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Abstract We consider the stochastic recursion Xn+1 = Mn+1 Xn + Qn+1, (n ∈ N),
where Qn, Xn ∈ R

d , Mn are similarities of the Euclidean space R
d and (Qn,Mn)

are i.i.d. We study asymptotic properties at infinity of the invariant measure for the
Markov chain Xn under assumption E[log |M |] = 0 i.e. in the so called critical case.
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1 Introduction

We consider the vector space V = R
d endowed with the scalar product 〈u, v〉 =

∑d
i=1 uivi and the norm |u| = (

∑d
i=1 |ui |2) 1

2 . Let Aff(V ) = V � GL(V ) be the
group of affine mappings of V , i.e. Aff(V ) is the semi-direct product of the linear
group GL(V ) and the group of translations of V . The action of the group Aff(V ) on
V is given by the following formula

hu = gu + b, h = (b, g) ∈ Aff(V), u ∈ V .

Given a probability measure μ on Aff(V ) and u ∈ V , we consider the recurrence
relation with random coefficients
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594 K. Kolesko

Xu
0 = u,

Xu
n = Mn Xu

n−1 + Qn,
(1)

where the pairs (Qn,Mn) ∈ Aff(V ) are independent with law μ.
The random process Xu

n has been studied mostly in the one dimensional settings
i.e. when V = R and (Q,M) ∈ R � R

+. It is well known that if E log M < 0 and
E log+ |Q| < ∞, then there exists a unique stationary measure ν of the Markov chain
{Xu

n }, i.e. a probability measure ν on R such that

ν( f ) = μ ∗ ν( f ) =
∫

Aff(V )

∫

V

f (au + b)ν(du)μ(da db) (2)

for any bounded function f on R. One of the most significant result is due to Kesten
[14] (see also Goldie [11]), who under a number of further assumptions, the main being
the existence of α > 0 such that EMα = 1, proved that the measure ν is α-regularly
varying, i.e.

lim
t→∞ tαν{|u| > t} = C+. (3)

Recently in a number of papers also the critical case, E log M = 0, has been inves-
tigated. The main result is due to Babillot et al. [1], who proved that there exists a
unique invariant Radon measure ν of the process {Xu

n }, i.e. the measure satisfying (2),
but in this case it is infinite on R. Its behaviour was described by Buraczewski [6] and
Brofferio et al. [5]. They proved the Kesten theorem in the critical case:

lim
t→∞ ν{r1t < |u| ≤ r2t} = C+ log(r2/r1).

The multidimensional situation, d > 1, is much harder. In the contracting case it was
studied by Kesten [14] and later on by Le Page [15] and Guivarc’h [13], who applying
quite involved techniques obtained results similar to (3). However the critical case,
when the top Lapunov exponent is zero, seems to be still not well understood and up
to now has been studied only in very restrictive settings. Existence and uniqueness of
the invariant measure was proved by Brofferio [3,4] in a particular case, when M are
either upper triangular matrices or they are of the form DK , D being a dilation and
K an element of O(d) (in fact this was proved only for K = I d, but exactly the same
proof is valid in the general case). Behaviour of ν at infinity was studied in [5] only if
M is a dilation matrix and then the result is reduced indeed to a one dimensional case.

In this paper we assume that Mn belongs to the similarity group G of V , i.e. the
group of elements g of GL(V ) satisfying

|gu| = |g||u|,

for every u ∈ V . The group of similarities G is the direct product of R
∗+ and the

orthogonal group O(V ). Consequently any element g of G can be uniquely written
in the form g = tk for t ∈ R

∗+ and k ∈ O(V ). By μ we denote the projection of
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Multidimensional SDS in critical case 595

the measure μ onto G i.e. the law of the random variable Mn . Let Gμ be the closed
subgroup of G generated by the support of μ.

The structure of Gμ is well known (see e.g. Introduction in [7]). If we assume that
Gμ is not contained in the orthogonal group O(V ), then there are two cases: either
the projection of Gμ into R

∗+ is R
∗+ (non-lattice case) or its subgroup isomorphic to

Z (lattice case).
It turns out that the center Zμ of the group Gμ is relatively large i.e. Gμ/Zμ is

compact. In the first case one can find a subgroup Aμ of Gμ that is isomorphic to R
∗+

and is contained in the center Zμ. It yields that Gμ is isomorphic to Oμ × Aμ, for
Oμ = Gμ∩O(V ). In the second case, in generally, it is not true that Gμ is isomorphic
to the direct product of Oμ and a projection of Gμ of R

∗+. However, one can find
c ∈ Gμ and Aμ = 〈c〉 such that Gμ = Oμ � Aμ and Aμ contains a central subgroup
of Gμ as a finite index subgroup (see Proposition A.1 in Appendix in [7] for more
details). In both cases there exists a compact subset Kμ ⊆ Gμ such that Gμ = ZμKμ.

Now, similarly to [8], we introduce the generalized polar coordinates. First set
Σ1 = S1 = {v ∈ V : |v| = 1} in the lattice case or Σ1 = {v ∈ V : 1 ≤ |v| < |c|}.
The set Σ1 is the fundamental domain for the action Aμ on V \ {0}. Any element
v ∈ V can be written in a unique way as v = a(v)v for a(v) ∈ Aμ and v ∈ Σ1.

