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Abstract We consider asymptotic behavior of the correlation functions of the char-
acteristic polynomials of the hermitian sample covariance matrices Hn = n−1 A∗

m,n
Am,n , where Am,n is a m × n complex random matrix with independent and identi-
cally distributed entries �aα j and �aα j . We show that for the correlation function of
any even order the asymptotic behavior in the bulk and at the edge of the spectrum
coincides with those for the Gaussian Unitary Ensemble up to a factor, depending only
on the fourth moment of the common probability law of entries �aα j , �aα j , i.e., the
higher moments do not contribute to the above limit.

Mathematics Subject Classification Primary 15B52; Secondary 15B57

1 Introduction

Characteristic polynomials of random matrices have been actively studied in the last
years. The interest was initially stimulated by the similarity between the asymptotic
behavior of the moments of characteristic polynomials of a random matrix from the
Circular Unitary Ensemble and the moments of the Riemann ζ -function along its criti-
cal line (see [12]). But with the emerging connections to the quantum chaos, integrable
systems, combinatorics, representation theory and others, it has become apparent that
the characteristic polynomials of random matrices are also of independent interest.
This motivates the studies of the moments of characteristic polynomials for other
random matrix ensembles (see e.g. [1,4,5,7,9,10,15,19,20,22]).

In this paper we consider the hermitian sample covariance matrices (HSCM) with
symmetric entries distributions, i.e., the n × n random matrices of the form
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450 T. Shcherbina

Hn = n−1 A∗
m,n Am,n, (1)

where Am,n is an m × n complex matrix with independent and identically distributed
entries �aα j and �aα j such that

E{aα j } = E{(aα j )
2} = 0, E{|aα j |2} = 1, α = 1, . . . ,m, j = 1, . . . , n,

E{(�aα j )
2l+1} = E{(�aα j )

2l+1} = 0, l ∈ N.
(2)

Denote also

μ4 = E{(�aα j )
4} = E{(�aα j )

4}, κ4 = μ4 − 3/4. (3)

Note that κ4 = 0 for the case when the distribution of the entries �aα j and �aα j is
Gaussian. The higher moments of the distribution will not play an important role in
the considerations below since the local behavior of the correlation function of the
characteristic polynomials for the HSCM is determined completely (as we will see)
by the first four moments of the entries distribution.

We assume that m belongs to a sequence {mn}∞n=1 such that

cm,n := mn

n
→ c ≥ 1, n → ∞. (4)

We below denote this limit as “limm,n→∞ . . .”.
Let λ(n)1 , . . . , λ

(n)
n be the eigenvalues of Hn . Define their normalized counting mea-

sure (NCM) as

Nn(	) = �
{
λ
(n)
j ∈ 	, j = 1, . . . , n

}/
n, Nn(R) = 1, (5)

where 	 is an arbitrary interval of the real axis. The behavior of Nn , as n → ∞, is
studied well enough. In particular, it was shown in [16] that Nn converges weakly
in probability to a non-random measure N which is called the limiting NCM of the
ensemble. The measure N is absolutely continuous and its density ρ is given by the
well-known Marchenko–Pastur law:

ρ(λ) =
{ 1

2πλ

√
(λ+ − λ)(λ− λ−), λ ∈ σ,

0, λ 
∈ σ,
(6)

where

λ± = (1 ± √
c)2, σ = ((1 − √

c)2, (1 + √
c)2). (7)

The mixed moments (or the correlation functions) of characteristic polynomials are

F2k(Λ) =
∫

H+
n

2k∏
j=1

det(λ j − Hn)Pn(d Hn), (8)
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Characteristic polynomials of the sample covariance matrices 451

where H+
n is the space of positive definite hermitian n × n matrices, Pn(d Hn) is a

probability law of the n × n random matrix Hn , andΛ = {λ j }2k
j=1 are real or complex

parameters that may depend on n.
We are interested in the asymptotic behavior of (8) for matrices (1) as m, n → ∞

and for

λ j =
{
λ0 + ξ j/nρ(λ0), λ0 ∈ σ,
λ0 + ξ j/(nγ±)2/3, λ0 = λ±,

(9)

where λ± and σ are defined in (7),

γ± = c1/4

(1 ± √
c)2
, (10)

ρ is defined in (6), and ξ̂ = {ξ j }2k
j=1 are real parameters varying in a finite interval

[−M,M] ⊂ R.
In the paper [19] the method based on the Grassmann integration was developed

to study the asymptotic behavior of the correlation functions of any even number of
the characteristic polynomials of the hermitian Wigner matrices. Here we apply this
method to the HSCMs (1)–(2).

