� sk = s0

with si ∈ {1, . . . , n}. In Sect. 3.1, we will consider only the case where s0, . . . , sk−1 are
distinct, though we will drop this assumption in Sect. 3.2. We say that the trail appears
in Gn if w1(s0) = s1, w2(s1) = s2, and so on. In other words, we are considering Gn

as a directed graph with edges labeled by the permutations that gave rise to them, and
we are asking if it contains the trail as a subgraph. We note that a trail (with distinct
vertices) can only appear in Gn if its word is cyclically reduced.

To give an idea of the method we will use, we demonstrate how to calculate
limn→∞ E[C (n)

k ]. Suppose we have a trail with word w. Let ei
w be the number of

times πi or π−1
i appears in w. It is straightforward to see that the trail appears in Gn

with probability
∏d

i=1 1/[n]ei
w

, where

[x] j = x(x − 1) · · · (x − j + 1)

is the falling factorial or Pochhammer symbol.
For every word in W , there are [n]k trails with that word. The total number of trails

of length k contained in Gn is 2k times the number of cycles, so
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928 I. Dumitriu et al.

2kE[C (n)
k ] =

∑
w∈W

[n]k
d∏

i=1

1

[n]ei
w

. (2)

Each summand converges to 1 as n → ∞, giving E[C (n)
k ] → a(d, k)/2k, consistent

with Proposition 6.
To prove Proposition 6, we will need to count more complicated objects than in the

above example, and we will need some machinery from [34]. Suppose we have the
following list of r trails with associated words w1, . . . , wr :

s1
0

w1
1 �� s1

1

w1
2 �� · · · w1

k �� s1
k

s2
0

w2
1 �� s2

1

w2
2 �� · · · w2

k �� s2
k (3)

...

sr
0

wr
1 �� sr

1

wr
2 �� · · · wr

k �� sr
k

with s j
i ∈ {1, . . . , n}. Though we take the vertices s j

0 , . . . , s j
k−1 of each trail to be

distinct, vertices from different trails may coincide (see Fig. 1 for an example).
Suppose we have another list of r trails, (u j

i , 0 ≤ i ≤ k, 1 ≤ j ≤ r) with
the same words w1, . . . , wr . We say that these two lists are of the same category if

s j
i = s j ′

i ′ ⇐⇒ u j
i = u j ′

i ′ . Roughly speaking, this means that the trails in the two lists
overlap each other in the same way. The probability that some list of trails appears in
Gn depends only on its category.

We can represent each category as a directed, edge-labeled graph depicting the
overlap of the trails. This is more complicated to explain than to do, and we encourage
the reader to simply look at the example in Fig. 1, or at Figure 7 in [34]. Given the
list of trails (s j

i ), we define this graph as follows. First, reconsider the variables s j
i

simply as abstract labels rather than elements of {1, . . . , n}, and partition these labels
by placing any two of them in a block together if (considered as integers again) they
are equal. The graph has these blocks as its vertices. It includes an edge labeled πi

from one block to another if the trails include a step labeled πi or π−1
i from any vertex

in the first block to any vertex in the second; this edge should be directed according
to whether the step was labeled πi or π−1

i .

Suppose that 	 is the graph of a category of a list of trails, and define X (n)
	 to be the

number of tuples of trails of category 	 found in Gn . If 	 is the graph of a category
of a list of a single trail with word w ∈ W , we write X (n)

w for X (n)
	 . Note that such

graphs have a simple form demonstrated in Fig. 2.

Lemma 7

lim
n→∞E[X (n)

	 ] =
{

1 i f 	 has the same number of vertices as edges

0 otherwise
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Fig. 1 A list of two trails, and
the graph associated with its
category. Since s1

2 = s2
3 = 3, the

vertices s1
2 and s2

3 are blocked
together in the graph, and since
s1
1 = s2

2 = 1, the vertices s1
1 and

s2
2 are blocked together

Fig. 2 The graph 	 associated
with a single trail with word
π2π−1

1 π2π1π2π−1
3

To demonstrate the connection to the calculation we performed in (2), observe that

2kC (n)
k =

∑
w∈W

X (n)
w ,

and by our lemma the expectation of this converges to a(d, k) as n →∞.

Proof of Lemma 7 This is essentially the same calculation as in (2). Let e and v be
the number of edges and vertices, respectively, of the graph 	. Let ei be the number
of edges in 	 labeled by πi .

There are [n]v different trails of category 	, corresponding to the number of ways
to assign vertices {1, . . . , n} to the vertices of 	. Since each of these trails appears in
Gn with probability

∏d
i=1 1/[n]ei ,

E[X (n)
	 ] = [n]v

d∏
i=1

1

[n]ei

. (4)
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930 I. Dumitriu et al.

Fig. 3 A graph formed from three trails of length 6, all identified with each other. There are a(d, 6) choices
for the edge-labels w. There are six choices for which element s2

a will be identified with s1
0 , and two choices

for how to orient the trail s2 when identifying it with s1. There are also six choices for which element
s3
b will be identified with s1

0 , along with another two choices for its orientation. All together, there are

a(d, 6)(2 · 6)2 elements of G′ corresponding to the partition of three elements into one part

As n → ∞, this converges to 0 if e > v and to 1 if e = v. If 	 is the graph of a
category of a list of trails, then every vertex has degree at least 2, so it never happens
that e < v, which completes the lemma. We note for later use that this remains true
even when we drop the requirement that all vertices of a trail be distinct, so long as
the word of each trail is cyclically reduced. ��
Proof of Proposition 6 We will use the moment method. Fix a positive integer r . The
main idea of the proof is interpret

(
C (n)

k

)r as the number of r -tuples of cycles of length
k in Gn . As there are 2k closed trails for every cycle of length k, we can also think of
it as (2k)−r times the number of r -tuples of closed trails of length k in Gn .

Let G be the set of graphs of categories of lists of r trails of length k. The above
interpretation implies that

(
C (n)

k

)r = 1

(2k)r

∑
	∈G

X (n)
	 . (5)

By Lemma 7, we can compute limn→∞ E
(
C (n)

k

)r by counting the number of graphs
in 	 with the same number of edges as vertices. Let G′ ⊂ G be the set of such graphs.

Let 	 ∈ G′, and consider some list of r trails of category 	. Since 	 has as many
edges as vertices, it consists of disjoint cycles. This implies that for any two trails
in the list, either the trails are wholly identified in 	, or they are are disjoint. These
identifications of the r different trails give a partition of r objects.

Given some partition of the r objects into m parts, we will count the graphs in
G′ whose trails are identified according to the partition (see Fig. 3 for an example).
Consider some part consisting of p trails. The trails form a cycle in 	; we need to
count the number of different ways to label the edges and vertices. There are a(d, k)

different ways to label the edges. Each trail in the part can have its vertices identified
with those of the first trail in 2k different ways, for a total of (2k)p−1 choices. Thus
the number of choices for this part is a(d, k)(2k)p−1. Doing this for every part in
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Functional limit theorems 931

the given partition, we have a total of a(d, k)m(2k)r−m . Recalling that the number of
partitions of r objects into m parts is given by the Stirling number of the second kind
S(r, m),

|G′| =
r∑

m=1

S(r, m)a(d, k)m(2k)r−m .

By (5) and Lemma 7,

lim
n→∞E

(
C (n)

k

)r =
r∑

m=1

S(r, m)

(
a(d, k)

2k

)m

.

It is well known that this is the r th moment of the Poi(a(d, k)/2k) distribution (see for
example [40]), and that this distribution is determined by its moments, thus proving
the theorem. ��

This theorem tells us the limiting distribution of C (n)
k as n → ∞, with d and k

fixed, but tells us nothing if d and k grow with n. The following theorem addresses
this, and gives us a quantitative bound on the rate of convergence. We will assume
throughout that d ≥ 2; we use this assumption only to simplify some of our asymptotic
quantities, but as far better results for the d = 1 case are already known (see [3]), we
see no reason to complicate things. For clarity, we state this and future results with an
explicit constant rather than big-O notation, but it is the order, not the constant, that
interests us. Recall that the total variation distance between two probability measures
is the largest possible difference between the probabilities that they assign to the same
event.

Theorem 8 There is a constant C0 such that for any n, k, and d ≥ 2, the total
variation distance between the law of C (n)

k and Poi(a(d, k)/2k) is bounded by
C0k(2d − 1)k/n.

Proof We will prove this using Stein’s method; good introductions to Stein’s method
for the Poisson distribution can be found in [6,14], and especially [9], which focuses
on the the technique of size-biased coupling that we will employ. We give here the
basic set-up. Let Z+ denote the nonnegative integers. For any A ⊂ Z+, let g = gλ,A

be the function on Z+ satisfying

λg( j + 1) − jg( j) = 1 j∈A − Poi(λ){A}

with g(0) = 0, where Poi(λ){A} denotes the measure of A under the Poi(λ) dis-
tribution. This function g is the called the solution to the Stein equation. For any
nonnegative integer-valued random variable X ,

P[X ∈ A] − Poi(λ){A} = E[λg(X + 1) − Xg(X)]. (6)

Bounding the right hand side of this equation over all choices of g thus bounds the total
variation distance between the law of X and the Poi(λ) distribution. The following

123



932 I. Dumitriu et al.

estimates on g are standard (see [9, Lemma 1.1.1], for example):

‖g‖∞ ≤ min(1, λ−1/2), 
g ≤ min(1, λ−1), (7)

where 
g = sup j |g( j + 1) − g( j)|.
Let C be the set of closed trails of length k on n vertices, with two trails identified

if one is a cyclic or inverted cyclic shift of one another. Elements of C are essentially
cycles in the complete graph on n vertices, with edges labeled by π1, . . . , πd and
π−1

1 , . . . , π−1
d . We note that |C| = [n]ka(d, k)/2k.

For t ∈ C, let Ft = 1(t occurs in Gn). Let λ = a(d, k)/2k. We abbreviate C (n)
k to C ,

and we note that C = ∑
t∈C Ft . We can evaluate the right hand side of (6) as

E[λg(C + 1) − Cg(C)] =
∑
s∈C

(
1

[n]k E[g(C + 1)] − E[Fs g(C)]
)

Let pt = E[Ft ]. We note that Fs g(C) = Fs g
(∑

t �=s Ft + 1
)
, and that

E

⎡
⎣Fs g

⎛
⎝∑

t �=s

Ft + 1

⎞
⎠
⎤
⎦ = psE

⎡
⎣g

⎛
⎝∑

t �=s

Ft + 1

⎞
⎠

∣∣∣∣∣∣ Fs = 1

⎤
⎦.

In Lemma 10, we will construct for each s ∈ C a random variable Ys on the same
probability space as C that has the distribution of

∑
t �=s Ft conditioned on Fs = 1.

Then we evaluate

|E[λg(C + 1) − Cg(C)]| =
∣∣∣∣∣
∑
s∈C

(
1

[n]k E[g(C + 1)] − psE[g(Ys + 1)]
)∣∣∣∣∣

≤
∑
s∈C

1

[n]k E
∣∣g(C + 1) − g(Ys + 1)

∣∣

+
∑
s∈C

∣∣∣∣ 1

[n]k − ps

∣∣∣∣E
∣∣g(Ys + 1)

∣∣.

We bound these terms as follows:

|g(C + 1) − g(Ys + 1)| ≤ 
g|C − Ys |

and

∣∣∣∣ 1

[n]k − ps

∣∣∣∣ ≤
∣∣∣∣ 1

[n]k − 1

nk

∣∣∣∣ ≤ k2

2n[n]k .

This last bound makes use of the inequality [n]k ≥ nk(1 − k2/2n). Applying these
bounds gives
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|E[λg(C + 1) − Cg(C)]| ≤
∑
s∈C


g

[n]k E|C − Ys | + |C| k2

2n[n]k ‖g‖∞

≤ 
g

[n]k
∑
s∈C

E|C − Ys | + O

(
k3/2(2d − 1)k/2

n

)
. (8)

To get a good bound on this, we just need to demonstrate how to construct Ys so that
E|C − Ys | is small. We sketch our method as follows: Fix s ∈ C, and let G ′

n be a
random graph on n vertices distributed as Gn conditioned to contain the cycle s. We
will couple G ′

n with Gn in a natural way, and then prove in Lemma 9 that Gn and G ′
n

differ only slightly. We then define Ys in terms of G ′
n , and we establish in Lemma 10

that E|C−Ys | is small. Finally, we finish the proof of Theorem 8 by using these results
to bound the right side of (8).