Since G is unimodular, as well as any its closed subgroup, the left and the right
Haar measure coincide. By mG (resp. mGμ , m Aμ) we denote the Haar measure on G
(resp. on Gμ, Aμ) normalized in such a way that mG({g : 1 ≤ |g| < t}) = log t ,
where t is an arbitrary positive number in the non-lattice case or |c| in the lattice. For
simplicity we shall write just dg instead of mGμ . By H = V �G will denote the affine
group with similarity matrix.

Under this settings i.e. when M is a similarity matrix, Eq. (1) has been recently stud-
ied in the contracting case E log |M | < 0 by Buraczewski et al. [7,8]. They described
the tail of the stationary measure [8] and then proved limit theorems related to partial
sums Xu

1 + · · · + Xu
n , [7].

Here we study the critical case, i.e. from now we assume that E
[
log |M |] = 0.

Existence and uniqueness of the invariant measure ν in the critical case was proved
by Brofferio [3] under the assumptions

∀u P [Mu + Q = u] < 1, P [|M | = 1] < 1, (A1)

E

[
(log |M |)2 + (log+ |Q|)2+ε] < ∞ for some ε > 0, (A2)

E
[
log |M |] = 0. (A3)

The main purpose of the present paper is to describe the behaviour of ν at infinity.
Our main result is

Theorem 1 Assume that hypotheses (A1)–(A3) are satisfied and moreover

E
[|M |δ + |M |−δ + |Q|δ] < ∞, (A4)

then there exists a positive Radon measureΛ on V \{0} such that the family of measure
{δ(0,g) ∗ ν}g∈Gμ restricted to V \ {0} satisfies
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596 K. Kolesko

lim|g|→0, g∈Gμ

δ(0,g) ∗ ν = Λ, (4)

where the convergence is in the vague topology i.e. for any φ ∈ Cc(V \ {0}).

lim|g|→0, g∈Gμ

∫

V \{0}
φ(gu)ν(du) =

∫

V \{0}
φ(u)Λ(du). (5)

MoreoverΛ is Gμ-invariant. That is there exists a finite positive Oμ-invariant measure
σμ on Σ1 such that

Λ = m Aμ ⊗ σμ. (6)

In particular we obtain new results in the one dimension, when Mn and Qn are just
scalars and admit both positive and negative values. In this case we have

Corollary 1 Under the assumptions of Theorem 1 the invariant measure ν in one
dimensional non lattice case satisfies ν(±tr1,±tr2) ∼ C± log r2

r1
as t goes to infinity.

Moreover, if P [M < 0] > 0, then C− = C+.

We obtain also new results concerning the lattice case (compare [5]):

Corollary 2 Assume that the hypotheses of Theorem 1 are satisfied and moreover
M ∈ {cn : n ∈ Z} almost surely for some c > 1, then

lim
n→∞

∫

V

φ(u/cn)ν(du) =
∑

k∈Z

∫

1≤|u|<c

φ(cku)σμ(du),

for any φ ∈ Cc(V \{0}).
In order to prove the theorem first we proceed as in [5]. We prove that there ex-

ists compactly supported function Φ such that δ(0,g) ∗ ν(Φ) > 0 for |g| < 1 and
δ(0,gh)∗ν(Φ)
δ(0,g)∗ν(Φ) → 1 as |g| → 0. Moreover, the family of measures

δ(0,g)∗ν
δ(0,g)∗ν(Φ) is vaguely

relatively compact when |g| ≤ 1. Next given φ ∈ Cc(V \ {0}) we define the function
fφ on G:

fφ(g) = δ(0,g) ∗ ν(φ) =
∫

V

φ(gu)ν(du)

and we consider the Poisson equation on G

E
[

fφ(gM)
] = fφ(g)+ ψφ(g).

In the one dimensional setting when G = R
+, in [5,6], the Poisson equation was

solved and the main result was deduced from the explicit form of positive solutions,
which is known if G is abelian [16]. However if G �= R

+ and it is not abelian we
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Multidimensional SDS in critical case 597

are still able to describe behaviour at infinity of solutions of the Poisson equation. For
this purpose we apply a technique due to Durrett and Liggett [9] based on the duality
lemma, which allows to modify the Poisson equation and to consider fφ as a solution
of the classical renewal equation (for a random walk with a drift). All the details will
be figure out in the next section.

In this paper we will slightly abuse the notation considering φ ∈ Cc(V \ {0}) (resp.
C1

c (V \ {0})) also as a function Cc(V ) (resp. C1
c (V )) with 0 /∈ suppφ.

2 Proof of Theorem 1

2.1 Some auxiliary results

First we prove here some estimates of the measure ν. We follow the proof of Theorem
2.1 in [5]. However, since now we deal with nonabelian group Gμ acting on a multi-
dimensional vector space V and some of the estimates are very delicate, for the reader
convenience we present all the details, emphasizing the steps where nonabelianity
plays a role.

