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Abstract Let G be a multiplicative subsemigroup of the general linear group Gl(Rd)

which consists of matrices with positive entries such that every column and every row
contains a strictly positive element. Given a G-valued random matrix A, we consider
the following generalized multidimensional affine equation

R
D=

N∑

i=1

Ai Ri + B,

where N ≥ 2 is a fixed natural number, A1, . . . , AN are independent copies of A, B ∈
R

d is a random vector with positive entries, and R1, . . . , RN are independent copies
of R ∈ R

d , which have also positive entries. Moreover, all of them are mutually

independent and
D= stands for the equality in distribution. We will show with the aid

of spectral theory developed by Guivarc’h and Le Page (Simplicité de spectres de
Lyapounov et propriété d’isolation spectrale pour une famille d’opérateurs de transf-
ert sur l’espace projectif. Random Walks and Geometry, Walter de Gruyter GmbH &
Co. KG, Berlin, 2004; On matricial renewal theorems and tails of stationary measures
for affine stochastic recursions, Preprint, 2011) and Kesten’s renewal theorem (Kesten
in Ann Probab 2:355–386, 1974), that under appropriate conditions, there exists χ > 0
such that P({〈R, u〉 > t}) � t−χ , as t → ∞, for every unit vector u ∈ S

d−1 with
positive entries.
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1 Introduction and statement of the results

We consider the Euclidean space R
d endowed with the scalar product 〈x, y〉 =∑d

i=1 xi yi , the norm |x | = √〈x, x〉, and its Borel σ -field Bor(Rd). We say that
R

d 
 x = (x1, . . . , xd) ≥ 0 is positive (resp. R
d 
 x = (x1, . . . , xd) > 0 is strictly

positive) when xn ≥ 0, (resp. xn > 0) for every 1 ≤ n ≤ d. By R
d+ we denote the set

of all positive vectors and we define the set S
+ = R

d+ ∩S
d−1 of all positive vectors on

the unit sphere S
d−1 = {x ∈ R

d : |x | = 1} with the distance being the restriction of
the Euclidean norm to S

+. Given x ∈ R
d we denote its projection on S

d−1 by x = x
|x | .

Let Gl(Rd) be the group of d× d invertible matrices on R
d with the operator norm

‖ ·‖ associated with the Euclidean norm | · | on R
d , i.e. ‖a‖ = supx∈Sd−1 |ax | for every

a = (a(i, j))1≤i, j≤d ∈ Gl(Rd).
Suppose that G is a multiplicative subsemigroup of Gl(Rd) which consists of matri-

ces with positive entries such that every column and every row contains a strictly
positive element. By G◦ we denote the multiplicative subsemigroup of G composed
of matrices with strictly positive entries. It is easy to see that G provides a projective
action on S

+ which is given by

G × S
+ 
 (a, x) �→ a · x = ax

|ax | ∈ S
+.

Let A be a G-valued random matrix distributed according to a probability measure
μ on G, and B be a random vector independent of A, taking its values in R

d+.
Let A1, . . . , AN and B0 be independent random variables, where N ≥ 2 is a fixed

natural number, A1, . . . , AN are independent copies of A, and B0 is an independent
copy of B.

The aim of this paper is to find a random vector R ∈ R
d+, independent of A and B,

which solves (in law
D=) a generalized multidimensional affine equation, i.e.

R
D=

N∑

i=1

Ai Ri + B0, (1.1)

where R1, . . . , RN are independent copies of R ∈ R
d+ and independent of A, A1, . . . ,

AN , B, B0, (see Theorem 1.7 stated below).
Furthermore, we would like to find possibly mild conditions, which allows us to

establish an asymptotic tail formula for R. More precisely, we are interested in the
existence χ > 0, such that

P({〈R, u〉 > t}) � t−χ , as t →∞, (1.2)

for every u ∈ S
+ (see Theorem 1.9 stated below).

The one dimensional version of Eq. (1.1) has been considered recently by Jelenk-
ović and Olvera-Cravioto [13–15] in the context of Google’s PageRank algorithm. The
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On fixed points of a generalized multidimensional affine recursion 667

authors solved Eq. (1.1) and justified formula (1.2) using the renewal theorem. It is
worth emphasizing that the one dimensional version of Eq. (1.1) with B = 0, was stud-
ied by Liu in a series of articles (see for instance [18] and the references given there).

We are also motivated by the recent results of Buraczewski et al. [3], where the
authors considered the multidimensional version of Eq. (1.1) with B = 0, and estab-
lished formula (1.2) with the help of Kesten’s renewal theorem [17] and the spectral
method developed by Guivarc’h and Le Page [6,7]. Their approach sheds some new
light on multidimensional problems and fits perfectly to our situation.

In order to avoid repetitions in the sequel, and shorten article we have decided to
state all necessary definitions and notations in the introduction, and formulate our
main results as general as it is possible.

Let M1(G) denotes the set of all probability measures on G endowed with the
weak topology. We denote by suppμ the support of the measure μ ∈ M1(G). If
E ⊆ G, let [E] be the subsemigroup of G generated by the set E . For n ∈ N let
Sn = An · · · · · A1 ∈ G, where A1, A2, . . . ∈ G is a sequence of independent copies
of G-valued random matrix A distributed according to μ.

A subsemigroup [suppμ] of G is called contractive if [suppμ] ∩ G◦ �= ∅. In other
words,

P

(
⋃

n∈N

{Sn ∈ G◦}
)

> 0. (1.3)

The condition (1.3) was considered by Hennion [10], Hennion and Hervé [11] in the
context of limit theorems for the products of positive random matrices.

An element a ∈ Gl(Rd) is proximal if there exists a unique eigenvalue λa (the
dominant eigenvalue) of a, such that r(a) = limn→∞ ‖an‖1/n = |λa |.

According to the Perron–Frobenius theorem [12] every a ∈ G◦ is proximal. More-
over, for every a ∈ G◦ and its adjoint a∗ ∈ G◦ it is possible to choose va, wa ∈ R

d+
such that va > 0, wa > 0 and

ava = λava, a∗wa = λawa, 〈va, wa〉 = 1, |wa | = 1.

The eigenvector va determined by these relations will be called the dominant eigen-
vector of a ∈ G◦. This means that we can write R

d = R · va ⊕ v⊥a , and the spectral
radius of a restricted to v⊥a = {x ∈ R

d : 〈x, va〉 = 0} is strictly less than |λa |.
Furthermore, by the preceding relations we have

lim
n→∞

an

r(a)n
= va ⊗ wa, (1.4)

where va ⊗ wa is the matrix projector on R · va . Since va ⊗ wa x = 〈x, wa〉 va for
every x ∈ R

d , (1.4) immediately yields

lim
n→∞ an · x = va ⊗ wa x

|va ⊗ wa x | =
va

|va | = va ∈ S
+, for every x ∈ R

d+. (1.5)
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668 M. Mirek

A subsemigroup � ⊆ Gl(Rd) is strongly irreducible if there does not exist a finite
number (k ∈ N) of proper linear subspaces V1, . . . , Vk of R

d such that

�

(
k⋃

i=1

Vi

)
⊆

k⋃

i=1

Vi . (1.6)

If E ⊆ Gl(Rd) we denote by Eprox the set of all proximal elements of E . A subsemi-
group � ⊆ Gl(Rd) is said to satisfy condition (i − p) if � is strongly irreducible and
�prox �= ∅. This condition was widely investigated by Guivarc’h and Le Page [6,7],
see also [3,8,9] and the references given there.

A subsemigroup [suppμ] ⊆ G, where μ ∈ M1(G), is said to satisfy condition
(C) if [suppμ] is contractive and strongly irreducible. Clearly, condition (C) implies
condition (i − p) with � = [suppμ].

For s ≥ 0 we write

κ(s) = κμ(s) = lim
n→∞

⎛

⎝
∫

G

‖a‖sμ∗n(da)

⎞

⎠

1
n

,

where μ∗n is the nth convolution power of μ ∈ M1(G). The limit above exists and it

is equal to infn∈N

(∫
G ‖a‖sμ∗n(da)

) 1
n , because un(s) = ∫

G ‖a‖sμ∗n(da) is submul-
tiplicative, i.e. um+n(s) ≤ um(s)un(s) for every m, n ∈ N. Moreover,

Iμ =
{
s ∈ [0,∞) : κμ(s) <∞} =

⎧
⎨

⎩s ∈ [0,∞) :
∫

G

‖a‖sμ(da) <∞
⎫
⎬

⎭ .

Let s∞ = sup
{
s ≥ 0 : κμ(s) <∞} ∈ R+ ∪ {∞}, then by the Hölder inequality

Iμ = [0, s∞) or Iμ = [0, s∞].
Our “existence” result is the following

Theorem 1.7 Assume that A is a G-valued random matrix distributed according to
a probability measure μ on G, and B is a random vector independent of A, taking
its values in R

d+, such that P({B > 0}) > 0. Let A1, . . . , AN and B0 be independent
random variables as in (1.1), where N ≥ 2 is a fixed natural number, A1, . . . , AN

are independent copies of A, and B0 is an independent copy of B. Suppose further
that [suppμ] ⊆ G satisfies condition (C) and there exist s1 ∈ (0, 1/2], and s2 > s1
such that E(‖A‖s1) ≤ 1

N , E(‖A‖s2) ≤ 1
N , and E(|B|s2) < ∞. Then there exists

a unique vector R ∈ R
d+ and its independent copies R1, . . . , RN independent of

A, A1, . . . , AN , B, B0 which solve (1.1) in law. Moreover, E(|R|s) < ∞ for every
s < s2.

Remark 1.8 The uniqueness of the solution of (1.1) will be explained in details in
Sect. 3—see the discussion after Lemma 3.8.
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On fixed points of a generalized multidimensional affine recursion 669

Section 3 contains a detailed proof of Theorem 1.7, which is similar in spirit to
that of [13]. However, the multidimensional framework, we consider, provides some
difficulties which do not appear in the one dimensional case. Namely, the method
developed in [13], which gives finiteness of appropriate moments for the solution
of (1.1), breaks down in higher dimensions. This problem will be dealt with the help
of condition (C) and additionally for technical reasons we have to assume that there
is s1 ≤ 1

2 such that E(‖A‖s1) ≤ 1
N .

The last condition allows us to give elementary proof of Theorem 1.7, which follows
the ideas introduced in [13]. If we did not assume that s1 ≤ 1

2 , it would generate many
obstacles difficult to surmount. In particular straightforward proof of Lemma 3.12
which we propose in Sect. 3 might not work at all. On the one hand, the existence
of s1 ≤ 1

2 such that E(‖A‖s1) ≤ 1
N can be relaxed in the one dimensional case (see

[13–15]). On the other hand, it can be also relaxed in the multidimensional settings,
but this requires more sophisticated techniques giving the existence of the solution
of (1.1). This approach will be discussed in the forthcoming article of Buraczewski
et al. [4].

Let λd be the Lebesgue measure on R
d . If ν is a probability measure on R

d , then
by ν = νa + νs we denote its Lebesgue decomposition with respect to λd where νa is
the absolutely continuous part with respect to λd , i.e. νa � λd , and νs is the singular
part with respect to λd , i.e. νs ⊥ λd . We have also νa ⊥ νs . Since ν is positive then its
total variation ‖ν‖ = ν(Rd) = 1. We say that the measure ν is singular if ‖νs‖ = 1,
otherwise ν is nonsingular, i.e. ‖νs‖ < 1.

Now we can state our main “tail” result.

Theorem 1.9 Fix a natural number N ≥ 2, a G-valued random matrix A distributed
according to μ, and a random vector B with law η, independent of A, taking its values
in R

d+, such that P({B > 0}) > 0.

• Assume that [suppμ] ⊆ G satisfies condition (C), and there is s1 ∈ (0, 1/2], such
that E(‖A‖s1) < 1

N . Moreover, we assume s∞ > s1 and lims→s∞ κ(s) > 1
N . Then

there exists χ ≥ s1 such that Nκ(χ) = 1.
• Furthermore, if E(‖A‖χ log+ ‖A‖) < ∞, E(|B|χ+ε) < ∞ for some ε > 0, and

either
(i) η is nonsingular, i.e. ‖ηs‖ < 1, or

(ii) η is singular, i.e. ‖ηs‖ = 1, and P({〈B, u〉 = r}) = 0 for every (u, r) ∈
S
+ × R+.

