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Abstract We consider asymptotic behavior of the correlation functions of the char-
acteristic polynomials of the hermitian sample covariance matrices H, = n_lAfn,n
Ap.n, Where Ay, , is a m x n complex random matrix with independent and identi-
cally distributed entries fay; and Jay ;. We show that for the correlation function of
any even order the asymptotic behavior in the bulk and at the edge of the spectrum
coincides with those for the Gaussian Unitary Ensemble up to a factor, depending only
on the fourth moment of the common probability law of entries fay;, Say;, i.e., the
higher moments do not contribute to the above limit.

Mathematics Subject Classification Primary 15B52; Secondary 15B57

1 Introduction

Characteristic polynomials of random matrices have been actively studied in the last
years. The interest was initially stimulated by the similarity between the asymptotic
behavior of the moments of characteristic polynomials of a random matrix from the
Circular Unitary Ensemble and the moments of the Riemann ¢ -function along its criti-
cal line (see [12]). But with the emerging connections to the quantum chaos, integrable
systems, combinatorics, representation theory and others, it has become apparent that
the characteristic polynomials of random matrices are also of independent interest.
This motivates the studies of the moments of characteristic polynomials for other
random matrix ensembles (see e.g. [1,4,5,7,9,10,15,19,20,22]).

In this paper we consider the hermitian sample covariance matrices (HSCM) with
symmetric entries distributions, i.e., the n x n random matrices of the form
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450 T. Shcherbina

Hy=n""A% A, (1)

where A, , is an m x n complex matrix with independent and identically distributed
entries Ray; and Jay; such that

Elayj} = E{(ag))*} =0, Eflagj’}=1, a=1,....m, j=1,...,n,

2
E{(Rae)? !} = E{(Qan)? T} =0, leN. @

Denote also
s = E{(Ra)*} = E{Saap)*), 4 = pa —3/4. 3)

Note that k4 = 0 for the case when the distribution of the entries Nay; and Jag; is
Gaussian. The higher moments of the distribution will not play an important role in
the considerations below since the local behavior of the correlation function of the
characteristic polynomials for the HSCM is determined completely (as we will see)
by the first four moments of the entries distribution.

We assume that m belongs to a sequence {m, }>° | such that

m
cm,n::—"—>czl, n— oo. 4)
n

9

We below denote this limit as “lim;,; o0 . ..” .

Let Aﬁ") + ... A be the eigenvalues of H,. Define their normalized counting mea-
sure (NCM) as

Ny (D) :tt{)»;") en,j=1, n}/n N,(R) = 1, (5)

where A is an arbitrary interval of the real axis. The behavior of N,, as n — o0, is
studied well enough. In particular, it was shown in [16] that N, converges weakly
in probability to a non-random measure N which is called the limiting NCM of the
ensemble. The measure N is absolutely continuous and its density p is given by the
well-known Marchenko—Pastur law:

1
p() = [ mJ(x+—A)(x—x_), L€o, ©)
0, )" gaa
where
=1V o =(1-V)2A+/0. (7

The mixed moments (or the correlation functions) of characteristic polynomials are

2k
Pt = [ []dettc; — Hpuca ). ®)

o
anal
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Characteristic polynomials of the sample covariance matrices 451

where H,J[ is the space of positive definite hermitian n x n matrices, P,(d H,) is a
probability law of the n X n random matrix H,, and A = {}; }§k= | are real or complex
parameters that may depend on n.

We are interested in the asymptotic behavior of (8) for matrices (1) as m, n — 0o
and for

_Jro+§j/np(ro), Ao €o,

A= 9
! Ao+ Ej/(nye)*3, do = A, ©)
where A4+ and o are defined in (7),
B cl/4 10,
== 0T NG

p is defined in (6), and E = {Ej}?k: | are real parameters varying in a finite interval
[-M,M] CR.

In the paper [19] the method based on the Grassmann integration was developed
to study the asymptotic behavior of the correlation functions of any even number of
the characteristic polynomials of the hermitian Wigner matrices. Here we apply this
method to the HSCMs (1)-(2).

In [11] Kosters used the exponential generating function to study the second
moment, i.e. the case k = 1 in (8). It was shown that for Aoy € o

Fy (o 4+ £1/(np (M), Ao + E2/(np(ho))) = 27l " et /2
np(Xo)
X &M explnio + a(o) €1 + 1) + 2ucq) SRTEL 8D gy
(& — &)
where
M—c+1 rco
a(o) =1{ 2h0p(ro) 0=

_ -2/3
A+ ™, ro = hs,

v+ is defined in (10). In [11] for the case ¢ > 1, m = cn 4+ o(n'/?), k = 1 the
asymptotic behavior at the edge of the spectrum (i.e. for Ag = A1) was also obtained:

1
P2 (o 8/ o 4 82/ rys)R) = 211 £ Ve

% Cm+1/262nﬁ+n1/301()»:t)(§|+§2)+2K4A(%-1’ £)(1 4+ o(1))

with

A’ (x)Ai(y) — Ai(x)AT'(y)
X—y '

Alx,y) = (1)
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where Ai(x) is the Airy function
. 1 i3 /3
Aix) = — [ " [3tisig s,
Ty (12)
S={zeClargz = 7/6 or argz = 57/6}.

In this paper we consider the general case k > 1 of (8) for the random matrices (1)—(2).
Denote

(10G0) " P2 (ho + £/ (np (o)), 20 + E/(np G0))) o €
(ny) 2P F2 (o + /(v ho + &/ (v ). 2o = s,
(13)

D™ (g, ho) =

and

2k
Dy () = [ [ D™ &, 20)- (14)
=1

The main results of the paper are the following two theorems:

Theorem 1 Consider the random matrices (1)—(2) and assume that the entries Say;,
Nayj of the matrices (1) have finite first 4k moments, where k > 1. Then we have
. 1
lim 5
=% (np (o)X Dox (ho)
k=102 gk (k=1)ka(c—ro+1)2c ™! i Sin(T(E — &g ) ]k
= d
AGrL, - ED) AR+t - E20) (& — &ktj)

where Fy. and p()) are defined in (8) and (6), Ao = (ro, ..., ) € R¥*, 4 € 0,
£ =& j}ﬁ’; \» ka and o are defined in (3) and (7), and

Fo (A0 +&/(np(10)))

. (15)
ij=1

AGxr,.ox) = [ [ —x)). (16)

i<j

Theorem 2 Consider the random matrices (1)—(2) and assume that the entries Jag;,
Ragj of the matrices (1) have finite first 4k moments, where k > 1, A = Ax. Let m
belong to a sequence {m,}>° | such that

mn:cn+n1/3sn, c>1, (17)

where ¢, — 0, n — o0. Then we have

1 ~

I F (A 2/3)

nl>n(;o (nyi)2k2/3D2k(ki) 2k 0 + 5/(”]&:)
k*=D/2 expldk(k — 1)k4)

T AGL . E0AG1 - En)

(18)

det{AG;, 6een) |

k
9
ij=1
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where Fay and y+ are defined in (8) and (10), Ag = (A, ..., Ay) € R* & = (¢ j}g’; "
and k4 and A+ are defined in (3) and (7).

Remark 1 Since the functions

1

(np (10))** Doy (ho)
1

(ny+) /3 Doy (Ay)

Fa (Ao +&/(np(10))),

Foy (Ao +§/(n1/i)2/3)

are analytic in each {§; }?k

| and uniformly bounded in {§; }5": | in each compact set of

R (it will be seen in the proofs), it is enough to prove Theorems 1 and 2 for distinct
(&1L,

The theorems show that the above limits for the mixed moments of the character-
istic polynomials for random matrices (1)—(2) coincide with those for the Gaussian
Unitary Ensemble up to a factor depending only on the fourth moment of the com-
mon probability law of the entries aq;, i.e., that the higher moments of the law do
not contribute to the above limit. Also we can see that there appear the well-known
kernels for the correlation functions of the eigenvalues, namely the sine-kernel and
the Airy kernel. This is a manifestation of the universality of the local regime, that can
be compared with the universality of the correlation functions of the eigenvalues for
HSCMs (see [21] and [17] and references therein).