Lemma 1 There exists a radial function Φ ∈ C1
c (V \ {0}) such that the function

fΦ(g) = δ(0,g) ∗ ν(Φ) is positive whenever |g| < 1 and the family of measures

δ(0,g) ∗ ν
fΦ(g)

restricted to V \ {0} is vaguely relatively compact as |g| < 1.
The function Φ can be chosen in such a way that the integral

∫
Gμ
Φ(gu)dg is

independent of u ∈ V \ {0}.
Proof First we prove that there exists R large enough such that δ(0,g) ∗ ν({1/R ≤ u ≤
R}) > 0 for |g| < 1. For any α and β, consider the annulus C(α, β) = {u ∈ V : α ≤
|u| ≤ β}. It is easy to check that for all (b, a) ∈ H the following implication holds

u ∈ C

(
α + |b|

|a| ,
β − |b|

|a|
)

⇒ au + b ∈ C(α, β).

Since ν in invariant with respect to μn , the n-th convolution power of the measure μ,
we have

δ(0,g) ∗ ν(C(α, β)) =
∫

V

∫

H

1C(α,β)(g(ax + b))μn(db, da)ν(dx)

≥
∫

V

∫

H

1C(|g|−1α,|g|−1β)(ax + b)1U (b, a)μn(db, da)ν(dx)

≥ μ∗n(U )ν

(

C

(

max
(b,a)∈U

|g|−1α + |b|
|a| , min

(b,a)∈U

|g|−1β − |b|
|a|

))

.

(7)

123



598 K. Kolesko

Since P[|M | = 1] < 1, there are h− = (b−, a−) and h+ = (b+, a+) belonging to the
support of μ such that |a−| < 1 < |a+|. For fixed g ∈ Gμ with |g| < 1, there exists a
natural number n such that |a+|n−1 ≤ |g|−1 ≤ |a+|n . Clearly, if hn = (b(hn), a(hn))

is the n-th power of an element h = (b, a) ∈ H then a(hn) = an and b(hn) =∑n−1
i=0 ai b, hence

|b(hn)| ≤
n−1∑

i=0

|a|i |b| = |a|n − 1

|a| − 1
|b|. (8)

The γ -neighbourhood of an element h ∈ H is the open set Uγ defined by

Uγ (h) = {(b, a) ∈ H : e−γ < |a · a(h)| < eγ , |b − b(h)| < γ }.

Since h+ is in the support of μ it follows that for any γ > 0, μn(Uγ (hn+)) > 0 and
moreover for (b, a) ∈ Uγ (hn+), by (8) we have

|g|−1α + |b|
|a| ≤ |a(h+)|nα + |b(hn+)| + γ

|a(h+)|ne−γ

≤ eγ
(

α + (|a(h+)|n − 1)|b(h+)|
|(a(h+)| − 1)|a(h+)|n + γ

|a(h+)|n
)

= eγ
(

α + |b(h+)|
|a(h+)| − 1

+ γ

)

=: α′

and on the other side

|g|−1β−|b|
|a| ≥ |a(h+)|n−1β − |b(hn+)|−γ

|a(h+)|neγ

≥ e−γ
(

β

|a(h+)| − |b(h+)|
|a(h+)| − 1

− γ

)

=: β ′.

Thus is u ∈ C(α′, β ′), then au + b ∈ C(α, β) for any (b, a) ∈ Uγ (hn+). One can
see that α′ is decreasing when α does and β ′ goes to infinity when β does. Therefore,
since ν is a Radon measure with infinite mass, there exists sufficiently large R such
that taking 1

α
= β = R and appropriate α′ and β ′, by (7) we get

δ(0,g) ∗ ν(C(1/R, R)) ≥ μn(Uγ (h
n+))ν(C(α′, β ′)) > 0 (9)

for any g with |g| ≤ 1 and n = �(|g| log |u|)−1� − 1.
Without any loss of generality we may assume R > 2 max{1/|a−|, |a+|}. We con-

sider a family of compact sets K n± = C( 2
R |a±|−n, R

2 |a±|−n) covering V \ {0}.
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Multidimensional SDS in critical case 599

Observe that for γ < log(4/3), (b, a) ∈ Uγ (hn±) and |g| < [2R(|b(hn±)| + γ )]−1

we have:

|g|−1/R + |b|
|a| ≤ |g|−1eγ

1/R + |g|(|b(hn±)| + γ )

|a±|n

≤ |g|−1 2|a±|−n

R

(

eγ
1 + |g|R(|b(hn±)| + γ )

2

)

≤ |g|−1 2|a±|−n

R
.

On the other hand

|g|−1 R − |b|
|a| ≥ |g|−1e−γ R − |g|(|b(hn±)| + γ )

|a±|n

≥ |g|−1 R|a±|−n

2
· 2e−γ

(

1 − |g|(|b(hn±)| + γ )

R

)

≥ |g|−1 R|a±|−n

2
.

Therefore

C

( |g|−1/R + |b|
|a| ; |g|−1 R − |b|

|a|
)

⊇ C

(

|g|−1 2

|a±|n R
; |g|−1 R

2|a±|n
)

for any (b, a) ∈ Uγ (hn±) and by (7) we have

δ(0,g) ∗ ν(C(1/R, R)) ≥ μ∗n(Uγ (h
n+))ν(C(|g|−12|a±|−n/R, |g|−1|a±|−n R/2))

= C−1
K n±
δ(0,g) ∗ ν(K n±).