Then there exists a positive function eχ∗ : S+ �→ (0,∞) and a constant Cχ ≥ 0 such
that

lim
t→∞ tχP({〈R, u〉 > t}) = Cχ eχ∗ (u) ≥ 0, (1.10)

for every u ∈ S
+, where R ∈ R

d+ is the stationary solution of Eq. (1.1) as in Theo-
rem 1.7. Moreover, if χ ≥ 1 then Cχ > 0, and the limit in (1.10) is strictly positive.

Now we give an example of singular measure η, i.e. ‖ηs‖ = 1, on the plane (d = 2),
such that η({x ∈ R

2 : 〈x, u〉 = r}) = 0 for every (u, r) ∈ S
+ × R+, and η({x ∈
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670 M. Mirek

R
2 : x > 0}) > 0. Define S = {(cos α, sin α) : 0 < α < π/2} ⊆ S

+ and let η be the
normalized one dimensional Lebesgue measure on S, i.e. suppη = S

+ and η(S) = 1.
It is not hard to see that η is singular with respect to two dimensional Lebesgue measure
λ2. Obviously η({x ∈ R

2 : x > 0}) = η(S) = 1, and notice that {x ∈ R
2 : 〈x, u〉 = r}

intersects S at most two points, hence finally η({x ∈ R
2 : 〈x, u〉 = r}) = 0.

As we mentioned before, the proof is based on concepts of [3] with considerable
complications determined by the structure of Eq. (1.1). The most important tool which
allows us to establish relation (1.10) is Kesten’s renewal theorem [17]. We need to
check that its assumptions are satisfied (see Sect. 4). This is the most difficult part of
the paper and requires the spectral theory of transfer operators developed by Guivarc’h
and Le Page [3,6,7], which is summarized in Sect. 2. But we touch only a few aspects
of their theory and restrict our attention to the results which will be used in Sects. 3
and 4. Guivarc’h and Le Page approach significantly simplifies and clarifies proofs
developed by Kesten [16], and what is most important for us, it is applicable to our
situation.

The positivity of the limit constant Cχ > 0 in (1.10) if χ ≥ 1, is a very delicate
issue. This relies strongly on the positivity of matrices and the fact that χ ≥ 1. In the
case when χ < 1 the positivity of Cχ > 0 seems to be a very difficult problem and is
unavailable in our situation at the moment. However, in the one dimensional case and
the case of group of similarities (instead of group G), a very careful study (requiring
complex analysis methods) of the formula defining the limit constant Cχ ≥ 0 allows
us to conclude that the constant Cχ is nonzero. A detailed exposition of these, and
related problems, are discussed in [4].

Remark 1.11 We would like to emphasize that there are some possible extensions of
Theorems 1.7 and 1.9 which relax the assumption that N ≥ 2 is constant and allows us
to consider an integer-valued random variable N ≥ 2 with appropriate moment con-
ditions (see [3,13–15,18]). But this is not the main issue of this paper and therefore,
for simplicity, we decided to assume that N ≥ 2 is constant.

2 Transfer operators

Let C(S+) be the space of continuous functions on S
+ with the supremum norm | · |∞.

Hε = {φ ∈ C(S+) : ‖φ‖ε = |φ|∞+[φ]ε <∞}, ε ∈ (0, 1] is the space of all ε-Hölder
functions on S

+ with

[φ]ε = sup
x �=y

|φ(x)− φ(y)|
|x − y|ε .

Given a closed subset V of S
+, M1(V ) denotes the set of all probability mea-

sures on V , endowed with the weak topology. We say that U ⊆ S
+ is a subspace

of S
+, if U = V ∩ S

+ for some subspace V ⊆ R
d . A measure ν ∈ M1(S+) is

said to be proper if ν(U ) = 0 for every subspace U � S
+. Here and subsequently,

(�) = {va ∈ S
+ : va is the dominant eigenvector of a ∈ �prox}, where � is a

subsemigroup of G such that �prox �= ∅.
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On fixed points of a generalized multidimensional affine recursion 671

The following Proposition 2.1 due to Guivarc’h and Raugi [8] (see also [9]) contains
the relevant properties of (i − p) semigroups which will be used in the sequel.

Proposition 2.1 Let μ ∈ M1(G) and � = [suppμ] satisfies condition (i − p). Then
there exists a unique proper μ-stationary measure ν ∈ M1(S+) such that suppν =
(�). Furthermore, (�) is the unique �-minimal subset of S

+ (i.e. if Z ⊆ S
+ is

closed and � · Z ⊆ Z, then (�) ⊆ Z), and the subgroup of R
∗+ generated by the set

{|λa| : a ∈ �prox} is dense in R
∗+.

Let μ ∈ M1(G). For s ∈ Iμ, x ∈ S
+ and a measurable function φ on S

+ we
consider the following transfer operators

Psφ(x) =
∫

G

|ax |sφ(a · x)μ(da),

Ps∗φ(x) =
∫

G

|a∗x |sφ(a∗ · x)μ(da) =
∫

G

|ax |sφ(a · x)μ∗(da),

(2.2)

where μ∗ ∈ M1(G) and μ∗(U ) = μ({a ∈ G : a∗ ∈ U }) for every U ∈ Bor(G).
The main purpose of this section is to summarize a number of properties of operators

Ps, Ps∗ , see Theorem 2.3 below.

Theorem 2.3 Assume that μ ∈ M1(G), s ∈ Iμ and � = [suppμ] satisfies condition
(i − p). Then

• there exists a unique probability measure νs ∈ M1(S+), (νs∗ ∈ M1(S+)) such that
(i) Psνs = κ(s)νs, (Ps∗ νs∗ = κ(s)νs∗).

(ii) suppνs = ([suppμ]), (suppνs∗ = ([suppμ∗])) and it is not contained in
any proper subspace of S

+.
(iii) Iμ 
 s �→ νs ∈ M1(S+), (Iμ 
 s �→ νs∗ ∈ M1(S+)) is continuous in the

weak topology.
• Iμ 
 s �→ κ(s) is strictly log-convex function.
• there exists a unique s-Hölder continuous function es : S+ �→ (0,∞), (es∗ : S+ �→

(0,∞)) with s = min{s, 1} such that
(i) Pses = κ(s)es, (Ps∗ es∗ = κ(s)es∗).

(ii) es, (es∗) is given by the formula

es(x)=
∫

S+

〈x, y〉s νs∗(dy),

⎛

⎝es∗(x)=
∫

S+

〈x, y〉s νs(dy)

⎞

⎠ , for x ∈ S
+.

(iii) Iμ 
 s �→ es ∈ C(S+), (Iμ 
 s �→ es∗ ∈ C(S+)) is continuous in the
uniform topology.

• Moreover, there exists a unique stationary measure π s ∈ M1(S+), (π s∗ ∈ M1(S+))

for operator Qs f = Ps (es f )
κ(s)es ,

(
Qs∗ f = Ps∗ (es∗ f )

κ(s)es∗

)
where f ∈ C(S+), such that

(i) π s = esνs

νs (es)
,
(
π s∗ = es∗νs∗

νs∗(es∗)

)
.
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672 M. Mirek

(ii) (Qs)n f, ((Qs∗)n f ) converges uniformly to π s( f ), (π s∗( f )) for any f ∈
C(S+).

(iii) suppπ s = ([suppμ]), (suppπ s∗ = ([suppμ∗])).
This result was proved by Guivarc’h and Le Page and its, quite long and far from
being obvious, proof can be found in [6,7]. Notice that in view of the cocycle property
σ s(x, a2a1) = σ s(x, a1)σ

s(a1 · x, a2), (σ
s∗ (x, a2a1) = σ s∗ (x, a1)σ

s∗ (a1 · x, a2)), a1,

a2 ∈ G, x ∈ S
+ of

σ s(x, a) = |ax |s es(a · x)

es(x)
,

(
σ s∗ (x, a) = |ax |s es∗(a · x)

es∗(x)

)
, (2.4)

the Markov operators Qs and Qs∗ defined in Theorem 2.3 can be rewritten in the
following form

(Qs)nφ(x) =
∫

G

φ(a · x)qs
n(x, a)μ∗n(da), (2.5)

(Qs∗)nφ(x) =
∫

G

φ(a · x)qs,∗
n (x, a)μ∗n∗ (da), (2.6)

where

qs
n(x, a) = 1

κn(s)

es(a · x)

es(x)
|ax |s = σ s(x, a)

κn(s)
,

qs,∗
n (x, a) = 1

κn(s)

es∗(a · x)

es∗(x)
|ax |s = σ s∗ (x, a)

κn(s)
,

(2.7)

n ∈ N, x ∈ S
+, a ∈ G and φ is an arbitrary measurable function on S

+.

3 Construction of the solution

Recall that A stands for a G-valued random matrix distributed according to the mea-
sure μ ∈ M1(G), and B for a random vector taking its values in R

d+, independent of
A. In this section we construct a solution of Eq. (1.1). The idea of the construction
goes back to [13]. It is not difficult to imagine that we have to study a sequence of
random variables that are obtained by iterating (1.1). Let N ≥ 2 be a fixed natural
number and R∗0,1, . . . , R∗0,N be independent and identically distributed (i.i.d.) copies

of the initial random variable R∗0 ∈ R
d+. Throughout the paper we will assume that

E(|R∗0 |s2) < ∞, for s2 > 0 as in Theorem 1.7. We consider the sequence (R∗n)n≥0
such that

R∗n+1 =
N∑

k=1

An+1,k R∗n,k + Bn+1, for every n ≥ 0, (3.1)
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On fixed points of a generalized multidimensional affine recursion 673

where An+1,1, . . . , An+1,N , Bn+1 and R∗n,1, . . . , R∗n,N , n ≥ 0 are independent. More-
over, for n ≥ 1R∗n,1, . . . , R∗n,N are i.i.d. copies of R∗n obtained at the previous iteration.
For n ≥ 0An+1,1, . . . , An+1,N are i.i.d. copies of A and Bn+1 is an independent copy
of B.

We will look more closely at the sequence (R∗n)n≥0. Let A = {Ai1,...,in
:

(i1, . . . , in) ∈ {1, . . . , N }n, n ∈ N} be the set consisting of i.i.d. copies of A, and
B = {Bi1,...,in

: (i1, . . . , in) ∈ {1, . . . , N }n, n ∈ N} ∪ {B0} the set consisting of i.i.d.
copies of B independent of A. Additionally we assume that A0 = Id a.s. and the initial
random variable R∗0 is always independent of A, B,A and B.

Now let W0 = A0 B0 = B0 a.s.,

Wn =
∑

(i1,...,in)∈{1,...,N }n
Ai1 Ai1,i2 · · · · · Ai1,...,in Bi1,...,in , n ≥ 1, (3.2)

and for n ≥ 0

R(n) =
n∑

i=0

Wi , (3.3)

be the partial sum of the sequence (Wn)n≥0. Since R(n+1) − R(n) ≥ 0 is a positive
vector for every n ∈ N then

R = lim
n→∞ R(n) =

∞∑

i=0

Wi , (3.4)

exists a.s. and is a candidate for a solution of (1.1). Indeed, it is not hard to see that
Wn satisfies

Wn =
∑

(i1,...,in)∈{1,...,N }n
Ai1 Ai1,i2 · · · · · Ai1,...,in Bi1,...,in

=
N∑

k=1

Ak

⎛

⎝
∑

(k,i2,...,in)∈{1,...,N }n
Ak,i2 · · · · · Ak,i2,...,in Bk,i2,...,in

⎞

⎠ =
N∑

k=1

Ak Wn−1,k,

(3.5)

where Ak and Wn−1,k are independent of each other and Wn−1,1, . . . , Wn−1,N have
the same distribution as Wn−1. In view of the above calculations, R(n) satisfies the
recursion

R(n) =
N∑

k=1

Ak R(n−1)
k + B0, (3.6)
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674 M. Mirek

for every n ∈ N, where R(n−1)
1 , . . . , R(n−1)

N are independent copies of R(n−1). This
allows us to conclude that R is a solution of (1.1) in law provided that R is finite a.s.,
but this will be shown in the proof of Theorem 1.7 below.

