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708 G. E. Pfander et al.

1 Introduction and statement of results

Sparsity has become a key concept in applied mathematics and engineering because of
the empirical observation that, in many real-world settings, the signal of interest can be
approximated accurately by means of a sparse expansion in an appropriately chosen
system of basic signals. The theory of compressed sensing [7,8,10,16,18,33] predicts
that, to capture all the information in a sparse signal, it suffices to take a relatively
small number of linear samples. Furthermore, we can identify the sparse signal from
these samples using efficient algorithms. This discovery has a number of potential
applications in signal processing, as well as other areas of science and technology.

In compressed sensing, a measurement matrix is used to model the process of linear
data acquisition. The restricted isometry property (RIP) [9,10,18,33] is a standard tool
for studying how efficiently the measurement matrix captures information about sparse
signals. The RIP also supports the analysis of various signal reconstruction algorithms,
including �1 minimization, greedy pursuits, and other types of iterative algorithms.
Many types of random matrices, including Gaussian and Rademacher matrices, obey
the RIP with optimal scaling behavior [3,10,17,36]. In contrast, there are currently
no deterministic constructions that satisfy an optimal RIP; see the discussion in [33,
Section 2.5] or [18, Section 5.1].

In principle, Gaussian matrices are optimal for sparse recovery [16,19], but they
have limited appeal in practice because most applications impose structure on the
measurement matrix. Furthermore, most recovery algorithms are more efficient when
the measurement matrix admits a fast matrix–vector multiply. For instance, we can
model the signal acquisition process in MRI imaging by drawing a random set of rows
from the discrete Fourier transform matrix. These matrices permit us to design fast
recovery algorithms based on the FFT. With high probability, a random partial Fourier
matrix satisfies the RIP with near-optimal scaling [10,31,33,38]. See [33,37] for some
generalizations.

In this paper, we study a random Gabor system, which is a structured n ×n2 matrix
whose columns are obtained by taking all possible time–frequency shifts of a fixed
random vector. The random Gabor system has many potential applications, includ-
ing channel identification [30], underwater communications [27,39], high-resolution
radar [23], as well as the matrix probing problem [12].

The literature contains some work on the random Gabor system. The paper [30]
uses coherence estimates to control the restricted isometry constants, and it results
in suboptimal bounds. The paper [34] obtains nonuniform recovery bounds for �1
minimization. This analysis does not yield stable recovery results, it does not provide
uniform recovery for all sparse signals, and it does not extend to other algorithms. The
research in this paper makes some progress toward addressing these concerns.

Our approach is related to a recent restricted isometry analysis of the partial random
circulant matrix [35]. Indeed, our argument requires us to bound the expected supre-
mum of a second-order chaos, which we accomplish using a Dudley-type inequality
due to Talagrand [42]. This approach involves an estimate of the covering numbers
of the set of unit-norm s-sparse vectors with respect to two metrics induced by the
random process. In contrast to the situation in [35], we cannot exploit the covering
number estimates from [38], and so we have been forced to perform a new analysis.
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The restricted isometry property 709

This paper is organized as follows. Section 1.1 introduces the random Gabor
system, and it contains our main result on the restricted isometry constants.
Section 1.2 includes some remarks that illustrate how time–frequency structured mea-
surement matrices arise in applications such as in wireless communications and radar.
We survey previous work in Sect. 1.3. Sections 2, 3 and 4 present the proof of the
main result.

1.1 Time–frequency structured measurement matrices

This paper provides probabilistic estimates for the restricted isometry constants of a
matrix whose columns consist of time–frequency shifts of a random vector. Let T
denote the cyclic shift on C

n , also known as the translation operator, and let M denote
the frequency shift on C

n , also known as the modulation operator. These operators are
defined by the rules

(T h)q := hq�1 and (Mh)q := e2π iq/nhq = ωq hq , (1)

where � is subtraction modulo n and ω := e2π i/n . Note that

(T k h)q = hq�k and (M�h)q = e2π i�q/nhq = ω�q hq . (2)

We introduce the time–frequency shift operators π(λ) = M�T k , indexed by pairs λ =
(k, �), where k and � range over Zn := {1, . . . , n}. The system {π(λ) : λ ∈ Zn×Zn}
of all time–frequency shifts forms a basis for the matrix space C

n×n [24,25].
Next, we construct the random Gabor measurement matrix. Let ε ∈ C

n be a random
vector that follows one of the following two distributions:

• Each entry of ε is an independent Rademacher random variable, i.e., a variable
that takes values ±1 with equal probability.

• Each entry of ε is an independent Steinhaus random variable, i.e., a variable that
is uniformly distributed on the complex torus S1 = {z ∈ C : |z| = 1}.

Define a normalized window function

g = 1√
n
ε.

The family

{π(λ)g : λ ∈ Zn×Zn} (3)

is called a full Gabor system with window g [21]. We can introduce a matrix Ψg ∈
C

n×n2
whose columns range over the full Gabor system. The matrix Ψg is referred to

as the Gabor synthesis matrix [13,25,29]. Note that Ψg admits a fast matrix–vector
multiply by means of the FFT algorithm.
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710 G. E. Pfander et al.

We say that a vector x is s-sparse when ‖x‖0 := #{� : x� �= 0} ≤ s. Recall that,
for an n × N matrix A and a positive integer s ≤ n, the restricted isometry constant
δs is defined as the smallest positive number that satisfies

(1 − δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2 for all x with ‖x‖0 ≤ s. (4)

When the matrix A has a sufficiently small restricted isometry constant δ2s , then we
can recover every s-sparse vector x from the measurements y = Ay using a variety of
algorithms, including �1 minimization and certain greedy pursuits. See [18] and the
reference therein for more details.

The main result of this paper concerns the restricted isometry constants of the
random Gabor system Ψg . In the sequel, we write E for expectation and P for the
probability of an event.

Theorem 1 Let Ψg ∈ C
n×n2

be a draw of the random Gabor synthesis matrix with
normalized Rademacher or Steinhaus generating vector.

(a) For s ≤ n, the expectation of the restricted isometry constant δs of Ψg satisfies

E δs ≤ max

⎧
⎨

⎩
C1

√

s3/2

n
log s

√
log n, C2

s3/2 log3/2 n

n

⎫
⎬

⎭
, (5)

where C1, C2 > 0 are universal constants.
(b) For 0 ≤ λ ≤ 1, we have the probability bound

P(δs ≥ E[δs] + λ) ≤ e−λ2/σ 2
, where σ 2 = C3s

3
2 log n log2 s

n
(6)

with C3 > 0 being a universal constant.

In particular, the simplified condition

n ≥ Cs3/2 log3(n) log(ε−1)

implies that the matrix Ψg satisfies the RIP of order s with probability exceeding 1−ε.
With slight variations of the proof one can show similar statements for normalized
Gaussian or subgaussian random windows g.

The paper [30] contains numerical tests that illustrate the performance of the random
Gabor system Ψg for compressed sensing. This empirical work indicates that the
behavior of the random Gabor system does not depend on the choice of random win-
dow, and the performance in all cases is similar to that of a fully Gaussian measurement
matrix. Nevertheless, we must emphasize that numerical tests cannot verify the RIP.

We do not believe that Theorem 1 is optimal. We suspect that any significant
improvement would demand more sophisticated techniques than the ones that we
apply in this paper. Indeed, the literature contains examples [26,42] where the central
tool in this paper, the Dudley-type inequality for chaos processes (Theorem 3), is not
sharp. We may well be facing one of these cases here.
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The restricted isometry property 711

1.2 Application in wireless communications and radar

In wireless communications, an important task is to identify the properties of the
communication channel by probing it with a small number of known pilot signals. A
common finite-dimensional model [4,14,20,28] for the channel operator is given by
the formula

Γ =
∑

λ∈Zn×Zn

xλπ(λ).

This model includes digital-to-analog-conversion at the transmitter, the action of the
analog communications channel, and the analog-to-digital conversion at the receiver.
Time shifts model delay due to multipath-propagation, while frequency shifts model
Doppler effects due to motion of the transmitter, receiver, or scatterers. Physical con-
siderations suggest that the vector x is rather sparse because the number of scatterers is
typically quite small. Similar models appear in sonar [27,39] and radar [23] problems.