We start by constructing G ′
n . Fix some s ∈ C. The basic idea is to modify the

permutations π1, . . . , πd to get random permutations π ′
1, . . . , π

′
d , which we will then

use to create a 2d-regular graph G ′
n in the usual way. Before we give our construction

of π ′
1, . . . , π

′
d , we consider what distributions they should have. Suppose for example

that d = 3 and s is

1
π3 �� 2

π−1
1 �� 3

π3 �� 4
π1 �� 1.

To force G ′
n to contain s, π ′

1 should be a uniform random permutation conditioned
to make π ′

1(4) = 1 and π ′
1(3) = 2, π ′

2 a uniform random permutation with no con-
ditioning, and π ′

3 a uniform random permutation conditioned to make π ′
3(1) = 2 and

π ′
3(3) = 4.

We now describe the construction of π ′
1, . . . , π

′
d . Suppose s has the form

s0
w1 �� s1

w2 �� s2
w3 �� · · · wk �� sk = s0. (9)

(The element s is actually an equivalence class of the 2k different cyclic and inverted
cyclic shifts of the above trail, but we will continue to represent it as above.) Let
1 ≤ l ≤ d, and suppose that the edge-labels πl and π−1

l appear M times in the cycle
s, and let (am, bm) for 1 ≤ m ≤ M be these edges. If (am, bm) is labeled πl , then
am is the tail and bm the head of the edge; if it is labeled π−1

l , then am is the head
and bm the tail. We must construct π ′

l to have the uniform distribution conditioned on
π ′

l (am) = bm for (am, bm), 1 ≤ m ≤ M .
We define a sequence of random transpositions by the following algorithm: Let

τ1 swap πl(a1) and b1. Let τ2 swap τ1πl(a2) and b2, and so on. We then define
π ′

l = τM · · · τ1πl . This permutation satisfies π ′
l (am) = bm for 1 ≤ m ≤ M , and it

is distributed uniformly, subject to the given constraints, which is easily proven by
induction on each swap. This completes our construction of π ′

1, . . . , π
′
d .

We now define G ′
n to be the random graph on n vertices with edges (i, π ′

j (i)) for
every 1 ≤ i ≤ n and 1 ≤ j ≤ d. It is evident that G ′

n is defined on the same probability
space as G and is distributed as Gn conditioned on containing s. The key fact is that
G ′

n is nearly identical to Gn :
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934 I. Dumitriu et al.

Lemma 9 Suppose there is an edge i
πl �� j contained in Gn but not in G ′

n. Then

the trail s contains either an edge of the form i
πl �� v or of the form v

πl �� j .

Proof Suppose πl(i) = j , but π ′
l (i) �= j . Then j must have been swapped when

making π ′
l , which can happen only if πl(am) = j or bm = j for some m. In the first

case, am = i and s contains the edge i
πl �� bm with bm �= j , and in the second s

contains the edge am
πl �� j with am �= i . ��

If s contains an edge of the form i
πl �� v or of the form v

πl �� j , then G ′
n

cannot possibly contain i
πi �� j while still containing s. The preceding lemma

then says that we have coupled Gn and G ′
n as best we can, in the following sense: G ′

n
keeps as many edges of Gn that it can, given that it contains s.

For t ∈ C, let F ′
t = 1(G ′

n contains t). Define Ys by Ys = ∑
t �=s F ′

t . Since G ′
n is

distributed as Gn conditioned to contain s, the random variable Ys is distributed as∑
t �=s Ft conditioned on Fs = 1. We now proceed to bound E|C − Ys |, adding in the

minor technical condition that k < n1/6.

Lemma 10 There exists an absolute constant C1 with the following property. For any
s ∈ C and Ys defined above, and for all n, k, and d ≥ 2 satisfying k < n1/6,

E|C − Ys | ≤ C1k(2d − 1)k

n
, (10)

Proof We start by partitioning the cycles of C according to how many edges they share

with s. Define C−1 as all elements in C that contain an edge si
wi �� v with v �= si+1

or an edge v
wi+1 �� si+1 with v �= si . For 0 ≤ j < k, define C j as all elements of

C \ C−1 that share exactly j edges with s.
The sets C−1, . . . , Ck−1 include every element of C except for s. Loosely, this

classifies elements of C according their likelihood of appearing in G ′
n compared to in

Gn : trails in C−1 never appear in G ′
n ; trails in C0 appear in G ′

n with nearly the same
probability as in Gn ; and the trails in Ci appear in G ′

n considerably more often than in
Gn .

This classification of elements of C works nicely with our coupling. Suppose t ∈ Ci

for i ≥ 0. Lemma 9 shows that if t appears in Gn , it must also appear in G ′
n . That is,

F ′
t ≥ Ft for all t ∈ Ci for i ≥ 0. On the other hand, F ′

t = 0 for all t ∈ C−1. Using this,

E|C − Ys | = E

∣∣∣∣∣∣Fs +
∑

t∈C−1

(Ft − F ′
t ) +

∑
t∈C0

(Ft − F ′
t ) +

k−1∑
i=1

∑
t∈Ci

(Ft − F ′
t )

∣∣∣∣∣∣

≤ ps + E

∣∣∣∣∣∣
∑

t∈C−1

(Ft − F ′
t )

∣∣∣∣∣∣+ E

∣∣∣∣∣∣
∑
t∈C0

(Ft − F ′
t )

∣∣∣∣∣∣+ E

∣∣∣∣∣∣
k−1∑
i=1

∑
t∈Ci

(Ft − F ′
t )

∣∣∣∣∣∣
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= ps +
∑

t∈C−1

E[Ft ] +
∑
t∈C0

E[F ′
t − Ft ] +

k−1∑
i=1

∑
t∈Ci

E[F ′
t − Ft ]

≤ ps +
∑

t∈C−1

pt +
∑
t∈C0

(p′t − pt ) +
k−1∑
i=1

∑
t∈Ci

p′t , (11)

with p′t = E[F ′
t ].

The rest of the proof is an analysis of |Ci | and of p′t . We start by considering the

first sum. For any edge si
wi+1 �� v with v �= si+1 or v

wi+1 �� si+1 with v �= si ,
there are no more than [n − 2]k−2(2d − 1)k−1 trails containing that edge (identifying
cyclic and inverted cyclic shifts). This gives the bound

|C−1| ≤ 2k(n − 2)[n − 2]k−2(2d − 1)k−1.

Applying pt ≤ 1/[n]k ,

∑
t∈C−1

pt = O

(
k(2d − 1)k−1

n

)
.

For the next sum, we note that with ei
t denoting the number of times πi and π−1

i appear
in the word of t , for for any t ∈ C0,

pt =
d∏

i=1

1

[n]ei
t

, p′t =
d∏

i=1

1

[n − ei
s]ei

t

.

Thus we have p′t ≤ 1/[n − k]k and pt ≥ 1/nk . Using the bound |C0| ≤ |C| =
a(d, k)[n]k/2k, we have

∑
t∈C0

(p′t − pt ) ≤ a(d, k)[n]k
2k

(
1

[n − k]k − 1

nk

)

= a(d, k)

2k

((
n

n − k

)k (
1 + O

(
k2

n

))
−

(
1 + O

(
k2

n

)))

= a(d, k)

2k

((
1 + k

n − k

)k (
1 + O

(
k2

n

))
−

(
1 + O

(
k2

n

)))

= O

(
k(2d − 1)k

n

)
.

The last and most involved calculation is to bound |Ci |. Fix some choice of i edges
of s. We start by counting the number of cycles in Ci that share exactly these edges

123



936 I. Dumitriu et al.

Fig. 4 Assembling an element t ∈ Ci that overlaps with s at a given subgraph H

with s. We illustrate this process in Fig. 4. Call the graph consisting of these edges H ,
and suppose that H has p components. Since it is a forest, H has i + p vertices.

Let A1, . . . , Ap be the components of H . We can assemble any t ∈ Ci that overlaps
with s in H by stringing together these components in some order, with other edges
in between. Each component can appear in t in one of two orientations. Since we
consider t only up to cyclic shift and inverted cyclic shift, we can assume without loss
of generality that t begins with component A1 with a fixed orientation. This leaves
(p − 1)!2p−1 choices for the order and orientation of A2, . . . , Ap in t .

Imagine now the components laid out in a line, with gaps between them, and count
the number of ways to fill the gaps. Each of the p gaps must contain at least one edge,
and the total number of edges in all the gaps is k− i . Thus the total number of possible
gap sizes is the number of compositions of k − i into p parts, or

(k−i−1
p−1

)
.

Now that we have chosen the number of edges to appear in each gap, we choose
the edges themselves. We can do this by giving an ordered list k − p− i vertices to go
in the gaps, along with a label and an orientation for each of the k − i edges this gives.
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There are [n − p − i]k−p−i ways to choose the vertices. We can give each new edge
any orientation and label subject to the constraint that the word of t must be reduced.
This means we have at most 2d − 1 choices for the orientation and label of each new
edge, for a total of at most (2d − 1)k−i .

All together, there are at most (p − 1)!2p−1
(k−i−1

p−1

)[n − p − i]k−p−i (2d − 1)k−i

elements of Ci that overlap with the cycle s at the subgraph H . We now calculate the
number of different ways to choose a subgraph H of s with i edges and p components.
Suppose s is given as in (9). We first choose a vertex s j . Then, we can specify which
edges to include in H by giving a sequence a1, b1, . . . , ap, bp instructing us to include
the first a1 edges after s j in H , then to exclude the next b1, then to include the next a2,
and so on. Any sequence for which ai and bi are positive integers, a1 + · · · + ap = i ,
and b1 + · · · + bp = k − i gives us a valid choice of i edges of s making up p
components. This counts each subgraph H a total of p times, since we could begin
with any component of H . Hence the number of subgraphs H with i edges and p
components is (k/p)

( i−1
p−1

)(k−i−1
p−1

)
. This gives us the bound

|Ci |≤
i∧(k−i)∑

p=1

(k/p)

(
i−1

p−1

)(
k − i − 1

p − 1

)2

(p−1)!2p−1[n − p − i]k−p−i (2d − 1)k−i .

We apply the bounds
( i−1

p−1

) ≤ k p−1/(p−1)! and
(k−i−1

p−1

) ≤ (e(k− i−1)/(p−1))p−1

to get

|Ci |≤k(2d − 1)k−i [n − 1 − i]k−1−i

⎛
⎝1+

i∧(k−i)∑
p=2

1

p

(
2e2k3

(p − 1)2

)p−1
1

[n−1−i]p−1

⎞
⎠.

Since k < n1/6, the sum in the above equation is bounded by an absolute constant.
Using the bound p′t ≤ 1/[n − k]k−i for t ∈ Ci , we have

∑
t∈Ci

p′t = O

(
k(2d − 1)k−i

n

)

and

k−1∑
i=1

∑
t∈Ci

p′t = O

(
k(2d − 1)k−1

n

)
.

These estimates, along with ps ≤ 1/[n]k , complete the proof. ��
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All that remains now is to apply this lemma to finish the proof of Theorem 8. First,
consider the case where k ≥ n1/6. Then k(2d−1)k/n > 1 for sufficiently large values
of n (regardless of d), in which case the theorem is trivially satisfied. By choosing C0
large enough, it holds for all n with k ≥ n1/6.

When k < n1/6, we apply Lemma 10 and (7) to (8) to get

|E[λg(C + 1) − Cg(C)]| = 
g

[n]k |C|O
(

k(2d − 1)k

n

)
+ O

(
k3/2(2d − 1)k/2

n

)

= O

(
k(2d − 1)k

n

)
+ O

(
k3/2(2d − 1)k/2

n

)

The first term is larger than the second for all but finitely many pairs (k, d) with d ≥ 2.
Hence there exists C0 large enough that for all n, k, and d ≥ 2,

|E[λg(C + 1) − Cg(C)]| ≤ C0k(2d − 1)k

n
.

��
We will need a multivariate version of this theorem as well. Define (C (∞)

k ; k ≥ 1)

to be independent Poisson random variables, with C (∞)
k having mean a(d, k)/2k. Let

dT V (X, Y ) denote the total variation distance between the laws of X and Y .

Theorem 11 There is a constant C2 such that for all n, k, and d ≥ 2,

dT V

((
C (n)

1 , . . . , C (n)
r

)
,
(
C (∞)

1 , . . . , C (∞)
r

)) ≤ C2(2d − 1)2r

n
.