To obtain a solution with an initial condition, let R∗0,(i1,...,in), (i1, . . . , in) ∈
{1, . . . , N }n, n ∈ N, be i.i.d. copies of the initial random variable R∗0 ∈ R

d+ inde-
pendent of the families A and B. For n ≥ 1, we define similarly as in (3.2)

Wn(R∗0) =
∑

(i1,...,in)∈{1,...,N }n
Ai1 Ai1,i2 · · · · · Ai1,...,in R∗0,(i1,...,in). (3.7)

Moreover, as in (3.5), we obtain Wn(R∗0)
D= ∑N

k=1 Ak Wn−1,k(R∗0), where Ak and
Wn−1,k(R∗0) are independent of each other and Wn−1,1(R∗0), . . . , Wn−1,N (R∗0) have
the same distribution as Wn−1(R∗0). Now we have the following

Lemma 3.8 Assume now that (R∗n)n≥0 and (R(n))n≥0 are the sequences defined
in (3.1) and (3.3), respectively, then for every n ∈ N we have

R∗n
D= R(n−1) +Wn(R∗0). (3.9)

Proof Observe that for n = 1, (3.9) follows from definition. For more details we refer
to [13]. ��

In view of formula (3.9) we will be able to show (in the proof of Theorem 1.7 below)
that every sequence (R∗n)n≥0 obtained from the iterations described at the beginning of
Sect. 3 (see (3.1)) converges in law to the random variable R defined in (3.4), provided
that E(|R∗0 |s2) <∞. The uniqueness of the solution of (1.1) will be understood exactly
in the sense described above. Therefore, one may think that the solution of (1.1) does
not depend on the choice of the initial random variable R∗0 .

Now we have the simple, but very useful

Lemma 3.10 Under the assumptions of Theorem 2.3 there exists cs > 0 such that for
every n ∈ N we have

cs

∫

G

‖a‖sμn(da) ≤ κn(s) ≤
∫

G

‖a‖sμn(da). (3.11)

Proof We refer to [6]. ��
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On fixed points of a generalized multidimensional affine recursion 675

To take the limit in (3.4) we need an estimate for E (|Wn|s). Suppose for a moment
that s ≤ 1. Then, in view of inequality (3.11), we have

E
(|Wn|s

) ≤ E

⎛

⎝
∑

(i1,...,in)∈{1,...,N }n
‖Ai1 Ai1,i2 · · · · · Ai1,...,in‖s |Bi1,...,in |s

⎞

⎠

≤
∑

(i1,...,in)∈{1,...,N }n
E
(‖Ai1 Ai1,i2 · · · · · Ai1,...,in‖s)

E
(|B|s)

= N n
∫

G

‖a‖sμ∗n(da)E
(|B|s) ≤ 1

cs
E
(|B|s) N nκn(s).

We would like to show that for an appropriate s > 0, not necessarily less or equal 1,
the quantity E (|Wn|s) decays exponentially. This is contained in Lemma 3.12. For
the sake of computations we have to assume that there exists s1 ∈ (0, 1/2] such that
E(‖A‖s1) ≤ 1

N .

Lemma 3.12 Assume that [suppμ] ⊆ G satisfies condition (C), and there exist s1 ∈
(0, 1/2], and s2 > 1 such that E(‖A‖s1) ≤ 1

N , E(‖A‖s2) ≤ 1
N , and E(|B|s2) < ∞.

Then for every s ∈ (s1, s2), there exist finite constants Ks > 0 and η < 1 such that
for every n ∈ N

E
(|Wn|s

) ≤ Ksη
n . (3.13)

Proof By Theorem 2.3 κ(s) is strictly log-convex so Nκ(s) < 1, for every s ∈
(s1, s2) and for s ≤ 1, (3.13) follows from the calculation above. From now we
assume that s ∈ (1, s2) and it is fixed. Let Si1,...,in = Ai1 Ai1,i2 · · · · · Ai1,...,in

for (i1, . . . , in) ∈ {1, . . . , N }n and n ∈ N. We order the set of indices writing
{1, . . . , N }n = {i1, . . . , iN n } and we choose p ∈ N and p ≥ 2, such that p − 1 <

s ≤ p. Then s1 ≤ 1/2 < s/p ≤ 1 (here is the first time where we have used that
s1 ≤ 1

2 , this allows us to make the specific choice of p, which in turn guarantees that
ks/p ∈ (s1, s2) for every k ∈ {1, 2, . . . , p} and the inequalities Nκ(ks/p) < 1, hold
for every k ∈ {1, 2, . . . , p}). Moreover

E
(|Wn |s

)

≤ E

⎛

⎝

⎛

⎝
∑

(i1,...,in)∈{1,...,N }n
|Si1,...,in Bi1,...,in |s/p

⎞

⎠
p⎞

⎠

= E

⎛

⎜⎝
∑

ji1+···+ jiNn=p

(
p

ji1 , . . . , jiNn

)
|Si1 Bi1 |s ji1/p · · · · · |SiNn BiNn |s jiNn /p

⎞

⎟⎠

≤
∑

ji1+···+ jiNn=p

(
p

ji1 , . . . , jiNn

)
E

((‖Si1‖|Bi1 |
)s ji1/p

)
· · · · · E

((‖SiNn ‖|BiNn |
)s jiNn /p

)
.
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Notice that E

(
|Bi1 |s ji1/p

)
· · · · · E

(
|BiNn |s jiNn /p

)
= ‖B‖s ji1 /p

s ji1 /p · · · · · ‖B‖s jiNn /p

s jiNn /p ≤
‖B‖s

s, since ‖B‖r = E(|B|r )1/r is increasing and ‖B‖0 = 1. This implies that

∑

ji1+···+ jiNn =p

(
p

ji1 , . . . , jiNn

)
E

((‖Si1‖|Bi1 |
)s ji1 /p

)
· · · · · E

((‖SiNn ‖|BiNn |
)s jiNn /p

)

≤ E
(|B|s)

∑

ji1+···+ jiNn =p

(
p

ji1 , . . . , jiNn

)
E

(
‖Si1‖s ji1 /p

)
· · · · · E

(
‖SiNn ‖s jiNn /p

)

= E
(|B|s)

∑

ji1+···+ jiNn =p

(
p

ji1 , . . . , jiNn

)∫

G

‖a‖s ji1 /pμ∗n(da) · · · · ·
∫

G

‖a‖s jiNn /p
μ∗n(da).

Observe that by the inequality (3.11), there exist constants cs ji1/p, cs ji2 /p, . . . ,

cs jiNn /p ∈ (0, 1], such that for all n ∈ N

∫

G

‖a‖s ji1/pμ∗n(da) ≤ c−1
s ji1 /pκ

n(s ji1/p),

∫

G

‖a‖s ji2 /pμ∗n(da) ≤ c−1
s ji2 /pκ

n(s ji2/p),

...
∫

G

‖a‖s jiNn /p
μ∗n(da) ≤ c−1

s jiNn /pκ
n(s jiNn /p).

Since ji1 , ji2 , . . . , jiNn ∈ {0, 1, . . . , p}, the constants above do not depend on n ∈ N

and we may define cp,s = max{c−1
0 , c−1

s/p, c−1
2s/p, . . . , c−1

(p−1)s/p, c−1
s } that dominates

all of them.
When N n ≤ p, we have

∫

G

‖a‖s ji1/pμ∗n(da) · · · · ·
∫

G

‖a‖s jiNn /p
μ∗n(da) ≤ cp

p,sκ
n(s ji1/p) · · · · · κn(s jiNn /p).

(3.14)

Therefore,

∑

ji1+···+ jiNn=p

(
p

ji1 , . . . , jiNn

)∫

G

‖a‖s ji1 /pμ∗n(da) · · · · ·
∫

G

‖a‖s jiNn /p
μ∗n(da)

≤ cp
p,s

∑

ji1+···+ jiNn=p

(
p

ji1 , . . . , jiNn

)
κn(s ji1/p) · · · · · κn(s jiNn /p)

≤ cp
p,s ·max{κ(s/p), κ(2s/p), . . . , κ((p − 1)s/p), κ(s)}n
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·
∑

ji1+···+ jiNn=p

(
p

ji1 , . . . , jiNn

)

≤ cp
p,s N pn ·max{κ(s/p), κ(2s/p), . . . , κ((p − 1)s/p), κ(s)}n

≤ cp
p,s p p−1 N n ·max{κ(s/p), κ(2s/p), . . . , κ((p − 1)s/p), κ(s)}n,

since ks/p ∈ (s1, s2) for every k ∈ {1, . . . , p}. This yields (3.13) with Ks =
cp

p,s p p−1
E (|B|s) < ∞ and η = N ·max{κ(s/p), . . . , κ(s)} < 1. As we said before

the assumption s1 ≤ 1/2 is indispensable, because it guarantees that N · κ(ks/p) < 1
for every k ∈ {1, 2, . . . , p}.

When N n > p, (3.14) also holds with the universal constant cp
p,s which does not

depend on n ∈ N, but we have to estimate

∑

ji1+···+ jiNn=p

(
p

ji1 , . . . , jiNn

)
κn(s ji1/p) · · · · · κn(s jiNn /p),

in a more subtle way. Before we do that we need to introduce a portion of necessary
definitions.

For every r ≤ k, and j1 ≤ · · · ≤ jk , let

L( j1, . . . , jk) =
(

k

l1, l2, . . . , lr

)
,

when j1 = · · · = jl1 < jl1+1 = · · · = jl2+l1 < jl2+l1+1 = · · · = jl3+l2+l1 < · · · <
jlr−1+···+l1+1 = · · · = jlr+···+l1 and l1 + l2 + · · · + lr = k. Then it is not difficult to
see that for every k ≤ p

L( j1, . . . , jk) ≤ k!,
(

p

j1, . . . , jk

)
≤ p!,

(
N n

k

)
L( j1, . . . , jk) ≤ N n !

(N n − k)! ≤ N kn .

Let now η = max{η1, η2, . . . , ηp} < 1, where

ηk = max{(Nκ(s j1/p)) · · · · · (Nκ(s jk/p)) : j1 + · · · + jk = p, and

j1 ≤ · · · ≤ jk} < 1.

This implies that

∑

ji1+···+ jiNn=p

(
p

ji1 , . . . , jiNn

)
κn(s ji1/p) · · · · · κn(s jiNn /p) = N nκn(s)
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+
(

N n

2

) ∑

j1+ j2=p
j1≤ j2

(
p

j1, j2

)
L( j1, j2)κ

n(s j1/p)κn(s j2/p)

+
(

N n

3

) ∑

j1+ j2+ j3=p
j1≤ j2≤ j3

(
p

j1, j2, j3

)
L( j1, j2, j3)κ

n(s j1/p)κn(s j2/p)κn(s j3/p)

...

+
(

N n

k

) ∑

j1+···+ jk=p
j1≤···≤ jk

(
p

j1, . . . , jk

)
L( j1, . . . , jk)κ

n(s j1/p) · · · · · κn(s jk/p)

...

+
(

N n

p

) ∑

j1+···+ jp=p
j1≤···≤ jp

(
p

j1, . . . , jp

)
L( j1, . . . , jp)κ

n(s j1/p) · · · · · κn(s jp/p)

≤ N nκn(s)+
∑

j1+ j2=p
j1≤ j2

p!N 2nκn(s j1/p)κn(s j2/p)

+ · · · +
∑

j1+···+ jk=p
j1≤···≤ jk

p!N knκn(s j1/p) · · · · · κn(s jk/p)

+ · · · +
∑

j1+···+ jp=p
j1≤···≤ jp

p!N pnκn(s j1/p) · · · · · κn(s jp/p) ≤ ηn · p!
p∑

k=1

∑

j1+···+ jk=p
j1≤···≤ jk

1

≤ ηn · p!
p∑

k=1

(
p − 1

k − 1

)
≤ 2p−1 p! · ηn .

Hence in this case (3.13) follows with Ks = 2p−1 p!cp
p,sE (|B|s) <∞ and η < 1. ��

Proof of Theorem 1.7 First of all we show that E(|R|s) <∞ for every s < s2, where
R was defined in (3.4). This shows that R is finite a.s. moreover, in view of formula (3.6)
R solves Eq. (1.1) in law. Its uniqueness will be a consequence of Lemma 3.8 as we
mentioned above.

By Lemma 3.12 there exist η < 1 and Ks <∞ such that for every n ∈ N we have
E(|Wn|s) ≤ Ksη

n . Observe now

E(|R|s) = E(lim inf
n→∞ |R(n)|s) ≤ lim inf

n→∞ E(|R(n)|s) ≤ lim inf
n→∞ E

(
n∑

k=0

|Wk |
)s

.

When 0 < s ≤ 1, we have

lim inf
n→∞ E

(
n∑

k=0

|Wk |
)s

≤ lim inf
n→∞ E

(
n∑

k=0

|Wk |s
)
≤ lim inf

n→∞ Ks

n∑

k=0

ηk = Ks

1− η
<∞.
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When s > 1, we have

lim inf
n→∞ E

(
n∑

k=0

|Wk |
)s

≤ lim inf
n→∞

(
n∑

k=0

E
(|Wk |s

)1/s

)s

≤ lim inf
n→∞ Ks

(
n∑

k=0

ηk/s

)s

= Ks

(1− η1/s)s
<∞.