Our goal is to identify the coefficient vector x from a single input–output pair
(g,Γ g). In other words, we need to reconstruct Γ ∈ C

n×n from its action y = Γ g
on a single vector g. Write

y = Γ g =
∑

λ∈Zn×Zn

xλπ(λ)g = Ψg x, (7)

where x is sparse but unknown. This is a compressed sensing problem. In this setting,
the choice of pilot signal g remains at our discretion, so we may select g to be a
random Rademacher or Steinhaus sequence. Theorem 1 demonstrates that Ψg has the
RIP with high probability, so we can recover the coefficient vector x, provided that it
is sufficiently sparse.

1.3 Relation with previous work

Matrices with time–frequency structure have played a role in the sparsity literature for
many years. Recall that the coherence of a matrix A = (a1| . . . |aN ) with normalized
columns ‖a�‖2 = 1 is defined as

μ := max
� �=k

|〈a�, ak〉|.

Strohmer and Heath [40] considered a Gabor system Ψg based on the Alltop window

g ∈ C
n , whose entries g� = n−1/2e2π i�3/n where n ≥ 5 is a prime [1]. The coherence

of Ψg satisfies

μ = 1√
n
.
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712 G. E. Pfander et al.

For any n × N matrix, the coherence satisfies the bound μ ≥
√

N−n
n(N−1)

, so the Gabor–

Alltop matrix has near-optimal coherence [40]. The coherence can be used to obtain
a simple bound on the restricted isometry constant: δs ≤ (s − 1)μ. Therefore, for the
Gabor–Alltop matrix, the restricted isometry constants satisfy

δs ≤ s − 1√
n

.

This bound requires that the sparsity s ≤ c
√

n for a nontrivial RIP to hold. Qualita-
tively, this estimate is somewhat worse than Theorem 1.

The paper [30] contains an estimate for the coherence μ of a random Gabor system
based on a Steinhaus window:

μ ≤ c

√
log(n/ε)

n
,

with probability at least 1 − ε. As before, this bound only guarantees that the RIP
constant δs is small when the s scales like

√
n.

The paper [34] develops a nonuniform recovery result for compressed sensing with
a random Gabor system based on a Steinhaus window.

Theorem 2 Let x ∈ C
n be an s-sparse vector, and assume that

s ≤ cn

log(n/ε)
.

Draw a random Steinhaus sequence g, and form the random Gabor system Ψg . Then,
with probability at least 1 − ε, the vector x can be recovered from the measurements
y = Ψg x using �1 minimization.

In this estimate, the sparsity s scales almost linearly with the dimension n, which
is optimal. Clearly, this bound is better than the RIP estimate in our main result, The-
orem 1. In many respects, the conclusion of Theorem 2 is weaker than what we obtain
from a RIP bound. Indeed, Theorem 2 only guarantees that we can recover a single
sparse vector with high probability on a random draw of the matrix Ψg . In contrast,
a RIP bound allows us to recover all sparse vectors with high probability on a single
random draw of the matrix. Furthermore, Theorem 2 cannot guarantee that �1 mini-
mization is stable for vectors that are not quite sparse or contain noise. The RIP allows
us to assert that both these properties hold [9,18].

Finally, we mention a closely related measurement system based on the partial
random circulant matrix [22,32,33,35]. This matrix models convolution by a random
filter, followed by subsampling at an arbitrary (deterministic) set of outputs. At pres-
ent, the best estimate for the restricted isometry constants of an n × N partial random
circulant matrix require n ≥ c(s log N )3/2 for a nontrivial bound [35]. This scaling is
similar to what we achieve in this paper, in part because both results depend on the
Dudley-type inequality (Theorem 3). We also mention that partial random circulant
matrices satisfy nonuniform recovery guarantees similar to Theorem 2 [32,33]. For
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The restricted isometry property 713

this measurement ensemble, the analysis is easier because we can use harmonic analy-
sis to convert the time-domain problem to an easier problem in the Fourier domain. For
Gabor synthesis matrices, this option is not available to us, so the arguments become
more involved.

2 Expectation of the restricted isometry constants

We first estimate the expectation of the restricted isometry constants of the random
Gabor synthesis matrix, that is, we shall prove Theorem 1(a). To this end, we first
rewrite the restricted isometry constants δs . Let T = Ts = {x ∈ C

n2
, ‖x‖2 =

1, ‖x‖0 ≤ s}. Introduce the following semi-norm on Hermitian matrices A,

|||A|||s = sup
x∈Ts

|x∗ Ax|.

Then the restricted isometry constants of Ψ = Ψg can be written as

δs = |||Ψ ∗Ψ − I |||s,

where I denotes the identity matrix. Observe that the Gabor synthesis matrix Ψg takes
the form

Ψg =

⎛

⎜
⎜
⎜
⎜
⎝

g0 gn−1 · · · g1 g0 · · · g1 · · · g1
g1 g0 · · · g2 ωg1 · · · ωg2 · · · ωn−1g2
g2 g1 · · · g3 ω2g2 · · · ω2g3 · · · ω2(n−1)g3
g3 g2 · · · g4 ω3g3 · · · ω3g4 · · · ω3(n−1)g4
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.

gn−1 gn−2 · · · g0 ωn−1gn−1 · · · ωn−1g0 · · · ω(n−1)2
g0

⎞

⎟
⎟
⎟
⎟
⎠

.

Our analysis in this section employs the representation

Ψg =
n−1∑

q=0

gq Aq

with

A0 =

⎛

⎜
⎜
⎜
⎝

1 0 0 · · · 0 1 0 0 · · · 0 · · · 0
0 1 0 · · · 0 0 ω 0 · · · 0 · · · 0
0 0 1 · · · 0 0 0 ω2 · · · 0 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 · · · 1 0 0 0 · · · ωn−1 · · · ω(n−1)2

⎞

⎟
⎟
⎟
⎠

= (
I
∣
∣M

∣
∣M2

∣
∣ · · · ∣∣Mn−1),

A1 =

⎛

⎜
⎜
⎝

0 0 0 · · · 1 0 0 0 · · · 1 · · · 1
1 0 0 · · · 0 ω 0 0 · · · 0 · · · 0
0 1 0 · · · 0 0 ω2 0 · · · 0 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 · · · 0 0 0 0 · · · 0 · · · 0

⎞

⎟
⎟
⎠ =(

T
∣
∣MT

∣
∣M2T

∣
∣ · · · ∣∣Mn−1T

)
,
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714 G. E. Pfander et al.

and so on. In short, for q ∈ Zn ,

Aq = (
Tq

∣
∣MTq

∣
∣M2Tq

∣
∣ · · · ∣∣Mn−1Tq). (8)

Observe that

H := Ψ ∗Ψ − I = −I + 1

n

n−1∑

q,q ′=0

εq ′εq A∗
q ′ Aq .

Using (26) below, it follows that

H = 1

n

∑

q ′ �=q

εq ′ εq A∗
q ′ Aq = 1

n

∑

q ′,q
εq ′ εq Wq ′,q , (9)

where, for notational simplicity, we use here and in the following

Wq ′,q = A∗
q ′ Aq for q �= q ′ and Wq ′,q = 0 for q = q ′. (10)

We shall use the matrix B(x) ∈ C
n×n, x ∈ Ts , given by matrix entries

B(x)q ′,q = x∗Wq ′,q x. (11)

Then we have

n Eδs = E sup
x∈Ts

|Yx | = E sup
x∈Ts

|Yx − Y0|, (12)

where

Yx = ε∗ B(x)ε =
∑

q ′ �=q

εq ′ εq x∗ A∗
q ′ Aq x (13)

and x ∈ Ts = {x ∈ C
n×n, ‖x‖2 ≤ 1, ‖x‖0 ≤ s}. A process of the type (13) is

called Rademacher or Steinhaus chaos process of order 2. In order to bound such a
process, we use the following theorem, see for example, [26, Theorem 11.22] or [42,
Theorem 2.5.2], where it is stated for Gaussian processes and in terms of majorizing
measure (generic chaining) conditions. The formulation below requires the operator
norm ‖A‖2→2 = max‖x‖2=1 ‖Ax‖2 and the Frobenius norm ‖A‖F = Tr(A∗ A)1/2 =
(
∑

j,k |A j,k |2)1/2, where Tr(A) denotes the trace of a matrix A.