Take a radial function Φ0 ∈ C1
c (V \ {0}) such thatΦ0 ≥ 1C(1/R,R). Then, since {K n±}

is a covering of V \ {0}, for any compact set K in V \{0} there exists a finite number
of compact sets of the type K n± covering K . Hence

δ(0,g) ∗ ν(K ) ≤ CK δ(0,g) ∗ ν(Φ0)

for some constant CK and g with small enough norm. Since δ(0,g) ∗ ν(Φ0) > 0 when
|g| < 1 the above inequality holds for |g| < 1 with possibly larger CK . This proves
that that

δ(0,g)∗ν
δ(0,g)∗ν(Φ0)

is vaguely bounded as |g| < 1, hence relatively vaguely compact.
Finally, one can easily see that in the non-lattice case the function Φ0 is exactly

the one we are looking for. Indeed, we just set Φ = Φ0 and to check the integral
condition, since Φ is radial, we write

∫

Gμ

Φ(gu)dg =
∫

Gμ

Φ(gg0u)dg =
∫

Gμ

Φ(gv)dg,

for g0 ∈ Gμ with |g0| = |v|/|u|.
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600 K. Kolesko

In the lattice case we have to modify slightly the function Φ0. Namely, take

Φ(u) :=
∫

g′∈G
1<|g′|≤c

Φ0(g
′u)mG(dg′).

Since Φ is, up to some constant, greater than 1C(1/R,R) the first part of the Lemma is
valid also for Φ. Finally observe that

∫

Gμ

Φ(gu)dg =
∫

Gμ

∫

g′∈G,1<|g′|≤c

Φ0(g
′gu)mG(dg′)dg =

∫

G

Φ0(g
′u)mG(dg′)

and applying the same argument as in the previous case we prove the Lemma.

Lemma 2 Every accumulation point of the family
δ(0,g)∗ν

fΦ(g)
as |g| goes to 0 is

Gμ-invariant. In consequence, for any h ∈ Gμ

lim|g|→0,g∈Gμ

fΦ(gh)

fΦ(g)
= 1.

Remark 1 Notice that since Φ is radial fΦ is radial as well. Therefore, if we define
L(|g|−1) = fΦ(g), the Lemma says that L is slowly varying in the non-lattice case
(compare with the slowly varying function L defined in Theorem 2.1 in [5]).

Proof First we prove that if η is an accumulation point of
δ(0,g)∗ν

fΦ(g)
along a sequence

belonging to Zμ, i.e. if

lim|zn |→0,zn∈Zμ

δ(0,zn) ∗ ν(φ)
fΦ(zn)

= η(φ) ∀φ ∈ Cc(V \ {0}), (10)

then η is Gμ-invariant.
Fix a function φ ∈ C1

c (V \ {0}) and observe that for all (b, a) ∈ H there exist a
compact set K ⊂ V \ {0} and a constant C such that

|φ(g(au + b))− φ(gau)| ≤ C |gb|1K (g(au)) (11)

for |g| satisfying |gb| < 1
2 dist(0, suppφ).

We claim that the function

h(g) = δ(0,g) ∗ η(φ) = lim
n→∞

δ(0,gzn) ∗ ν(φ)
fΦ(zn)

defined on Gμ is μ-superharmonic. First observe that by (11)

|δ(0,zn) ∗ δ(b,a) ∗ ν(φ)− δ(0,zn) ∗ δ(0,a) ∗ ν(φ)|
fΦ(zn)

≤ C |znb| · δ(0,zn) ∗ ν(aK )

fΦ(zn)

n→∞−→ 0
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and then, by Fatou’s Lemma we can write

∫

Gμ

h(ga)μ(da) =
∫

H

h(ga)μ(db, da) =
∫

H

δ(0,ga) ∗ η(φ)μ(db, da)

=
∫

H

lim
n→∞

δ(0,g) ∗ δ(0,a) ∗ δ(0,zn) ∗ ν(φ)
fΦ(zn)

μ(db, da)

=
∫

H

lim
n→∞

δ(0,g) ∗ δ(0,zn) ∗ δ(b,a) ∗ ν(φ)
fΦ(zn)

μ(db, da)

≤ lim
n→∞

δ(0,g) ∗ δ(0,zn) ∗ μ ∗ ν(φ)
fΦ(zn)

= lim
n→∞

δ(0,g) ∗ δ(0,zn) ∗ ν(φ)
fΦ(zn)

= δ(0,g) ∗ η(φ) = h(g).

Since h is superharmonic and the right random walk on Gμ induced by μ is recurrent
the function h isμ-harmonic. The Choquet-Deny theorem for G (see [12], Theorem 3,
p. 52 and [17]) implies that h is constant i.e. δ(0,g) ∗ η(φ) = η(φ) for any g ∈ Gμ.
This statement remains valid for any compactly supported continuous function φ on
V \ {0} not necessary differentiable.