It immediately implies that E(|R|s) <∞, which in turn gives |R| <∞ a.s.
Now we want to show that R is the unique solution of (1.1). It is enough to show

that R∗n , with an arbitrary initial random variable R∗0 ∈ R
d+ converges weakly to R

as n → ∞. Recall that the initial random variable R∗0 has finite s2th moment, i.e.
E(|R∗0 |s2) < ∞. We show that E( f (R∗n)) −−−→n→∞ E( f (R)) for an arbitrary uniformly
continuous function f defined on R

d . Fix ε > 0, and choose δ > 0 such that

|x − y| < δ �⇒ | f (x)− f (y)| < ε.

By (3.9) we know that R∗n
D= R(n−1) +Wn(R∗0) for every n ∈ N, hence

∣∣E( f (R∗n)− f (R))
∣∣ ≤

∣∣∣E( f (R(n−1) +Wn(R∗0))− f (R(n−1)))

∣∣∣

+
∣∣∣E( f (R(n−1))− f (R))

∣∣∣.

It is enough to show that
∣∣E( f (R(n−1) +Wn(R∗0))− f (R(n−1)))

∣∣ −−−→n→∞ 0. Fix s < s2
and observe that, in view of inequality (3.13) with Wn(R∗0) instead of Wn , we have

∣∣∣E( f (R(n−1) +Wn(R∗0))− f (R(n−1)))

∣∣∣

≤ E(|1{|Wn(R∗0 )|≤δ}( f (R(n−1) +Wn(R∗0))− f (R(n−1)))|)
+ E(|1{|Wn(R∗0 )|>δ}( f (R(n−1) +Wn(R∗0))− f (R(n−1)))|)
≤ εP({|Wn(R∗0)| ≤ δ})+ 2M f P({|Wn(R∗0)| > δ})
≤ ε + 2M f P({|Wn(R∗0)| > δ}) ≤ ε + 2M f

E(|Wn(R∗0)|s)
δs

≤ ε + 2M f Ks

δs
ηn −−−→n→∞ ε,

for some η < 1 and Ks < ∞ (see Lemma 3.12). Since ε > 0 is arbitrary we have
shown that E( f (R∗n)) −−−→n→∞ E( f (R)), and Theorem 1.7 follows. ��

4 Application of Kesten’s renewal theorem

In order to prove Theorem 1.9, as mentioned in the introduction, we will use Kesten’s
renewal theorem [17] which allows us to describe the desired tail asymptotic (1.10).
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Before we state Kesten’s theorem we have to introduce necessary definitions and to
prove a number of auxiliary results. They are contained in the three lemmas of Sect. 4.1
and they will be used later on to check that the assumptions of Kesten’s renewal theo-
rem are satisfied in our settings. The material presented in this section is adapted from
[3,6,7,16].

4.1 Some general results

At first we define the probability space � = GN. Bor(X) stands for the Borel σ -field
of the space X . For any sequence ω = (a1, a2, . . .) ∈ � we write

Sn(ω) = an · · · · · a1 ∈ G, for n ∈ N and S0(ω) = Id ∈ G.

Let θ : � �→ � be the shift on �, i.e.

θ((a1, a2, . . .)) = (a2, a3, . . .), for every ω = (a1, a2, . . .) ∈ �.

As in Sect. 2 (see (2.4) and (2.7)), for every n ∈ N, we define the kernel

qs
n(x, ω)=

n∏

k=1

qs
1(Sk−1(ω) · x, ak), for every x ∈S

+ and ω = (a1, a2, . . .)∈�.

The cocycle property gives a very useful relation, i.e. for every m, n ∈ N, x ∈ S
+ and

ω ∈ � we have

qs
m+n(x, ω) = qs

n(x, Sn(ω))qs
m(Sn(ω) · x, Sm(θn(ω))). (4.2)

The Kolmogorov’s consistency theorem guarantees the existence of the probability
measure Q

s
x on � being the unique extension of measures qs

k (x, a)μ∗k(da). Next we
define the probability measure

Q
s =

∫

S+
Q

s
xπ

s(dx), on �,

where π s is the unique Qs stationary measure on S
+ (see Theorem 2.3). By E

s
x we

denote the expectation corresponding to Q
s
x . We extend the probability space � to

a� = S
+ ×�. Let aθ :a � �→a � be the shift defined by

aθ(x, ω) = (a1 · x, θ(ω)), for every x ∈ S
+ and ω = (a1, a2, . . .) ∈ �.

We now define the probability measure aQs on a� as follows

aQs =
∫

S+
δx ⊗Q

s
xπ

s(dx).
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In the same way, starting with μ∗ instead of μ, and with kernels qs,∗
n instead of qs

n
(see (2.7) for the definition) we introduce the measure Q

s,∗
x , and E

s,∗
x denotes its

expectation. Moreover, the probabilities Q
s,∗ and a Qs,∗ are defined similarly, i.e.

Q
s,∗ =

∫

S+
Q

s,∗
x π s∗(dx), and a Qs,∗ =

∫

S+
δx ⊗Q

s,∗
x π s∗(dx),

where π s∗ is the unique Qs∗ stationary measure on S
+ (see Theorem 2.3). Let ω∗ =

(a∗1 , a∗2 , . . .) ∈ � for every ω = (a1, a2, . . .) ∈ �. Then Sn(ω∗) = a∗n · · · · · a∗1 ∈ G.

Remark 4.3 The properties of the stationary measures π s and π s∗ developed in Sect. 2
imply that (�,Bor(�), Q

s, θ), (�,Bor(�), Q
s,∗, θ), (a�,Bor(a�), a Qs,aθ) and

(a�,Bor(a�), a Qs,∗,aθ) are ergodic.

From now we will work with the measures Q
s,∗
x , π s∗, Q

s,∗ and a Qs,∗. Clearly, all
the results stated below remain valid for the measures Q

s
x , π

s, Q
s and a Qs .

We begin with the following

Lemma 4.4 Assume that μ ∈ M1(G), s ∈ Iμ and � = [suppμ] satisfies condition
(i − p). Then there exists c > 0 such that Q

s,∗
x ≤ cQ

s,∗ for every x ∈ S
+. Moreover

the constant c does not depend on x ∈ S
+.

Proof We can repeat the argument from Sect. 3 in [3]. ��
Lemma 4.5 Assume that μ ∈ M1(G), s ∈ Iμ and � = [suppμ] satisfies condition
(i − p). Then for every x ∈ S

+ we have

Q
s,∗
x ({ω ∈ � : ∃ C > 0 ∀ n ∈ N |Sn(ω)x | ≥ C‖Sn(ω)‖}) = 1, and (4.6)

Q
s,∗ ({ω ∈ � : ∃ C > 0 ∀ n ∈ N |Sn(ω)x | ≥ C‖Sn(ω)‖}) = 1. (4.7)

Proof Observe that (4.7) implies (4.6). Indeed, let

Zx = {ω ∈ � : ∃ C > 0 ∀ n ∈ N |Sn(ω)x | ≥ C‖Sn(ω)‖},

and let Zc
x be the complement of Zx . Then by Lemma 4.4

Q
s,∗
x (Zc

x ) ≤ cQ
s,∗(Zc

x ) = 0.

The proof of (4.7) is adapted from [16]. Condition (1.3) yields the existence of n0 ∈ N

and 0 < τ < 1 such that

p = P
∗ ({ω ∈ � : Sn0(ω)(i, j) > τ, for all 1 ≤ i, j ≤ d}) > 0, (4.8)

where P
∗ = μ⊗N∗ . Let us introduce

T (ω) = min{n ≥ n0 : Sn0(θ
n−n0(ω)) ∈ G◦}.
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First of all we need to show that

Q
s,∗
x ({ω ∈ � : T (ω) <∞}) = 1, for every x ∈ S

+ and (4.9)

Q
s,∗({ω ∈ � : T (ω) <∞}) = 1. (4.10)

Notice that (4.9) immediately gives (4.10), since the event {T <∞} does not depend
on x ∈ S

+ and Q
s,∗ = ∫

S+ Q
s,∗
x π s∗(dx).

Assume for a moment that (4.10) holds and prove (4.7). If x = (x1, . . . , xn) ∈ S
+

is such that x > 0 then for any a ∈ G we have

|ax | ≥ d−1/2
d∑

i=1

(a(i, 1)x1 + · · · + a(i, n)xn) ≥ d−1/2 min
1≤i≤d

xi

d∑

i, j=1

a(i, j)

≥ d−1/2 min
1≤i≤d

xi · sup
|y|=1

(
d∑

i=1

(a(i, 1)y1 + · · · + a(i, n)yn)2

)1/2

= d−1/2 min
1≤i≤d

xi‖a‖.

We will use this inequality to show that (4.7) holds. Now fix an arbitrary x ∈ S
+

and let �1 = {T < ∞} ⊆ �. By assumption, Q
s,∗(�1) = 1. It is easy to see that

ST (ω∗)x > 0 for ω∗ ∈ �1. Fix ω∗ ∈ �1 then for any n ≥ T (ω∗) we have

|Sn(ω
∗)x | = |Sn−T (θT (ω∗))ST (ω∗)x | ≥ d−1/2 min

1≤i≤d
(ST (ω∗)x)i‖Sn−T (θT (ω∗))‖

≥ d−1/2 min1≤i≤d(ST (ω∗)x)i

‖ST (ω∗)‖ ‖Sn(ω∗)‖.

It implies that |Sn(ω∗)x | ≥ CT,x (ω
∗)‖Sn(ω∗)‖ holds with the constant CT,x (ω

∗) > 0
independent of n ≥ T (ω∗), for every ω∗ ∈ �1. Recall that G is the multiplicative
semigroup of d × d invertible matrices with positive entries such that every row and
every column contains a strictly positive element. Now take n ≤ T (ω∗) and notice
that Cn,x (ω

∗) = |Sn(ω∗)x |
‖Sn(ω∗)‖ > 0, for every ω∗ ∈ �1 by the definition of G and x ∈ S

+.
Therefore, we take C(ω∗) = min{C1,x (ω

∗), . . . , CT,x (ω
∗)} > 0, and (4.7) follows.

We need only to prove (4.9). In this purpose we define the events

Ek = {ω ∈ � : Sn0(θ
k(ω))(i, j) ≥ τ, for all 1 ≤ i, j ≤ d}, k ∈ N.

We show that there exists γ ∈ [0, 1) such that for all l ∈ N

Q
s,∗
x ({T > ln0}) ≤ Q

s,∗
x ({E jn0 does not occur for any 0 ≤ j < l}) ≤ γ l . (4.11)
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On fixed points of a generalized multidimensional affine recursion 683

Then (4.11) with Borel–Cantelli lemma yield Q
s,∗
x ({T <∞}) = 1. In fact it is enough

to show that

Q
s,∗
x (Ec

0 ∩ · · · ∩ Ec
(l−1)n0

) ≤ γ Q
s,∗
x (Ec

0 ∩ · · · ∩ Ec
(l−2)n0

) ≤ γ 2
Q

s,∗
x (Ec

0 ∩ · · · ∩ Ec
(l−3)n0

)

≤ · · · and inductively · · · ≤ γ l . (4.12)

Let rs = infx∈S+ es∗(x)

supx∈S+ es∗(x)
. Then

Q
s,∗
x (Ec

0 ∩ · · · ∩ Ec
(l−2)n0

∩ E(l−1)n0 )

=
∫

�

1Ec
0∩···∩Ec

(l−2)n0
∩E(l−1)n0

(ω∗)qs,∗
ln0

(
x, Sln0 (ω

∗)
)
μ∗ln0 (dω)

≥ rsτ
s

ds/2κn0 (s)

∫

�

1Ec
0∩···∩Ec

(l−2)n0
(ω∗)1E(l−1)n0

(ω∗)qs,∗
(l−1)n0

(
x, S(l−1)n0 (ω

∗)
)
μ∗ln0 (dω)

= rsτ
s

ds/2κn0 (s)
P
∗(E(l−1)n0 )Q

s,∗
x (Ec

0 ∩ · · · ∩ Ec
(l−2)n0

)

= prsτ
s

ds/2κn0 (s)
Q

s,∗
x (Ec

0 ∩ · · · ∩ Ec
(l−2)n0

), (4.13)

(n0 ∈ N and τ > 0 were defined in (4.8)) since by (4.2) we have the following lower
bound

1E(l−1)n0
(ω∗)qs,∗

ln0

(
x, Sln0 (ω

∗)
)

= 1E(l−1)n0
(ω∗)qs,∗

(l−1)n0

(
x, S(l−1)n0 (ω

∗)
)
qs,∗

n0

(
S(l−1)n0 (ω

∗) · x, Sn0

(
θ(l−1)n0 (ω∗)

))

≥ rs

κn0 (s)
1E(l−1)n0

(ω∗)qs,∗
(l−1)n0

(
x, S(l−1)n0 (ω

∗)
)∣∣Sn0

(
θ(l−1)n0 (ω∗)

)(
S(l−1)n0 (ω

∗) · x
)∣∣s

≥ rs

ds/2κn0 (s)
1E(l−1)n0

(ω∗)qs,∗
(l−1)n0

(
x, S(l−1)n0 (ω

∗)
)

×
⎛

⎝
d∑

i=1

Sn0

(
θ(l−1)n0 (ω∗)

)(
S(l−1)n0 (ω

∗) · x
)
i

⎞

⎠
s

≥ rsτ
s

ds/2κn0 (s)
1E(l−1)n0

(ω∗)qs,∗
(l−1)n0

(
x, S(l−1)n0 (ω

∗)
)
.