Theorem 3 Let ε = (ε1, . . . , εn)T be a Rademacher or Steinhaus sequence, and let

Yx := ε∗ B(x)ε =
n∑

q ′,q=1

εq ′εq B(x)q ′,q
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The restricted isometry property 715

be an associated chaos process of order 2, indexed by x ∈ T , where we additionally
assume B(x) hermitian with zero diagonal, that is, B(x)q,q = 0 and B(x)q ′,q =
B(x)q,q ′ . We define two (pseudo-)metrics on T ,

d1(x, y) = ‖B(x) − B( y)‖2→2,

d2(x, y) = ‖B(x) − B( y)‖F .

Let N (T, di , u) be the minimum number of balls of radius u in the metric di needed
to cover T . Then there exists a universal constant K > 0 such that, for an arbitrary
x0 ∈ T ,

E sup
x∈T

|Yx − Yx0 | ≤ K max

⎧
⎨

⎩

∞∫

0

log N (T, d1, u)du ,

∞∫

0

√
log N (T, d2, u)du

⎫
⎬

⎭
. (14)

Proof For a Rademacher sequence, the theorem is stated in [35, Proposition 2.2]. If ε

is a Steinhaus sequence and B a Hermitian matrix then

ε∗ Bε = Re(ε∗ Bε) = Re(ε)∗Re(B)Re(ε) − Re(ε)∗Im(B)Im(ε)

+ Im(ε)∗Im(B)Re(ε) + Im(ε)∗Re(B)Im(ε).

By decoupling, see, for example, [15, Theorem 3.1.1], we have with ε′ denoting an
independent copy of ε,

E sup
x∈T

|Re(ε)∗Im(B(x))Im(ε)| ≤ 8 E sup
x∈T

|Re(ε)∗Im(B(x))Im(ε′)|
≤ 8 E sup

x∈T
|ξ∗Im(B(x))Im(ε′)| ≤ 8 E sup

x∈T
|ξ∗Im(B(x))ξ ′|,

where ξ , ξ ′ denote independent Rademacher sequences. The second and third inequal-
ities follow from the contraction principle [26, Theorem 4.4] (and symmetry of Re(ε�),

Im(ε�) ) first applied conditionally on ε′ and then conditionally on ξ (note that
|Re(ε�)| ≤ 1, |Im(ε�)| ≤ 1 for all realizations of ε�). Using the triangle inequality we
get

E sup
x∈T

|Yx − Yx0 | ≤ 16 E sup
x∈T

|ξ∗(Re(B(x)) − Re(B(x0))ξ
′|

+16 E sup
x∈T

|ξ∗(Im(B(x)) − Im(B(x0)))ξ
′|. (15)

Further note that ‖Im(B(x))− Im(B( y))‖F , ‖Re(B(x))−Re(B( y))‖F ≤ ‖B(x)−
B( y)‖F and similarly, writing B(x) − B( y) as a 2n×2n real block matrix acting on
R

2n we see that also ‖Im(B(x)) − Im(B( y))‖2→2, ‖Re(B(x)) − Re(B( y))‖2→2 ≤
‖B(x) − B( y)‖2→2. Furthermore, the statement for Rademacher chaos processes
holds as well for decoupled chaos processes of the form above. (Indeed, its proof uses
decoupling in a crucial way.) Therefore, the claim for Steinhaus sequences follows.

��
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716 G. E. Pfander et al.

Note that B(x) defined in (11) satisfies the hypotheses of Theorem 3 by definition.
The pseudo-metrics are given by

d2(x, y) = ‖B(x) − B( y)‖F =
⎛

⎝
∑

q ′ �=q

∣
∣x∗ A∗

q ′ Aq x − y∗ A∗
q ′ Aq y

∣
∣2

⎞

⎠

1/2

, (16)

and

d1(x, y) = ‖B(x) − B( y)‖2→2.

The bound on the expected restricted isometry constant follows then from the follow-
ing estimates on the covering numbers of Ts with respect to d1 and d2. Corresponding
proofs will be detailed in Sect. 3. We start with N (Ts, d2, u).

Lemma 1 For u > 0, it holds

log(N (Ts, d2, u)) ≤ s log(en2/s) + s log(1 + 4
√

snu−1).

The above estimate is useful only for small u > 0. For large u we require the following
alternative bound.

Lemma 2 The diameter of Ts with respect to d2 is bounded by 4
√

sn, and for
√

n ≤
u ≤ 4

√
sn, it holds

log(N (Ts, d2, u)) ≤ cu−2ns3/2 log(ns5/2u−1),

where c > 0 is universal constant.

Covering number estimates with respect to d1 are provided in the following lemma.

Lemma 3 The diameter of Ts with respect to d1 is bounded by 4s, and for u > 0

log(N (Ts, d1, u)) ≤ min
{

s log(en2/s) + s log(1 + 4su−1),

cu−2s2 log(2n) log(n2/u)
}

, (17)

where c > 0 is a universal constant.

Moreover, we require the following elementary estimate of an integral, see [33,
Lemma 10.3].

Lemma 4 For α > 0, we have

α∫

0

√

log(1 + u−1) du ≤ α

√

log(e(1 + α−1)).
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The restricted isometry property 717

Based on these estimates and Theorem 3 we complete the proof of Theorem 1(a).
By Lemmas 1 and 2, the subgaussian integral in (14) can be estimated as

∞∫

0

√
log(N (Ts, d2, u)) du

=
4
√

sn∫

0

√
log(N (Ts, d2, u))du

=
√

n∫

0

√
log(N (Ts, d2, u)) du +

4
√

sn∫

√
n

√
log(N (Ts, d2, u)) du

≤
√

n∫

0

√

s log(en2/s) du +
√

n∫

0

√

s log(1 + 4
√

snu−1) du

+c
√

ns3/2

4
√

sn∫

√
n

u−1
√

log(ns5/2u−1) du

≤
√

sn log(en2/s) + 4s
√

n

s−1/2
∫

0

√

log(1 + u−1)du

+ c′√s3/2n
√

log(n1/2s5/2) log(
√

s)

≤
√

sn log(en2/s) + 4
√

sn
√

log(e(1 + √
s)) + c′′

√

s3/2n log(n) log2(s)

≤ Ĉ1

√

s3/2n log(n) log2(s). (18)

In the second inequality, we have used Lemma 4. Due to Lemma 3 the subexpo-
nential integral obeys the estimate, for some κ > 0 to be chosen below,

∞∫

0

log(N (Ts, d1, u))du

=
4s∫

0

log(N (Ts, d1, u)) du

=
κ∫

0

log(N (Ts, d1, u)) du +
4s∫

κ

log(N (Ts, d1, u)) du
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718 G. E. Pfander et al.

≤ κs log(en2/s) + s

κ∫

0

log(1 + 4su−1)du + cs2 log(2n)

4s∫

κ

u−2 log(n2/u) du

≤ κs log(en2/s) + κs log(e(1 + 4s/κ)) + cs2κ−1 log(2n) log(n2/κ).

Choose κ = √
s log(n) to reach

∞∫

0

log(N (Ts, d1, u))du ≤ Ĉ2s3/2 log3/2(n). (19)

Combining the above integral estimates with (12) and Theorem 3 yields

Eδs = 1

n
E sup

x∈Ts

|Yx − Y0| ≤ 1

n
max

{

C1

√

s3/2n log(n) log2(s), C2s3/2 log3/2(n)

}

.

(20)

This is the statement of Theorem 1(a).

Remark 1 In analogy to the estimate of a subgaussian entropy integral arising in the
analysis of partial random circulant matrices in [35], we expect that the exponent 3/2
in (18) can be improved to 1. However, we doubt that for the subexponential integral
(19) such improvement will be possible (indeed, the estimate of the subexponential
integral in [35] also exhibits an exponent of 3/2 at the s-term), so that we did not
pursue an improvement of (18) here as this would not provide a significant overall
improvement of (20). We expect that an improvement of (20) would require more
sophisticated tools than the Dudley type estimate for chaos processes of Theorem 3.