To prove the Lemma in full generality we will use the structure of the group Gμ

discussed in the Introduction. Take any accumulation point η of δ(0,g) ∗ ν/ fΦ(g) as
|g| → 0 i.e. fix a sequence {gn} in Gμ such that

|gn| → 0 and
δ(0,gn) ∗ ν

fΦ(gn)
→ η.

Since any element gn ∈ Gμ can be written as gn = knzn with kn ∈ Kμ and zn ∈ Zμ,
extracting a sequence, we can suppose that

kn → k and δ(0,zn) ∗ ν/ fΦ(zn) → η′.

Moreover

∣
∣
∣
∣
δ(0,kn) ∗ δ(0,zn) ∗ ν(Φ)− δ(0,k) ∗ δ(0,zn) ∗ ν(Φ)

fΦ(zn)

∣
∣
∣
∣

≤ sup
u

|Φ(knu)−Φ(ku)| · δ(0,zn) ∗ ν(A)
fΦ(zn)

≤ C sup
u

|Φ(knu)−Φ(ku)| n→∞−→ 0, (12)
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602 K. Kolesko

where A is an annulus containing all sets of the form k−1 suppΦ, k−1
n suppΦ. There-

fore we have

lim
n→∞

fΦ(gn)

fΦ(zn)
= lim

n→∞
δ(0,kn) ∗ δ(0,zn) ∗ ν(Φ)

fΦ(zn)

= δ(0,k) ∗ η′(Φ) = η′(Φ) = lim
n→∞

δ(0,zn) ∗ ν(Φ)
fΦ(zn)

= 1, (13)

and finally

η = lim
n→∞

δ(0,gn) ∗ ν
fΦ(gn)

= lim
n→∞

fΦ(zn)

fΦ(gn)
· δ(0,kn) ∗ δ(0,zn) ∗ ν

fΦ(zn)
= δ(0,k) ∗ η′ = η′

what proves the first part of the Lemma. For the second part we use exactly the same
argument as above.

The first consequence of above lemma is the following

Corollary 3 Under assumptions of Theorem 1, the stationary measure ν satisfies

∫

V

1

(1 + |u|)γ ν(du) < ∞.

In particular

ν(|u| ≤ r) ≤ C(1 + rγ ),

for any positive γ .

To proceed with the proof of our main result we need some an additional assumption
on the measure ν. Namely, without any loss of generality we may assume that

∫
1

|u|γ ν(du) < ∞, for γ ∈ (0, 1). (14)

Indeed, there exists b ∈ V such that νb = δ(b,0) ∗ ν satisfies the condition above (see
Lemma 4.4 in [5]). The measure νb is an invariant measure of δ(b,0) ∗ μ ∗ δ(−b,0) that
also satisfies the assumptions of Theorem 1 and both measures νb and ν have the same
behaviour at infinity, i.e.

lim|g|→0

∫
(
φ(g(u + b))− φ(gu)

)
ν(du) = 0.

Therefore one can consider the measure νb instead of ν, however to simplify our
notation we will just write ν and assume that (14) is fulfilled.
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Multidimensional SDS in critical case 603

2.2 Poisson equation

For any φ ∈ C1
c (V \ {0}) we define fφ(g) := δ(0,g) ∗ ν(φ). To prove that the limit

of fφ exists as |g| goes to 0 we consider fφ as a solution of the following Poisson
equation on Gμ.

E
[

fφ(gM)
] − fφ(g) = ψφ(g), (15)

where the function ψφ is defined by the equation above.
The main tool to study this equation is the renewal theorem on G. Therefore, ana-

logically to the situation on real line, we introduce the class of directly Riemann
integrable on Gμ (compare [8]).

We say that a continuous function ψ is directly Riemann integrable (dRi) if

∑

n∈Z

sup
{g∈Gμ,en<|g|≤en+1}

|ψ(g)| < ∞.

Following the same way as in [5] (Lemma 4.8 and proof of Proposition 4.1) we can
show that

Lemma 3 Assume that all the hypotheses of Theorem 1 and (14) are satisfied. Then
for any Lipschitz function φ there exists ζ > 0 and constant C such that

|ψφ(g)| ≤ C min{|g|−ζ , |g|ζ }, | fφ(g)| ≤ C |g|−ζ . (16)

In particular the function ψφ is directly Riemann integrable.
Moreover, if φ = Φ then

∫

Gμ

ψΦ(g)dg = 0.

Proof Since φ has a compact support, it is bounded by a some multiple of the function
|u|−γ . Therefore

| fφ(g)| ≤
∫

V

|φ(gu)|ν(du) ≤ C0

∫
1

|gu|γ ν(du) ≤ C1|g|−γ . (17)

Now we will show that

I (g) :=
∫

H

∫

V

|φ(gau)− φ(g(au + b))|ν(du)μ(db, da) ≤ C(|g|−ζ ∧ |g|ζ ) (18)

To get the first bound observe that by (17), (A4) and μ invariance of ν, for γ < δ we
have

|I (g)| ≤ E
[| fφ(gM)|] + | fφ(g)| ≤ C0

(
E

[|gM |−γ ] + |g|−γ ) ≤ C1|g|−γ .
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In order to show the boundedness by a positive power of |g|, for |g| ≤ 1 take c0 =
1/2 dist(suppφ, 0) and observe that

|I (g)| =
∫

|gb|≤c0

∫

|φ(g(au + b))− φ(gau)|ν(du)μ(db, da)

+
∫

|gb|>c0

∫

|φ(g(au + b))− φ(gau)|ν(du)μ(db, da) =: I1 + I2.