The paper is organized as follows. In Sect. 2 we obtain a convenient asymptotic
integral representation for Fyi, using the integration over the Grassmann variables and
the Harish Chandra/Itzykson-Zuber formula for integrals over the unitary group. The
method is a generalization of that of [3,4] and is an analog of the method of [19], where
the hermitian Wigner matrices were considered. In Sects. 3 and 4 we prove Theorems 1
and 2, applying the steepest descent method to the integral representation.

We denote by C, Cq, etc. various n-independent quantities below, which can be
different in different formulas.

2 The integral representation

In this section we obtain the integral representation for the mixed moments F»y (8) of
the characteristic polynomials, i.e. we prove the following

Proposition 1 Let Ay, = Ag + &/(an)®, where Ay = diag{ho, ..., o}, € =
diag{&1, ..., &x}, and

p(r0), Ao €0,
= 19
“ [ V4t A0 = A, (19)
. 1, Ao € O,
p= [2/3, A = Mg, (20)
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where o and My are defined in (7), and let For(Axx) of (8) be the correlation function
of the characteristic polynomials. Then we have for every k as m,n — 00

n2K (nB—1gPyk@k=1) 2k () ymag g AV

2k rkp2kn Dy, () n+2k A(E
e Do (10) S @&

Dy (o) Far(A2) =
ezﬁil (n)h()vj‘l’"liﬁaiﬂ;i Uj)+2cm,n’(4s2((lfv)/‘0) lei] 137[,)1 (1 + O(n—ﬂ))

where V = diag{vy, ..., v},

2

1d
$2(A) = Eﬁdet(x —A) , (22)

X=cC
Doy (o) is defined in (14) and w is any closed contour encircling 0.

We obtain the above formulas by using integration over the Grassmann variables.
This method allows to obtain the integral representation of the product of the char-
acteristic polynomials which is very useful for the averaging because it looks like
the Gaussian-type integral (see the formula (30) below). After averaging over the
probability measure we can integrate over the Grassmann variables to obtain the usual
asymptotic contour integral representation which can be studied by the steepest descent
method.

The integration over the Grassmann variables was introduced by Berezin and widely
used in the physics literature (see e.g. [2] and [6]). For the reader convenience we give
a brief outline of the techniques.

2.1 Grassmann integration

Let us consider two sets of formal variables {v; ?21, (v j}?z |» Which satisfy the an-
ticommutation conditions

ik + U =V ikl =V Y+ =0, jk=1,...,n. (23)

These two sets of variables {1, }’}.:1 and {J i };f:l generate the Grassmann algebra 2(.
Taking into account that w% = 0, we have that all elements of 2 are polynomials of

{y j};?: , and (v j}’;‘:l‘ We can also define functions of the Grassmann variables. Let
x be an element of 2, i.e.

x=a+ Z(ajl/fj +bjy;) + Z(aj,klﬂﬂ/fk F bV eV Y A
i=1 7k
(24)

For any analytical function f we mean by f(x) the element of 2l obtained by substi-
tuting x —a in the Taylor series of f at the pointa. Since x is a polynomial of {/ ; };f:]
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of the form (24), according to (23) there exists such / that (x — a)! = 0, and hence
the series terminates after a finite number of terms and so f(x) € 2.
For example, we have

explb ¥ ¥} =1+ bV v+ GV ,;¥)° /2= 1+bV ¥,

explan ¥ 1¥1 + any¥2 + an oy +anvoyal = 1+any ¥
+any ¥ + ano ¥ + anyo ¥ + (@ ¥ + an v
+an Vo + an¥av)?/2 = L +any i +any v + an v
+an¥v: + (an1axn — apa)V i1y vs. (25)

Note also that if x is the sum of the products of even numbers of the Grassmann
variables, then, according to the definition of the functions of the Grassmann variables,
expanding (z — x)~! into the series we obtain for any analytic function f

d
S@ dz _ o, (26)
7 — x 2mi

where £2 is any closed contour encircling 0.
Following Berezin [2], we define the operation of integration with respect to the
anticommuting variables in a formal way:

/dxp,- =/d$j =0, /wjdwj =/$jd$j =1. 27)

This definition can be extended on the general element of 2 by the linearity. A multiple
integral is defined to be a repeated integral. The “differentials” d v/; and d ¥ anti-
commute with each other and with the variables ¥; and V.

Thus, if

k
S, m) = po+ Z Pjinj + Z PjipMjiMjp -+ P12k -+ M

Ji=1 Ji<j2
where 11, ..., n are some elements from the sets {y/; };’.:1, {Ej };’.:1, then
/f(m, cos M Nk d = pro ke (28)

Let A be an ordinary hermitian matrix. The following Gaussian integral is well-
known

n

n
_ dNz;dJz; 1
/CXP - > Auziag [] jT L = R (29)
Jk=1 =l
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One of the important formulas of the Grassmann variables theory is the analog of this
formula for the Grassmann algebra (see [2]):

n n
/exp Z Aj iV U Hdl/fjd% = detA. (30)
Jik=1 j=I

For n = 1 and n = 2 this formula follows immediately from (25) and (28).
Besides, we have

q n n
J 110000 3 A0 [T v = et tnrye GD
p=1 k=1 j=1

where Ay 1,055, 18 @ (n — g) X (n — ¢) minor of the matrix A without lines
l1,...,1l; and columns s, ..., 4.

2.2 Asymptotic integral representation for F»

In this subsection we obtain (21) for k = 1 by using the Grassmann integrals. This
formula was obtained in [11] by another method. We give here a detailed proof to show
the basic ingredients of our techniques that will be elaborated in the next subsection
to obtain the asymptotic integral representation of (8) for k > 1.

Using (30), we obtain from (8)

F2 (AZ) — E[ /623:1 Z;'qzl()‘er)pAqaprlkt/rd WZ,H ]

m
_ E[ / 11 ot 2 (i @ W) (s Vi) 2t s o Vs d%n}
a=1

m 2 n
1 _ _ 2 n
= l/ H H (1_; Z QapQaq wpr’a”qr)ezxz1 b Zp=t Vs Vrsg 11/2’”’ )

a=1r=1 p.g=1

(32)

since forany o« = 1, ..., m and any r = 1, 2 we have according to (23)
n 2 n 2
(Zaapwpr) = (Zaaqwqr) =0. (33)
p=1 qg=1

Here {y jl};f %:1 are the Grassmann variables (n variables for each determinant in (8))
and
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Characteristic polynomials of the sample covariance matrices 457

s

I
dvo = [][]dvid v (34)

r=1 j=lI
In view of (2) and (23) we get

2

| & B 1 2 n _
(- 8 )25 5 Ko

E, ::EI
r=1 p.g=1 r=1 p,q=1

1 n n B 3 B .
+ l’l_2 Z Z E {aamaaqlawzaaqz} I/fpllwlnll/fpzﬂ/fqﬂ-

r1,.q1=1 p2,q2=1

According to (2), the addition in the first sum is not zero if and only if p = ¢, and the
addition in the second sum is not zero if and only if p; = g1, p2 = g2, or p1 = q2,
P2 =qu1,0r p1 = q1 = p2 = q2. Since E{|aq;|*} = 1, E{lag;[*} = 2u4 + 1/2, this
yields