3 Proof of covering number estimates

In this section we provide the covering number estimates of Lemmas 1, 2 and 3, which
are crucial to the proof of our main result. We first introduce additional notation. Let
δ(m, k) = δ0,m−k and δ(m) = δ0,m be the Kronecker symbol as usual. We denote
by supp x = {�, x� �= 0} the support of a vector x. Let A be a matrix with vector of
singular values σ (A). For 0 < q ≤ ∞, the Schatten Sq -norm is defined by

‖A‖Sq := ‖σ (A)‖q , (21)

where ‖·‖q is the usual vector �q norm. For an integer p, the S2p norm can be expressed
as

‖A‖S2p = (Tr((A∗ A)p))1/(2p). (22)
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The S∞-norm coincides with the operator norm, ‖ · ‖S∞ = ‖ · ‖2→2. By the corre-
sponding properties of �q -norms we have the inequalities

‖A‖2→2 ≤ ‖A‖Sq ≤ rank(A)1/q‖A‖2→2. (23)

Moreover, we will require an extension of the quadratic form B(x) in (11) to a bilinear
form,

(B(x, z))q ′,q =
{ x∗ A∗

q ′ Aq z if q ′ �= q,

0 if q ′ = q.
(24)

Then B(x) = B(x, x).

3.1 Time–frequency analysis on C
n

Before passing to the actual covering number estimates we provide some facts and
estimates related to time–frequency analysis on C

n . Observe that the matrices Aq

introduced in (8) satisfy

A∗
q =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(Tq)∗
(MTq)∗
(M2Tq)∗

...

(Mn−1Tq)∗

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

T−q

T−q M−1

T−q M−2

...

T−q M1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

and, hence,

(A∗
q y)(k,�) = yk+q ω−�(k+q).

Clearly,

〈Aq z, y〉 = 〈z, A∗
q y〉 =

∑

k,�

z(k,�)yk+qω�(k+q) =
∑

k,�

z(k−q,�)ykω
�k

=
∑

k

(
∑

�

z(k−q,�)ω
�k

)

yk

and, hence,

(Aq z)k =
∑

�

z(k−q,�)ω
�k .
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In the following, F : C
n �→ C

n denotes the normalized Fourier transform, that is,

(Fv)� = n−1/2
n−1∑

q=0

ω−q�vq .

For v ∈ C
n×n,F2v denotes the Fourier transform in the second variable of v.

Let {eλ}λ∈Zn×Zn and {eq}q∈Zn denoting the Euclidean basis of C
n×n respectively

C
n , and, let Pλ denote the orthogonal projection onto the one dimensional space

span {eλ}. The following relationships will be crucial for the covering number esti-
mates below.

Lemma 5 Let Aq be as given in (8). Then, for λ ∈ Zn×Zn, q ∈ Zn,

Aq eλ = π(λ)eq , (25)
n−1∑

q=0

A∗
q Aq = n I, (26)

n−1∑

q=0

Aq Pλ A∗
q = I, (27)

n−1∑

q=0

n−1∑

q ′=0

∣
∣x∗ A∗

q ′ Aq y
∣
∣2 ≤ n ‖x‖0 ‖x‖2

2 ‖ y‖2
2. (28)

Proof For (25), observe that

(Aq e(k0,�0))k =
∑

�

δ(k − q − k0, � − �0)ω
�k = δ(q − (k − k0))ω

�0k

= (π(k0, �0)eq)k .

To see (26), choose z ∈ C
n×n and compute

(
A∗

q ′ Aq z
)

(k′,�′) =
∑

�

z(k′+q ′−q,�)ω
�(k′+q ′)ω−�′(k′+q ′)

=
∑

�

z(k′+q ′−q,�)ω
(�−�′)(k′+q ′).

Hence,

∑

q

(
A∗

q Aq z
)

(k′,�′) =
∑

q

∑

�

z(k′,�)ω
(�−�′)(k′+q) =

∑

�

z(k′,�)
∑

q

ω(�−�′)(k′+q)

=
∑

�

z(k′,�)n δ(� − �′) = n z(k′,�′).
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Finally, observe that all but one column of Aq P{(�0,k0)} are 0, the nonzero column
being column (�0, k0), and only its (k0 +q)th entry is nonzero, namely, it is ω�0(k0+q).
We have

Aq P{(�0,k0)} A∗
q = Aq P{(�0,k0)} P{(�0,k0)} A∗

q = Aq P{(�0,k0)}(Aq P{(�0,k0)})∗,

and hence, Aq P{(�0,k0)} A∗
q = P{k0+q} and

∑
q Aq P{(�0,k0)} A∗

q = I .

Let x ∈ C
n×n and � = supp x, then

∑

q

∑

q ′

∣
∣
∣x∗ A∗

q ′ Aq y
∣
∣
∣
2 =

∑

q

∑

q ′

∣
∣
∣
∣
∣
∣

∑

(k′,�′)∈�

x(k′,�′)
(

A∗
q ′ Aq y

)

k′,�′

∣
∣
∣
∣
∣
∣

2

≤ ‖x‖2
2

∑

q

∑

q ′

∑

(k′,�′)∈�

∣
∣
(

A∗
q ′ Aq y

)

k′,�′
∣
∣2

= ‖x‖2
2

∑

q

∑

q ′

∑

(k′,�′)∈�

∣
∣
∣
∣
∣
∣
ω−�′(k′+q ′) ∑

�

ω�(k′+q ′)y(k′−(q−q ′),�)

∣
∣
∣
∣
∣
∣

2

= ‖x‖2
2

∑

q

∑

q ′

∑

(k′,�′)∈�

∣
∣
∣
∣
∣
∣

∑

�

ω�(k′+q ′)y(k′−(q−q ′),�)

∣
∣
∣
∣
∣
∣

2

= n ‖x‖2
2

∑

(k′,�′)∈�

∑

q

∑

q ′

∣
∣
(F2 y

)

(k′−(q−q ′),k′+q ′)
∣
∣2

= n ‖x‖2
2

∑

(k′,�′)∈�

∥
∥F2 y

∥
∥2

2 = n |�| ‖x‖2
2 ‖ y‖2

2 = n ‖x‖0‖x‖2
2‖ y‖2

2

by unitarity of F2. ��

3.2 Proof of Lemma 1

For x, y ∈ C
n2

,

d2(x, y) ≤
⎛

⎝
∑

q ′ �=q

∣
∣
∣x∗ A∗

q ′ Aq(x − y)
∣
∣
∣
2

⎞

⎠

1/2

+
⎛

⎝
∑

q ′ �=q

∣
∣
∣(x − y)∗ A∗

q ′ Aq y
∣
∣
∣
2

⎞

⎠

1/2

.

Inequality (28) implies that for x, y ∈ Ts ,

⎛

⎝
∑

q ′ �=q

∣
∣
∣x∗ A∗

q ′ Aq(x − y)
∣
∣
∣
2

⎞

⎠

1/2

,

⎛

⎝
∑

q ′ �=q

∣
∣
∣(x − y)∗ A∗

q ′ Aq y
∣
∣
∣
2

⎞

⎠

1/2

≤ √
sn ‖x − y‖2

and, hence,

d2(x, y) ≤ 2
√

sn ‖x − y‖2. (29)
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Using the volumetric argument, see, for example, [33, Proposition 10.1], we obtain

N (Ts, ‖ · ‖2, u) ≤
(n2

s

)
(1 + 2/u)s ≤ (en2/s)s(1 + 2/u)s .

By a rescaling argument

N (Ts, d2, u) ≤ N (Ts, 2
√

sn‖ · ‖2, u) = N (Ts, ‖ · ‖2, u/(2
√

sn))

≤ (en2/s)s(1 + 4
√

snu−1)s .

Taking the logarithm completes the proof. ��
3.3 Proof of Lemma 2

Now, we seek a suitable estimate of the covering numbers N (Ts, d1, u) for u ≥ √
n.

We use Maurey’s empirical method [11], similarly as done in [38]: For a fixed vector
x ∈ Ts , we introduce a discrete random vector Z with expectation x. We form the
empirical mean over m copies of Z to estimate the deviation to x in the metric d1.
This allows us to find a value of m which leads to a prescribed distance u to x; since
Z takes only a finite number of values we are finally able to derive a bound on the
covering numbers. Hereby we use the fact that, by construction, the values attained
by Z are independent of the choice of x.