In [11] Kosters used the exponential generating function to study the second
moment, i.e. the case k = 1 in (8). It was shown that for λ0 ∈ σ

1

nρ(λ0)
F2 (λ0 + ξ1/(nρ(λ0)), λ0 + ξ2/(nρ(λ0))) = 2πλn−m

0 cm+1/2
m,n

× e−n−m exp{nλ0 + α(λ0)(ξ1 + ξ2)+ 2κ4} sin(π(ξ1 − ξ2))

π(ξ1 − ξ2)
(1 + o(1)),

where

α(λ0) =
⎧⎨
⎩
λ0 − c + 1

2λ0ρ(λ0)
, λ0 ∈ σ,

(1 ± √
c)−1γ

−2/3
± , λ0 = λ±,

γ± is defined in (10). In [11] for the case c > 1, m = cn + o(n1/3), k = 1 the
asymptotic behavior at the edge of the spectrum (i.e. for λ0 = λ±) was also obtained:

1

(nγ±)2/3
F2

(
λ0 + ξ1/(nγ±)2/3, λ0 + ξ2/(nγ±)2/3

)
= 2π(1 ± √

c)2(n−m)

× cm+1/2e2n
√

c+n1/3α(λ±)(ξ1+ξ2)+2κ4 A(ξ1, ξ2)(1 + o(1))

with

A(x, y) = Ai′(x)Ai(y)− Ai(x)Ai′(y)
x − y

, (11)
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where Ai(x) is the Airy function

Ai(x) = 1

2π

∫

S

eis3/3+isx d s,

S = {z ∈ C| arg z = π/6 or arg z = 5π/6}.
(12)

In this paper we consider the general case k ≥ 1 of (8) for the random matrices (1)–(2).
Denote

D(n)(ξ, λ0) =
⎧⎨
⎩
(nρ(λ0))

−1 F2

(
λ0 + ξ/(nρ(λ0)), λ0 + ξ/(nρ(λ0))

)
, λ0 ∈ σ,

(nγ±)−2/3 F2

(
λ0 + ξ/(nγ±)2/3, λ0 + ξ/(nγ±)2/3

)
, λ0 = λ±,

(13)

and

D2k(λ0) =
2k∏

l=1

√
D(n)(ξl , λ0). (14)

The main results of the paper are the following two theorems:

Theorem 1 Consider the random matrices (1)–(2) and assume that the entries �aα j ,
�aα j of the matrices (1) have finite first 4k moments, where k ≥ 1. Then we have

lim
n→∞

1

(nρ(λ0))k
2 D2k(λ0)

F2k
(
Λ0 + ξ̂ /(nρ(λ0))

)

= ck(k−1)/2ek(k−1)κ4(c−λ0+1)2c−1

Δ(ξ1, . . . , ξk)Δ(ξk+1, . . . , ξ2k)
det

{
sin(π(ξi − ξk+ j ))

π(ξi − ξk+ j )

}k

i, j=1
, (15)

where F2k and ρ(λ) are defined in (8) and (6), Λ0 = (λ0, . . . , λ0) ∈ R
2k , λ0 ∈ σ ,

ξ̂ = {ξ j }2k
j=1, κ4 and σ are defined in (3) and (7), and

Δ(x1, . . . , xk) =
∏
i< j

(xi − x j ). (16)

Theorem 2 Consider the random matrices (1)–(2) and assume that the entries �aα j ,
�aα j of the matrices (1) have finite first 4k moments, where k ≥ 1, λ = λ±. Let m
belong to a sequence {mn}∞n=1 such that

mn = c n + n1/3εn, c > 1, (17)

where εn → 0, n → ∞. Then we have

lim
n→∞

1

(nγ±)2k2/3 D2k(λ±)
F2k

(
Λ0 + ξ̂ /(nγ±)2/3

)

= ck(k−1)/2 exp{4k(k − 1)κ4}
Δ(ξ1, . . . , ξk)Δ(ξk+1, . . . , ξ2k)

det
{

A(ξ j , ξk+l)
}k

i, j=1
, (18)

123



Characteristic polynomials of the sample covariance matrices 453

where F2k andγ± are defined in (8) and (10),Λ0 = (λ±, . . . , λ±) ∈ R
2k , ξ̂ = {ξ j }2k

j=1,
and κ4 and λ± are defined in (3) and (7).

Remark 1 Since the functions

1

(nρ(λ0))k
2 D2k(λ0)

F2k
(
Λ0 + ξ̂ /(nρ(λ0))

)
,

1

(nγ±)2k2/3 D2k(λ±)
F2k

(
Λ0 + ξ̂ /(nγ±)2/3

)

are analytic in each {ξ j }2k
j=1 and uniformly bounded in {ξ j }2k

j=1 in each compact set of

R
2k(it will be seen in the proofs), it is enough to prove Theorems 1 and 2 for distinct

{ξ j }2k
j=1.