2 n
1 — 1 — — 1 _ _
Ex=1==3 3 Uplpr+— D Vn¥p¥ave = — > Vp¥mi b

r=1 p=I p#q P#q
n n
+ 2“/4}1# ZEPII/IPIWPZI/IIQ = det le) + ZnL; ZWpll/fplprwPZ»
- ! (35)
where llfs(l) and le) are the matrices with Grassmann entries
! N
w0 = prr‘/’pt . 00 =1-nwl, (36)

p=l rit=l1
44 is the 4-th moment of the common probability law of Jay;, Nae; of (2), and k4 is

defined in (3).
Thus, (32) and (35) yield

0) 2K4 ~ — _ m
F2(A2) = /eTrlpz A (det an) + n—2 Z wplwpll/fpzwpz) d lPZ,I‘l
p=1

S (M) kDT [ Tre Ay m—q p (T T !
=Zl(q) n2q /e 2 “2det qu (ZWpl‘ppll/prWpZ) dl]’2,n~
q:

p=l

Using the symmetry of the integrand of E,p, Y1 and the formula
/ T Vo1V 2 Vp2) U 1t ¥ pa¥p2 d ¥ d ¥ 1 d Yrpad ¥ o = (0,0, 0, 0),
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458 T. Shcherbina

we obtain

Fy(Ag) = i(m) n! (2ky)? /eTrle(")Az det 4 0
S\a/ -t n¥ g

n
X H Eplwplwlﬂw;ﬂ d lI/Z,n

p=n—q+1

| q n—
") LG [ e g g4,
q) (n—q)! n% |

.m m n! (2xy)4
=% ()t a e 7

To compute I , we use the following lemma

Lemma 1 Let A be any p x p matrix and let | be a positive integer. Then we have

. I AU
det'A = Kp,l/ md /,L(U), (38)
where
p—1 p
Kpi= ()PP DR2g  TTa 49 S, =]]s" (39)
5s=0 s=1
U is a unitary matrix with eigenvalues {u j}f: » W is a matrix which diagonalizes U
and
d u(U) = A% )d W f[ du, (40)
= Ui, ..., u AN
” : P il 2mi

where d u j means the integration over the circle w = {z : |z| = 1}, d W is the Haar
measure over the unitary group U(p), and A(uy, ..., up) is defined in (16).

Remark 2 1. Lemma 1 is a particular case of the superbosonization formula which
was proved in the physics paper [13]. We give below (see Sect. 2.4) a different
proof for this simple case.

2. Since both sides of (38) are analytic functions of ¢; ;, we can take A with not
necessary complex but also with even Grassmann elements.
3. Combining (38) and (30) we get that for any p x p matrix A

/e‘f“’“)dw —K /ﬂd ) 1)
PE= 0l [ qer g 1
where v = (3! _, Vs xps,};’r:] and d ¥, is defined in (34).
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Using Lemma 1 and (41), we obtain from (37)

oI 20wy ™04 Tr X, 0577
Ly = Kz,qu/ der 12X, d W ,_qd n(X2)

or A" DT Xy —n Tt Xo0," ™9
— X /
m—q det" 472X,
TI'X2+TI' AzUz—nilTr Uy X»
@ KamoKo. / e
g detm*q+2X2det"*q+2U2
p / eIt MUagepm—a (1 — n=107)
=K
" detnqurzUz

d lIj2,n—qd w(X2)

d n(Uz)d n(X2)

d n(Uz), (42)

where U, and X, are unitary 2 x 2 matrices, and d u(U;), d n(X2) are defined in
(40).

Recall that we are interested in Ay = A2+ 52/(na)/3, where Ao 2 = diag{Ao, Ao},
& = diag{£, &}, and a, B are defined in (19), (20). Substituting (40) in (42) and using
that functions det(I — n~'U,), Tr AgUa, and det U, are unitary invariant, we obtain
from (42)

Tr Ao Vat(nay P Tr Bwvaw 11 L — 30" 1
na
hq = Kon- q/% b ’ ? H nq+2

dviduvy Ko n— (1— U’)

2 — £l q

x (v —v2)°d w(W) Qri)?  n2n—a) / % l_ll T2
w r

dvidvy

x(v1—v2)? exp{Tr Ao Va+(na) PTr W VaW)d w(W)——— i (43)

where o is any closed contour encircling 0. The integral over the unitary group U (2)
can be computed using the Harish Chandra/Itsykson-Zuber formula (see e.g. [14],
Appendix 5):

Proposition 2 Let A be the normal p x p matrix with distinct eigenvalues {a,-}f: 1
and B = diag{by, ..., bp}. Then for any symmetric function f(B) of{bj}jp:1 we have

" AUTBU A2(BY F(B)d Ud B

U(p)
4 A(B)
=5, [ eXi=1%bi bi,....by)dB, 44
p/e AA) — f (b p) (44)
where S, is defined in (39), d B = 5-):1 dbj, dU is the normalized Haar measure

of the unitary group U (n) and A(A), A(B) are the Vandermonde determinants of the
eigenvalues {a;}!_,, {b;}!_, of A and B.
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460 T. Shcherbina

This and formula (43) yields

2 1aP Ko B BT E
Ly = %%exp{nﬂ Ao2Va +n'"PaPTr & V,)
w
2 (1 —v.)"4 — v)dvid
<1 (1 —v) (v1 — v2)dvidv, (45)

N N e SV EDE
Hence, since

n! n—q+ l(n—q)!
n—q! n2n=4

=2n?e” (1 + 0(1/n))
we get (21) for k = 1 from (37), (39), and (45).

2.3 Asymptotic integral representation for Foy

Using (30) and (33), we obtain from (8) (cf. (32))
% i Cr=H)p.g ¥ prVigr
For(Agk) = E{/é’ pa=1 dlp2k,n]

{/ 2r 1A Zp 11//p3‘//pr

—n 2= 1(Zp 1“&17‘/’,»)(2;; 1”aq‘/fqr)dlp2kn}

a=1
Z Z m 2k
s= l)L p= lv/ 31//]” P - o
{ / ! g o][_II rl_[] (1 Z p.g=1 aapaaqurwqr)d 11/2/“1’,
(46)
In view of (2) similarly to (35) we get
2k 1 n
E[ H (1 T Z Eaﬂaaqur‘pqr)]
r=1 p.q=1
(— 1)‘
=1+ Z z z Haal’laaql H Iﬁpllwal = det Q(n)
pL.d1 Ps.ds =1
2K4 . _ _ _
oo DL de(Qyh prllt/fps.w,,lzwpsz +n 2o W), (47)
11<12,51<S2 p:]

where Q<”> is defined in (36), det(Q%)(12351:92) is (2k — 2) x (2k — 2) minor of

matrix sz without lines s1, s and columns /1, [, k4 is defined in (3) and @ (¥)
(this notation means that @ depends on Grassmann variables) is a polynomial of the
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Characteristic polynomials of the sample covariance matrices 461

variables {(n~ l'lf(n))rs}zs ; and

n- Uf”) Zprl Yps;» L= lg), S=(s1,....5). (48)

p 1j=1
Indeed, it is easy to check that only the terms in which any p;,/ = 1, ..., s is equal
to some g,, r = 1,...,s (i.e. {p/, q;}j_, break up into the pairs of equal indexes