To bound the first integral we will use the following inequality

|φ(g(au + b))− φ(gau)| ≤ C0|gb|1K (gau) ≤ C1|gb||gau|−γ

valid for |gb| ≤ c0 (compare (11)). Then for γ < δ/2 we have

I1 ≤ C0

∫

|gb|≤c0

∫

|gb||gau|−γ ν(du)μ(db, da)

≤ C0

∫

|gb|≤c0

c1−δ/2
0 |g|δ/2−γ |b|δ/2|a|−γ

∫

|u|−γ ν(du)μ(db, da)

≤ C1|g|δ/2−γ
∫

|b|δ/2|a|−γ μ(db, da) ≤ C2|g|δ/2−γ ,

where the last inequality follows from Schwartz inequality and assumptions of Theo-
rem 1. In order to estimate I2 we can write

I2 ≤
∫

|gb|>c0

∫

φ(gau)ν(du)μ(db, da)+
∫

|gb|>c0

∫

φ(g(au + b))ν(du)μ(db, da)

The first integral can be bounded by a multiple of

∫

|gb|>c0

∫

|gau|−γ ν(du)μ(db, da)

≤ C0

∫

|gb|>c0

|ga|−γ μ(db, da) ≤ C1

∫

|gb|>c0

|g|δ/2−γ |a|−γ |b|δ/2μ(db, da)

≤ C1

∫

|a|−γ |b|δ/2μ(db, da) ≤ C2|g|δ/2−γ .

To estimate the second integral take γ < δ/4 and observe that if the support of φ
is contained in the ball of radius R, then φ(g(au + b)) ≤ ‖φ‖∞1|u|≤(R+|b|)/|ga|, for
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|g| ≤ 1, hence the integral can be estimated by

∫

|gb|>c0

∫

1|u|≤(R+|b|)/|ga|ν(du)μ(db, da) ≤
∫

|gb|>c0

∫ (
R + |b|
|gau|

)γ
ν(du)μ(db, da)

≤ C0|g|−γ
∫

|gb|>c0

(R + |b|)γ |a|−γ μ(db, da)

≤ C1|g|−γ
∫

|gb|>c0

(Rγ + |b|γ )|a|−γ μ(db, da)

≤ C2|g|−γ
(∫

|gb|δ/4|a|−γ μ(db, da)+
∫

|gb|δ/4|b|γ |a|−γ μ(db, da)

)

≤ C3|g|δ/4−γ .

In summary, for ζ < δ/4 we have I (g) ≤ C(|g|ζ ∧|g|ζ ) and since |ψφ(g)| ≤ I (g)
we get also the desired inequality for ψφ . Moreover, since I is mGμ-integrable by the
Fubini theorem we can interchange the order of integration in the definition of ψΦ
and by Lemma 1 get

∫
Gμ
ψΦ(g)dg = 0.

At this moment we only know that
∫

Gμ
ψφ(g)dg = 0 for φ = Φ but later on, using

the renewal theorem on G, we will prove that this holds for general φ ∈ C1
c (V \ {0}).

Proposition 1 Let ψ be a function on Gμ satisfying |ψ(g)| ≤ min{|g|−ζ , |g|ζ } such
that

∫
Gμ
ψ(g)dg = 0. Then the function

ψ(g) :=
∫

Gμ

ψ(h)1{|h|>|g|}dh (19)

satisfies

|ψ(g)| ≤ C
(|g|−ζ ∧ |g|ζ ),

hence it is directly Riemann integrable. Furthermore

∫

Gμ

ψ(g)dg =
∫

Gμ

log |g|ψ(g)dg.

Proof For |g| ≥ 1, by (16), we get

|ψ(g)| ≤
∫

|h|>|g|
|ψ(h)|dh ≤

∫

|h|>|g|
|h|−ζdh = |g|−ζ

∫

|h|>1

|h|−ζdh ≤ C |g|−ζ
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and similarly for |g| < 1 we have

|ψ(g)| =

∣
∣
∣
∣
∣
∣
∣

∫

|h|>|g|
ψ(h)dh

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

∫

|h|≤|g|
ψ(h)dh

∣
∣
∣
∣
∣
∣
∣

≤ |g|ζ
∫

|h|≤1

|h|ζdh ≤ C |g|ζ .

Moreover, we can easily compute the integral of ψ

∫

Gμ

ψ(g)dg =
∫

|g|≥1

∫

|h|>|g|
ψ(h)dhdg −

∫

|g|<1

∫

|h|≤|g|
ψ(h)dhdg

=
∫

|h|>1

∫

1≤|g|<|h|
dgψ(g)dh −

∫

|h|≤1

∫

|h|≤|g|<1

dgψ(h)dh

=
∫

|h|>1

log |h|ψ(h)dh +
∫

|h|≤1

log |h|ψ(h)dh =
∫

Gμ

log |g|ψ(g)dg.