Our proof will be very similar to the single variable case above, except that we
use Stein’s method for Poisson process approximation (see [9, Section 10.3]). Let
λk = a(d, k)/2k, and let ei ∈ Z

r+ be the vector with i th entry one and all other entries
zero. Define the operator A by

Ah(x) =
r∑

k=1

λk
(
h(x + ek) − h(x)

)+
r∑

k=1

xk
(
h(x − ek) − h(x)

)

for any h : Z
r+ → R and x ∈ Z

r+. We now describe the function that plays a role
analogous to g in the single variable case.

Lemma 12 For any set A ⊂ Z
r+, there is a function h : Z

r+ → R such that

Ah(x) = 1x∈A − P
[(

C (∞)
1 , . . . , C (∞)

r

) ∈ A
]
.

123



Functional limit theorems 939

This function h has the following properties:

sup
x∈Zr+
1≤k≤r

|h(x + ek) − h(x)| ≤ 1, (12)

sup
x∈Zr+

1≤ j,k≤r

|h(x + e j + ek) − h(x + e j ) + h(x) − h(x + ek)| ≤ 1. (13)

Proof This follows from Proposition 10.1.2 and Lemma 10.1.3 in [9] as applied to a
point process on a space with r elements. ��

Our goal is thus to bound E
[
Ah

(
C (n)

1 , . . . , C (n)
r

)]
for any function h as in

Lemma 12. We will abbreviate this vector to C = (C (n)
1 , . . . , C (n)

r ). The set of equiv-
alence class of closed trails of length k, which we previously denoted C, we will now
call Ck .

E[Ah(C)] =
r∑

k=1

∑
s∈Ck

(
1

[n]k E[h(C + ek) − h(C)] + E
[
Fs

(
h(C − ek) − h(C)

)])

=
r∑

k=1

∑
s∈Ck

(
1

[n]k E[h(C + ek) − h(C)] + psE
[
h(C − ek) − h(C)

∣∣ Fs = 1
])

.

For every s ∈ Ck , we will construct on the same probability space as C a random
variable Ys such that

Ys
L=

⎛
⎜⎜⎝C (n)

1 , . . . , C (n)
k−1,

∑
t∈Ck

t �=s

Ft , C (n)
k+1, . . . , C (n)

r

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
Fs = 1. (14)

Then

∣∣E[Ah(C)]∣∣ =
∣∣∣∣∣∣

r∑
k=1

∑
s∈Ck

(
1

[n]k E[h(C + ek) − h(C)] + psE[h(Ys) − h(Ys + ek)]
)∣∣∣∣∣∣

≤
r∑

k=1

∑
s∈Ck

1

[n]k E
∣∣h(C + ek) − h(C)+ h(Ys) − h(Ys + ek)

∣∣

+
r∑

k=1

∑
s∈Ck

∣∣∣∣ 1

[n]k − ps

∣∣∣∣E
∣∣h(Ys) − h(Ys + ek)

∣∣.

By (12) and (13), respectively,

∣∣h(Ys) − h(Y + ek)
∣∣ ≤ 1,∣∣h(C + ek) − h(C)+ h(Ys) − h(Y + ek)
∣∣ ≤ ‖C − Ys‖1 .
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Hence

∣∣E[Ah(C)]∣∣ ≤
r∑

k=1

∑
s∈Ck

1

[n]k E ‖C − Ys‖1 +
r∑

k=1

∑
s∈Ck

∣∣∣∣ 1

[n]k − ps

∣∣∣∣

≤
r∑

k=1

∑
s∈Ck

1

[n]k E ‖C − Ys‖1 +
r∑

k=1

|Ck | k2

2n[n]k

=
r∑

k=1

∑
s∈Ck

1

[n]k E ‖C − Ys‖1 + O

(
r(2d − 1)r

n

)
.

Theorem 11 then follows from the following lemma:

Lemma 13 There exists an absolute constant C3 with the following property. For any
1 ≤ k ≤ r and s ∈ Ck , let Ys be distributed as in (14). There is a coupling of C and
Ys such that for all n, k, and d ≥ 2 satisfying k < n1/6,

E ‖C − Ys‖1 ≤ C3r(2d − 1)r

n
(15)

Proof This proof is nearly identical to that of Lemma 10. We construct as before the
graph G ′

n and the random variables F ′
t for t ∈ Ci , 1 ≤ i ≤ r . Then Ys can be defined

in the natural way as

Ys =

⎛
⎜⎜⎝
∑
t∈C1

F ′
t , . . . ,

∑
t∈Ck−1

F ′
t ,

∑
t∈Ck

t �=s

F ′
t ,

∑
t∈Ck+1

F ′
t , . . . ,

∑
t∈Cr

F ′
t

⎞
⎟⎟⎠ .

We define Ci−1, . . . , Ci
(i−1)∧k as before, and it remains true that F ′

t ≥ Ft if t ∈ Ci
j for

j ≥ 0, and F ′
t = 0 if t ∈ Ci−1. Doing the calculation just as in (11),

E ‖C − Ys‖1 ≤
r∑

i=1

⎛
⎜⎝ ∑

t∈Ci−1

pt +
∑
t∈Ci

0

(p′t − pt ) +
(i−1)∧k∑

j=1

∑
t∈Ci

j

p′t

⎞
⎟⎠+ ps .

Nearly identical calculations as in Lemma 10 show that

∑
t∈Ci−1

pt = O

(
k(2d − 1)i−1

n

)
,

∑
t∈Ci

0

(p′t − pt ) = O

(
i(2d − 1)i

n

)
,
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Fig. 5 The walk 1 → 2 →
3 → 4 → 5 → 2 → 1 is
non-backtracking, but not
cyclically non-backtracking.
Note that such walks have a
“lollipop” shape

∑
t∈Ci

j

p′t = O

(
k(2d − 1)i− j

n

)
,

which completes the proof. ��

3.2 Non-backtracking walks in random regular graphs

We now seek to transfer our results on cycles to closed non-backtracking walks. Note
that we consider Gn as an undirected graph when we discuss walks on it. A non-
backtracking walk is one that begins and ends at the same vertex, and that never
follows an edge and immediately follows that same edge backwards. Let NBW(n)

k
denote the number of closed non-backtracking walks of length k on Gn .

If the last step of a closed non-backtracking walk is anything other than the reverse
of the first step, we say that the walk is cyclically non-backtracking (Fig. 5). Cyclically
non-backtracking walks on Gn are exactly the closed non-backtracking walks whose
words are cyclically reduced. Cyclically non-backtracking walks are easier to analyze
than plain non-backtracking walks because every cyclic and inverted cyclic shift of a
cyclically non-backtracking walk remains cyclically non-backtracking. Let CNBW(n)

k
denote the number of closed cyclically non-backtracking walks of length k on Gn .

These notions sometimes go by different names. In [25], non-backtracking walks
are called irreducible, and NBW(n)

k is called IrredTrk(G). Cyclically non-backtracking

walks are called strongly irreducible, and CNBW(n)
k is called SITk(G).

Recall that (C (∞)
k ; k ≥ 1) are independent Poisson random variables, with C (∞)

k
having mean a(d, k)/2k. Define

CNBW(∞)
k =

∑
j |k

2 jC (∞)
j .

For any cycle in Gn of length j |k, we obtain 2 j non-backtracking walks of length k by
choosing a starting point and direction and then walking around the cycle repeatedly.
We start by decomposing CNBW(n)

k into these walks plus the remaining “bad” walks

that are not repeated cycles. We denote these as B(n)
k , giving us
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942 I. Dumitriu et al.

CNBW(n)
k =

∑
j |k

2 jC (n)
j + B(n)

k . (16)

The results of Sect. 3.1 give us a good understanding of C (n)
k . Our goal now is to

analyze B(n)
k . Specifically, we will show that in the right asymptotic regime, it is likely

to be zero, implying that CNBW(n)
k will converge to CNBW(∞)

k . We start with a more
precise version of Lemma 7.

Lemma 14 With the setup of Lemma 7, suppose that 	 has k vertices and e edges,
with e > k. Then for all n > e,

E
[
X (n)

	

] ≤ 1

[n − k]e−k

Proof This is apparent from (4). ��
Proposition 15 For all n ≥ 2k,

E
[
B(n)

k

] ≤
k−1∑
i=1

a(d, k)k2i+2

[n − k]i .

Proof Any closed cyclically non-backtracking walk can be thought of as a trail, with
repeated vertices in the trail now allowed. Such a walk is counted by B(n)

k if and only
if the graph of its category has more edges than vertices. Let Gd consist of all graphs
of categories of a closed trail of length k that have more edges than vertices. Then

B(n)
k =

∑
	∈Gd

X (n)
	 ,

using the notation of Sect. 3.1. To use Lemma 14, we classify the graphs inGd according
how to many more edges than vertices they contain:

E
[
B(n)

k

] ≤
∞∑

i=1

∣∣{	 ∈ Gd : 	 has exactly i more edges than vertices}∣∣ 1

[n − k]i .

A graph in Gd has at most k edges, so the terms with i ≥ k in this sum are zero. By
Lemma 18 in [34], for each word w ∈ W , the number of graphs in Gd with word w

and with i more edges than vertices is at most k2i+2, completing the proof. ��
It is worth noting that this proposition fails if the word “cyclically” is removed

from the definition of B(n)
k . The problem is that walks that are non-backtracking but

not cyclically non-backtracking can have as many vertices as edges.

Corollary 16 There is an absolute constant C5 such that for all n, r , and d ≥ 2,

P[B(n)
k > 0 for some k ≤ r ] ≤ C5r4(2d − 1)r

n
.
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Proof Bounding the expression from Proposition 15 by a geometric series,

E
[
B(n)

r

] ≤ a(d, r)r4

n − r

n − 2r

n − 2r − r2 .

If r ≥ n1/4, then r4(2d −1)r/n > 1, and the corollary is trivially true for any C5 ≥ 1.
Thus we may assume that r < n1/4. In this case, the expression (n−2r)/(n−2r −r2)

is bounded by an absolute constant. This and (1) imply that for some constant C4,

E
[
B(n)

r

] ≤ C4r4(2d − 1)r

n
.

Since B(n)
k is integer-valued,

P[B(n)
k > 0 for some k ≤ rn] ≤

r∑
k=1

P[B(n)
k > 0] ≤

r∑
k=1

E[B(n)
k ]

≤
r∑

k=1

C4k4(2d − 1)k

n
≤ C5r4(2d − 1)r

n

for some choice of the constant C5. ��
The following fact follows directly from the definition of total variation distance,

and we omit its proof.

Lemma 17 Let X and Y be random variables on a metric space S, and let T be any
metric space. For any measurable f : S → T ,

dT V ( f (X), f (Y )) ≤ dT V (X, Y ).

It is now straightforward to give a result on non-backtracking walks analogous to
Theorem 11.

Proposition 18 There is a constant C6 such that for all n, r , and d ≥ 2,

dT V

((
CNBW(n)

k ; 1 ≤ k ≤ r
)
,
(
CNBW(∞)

k ; 1 ≤ k ≤ r
)) ≤ C6(2d − 1)2r

n
.

Proof We start by recalling the decomposition of CNBW(n)
k into good and bad walks

given in (16). Let G(n)
k = ∑

j |k 2 jC (n)
j , so that CNBW(n)

k = G(n)
k +B(n)

k . By Lemma 17
and Theorem 11,

dT V

((
G(n)

k ; 1 ≤ k ≤ r
)
,
(
CNBW(∞)

k ; 1 ≤ k ≤ r
))

≤ dT V

((
C (n)

k ; 1 ≤ k ≤ r
)
,
(
C (∞)

k ; 1 ≤ k ≤ r
))

≤ C2(2d − 1)2r

n
. (17)
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944 I. Dumitriu et al.

Then for any A ⊂ Z
r+,

P
[(

CNBW(n)
k ; 1 ≤ k ≤ r

) ∈ A
]
− P

[(
CNBW(∞)

k ; 1 ≤ k ≤ r
) ∈ A

]

≤ P
[(

G(n)
k ; 1 ≤ k ≤ r

) ∈ A
]
+ P

[
r⋃

k=1

{
B(n)

k > 0
}]

−P
[(

CNBW(∞)
k ; 1 ≤ k ≤ r

) ∈ A
]
≤ C2(2d − 1)2r

n
+ C5r4(2d − 1)r

n

by (17) and Corollary 16. For any n and d, since d ≥ 2 and thus 2d − 1 ≥ 3, the
first term is larger than the second for all but at most a finite number of rs, bounded
independently of n and d. Therefore there exists a constant C6 satisfying the conditions
of the theorem. ��
Corollary 19 For any fixed r and d ≥ 2,

(CNBW(n)
1 , . . . , CNBW(n)

r )
L−→ (CNBW(∞)

1 , . . . , CNBW(∞)
r )

as n →∞.