(pi1, qr)) give the non-zero contribution in (47). Each sum over such pair of equal
indexes has n summands and the coefficient n~!. But if we consider the terms with
four equal indexes, then we obtain the sum of # summands with the coefficient n=2,
i.e. the addition n~!. If three pairs of indexes coincide or we have two couples of four
coincided indexes, then we have the addition coefficient =2, and so on: one more
coinciding of such pairs gives the additional n~!. The terms (with any s) which do not
contain four equal indexes give det Q(n) (cf. (35)). The terms with only one couple of
four coincided indexes (and thus with additional n ') give the second sum in the r.h.s.
of (47) (cf. (35)). All other terms contain an additional factor n~2 or more and we
denoted them by n~2® () (we do not have such terms in (35)). Our aim is to prove
that the contribution of n~2® (¥) in (46) is small and that the expression multiplied
by 2k4 roughly speaking gives some constant.
To do this we use

Lemma2 Let A = {a;, ]} _jandb = {bl -} be the collections of complex variables,

where 1,5 is defined in (48), and @, be an analytic function of A and b. Assume that
(1 —¢e)yn <r <n, 0 <1 < en with some sufficiently small ¢ > 0. Then there exist an
absolute constants Cy, Cy such that

’/45 'y T o YA (W) d W

<Co max _|®.(A, D) |,

|al]‘ |b1 Y‘_

where
= / RS )d Wy, Y, (0) =TT M2 e 0) . (49)

The proof of Lemma 2 is given in Sect. 2.4.
Denote the expression in the r.h.s. of (47) multiplied by 2«4 by n~! X and write

(dtgg’,?Jr X+n*2q§(l1/))m= > mt

W kilkalin — ki —ko)!

x (det o))" " kz(zﬁx) (n —2¢>(v1/))k2. (50)

Using Lemma 2 with r = n, l = 0 we obtain

k ki
S5 () e (Y (2 ) v,

(n) (n)
ky>1ki+ko<m detQ nzdetQZk
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=2 2 (k:lkz) (%)kl (%)k2 [ o]

ko>1ki+ky<m
A  B\" A\" .
=((1+2+3) = (1+2) ) loul = 0@ 4o,
n n n

where A, B are some constants. This and (46)—(47) yield (note that according to the
proof of Lemma 2 Jy , # 0)

, (SD

_ _ _ (n)
I Fa(As) = 0 ) + ) / d Wy T 4

m
2/(4

n
det Qg]?'i‘? Z det(Q;’]?)(ll,h;Sl,Sz) prllwpﬂwplzwph , (52)

li<lp,s1<s2 p=1

where Qg,? and WZ(Z) are defined in (36).
Note also that we have from Lemma 2 similarly to (51)

n 2ks \"
Jon / d Wy e 1TVt A2 (det o + —4x) ’
’ n

m m A q " (Cm,nA)q Cm,nA
s;(q)(;) < DI < emeh, (53)

9=0 ¢!

Thus, according to the dominated convergence theorem, to compute the r.h.s. of (52),
we can use the Newton binomial formula and compute the limit of each term with
fixed ¢, as n — oo. Consider (2k4X/n)?. Observe that the term with p; = p; in the
product

1 — —
H n ZI/fl’.ill,./wp.fslvjwl’jlz,./‘wl’jslj

j=1 Pj

can be expressed in terms of (48) with an additional factor n~!. Therefore, according
to Lemma 2 (similarly to (51)) it suffices to consider only the terms with pg # p;
or, taking into account the symmetry of the integrand of Ips Yip, the term p; = n,

pp=n—1,..., p;, =n—q+ 1 with coefficient n!/(n — ¢)! Thus, we can write
T B = 3 (M) G o 54
o.n P2 (A2k) = qu g) =gy na ka +0n ), (54)
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where

g =I5} [ RS, WP (55)

n
(r) (ONGR SIS -
rnw = ] ( D det( @IS ey oW ey, ),
p=n—q+1 lf<lf,sf<sf

(56)

where ﬁg]? , is defined in (49). Now let us “remove” the variables Vs Vpss P =

n—qg+1,....,n,s=1,...,2k from det(Qg,?)(ll'12;“1*S2). It is easy to see that
det(Q;';())(llJz;Sl,Sz) — det(Qg]’(*Q))(ll,lz:Sl,Sz) +n '@ W),

where @ (¥) are polynomials of {5} 2%, (1} 2%, with the sum of the coeffi-

cients of order O(q) = O(1), m,n — oo. Hence, using Lemma 2 (similarly to (51)),
we get

i = g, / S () PLTD W)d Wop + O™ ") = Ty + O™ 1), (57)

Let us integrate over Jps, Yps.»p=n—q+1,...,n,5s =1,...,2k. According to
Lemma 1 and (31) we can rewrite o 4 as

exp{Tr Ay lllz(qu) + Tr Qg;:q)V}
detm7q+2k Vv

~ Kok.m—
by = # / d u(Vyd Wy n—g
n

n 2k
J— 2k —1 . n A . —
f T TTavmdT im0 S st 0 @)

p=n—q+11=1
Tr Ay w4+ Tr 04V

detm—q+2k Vv

KZk,m—q
JO,n

q
x( > det(Q‘;;‘q))(“J“"mdet(mk—nIV)al,zz;sl,sz)). (58)

L1 <ly,s1<s2

/ d M(V)d l112/(,11—(1

Besides, the Cauchy-Binet formula (see [8]) yields for 2k x 2k matrices A, B

2

: 1d
z detA(ll’12"”"YZ)B(ll,lz;sl,sz) — ST det(x — AB)
X

x=
li<lp,s1<s2

Now we are ready to integrate over the Grassmann variables. Indeed, using Lemma 1
we can write
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1 d? dz
L det(x — AB)) =

2 dx?
_K2k1]{

where W is a 2k x 2k unitary matrix and d w(W) is defined in (40) and o is any
contour encircling 0.
Thus, using again Lemma 1 and (41), we obtain

det(AB —2)
/ exp{Tr (AB — )W}

t2k+1 w ’

oI Ay ™+ Tr 057"

detm—q+2k Vv

K
Dy g = J—/dﬂ(v)d Wok.n— q

)
q
H dzs 1—[ Ko, 1dM(Ws)eTr 05" (A=~ X4 _ W3 2, Tr W,
- 2miz3 detZ* 1w,
-1
@1 KZk,m—qKZk,n—q eTr ApU+Tr 1-n~'U)v
JO,n

/d u(Vyd u(U)

detm_q+2k Vv det"‘q+2k U

q
« Hj{ dzs Kok, ldﬂ(Wr)eTr A=n""U)( Ay —n~1'V)Wy—z, Tr W
2mizd det?+1 W,

where {Wj }s 1» U are 2k x 2k unitary matrices. Integrating the last expression over
d (V) (using Lemma 1), we get

— Ko [0 =T ) det" (1= 3 W) 1T AnY
detn—q+2kU

q
PN L XCET ROV IS SARRTAES SARE L/ (U)H dzs3 sz,lzkdlf(Ws)
2mizd  det** T Wy

(59)

’

Besides, we have
det0 (1 =" Z Wy) = e m Do W14 0 ).

Substituting this into (59), integrating over {WS}Z:1 by using (38), we get

_ K2k,n—q eTI‘ Ao U det’"_q(l _ n—l U)
detn—q+2k U

q q
xexp{Tr (1 — n_lU)AZk Z Wy, — Z(zp + cmn)Tr Wp
p=1 p=1
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T dz, Kop1d (W
XH 231—[ 24,1 ( )d,u(U)

2]le det2k+1

S=
i cT / eTf AU dem=4 (1 — n=1U)
B Jo.n det""9t2k Uy

xS3((1 —n~'U) Ag)d n(U) + 0(n ™, (60)

where S is defined in (22). R

Recall that we are intereged in Ay = Aok +&/ (na)?, where
Ao 21 = diag{hro, ..., o}, & = diag{&i, ..., &x}, and a, B are defined in (19), (20).
Thus,

~ _ _ Kop n—
Iig=0m )+ 0" 4 =214
0,n
/ TH AU geym=4(1 — n'U)
X

detn—q+2k U

SI((1 = n~'U)Ag)d w(U), (61)

Let us change variables to U = W*V W, where W is a unitary 2k x 2k matrix and
V = diag{vi, ..., va}. Since det(I — n~'U), $2((I — n~'U)Ag), and det U are
unitary invariant, (61) implies

Iypg = 0(11_/3)+0(n—1)+ 2Jkn q ]{H /d (W)e Tr w*vw Ay
0,n

det™4(I —n~'V)
detnfq+2kv

x AX(V) S —n~'V) Ag). (62)

where w is any closed contour encircling 0. The integral over the unitary group U (2k)
can be computed using the Harish Chandra/Itsykson-Zuber formula (44). Shifting
v; — nv;, we obtain

_ _ 2k
~ SszZk,n—q (nﬂ laﬂ)k(2k D f d Uj enTI' VA0+n1’ﬂa75TI' V?