Let 0 < γs = min
{

1,
prsτ

s

ds/2κn0 (s)

}
. For γ = 1− γs ∈ [0, 1), by (4.13), we obtain that

Q
s,∗
x (Ec

0 ∩ · · · ∩ Ec
(l−2)n0

∩ Ec
(l−1)n0

) ≤ γ Q
s,∗
x (Ec

0 ∩ · · · ∩ Ec
(l−2)n0

∩ G(l−1)n0)

= γ Q
s,∗
x (Ec

0 ∩ · · · ∩ Ec
(l−2)n0

).

This finishes the proof of (4.12) and completes the proof of the lemma. ��
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Lemma 4.14 Assume that μ ∈ M1(G), s ∈ Iμ and � = [suppμ] satisfies condition
(i− p). Assume additionally that

∫
G ‖a‖s log+ ‖a‖μ(da) <∞. Then for any x ∈ S

+

lim
n→∞

1

n
log |Sn(ω)x | = lim

n→∞
1

n
log ‖Sn(ω)‖ = α(s), Q

s,∗
x and Q

s,∗ a.s., (4.15)

where

α(s) =
∫

S+

∫

G

log |ax |qs,∗
1 (x, a)μ∗(da)π s∗(dx). (4.16)

Proof We show that f (x, ω) = log |S1(ω)x | is a Qs,∗ integrable. Observe that there
exists 0 < δ < 1 such that

0 < |ax | < δ �⇒ |ax |s log |ax |−1 ≤ 1.

Then

a Qs,∗(| f |) =
∫

S+

∫

�

| log |S1(ω)y||δx (dy)Q
s,∗
x (dω)π s∗(dx)

=
∫

S+

∫

G

|ax |s | log |ax || es∗(a · x)

κ(s)es∗(x)
μ∗(da)π s∗(dx)

≤ Cs

∫

S+

∫

G

|ax |s | log |ax ||μ∗(da)π s∗(dx)

≤ Cs

∫

G

‖a‖s log+ ‖a‖μ(da)+ Cs

∫

S+

∫

G

|ax |s log− |ax |μ∗(da)π s∗(dx)

≤ Cs

∫

G

‖a‖s log+ ‖a‖μ(da)+ Csμ∗ ⊗ π s∗({(a, x) ∈ G × S
+ : 0 < |ax | < δ})

+ Cs log

(
1

δ

)
μ∗ ⊗ π s∗({(a, x) ∈ G × S

+ : δ < |ax | ≤ 1})

≤ Cs

∫

G

‖a‖s log+ ‖a‖μ(da)+ Cs

(
1+ log

(
1

δ

))
<∞.

Hence in view of Remark 4.3, on the one hand, by the Birkhoff ergodic theorem
(applied to a Qs,∗ and aθ ) we obtain

a Qs,∗
({

(x, ω) ∈ a� : lim
n→∞

1

n
log |Sn(ω)x |

= lim
n→∞

1

n
·

n−1∑

k=0

f ◦a θk(x, ω) = a Qs,∗( f ) = α(s)

})
= 1.
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On the other hand by the Kingman subadditive ergodic theorem (applied to Qs,∗ and
θ ) we have that for every s ∈ Iμ there exists αs ∈ R such that

Q
s,∗

({
ω ∈ � : lim

n→∞
1

n
log ‖Sn(ω)‖ = αs

})
= 1.

Define �′ = {ω ∈ � : ∃ C > 0 ∀ n ∈ N |sn(ω)x | ≥ C‖Sn(ω)‖ and limn→∞ 1
n log

‖Sn(ω)‖ = αs}, for every x ∈ S
+. By Lemma 4.5 and calculations stated above

we know that Q
s,∗(�′) = 1. Fix arbitrary x ∈ S

+, take any ω∗ ∈ �′ and notice that

0 < Cx (ω
∗) ≤ |Sn(ω∗)x |

‖Sn(ω∗)‖ ≤ 1,

imply

1

n
log Cx (ω

∗)+ 1

n
log ‖Sn(ω∗)‖ ≤ 1

n
log

|Sn(ω∗)x |
‖Sn(ω∗)‖ +

1

n
log ‖Sn(ω∗)‖

≤ 1

n
log ‖Sn(ω∗)‖.

Since limn→∞ 1
n log Cx (ω

∗) = 0 we have

Q
s,∗

({
ω ∈ � : lim

n→∞
1

n
log |Sn(ω)x | = αs

})
= 1.

And so, in view of Lemma 4.4,

Q
s,∗
x

({
ω ∈ � : lim

n→∞
1

n
log |Sn(ω)x | = αs

})
= 1,

for all x ∈ S
+ (by considering complements). Since a Qs,∗ = ∫

S+ δx ⊗ Q
s,∗
x π s∗(dx)

we get α(s) = αs and Lemma 4.14 follows. ��

4.2 Kesten’s renewal theorem

For x ∈ S
+ and ω ∈ � define X0(ω) = x , and for n ∈ N

Xn(ω) = gn(ω) · Xn−1(ω) = Sn(ω) · x,

and

Vn(ω) = log |Sn(ω)x | =
n∑

i=1

Ui (ω), where Ui (ω) = log |gi (ω)Xi−1(ω)|.
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Let F(dt |x, y) be the conditional law of U1, given X0 = x , X1 = y, i.e.

Q
s,∗
x (X1 ∈ A, U1 ∈ B) =

∫

A

∫

B

F(dt |x, y)Qs∗(x, dy).

A function g : S
+ × R → R is called direct Riemann integrable (dRi), if it is

Bor(S+) × Bor(R) measurable and for every fixed x ∈ S
+ and 0 < L < ∞ the

function t �→ g(x, t) is Riemann integrable on [−L , L], and satisfies

∞∑

k=0

∞∑

l=−∞
(k + 1) sup {|g(x, t)| : x ∈ Ck+1 \ Ck, and t ∈ [l, l + 1]} <∞,

(4.17)

where

Ck =
{

x ∈ S
+ : Q

s,∗
x

({
Vm

m
≥ 1

k
, for all m ≥ k

})
≥ 1

2

}
, for all k ∈ N.

(4.18)

For the reader’s convenience we formulate Kesten’s renewal theorem [17].

Theorem 4.19 Assume the following conditions are satisfied:

• Condition I.1 There exists π s∗ ∈ M1(S+) such that π s∗Qs∗ = π s∗ and for every
open set U ⊆ S

+ with π s∗(U ) > 0, Q
s,∗
x (Xn ∈ U for some n ∈ N) = 1 for every

x ∈ S
+.

• Condition I.2

∫

S+

∫

S+

∫

R

|t |F(dt |x, y)Qs∗(x, dy)π s∗(dx) <∞,

and for all x ∈ S
+,

lim
n→∞

Vn

n
= α(s) =

∫
t F(dt |x, y)Qs∗(x, dy)π s∗(dx) > 0 Q

s,∗
x – a.e. (4.20)

• Condition I.3 There exists a sequence {ζi } ⊂ R such that the group generated by
ζi is dense in R and such that for each ζi and λ > 0 there exists y = y(ζi , λ) ∈ S

+
with the following property: for each ε > 0, there exists A ∈ Bor(S+) with
π s∗(A) > 0 and m1, m2 ∈ N, τ ∈ R such that for any x ∈ A

Q
s,∗
x

{|Xm1 − y| < ε, |Vm1 − τ | ≤ λ
}

> 0, (4.21)

Q
s,∗
x

{|Xm2 − y| < ε, |Vm2 − τ − ζi | ≤ λ
}

> 0. (4.22)

123



On fixed points of a generalized multidimensional affine recursion 687

• Condition I.4 For each fixed x ∈ S
+, ε > 0 there exists r0 = r0(x, ε) > 0 such

that for all real valued functions f measurable with respect to Bor
(
(S+ × R)N

)

and for all y ∈ S
+ with |x − y| < r0 one has:

E
s,∗
x f (X0, V0, X1, V1, . . .) ≤ E

s,∗
y f ε(X0, V0, X1, V1, . . .)+ ε| f |∞,

E
s,∗
y f (X0, V0, X1, V1, . . .) ≤ E

s,∗
x f ε(X0, V0, X1, V1, . . .)+ ε| f |∞,

where f ε(x0, v0, x1, v1, . . .) = sup { f (y0, u0, y1, u1, . . .) : ∀ i ∈ N |xi − yi |+
|vi − ui | < ε}.

If a function g : S+ ×R �→ R is jointly continuous and (dRi), then for every x ∈ S
+

lim
t→∞E

s,∗
x

( ∞∑

n=0

g(Xn, t − Vn)

)
= 1

α(s)

∫

S+

⎛

⎝
∫

R

g(y, x)dx

⎞

⎠π s∗(dy),

for α(s) defined in (4.20).

In the next four subsections we indicate how the material developed in Sects. 2
and 4.1, under the hypotheses of Theorem 1.9, may be used to check the assumptions
of Theorem 4.19. From now we will work with the measures Q

χ,∗
x for x ∈ S

+, where
χ > 0 solves equation κ(χ) = 1

N . Such χ > 0 exists since κ(s) is strictly log-con-
vex and lims→s∞ κ(s) > 1

N , (see Theorems 1.9 and 2.3). We are going to prove that
Conditions I.1–I.4 are satisfied for s = χ .

4.3 Condition I.1.

Proof of Condition I.1. Theorem 2.3 with Breiman’s strong law of large numbers [2]
allow us to repeat the argument contained in Sect. 5 in [3]. ��

4.4 Condition I.2.

Proof of Condition I.2. We know that
∫

G ‖a‖χ log+ ‖a‖μ(da) <∞, hence

∫

S+

∫

S+

∫

R

|t |F(dt |x, y)Qχ∗ (x, dy)π
χ∗ (dx)

=
∫

S+

∫

�

| log |ax ||qχ,∗
1 (x, a)μ∗(da)π

χ∗ (dx) <∞,

by the arguments of Lemma 4.14 applied to s = χ . The only point remaining concerns
the positivity of α(χ) defined in Lemma 4.14 (see also (4.20)).

Notice that if ε > 0 is sufficiently small, then for every t ∈ (χ − ε, χ), we have
κ(t) < κ(χ), since κ(s) is strictly log-convex and lims→s∞ κ(s) > 1

N , (see Theo-
rems 1.9 and 2.3). Fix t ∈ (χ − ε, χ) such that χ/t ≤ 4/3 and take γ > 0 such that
κ(t)eγ < κ(χ). In view of inequality (3.11), there is C > 0 such that
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∫

G

‖a‖tμ∗n∗ (da) ≤ Cκn(t)eγ n/3, for every n ∈ N,

since 1 ≤ eγ /3. Fix x ∈ S
+. Then for δ = γ /3 we have

μ∗n∗ ({a ∈ G : |ax |t > e−δn}) ≤ eδn
∫

G

|ax |tμ∗n∗ (da) ≤ Cκn(t)e2γ n/3,

Now let ρ = γ /6. Throughout the proof will use the convention that D > 0 stands
for a large positive constant whose value varies from occurrence to occurrence. Then

Q
χ,∗
x ({ω ∈ � : |Sn(ω)x |t < eρn}) =

∫

G

1{a∈G:|ax |t <eρn}qχ,∗
n (x, a)μ∗n∗ (da)

≤ D

κn(χ)

∫

G

1{a∈G:|ax |t <eρn}|ax |χμ∗n∗ (da)

≤ D

κn(χ)

∫

G

1{a∈G:|ax |t <e−δn}|ax |χμ∗n∗ (da)+ D

κn(χ)

×
∫

G

1{a∈G:e−δn≤|ax |t <eρn}|ax |χμ∗n∗ (da)

≤ Dκn(t)

κn(χ)
· 1

κn(t)
e−

χ−t
t δn

∫

G

|ax |t et∗(a · x)

et∗(x)
μ∗n∗ (da)

+ D

κn(χ)
μ∗n∗ ({a ∈ G : |ax |t > e−δn})e ρnχ

t

≤ De
−
(
γ+ χ−t

t δ
)

n + De−γ ne2γ n/3eρnχ/t

≤ De
−
(
γ+ χ−t

t δ
)

n + De−γ n/3+2γ n/9 ≤ De−βn,

for some β > 0. Thus

∑

n∈N

Q
χ,∗
x

({
ω ∈ � : log |Sn(ω)x | < ρn

t

})
<∞.