To achieve a version of the above corollary that holds when d grows, we need to
center and scale our random variables CNBW(n)

k .

Proposition 20 Let r be fixed, and suppose that d = d(n) →∞ as n →∞, and that

(2d − 1)2r = o(n). Let C̃NBW
(n)

k = (2d − 1)−k/2(CNBW(n)
k − E[CNBW(∞)

k ]). Let
Z1, . . . , Zr be independent normal random variables with EZk = 0 and EZ2

k = 2k.
Then as n →∞,

(
C̃NBW

(n)

1 , . . . , C̃NBW
(n)

r

) L−→ (Z1, . . . , Zr ).

Proof Let X (n)
k = (2d−1)−k/2(CNBW(∞)

k −E[CNBW(∞)
k ]). We note that CNBW(∞)

k
depends on d (and hence on n), although we have suppressed this dependence from the
notation. By Proposition 18 and Lemma 17, the total variation distance between the

laws of
(
C̃NBW

(n)

k ; 1 ≤ k ≤ r
)

and
(
X (n)

k ; 1 ≤ k ≤ r
)

converges to zero as n →∞.

Hence it suffices to show that
(
X (n)

k ; 1 ≤ k ≤ r
) L−→ (Z1, . . . , Zr ) as n →∞.

Let λk = a(d, k)/2k as in Theorem 11. We can write X (n)
k as

X (n)
k = 2k(2d − 1)−k/2(C (∞)

k − λk
)+ (2d − 1)−k/2

∑
j |k
j<k

(
2 jC (∞)

j − a(d, j)
)
.

Using (1), it is a straightforward calculation to show that as n →∞,

(
2k(2d − 1)−k/2(C (∞)

k − λk
); 1 ≤ k ≤ r

) L−→ (Z1, . . . , Zr ).
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Hence we need only show that for all k ≤ r ,

(2d − 1)−k/2
∑
j |k
j<k

(
2 jC (n)

j − a(d, j)
) pr−→ 0.

We calculate

Var

⎡
⎢⎢⎣(2d − 1)−k/2

∑
j |k
j<k

(
2 jC (n)

j − a(d, j)
)
⎤
⎥⎥⎦ = (2d − 1)−k

∑
j |k
j<k

ja(d, j),

and the statement follows by (1) and Chebyshev’s inequality. ��
The remaining results in this section refer to the weak convergence set-up in Sect. 2.

Theorem 21 Suppose that d is fixed, that rn →∞, and that

(2d − 1)2rn = o(n). (18)

Let

�k = E
[
CNBW(∞)

k

]2 =
∑
j |k

2 ja(d, j) +
⎛
⎝∑

j |k
a(d, j)

⎞
⎠

2

.

Let (bk)k∈N be any fixed positive summable sequence. Define the weights of Sect. 2 by
setting

ωk = bk/�k, k ∈ N.

Let Pn be the law of the sequence (CNBW(n)
1 , . . . , CNBW(n)

rn , 0, 0, . . .). Then {Pn},
considered as a sequence in P(X), converges weakly to the law of the random vector(
CNBW(∞)

k ; k ∈ N
)
.

Proof We first claim that the random vector (CNBW(∞)
k ; k ∈ N) almost surely lies

in L2(ω). This follows by a deliberate choice of ω:

E
∞∑

k=1

(
CNBW(∞)

k

)2
ωk =

∞∑
k=1

�kωk =
∞∑

k=1

bk < ∞,

which proves finiteness almost surely. The computation of �k is straightforward.
By Corollary 19, we know that all subsequential weak limits of Pn have the same

finite-dimensional distributions as (CNBW(∞)
k ; k ∈ N), and by Lemma 5, they are

in fact identical to the law of (CNBW(∞)
k ; k ∈ N). Thus it suffices to show that
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946 I. Dumitriu et al.

{P1, P2, . . .} is tight. To do this we will apply Lemma 3 by choosing a suitable infinite
cube.

In other words, we must show that given any ε > 0, there exists an element
a = (am)m∈N ∈ L2(ω) such that

sup
n

P
[
∪rn

k=1

{
CNBW(n)

k > ak

}]
< ε. (19)

In fact, our choice of a is

ak = (α + 2)E
(

CNBW(∞)
k

)
= (α + 2)

∑
j |k

a(d, j),

for some positive α determined by ε. Note that, by an obvious calculation, a ∈ L2(ω).
By Proposition 18, for any η > 0,

P
[
∪rn

k=1

{
CNBW(n)

k > ak

}]
≤ P

[
∪rn

k=1

{
CNBW(∞)

k > ak

}]
+ η (20)

for all sufficiently large n. Now, we apply the union bound

sup
n

P
[
∪rn

k=1

{
CNBW(∞)

k > ak

}]
≤

∞∑
k=1

P
[
CNBW(∞)

k > ak

]
(21)

and bound the right side by a simple large deviation estimate.
We start with the decomposition

CNBW(∞)
k =

∑
j |k

2 jC (∞)
j , (22)

where {C (∞)
j } are independent Poisson random variables with mean a(d, j)/2 j . Thus,

for any λ > 0, the exponential moments are easy to derive:

E
(

eλCNBW(∞)
k

)
=

∏
j |k

E

(
eλ2 jC(∞)

j

)
=

∏
j |k

exp

{
a(d, j)

2 j

(
e2λ j − 1

)}

= exp

⎡
⎣∑

j |k
a(d, j)

e2λ j − 1

2 j

⎤
⎦ .

Hence, by Markov’s inequality, we get

P
(

CNBW(∞)
k > ak

)
≤ e−λak E

(
eλCNBW(∞)

k

)

≤ exp

⎡
⎣∑

j |k
a(d, j)

(
e2λ j − 1

2 j
− (α + 2)λ

)⎤
⎦ .
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An easy analysis shows that if λ = log 2/(2k), one must have

e2λ j − 1

2 j
< 2λ, for all j ≤ k.

Hence,

P
(

CNBW(∞)
k > ak

)
≤ exp

⎡
⎣−α log 2

2k

∑
j |k

a(d, j)

⎤
⎦ ≤ 2−α(2d−1)k/2k .

The above expression is clearly summable in k, and thus from (21) we get

sup
n

P
[
∪rn

k=1

{
CNBW(∞)

k > ak

}]
≤

∞∑
k=1

2−α(2d−1)k/2k .

The right side can be made as small as we want by choosing a large enough α. This is
enough to establish (19). ��

We now prove a corresponding theorem when d is growing with n. Let μk(d) denote
E
[
CNBW(∞)

k

]
emphasizing its dependence on d. We define

Ñ (n)
k = (2d − 1)−k/2(CNBW(n)

k − μk(d)
)
. (23)

Theorem 22 Suppose that d = d(n) →∞ and rn →∞ as n →∞. Suppose that

(2d − 1)2rn = o(n).

We define the weights ω by setting ωk = bk/(k2 log k), where (bk)k∈N is any fixed posi-
tive summable sequence. Let Pn be the law of the sequence (Ñ (n)

1 , . . . , Ñ (n)
rn , 0, 0, . . .).

Let Z1, Z2, . . . be independent normal random variables with EZk = 0 and EZ2
k =

2k. Then Pn, considered as an element of P(X), converges weakly to the law of the
random vector (Zk; k ∈ N).

To proceed with the proof we will need a lemma on measure concentration. We
will use a result on modified logarithmic Sobolev inequality that can be found in
the Berlin notes by Ledoux [31]. For the convenience of the reader we reproduce
(a slight modification of) the statement of Theorem 5.5 in [31, page 71] for a joint
product measure. Please note that although the statement of Theorem 5.5 is written
for an iid product measure, its proof goes through even when the coordinate laws are
different (but independent). In fact, the crucial step is the tensorization of entropy ([31,
Proposition 2.2]), which is generally true.

Lemma 23 For n ∈ N, let μ1, μ2, . . . , μn be n probability measures on N. For
functions f on N, define D f (x) = f (x + 1) − f (x) to be the discrete derivative.
Define the entropy of f under μi by

Entμi ( f ) = Eμi ( f log f ) − Eμi ( f ) log Eμi ( f ).
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948 I. Dumitriu et al.

Assume that there exist two positive constants c and d such that for every f on N such
that supx |D f | ≤ λ, one has

Entμi

(
e f

)
≤ cedλEμi

(
|D f |2 e f

)
, as functions of λ.

Let μ denote the product measure of the μi ’s. Let F be a function on N
n such that

for every x ∈ N
n,

n∑
i=1

|F(x + ei ) − F(x)|2 ≤ α2, and max
1≤i≤n

|F(x + ei ) − F(x)| ≤ β.

Then Eμ(|F |) < ∞ and, for every r ≥ 0,

μ
(
F ≥ Eμ(F)+ r

) ≤ exp

(
− r

2dβ
log

(
1 + βdr

4cα2

))
.

Proof of Theorem 22 The proof is similar in spirit to the proof of Theorem 21. As
in that proof, the limiting measure is supported on L2(ω). By Proposition 20 and
Lemma 5, we need only show that the family {P1, P2, . . .} is tight. As in Theorem 21,
we need to choose a suitable infinite cube.

Choose ε > 0. Define

ak = αk
√

log k,

for some positive α > 1 depending on ε. Then a ∈ L2(ω).
We need to show that, for a suitable choice of α,

sup
n

P
[
∪rn

k=1

{∣∣∣Ñ (n)
k

∣∣∣ > ak

}]
< ε.

By Lemma 17 and Proposition 18, for any η > 0,

P
[
∪rn

k=1

{∣∣∣Ñ (n)
k

∣∣∣ > ak

}]
<P

[
∪rn

k=1

{∣∣∣CNBW(∞)
k −μk(d)

∣∣∣ > ak(2d − 1)k/2
}]
+η

(24)

for all sufficiently large n.
Note as before that CNBW(∞)

k depends on d (and hence on n).
Proceeding as before, we need to estimate

P
(∣∣∣CNBW(∞)

k − μk(d)

∣∣∣ > ak(2d − 1)k/2
)

for our choice of ak .
Let Poi(θ) denote as before the Poisson law with mean θ . We will denote expectation

with respect to Poi(θ) by Eπθ . As shown in Corollary 5.3 in [31, page 69], Poi(θ)
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satisfies the following modified logarithmic Sobolev inequality: for any f on N with
strictly positive values

Entπθ ( f ) ≤ θEπθ

(
1

f
|D f |2

)
. (25)

Here Entπθ ( f ) refers to the entropy of f under Poi(θ).
Let now f on N satisfy supx |D f (x)| ≤ λ. By eqn. (5.16) in [31, page 70], (25)

implies that Poi(θ) satisfies the inequality

Entπθ

(
e f

)
≤ Ce2λEπθ

(
|D f |2 e f

)
, for any C ≥ θ. (26)

Now fix some k ∈ N and consider the product measure of the random vector
(C (∞)

j , j |k). Each coordinate satisfies inequality (26) and one can take the common
constant C to be a(d, k)/2k.

We apply Lemma 23 on the function F(x) = ∑
j |k 2 j x j . It is straightforward to

see that one can take α2 = 4k3, β = 2k. Thus, we get the following tail estimate for
any r > 0:

P (F > E(F) + r) ≤ exp

(
− r

8k
log

(
1 + 4kr

4C4k3

))
.

Replacing F by −F we obtain a two-sided bound

P (|F − E(F)| > r) ≤ 2 exp

(
− r

8k
log

(
1 + 4kr

16Ck3

))
.

Hence we have shown that for any r > 0, the following estimate holds

P
(∣∣∣CNBW(∞)

k − μk(d)

∣∣∣ > r
)
≤ 2 exp

(
− r

8k
log

(
1 + 8k2r

16a(d, k)k3

))

= 2 exp

(
− r

8k
log

(
1 + r

2a(d, k)k

))
.