The theorems show that the above limits for the mixed moments of the character-
istic polynomials for random matrices (1)–(2) coincide with those for the Gaussian
Unitary Ensemble up to a factor depending only on the fourth moment of the com-
mon probability law of the entries aα j , i.e., that the higher moments of the law do
not contribute to the above limit. Also we can see that there appear the well-known
kernels for the correlation functions of the eigenvalues, namely the sine-kernel and
the Airy kernel. This is a manifestation of the universality of the local regime, that can
be compared with the universality of the correlation functions of the eigenvalues for
HSCMs (see [21] and [17] and references therein).

The paper is organized as follows. In Sect. 2 we obtain a convenient asymptotic
integral representation for F2k , using the integration over the Grassmann variables and
the Harish Chandra/Itzykson-Zuber formula for integrals over the unitary group. The
method is a generalization of that of [3,4] and is an analog of the method of [19], where
the hermitian Wigner matrices were considered. In Sects. 3 and 4 we prove Theorems 1
and 2, applying the steepest descent method to the integral representation.

We denote by C,C1, etc. various n-independent quantities below, which can be
different in different formulas.

2 The integral representation

In this section we obtain the integral representation for the mixed moments F2k (8) of
the characteristic polynomials, i.e. we prove the following

Proposition 1 Let Λ2k = Λ0 + ξ̂ /(an)α , where Λ0 = diag{λ0, . . . , λ0}, ξ̂ =
diag{ξ1, . . . , ξ2k}, and

a =
{
ρ(λ0), λ0 ∈ σ,
γ±, λ0 = λ±,

(19)

β =
{

1, λ0 ∈ σ,
2/3, λ0 = λ±,

(20)
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where σ and λ± are defined in (7), and let F2k(Λ2k) of (8) be the correlation function
of the characteristic polynomials. Then we have for every k as m, n → ∞

D−1
2k (λ0)F2k(Λ2k) = n2k2

(nβ−1aβ)k(2k−1)

2kπke2kn D2k(λ0)

∮

ω

2k∏
l=1

(1 − vl)
md vl

vn+2k
l

Δ(V )

Δ(̂ξ)

e
∑2k

j=1(nλ0v j +n1−βa−βξ jv j )+2cm,nκ4 S2((I−V )Λ0)
∏2k

l=1
vl

1−vl (1 + O(n−β)),

(21)

where V = diag{v1, . . . , v2k},

S2(A) = 1

2

d2

dx2 det(x − A)

∣∣∣∣
x=c
, (22)

D2k(λ0) is defined in (14) and ω is any closed contour encircling 0.

We obtain the above formulas by using integration over the Grassmann variables.
This method allows to obtain the integral representation of the product of the char-
acteristic polynomials which is very useful for the averaging because it looks like
the Gaussian-type integral (see the formula (30) below). After averaging over the
probability measure we can integrate over the Grassmann variables to obtain the usual
asymptotic contour integral representation which can be studied by the steepest descent
method.

The integration over the Grassmann variables was introduced by Berezin and widely
used in the physics literature (see e.g. [2] and [6]). For the reader convenience we give
a brief outline of the techniques.

2.1 Grassmann integration

Let us consider two sets of formal variables {ψ j }n
j=1, {ψ j }n

j=1, which satisfy the an-
ticommutation conditions

ψ jψk + ψkψ j = ψ jψk + ψkψ j = ψ jψk + ψkψ j = 0, j, k = 1, . . . , n. (23)

These two sets of variables {ψ j }n
j=1 and {ψ j }n

j=1 generate the Grassmann algebra A.

Taking into account that ψ2
j = 0, we have that all elements of A are polynomials of

{ψ j }n
j=1 and {ψ j }n

j=1. We can also define functions of the Grassmann variables. Let
χ be an element of A, i.e.

χ = a +
n∑

j=1

(a jψ j + b jψ j )+
∑
j 
=k

(a j,kψ jψk + b j,kψ jψk + c j,kψ jψk)+ · · · .

(24)

For any analytical function f we mean by f (χ) the element of A obtained by substi-
tuting χ−a in the Taylor series of f at the point a. Since χ is a polynomial of {ψ j }n

j=1
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of the form (24), according to (23) there exists such l that (χ − a)l = 0, and hence
the series terminates after a finite number of terms and so f (χ) ∈ A.

For example, we have

exp{bψ jψ j } = 1 + bψ jψ j + (bψ jψ j )
2/2 = 1 + bψ jψ j ,

exp{a11ψ1ψ1 + a12ψ1ψ2 + a21ψ2ψ1 + a22ψ2ψ2} = 1 + a11ψ1ψ1

+ a12ψ1ψ2 + a21ψ2ψ1 + a22ψ2ψ2 + (a11ψ1ψ1 + a12ψ1ψ2

+ a21ψ2ψ1 + a22ψ2ψ2)
2/2 = 1 + a11ψ1ψ1 + a12ψ1ψ2 + a21ψ2ψ1

+ a22ψ2ψ2 + (a11a22 − a12a21)ψ1ψ1ψ2ψ2. (25)

Note also that if χ is the sum of the products of even numbers of the Grassmann
variables, then, according to the definition of the functions of the Grassmann variables,
expanding (z − χ)−1 into the series we obtain for any analytic function f

∮

Ω

f (z)

z − χ

dz

2π i
= f (χ), (26)

where Ω is any closed contour encircling 0.
Following Berezin [2], we define the operation of integration with respect to the

anticommuting variables in a formal way:

∫
d ψ j =

∫
d ψ j = 0,

∫
ψ j d ψ j =

∫
ψ j d ψ j = 1. (27)

This definition can be extended on the general element of A by the linearity. A multiple
integral is defined to be a repeated integral. The “differentials” d ψ j and d ψk anti-
commute with each other and with the variables ψ j and ψk .