I =
2k n2k(”_’1)Jo,nD2k 2mi
)

L AW) H 1 —v)m

" -8 -1
A(S),l T Sl -=Vy+omPy+o0m™. (63

Hence, since

n! _H?kol(”_q—i-s)
(n —q)' n2k(” Q)+q

(27_[)/(’12/{26—2/0‘1(1 + 0(1/’1))’
we get (21) from (53), (54), (57), and (63).
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2.4 Proofs of Lemmas 1, 2

Proof of Lemma 1 Let A be a normal matrix. Then we can set A = V;AoVp and
U = W*UoW, where Ag = diag(ai,...,ap), Uy = diag (uy,...,up) and Vo, W
are the matrices diagonalizing A and U correspondingly. We obtain

Tr AU Tr V¥ AgVoW*UgW A2 4
e e 0 A (I/tl, ey
I'_/detP+lUdU_/ » P“ " m HZ '

j= U

Shifting integration with respect to W as WV, — W and using (44), we obtain

oo

I ezj:la/“fA(ul,...,up) ﬁduj

=dp P Pt ' 27
b AAg [ -

j=1
p.p—1 I—s—1 p.p—1
qp det f edittj duj qp det aj-H s
= (o] —_— = (+]
A(Ao) uPH=S 2mi A(Ag) (p+Il—s—1)
w J J,s=1,0 Jj,s=1,0
p+171 p(/ Iz
_apA/ar, .V ap) [15 4 (=D Yy detl A
172 (p+1— s — 1)!A(Ag) H”O(p+l—s—1)v

and (38) is proved for the normal A.
Let now A be an arbitrary matrix. According to the polar decomposition, we can
write A = SW, where W is a unitary p x p matrix and S is a diagonal p X p matrix.

Since we proved (38) for any normal A, we proved it for S = diag {€/*1, ..., ¢'%r},
ai, ..., o, € R Besides, it is easy to see that both sides of (38) is analytic functions
of the elements of S. Therefore, (38) is valid for any A. O

Proof of Lemma 2 According to Lemma 1 and (49), we have

eTrAkaz(;)+Tr(1—n—1wz(k”)v
Jir = sz,m—l// pRTEEGTY d u(Vyd Yor.r

eI Vdet" (Agy —n~1V)

d (V). (64)

Itis proved below (see Sects. 3 and 4 taking into account that the change v — Ag(1—v)
convert J; , in the integral similar to (79) and (101)) that
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|Jl | - CKakm—1 enz ,1‘?\1) i+n'=Pa~ ﬁz &Ny
e, )

)
x H o — vl |A<V>|2H |m ,+2k, (65)
where a and g are defined in (19) and (20) and

~={z€(C:|z|=(mn_lko)l/2]. (66)

Moreover the integral over the exterior of any n-independent neighborhood of

m—1
ve = (R0 + — - 1)/2% 7200 (o)

. . . _ ~ _ 1/2
gives contribution O (e "C) hence we can can deform @ near z = (m” L Ao) / such
that [v — Ag| > & on @. Thus, if we define the “expectation”

(o=, / (DS (W)d W (67)

the definition is correct.
Using (26), we get

db; -
550

1,5

2k
(@) 1 = (@ (17" W) 0 ")) =7§¢V(A,b H

2

2k 1 1

X<H D), _le _ _16(,)>- (68)
i,j=19%.j— 1 % i js Vs TN 075

Thus, to prove Lemma 2, we have to estimate the expectation above. Expanding the

functions with respect to {lPZ(,:)) it {af(?}, we get

o p—l (r)
i j=1.j — (WZk )i.j 15 bl 5= OZ,E
S 2 l 1
33D < T o' i H(n‘lof,?ﬂs> el
i, j 15l j=1t5=1\i,j=1 is =

be S S S Ml th [] o Hb“ -

i,j, L5l j=115=1 i,j=1

~ \

(69)
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To estimate the moments {M ({/; ;}, {t; ;})}, we introduce the generating function

F(¢,z2) = <exp {n*ITr ;“11/2(,? +n! ZZ;,EG{;)”, (70)

5

~i

where ¢ = {¢;, j}iz,l}zr It is easy to see that the derivatives F (¢, z) with respect to
{¢i,j} and {Z?,E} at zero give the moments {M ({/; ;}, {tZ,E})}'

Using Lemma 1 and then integrating over ¥ ,, we obtain

Kotm—
F(.2) 2%, 1/

), —1 )
eTr VATr (A4 /n=V/mWy) +n=1 35 2507 5

d p(V)d ¥y

Jl,r detm—1+2k 1%
Trv
Kokm—i / e —1 —1 —1
= . D (Ay—n"V,n '¢,n duv
J[’r detm_l+2kV 1( 2k { Z) I’L( )

with J; , of (64). Moreover, according to (30)—(31), @1 (A2 — n~'W.on e, n 1) isa
polynomial in the entries of Ao —n~ 'V and of {¢i ;) {zﬁ} with n-independent coeffi-
cients and degree at most 2k such that the degree of each variable in @ (V, n~'¢, n™'z)
is at most one. Here we also used that the integral over d ¥y , can be factorized in

{Wpi ij}il}zl. Besides,
1V, n7 e n ) =det( Ay — n~ V)4 F(Ask —n= 'V, n~ e, n ), (71)

where f(Azk —n-ly, n_lg“, n~1z) contains the terms of ®; which include {¢i ;) or
{ij}-

Recall that we are interested in A = Ag 2 +§/ (na)ﬁ, where Ag 2x = diag{Ao, ...,
xo},E = diag{&y, ..., &}, and a and B are defined in (19) and (20). Change the vari-
ablesv; — nv;, j =1, ..., 2k, where {v;} are the eigenvalues of V, and replace the
integration over the unit circle by the integration over w of (66). This yields

F _ KZk,m—l enTrV ¢r A 1% —1 —1 d %4 72
(é" Z) - Jl . n2k(m71) detm_l+2kV 1( 2k — , n é‘s n Z) /"L( ) ( )

We have from the description of @ and (71)
|®1(Azk — V,n~ g, n72))|

2k . -
< Cldet(Ao - V)| [ (1+M)H(1+%), (73)

- n -
i,j=1 1,5

where C(V) > 0 is bounded for v; € @ with @ of (66) (recall that we can deform »
near z = ("-L3g)"/? such that |v — Ag| > 8 on @ ). Since (M ({l; ;). {¢; 1))} are the
derivatives of (70) at zero, we can write
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L, dl tS
Ml j}, {z“)—<]_[ f 27; Zﬁjl %21711 ; +1F({ z)> (74)

i,J 19 z,] 132_

This, (72), and (73) yield

IM({Lij} (1 5] < H min I jleC€li= luloglf‘H min 15 teCl=istoeltl(75)
l]_
Choose 2, ; = {¢ € C: [¢| =1;,j/C}, Zj; = {z € C: |z| = 1;;/C}. Then (75)
yields

\M({li j}, {5 D] < H \/an,jCl’/H 2ty Cls
i,j=1
= H V2 l,C’wH 2ty C'I5. (76)
i,j=1
Thus, if |a; j| > C and |bz’§| > C in (69) we obtain Lemma 2 from (64) and (68)—(69).

m}

3 Asymptotic analysis in the bulk of the spectrum

In this section we prove Theorem 1, passing to the limit (4) in (63) for A; = A¢ +
&;/np(Xo), where p is defined in (6), Ao € o witho of (7),and §; € [-M, M], |[M| <
oo, j=1,...,2k.