Recall from (1) that a(d, k) ∼ (2d − 1)k . Therefore

P
(∣∣∣CNBW(∞)

k − μk(d)

∣∣∣ > ak(2d − 1)k/2
)

≤ 2 exp

(
−ak(2d − 1)k/2

8k
log

(
1 + ak

2(2d − 1)k/2k

))
.
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Now, log(1+ x) ≥ x/2 for all 0 ≤ x ≤ 1. Using this simple bound we get that for
all (k, d) such that α log k ≤ 2(2d − 1)k , we have

P
(∣∣∣CNBW(∞)

k − μk(d)

∣∣∣ > ak(2d − 1)k/2
)
≤ 2 exp

(
− a2

k

32k2

)

≤ 2 exp

(
−α2k2 log k

32k2

)
= 2k−α2/32.

The right side is summable whenever α2 > 32. The rest of the proof follows just as
in Theorem 21. ��

4 Spectral concentration

The problem of estimating the spectral gap of a d-regular graph has been approached
primarily in two ways, the method of moments and the counting method of Kahn
and Szemerédi, prezented in [21]. The method of moments has been developed in
the work of Broder and Shamir [11] and very extensively by Friedman [24,25]. In his
work, Friedman, relying on d being fixed independently of n, developed extremely fine
control over the magnitude of the second eigenvalue. On the other hand in [21], Kahn
and Szemerédi only show that the second largest eigenvalue has magnitude O(

√
d).

While weaker than Friedman’s bound, their techniques readily extend to the case where
d is allowed to grow as a function of n; this observation has been informally made by
others, and communicated to us by Vu and Friedman. Here we will formalize it, and
present the Kahn–Szemerédi argument in the context of growing d to demonstrate the
method’s validity, as well as to develop some handle on the constants in the bound.

Specifically, we will prove

Theorem 24 For any m > 0, there is a constant C = C(m) and universal constants
K and c so that

P
[
∃i �= 1 : |λi | ≥ C

√
d
]
≤ n−m + K exp(−cn).

Further, the constant C may be taken to be 36000 + 2400m.

In what follows, let M be the adjacency matrix for the 2d-regular graph Gn . Recall
that this matrix can be realized by sampling independently and uniformly d permuta-
tion matrices A1, A2, . . . , Ad and defining

M = A1 + At
1 + A2 + At

2 + · · · + Ad + At
d .

The starting point is the variational characterization of the eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn of M , which states that

max{λ2, |λn|} = sup
w⊥1‖w‖=1

∣∣wt Mw
∣∣.
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Additional flexibility is provided by replacing this symmetric version of the Rayleigh
quotient by the asymmetric version,

sup
w,v⊥1

‖v‖=‖w‖=1

|vt Mw|.

The random variables vt Mw, for fixed w and v, are substantially more tractable
than the supremum. To be able to work with these random variables instead of the
supremum, we will pass to a finite set of vectors which approximate the sphere S =
{w ⊥ 1 : ‖w‖ = 1}. More specifically, we will only consider those w and v lying on
the subset of the lattice T defined as

T :=
{

δz√
n

: z ∈ Z
n, ‖z‖2 ≤ n

δ2 , z ⊥ 1
}

,

for a fixed δ > 0.

Vectors from T approximate vectors from S in the sense that every v ∈ (1 − δ)S
is a convex combination of points in T . (See Lemma 2.3 of [22].) Thus

1

(1 − δ)2 sup
w,v⊥1

‖v‖=‖w‖=1

∣∣[1 − δ]vt M[1 − δ]w∣∣ ≤ 1

(1 − δ)2 sup
x,y∈T

∣∣xt My
∣∣.

Furthermore, by a volume argument, it is possible to bound the cardinality of T as

|T |
(

δ√
n

)n

≤ Vol

[
x ∈ R

n : ‖x‖ ≤ 1 + δ

2

]
= (1 + δ

2 )n√π
n

	( n
2 + 1)

.

Employing Stirling’s approximation, this shows

|T | ≤ C

[
(1 + δ

2 )
√

2eπ

δ

]n

.

for some universal constant C .
The breakthrough of Kahn and Szemerédi was to realize that xt My can be controlled

by virtue of a split into two types of terms. If xt My is written as a sum

xt My =
∑
(u,v)

|xu yv |<
√

d
n

xu Muv yv +
∑
(u,v)

|xu yv |≥
√

d
n

xu Muv yv,

then the contribution of the first sum turns out to be very nearly its mean because
of the Lipschitz dependence of the sum on the edges of the graph. The contribution
of the second sum turns out to never be too large for a very different reason: the
number of edges between any two sets in the graph is on the same order as its mean.
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Following Feige and Ofek, for a fixed pair of vectors (x, y) ∈ T 2, define the light

couples L = L(x, y) to be all those ordered pairs (u, v) so that |xu yv| ≤
√

d
n , and let

the heavy couples H be all those pairs that are not light.

4.1 Controlling the contribution of the light couples

Part of the advantage of having selected only the light couples is that their expected
contribution is of the “correct” order, as the lemma below shows.

Lemma 25
∣∣∣∣∣∣E

∑
(u,v)∈L

xu Muv yv

∣∣∣∣∣∣ ≤ 2
√

d.

Proof By symmetry, EMuv is simply equal to 2d
n , so that

E
∑

{u,v}∈L
xu Muv yv = 2d

n

∑
{u,v}∈L

xu yv.

Because each of xu and yv sum to 0, the sum over light couples is equal in magnitude
to the sum over heavy couples. Thus, it suffices to estimate

∣∣∣∣∣∣
∑

{u,v}∈H
xu yv

∣∣∣∣∣∣ ≤
∑

{u,v}∈H
|xu yv| =

∑
{u,v}∈H

x2
u y2

v

|xu yv|

≤ n√
d

∑
{u,v}∈H

x2
u y2

v , by the defining property of heavy couples,

≤ n√
d

.

In the last step we recall that both ‖x‖, ‖y‖ ≤ 1. ��
To show that not only the expectation, but the sum itself is of the correct order, we

must prove a concentration estimate for this sum. For technical reasons, it is helpful
if we deal with sums over fewer terms. To this end, define

A = A1 + A2 + · · · + Ad .

In terms of A it is enough to insist that for every x, y ∈ T
∣∣∣∣∣∣

∑
(u,v)∈L

xu Auv yv

∣∣∣∣∣∣ ≤ t
√

d
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for then by symmetry,

∣∣∣∣∣∣
∑

(u,v)∈L
xu Muv yv

∣∣∣∣∣∣ ≤ 2t
√

d,

for all x, y ∈ T . As a further simplification, we will not prove a tail estimate for the
whole quantity

∑
(u,v)∈L xu Auv yv; instead, fix an arbitrary collection U of vertices

of size at most � n
2 �. Having fixed this collection, we will show a tail estimate for∑

(u,v)∈L∩U×[n] xu Auv yv. This truncation is made to simplify a variance estimate
(see (28)), and it might be possible to avoid it entirely.

Theorem 26 For every x, y ∈ T , and every U ⊂ [n] with |U | ≤ � n
2 �,

P

⎡
⎣
∣∣∣∣∣∣

∑
(u,v)∈L∩U×[n]

xu Auv yv − Exu Auv yv

∣∣∣∣∣∣ > t
√

d

⎤
⎦ ≤ C0 exp

(
− nt2

C1 + C2t

)

for some universal constants C0, C1 and C2. These constants can be taken as 2, 64,
and 8/3 respectively.

Proof Let L̃ be L∩U ×[n]. We will estimate tail probabilities for
∑

(u,v)∈L̃ xu Auv yv.

The main tool needed to establish this result is Freedman’s martingale inequality
[23]. Let X1, X2, . . . be martingale increments. Write Fk for the natural filtration
induced by these increments, and define Vk = E

[
X2

k | Fk−1
]
. If Sn is the partial sum

Sn = ∑n
i=1 Xi (with S0 = 0) and Tn is the sum Tn = ∑n

i=1 Vi (with T0 = 0), then
by analogy with the continuous case, one expects Sn to be a Brownian motion at time
Tn (a discretization of the bracket process). The analogy requires, however, that the
increments have some a priori bound. Namely, if |Xk | ≤ R,

P [∃ n ≤ τ so that Sn ≥ a and Tn ≥ b] ≤ 2 exp

(
− a2/2

Ra
3 + b

)
.

Remark 27 The constants quoted here are slightly better than the constants that appear
in Freedman’s original paper. This statement of the theorem follows from Proposition
2.1 of [23] and the calculus lemma

(1 + u) log(1 + u) − u ≥ u2/2

1 + u/3
,

for u ≥ 0.

Reorder and relabel the vertices from U as x1, x2, . . . , xr , with r ≤ � n
2 � so that

|x j | decreases in j. Order pairs (i, j) ∈ [d] × {0, 1, 2, . . . r} lexicographically, and
enumerate πi ( j) in this order as f1, f2, . . . , frd . Define a filtration of σ -algebras
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{Fk}rd
k=1 by revealing these pieces of information, i.e. Fk = Fk−1∨π( fk). According

to this filtration, let

Sk = E

⎡
⎣ ∑

(u,v)∈L̃

xu Auv yv

∣∣∣∣Fk

⎤
⎦

define a martingale and let Xk = X(i, j) be the associated martingale increments.
The desired deviation bound can now be cast in terms of Sk as

P

⎡
⎣
∣∣∣∣∣∣
∑
L̃

xu Auv yv − Exu Auv yv

∣∣∣∣∣∣ ≥ t

⎤
⎦

≤ P [∃ k ≤ rd so that |Sk − S0| = |Sk | ≥ t and Tn ≥ b]

≤ 2 exp

(
−t2/2

( Rt
3 + b)

)
,

provided that b satisfies

rd∑
k=1

E
[

X2
k

∣∣ Fk−1

]
≤ b.

This reduces the problem to finding suitable R and b. The starting point for finding
any such bound is simplifying the expression for the martingale increments X(i,k). To
this end, let π be a fixed permutation of [n], and define �k to be the collection of all
permutations that agree with π in the first k entries, i.e.

�k = {σ : σ(i) = π(i) i = 1, 2, . . . , k}.

Further let T : �k−1 → �k be the map which maps a permutation to its nearest
neighbor in �k, in the sense of transposition distance, i.e.

T [σ ](i) =
⎧⎨
⎩

π(k) i = k
σ(k) i = σ−1(π(k))

σ (i) else
.

Note that this map is the identity upon restriction to �k . Let L [u,v] be the characteristic
function for (u, v) ∈ L̃. In terms of these notation, it is possible to express X(i,k) as

X(i,k) = 1

|�k−1|
∑

τ∈�k−1

∑
u∈U

xu L [u,T [τ ](u)]yT [τ ](u) − xu L [u,τ (u)]yτ(u),

where π = σi , and the contributions of the other σ j all cancel. As τ(u) = T [τ ](u)

except for when u = k or u = τ−1(π(k)), this simplifies to
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X(i,k) = 1

|�k−1|
∑

τ∈�k−1

(
xu L [u,π(k)]yπ(k) − xu L [u,τ (k)]yτ(k)

+ xτ−1(π(k))L [τ−1(π(k)),τ (k)]yτ(k) − xτ−1(π(k))L [τ−1(π(k)),π(k)]yπ(k)

)
.

This can be recast probabilistically. Define two random variables v and u as

v ∼ Unif {[n] \ π [k]},
u ∼ Unif {[n] \ [k]},

(where [n] = {1, 2, . . . , n}) so that

n − k + 1

n − k
Xk = E

[
xk L [k,v]yv − xk L [k,π(k)]yπ(k) + xu L [u,π(k)]yπ(k)

−xu L [u,v]yv

∣∣Fk
]
. (27)

Terms for which π(k) = τ(k) again cancel, and so we have disregarded these terms
from the right hand side. It is also for this reason that the small correction appears in
front of Xk . From here it is possible to immediately deduce a sufficient a priori bound

on Xk, as each term in this expectation is at most
√

d
n , so that

|Xk | ≤ 4

√
d

n
.

The conditional variance E
[
X2

k

∣∣ Fk−1
]

is not much more complicated. Effectively,
we take π(k) to be uniformly distributed over [n]\π [k−1] and bound E

[
X2

k

∣∣ Fk−1
]

by

E
[

X2
k

∣∣ Fk−1

]
≤ 4E

[
x2

k (L [k,v]yv)
2 + x2

k (L [k,π(k)]yπ(k))
2 + x2

u (L [u,π(k)]yπ(k))
2

+x2
u (L [u,v]yv)

2
∣∣ Fk−1

]
.

As we have ordered the xi , x2
u ≤ x2

k . Further, by bounding all the L [a,b] terms by 1,

and using that v is marginally distributed as Unif {[n] \ π [k − 1]}, this bound becomes

E
[

X2
k

∣∣ Fk−1

]
≤ 16E

[
x2

k y2
v

∣∣ Fk−1

]
.