Thus, if

f (η1, . . . , ηk) = p0 +
k∑

j1=1

p j1η j1 +
∑
j1< j2

p j1 j2η j1η j2 + · · · + p1,2,...,kη1 . . . ηk,

where η1, . . . , ηk are some elements from the sets {ψ j }n
j=1, {ψ j }n

j=1, then

∫
f (η1, . . . , ηk)d ηk . . . d η1 = p1,2,...,k . (28)

Let A be an ordinary hermitian matrix. The following Gaussian integral is well-
known

∫
exp

⎧⎨
⎩−

n∑
j,k=1

A j,k z j zk

⎫⎬
⎭

n∏
j=1

d �z j d �z j

π
= 1

det A
. (29)
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One of the important formulas of the Grassmann variables theory is the analog of this
formula for the Grassmann algebra (see [2]):

∫
exp

⎧⎨
⎩

n∑
j,k=1

A j,kψ jψk

⎫⎬
⎭

n∏
j=1

d ψ j d ψ j = det A. (30)

For n = 1 and n = 2 this formula follows immediately from (25) and (28).
Besides, we have

∫ q∏
p=1

ψ l p
ψsp exp

⎧⎨
⎩

n∑
j,k=1

A j,kψ jψk

⎫⎬
⎭

n∏
j=1

d ψ j d ψ j = det Al1,...,lq ;s1,...,sq , (31)

where Al1,...,lq ;s1,...,sq is a (n − q) × (n − q) minor of the matrix A without lines
l1, . . . , lq and columns s1, . . . , sq .

2.2 Asymptotic integral representation for F2

In this subsection we obtain (21) for k = 1 by using the Grassmann integrals. This
formula was obtained in [11] by another method. We give here a detailed proof to show
the basic ingredients of our techniques that will be elaborated in the next subsection
to obtain the asymptotic integral representation of (8) for k > 1.

Using (30), we obtain from (8)

F2(Λ2) = E
{∫

e
∑2

r=1
∑n

p,q=1(λr −H)p,qψ prψqr d Ψ2,n

}

= E
{∫ m∏

α=1

e− 1
n

∑2
r=1

(∑n
p=1 aαpψ pr

)(∑n
q=1 aαqψqr

)
e
∑2

s=1 λs
∑n

p=1 ψ psψps d Ψ2,n

}

= E

⎧⎨
⎩
∫ m∏

α=1

2∏
r=1

(
1−1

n

n∑
p,q=1

aαpaαqψ prψqr

)
e
∑2

s=1 λs
∑n

p=1 ψ psψps d Ψ2,n

⎫⎬
⎭ ,

(32)

since for any α = 1, . . . ,m and any r = 1, 2 we have according to (23)

( n∑
p=1

aαpψ pr

)2

=
( n∑

q=1

aαqψqr

)2

= 0. (33)

Here {ψ jl}n 2
j,l=1 are the Grassmann variables (n variables for each determinant in (8))

and
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d Ψs,l =
s∏

r=1

l∏
j=1

d ψ jr d ψ jr . (34)

In view of (2) and (23) we get

E2 :=E
{ 2∏

r=1

(
1− 1

n

n∑
p,q=1

aαpaαqψ prψqr

)}
=1− 1

n

2∑
r=1

n∑
p,q=1

E
{
aαpaαq

}
ψ prψqr

+ 1

n2

n∑
p1,q1=1

n∑
p2,q2=1

E
{
aαp1aαq1aαp2 aαq2

}
ψ p11ψq11ψ p22ψq22.

According to (2), the addition in the first sum is not zero if and only if p = q, and the
addition in the second sum is not zero if and only if p1 = q1, p2 = q2, or p1 = q2,
p2 = q1, or p1 = q1 = p2 = q2. Since E{|aα j |2} = 1, E{|aα j |4} = 2μ4 + 1/2, this
yields

E2 = 1 − 1

n

2∑
r=1

n∑
p=1

ψ prψpr + 1

n2

∑
p 
=q

ψ p1ψp1ψq2ψq2 − 1

n2

∑
p 
=q

ψ p1ψp2ψq2ψq1

+ 2μ4 + 1/2

n2

n∑
p=1

ψ p1ψp1ψ p2ψp2 = det Q(n)
2 + 2κ4

n2

n∑
p=1

ψ p1ψp1ψ p2ψp2,

(35)

where Ψ (l)
s and Q(l)

s are the matrices with Grassmann entries

Ψ (l)
s =

⎧⎨
⎩

l∑
p=1

ψ prψpt

⎫⎬
⎭

s

r,t=1

, Q(l)
s = 1 − n−1Ψ (l)

s , (36)

μ4 is the 4-th moment of the common probability law of �aα j , �aα j of (2), and κ4 is
defined in (3).