To this end consider the function

V(v, L0) = —Aov — ¢m.n log(1 — v) +logv + S™, (77)
where
cm,n=%, S*:L;’"HJFC’”T’HO C’;—O”—%lgi (78)
Then (21) and (63) yield
2k
Dy Gio)n ™ Far(Ae) = Zo f W (vt ....ov0) [[d vy +o0(1), (79
o j=1

where Dy is defined in (14),

—n 3 Va0 +20E, p(A saou2W) A(V) 1
A(S)

U]

X exp [2cm,nx4sz((1 — V) Ao) H
=1

Wy(uy, ..., vn) =e
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and

76 p (hg) k=) g~ 2Ka—a(h0) 3L &

Zok = 22k 7 2k k2

(81)

Now we need the following lemma

Lemma 3 The function RV (v, Ag) for v = )»(;l/zei‘p, ¢ € (—m, ] attains its mini-
mum at

—1/2 igy ._ 20 = Cmn t 1

vV=vg =2 o +imp(ro). (82)

Moreover, if ¢ & Uy (£¢0) := (g0 —n~?logn, 99 +n~'?logn), then we have
for sufficiently big n

12 ; C log?
RV (hg 2, ng) > —2 (83)
n

Proof Note that for ¢ € (—m, ]

RV (hy /26, 1) = —2y/* cos g

Cm,n

log (1 ~|—A61 — 2)\81/2 costp) ~|—10g)\61 + 5%, (84)

where $* and ¢, ,, are defined in (78). Thus

d 12 *

—RV (2, V2610 30) = )»(1)/2 SiH<P<1 - ,1cm’n/ —01/2 )

do 1+Ay —2%, "“cosg

d2 B . A
SV 0 e, g) = i/ cos o1 - Lt ) @
do 1+Ay =24, "“cosg

n 2Cm.n sin? ©/Ao
—1 —1/2
(1+A, =24,

cos )2

and ¢ = ¢ of (82) are the minimum points of RV (4, 1/ 2e"g", Ao). Writing
)\(;1/2 sin ¢g
1 +kal—2kal/2cos<p0’
(86)

Vi:=V(vs, Ao)zq:ikgl/z sin o £ i@o % icm p arcsin

where ¢ is defined in (82), we conclude that

NV (v, Ag) = 0.
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Expanding RV (3,5 /%¢i¢, A9) in ¢ + ¢o and using (85)~(86), we obtain for ¢ €
Un(x¢0):

(mrop (ho))?

m,n

RV 1y 26, 1) = @ F o)t + 0310’ n). (87)

This and ¢, = ¢, m, n — oo imply for ¢ & U, (£¢o)

RV (g%, 1) >

Clog’n

The lemma is proved. O

Note that |v;| = Aal/z, jA: 1,...,2k. Since &, ..., &y are distinct (see Remark 1),
the inequality |A(T)/A(&)] < Cp and (83) yield

2k
‘ZZk ?{ 7{~-~%Wn(v1,...,v2k)ndvj
j=1

wo\(Uy,+UUy, ) @0 @0

2 2
< Clnk e—Czlog n’

where

wo=1{zeC: |zl =x,'""%, (88)

W, and Zj are defined in (80) and (81) respectively, and

Ur={pe(—m )|+ — ol <n ' *logn), )
Ups ={z =15 %e¥p € Us)
with ¢q of (82).
Note that we have for ¢ € U in view of (77), (86), and (4)
VOGP gy Vet (L mn Yot @F O o
() ’ O Ui (1 _ Uj:)2 0 2 + 0 ’
(90)

where f1(¢ F¢p) = O((p F (p0)3) in the regime (4). Shifting ¢; F @9 — ¢; for
¢; € U and using (86) we obtain
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k( 0) Fae(An) = Zooik k(2k— 1)/222 / H AA(\(;))

k2
(np(10)) g

l’LL‘+ _ . .
xexp{Gs(gol,...,m)+2da,<¢,)sj}1'[e 5o —@k=Ditej+e0)

j=1
2k m, 2
X H e —(2k l)l((ﬂj ®0) __ ZZTSW’ (91)
Jj=s+1 s=1 o

where the second sum in the r.h.s. is over permutation o® = {« j}3k: | of s pluses and
2k — s minuses,

el (@j9o) “12
de(p)) = ————, ax(p;) =1y '€ @iTw 92
(‘P/) «/)\_0/0()»0) (%) 0 (92)
VS = diag{ei(‘p"’_%), e ei(%-HPo), ei((ﬂs+l_<ﬂ0)’ o ei(§02k—§00)}’
T ar(e)

Gy (@1, ...y 02k) = 20m.nkaS2((I — VS)AO)H T—ar(9)
—a+(@;

» 1—[ a_ ((pj _nZ(f+((p])+V+(§01)) n Z (f=(or)+V_(9r)),

rH—lla(j) r=s+1
1 Cm,n 1 +2i —1/2 -1
cr = = — " NazleFleo = (—n21ogn, n" % 1ogn), (93
* (vi (l—vi)z)o =t ¢ e 9
ve — diag{ei(wﬁalwo)’ ..., efwntanpoy
Define
1S ign(pi
Iy = / eV =1 638 ((pJ)H((Pj_(PZ)de(QD)
o j<l
1 g . K
_ / det {eﬁ";:jgn((ﬂj)wé—l}jl=1dvs(¢)
Qn,S
N
. [ o Peaopre ) dne. o8
Pls--s pJ—O_QuS

where d v () is a measure on §2, s := (—logn, logn)® which is symmetric in

(o1, ..., 9s) and g(gp) is a function such that g,(¢) = Co(1 + o(1)), n — oo. Note
that if we take the term of (94) such that ps, = py,, s1 # s2, then this term is zero
since d vs (@) is symmetric in (¢y, . .., ¢5). Moreover, the order of

det {(n_l/zé‘jgn ()l wé_l/l’j !};,1:1

is n=(P1+FPI/2 and if {py, oy Dst # {0,1,...,5 — 1} the order is less than
n=s6=1/2 Hence, denoting by > the sum over all permutations {pj, ..., ps} of
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{0,1,...,5s — 1} and by A;(¢) the Vandermonde determinant A(¢q, ..., ¢s), wWe
obtain

—s(s 1)/2~
Iy = ——— / H(S;gn(% NPT A (@)d vs (@) (1 + o(1))
[T;20 7! )
A, .. _
= W / Hg (@) 7 A5 (@)d vs () (1 + 0(1))
AL .. &)
= WH?:OJ' / A(gn(@1)s - -, gn(@) As(@)d vg (@) (1 4 0(1)), (95)

2,

Since g,(¢) = Co(1 + 0(1)), n — oo, we get

CO-DRAGE, . &) )
= AT / A2(@)d vy (9)(1 + o(1)). (96)
Consider T, of (91) withoy = - -+ = a5 = +, g1 = - - - = agxr = —. Since
2 So((I —V,)A )ﬁ )ﬁ]/z e
Cm.nk. —
m,nkK492 0 o 1 1/2g1((ﬂ1+a1<ﬂ0)

is symmetric in (¢1, ..., ¢5) and (@511, . . ., ¢2r), changing variables as /ng; — ¢;
and using formulas (94)—(96), and formula for the Selberg integral (see, e.g., [14],
Chapter 17), we obtain

logn 2%

__ Cos®(A+0(1) _essd
T T T / Hdg"f““’l’---’%)l_[

—logn J=!