Upon explicit calculation, we see that

E
[

y2
v

∣∣ Fk−1

]
= 1

n − k

∑
[n]\π [k−1]

y2
v ≤ 1

n − k
,
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where it has been used that ‖y‖ ≤ 1. Combining the above with (27), we see that

E
[

X2
k

∣∣ Fk−1

]
≤

[
n − k

n − k + 1

]2 16x2
k

n − k
≤ 32x2

k

n
(28)

where it has been used that k ≤ r ≤ � n
2 �. Summing over all martingale increments,

d∑
i=1

r∑
k=1

32x2
k

n
≤ 32d

n
.

Thus the Freedman martingale bound becomes

P

⎡
⎣
∣∣∣∣∣∣
∑
L̃

xu Auv yv − Exu Auv yv

∣∣∣∣∣∣ > t
√

d

⎤
⎦ ≤ 2 exp

( −nt2

64 + 8/3t

)
.

��
Let Lleft be the set of vertices that appear in the first coordinate of some light

couple, and choose U ⊆ Lleft arbitrarily so that |U | = �|Lleft|/2�. It follows then
that, if U1 := U , and U2 := Lleft \ U1,

P

⎡
⎣
∣∣∣∣∣∣

∑
(u,v)∈L

xu Auv yv − Exu Auv yv

∣∣∣∣∣∣ > t
√

d

⎤
⎦

≤ 2P

⎡
⎣max

i=1,2

∣∣∣∣∣∣
∑

(u,v)∈L∩Ui×[n]
xu Auv yv − Exu Auv yv

∣∣∣∣∣∣ >
t

2

√
d

⎤
⎦ .

From this point, it is possible to estimate

P

[
∃ x, y ∈ T :

∣∣∣∣∣
∑
L

xu Muv yv

∣∣∣∣∣ > 2(2t + 1)
√

d

]

by

P

⎡
⎣∃ x, y ∈ T :

∣∣∣∣∣∣
∑

L∩U×[n]
xu[Auv − EAuv]yv

∣∣∣∣∣∣ > t
√

d

⎤
⎦
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Applying the union bound and Theorem 26, we see now that

P

[
∃ x, y ∈ T :

∣∣∣∣∣
∑
L

xu Muv yv

∣∣∣∣∣ > 2(2t + 1)
√

d

]

≤ C

[
(2 + δ)

√
2eπ

2δ

]2n

exp

( −nt2

64 + 8t/3

)
,

so that taking e − 2 ≥ δ ≥ 1
2 and t = 27, it is seen that this probability decays

exponentially fast, and we have proven

Theorem 28 There are universal constants C and K sufficiently large and c > 0 so
that for e − 2 ≥ δ ≥ 1

2 and except for with probability at most

K exp (−cn),

there is no pair of vectors x, y ∈ T having

∣∣∣∣∣∣
∑

(u,v)∈L
xu Muv yv

∣∣∣∣∣∣ ≥ C
√

2d.

It is possible to take C = 110.

4.2 Controlling the contribution of the heavy couples

Lemma 29 (Discrepancy) For any two vertex sets A and B, let e(A, B) denote the
number of directed edges from A to B that result as a form πi (a) = b for some
1 ≤ i ≤ d, a ∈ A and b ∈ B. Let μ(A, B) = |A||B| d

n . For every m > 0, there are
constants c1 ≥ e and c2 so that for every pair of vertex sets A and B, except with
probability n−m, exactly one of the following properties holds

1. either e(A,B)
μ(A,B)

≤ c1 ,

2. or e(A, B) log e(A,B)
μ(A,B)

≤ c2(|A| ∨ |B|) log n
|A|∨|B|

It is possible to take c1 = e4 and c2 = 2e2(6 + m).

To prove this lemma, we rely on a standard type of large deviation inequality
shown below, which mirrors the large deviation inequalities available for sums of i.i.d.
indicators.

Lemma 30 For any k ≥ e,

P [e(A, B) ≥ kμ(A, B)] ≤ exp(−k[log k − 2]μ).
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Proof Let eπ (A, B) denote the number a ∈ A so that π(a) ∈ B. It is possible to
bound

P [eπ (A, B) = t] ≤ [a]t [b]t
t ![n]t ,

where we recall that [a]t = a(a−1) · · · (a− t +1) is the falling factorial or Pochham-
mer symbol. Using the fact that [n]t ≥ e−t nt , this may be bounded as

P [eπ (A, B) = t] ≤ at bt et

t !nt
,

so that the Laplace transform of eπ (A, B) can be estimated as

E
[
exp(λeπ (A, B))

] ≤
∞∑

t=0

eλt at bt et

t !nt
= exp

[
abe1+λ

n

]
.

Thus by Markov’s inequality, we have

P [e(A, B) ≥ kμ(A, B)] ≤
E
[
exp

(
λ
∑d

i=1 eσi (A, B)
)]

e−kλμ

≤ exp
[
μe1+λ − kλμ

]
,

where λ > 0 is any positive number and μ = μ(A, B). Taking 1 + λ = log k, valid
for k > e, it follows that

P [e(A, B) ≥ kμ(A, B)] ≤ exp
[−k(log k − 2)μ

]
,

for k ≥ e. ��
Armed with Lemma 30, we can proceed with the proof of Lemma 29.

Proof of Lemma 29 If either of |A| or |B| is greater than n
e , then e(A, B) ≤ (|A| ∨

|B|)d, so that

e(A, B)

μ(A, B)
≤ nd(|A| ∨ |B|)

|A||B|d = n

|A| ∧ |B| ≤ e.

Thus, it suffices to deal with the case that both A and B are less than n
e . In what follows,

we will think of a and b as being the sizes of |A| and |B| in preparation to use a union
bound. Let k = k(a, b, n) be defined as k = max{k∗, 1

e }, where k∗ satisfies

k∗ log k∗ = (6 + m)(a ∨ b)n

abd
log

n

a ∨ b
,
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or 1
e , whichever is larger. When a ∨ b ≤ n

e , it follows that

(6 + m)(a ∨ b) log
n

a ∨ b
≥ 2a log

n

a
+ 2b log

n

b
+ (2 + m)(a ∨ b) log

n

a ∨ b
,

where we have used the monotonicity of x log n
x on [1, n

e ]; thus

(6 + m)(a ∨ b) log
n

a ∨ b
≥ a

(
1 + log

n

a

)
+ b

(
1 + log

n

b

)
+ (2 + m) log n.

Exponentiating,

exp

[
k log k

abd

n

]
≥

(ea

n

)n
(

eb

n

)n

n2+m,

if k ≥ 1
e . It follows that

P
[
∃A, B with |A| = a, |B| = b, so that e(A, B) ≥ e2k(a, b)μ(A, B)

]

≤
(

n

a

)(
n

b

)
exp(−e2k[log k]μ) ≤ n−2−m .

Moreover, applying this bound to all a and b, it follows that

e(A, B) ≤ e2k(|A|, |B|)μ(A, B),

except with probability smaller than n−m . If for two sets A and B, k = 1
e , then

e(A, B) ≤ eμ(A, B),

and we are in the first case of the discrepancy property, for c1 ≥ e. Otherwise,

e(A, B) log k ≤ e2k log kμ(A, B) = e2(6 + m)(a ∨ b) log
n

a ∨ b
,

and noting that k ≥ e(A,B)

e2μ(A,B)
, it follows that

1

2
e(A, B) log

e(A, B)

μ(A, B)
≤ e(A, B) log

e(A, B)

e2μ(A, B)
≤ e2(6 + m)(a ∨ b) log

n

a ∨ b
,

when e(A,B)
μ(A,B)

≥ e4. If this is not the case, then we are again in the first case of the

discrepancy property, taking c1 ≥ e4. Taking c1 = e4, it follows that we may take
c2 = 2e2(6 + m). ��

The discrepancy property implies that there are no dense subgraphs, and thus the
contribution of the heavy couples is not too large.
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Lemma 31 If the discrepancy property holds, with associated constants c1 and c2,
then

∑
{u,v}∈H

∣∣xu Au,v yv

∣∣ ≤ C
√

d,

for some constant C depending on c1, c2, and δ.

Proof The method of proof here is essentially identical to Kahn and Szemerédi or
Feige and Ofek (see [21] or [22]). We provide a proof of this lemma for completeness
as well as to establish the constants involved. We will partition the summands into
blocks where each term xu or yv has approximately the same magnitude. Thus let
γi = 2iδ, and put

Ai =
{

u
∣∣ γi−1√

n
≤ |xu | <

γi√
n

}
, 1≤ i ≤ log�√n�.

Bi =
{

u
∣∣ γi−1√

n
≤ |yu | <

γi√
n

}
, 1≤ i ≤ log�√n�.

Let Ĥ denote those pairs (i, j) so that γiγ j ≥
√

d. The contribution of the absolute
sum can, in these terms, be bounded by

∑
(u,v)∈H

∣∣xu Mu,v yv

∣∣ ≤ ∑
(i, j)∈Ĥ

γiγ j

n
e(Ai , B j ).

Let λi, j = e(Ai ,B j )

μ(Ai ,B j )
denote the discrepancy, which can be controlled using Lemma 29.

In terms of this quantity, the bound becomes

∑
(u,v)∈H

∣∣xu Mu,v yv

∣∣ ≤ ∑
(i, j)∈Ĥ

γiγ j

n
λi, j |Ai ||B j |d

n
.

In this form, the magnitudes of each of the quantities are somewhat opaque. Consider

the sum
∑

i |Ai | γ
2
i
n ; it is at most 4‖x‖2 = 4. In particular, it is of constant order. Thus

let αi = |Ai | γ
2
i
n and β j = |B j | γ

2
j

n . This allows the bound to be rewritten as

d
∑

(i, j)∈Ĥ

γ 2
i |Ai |

n

γ 2
j |B j |

n

λi, j

γiγ j
= d√

d

∑
(i, j)∈Ĥ

αiβ j
λi, j

√
d

γiγ j
.

This exposes the quantity σi, j = λi, j
√

d
γi γ j

as having some special importance. In effect,

we will show that either for fixed i,
∑

j σi, jβ j has constant order, or for fixed j,∑
i σi, jαi has constant order.
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In what follows, we will bound the contribution of the summands where |Ai | ≥ |B j |.
By symmetry, the contribution of the other summands will have the same bound. The
heavy couples will now be partitioned into 6 classes {Ĥi }6i=1 where their contribution

is bounded in a different way. Let Ĥi ⊆ Ĥ be those pairs (i, j) which satisfy the i th

property from the following list but none of the prior properties:

1. σi, j ≤ c1.

2. λi, j ≤ c1.

3. γ j > 1
4

√
dγi .

4. log λi, j > 1
4

[
2 log γi + log 1

αi

]
.

5. 2 log γi ≥ log 1
αi

.

6. 2 log γi < log 1
αi

.

The last properties are better understood when the second case of the discrepancy
property is expressed in present notation. In its original form, it states

e(Ai , B j ) log λi, j ≤ c2|Ai | log
n

|Ai | .

Substituting γ 2
i /αi for n/|Ai | and multiplying both sides of this equation through by

γi

|B j |γ j
√

d log λi, j
produces the equivalent form

σi, jβ j ≤ c2
γ j√
dγi

[
2 log γi + log 1

αi

]
log λi, j

.

Thus, the last 3 cases cover each of the possible dominant log terms in this bound.

4.2.1 Bounding the contribution of Ĥ1 and Ĥ2

In either of these situations, we have a bound on σi, j . Especially, either σi, j ≤ c1 or,
all the discrepancies λi, j are uniformly bounded by c1. As

σi, j = λi, j
√

d

γiγ j
,

and γiγ j ≥
√

d,

σi, j ≤ c1

for both cases.

4.2.2 Bounding the contribution of Ĥ3

For these terms, we fix j. In this case, the magnitudes of the entries corresponding to
j of yv dominate those of the entries corresponding to i of xu . However, by regularity
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e(Ai , B j ) ≤ |B j |d, so that the discrepancy λi, j is at most n
|Ai | =

γ 2
i

αi
.

∑
i : (i, j)∈Ĥ3

αiσi, j =
∑

i : (i, j)∈Ĥ3

αi
λi, j

√
d

γiγ j
≤

∑
i : (i, j)∈Ĥ3

γi
√

d

γ j
≤ 8,

where in the last step it has been used that the sum is geometric with leading term less
than 4γ j/

√
d.