Since d1(x, y) ≤ d2(x, y), inequality (29) implies that the diameter of Ts with
respect to d1 is at most 4

√
sn. Hence, it suffices to consider N (Ts, d1, u) for

√
n ≤ u ≤ 4

√
sn, (30)

as stated in the lemma. We define the norm ‖ · ‖∗ on C
n×n by

‖x‖∗ =
∑

λ

|Re xλ| + |Im xλ|. (31)

For x ∈ Ts we define a random vector Z, which takes ‖x‖∗ sgn(Rexλ)eλ with proba-
bility |Rexλ|

‖x‖∗ , and the value i‖x‖∗ sgn(Imxλ)eλ with probability |Imxλ|
‖x‖∗ .

Now, let Z1, . . . , Zm, Z′
1, . . . , Z′

m be independent copies of Z. We set y = 1
m∑m

j=1 Z j and y′ = 1
m

∑m
j=1 Z′

j and attempt to approximate B(x) by

B := B( y, y′) = 1

m2

m∑

j, j ′=1

B(Z j , Z′
j ′). (32)

First, compute

E‖B − B(x)‖2
F

= E

∑

q,q ′

∣
∣x∗Wq ′,q x − 1

m2

m∑

j, j ′=1

Z∗
j Wq ′,q Z′

j ′
∣
∣2

123



The restricted isometry property 723

=
∑

q,q ′

(
|x∗Wq ′,q x|2 − 2Re

(
x∗Wq ′,q x E

[ 1

m2

m∑

j, j ′=1

Z∗
j Wq,q ′ Z′

j ′
])

+E

[∣
∣
∣

1

m2

m∑

j, j ′=1

Z∗
j Wq,q ′ Z′

j ′
∣
∣
∣
2])

=
∑

q,q ′

⎛

⎝−|x∗Wq ′,q x|2 + 1

m4

m∑

j, j ′, j ′′, j ′′′=1

E

[
Z∗

j Wq,q ′ Z′
j ′(Z′

j ′′)
∗W∗

q,q ′ Z j ′′′
]
⎞

⎠ ,

where we used that E[Z∗
j Wq,q ′ Z′

j ′ ] = x∗Wq,q ′ x, j, j ′ = 1, . . . m, by indepen-
dence. Moreover, for j �= j ′′′ and j ′ �= j ′′, independence implies

E

[
Z∗

j Wq,q ′ Z′
j ′(Z′

j ′′)
∗W∗

q,q ′ Z j ′′′
]

= |x∗Wq,q ′ x|2.

To estimate summands with j ′ = j ′′, note that

Z∗
j Wq ′,q Z′

j ′(Z′
j ′)

∗Wq,q ′ Z j ′′′ = ‖x‖2∗ Z∗
j A∗

q ′ Aq P{λ} A∗
q Aq ′ Z j ′′′ ,

where {λ} = supp Z j ′ is random. Hence, in this case, we compute using (27) in
Lemma 5

∑

q ′ �=q

E

[
Z∗

j A∗
q ′ Aq Z′

j ′(Z′
j ′)

∗ A∗
q Aq ′ Z j ′′′

]

≤ ‖x‖2∗
∑

q ′,q
E

[
Z∗

j A∗
q ′ Aq P{λ} A∗

q Aq ′ Z j ′′′
]

= ‖x‖2∗E

⎡

⎣Z∗
j

∑

q ′

(

A∗
q ′

(
∑

q

Aq P{λ} A∗
q

)

Aq ′

)

Z j ′′′

⎤

⎦

= ‖x‖2∗E

⎡

⎣Z∗
j

∑

q ′

(
A∗

q ′ Aq ′
)

Z j ′′′

⎤

⎦ = n‖x‖2∗E[Z∗
j Z j ′′′ ]

=
{n‖x‖4∗, if j = j ′′′,

n‖x‖2∗E[Z∗
j ]E[Z j ′′′ ] = n‖x‖2∗‖x‖2

2 ≤ n‖x‖2∗, else.

Symmetry implies an identical estimate for j = j ′′′, j ′ �= j ′′. As x ∈ Ts is s-sparse
we have ‖x‖∗ ≤ √

2‖x‖1 ≤ √
2s‖x‖2 ≤ √

2s. Using (10) we conclude

∑

q ′,q

m∑

j, j ′, j ′′, j ′′′=1

E

[
Z∗

j Wq,q ′ Z′
j ′(Z′

j ′′)
∗W∗

q,q ′ Z j ′′′
]

≤ m2(m − 1)2
∑

q ′,q
|x∗Wq,q ′ x|2 + m2n4s2 + 2m2(m − 1)n · 2s.
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For m ≥ 11ns
3
2

u2 and u ≤ 4
√

sn, we finally obtain,

E‖B − B(x)‖2
F ≤

∑

q ′,q
−|x∗Wq ′,q x|2 + m2(m2 − 1)

m4

∑

q ′,q
|x∗Wq,q ′ x|2

+m2n4s2

m4 + 4m2(m − 1)ns

m4

≤ 4ns2

m2 + 4ns

m
≤ 4ns2

121n2s3 u4 + 4ns

11ns
3
2

u2

≤ 64ns

121ns
u2 + 44

121
√

s
u2 ≤ u2. (33)

Since ‖x‖∗ can take any value in [1,
√

2s], we still have to discretize this factor in the
definition of the random variable Z. To this end, set

Bα := 1

m2

m∑

j=1, j ′=1

B(α sgn(xλ j )eλ j , α sgn(xλ′
j ′
)eλ′

j ′
).

Next, we observe that, for λ = (k, �) and λ′ = (k′, �′),

B(eλ′ , eλ)q ′,q = (Aq ′eλ′)∗ Aq eλ = 〈π(λ)eq ,π(λ′)eq ′ 〉
=
{

ω(�−�′)(k+q), if k′ + q ′ = k + q ;
0, else,

(34)

and, hence, ‖B(eλ′ , eλ)‖2
F = n. Now, assume α is chosen such that |‖x‖2∗−α2| ≤ u√

n
.

Then

‖Bα − B‖x‖∗‖F =
∥
∥
∥

1

m2

m∑

j=1, j ′=1

B(α sgn(xλ j )eλ j , α sgn(xλ′
j ′
)eλ′

j ′
)

− 1

m2

m∑

j, j ′=1

B(‖x‖∗ sgn(xλ j )eλ j , ‖x‖∗ sgn(xλ′
j ′
)eλ′

j ′
)

∥
∥
∥

F

= |‖x‖2∗ − α2|‖ 1

m2

m∑

j, j ′=1

B(sgn(xλ j )eλ j , sgn(xλ′
j ′
)ek′

j ′
)‖F

≤ u

m2
√

n

m∑

j, j ′=1

‖B(eλ j , eλ j ′ )‖F

= u. (35)
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We conclude that it suffices to choose

K :=
⌈2s − 1

u√
n

⌉
≤ �2s

√
n/u�

values αk ∈ Js := [1, 2s], k = 1, . . . , K , such that for each β ∈ Js there exists k
satisfying |β − αk | ≤ u/

√
n.

Now, given x we can find z1, . . . , zm, z′
1, . . . , z′

m of the form ‖x‖∗ pλeλ, pλ ∈
{1,−1, i,−i} such that ‖B − B(x)‖F ≤ u. Further, we can find k such that |‖x‖2∗ −
α2

k | ≤ u/
√

n. We replace the z1, . . . , zm, z′
1, . . . , z′

m by the respective z̃1, . . . , z̃m,

z̃′
1, . . . , z̃′

m of the form α j pλeλ.
Then, using (33), (35) and the triangle inequality, we obtain

∥
∥
∥
∥
∥
∥

B(x) − 1

m2

m∑

j, j ′=1

B( z̃ j , z̃′
j ′)

∥
∥
∥
∥
∥
∥

F

≤ 2u.

Now, each z̃ j , z̃′
j can take at most �2s

√
n/u� · 4 · n2 values, so that

1

m2

m∑

j, j ′=1

B( z̃ j , z̃′
j ′)

can take at most (4� 2s
√

n
u �n2)2m ≤ (Csn

5
2 /u)2m values. Hence, we found a 2u-cov-

ering of the set of matrices B(x) with x ∈ Ts of cardinality at most (Csn
5
2 /u)2m .