Thus, (32) and (35) yield

F2(Λ2) =
∫

eTrΨ (n)2 Λ2

(
det Q(n)

2 + 2κ4

n2

n∑
p=1

ψ p1ψp1ψ p2ψp2

)m

d Ψ2,n

=
m∑

q=1

(
m

q

)
(2κ4)

q

n2q

∫
eTrΨ (n)2 Λ2 detm−q Q(n)

2

( n∑
p=1

ψ p1ψp1ψ p2ψp2

)q

d Ψ2,n .

Using the symmetry of the integrand of ψ lp, ψlp and the formula

∫
f (ψ p1, ψp1, ψ p2, ψp2) ψ p1ψp1ψ p2ψp2 d ψp1d ψ p1d ψp2d ψ p2 = f (0, 0, 0, 0),
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458 T. Shcherbina

we obtain

F2(Λ2) =
m∑

q=1

(
m

q

)
n!

(n − q)!
(2κ4)

q

n2q

∫
eTrΨ (n)2 Λ2 detm−q Q(n)

2

×
n∏

p=n−q+1

ψ p1ψp1ψ p2ψp2 d Ψ2,n

=
m∑

q=1

(
m

q

)
n!

(n − q)!
(2κ4)

q

n2q

∫
eTrΨ (n−q)

2 Λ2 detm−q Q(n−q)
2 d Ψ2,n−q

=:
m∑

q=1

(
m

q

)
n!

(n − q)!
(2κ4)

q

n2q
I2,q . (37)

To compute I2,q we use the following lemma

Lemma 1 Let A be any p × p matrix and let l be a positive integer. Then we have

detl A = K p,l

∫
eTr AU

det p+lU
d μ(U ), (38)

where

K p,l = (−1)p(p−1)/2S−1
p

p−1∏
s=0

(l + s)!, Sp =
p∏

s=1

s!, (39)

U is a unitary matrix with eigenvalues {u j }p
j=1, W is a matrix which diagonalizes U

and

d μ(U ) = 	2(u1, . . . , u p)d W
p∏

j=1

du j

2π i
, (40)

where d u j means the integration over the circle ω = {z : |z| = 1}, d W is the Haar
measure over the unitary group U (p), and 	(u1, . . . , u p) is defined in (16).

Remark 2 1. Lemma 1 is a particular case of the superbosonization formula which
was proved in the physics paper [13]. We give below (see Sect. 2.4) a different
proof for this simple case.

2. Since both sides of (38) are analytic functions of ai, j , we can take A with not
necessary complex but also with even Grassmann elements.

3. Combining (38) and (30) we get that for any p × p matrix A

∫
etr AΨ (l)d Ψp,l = K p,l

∫
etr AU

det p+l U
d μ(U ), (41)

where Ψ (l) = {∑l
s=1 ψs jψsr }p

j,r=1 and d Ψp,l is defined in (34).
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Using Lemma 1 and (41), we obtain from (37)

I2,q = K2,m−q

∫
eTr Λ2Ψ

(n−q)
2 +Tr X2 Q(n−q)

2

detm−q+2 X2
d Ψ2,n−qd μ(X2)

= K2,m−q

∫
eTr Λ2Ψ

(n−q)
2 +Tr X2−n−1Tr X2Ψ

(n−q)
2

detm−q+2 X2
d Ψ2,n−qd μ(X2)

(41)= K2,m−q K2,n−q

∫
eTr X2+Tr Λ2U2−n−1Tr U2 X2

detm−q+2 X2detn−q+2U2
d μ(U2)d μ(X2)

= K2,n−q

∫
eTr Λ2U2 detm−q(I − n−1U2)

detn−q+2U2
d μ(U2), (42)

where U2 and X2 are unitary 2 × 2 matrices, and d μ(U2), d μ(X2) are defined in
(40).