Therefore, by the Borel–Cantelli lemma we obtain that for every x ∈ S
+

Q
χ,∗
x

({
ω ∈ � : lim inf

n→∞
log |Sn(ω)x |

n
≥ ρ

t
> 0

})
= 1.

This shows that α(χ) > 0Q
χ,∗
x a.s. for every x ∈ S

+ and finishes the proof of Condi-
tion I.2. ��
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4.5 Condition I.3.

Proof of Condition I.3. Proposition 2.1 and Theorem 2.3 allow us to use arguments
from Section 5 in [3]. ��

4.6 Condition I.4.

Proof of Condition I.4. The proof is a consequence of Lemma 4.5 and the argument
given by Kesten [16]. ��

4.7 Direct Riemann integrability

Now we derive an interesting criterium which significantly simplifies condition (4.17).

Lemma 4.23 Assume that the hypotheses of Theorem 1.9 are satisfied. If h is any
bounded and continuous function on S

+ × R which satisfies

∞∑

l=−∞
sup

{|h(x, t)| : x ∈ S
+, and t ∈ [l, l + 1]} <∞, (4.24)

then h is direct Riemann integrable i.e. it satisfies condition (4.17).

Proof We give only a sketch of the proof, for more details we refer to [3]. First of all
we prove that Ck = S

+, for some sufficiently large k ∈ N, (Ck was defined in (4.18)).
Then obviously (4.24) implies (4.17). There is a finite number N1 of points such that
S
+ ⊆⋃N1

i=1 B(xi , 2), since S
+ is compact. Let

�′ =
{

lim
n→∞

log |Sn xi |
n

= α(χ) > 0, and ∃C > 0 ∀n ∈ N |Sn xi | ≥ C‖Sn‖,

for all 1 ≤ i ≤ N1

}
.

Then Q
χ,∗(�′) = 1, by Lemmas 4.5 and 4.14. Take any y ∈ S

+, then there exists
1 ≤ i ≤ N1 such that y ∈ B(xi , 2). This implies the existence of m0 ∈ N such that

Q
χ,∗

({
ω ∈ � : log |Sn(ω)y|

n
> α(χ)/2, for all n ≥ m0

})
≥ 1− 1

2c
,

with the constant c > 0 defined in Lemma 4.4. Taking any 1/k ≤ min{α(s)/2, 1/m0}
Lemma 4.23 follows. ��
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5 Proof of the main theorem

In this section we give a detailed proof of Theorem 1.9. For that we consider the
following smooth version of P({〈R, u〉 > t})

G(u, t) = 1

et eχ∗ (u)

et∫

0

rχ
P({〈R, u〉 > r})dr, where (u, t) ∈ S

+ × R, (5.1)

where R ∈ R
d+ solves Eq. (1.1). Let B(S+×R) be the space of all bounded measurable

functions on S
+ × R. Define a linear operator � : B(S+ × R) �→ B(S+ × R) given

by the formula

� f (u, t) = E
χ,∗
u ( f (X1, t − V1))

= 1

κ(χ)

∫

�

f (S1(ω
∗) · u, t−log |S1(ω

∗)u|)eχ∗ (S1(ω
∗) · u)

eχ∗ (u)
|S1(ω

∗)u|χP(dω).

Observe that for every n ∈ N

�n f (u, t) = E
χ,∗
u ( f (Xn, t − Vn)).

First we express G(u, t) as a potential of a function g(u, t) that turns out later on to
be direct Riemann integrable. Recall that A, A1, A2, . . . ∈ G is a sequence of inde-
pendent copies of G-valued random matrix A distributed according to μ and they are
independent of R. For n ∈ N let Sn = An · · · · · A1 ∈ G.

Lemma 5.2 Assume that the hypotheses of Theorem 1.9 are satisfied. Let G(u, t) be
the function defined in (5.1), and

G0(u, t) = N

et eχ∗ (u)

et∫

0

rχ
P({〈AR, u〉 > r})dr,

then

G0(u, t) = �G(u, t), and (5.3)

lim
n→∞�nG(u, t) = lim

n→∞E
χ,∗
u (G(Xn, t − Vn)) = 0. (5.4)

Moreover,

G(u, t) =
∞∑

n=0

�ng(u, t), where (5.5)
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g(u, t) = 1

et eχ∗ (u)

et∫

0

rχ (P({〈R, u〉 > r})− NP({〈AR, u〉 > r})) dr. (5.6)

Proof First of all we show G0(u, t) = �G(u, t). Indeed,

G0(u, t) = N

et eχ∗ (u)

et∫

0

rχ
P({〈R, A∗ · u〉 |A∗u| > r})dr

= E

⎛

⎜⎝
N

et eχ∗ (u)

et∫

0

rχ 1( r
|A∗u| ,∞

)(
〈
R, A∗ · u〉)dr

⎞

⎟⎠

= E

⎛

⎜⎜⎜⎝
N

et

|A∗u|e
χ∗ (u)

et

|A∗u|∫

0

rχ 1(r,∞)(
〈
R, A∗ · u〉)|A∗u|χ dr

⎞

⎟⎟⎟⎠

= E

⎛

⎜⎜⎜⎝
1

et

|A∗u|e
χ∗ (A∗ · u)

et

|A∗u|∫

0

rχ 1(r,∞)(
〈
R, A∗ · u〉)dr

1

κ(χ)

eχ∗ (A∗ · u)

eχ∗ (u)
|A∗u|χ

⎞

⎟⎟⎟⎠

= �G(u, t).

Now we have

�nG(u, t)

= E
χ,∗
u (G(Xn, t − Vn)) = E

∗
(

G(Sn · u, t − log |Snu|) 1

κn(χ)

eχ∗ (Sn · u)

eχ∗ (u)
|Snu|χ

)

= N n
E
∗

⎛

⎜⎜⎝
|Snu|

et eχ∗ (Sn · u)

et
|Sn u|∫

0

rχ 1(r,∞)(〈R, Sn · u〉)eχ∗ (Sn · u)

eχ∗ (u)
|Snu|χ dr

⎞

⎟⎟⎠

= N n
E
∗

⎛

⎜⎜⎝
|Snu|χ+1

et eχ∗ (u)

et
|Sn u|∫

0

rχ1(r,∞)(〈R, Sn · u〉)dr

⎞

⎟⎟⎠

= N n
E
∗

⎛

⎜⎜⎝
|Snu|χ+1

et eχ∗ (u)

et
|Sn u|∫

0

rχ1(|Snu|r,∞)(
〈
S∗n R, u

〉
)dr

⎞

⎟⎟⎠
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= N n

et eχ∗ (u)

et∫

0

rχ
E
∗ (1(r,∞)(

〈
S∗n R, u

〉
)dr

)

= N n

et eχ∗ (u)

et∫

0

rχ
E
(
1(r,∞)(〈A1 · · · · · An R, u〉)dr

)
,

where Sn = An · · · · · A1. By the continuity of Iμ 
 s �→ κ(s) (see Theorem 2.3) we
can find p < χ , such that κ(p) = 1−ε

N , for some ε > 0, then

E
(
1(r,∞)(〈A1 · · · · · An R, u〉))≤ E (‖A1 · · · · · An‖p) E (|R|p)

r p
≤ Cκn(p)E (|R|p)

r p
.

This implies that

�nG(u, t) = N n

et eχ∗ (u)

et∫

0

rχ
E
(
1(r,∞)(〈A1 · · · · · An R, u〉)dr

)

≤ C N n

et eχ∗ (u)

et∫

0

rχ−pκn(p)E
(|R|p) dr

≤ C N n

et eχ∗ (u)
E
(|R|p)

(
1− ε

N

)n et∫

0

rχ−pdr

≤ CE (|R|p)
eχ∗ (u)

et (χ−p)(1− ε)n −−−→n→∞ 0.

Now it is easy to see that for any n ∈ N we have

G(u, t) = g(u, t)+�g(u, t)+�2g(u, t)+ · · · +�n−1g(u, t)+�nG(u, t),

and (5.5) follows. This completes the proof of Lemma 5.4. ��
Lemmas 5.8 and 5.16 below imply that g(u, t) is direct Riemann integrable. Lem-
mas 5.7, 5.12 and 5.14 contain some necessary technicalities.

Lemma 5.7 Assume that the hypotheses of Theorem 1.9 are satisfied. Then
P({〈R, u〉 = r}) = 0, for every (u, r) ∈ S

+ × R
+ ∪ {0}. Moreover, for every r ≥ 0

the functions

S
d−1 
 u �→ P({〈R, u〉 > r}), and S

d−1 
 u �→ P({〈AR, u〉 > r}),

are continuous.
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On fixed points of a generalized multidimensional affine recursion 693

Proof At the beginning, we assume that the law η of B is nonsingular, i.e. ‖ηs‖ < 1.
Let ν be the law of R and μ be the law of A ∈ G. Let ∗ be the classical convolution on
R

d . Moreover, we define ξ = μ∗G ν, where μ∗G ν(D) = ∫
G

∫
Rd 1D(ax)ν(dx)μ(da)

and D ∈ Bor(Rd). Obviously ξ defines a probability measure on R
d which coincide

with the distribution of AR. Notice that ν = ξ∗N ∗η, since R
D=∑N

i=1 Ai Ri + B, and
observe that by the Lebesgue decomposition we obtain

νa + νs = ν = (ξa + ξs)
∗N ∗ (ηa + ηs)

=
N∑

n=0

(
N

n

)
ξ∗n

a ∗ ξ∗(N−n)
s ∗ ηa +

N∑

n=1

(
N

n

)
ξ∗n

a ∗ ξ∗(N−n)
s ∗ ηs

+ (ξ∗N
s ∗ ηs)a + (ξ∗N

s ∗ ηs)s,

and by its uniqueness νs = (ξ∗N
s ∗ ηs)s . This gives ‖νs‖ ≤ ‖ξs‖N‖ηs‖. Again by the

Lebesgue decomposition and its uniqueness we have ξ = μ∗G ν = μ∗G νa+μ∗G νs ,
hence ‖ξs‖ = ‖(μ ∗G ν)s‖ ≤ ‖μ ∗G νs‖ ≤ ‖νs‖. Now combining ‖νs‖ ≤ ‖ξs‖N‖ηs‖
and ‖ξs‖ ≤ ‖νs‖ we get ‖νs‖ ≤ ‖νs‖N‖ηs‖, if ‖νs‖ > 0, then 1 ≤ ‖νs‖N−1‖ηs‖ ≤
‖ηs‖ < 1. This contradiction shows that ‖νs‖ = 0 hence ν is absolutely continuous
with respect to the Lebesgue measure, which in turn implies that P({〈R, u〉 = r}) = 0,
for every (u, r) ∈ S

+ × R
+ ∪ {0}.

If the law η of B is singular, i.e. ‖ηs‖ = 1, then for fixed (u, r) ∈ S
+ × R

+ ∪ {0},
we have P({〈R, u〉 = r}) = 0, since P({〈B, u〉 = r}) = 0.

Now we prove that S
d−1 
 u �→ P({〈R, u〉 > r}) is continuous. Take any

(un)n∈N ⊆ S
+ such that limn→∞ un = u ∈ S

+ and consider

|P({〈R, un〉 > r})− P({〈R, u〉 > r})| ≤ P({〈R, un〉 > r, and 〈R, u〉 ≤ r})
+ P({〈R, un〉 ≤ r, and 〈R, u〉 > r}),

then

P({〈R, u〉 ≤ r < 〈R, un〉}) = P({0 ≤ r − 〈R, u〉 < 〈R, un〉 − 〈R, u〉})
≤ P({0 ≤ r − 〈R, u〉 ≤ |R||un − u|}), and

P({〈R, un〉 ≤ r < 〈R, u〉}) = P({〈R, un〉 − 〈R, u〉 ≤ r − 〈R, u〉 < 0})
≤ P({−|R||un − u| ≤ r − 〈R, u〉 < 0}).