Unfortunately, the matrices of the covering are not necessarily of the form B(x). Nev-
ertheless, we may replace each matrix of the form 1

m2

∑m
j, j ′=1 B( z̃ j , z̃′

j ′) which is
used to cover some B(x) by a matrix B(x̃) with

∥
∥
∥
∥
∥
∥

B(x̃) − 1

m2

m∑

j, j ′=1

B( z̃ j , z̃′
j ′)

∥
∥
∥
∥
∥
∥

F

≤ 2u.

Again, the set of such chosen x̃ has cardinality at most (Csn
5
2 /u)2m and, by the triangle

inequality, for each x we can find x̃ of the covering such that

d2(x, x̃) ≤ 4u.

For m ≥ 11u−2ns
3
2 , we consequently get

log(N (Ts, d2, 4u)) ≤ log((Csn
5
2 /u)2m) = 2m log(Cns5/2/u).
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The choice m = �11u−2ns
3
2 � ≤ 27u−2ns

3
2 and rescaling gives

log(N (Ts, d2, u)) ≤ 27u−2ns
3
2 log(4Cns5/2/u) ≤ cu−2ns

3
2 log(ns5/2/u).

The proof of Lemma 2 is completed. ��

3.4 Proof of Lemma 3, Part I

Now we show the estimate

log(N (Ts, d1, u)) ≤ s log(en2/s) + s log(1 + 4su−1),

which will establish one part of (17). Before doing so, we note that one can quickly
obtain an estimate for N (Ts, d1, u) for small u using that the Frobenius norm domi-
nates the operator norm, and, hence d1(x, y) ≤ d2(x, y) ≤ 2

√
sn‖x − y‖2. In fact,

this estimate would not deteriorate the estimate in Theorem 1(a). But in the proof of
Theorem 1(b), the more involved estimate d1(x, y) ≤ 2s‖x − y‖2 developed below
is useful.

Let us first rewrite d1. Recall (25) in Lemma 5, namely, Aq eλ = π(λ)eq , and, with
λ = (k, �) and λ′ = (k′, �′), we obtain

π(λ′)∗π(λ) = ωk′(�−�′′)π(λ − λ′) ≡ ω(λ, λ′)π(λ − λ′).

Writing now x = ∑
λ∈Zn×Zn

xλeλ, the entries of the matrix B(x) in (24) for q ′ �= q
are given by

B(x)q ′q =
∑

λ,λ′
xλxλ′ e∗

λ′ A∗
q ′ Aq eλ =

∑

λ,λ′
xλxλ′ e∗

q ′π(λ′)∗π(λ)eq

=
∑

λ,λ′
xλxλ′ω(λ, λ′) e∗

q ′π(λ − λ′)eq =
∑

λ�=λ′
xλxλ′ω(λ, λ′) e∗

q ′π(λ − λ′)eq

= e∗
q ′

⎛

⎝
∑

λ�=λ′
xλxλ′ω(λ, λ′) π(λ − λ′)

⎞

⎠ eq .

We used for the fourth inequality that e∗
q ′π(�0, k0)eq = 0 if q ′ �= q and k0 = 0.

This shows that

B(x) =
∑

λ�=λ′
xλxλ′ω(λ, λ′) π(λ − λ′).
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The estimate (23) for the Schatten norms shows

d2p
1 (x, y) =

∥
∥
∥
∥
∥
∥

∑

λ�=λ′
(xλxλ′ − yλyλ′)ω(λ, λ′) π(λ − λ′)

∥
∥
∥
∥
∥
∥

2p

2→2

≤
∥
∥
∥
∥
∥
∥

∑

λ�=λ′
(xλxλ′ − yλyλ′)ω(λ, λ′) π(λ − λ′)

∥
∥
∥
∥
∥
∥

2p

S2p

=
∑

λ1 �=λ′
1,λ2 �=λ′

2,...,λ2p �=λ′
2p

(xλ1 xλ′
1
− yλ1 yλ′

1
) · · · (xλ2p xλ′

2p
− yλ2p yλ′

2p
)

× ω(λ1, λ
′
1) · · · ω(λ2p, λ

′
2p) Tr

(
π(λ1 − λ′

1) · · · π(λ2p − λ′
2p)

)
.

Setting (�0, k0) = λ1 − λ′
1 + λ2 − λ′

2 + · · · + λ2p − λ′
2p we observe that the trace in

the last expression sums over zero entries if k0 �= 0 and sums over roots of unity to
zero if �0 �= 0. We conclude that

∣
∣
∣Tr

(
π(λ1 − λ′

1) · · · π(λ2p − λ′
2p)

)∣
∣
∣ ≤ n δ0,λ1−λ′

1+λ2−λ′
2+···+λ2p−λ′

2p
.

Hence,

d1(x, y)2p ≤ n
∑

λ1 �=λ′
1

∣
∣xλ1 xλ′

1
− yλ1 yλ′

1

∣
∣

∑

λ2 �=λ′
2

∣
∣xλ2 xλ′

2
− yλ2 yλ′

2

∣
∣

· · ·
∑

λ2p−1 �=λ′
2p−1

∣
∣xλ2p−1 xλ′

2p−1
− yλ2p−1 yλ′

2p−1

∣
∣
∑

λ2p

∣
∣xλ2p xλ1−λ′

1+···+λ2p
− yλ2p yλ1−λ′

1+···+λ4p

∣
∣.

Now observe that, setting t = λ1 − λ′
1 + · · · + λ2p−1 − λ′

2p−1, and using the Cau-
chy–Schwarz inequality

∑

λ

|xλxt+λ − yλyt+λ| ≤
∑

λ

|xλ||xt+λ − yt+λ| +
∑

λ

|xλ − yλ||yλ+t |

≤ ‖x‖2‖x − y‖2 + ‖x − y‖2‖ y‖2 = (‖x‖2 + ‖ y‖2)‖x − y‖2.

We obtain similarly

∑

λ,λ′
|xλxλ′ −yλyλ′ |=

∑

λ,λ′
|xλ| |xλ′ −yλ′ |+|yλ′ | |xλ − yλ| ≤ (‖x‖1 + ‖ y‖1)‖x − y‖1.

For x, y with supp x = supp y = � for |�| ≤ s and ‖x‖2 = ‖ y‖2 = 1 we have
‖x‖1 ≤ √

s‖x‖2 = √
s (and similarly for y) as well as ‖x − y‖1 ≤ √

s‖x − y‖2.
Hence,

(‖x‖1 + ‖ y‖1)‖x − y‖1 ≤ 2s‖x − y‖2.
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This finally yields

d1(x, y)2p ≤ 22pns2p−1‖x − y‖2p
2

for such x, y. As this holds for all p ∈ N we conclude that

d1(x, y) ≤ 2s‖x − y‖2. (36)

With the volumetric argument, see for example [33, Proposition 10.1], we obtain the
bound

log(N (Ts, ‖ · ‖2, u)) ≤ s log(en2/s) + s log(1 + 2/u).

Rescaling yields

log(N (Ts, d1, u)) ≤ log(N (Ts, 2s‖ · ‖2, u)) = log(N (Ts, ‖ · ‖2, u/(2s)))

≤ s log(en2/s) + s log(1 + 4su−1),

which is the claimed inequality. ��

3.5 Proof of Lemma 3, Part II

Next we establish the remaining estimate of (17),

log(N (Ts, d1, u)) ≤ cu−2s2 log(2n) log(n2/u).

To this end, we use again Maurey’s empirical method as in Sect. 3.3.
For x ∈ Ts , we define Z1, . . . , Zm and Z′

1, . . . , Z′
m as in Sect. 3.3, that is, each

takes independently the value ‖x‖∗ sgn(Rexλ)eλ with probability |Rexλ|
‖x‖∗ , and the value

i‖x‖∗ sgn(Imxλ)eλ with probability |Imxλ|
‖x‖∗ .

As before, we set

B(Z, Z′) = (Z∗Wq ′q Z′)q ′,q , (37)

where Wq ′q = A∗
q ′ Aq for q ′ �= q and Wq,q = 0, j = 1, . . . , N , and attempt to

approximate B(x) with

B := 1

m

m∑

j=1

B(Z j , Z′
j ). (38)

That is, we will estimate E‖B − B(x)‖2
2→2.