Recall that we are interested inΛ2 = Λ0,2 + ξ̂2/(na)β , whereΛ0,2 = diag{λ0, λ0},
ξ̂2 = diag{ξ1, ξ2}, and a, β are defined in (19), (20). Substituting (40) in (42) and using
that functions det(I − n−1U2), Tr Λ0U2, and det U2 are unitary invariant, we obtain
from (42)

I2,q = K2,n−q

∫ ∮

ω

eTr Λ0,2V2+(na)−βTr ξ̂2W ∗V2W
2∏

r=1

(1 − vr
n )

m−q

v
n−q+2
r

×(v1 − v2)
2d μ(W )

dv1dv2

(2π i)2
= K2,n−q

n2(n−q)

∫ ∮

ω

2∏
r=1

(1 − vr )
m−q

v
n−q+2
r

×(v1−v2)
2 exp{Tr Λ0,2V2+(na)−βTr ξ̂2W ∗V2W }d μ(W )

dv1dv2

(2π i)2
, (43)

where ω is any closed contour encircling 0. The integral over the unitary group U (2)
can be computed using the Harish Chandra/Itsykson-Zuber formula (see e.g. [14],
Appendix 5):

Proposition 2 Let A be the normal p × p matrix with distinct eigenvalues {ai }p
i=1

and B = diag{b1, . . . , bp}. Then for any symmetric function f (B) of {b j }p
j=1 we have

∫

U (p)

∫
etr AU∗ BU 	2(B) f (B)d Ud B

= Sp

∫
e
∑p

j=1 a j b j 	(B)
	(A) f (b1, . . . , bp)d B, (44)

where Sp is defined in (39), d B = ∏p
j=1 d b j , d U is the normalized Haar measure

of the unitary group U (n) and 	(A), 	(B) are the Vandermonde determinants of the
eigenvalues {ai }p

i=1, {bi }p
i=1 of A and B.
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This and formula (43) yields

I2,q = 2nβ−1aβK2,n−q

n2(n−q)

∮

ω

exp{nTr Λ0,2V2 + n1−βa−βTr ξ̂2V2}

×
2∏

r=1

(1 − vr )
m−q

v
n−q+2
r

(v1 − v2)dv1dv2

(ξ1 − ξ2)(2π i)2
. (45)

Hence, since

n!
(n − q)! · (n − q + 1)!(n − q)!

n2n−q
= 2πn2e−2n(1 + O(1/n))

we get (21) for k = 1 from (37), (39), and (45).

2.3 Asymptotic integral representation for F2k

Using (30) and (33), we obtain from (8) (cf. (32))

F2k(Λ2k) = E
{∫

e

∑2k
r=1

n∑
p,q=1

(λr −H)p,qψ prψqr

d Ψ2k,n

}

= E
{∫

e
∑2k

s=1 λs
∑n

p=1 ψ psψps

m∏
α=1

e− 1
n

∑2k
r=1

(∑n
p=1 aαpψ pr

)(∑n
q=1 aαqψqr

)
d Ψ2k,n

}

= E
{∫

e
∑2k

s=1 λs
∑n

p=1 ψ psψps

m∏
α=1

2k∏
r=1

(
1− 1

n

∑n

p,q=1
aαpaαqψ prψqr

)
d Ψ2k,n

}
.

(46)

In view of (2) similarly to (35) we get

E
{ 2k∏

r=1

(
1 − 1

n

n∑
p,q=1

aαpaαqψ prψqr

)}

= 1 +
2k∑

s=1

(−1)s

ns

∑
p1,q1

. . .
∑
ps ,qs

E
{ s∏

l=1

aαpl aαql

} s∏
l=1

ψ pl lψql l = det Q(n)
2k

+2κ4

n2

∑
l1<l2,s1<s2

det(Q(n)
2k )

(l1,l2;s1,s2)
n∑

p=1

ψ pl1ψps1ψ pl2ψps2 + n−2Φ(Ψ ), (47)

where Q(n)
2k is defined in (36), det(Q(n)

2k )
(l1,l2;s1,s2) is (2k − 2) × (2k − 2) minor of

matrix Q(n)
2k without lines s1, s2 and columns l1, l2, κ4 is defined in (3) and Φ(Ψ )

(this notation means that Φ depends on Grassmann variables) is a polynomial of the
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variables {(n−1Ψ
(n)
2k )r,s}2k

r,s=1 and

n−1σ
(n)
l,s

= 1

n

n∑
p=1

q∏
j=1

ψ pl j
ψps j , l = (l1, . . . , lq), s = (s1, . . . , sq). (48)

Indeed, it is easy to check that only the terms in which any pl , l = 1, . . . , s is equal
to some qr , r = 1, . . . , s (i.e. {pl , ql}s

l=1 break up into the pairs of equal indexes
(pl , qr )) give the non-zero contribution in (47). Each sum over such pair of equal
indexes has n summands and the coefficient n−1. But if we consider the terms with
four equal indexes, then we obtain the sum of n summands with the coefficient n−2,
i.e. the addition n−1. If three pairs of indexes coincide or we have two couples of four
coincided indexes, then we have the addition coefficient n−2, and so on: one more
coinciding of such pairs gives the additional n−1. The terms (with any s) which do not
contain four equal indexes give det Q(n)

2k (cf. (35)). The terms with only one couple of
four coincided indexes (and thus with additional n−1) give the second sum in the r.h.s.
of (47) (cf. (35)). All other terms contain an additional factor n−2 or more and we
denoted them by n−2Φ(Ψ ) (we do not have such terms in (35)). Our aim is to prove
that the contribution of n−2Φ(Ψ ) in (46) is small and that the expression multiplied
by 2κ4 roughly speaking gives some constant.