2.3 Proof of Theorem 1

Now we are going to apply a technique due to Durrett and Liggett [9]. They described
asymptotic behaviour of positive solutions of a Poisson equation not solving explicitly
the equation as in [5,6], but applying the duality lemma and reducing the problem to
the classical renewal equation.

On the group Gμ we define two random walks, the right random walk Ri =
M1 · · · Mi and the left one Li = Mi · · · M1. We define a family of weakly increasing
ladder times

T0 = 0;
Ti = inf{n > Ti−1 : |Rn| ≥ |RTi−1 |}

= inf{n > Ti−1 : |Ln| ≥ |LTi−1 |}.

Now we can define a new process {RTn } which is also a right random walk on Gμ with
increments distributed according to RT1 . One can observe that the closed subgroup G ′
generated by the {RTn } is exactly Gμ. Indeed, any g+ ∈ suppμ such that |g+| ≥ 1
belongs to G ′. Moreover, if g− ∈ suppμ with |g−| < 1 then we can find a natural
number k satisfying |g−gk−1+ | < 1 and |g−gk+| ≥ 1. Therefore, g−gk+ is in G ′ hence
also g−.
We define a new stopping time τ by

τ = inf{k : |Rk | < 1},

and construct a new Poisson equation with a drift:
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Lemma 4 Suppose that the functions f and ψ defined on Gμ satisfy the Poisson
equation

E [ f (gM)] − f (g) = ψ(g)

and | f (g)| ≤ |g|−ζ , |ψ(g)| ≤ |g|−ζ ∧ |g|ζ , for some 0 < ζ < δ. Then f satisfies a
new Poisson equation

E [ f (gRτ )] − f (g) =
∞∑

n=0

E
[
ψ(gRTn )

]
. (20)

Moreover, for h ∈ Gμ

E

⎡

⎢
⎣

∫

|Rτ |≤|g|<1

f (gh)dg

⎤

⎥
⎦ =

∞∑

n=0

E
[
ψ(h RTn )

]
. (21)

Proof First notice that

Mn(g) := f (gM1 · · · Mn)−
n−1∑

i=0

ψ(gM1 · · · Mi )

forms a martingale with respect to the filtration induced by the sequence {Mn}n∈N.
From the optional stopping theorem we obtain

E [Mn∧τ (g)] = f (g) (22)

By the assumption (A4) and (3.6a) of Chap. XII in [10]

E
[|Rτ |−δ

] = E

[
e−δSτ

]
< ∞, (23)

where Si = log |Ri | = ∑
0≤k≤i log |Mk |. Therefore by Lemma 3

E [| f (gRτ )|] ≤ E

[
|g|−ζ e−ζ Sτ

]
< ∞.

Moreover the duality lemma and the renewal theorem on R imply

E

[
τ−1∑

i=0

|ψ(gRi )|
]

≤ E

[
τ−1∑

i=0

e−ζ | log |g|+Si |
]

= E

[ ∞∑

i=0

e−ζ | log |g|+STi |
]

< ∞
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Now by the Lebesgue theorem we can pass to the limit as n goes to infinity in (22)
and get

E [ f (gRτ )] − E

[
τ−1∑

i=0

ψ(gRi )

]

= E [Mτ (g)] = f (g). (24)

Observe that from duality lemma

E

[
τ−1∑

i=0

ψ(gRi )

]

=
∞∑

n=0

E
[
ψ(gLTn )

] =
∞∑

n=0

E
[
ψ(gRTn )

]
, (25)

Comparing (24) with (25) we obtain

E [ f (gRτ )] − f (g) =
∞∑

n=0

E
[
ψ(gRTn )

]
.

Fix now an element h ∈ Gμ. Integrating both sides of above equation we get

∫

|g|≥|h|
E [ f (gRτ )] dg −

∫

|g|≥|h|
f (g)dg =

∫

|g|≥|h|

∞∑

n=0

E
[
ψ(gRTn )

]
dg,

what can be rewritten as

E

⎡

⎢
⎣

∫

|h|>|g|≥|h Rτ |
f (g)dg

⎤

⎥
⎦ =

∫

|g|≥|h|

∞∑

n=0

E
[
ψ(gRTn )

]
dg

by Fubini theorem and Lemma 3

E

⎡

⎢
⎣

∫

1>|g|≥|Rτ |
f (gh)dg

⎤

⎥
⎦ =

∞∑

n=0

∫

|g|≥|h|
E

[
ψ(gRTn )

]
dg

=
∞∑

n=0

E

⎡

⎢
⎣

∫

|g|≥|h|
ψ(gRTn )dg

⎤

⎥
⎦

=
∞∑

n=0

E
[
ψ(h RTn )

]

Now we are ready to prove our main result.
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Proof (Proof of the Main Theorem 1) First we shall show that the theorem holds for
the special function φ = Φ defined in the Lemma 1. In other words we need to prove
that fΦ(h) has a limit as |h| → 0. By (16) and Lemma 4 we obtain