4.2.3 Bounding the contribution of Ĥ4

For these terms, we fix i. We are not in case (2), and it follows that the second case of
the discrepancy property holds. In present notation

σi, jβ j ≤ c2

√
dγ j

dγi

[
2 log γi + log 1

αi

]
log λi, j

≤ 4c2γ j

γi
√

d
,

where the hypothesis has been used. As we are not in case (3), the sum of these terms
is bounded as

∑
j : (i, j)∈Ĥ4

β jσi, j ≤ 2c2,

where it has been used that the sum above has a geometric dominator with leading
term at most 1

4γi
√

d.

4.2.4 Bounding the contribution of Ĥ5

For these terms, we fix i. Again, the second case of the discrepancy property holds.
Now, in addition,

log λi, j ≤ 1

4

[
2 log γi + log

1

αi

]
≤ log γi ,

i.e. that λi, j ≤ γi . Furthermore, we are not in case (1) so c1 ≤ σi, j = λi, j
√

d
γi γ j

≤
√

d
γ j

.

Thus the second discrepancy bound becomes

σi, jβ j ≤ c2

√
dγ j

dγi

[
2 log γi + log 1

αi

]
log λi, j

≤ c2
γ j 4 log γi√
dγi log c1

≤ 4c2

c1

γ j√
d

,
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where it has been used that γi ≥ λi, j ≥ c1 ≥ e, and that log x/x is monotonically
decreasing for x > e. Thus,

∑
j : (i, j)∈Ĥ5

β jσi, j ≤
∑

j : (i, j)∈Ĥ5

4c2

c1

γ j√
d
≤ 8c2

c2
1

,

where it has been used that the second sum above is geometric with largest term√
d/c1.

4.2.5 Bounding the contribution of Ĥ6

For these terms, we fix j. The second case of the discrepancy property holds and in
addition,

log λi, j ≤ 1

4

[
2 log γi + log

1

αi

]
≤ 1

2
log

1

αi
.

This implies that σ satisfies the asymmetric bound σi, j ≤ 1
αi

√
d

γi γ j
. Thus,

∑
i : (i, j)∈Ĥ6

αiσi, j ≤
∑

i : (i, j)∈Ĥ6

√
d

γiγ j
≤ 2,

where it has been used that the sum above is geometric with leading term 1√
d

(which

follows as γiγ j ≥
√

d).

4.2.6 Assembling the bound

We must sum the contributions of each of the classes of couples. Recall that we
must double the contribution here because we have only considered couples where
|Ai | ≥ |B j |. In each of the cases outlined above, it only remains to sum over the αi or
β j in each bound. Doing so contributes a factor of 4 to each bound, so that the constant
can be given by

2

[
16c1 + 32 + 8c2 + 32c2

c2
1

+ 8

]

��

4.3 Finalizing the proof of Theorem 24

Proof We will take δ = 1
2 . With m given, it follows the discrepancy property

(Lemma 29) holds with probability at least 1 − n−m, and with constants c1 = e4
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and c2 = 2e2(6 + m). Therefore, by Lemma 31, for any two x, y ∈ T , the contribu-
tion of the heavy couples to xt My (which is at most twice the contribution of xt Ay,
given that the bounds hold for all x and y) is at most

4

[
16c1 + 32 + 8c2 + 32c2

c2
1

+ 8

]√
d ≤ (8854 + 585m)

√
d.

By Theorem 28, with probability at least (1−C exp(−cn) for some universal constants
C > 0 and c > 0, the contribution of the light couples is never more than 110

√
d.

Hence

sup
x,y∈T

|xt My| ≤ (8964 + 585m)
√

d,

except with probability at most n−m+C exp(−cn). At last, this implies that λ2∨|λn| ≤
4(8964 + 585m)

√
d , except with probability at most n−m + C exp(−cn). ��

5 Linear statistics of eigenvalues

We now connect Sect. 3.2 to linear eigenvalue statistics of the adjacency matrix of Gn .
Let {Tn(x)}n∈N be the Chebyshev polynomials of the first kind on the interval [−1, 1].
We define a set of polynomials

	0(x) = 1, (29)

	2k(x) = 2T2k

( x

2

)
+ 2d − 2

(2d − 1)k
, ∀ k ≥ 1, (30)

	2k+1(x) = 2T2k+1

( x

2

)
, ∀ k ≥ 0. (31)

We note that much of the following proposition can be found in Lemma 10.4 of [25].

Proposition 32 Let An be the adjacency matrix of Gn, and let λ1 ≥ · · · ≥ λn be the
eigenvalues of (2d − 1)−1/2 An. Then

N (n)
k :=

n∑
i=1

	k(λi ) = (2d − 1)−k/2CNBW(n)
k .

Proof To show the above, we will first use the Chebyshev polynomials of the second
kind on [−1, 1], namely, {Un}n∈N.

Let

pk(x) = Uk

( x

2

)
− 1

2d − 1
Uk−2

( x

2

)
. (32)

It is known [1, eqn. 12] that (2d − 1)−k/2NBW(n)
k = ∑n

i=1 pk(λi ). We thus proceed

by relating CNBW(n)
k to NBW(n)

k .
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A closed non-backtracking walk of length k is either cyclically non-backtracking
or can be obtained from a closed non-backtracking walk of length k − 2 by “adding
a tail,” i.e., adding a new step to the beginning of the walk and its reverse to the end.
For any closed cyclically non-backtracking walk of length k − 2, we can add a tail
in 2d − 2 ways. For any closed non-backtracking walk of length k − 2 that is not
cyclically non-backtracking, we can add a tail in 2d − 1 ways. Hence for k ≥ 3,

NBW(n)
k = CNBW(n)

k + (2d − 2)CNBW(n)
k−2 + (2d − 1)

(
NBW(n)

k−2 − CNBW(n)
k−2

)

= CNBW(n)
k + (2d − 1)NBW(n)

k−2 − CNBW(n)
k−2.

Applying this relation iteratively and noting that CNBW(n)
k = NBW(n)

k for k = 1, 2,
we have

CNBW(n)
k = NBW(n)

k − (2d − 2)
(

NBW(n)
k−2 + NBW(n)

k−4 + · · · + NBW(n)
a

)

with a = 2 if k is even and a = 1 if k is odd. Observe now that

	2k(x) = p2k(x) − (2d − 2)

(
p2k−2(x)

2d − 1
+ p2k−4(x)

(2d − 1)2 + · · · + p2(x)

(2d − 1)k−1

)
,

and

	2k−1(x) = p2k−1(x) − (2d − 2)

(
p2k−3(x)

2d − 1
+ p2k−5(x)

(2d − 1)2 + · · · + p1(x)

(2d − 1)k−1

)
.

A quick calculation shows now that

	2k(x) = U2k

( x

2

)
− U2k−2

( x

2

)
+ 2d − 2

(2d − 1)k/2 , while

	2k+1(x) = U2k+1

( x

2

)
− U2k−1

( x

2

)
,

and the rest follows from the fact that Tk(x) = 1
2 (Uk(x) − Uk−2(x)). ��

The weak convergence of the sequence (CNBW(n)
k , 1 ≤ k ≤ rn) in Theorem 21

allows us to establish limiting laws for a general class of linear functions of eigenvalues.
First we will make some canonical choices of parameters {rn}. Define

rn = β log n

log(2d − 1)
, for some β < 1/2. (33)

Note that 2rn log(2d − 1) = 2β log n, which shows (18), even when d grows with n.
We now need another definition. Let h be a function on R such that

h(rn) ≥ log(2d − 1), for all large enough n. (34)

123



966 I. Dumitriu et al.

This definition is not so important when d is fixed, since a constant h(x) ≡ log(2d−1)

for all x ∈ R is a good choice. However, when d grows with n, an appropriate choice
needs to be made. For example when 2d − 1 = (log n)γ for some γ > 0, one may
take

h(x) = C log x, for some large enough positive constant C. (35)

For our next result, we will use some theorems from Approximation Theory. Recall
that every function f on [−1, 1] which is square-integrable with respect to the arc-
sine law has a series expansion with respect to the Chebyshev polynomials of the first
kind. Good references for approximation theory and the Chebyshev polynomials are
the book [38] and the (yet unpublished) book [45].

Recall the polynomials 	k(x) as defined in (29); if a function has a series expansion
in terms of Chebyshev polynomials of the first kind, Tk(x), on [−1, 1], then it has a
series expansion in terms of 	k(x) on [−2, 2].

We recall the definition of a Bernstein ellipse of radius ρ.

Definition 33 Let ρ > 1, and let EB(ρ) be the image of the circle of radius ρ, centered
at the origin, under the map f (z) = z+z−1

2 . We call EB(ρ) the Bernstein ellipse of
radius ρ. The ellipse has foci at ±1, and the sum of the major semiaxis and the minor
semiaxis is exactly ρ.

To prove our main result for d fixed, we first need a lemma.

Lemma 34 Suppose that d ≥ 2 is fixed. Let f be a function defined on C which is
analytic inside a Bernstein ellipse of radius 2ρ, where ρ = (2d−1)α , for some α > 2,
and such that | f (z)| < M inside this ellipse.

Let f (x) = ∑∞
i=0 ci	i (x) for x on [−2, 2] (the existence, as well as uniform

convergence of the series on [−2, 2], is guaranteed by the fact that f is analytic on
[−2, 2]).

Then the following things are true:

(i) The expansion of f (x) in terms of 	i (x) actually converges uniformly on [−2−
ε, 2 + ε] for some small enough ε > 0.

(ii) The aforementioned series expansion also converges pointwise on [2, 2d√
2d−1

].
(iii) If fk := ∑k

i=0 ci	i is the kth truncation of this (modified) Chebyshev series for
f , then, for a small enough ε,

sup
0≤|x |≤2+ε

| f (x) − fk(x)| ≤ M ′ (2d − 1)−α′k ,

where 2 < α′ < α, and M ′ is a constant independent of k.
(iv) For all k ∈ N, let bk = 1

(2d−1)k , and let ωk be the sequence of weights described
in Theorem 21. Then the sequence of coefficients {ck}k∈N satisfies

(
ck

(2d − 1)k/2ωk

)
k∈N

∈ L2(ω).
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Proof We will prove the facts (i) through (iv) in succession.
Facts (i) and (ii) will use a particular expression for Tn(x) outside [−1, 1], namely,

Tn(x) = (x −√
x2 − 1)n + (x +√

x2 − 1)n

2
. (36)

For Fact (i), it is easy to see that if x is in [−2 − ε, 2 + ε], and particularly for ε

small enough,

|	k(x)| ≤ C(1 + 3
√

ε)k ,

where C is some constant independent of k.
By Theorem 8.1 in [45], which first appeared in Section 61 of [7], it follows that

|ck | ≤ M ′(2d − 1)−αk , (37)

for some constant M ′ which may depend on M and d, but not on k.
Note that 1 + 3

√
ε < (2d − 1)α , for any d ≥ 2, α > 2, and ε small enough.

Consequently, the series
∑∞

k=0 ck	k(x) is absolutely convergent on [−2 − ε, 2 +
ε], and hence the expansion of f into this modified Chebyshev series is valid (and
absolutely convergent) on [−2 − ε, 2 + ε]. This proves Fact (i).

Similarly, we now look on the interval [2, 2d√
2d−1

], and note that on that interval the

expression for Tn(x/2) will be bounded from above by

|Tn(x/2)| <
1 + (2d − 1)n/2

2
;

indeed, this happens because x/2 − √
x2/4 − 1 is decreasing (and maximally 1, at

x = 2) while x/2 + √
x2/4 − 1 is increasing (and maximally (2d − 1)n/2, at x =

2d/
√

2d − 1).
From here it follows once again that

|	n(x)| ≤ 2(2d − 1)n/2 ,

on [2, 2d√
2d−1

], and thus the series
∑∞

k=0 ck	k(x) is absolutely convergent on this
interval as well. The equality with the function f follows from analyticity. This proves
Fact (ii).

Fact (iii) is an immediate consequence of (37), by taking ε small enough relative
to d and α.

Fact (iv) follows easily from the definitions of ωk, �k (given in Theorem 21), and
from (37). ��

We can now present our main result for the case when d is fixed.

Theorem 35 Assume the same conditions on f and notations as in Lemma 34. Then
the random variable

∑n
i=1 f (λi ) − nc0 converges in law to the infinitely divisible

123



968 I. Dumitriu et al.

random variable

Y f :=
∞∑

k=1

ck

(2d − 1)k/2 CNBW(∞)
k .