To do this we use

Lemma 2 Let A = {ai, j }2k
i, j=1 and b = {bl,s} be the collections of complex variables,

where l, s is defined in (48), and Φr be an analytic function of A and b. Assume that
(1 − ε)n < r ≤ n, 0 ≤ l < εn with some sufficiently small ε > 0. Then there exist an
absolute constants C0,C1 such that

∣∣∣∣
∫
Φr (n

−1Ψ
(r)
2k , n−1σ (r))μ̃

(r)
2k,l(Ψ )d Ψ2k,r

∣∣∣∣
≤ C0 max|ai, j |,|bl,s |≤C1

|Φr (A, b)| · ∣∣Jl,r
∣∣,

where

Jl,r =
∫
μ̃
(r)
2k,l(Ψ )d Ψ2k,r , μ̃

(r)
2k,l(Ψ ) = eTrΨ (r)2k Λ2k detm−l Q(r)

2k . (49)

The proof of Lemma 2 is given in Sect. 2.4.
Denote the expression in the r.h.s. of (47) multiplied by 2κ4 by n−1 X and write

(
det Q(n)

2k + 2κ4

n
X + n−2Φ(Ψ )

)m =
∑

k1+k2≤m

m!
k1!k2!(m − k1 − k2)!

×
(

det Q(n)
2k

)m−k1−k2
(2κ4

n
X
)k1
(

n−2Φ(Ψ )
)k2
. (50)

Using Lemma 2 with r = n, l = 0 we obtain

∣∣∣∣
∑
k2≥1

∑
k1+k2≤m

(
m

k1, k2

)∫
μ̃
(n)
2k,0(Ψ )

(
2κ4 X

n detQ(n)
2k

)k1
(

Φ(Ψ )

n2detQ(n)
2k

)k2

d Ψ2k,n

∣∣∣∣
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≤
∑
k2≥1

∑
k1+k2≤m

(
m

k1, k2

)(
A

n

)k1
(

B

n2

)k2 ∣∣J0,n
∣∣

=
((

1 + A

n
+ B

n2

)m

−
(

1 + A

n

)m) ∣∣J0,n
∣∣ = O(n−1)

∣∣J0,n
∣∣ , (51)

where A, B are some constants. This and (46)–(47) yield (note that according to the
proof of Lemma 2 J0,n 
= 0)

J−1
0,n F2k(Λ2k) = O(n−1)+ J−1

0,n

∫
d Ψ2k,n eTrΨ (n)2k Λ2k

⎛
⎝det Q(n)

2k + 2κ4

n2

∑
l1<l2,s1<s2

det(Q(n)
2k )

(l1,l2;s1,s2)
n∑

p=1

ψ pl1ψps1ψ pl2ψps2

⎞
⎠

m

, (52)

where Q(n)
2k and Ψ (n)

2k are defined in (36).
Note also that we have from Lemma 2 similarly to (51)

∣∣∣∣J−1
0,n

∫
d Ψ2k,neTrΨ (n)2k Λ2k

(
det Q(n)

2k + 2κ4

n
X

)m∣∣∣∣

≤
m∑

q=0

(
m

q

)(
A

n

)q

≤
m∑

q=0

(cm,n A)q

q! ≤ ecm,n A. (53)

Thus, according to the dominated convergence theorem, to compute the r.h.s. of (52),
we can use the Newton binomial formula and compute the limit of each term with
fixed q, as n → ∞. Consider (2κ4 X/n)q . Observe that the term with ps = pl in the
product

q∏
j=1

⎛
⎝n−1

∑
p j

ψ p j l1, j
ψp j s1, jψ p j l2, j

ψp j s2, j

⎞
⎠

can be expressed in terms of (48) with an additional factor n−1. Therefore, according
to Lemma 2 (similarly to (51)) it suffices to consider only the terms with ps 
= pl

or, taking into account the symmetry of the integrand of ψ lp, ψlp , the term p1 = n,
p2 = n − 1, …, pq = n − q + 1 with coefficient n!/(n − q)! Thus, we can write

J−1
0,n F2k(Λ2k) =

m∑
q=0

(
m

q

)
n!