We will use symmetrization as formulated in the following lemma [33, Lemma
6.7], see also [26, Lemma 6.3], [15, Lemma 1.2.6]. Note that we will use this result
with Y j = B(Z j , Z′

j ).
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Lemma 6 (Symmetrization) Assume that (Y j )
m
j=1 is a sequence of independent ran-

dom vectors in C
r equipped with a (semi-)norm ‖ · ‖, having expectations β j = EY j .

Then for 1 ≤ p < ∞
⎛

⎝E‖
m∑

j=1

(Y j − β j )‖p

⎞

⎠

1/p

≤ 2

⎛

⎝E‖
m∑

j=1

ε j Y j‖p

⎞

⎠

1/p

, (39)

where (ε j )
N
j=1 is a Rademacher series independent of (Y j )

m
j=1.

To estimate the 2p-th moment of ‖B(x) − B‖2→2, we will use the noncommutative
Khintchine inequality [6,33] which makes use of the Schatten p-norms introduced
in (21).

Theorem 4 (Noncommutative Khintchine inequality) Let ε = (ε1, . . . , εm) be a
Rademacher sequence, and let A j , j = 1, . . . , m, be complex matrices of the same
dimension. Choose p ∈ N. Then

E

∥
∥
∥
∥
∥
∥

m∑

j=1

ε j A j

∥
∥
∥
∥
∥
∥

2p

S2p

≤ (2p)!
2p p! max

⎧
⎪⎪⎨

⎪⎪⎩

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
m∑

j=1

A j A∗
j

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

2p

S2p

,

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
m∑

j=1

A∗
j A j

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

2p

S2p

⎫
⎪⎪⎬

⎪⎪⎭

.

(40)

Let p ∈ N. We apply symmetrization with Y j = B(Z j , Z′
j ), estimate the operator

norm by the Schatten-2p-norm and apply the noncommutative Khintchine inequality
(after using Fubini’s theorem), to obtain

(
E‖B − B(x)‖2p

2→2

) 1
2p

=
⎛

⎜
⎝E

∥
∥
∥
∥
∥
∥

1

m

m∑

j=1

(B(Z j , Z′
j ) − EB(Z j , Z′

j ))

∥
∥
∥
∥
∥
∥

2p

2→2

⎞

⎟
⎠

1
2p

≤ 2

m

⎛

⎜
⎝E

∥
∥
∥
∥
∥
∥

m∑

j=1

ε j B(Z j , Z j )

∥
∥
∥
∥
∥
∥

2p

2→2

⎞

⎟
⎠

1
2p

≤ 2

m

⎛

⎜
⎝E

∥
∥
∥
∥
∥
∥

m∑

j=1

ε j B(Z j , Z′
j )

∥
∥
∥
∥
∥
∥

2p

S2p

⎞

⎟
⎠

1
2p

≤ 2

m

(
(2p)!
2p p!

) 1
2p

⎛

⎜
⎜
⎝E max

⎧
⎪⎪⎨

⎪⎪⎩

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
m∑

j=1

B(Z j , Z ′
j )

∗ B(Z j , Z′
j )

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

2p

S2p

,

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
m∑

j=1

B(Z j , Z′
j )B(Z j , Z′

j )
∗
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

2p

S2p

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟
⎟
⎠

1
2p

. (41)
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Now recall that the Z j , Z′
j may take the values ‖x‖∗ pλeλ, with pλ ∈ {1,−1, i,

−i}. Further, observe that B(eλ′ , eλ)
∗ = B(eλ, eλ′), and, for q �= q ′,

(B(eλ′ , eλ)
∗ B(eλ′ , eλ))q,q ′′

=
∑

q ′
e∗
λ A∗

q Aq ′eλ′ e∗
λ′ A∗

q ′ Aq ′′ eλ

=
∑

q ′
e∗
λ A∗

q Aq ′ Pλ′ A∗
q ′ Aq ′′ eλ = e∗

λ A∗
q

(∑

q ′
Aq ′ Pλ′ A∗

q ′
)

Aq ′′ eλ

= e∗
λ A∗

q Aq ′′ eλ = 〈π(λ)eq ′′,π(λ)eq〉 = 〈eq ′′ , eq〉 = δ(q ′′ − q).

Therefore, B(eλ′ , eλ)
∗ B(eλ′ , eλ) = I and

B(Z�, Z′
�)

∗ B(Z j , Z′
j ) = ‖x‖4∗ I . (42)

Since ‖I‖2p
S2p

= n, ‖x‖∗ ≤ 2s‖x‖2 = 2s, we obtain

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
m∑

j=1

B(Z j , Z′
j )

∗ B(Z j , Z′
j )

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

2p

S2p

=

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
m∑

j=1

‖x‖4∗ I

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

2p

S2p

= ‖x‖4p∗ m pn

≤ (2s)2pm pn. (43)

By symmetry this inequality applies also to the second term in the maximum in
(41). This yields

(
E‖B − B(x)‖2p

2→2

) 1
2p ≤ 2

m

( (2p)!
2qq!

) 1
2p

2sm
1
2 n

1
2p ≤ 4s√

m
n1/(2p)

( (2p)!
2p p!

) 1
2p

.

Using Hölder’s inequality, we can interpolate between 2p and 2p + 2, and an appli-
cation of Stirling’s formula yields for arbitrary moments p ≥ 2, see also [33],

(
E‖B − B(x)‖p

2→2

)1/p ≤ 23/(4p)n1/pe−1/2√p
4s√

m
. (44)

Now we use the following lemma relating moments and tails [32,33].

Proposition 1 Suppose � is a random variable satisfying

(E|�|p)1/p ≤ αβ1/p p1/Γ for all p ≥ p0

for some constants α, β, Γ, p0 > 0. Then

P(|�| ≥ e1/Γ αv) ≤ βe−vΓ /Γ

for all v ≥ p1/Γ
0 .
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Applying the lemma with p0 = 2, Γ = 2, β = 23/4n, α = e−1/2 4s√
m

, and

v = u
e−1/Γ

α
= u

e−1/2√m

e−1/24s
= u

√
m

4s
≥ √

2

gives

P

(
‖B − B(x)‖2→2 ≥ u

)
≤ 23/4ne

− mu2

32s2 , u ≥ 4s
√

2/m.

In particular, if

m >
32s2

u2 log(23/4n) (45)

then there exists a matrix of the form 1
m

∑m
j=1 B(z j , z′

j ) with z j , z′
j of the given form

‖x‖∗ pλeλ for some k such that

∥
∥
∥
∥
∥
∥

1

m

m∑

j=1

B(z j , z′
j ) − B(x)

∥
∥
∥
∥
∥
∥

≤ u.

As before, we still have to discretize the prefactor ‖x‖∗. Assume that α is chosen such
that |‖x‖2∗ − α2| ≤ u. Then, similarly as in (35),

∥
∥
∥
∥
∥
∥

1

m

m∑

j=1

B(α sgn(xλ j )eλ j , α sgn(xλ j ′ )eλ j ′ )

− 1

m

m∑

j=1

B(‖x‖1 sgn(xλ j )eλ j , ‖x‖1 sgn(xλ j ′ )eλ j ′ )

∥
∥
∥
∥
∥
∥

2→2

= |‖x‖2
1 − α2|‖ 1

m

m∑

j=1

B(sgn(xλ j )eλ j , sgn(xλ j ′ )eλ j ′ )‖2→2

≤ u

m

m∑

j=1

‖B(sgn(xλ j )eλ j , sgn(xλ j ′ )eλ j ′ )‖2→2 = u.

Hereby, we used ‖B(sgn(xλ j )eλ j , sgn(xλ j ′ )eλ j ′ )‖2→2 = 1.

As in Sect. 3.3, we use a discretization of Js = [1, 2s] with about K = � 2s
u �

elements, α1, . . . , αK such that for any β in Js there exists k such |β − α2
k | ≤ u.

Now, provided (45) holds, for given x we can find z̃1, . . . , z̃m, z̃′
1, . . . , z̃′

m of the form
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αk sgn(xλ)eλ, p(λ) ∈ {1,−1, i,−i}, with

∥
∥
∥
∥
∥
∥

B(x) − 1

m

m∑

j=1

B( z̃ j , z̃′
j )

∥
∥
∥
∥
∥
∥

2→2

≤ 2u.