2

®2k) H e‘% — CO,s(é)(Zn)k(l +o(1)

Cf/zc(}k_s)z/zn(k_s)z ’

x A2 (@it ... 97

I=s+1

where Co,s(é) is n-independent. This expression is of order O(1) for s = k, and of
order o(1) for s # k. Hence, only the terms of (91) with exactly k pluses of {aj}%kzl
contribute in the limit (15). If we take s = k we obtain '

k(k—1) k(k—=1)

e2ivo 2 e 2i%0 2
2 k(2k—1)/2 .. 2
Cox(8) = 1>V (—1/2 ) (—1/2 ) (2i sin gp)
p(Ao) p(X0)

o exp{im(é1 + -+ & — &1 — - — %_Zk)}ek(k_l)’(4(c_}¥0+l)2c_l
H, 1H1 15— &)
i1tk —k+1——8)

2 ..
A CITP 0D o1 € . (98)
(2m)?kck/2 H, NI ARGED
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Hence, since it is easy to check that

47223 p(10)?
CpC = ——————,
Cm,n
we get from (97) and (98) that Ty, of (1) witho) = -+ - =y =+, 41 = - -+ =
oy = — has the form
(k1) i — e
FREAD) i (G148 —Ekt1 &21) ck(k—1)/2ek(k—1)K4(c—A0+l)zc’1 ©99)
Qi) T =y & — &g )
In view of the identity
. . k
sin( (8 — &k+1)) ]k d i TR — e }
det{ ——— et )
W(Sj - §k+l) jl=1 %-/ - Sk+l ji=1

A, ED)ACGkyr, - ) - Qim)c A& .. 8D AEkt1, - - - E2k)

the determinant in the L.h.s. of (99) is a linear combination of exp{ir 251;1 o} over

the collection {« j}z_k: |» in which m elements are pluses, and the rest are minuses. By
the virtue of the following formula (see [18], Problem 7.3)

e Hj<l(a./ —a))(bj —by)

-1 =det {@@; —pp~1]" 100
the coefficient of exp{im (k41 + -+ & — & — - — &)} is
det { (&1 — éj)_l}f-#] B (_1)WT_”
QT AEL . EDAG 1) (=D QRIS 2y & — Eer )

Other coefficients can be computed analogously. Thus, restricting the sum in (91) to
that over the collection {« j}z.k: 1» in which exactly k elements are pluses, and k are
minuses, and using (99), we obtain Theorem 1 after a certain algebra.

4 Asymptotic analysis at the edge of the spectrum

Let now A9 = A4 (for Ag = A_ the proof is similar) and A; = A4 + Ej/(ny+)2/3,
j = 1,...,2k, where Ay and y are defined in (7) and (6), and &;,...,&y €
[-M, M] CR.

According to (21) we have

2k
For(Ay) = ZZkf Wa(ui, ... vo0) [[dvi(1 +o(1)), (101

wo Jj=1

Dy (hy)
(ny )23
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where Dy is defined in (14),

W1, ..., vag) = e Zim VO COREE 08/ ubntenan =) ik los 1w (1)

AV)
X A(g) exp[Zcm nkaS2((I — V)AO)H }H 2k’

V() = —igv — clog(l — v) + logv — Sy, (103)
Sy =—1—+c—clog(l — (14++/c)™") —log(1 +e),  (104)

and

n'Pa(y) 33 &+2k(ne—m) log(1-A 1/2)’ (105)

pk@h+D /35, 2k (k=1)/3 = 2kis =2k (ne=m) log (1 -3

Zoi = Loge™

Lok = (106)

22k 77 2k ok /2
We need the following lemma

Lemma 4 The function RV of (103) for v = A;I/zei‘p, ¢ € (—m, 7] attains its
minimum at

vo =27 P =1+ Vo (107)

Moreover, ifv e wg={ve C:v= A;l/ze"‘p, ¢ € (—m, ]}, |lv—vo| = 6, where §
is small enough, then we have for sufficiently big n

RV () > Cs*. (108)

Proof We have similarly to (84)—(85) we have

d_gvr(+) d> &
TRV D () = —RV D (g) = —RV P (1) =0, (109)
) d ¢? d g3
4
() N
Wﬁ)tv (vo) = 6. (110)

Hence, ¢ = 0is a minimum point of the function HV H) (A_l/z 9) and RV (A_l/z

¢'?) is monotone increasing for ¢ € [0, ) and monotone decreasing for ¢ € (—, 0].
Expanding )tV ) (k;l/zei‘p) in ¢ we obtain for |¢| < § similarly to (87):

RV D02 = o' /4 + 0(p°). (111)
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This and monotonicity of i V) (A;l/zei“’) for ¢ # Oimply forgp € (—m, ], || > 6

RV O 1L ey > st

Since [v — vo| = 225 *|sin(p/2)] < 2'*|gl, we get (111). o

0o —1/2 . _ . . _ —2/3
Note that |vj| = A, "7, j = 1,..., 2k and according to (17) cju,n — ¢ = o(n ),
m,n — oo. Since &1, ..., &y are distinct (see Remark 1), the inequality

|A(T)/A(§)| < Cj and (108) yield

2%
Zok / f...?{Wn(vl,...,vzk)Hde
=1

@0\Us (vo) @0 20

— 1/3
< Clnk(2k+1)/3e Con(140(1))+Czn . M. n— 00,

where
Us(vo) = {v € wp : [v —vo| < 8}.
Hence,
Dy (0y) _ _ - -
A Fuda) = Za oo [ g1+ o) + 0.
(ny) /3 ;
Us (vo) J=1
(112)
Since
d d?
— VP (vg) = —5V(v) =0,
70 (vo) 702 (vo)
we have for |[v — vg| < 8
By =2 3 4
Vi) =y (v —v0)"/3+ O0(v—v9)"), [v—ruvol—0. (113)
Thus, we can write for v satisfying v — vg| < 8§
VP ) =y X’ )/3, (114)

where x (v) is analytic in the §-neighborhood of vy with the analytic inverse z(¢) (we
choose x (v) such that x (v) € R for v € R).
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Changing variables to v; = z(¢;), j = 1, ..., 2k, we rewrite (112) as
Dy =2 343, nl
2 { er—) Fri(Ag) = Lo j{ e Tiiel AL 2“ =)
(ny)3/3 -
Us.p
M=) T tog 426, s $2((1-2) 400 TIE:) 29805
A(Z) 7' (¢)) _c
dej(1+o(1))+ 0™ ")
A(ij) H 2k( ) J
2k
= Ly / W ....ou) [[dei + o) + 0™, (115)
U(sq; j=1
where Loy is defined in (105),
Z = diag {z(¢1), ..., 2(p2)}, (116)
Us.y = {p € C: z(p) € Us(vo)}. (117)
Moreover, we have from (114)
d
x (vo) =0, d—x(vo) =1, (118)
z
hence
0<Ci<|x ()| <Ca |v—1p| <8. (119)

Ifo ={ze€C:|z—z5,| <3} then x(do) is a closed curve encircling ¢ = 0 and
lying between the circles o1 = {¢p € C : || = C1é} and 02 = {p € C : |¢| = C26}
for 0 < Cy < C,. We have from (118)

20)=wvy, ZO0) =1, 0<Ci<[Z(@]<C ¢e€x@. (120)

According to Lemma 4, RV (v) > 0 for v € Us(vp) and we get <R(p3 > 0 for
Qj € ﬁg,‘p, i.e.,

cos(3argp;) = 0. @; € Us,,,
where ﬁg’(p is defined in (117). Hence, ﬁgﬂ(p can be located only in the sectors
—m/6 <argyp <m/6, m/2 <argp <5m/6, Tm/6 <arge < 3m/2.