If |un − u| < 1/m, then

|P({〈R, un〉 > r})− P({〈R, u〉 > r})| ≤ P({| 〈R, u〉 − r | ≤ |R||un − u|})
≤ P({| 〈R, u〉 − r | ≤ |R|/m}).

We also know that limm→∞ P({| 〈R, u〉 − r | ≤ |R|/m}) = P({〈R, u〉 = r}) = 0,
hence

lim
n→∞ |P({〈R, un〉 > r})− P({〈R, u〉 > r})| = 0.
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The same arguments work for u �→ P({〈AR, u〉 > r}), since A ∈ G is independent
of R. ��
Lemma 5.8 Under the assumptions of Theorem 1.9, there exists 0 < β1 < 1 such
that for every β ∈ [0, β1), there is a finite constant Cβ > 0, such that for every
(u, t) ∈ S

+ × R we have

g1(u, t) = 1

et eχ∗ (u)

et∫

0

rχ

∣∣∣∣P
({

max
1≤i≤N

〈Ai Ri , u〉 > r

})
− NP({〈AR, u〉 > r})

∣∣∣∣ dr

≤ Cβe−β|t |, (5.9)

and

∞∫

0

(
NP({〈AR, u〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u〉 > r

}))
rχ+β−1dr

= 1

χ + β
E

(
N∑

i=1

〈Ai Ri , u〉χ+β −
(

max
1≤i≤N

〈Ai Ri , u〉
)χ+β

)
. (5.10)

Moreover, S
+ × R 
 (u, t) �→ g1(u, t) is continuous.

In the proof we extend the approach developed in [13].

Proof Let β1 ∈ (0, min{1, χ/2}) and take any 0 ≤ β < β1. Then for every t > 0

I1(t) = e−βt e−(1−β)t

et∫

0

rχ

∣∣∣∣P
({

max
1≤i≤N

〈Ai Ri , u〉 > r

})
− NP({〈AR, u〉 > r})

∣∣∣∣ dr

≤ e−βt

et∫

0

rχ+β−1
∣∣∣∣P

({
max

1≤i≤N
〈Ai Ri , u〉 > r

})
− NP({〈AR, u〉 > r})

∣∣∣∣ dr.

Now observe that NP({〈AR, u〉 > r}) ≥ P
({

max1≤i≤N 〈Ai Ri , u〉 > r
})

, then

1∫

0

(
NP({〈AR, u〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u〉 > r

}))
rχ+β−1dr

≤ N

1∫

0

rχ+β−1dr <∞.

Let us define F(y) = P({〈AR, u〉 > y}), and γ = χ + β − β1, and notice
NP({〈AR, u〉 > r})−P

({
max1≤i≤N 〈Ai Ri , u〉 > r

}) = (1−F(r))N−1+N F(r) ≤
e−N F(r) − 1+ N F(r), and for some c > 0
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On fixed points of a generalized multidimensional affine recursion 695

F(r) = P({〈AR, u〉 > r}) ≤ r−γ
E
(〈AR, u〉γ ) ≤ cr−γ .

Clearly, 1 <
χ+β

γ
, and β1 < χ/2 implies γ = χ + β − β1 ≥ χ/2 + β/2, hence

χ+β
γ

< 2. Then

∞∫

1

(
NP({〈AR, u〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u〉 > r

}))
rχ+β−1dr

≤
∞∫

1

(
e−N F(r) − 1+ N F(r)

)
rχ+β−1dr ≤

∞∫

1

(
e−cNr−γ − 1+ cNr−γ

)
rχ+β−1dr

=
∞∫

1

(
e−cNr−γ − 1+ cNr−γ

)((
cNr−γ

) 1

cN

)− χ+β
γ dr

r

= (cN )
χ+β

γ

γ

cN∫

0

(e−r − 1+ r)r
− χ+β

γ
−1

dr ≤ (cN )
χ+β

γ

γ

∞∫

0

(e−r − 1+ r)r
− χ+β

γ
−1

dr

≤ (cN )
χ+β

γ

γ

⎛

⎝1

2

1∫

0

r
1− χ+β

γ dr +
∞∫

1

r
− χ+β

γ dr

⎞

⎠

= (cN )
χ+β

γ

γ

⎛

⎝ 1

2
(

2− χ+β
γ

) + 1
χ+β

γ − 1

⎞

⎠ <∞.

We have shown that I1(t) ≤ Cβe−βt , for every β ∈ [0, β1) and t ≥ 0 with the constant
Cβ > 0 which does not depend on u ∈ S

+. If is not difficult to see that the statement
is clear for t ≤ 0. A straightforward applications of Fubini theorem yields

∞∫

0

(
NP({〈AR, u〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u〉 > r

}))
rχ+β−1dr

=
∞∫

0

(
E

(
N∑

i=1

1{〈Ai Ri ,u〉>r}

)
− E

(
1{max1≤i≤N 〈Ai Ri ,u〉>r}

)
)

rχ+β−1dr

= E

⎛

⎝
∞∫

0

(
N∑

i=1

1{〈Ai Ri ,u〉>r} − 1{max1≤i≤N 〈Ai Ri ,u〉>r}

)
rχ+β−1dr

⎞

⎠
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= E

⎛

⎜⎝
N∑

i=1

〈Ai Ri ,u〉∫

0

rχ+β−1dr −
max1≤i≤N 〈Ai Ri ,u〉∫

0

rχ+β−1dr

⎞

⎟⎠

= 1

χ + β
E

(
N∑

i=1

〈Ai Ri , u〉χ+β −
(

max
1≤i≤N

〈Ai Ri , u〉
)χ+β

)
.

In order to show the continuity of S
+ × R 
 (u, t) �→ g1(u, t) it is enough to prove

the continuity of

u �→ 1

et

et∫

0

rχ

(
NP({〈AR, u〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u〉 > r

}))
dr. (5.11)

In this purpose observe that P
({

max1≤i≤N 〈Ai Ri , u〉 > r
}) = 1−(1− P({〈AR, u〉 >

r}))N = 1− (1− F(r))N , where F(y) = P({〈AR, u〉 > y}), hence Lemma 5.7 guar-
antees that

u �→ NP({〈AR, u〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u〉 > r

})

= (1− F(r))N − 1+ N F(r),

is continuous. Observe that

NP({〈AR, u〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u〉 > r

})

≤
{

N , if r ≤ 1,

e−N F(r) − 1+ N F(r), if r > 1,

then arguing in a similar way as above with β = 0, and using Lebesgue dominated
convergence theorem we obtain the continuity of (5.11) and the lemma follows. ��

Now we are going to prove inequality (5.13) and (5.15), that will provide necessary
estimates for Lemma 5.16. The first one was proved in [13] and was sufficient in the
one dimensional case discussed there. The second one is more subtle and allows us to
deal with our situation.

Here and subsequently "α# denotes the smallest integer ≥ α.

Lemma 5.12 Let α > 1 and p = "α# ≥ 2. For any sequence of nonnegative i.i.d.
random variables Y, Y1, Y2, . . . such that E(Y p−1) <∞, and any k ∈ N we have

E

⎛

⎝
(

k∑

i=1

Yi

)α

−
k∑

i=i

Y α
i

⎞

⎠ ≤ kα
E

(
Y p−1

) α
p−1

. (5.13)

123



On fixed points of a generalized multidimensional affine recursion 697

Proof As mentioned before the proof is contained in [13]. ��

Lemma 5.14 Let p ∈ N and β ∈ (0, 1). Then for any δ ∈
(

0,
p(1−β)

p+1

)
, for any

sequence of nonnegative i.i.d. random variables Y, Y1, Y2, . . . such that E(Y p−δ) <

∞, and any k ∈ N we have

E

⎛

⎝
(

k∑

i=1

Yi

)p+β

−
k∑

i=1

Y p+β
i

⎞

⎠ ≤ k p+1
E
(
Y p−δ

) p+β
p−δ . (5.15)

Proof Define Ap(k) = {( j1, . . . , jk) ∈ Z
k : j1+ · · ·+ jk = p, and 0 ≤ ji < p} and

observe that

(
k∑

i=1

Yi

)p−δ

=
⎛

⎝
(

k∑

i=1

Yi

)p⎞

⎠

p−δ
p

=
⎛

⎝
k∑

i=1

Y p
i +

∑

( j1,..., jk )∈Ap(k)

(
p

j1, . . . , jk

)
Y j1

1 · · · · · Y jk
k

⎞

⎠

p−δ
p

≤
k∑

i=1

Y p−δ
i +

∑

( j1,..., jk )∈Ap(k)

(
p

j1, . . . , jk

)(
Y j1

1 · · · · · Y jk
k

) p−δ
p

.

Now observe that β + δ < β + p(1−β)
p+1 < 1. By the above inequality

(
k∑

i=1

Yi

)p+β

=
(

k∑

i=1

Yi

)p−δ ( k∑

i=1

Yi

)β+δ

=
⎛

⎝
(

k∑

i=1

Yi

)p−δ

−
k∑

i=1

Y p−δ
i

⎞

⎠
(

k∑

i=1

Yi

)β+δ

+
(

k∑

i=1

Y p−δ
i

)(
k∑

i=1

Yi

)β+δ

≤
⎛

⎝
∑

( j1,..., jk )∈Ap(k)

(
p

j1, . . . , jk

)(
Y j1

1 · · · · · Y jk
k

) p−δ
p

⎞

⎠
(

k∑

i=1

Y β+δ
i

)

+
(

k∑

i=1

Y p−δ
i

)(
k∑

i=1

Y β+δ
i

)
.
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It follows that

⎛

⎝
k∑

i=1

Yi

⎞

⎠
p+β

−
k∑

i=1

Y p+β
i ≤

k∑

i=1

∑

( j1,..., jk )∈Ap(k)

(
p

j1, . . . , jk

)(
Y j1

1 · · · · · Y jk
k

) p−δ
p Y β+δ

i

+
∑

i �= j

Y p−δ
i Y β+δ

j .

But ji ≤ p−1. Hence ji (p−δ)
p +β+δ ≤ 1

p (p−1)(p−δ)+β+δ ≤ p+β−1+ δ
p < p−δ,

since

0 < δ <
p(1− β)

p + 1
�⇒ δ

(
1+ 1

p

)
< 1− β �⇒ β − 1+ δ

p
< −δ

�⇒ p + β − 1+ δ

p
< p − δ.

Now we have

E

(
Y

j1(p−δ)

p
1 · · · · · Y

ji (p−δ)

p +β+δ

i · · · · · Y
jk (p−δ)

p
k

)

≤ ‖Y‖
j1(p−δ)

p
p−δ · · · · · ‖Y‖

ji (p−δ)

p +β+δ

p−δ · · · · · ‖Y‖
jk (p−δ)

p
p−δ

= ‖Y‖p+β
p−δ ,

because j1 + · · · + jk = p. Observe that

δ <
p(1− β)

p + 1
�⇒ δ <

p − β

2
�⇒ β + δ < p − δ,

hence E

(
Y p−δ

i Y β+δ
j

)
= ‖Y‖p−δ

p−δ‖Y‖β+δ
β+δ ≤ ‖Y‖p+β

p−δ , and so

E

⎛

⎝
(

k∑

i=1

Yi

)p+β

−
k∑

i=1

Y p+β
i

⎞

⎠ ≤ k(k p − k)E
(
Y p−δ

) p+β
p−δ + k2

E
(
Y p−δ

) p+β
p−δ

= k p+1
E
(
Y p−δ

) p+β
p−δ .

��

Lemma 5.16 Under the assumptions of Theorem 1.9, there exists 0 < β2 < 1 such
that for every β ∈ [0, β2), there is a finite constant Cβ > 0, such that for every
(u, t) ∈ S

+ × R we have
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On fixed points of a generalized multidimensional affine recursion 699

g2(u, t) = 1

et eχ∗ (u)

et∫

0

rχ

∣∣∣∣P({〈R, u〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u〉 > r

})∣∣∣∣ dr

(5.17)≤ Cβe−β|t |,

and

∞∫

0

rχ+β−1
(

P({〈R, u〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u〉 > r

}))
dr (5.18)

= 1

χ + β
E

(
〈R, u〉χ+β −

(
max

1≤i≤N
〈Ai Ri , u〉

)χ+β
)

.

Moreover, S
+ × R 
 (u, t) �→ g2(u, t) is continuous.