Observe as in Sect. 3.3 that each z̃ j can take 4� 2s
u �n2 values, so that 1

m

∑m
j=1 B(z̃ j , z̃′

j )

can take at most (4� 2s
u �n2)2m ≤ (Cn2s/u)2m values. As seen before, this establishes a

4u covering of the set of matrices B(x) with x ∈ Ts of cardinality at most (Cn2s/u)2m ,
and we conclude

log(N (Ts, d1, u)) ≤ log((Cn2s/u)2m) ≤ C ′ s2

u2 log(23/4n) log(Cn2s/u)

≤ C̃
s2

u2 log(2n) log(n2/u).

This completes the proof of Lemma 3. ��

4 Probability estimate

To prove Theorem 1(b) will use the following concentration inequality, which is a
slight variant of Theorem 17 in [5], which in turn is an improved version of a striking
result due to Talagrand [41]. Note that with B(x) as defined above, Y below satisfies
EY = n Eδs .

Theorem 5 Let B = {B(x)}x∈T be a countable collection of n × n complex Her-
mitian matrices, and let ε = (ε1, . . . , εn)T be a sequence of i.i.d. Rademacher or
Steinhaus random variables. Assume that B(x)q,q = 0 for all x ∈ T . Let Y be the
random variable

Y = sup
x∈T

∣
∣ε∗ B(x)ε

∣
∣ = sup

x∈T

∣
∣
∣
∣
∣
∣

n∑

q,q ′=1

εq ′εq B(x)q ′,q

∣
∣
∣
∣
∣
∣
.

Define U and V to be

U = sup
x∈T

‖B(x)‖2→2

and

V = E sup
x∈T

‖B(x)ε‖2
2 = E sup

x∈T

n∑

q ′=1

∣
∣
∣
∣
∣
∣

n∑

q=1

εq B(x)q ′,q

∣
∣
∣
∣
∣
∣

2

. (46)
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Then, for λ ≥ 0,

P

(
Y ≥ E[Y ] + λ

)
≤ exp

(
− λ2

32V + 65Uλ/3

)
. (47)

Proof For Rademacher variables, the statement is exactly Theorem 17 in [5]. For
Steinhaus sequences, we provide a variation of its proof. For ε = (ε1, . . . , εn), let
gM(ε) = ∑n

j,k=1 ε jεk M j,k and set

Y = f (ε) = sup
M∈B

∣
∣
∣gM(ε)

∣
∣
∣.

Further, for an independent copy ε̃� of ε�, set ε(�) = (ε1, . . . , ε�−1, ε̃�, ε�+1, . . . , εn)

and Y (�) = f (ε(�)). Conditional on (ε1, . . . , εn), let M̂ = M̂(ε) be the matrix giving
the maximum in the definition of Y . (If the supremum is not attained, then one has
to consider finite subsets T ⊂ B. The derived estimate will not depend on T , so that
one can afterwards pass over to the possibly infinite, but countable, set B.) Then we
obtain, using M̂∗ = M̂ and M̂kk = 0 in the last step,

E

[
(Y − Y (�))21Z>Z (�) |ε

]

≤ E

[
|gM̂ (ε) − gM̂ (ε(�))|21Z>Z (�) |ε

]

= E

⎡

⎣|(ε� − ε̃�)

n∑

j=1, j �=�

ε j M̂ j,� + (ε� − ε̃�)

n∑

k=1,k �=�

εk M̂�,k |21Z>Z (�) |ε
⎤

⎦

≤ 4Eε̃�
|ε� − ε̃�|2

∣
∣
∣
∣
∣
∣

n∑

j=1, j �=�

ε j M̂ j,�

∣
∣
∣
∣
∣
∣

2

= 8

∣
∣
∣
∣
∣
∣

n∑

j=1

ε j M̂ j,�

∣
∣
∣
∣
∣
∣

2

.

The remainder of the proof is analogous to the one in [5] and therefore omitted. ��
We first note that we may pass from Ts to a dense countable subset T ◦

s without
changing the supremum, hence Theorem 5 is applicable. Now, it remains to estimate
U and V . To this end, note that (36) implies

U = sup
x∈Ts

‖B(x)‖2→2 ≤ sup
x∈Ts

2s‖x‖2 = 2s.

The remainder of this section develops an estimate of the quantity V in (46). Hereby,
we rely on a Dudley type inequality for Rademacher or Steinhaus processes with values
in �2, see below. First we note the following Hoeffding type inequality.

Proposition 2 Let ε = (εq)n
q=1 be a Steinhaus sequence and let B ∈ C

m×n. Then,
for u ≥ 0,

P

(
‖Bε‖2 ≥ u‖B‖F

)
≤ 8e−u2/16. (48)
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Proof In [35, Proposition B.1], it is shown that

P

(
‖Bε‖2 ≥ u‖B‖F

)
≤ 2e−u2/2. (49)

for Rademacher sequences. We extend this result using the contraction principle [26,
Theorem 4.4], as in the proof of Theorem 3.

In fact, [26, Theorem 4.4] implies that for B ∈ C
n×n and ε being a Steinhaus

sequence and ξ a Rademacher sequence, we have, for example

P(‖Re(B)Re(ε)‖2 ≥ u‖B‖F ) ≤ 2P(‖ReBξ‖2 ≥ u‖B‖F ) ≤ 4e−u2/2.

Hence,

P(‖Bε‖2 ≥ u‖B‖F )

= P(‖Re(Bε)‖2
2 + ‖Im(Bε)‖2

2 ≥ u2‖B‖2
F )

≤ P(‖Re(Bε)‖2
2 ≥ u2

√
2
) + P(‖Im(Bε)‖2

2 ≥ u√
2
‖B‖2

F )

≤ P(‖ReBReε)‖2 ≥ u√
8
‖B‖2

F ) + P(‖ImBImε)‖2 ≥ u√
8
‖B‖2

F )

+ P(‖ReBImε)‖2 ≥ u√
8
‖B‖2

F ) + P(‖ImBReε)‖2 ≥ u√
8
‖B‖2

F )

≤ 8e−u2/16.

��
With more effort, one may also derive (48) with better constants. Let us now estimate
the quantity

V = E sup
x∈Ts

‖B(x)ε‖2
2 = E sup

x∈Ts

∑

q ′=1

∣
∣
∣
∣
∣
∣

∑

q=1

εq B(x)q ′,q

∣
∣
∣
∣
∣
∣

2

.

It follows immediately from Proposition 2 and (49) that the increments of the process
satisfy

P(‖B(x)ε − B(x′)ε‖2 ≥ u‖B(x) − B(x′)‖F ) ≤ 8e−u2/16. (50)

This allows to apply the following variant of Dudley’s inequality for vector-valued
processes in �2.

Theorem 6 Let Rx , x ∈ T , be a process with values in C
m indexed by a metric space

(T, d), with increments that satisfy the subgaussian tail estimate

P(‖Rx − Rx′‖2 ≥ ud(x, x′)) ≤ 8e−u2/16.
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Then, for an arbitrary x0 ∈ T and a universal constant K > 0,

(
E sup

x∈T
‖Rx − Rx0‖2

2

)1/2 ≤ K

∞∫

0

√
log(N (T, d, u))du, (51)

where N (T, d, u) denote the covering numbers of T with respect to d and radius
u > 0.

Proof The proof follows literally the lines of the standard proof of Dudley’s inequal-
ities for scalar-valued subgaussian processes, see for instance [33, Theorem 6.23] or
[2,26,42]. One only has to replace the triangle inequality for the absolute value by the
one for ‖ · ‖2 in C

m . ��
We have d = d2 defined above, and, hence, (18) provides us with the right hand

side of (51). Using the fact that here, Rx = B(x)ε, we conclude that

V = E sup
x∈Ts

‖B(x)ε‖2
2 = E sup

x∈Ts

‖B(x)ε − B(0)ε‖2
2

≤ (
K C

√
ns3/2

√
log(n) log(s)

)2 ≤ C ′ns3/2 log(n) log2(s).

Plugging these estimates into (47) and simplifying leads to our result, compare with
[35]. In particular, Theorem 1(b) follows.
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