Besides, x is conformal in o (see (119)), hence angle-preserving. Taking into account
that x (v) € R for v € R, the angle between wq and the real axis at the point vg is
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/2, and that i]'(;,(p is a continuous curve, we obtain that (75,(/) can be located only in
the sectors

/2 <arge <5m/6, Tm/6 <arge <3m/2. (121)

Note that we can take any curve U (¢) instead of ﬁg,(p provided that U (¢) and wp \
Us(vg) are “glued”, i.e., the union of z(U (¢)) and wq \ Us(vp) form a closed contour
encircling 0. Let us take

Ulp) ={p e C:argp =27/3, ¢ € x()}
UfpeCrargp =4n/3, ¢ € x(0)} U U5 U Uss,

where 0 = {v € C : |v — vo| < 8}, Uy s is a curve along x (o) from the point of
intersection of the ray arg¢ = 27/3 and x(do) to the point ¢ s of intersection of
ﬁa,w and x(30) (/2 < argg;s < 5m/6), and U s is a curve along x (35) from
the point of intersection of the ray argy = 4m/3 and x(d0) to the point ¢35 of
intersection of Us,, and x(95) (77/6 < arggy s < 3m/2). According to Lemma 4
and (114), E)t(pia = r3cos3py > C > 0, where r = |¢1.s], o = arg ¢ 5. Since
0 < Cy <r < Cy,we have

cos 3¢g > C/C; > 0.

Moreover, it is easy to see that cos(3arge;) > cos3¢g along Uj s (since cos3x
is monotone increasing for x € [7/2,2m/3] and monotone decreasing for x €
[27/3, 57/6]). This and |¢;| > C; imply for ¢; € L1 s

v %o
n 3 >C>0, ¢1€U;s. (122)

Also we have from (120)

lz(@j) —vol < Calpj| < C, ¢; € x ().

This, (122), cp.n — ¢ = 0(n=2/3), m, n — oo, and (120) yield
Wpr, ..., o) <e™ 0 grelns, ¢jellp), j>1. (123)
Hence, the integral over Uj 5 does not contribute to the L.h.s. of (1~1 5) The same state-
ment is valid for U s. Thus, we have shown that integral over Us , in (115) can be

replaced to the integral over the contour

I={peC: argp =21/3, 9 € x (@)} U{p € C:argp = 4n/3, ¢ € x(0)}.
(124)
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According to the choice of 1, we have

Nl =r3. @€l (125)

where r; = |g;].
Set now

-1/2 _—
0n={<ﬂ€C3|§0|§8n /I’l 1/3}7

where &, is defined in (17). Note that we assume that &, /*n=1/3 = 0, n — oc.

In other case we can take 0, = {¢ € C : |¢| < logn/n'/?} and the proof will be
similarly.

It is easy to see that o, C x (o) for a sufficiently big n. Besides, we have from
(120) for ¢ € o,

z2(p) =vo+ ¢ + 0(8"_111_2/3), n— oo,

@) =1+ 0@, *n 13, n - 0. (126)
Taking into account (17), (126), (125), and
g =20 st
we obtain for ¢ el~\c7,,,<pj el~, j=2,...,2k
Wi, .. pa0)| = CremCamirentin, (127)

where 1 = |p1| > 8;1/211_1/3. Since n'/3r; > 8;1/2 for ¢; € T\ on, the integral

-3
—Ce¢y,

~ . /2
over [ \ o, is O (e ) as n — oo. Hence,

Dy ()

—=——— (A

)23 2 (A2k)

—~ 2k -3/2
= Lu( o) [ W0 [Jdg; + 0™, as)
TNon J=1

where Ly and W((pl, ..., ) are defined in (105) and (115). This, (22), and (126)
imply
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D_l Fou(A Lo ek Ck=Drka —ny*z SHE 6 B3+ " Lo
m Zk( 2k) T~
I[N on
2k
A( ) _ce3?
+ 81, o) [[d o+ 0™,
NG i
(129)
where §(¢1, ..., @) collects the reminder terms which appear when we replace
2(pj) = vo +¢j + 0(97), 7' (¢9)) = 1+ O(p;) and
1 — . .
log Z(@j) - Qj 4 0((p2)
1 — vy 1 —vg J

for j =1,...,2k. Hence

16Ce1, -, @) = Cllo1] + -+~ + lparl)-

Changing variables in (129) as y ~2/3n!/3¢p j — i@j we obtain in new variables
18(p1. - )| = 186Gy Pn™ Por, iy Pn™ Py
< Cn P dgil + - + o). (130)

Therefore, using (10), (105), and (107), we obtain

Dy'0t) o LD+ o)

(n),+)2k2/3 vékz(_iy—2/3n1/3)k(2k+1)

o S 3+ g 2T A(P) H 0; + 0(e=Con 32 )
AE)

e4k(k Dieg ok(k—1)/2

= (2n)2k(_1)k2 (1 +0(n*1/3))

/ iXE e 3 11§I¢1A( )H do;+0(e” Ce, ),

AE) -
(131)
where S is defined in (12).
Consider
.k 2k
K(g) = 2l 2k/eiZ?ilw?/HZfiliémA(@)Hd%,
(2m) J i
ik | 3hi 2k
= L [ det]g/ w3 W’I] dy; (132)
<2n>2k/ ’ i 1H g
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Integrating by parts, we have for j > 3

R . A d . 3
l./(plj 1et<ﬂ?/3+z$/</)/d¢l — /(plj 3ezélwd_(plel</>7/3d(pl
N N

. 4 i3 1033w
== [ =3l il DG,
S

Applying this identity to each row of the determinant, starting from the third, we
observe that the first term in the r.h.s. gives zero contribution. Repeating this proce-
dure and replacing and rearranging the rows, we obtain from (132)

2k 2k

/(_1)k(k—l)/2 det [(plqjslrjeiwlg’ﬂ—t—i&(ﬂ/] 1_[ dej, (133)

Jil=1

ik

(Zn)zk

KGE) =

j=1

where j =qjk+7rj,q; =0,1,r; =0,1,...,k — 1. Thus, we have

k
. KA EDE. ... E
K(§) _ Z FAGH SAG, gjk)sl;ll vi ﬁeiwf/ﬂiémd(p,
AE) Qm)2k (=)t Ay, ..., Ex) /

S Ji<e<Jk j=1

k
i* Qo) TR DAED2 [T g0 5

=1 i3 )34k @)
=/ z . s Henﬂ,/ +’§"p’d<pj,

s Jr=e<ie I (@), — @) sign (t — jg) /=1
s=117E]1, Jk
(134)
where the sum is over all collections 1 < j; < --- < j; < 2k and Z(Sjl, o€ is
the Vandermonde determinant of {§;} with j # ji, ..., jk. Consider

tliﬁl’j —ig |*

(_l)kz/ Sj — &k ]j’l=1 eiz%i1¢?/3+212i1i§1¢1ﬁd(p. (135)
Qm* | AGL .. E)AE, - Ex) 2

s j=l

According to the identity (100) the coefficient of Hle @j, in (135) is

ik (_1)k(k+1)/2

,,,,,

Thus, K (E) /A (/E\) is equal to (135), and (131) yield the assertion of Theorem 2.
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