Remark 36 There is a good explanation of why we must subtract nc0 in the statement
of the above theorem. Consider the Kesten-McKay density, normalized to have support
[−2, 2]:

ρ2d(x) = 2d(2d − 1)
√

4 − x2

2π(4d2 − (2d − 1)x2)
.

It is proved in [37] that in the uniform model of random d-regular graph, the ran-
dom variable n−1 ∑n

i=1 f (λi ) converges in probability to
∫ 2
−2 f (x)ρd(x)dx . This

also holds for the present model; one can prove it by applying the contiguity results
of [26], or by using the above theorem to compute that limn→∞ n−1 ∑n

i=1 λk
i is the

kth moment of the Kesten-McKay law.
If

∑n
i=1 f (λi ) converges in distribution (without subtracting the constant), then

n−1 ∑n
i=1 f (λi ) converges to zero in probability. Thus such a function f must be

orthogonal to one in the L2 space of the Kesten-McKay law. It has been shown in
[41, Example 5.3] that the polynomials (pk), defined in (32), along with the constant
polynomial p0 ≡ 1 constitute an orthogonal basis for the L2 space. The polynomials
(	k), being linear combinations of (pk, k ≥ 1), are therefore orthogonal to one in
that L2 space. Hence for any f of Theorem 35, the function f − c0 is orthogonal to
the Kesten-McKay law.

Proof Armed with the results of Lemma 34, the proof is simple.
We first claim that

Y (n)
f :=

rn∑
k=1

ck N (n)
k =

rn∑
k=1

ck

(2d − 1)k/2ωk
CNBW(n)

k ωk

converges in law to Y f as n tends to infinity. This follows from Theorem 21 and
Lemma 4 once we show that the sequence

(
ck

(2d − 1)k/2ωk

)
k∈N

∈ L2(ω).

This is precisely Fact (iv) from Lemma 34.
The result will now follow from Slutsky’s theorem once we show that, for any

δ > 0,

lim
n→∞P

(∣∣∣∣∣
n∑

i=1

f (λi ) − nc0 − Y (n)
f

∣∣∣∣∣ > δ

)
= 0. (38)
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The proof of (38) has two components. Choose the parameter β in (33) such that
αβ < 1. This also implies β < 1/2. We start by noting

nc0 + Y (n)
f =

n∑
i=1

rn∑
k=1

ck	k(λi ) = frn (λ1) +
n−1∑
i=1

frn (λi ).

Recall that the first eigenvalue of An is exactly 2d, irrespective of n. Thus, once
we scale An by

√
2d − 1, by Fact (ii) from Lemma 34, frn (

2d√
2d−1

) converges as a

deterministic sequence to f ( 2d√
2d−1

). Choose a large enough n1 such that

∣∣∣∣ frn

(
2d√

2d − 1

)
− f

(
2d√

2d − 1

)∣∣∣∣ < δ/4, for all n ≥ n1.

On the other hand, if we define the event

An := {|λi | ≤ 2 + ε, for all i > 1},

Theorem 1.1 in [25], shows that P (An) ≥ 1 − cn−τ , for some positive constants c
and τ . On this event, Fact (i) from Lemma 34, together with (33), implies that

n−1∑
i=2

∣∣ f (λi ) − frn (λi )
∣∣ ≤ (n − 1)M exp (−αrn log(2d − 1)) = Mn exp(−αβ log n)

= Mn−αβ+1 = o(1).

Choose a large enough n2 such that the above number is less than δ/4.
Thus, for all n ≥ max(n1, n2), we have

P

(∣∣∣∣∣
n∑

i=1

f (λi ) − nc0 − Y (n)
f

∣∣∣∣∣ > δ

)
≤ P(Ac

n) = cn−τ = o(1).

This completes the proof. ��
Remark 37 We now take a moment to demonstrate how to compute the limiting dis-
tribution of

∑n
j=1 	k(λ j ) when d = 1 using the results of [4], and we show that it is

consistent with our own results. (Though in this paper we focus on d ≥ 2, our tech-
niques apply for d = 1, too, and prove nearly the same result as Theorem 35.) Let Mn

be a uniform random n × n permutation matrix with eigenvalues e2π iϕ1 , . . . , e2π iϕn

on the unit circle. Let An = Mn + MT
n with eigenvalues λ1, . . . , λn , which sat-

isfy λ j = 2 cos(2πϕ j ). We define f (x) = 	k(2 cos(2πx)) = 2 cos(2πkx) + ck ,
where ck = 0 when k is odd and ck = (2d − 2)/(2d − 1)k/2 when k is even. Then∑n

j=1 	k(λ j ) = ∑
j=1 f (ϕ j ).
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Theorem 1.1 of [4] gives the characteristic function of the limiting distribution μ f

of
∑

j=1 f (ϕ j )− E
∑

j=1 f (ϕ j ) as

μ̂ f (t) = exp
(∫

(eitx − 1 − i t x)d M f (x)
)

with M f given by

M f =
∞∑
j=1

1

j
δ j R j ( f ),

R j ( f ) = 1

j

j−1∑
h=0

f

(
h

j

)
−

1∫
0

f (x)dx .

It is straightforward to calculate that

R j ( f ) =
{

2 if j |k,

0 otherwise.

Thus we find

μ̂ f (t) = exp

⎛
⎝∑

j |k

1

j
(e2i t j − 1) − 2i t)

⎞
⎠ ,

which is the characteristic function of CNBW(∞)
k − E

[
CNBW(∞)

k

]
for d = 1 (note

that a(d, k) = 2 in this case).

Finally, we consider now the case of growing degree d = dn and the relationship
between dn and rn , as given in the statement of Theorem 22 and in (33). Although we
have chosen not to use the notation dn elsewhere in the paper, we will use it here, to
emphasize each pair (dn, rn). For our results to be applicable, we will need that both
dn and rn grow to ∞.

We will first remove the dependence on dn for our orthogonal polynomial basis,
making them scaled Chebyshev. Define

�0(x) = 1, (39)

�k(x) = 2Tk

( x

2

)
, k ≥ 1. (40)

If An is the adjacency matrix of Gn and λ1 ≥ · · · ≥ λn are the eigenvalues of
(2dn − 1)−1/2 An and k ≥ 1, then

n∑
i=1

�k(λi ) =
{

(2dn − 1)−k/2
(

CNBW(n)
k − (2dn − 2)n

)
if k is even,

(2dn − 1)−k/2CNBW(n)
k if k is odd.
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Please note from (23) that

Ñ (n)
k =

{∑n
i=1 �k(λi ) − (2dn − 1)−k/2

(
μk(dn)− (2dn − 2)n

)
if k is even∑n

i=1 �k(λi ) − (2dn − 1)−k/2μk(dn) if k is odd

Our final result is very similar in spirit to Theorem 35, and we will need a helpful
tool like Lemma 34 to make it work.

Lemma 38 Suppose now that dn, rn are growing with n and governed by (33). Con-
sider the polynomials �k as in (39). Let f be an entire function on C. Let a > 1 be a
fixed real number. Then

(i) f admits an absolutely convergent (modified) Chebyshev series expansion

f (x) =
∞∑

i=0

ci�i (x)

on [−a, a];
(ii) for some choice of weights ω = (bk/k2 log k)k∈N from Theorem 22, the sequence

of coefficients (ck)k∈N satisfies

(
ck

ωk

)
k∈N

∈ L2 (ω)
. (41)

Proof Both Facts (i) and (ii) follow in the same way as the proofs of Facts (i) and (ii)
from Lemma 34, noting that, since f is entire, it is sufficient to choose a Bernstein
ellipse of radius large enough. This will provide a fast-enough decaying geometric
bound on the coefficients, to compensate for the bounds on the growth of the Tn(x) as
given by (43), on the fixed interval [−a, a].

We detail a bit more the proof of Fact (ii), since it is only (slightly) more complex.
Choose for example bk = 1

2k ; since f is entire, choose the Bernstein ellipse of radius
3C , on which f is bounded by some given B; as in the proof of Theorem 35, this
states that the coefficients cn are bounded by

|cn| ≤ B ′(3C)−n , (42)

for some B ′ independent of n.
As before, thanks to the expression (36), we can bound the growth of the modified

Chebyshev polynomials on [−C, C] by

max
x∈[−C,C] |Tn(x/2)| ≤ B ′′Cn, (43)

for some B ′′ independent of n.
With these choices for ω and (bk)k∈N, (41) follows now from (42) and (43). ��
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We can now give our main result for the case when dn and rn both grow. The
essential difference from before is in the centering and in assumption (ii) below which
stresses the dependence on the growth rate of the degree sequence.

Theorem 39 Assume the same setup as in Lemma 38, with the following additional
constraints on the entire function f :

(i) Let C := C(1) be chosen according to Theorem 24. Let fk := ∑k
i=0 ci�i denote

the kth truncation of this series on [−C, C]. Then

sup
0≤|x |≤C

| f (x) − fk(x)| ≤ M exp (−αkh(k)), for some α > 2 and M > 0,

where h has been defined in (34).
(ii) Recall the definition of sequence (rn) from (33) with a choice of β < 1/α. Then f

and its sequence of truncations, frn , satisfy

lim
n→∞

∣∣∣ frn

(
2dn(2dn − 1)−1/2

)
− f

(
2dn(2dn − 1)−1/2

)∣∣∣ = 0.

Define now the array of constants

m f
k (n) :=

k∑
i=1

ci

(2dn − 1)i/2

(
μi (dn) − 1(i iseven)(2dn − 2)n

)
.

If conditions (i) and (ii) above are satisfied, the sequence of random variables

(
n∑

i=1

f (λi ) − nc0 − m f
rn (n)

)

n∈N

converges in law to a normal random variable with mean zero and variance σ 2
f =∑∞

k=1 2kc2
k .

Remark 40 Note the significance of the term h(k). The presence of h(k), which is
usually a logarithmic term as in (35), demands somewhat more than just analyticity
of f . Similarly, requirement (ii) requires convergence of the truncations sequence,
evaluated at points diverging to ∞; it is a kind of “diagonal” convergence, which is
not automatically satisfied even for entire functions.

Proof The proof is almost identical to the proof of Theorem 35 and we only highlight
the slight differences. As before, define

nc0 + Y ( f )
n :=

rn∑
k=1

ck Ñ (n)
k =

n∑
i=1

( rn∑
k=1

ck�k(λi )

)
− m f

rn (n).

To prove that Y ( f )
n converges in law to N (0, σ 2

f ), we use Fact (ii) from Lemma 38
together with assumption (ii); by Theorem 22, the convergence follows. We only need
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to show that

∣∣∣∣∣
n∑

i=1

f (λi ) − nc0 − Y ( f )
n

∣∣∣∣∣
converges to zero in probability. The convergence for λ1 is given by assumption (ii),
while the rest of it is assured by assumption (i) and Theorem 24. ��
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6 Appendix

We will compute the exact expression for the number of cyclically reduced words of
length k on letters π1, . . . , πd , π−1

1 , . . . , π−1
d ; specifically, we will show

Lemma 41

a(d, 2k) = (2d − 1)2k − 1 + 2d, a(d, 2k + 1) = (2d − 1)2k+1 + 1.

Proof This is a quick exercise in inclusion-exclusion. The proof requires some nota-
tion, but this should not obscure the simplicity of the ideas. Define

�k =
{
π1, π2, . . . , πd , π−1

1 , π−2
2 . . . , π−1

d

}k

to be all words of length k in these letters. Let G = Z/kZ denote the cyclic group of
order k, and for any subset S ⊆ G, define

VS =
{
w = w0w1 · · ·wk−1 ∈ �k | ws = w−1

s+1 s ∈ S
}
,

where the addition is performed in G. The essential observation is that

|VS| =
⎧⎨
⎩

(2d)k−|S| k > |S|
2d k = |S|, k even
0 k = |S|, k odd.

To see the formula for k > |S|, note that each wi with i �= S can be chosen freely from
the alphabet. Moreover, once these are chosen, the word can be completed uniquely
by the rules of VS . The k = |S| formula follow as in these cases, the word must be a
single letter that alternates with its inverse, and this is only possible if the length of
the word is even.
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Having established these formulae, we can compute a(d, k) by inclusion-exclusion,

a(d, k) =
∑
S⊆G

(−1)|S||VS| =
|S|−1∑
l=0

(
k

l

)
(−1)l(2d)k−l +

{
2d k even
0 k odd.

Noting that this is nearly the binomial formula, the desired expressions follow. ��
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