E

⎡

⎢
⎣

∫

Rτ≤|g|<1

fΦ(gh)dg

⎤

⎥
⎦ =

∞∑

n=0

E
[
ψΦ(h RTn )

]

Since fΦ is radial, bounded on compact sets, and, by Lemma 2, fΦ(gh)/ fΦ(h) → 1,
for any γ > 0 we can find C such that fΦ(gh)/ fΦ(h) < C |g|−γ for |g|, |h| ≤ 1 (cf.
Potter’s theorem [2, Theorem 1.5.6]). By (23), Lebesgue’s Dominated Convergence
Theorem and the renewal theorem for group G (see Theorem A.1 in Appendix in [8]
for more details) apply to

fΦ(h) · E

⎡

⎢
⎣

∫

|Rτ |≤|g|<1

fΦ(gh)

fΦ(h)
dg

⎤

⎥
⎦ =

∞∑

n=0

E
[
ψΦ(h RTn )

]

we obtain

lim|h|→0,h∈Gμ

fΦ(h)E [−Sτ ] =
∫

Gμ
ψΦ(g)dg

E
[
ST1

] (26)

Hence for σ 2 := Var(log |M |) = 2E [−Sτ ] E
[
ST1

]
(see the proof of T18.1 on page

196 in [18])

lim|h|→0,h∈Gμ

fΦ(h) = 2

σ 2

∫

Gμ

ψΦ(g)dg = 2

σ 2

∫

Gμ

log |g|ψΦ(g)dg. (27)

Moreover the same argument as in Theorem 1.5 [5] proves that the limit above is
strictly positive.

Now take arbitrary φ ∈ C1
c (V \ {0}). In view of Lemma 1 the family {δ(0,g) ∗ ν}

is vaguely compact and any accumulation point, as |g| → 0, is Gμ-invariant. This
implies that the set of real numbers fφ(g) is bounded and any accumulation point L
of fφ(h) as h ∈ Zμ is also accumulation point of shifted sequence i.e. if fφ(hn) → L
then also fφ(ghn) → L for any g ∈ Gμ. However, we would like to say that also
fφ(hng) → L . Take any limit point L ′ of a sequence fφ(hng). Then, since the com-
mutator [hn, g] = hngh−1

n g−1 belongs to the compact group Oμ, we can extract a
subsequence such that

[g, hnm ] → k and fφ(hnm g) → L ′.
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By the same argument as (12) in the proof of Lemma 2 we get

lim
m→∞ | fφ(kghnm )− fφ([hnm g]ghnm )| = 0.

Thus,

L = lim
m→∞ fφ(kghnm ) = lim

m→∞ fφ([hnm g]ghnm ) = lim
m→∞ fφ(hnm g) = L ′.

We are now ready to show that
∫

Gμ
ψφ(g)dg = 0. From (20) we get

E
[

fφ(hn Rτ )
] − fφ(hn) =

∞∑

k=0

E
[
ψφ(hn RTk )

]
. (28)

By Lemma 3 the function ψφ defined on the group Gμ is directly Riemann integra-
ble therefore we can apply the renewal theorem for Gμ to the right hand side of the
equation above (see Appendix in [8] for more details) and the Lebesgue theorem to
the left hand side and obtain

0 = E [L] − L =
∫

Gμ
ψφ(g)dg

E
[
ST1

] ,

since the closed subgroup generated by the law of RT1 is Gμ.
By the equation (21) we have

lim
k→∞ E

⎡

⎢
⎣

∫

Rτ≤|g|<1

f (ghk)dg

⎤

⎥
⎦ = lim

k→∞

∞∑

n=0

E
[
ψ(hk RTn )

]
.

By Proposition 1, ψφ is directly Riemann integrable. Using the Lebesgue theorem to
the left hand side and renewal theorem to right one we get

L · E [−Sτ ] =
∫

Gμ
ψφ(g)dg

E
[
ST1

] .

The above equation shows us that L does not depends on the particular choice of the
sequence hn , hence

lim|g|→0,g∈Gμ

δ(0,g) ∗ ν(φ) = 2

σ 2

∫

Gμ

log |g|ψφ(g)dg.

By Lemma 1 the set δ(0,g) ∗ ν is relatively weakly compact as |g| → 0. Take any
accumulation point Λ, then it is uniquely determined on the class C1

c (V \ {0}) there-
fore, by density, also on Cc(V \ {0}). It yields thatΛ is a limit of δ(0,g) ∗ ν as |g| → 0.
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Moreover, since for every δ(0,g) ∗ ν is nonnegative measure alsoΛ is nonnegative. To
see where the product formula comes from observe that for any Borel set B2 ⊂ Σ1
the mapping

B1 → Λ(B1 × B2)

defined on Borel sets on Aμ is a Aμ-invariant measure, hence there exists a constant
σ(B2) depending on B2 such that

Λ(B1 × B2) = σ(B2) · m Aμ(B1).

On the other side, for any Borel set B1 on Aμ with positive Haar measure

B2 → Λ(B1 × B2)

m Aμ(B1)

define a finite positive measure that is Oμ invariant. This finishes the proof, since the
measure Λ is determined by the value on the sets of the form B1 × B2.
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