Proof Let 0 < β2 < min{ε, β1} (ε>0 as in Theorem 1.9 and β1 > 0 as in Lemma 5.8)
and take β ∈ [0, β2). Then for every t > 0

I2(t) = e−βt e−(1−β)t

et∫

0

rχ

∣∣∣∣P({〈R, u〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u〉 > r

})∣∣∣∣ dr

≤ e−βt

∞∫

0

rχ+β−1
∣∣∣∣P({〈R, u〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u〉 > r

})∣∣∣∣ dr.

Observe that 〈R, u〉 ≥ max1≤i≤N 〈Ai Ri , u〉. Then applying Fubini theorem as in
Lemma 5.8 we obtain

∞∫

0

rχ+β−1
(

P({〈R, u〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u〉 > r

}))
dr

= 1

χ + β
E

(
〈R, u〉χ+β −

(
max

1≤i≤N
〈Ai Ri , u〉

)χ+β
)

.

If 0 < χ < 1, take any β ∈ [0, β2) such that 0 < χ + β ≤ 1 and notice

E

(
〈R, u〉χ+β −

(
max

1≤i≤N
〈Ai Ri , u〉

)χ+β
)

≤ E
(〈B, u〉χ+β

)+ E

(
N∑

i=1

〈Ai Ri , u〉χ+β −
(

max
1≤i≤N

〈Ai Ri , u〉
)χ+β

)
<∞,

since E(|B|χ+ε) <∞ for some ε > 0, and the second term is finite by Lemma 5.8.
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If χ ≥ 1 we write

E

(
〈R, u〉χ+β −

(
max

1≤i≤N
〈Ai Ri , u〉

)χ+β
)

= E

(
〈R, u〉χ+β −

N∑

i=1

〈Ai Ri , u〉χ+β

)

+ E

(
N∑

i=1

〈Ai Ri , u〉χ+β −
(

max
1≤i≤N

〈Ai Ri , u〉
)χ+β

)
.

We have to estimate only the first term, since the second one is finite by Lemma 5.8.
In this purpose we use Lemmas 5.12 and 5.14. Notice that

E

(
〈R, u〉χ+β −

N∑

i=1

〈Ai Ri , u〉χ+β

)

= E

⎛

⎝
〈

N∑

i=1

Ai Ri + B, u

〉χ+β

−
〈

N∑

i=1

Ai Ri , u

〉χ+β
⎞

⎠

+ E

⎛

⎝
〈

N∑

i=1

Ai Ri , u

〉χ+β

−
N∑

i=1

〈Ai Ri , u〉χ+β

⎞

⎠

≤ (χ + β)E

⎛

⎝|B|
(

N∑

i=1

|Ai Ri | + |B|
)χ+β−1⎞

⎠

+ E

⎛

⎝
〈

N∑

i=1

Ai Ri , u

〉χ+β

−
N∑

i=1

〈Ai Ri , u〉χ+β

⎞

⎠ .

E

(
|B|

(∑N
i=1 |Ai Ri | + |B|

)χ+β−1
)

is finite, since E(‖A‖χ+β−1) <∞, E(|B|χ+ε)

<∞ and Theorem 1.7 yields E(|R|χ+β−1) <∞.
If χ �∈ N we assume additionally that "χ+β2# = "χ#, (which holds for sufficiently

small β2 > 0). Applying inequality (5.13) with p = "χ# = "χ + β# and β ∈ [0, β2)

we obtain

E

⎛

⎝
〈

N∑

i=1

Ai Ri , u

〉χ+β

−
N∑

i=1

〈Ai Ri , u〉χ+β

⎞

⎠ ≤ Nχ+β
(
E

(
〈AR, u〉p−1

)) χ+β
p−1

<∞,

since p − 1 < χ .
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If χ ∈ N and β ∈ [0, β2) take any δ ∈
(

0,
p(1−β)

p+1

)
as in Lemma 5.14 with p = χ ,

then by inequality (5.15) we get

E

⎛

⎝
〈

N∑

i=1

Ai Ri , u

〉χ+β

−
N∑

i=1

〈Ai Ri , u〉χ+β

⎞

⎠ ≤ Nχ+1 (
E
(〈AR, u〉χ−δ

)) χ+β
χ−δ <∞.

Finally, we have proved I2(t) ≤ Cβe−β|t |, for every β ∈ [0, β2) and t > 0 with
Cβ < ∞ independent of u ∈ S

+. If t ≤ 0 there is nothing to do and the statement
follows.

It remains to prove that S
+ ×R 
 (u, t) �→ g2(u, t) is continuous. In this purpose

it suffices to show continuity of

u �→ 1

et

et∫

0

rχ

(
P({〈R, u〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u〉 > r

}))
dr. (5.19)

Observe that

1

et

et∫

0

rχ

∣∣∣∣P({〈R, un〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , un〉 > r

})

−
(

P({〈R, u0〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u0〉 > r

})) ∣∣∣∣dr

≤
∞∫

0

rχ−1
∣∣∣∣P({〈R, un〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , un〉 > r

})

−
(

P({〈R, u0〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u0〉 > r

})) ∣∣∣∣dr.

It is enough to show that the last integral converges to 0 as limn→∞ un = u0. In this
purpose we will use an extended version of Lebesgue dominated convergence theorem
(see for instance in [1]). Namely,

Theorem 5.20 Given a measure space (X,M, μ) (where μ may take values in
[0,∞]). Let ( fn)n∈N and (hn)n∈N, f and h be M measurable, real valued functions
on X. Suppose

• limn→∞ fn = f and limn→∞ hn = h a.e. on X,
• (hn)n∈N and h are all μ integrable on X and limn→∞

∫
X hndμ = ∫

X hdμ,
• | fn| ≤ hn a.e. on X for every n ∈ N.

Then f is μ integrable on X and limn→∞
∫

X fndμ = ∫
X f dμ.
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We will apply Theorem 5.20 with

fn(r) = rχ−1
∣∣∣∣P({〈R, un〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , un〉 > r

})

−
(

P({〈R, u0〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u0〉 > r

})) ∣∣∣∣,

hn(r) = rχ−1
(

P({〈R, un〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , un〉 > r

})

+
(

P({〈R, u0〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u0〉 > r

})))
,

and

h(r) = 2rχ−1
(

P({〈R, u0〉 > r})− P

({
max

1≤i≤N
〈Ai Ri , u0〉 > r

}))
.

Clearly, | fn| ≤ hn for every n ∈ N, and (hn)n∈N and h are all integrable. Lemma 5.7
guarantees that limn→∞ fn(r) = 0 and limn→∞ hn(r) = h(r). In order to show that
limn→∞

∫∞
0 hn(r)dr = ∫∞

0 h(r)dr , notice that by (5.18) with β = 0 we have to
show that

lim
n→∞E

(
〈R, un〉χ −

(
max

1≤i≤N
〈Ai Ri , un〉

)χ)

= E

(
〈R, u0〉χ −

(
max

1≤i≤N
〈Ai Ri , u0〉

)χ)
. (5.21)

But in view of the first part of this lemma and the estimates given there (5.21) is a
simple consequence of a classical Lebesgue dominated convergence theorem. This
finishes the proof of Lemma 5.16. ��
Proof of Theorem 1.9 From Lemma 5.2 we know that

G(u, t) =
∞∑

n=0

�ng(u, t),

where

g(u, t) = 1

et eχ∗ (u)

et∫

0

rχ (P({〈R, u〉 > r})− NP({〈AR, u〉 > r})) dr.

As a consequence of Lemmas 5.8 and 5.16 the function S
+ × R 
 (u, t) �→ g(u, t)

is jointly continuous. Moreover, it is possible to find β > 0 and a positive constant
Cβ <∞ such that
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|g(u, t)| ≤ Cβe−β|t |, for every (u, t) ∈ S
+ × R,

since |g(u, t)| ≤ g1(u, t)+ g2(u, t), for g1(u, t) and g2(u, t) defined in Lemmas 5.8
and 5.16, respectively. This shows that g(u, t) satisfies condition (4.24). By the Ke-
sten’s renewal theorem 4.19 we obtain

lim
t→∞G(u, t) = lim

t→∞E
χ,∗
x

( ∞∑

n=0

g(Xn, t − Vn)

)

= 1

α(χ)

∫

S+

⎛

⎝
∫

R

g(y, x)dx

⎞

⎠π
χ∗ (dy) = Cχ .

In other words we have proved that for every u ∈ S
+

lim
t→∞G(u, t) = lim

t→∞
1

et eχ∗ (u)

et∫

0

rχ
P({〈R, u〉 > r})dr = Cχ ≥ 0.

Hence in view of Lemma 9.3 of [5], for every u ∈ S
+

lim
t→∞ tχP({〈R, u〉 > t}) = Cχ eχ∗ (u).

It remains to prove that Cχ > 0 for every χ ≥ 1. (It is worth emphasizing, as we
mentioned in the discussion given after Theorem 1.9, that the case when χ < 1 is
unavailable at the moment. However, some positive results in this direction can be
found in [4].) In this purpose notice that

Cχ = 1

α(χ)

∫

S+

⎛

⎝
∫

R

g(u, t)dt

⎞

⎠π
χ∗ (du)

= 1

α(χ)

∫

S+

∫

R

⎛

⎜⎝
1

et eχ∗ (u)

et∫

0

rχ (P({〈R, u〉 > r})− NP({〈AR, u〉 > r}))dr

⎞

⎟⎠ dtπχ∗ (du)

= 1

α(χ)

∫

S+

∫

R

⎛

⎝ 1

et eχ∗ (u)

t∫

−∞
es(χ+1)(P({〈R, u〉 > es})− NP({〈AR, u〉 > es}))ds

⎞

⎠ dtπχ∗ (du)

= 1

α(χ)

∫

S+

∫

R

∞∫

s

(
es(χ+1)

et eχ∗ (u)
(P({〈R, u〉 > es})− NP({〈AR, u〉 > es}))dt

)
dsπχ∗ (du)

= 1

α(χ)

∫

S+

∫

R

esχ

eχ∗ (u)
(P({〈R, u〉 > es})− NP({〈AR, u〉 > es}))dsπχ∗ (du)

= 1

α(χ)

∫

S+

1

eχ∗ (u)

∞∫

0

rχ−1(P({〈R, u〉 > r})− NP({〈AR, u〉 > r}))drπ
χ∗ (du)
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= 1

α(χ)

∫

S+

1

eχ∗ (u)

∞∫

0

E

(
1{〈∑N

i=1 Ai Ri+B,u
〉
>r

} −
N∑

i=1

1{〈Ai Ri ,u〉>r}

)
rχ−1drπ

χ∗ (du)

= 1

α(χ)χ

∫

S+

1

eχ∗ (u)
E

⎛

⎝
〈

N∑

i=1

Ai Ri + B, u

〉χ

−
N∑

i=1

〈Ai Ri , u〉χ
⎞

⎠π
χ∗ (du)

≥ 1

α(χ)χ

∫

S+

1

eχ∗ (u)
E
(〈B, u〉χ )π

χ∗ (du),

since we have used (the fact that we are working with positive matrices and χ ≥ 1 are
indispensable)

(
N∑

i=1

〈Ai Ri , u〉χ + 〈B, u〉χ
)1/χ

≤
N∑

i=1

〈Ai Ri , u〉 + 〈B, u〉.

We need only to show that

∫

S+

1

eχ∗ (u)
E
(〈B, u〉χ )π

χ∗ (du) > 0. (5.22)

We will show that there exists cχ > 0 such that

∫

S+

〈x, u〉χ π
χ∗ (du) ≥ cχ‖x‖χ , (5.23)

for every x ∈ R
d+. Observe that S

+ 
 x �→ ∫
S+ 〈x, u〉χ π

χ∗ (du) is continuous and
nonzero for every x ∈ S

+, since suppπ
χ∗ is not contained in any proper subspace of

S
+ (see Sect. 2). This allows us to conclude that x �→ ∫

S+ 〈x, u〉χ π
χ∗ (du) attains its

minimum cχ > 0 on S
+, and in fact this proves (5.23).

In order to prove (5.22) notice that by (5.23) we obtain

∫

S+

1

eχ∗ (u)
E
(〈B, u〉χ )π

χ∗ (du)

≥ 1

supu∈S+ eχ∗ (u)

∫

S+
E
(〈B, u〉χ )π

χ∗ (du)

≥ 1

supu∈S+ eχ∗ (u)
E

⎛

⎝
∫

S+

〈B, u〉χ π
χ∗ (du)

⎞

⎠

≥ cχ

supu∈S+ eχ∗ (u)
E
(‖B‖χ ) > 0,

since P({B > 0}) > 0. This completes the proof of Theorem 1.9. ��
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