(n − q)!
(2κ4)

q

nq
I2k,q + O(n−1), (54)
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where

I2k,q = J−1
0,n

∫
μ̃
(n)
2k,q(Ψ )P

(n)
q,n (Ψ )d Ψ2k,n, (55)

P(r)q,n(Ψ ) =
n∏

p=n−q+1

( ∑

l p
1 <l p

2 ,s
p
1 <s p

2

det(Q(r)
2k )

(l p
1 ,l

p
2 ;s p

1 ,s
p
2 )ψ pl p

1
ψps p

1
ψ pl p

2
ψps p

2

)
,

(56)

where μ̃(n)2k,q is defined in (49). Now let us “remove” the variables ψ ps, ψps , p =
n − q + 1, . . . , n, s = 1, . . . , 2k from det(Q(n)

2k )
(l1,l2;s1,s2). It is easy to see that

det(Q(n)
2k )

(l1,l2;s1,s2) = det(Q(n−q)
2k )(l1,l2;s1,s2) + n−1Φ̃1(Ψ ),

where Φ̃1(Ψ ) are polynomials of {ψ js}n 2k
j,s=1, {ψ js}n 2k

j,s=1 with the sum of the coeffi-
cients of order O(q) = O(1), m, n → ∞. Hence, using Lemma 2 (similarly to (51)),
we get

I2k,q = J−1
0,n

∫
μ̃
(n)
2k,q(Ψ )P

(n−q)
q,n (Ψ )d Ψ2k,n + O(n−1) =: Ĩ2k,q + O(n−1), (57)

Let us integrate over ψ ps, ψps , p = n − q + 1, . . . , n, s = 1, . . . , 2k. According to
Lemma 1 and (31) we can rewrite Ĩ2k,q as

Ĩ2k,q = K2k,m−q

J0,n

∫
d μ(V )d Ψ2k,n−q

exp{Tr Λ2kΨ
(n−q)
2k + Tr Q(n−q)

2k V }
detm−q+2k V

×
∫ n∏

p=n−q+1

2k∏
l=1

d ψpld ψ ple
∑2k

i, j=1(Λ2k−n−1V )i, j
∑n

p=n−q+1 ψ piψpj P(n−q)
q,n (Ψ )

= K2k,m−q

J0,n

∫
d μ(V )d Ψ2k,n−q

eTr Λ2kΨ
(n−q)
2k +Tr Q(n−q)

2k V

detm−q+2k V

×
( ∑

l1<l2,s1<s2

det(Q(n−q)
2k )(l1,l2;s1,s2)det(Λ2k − n−1V )(l1,l2;s1,s2)

)q

. (58)

Besides, the Cauchy-Binet formula (see [8]) yields for 2k × 2k matrices A, B

∑
l1<l2,s1<s2

det A(l1,l2;s1,s2)B(l1,l2;s1,s2) = 1

2

d2

dx2 det(x − AB)
∣∣∣
x=0

.

Now we are ready to integrate over the Grassmann variables. Indeed, using Lemma 1
we can write
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1

2

d2

dx2 det(x − AB)
∣∣∣
x=0

=
∮

d z

2π i z3 det(AB − z)

= K2k,1

∮

ω

d z

2π i z3

∫
d μ(W )

exp{Tr (AB − z)W }
det2k+1W

,

where W is a 2k × 2k unitary matrix and d μ(W ) is defined in (40) and ω is any
contour encircling 0.

Thus, using again Lemma 1 and (41), we obtain

Ĩ2k,q = K2k,m−q

J0,n

∫
d μ(V )d Ψ2k,n−q

eTr Λ2kΨ
(n−q)
2k +Tr Q(n−q)

2k V

detm−q+2k V

×
∮

ω

q∏
s=1

d zs

2π i z3
s

∫ q∏
s=1

K2k,1d μ(Ws)

det2k+1Ws
eTr Q(n−q)

2k (Λ2k−n−1V )
∑q

p=1 Wp−∑q
p=1 z pTr Wp

(41)= K2k,m−q K2k,n−q

J0,n

∫
d μ(V )d μ(U )

eTr Λ2kU+Tr (1−n−1U )V

detm−q+2k V detn−q+2k U

×
q∏

s=1

∮

ω

d zs

2π i z3
s

∫
K2k,1d μ(Ws)

det2k+1 Ws
eTr (1−n−1U )(Λ2k−n−1V )Ws−zsTr Ws ,

where {Ws}q
s=1, U are 2k × 2k unitary matrices. Integrating the last expression over

d μ(V ) (using Lemma 1), we get

Ĩ2k,q = K2k,n−q

J0,n

∫ detm−q(1 − n−1U ) detm−q(1 − n−1∑q
p=1 Wp) eTr Λ2kU

detn−q+2k U

×eTr (1−n−1U )Λ2k
∑q

p=1 Wp−∑q
p=1 z pTr Wp d μ(U )

q∏
s=1

d zs

2π i z3
s

K2k,1d μ(Ws)

det2k+1 Ws
,

(59)

Besides, we have

detm−q
(

1 − n−1
q∑

p=1

Wp

)
= e−cm,n

∑q
p=1 Tr Wp (1 + O(n−1)).

Substituting this into (59), integrating over {Ws}q
s=1 by using (38), we get

Ĩ2k,q = K2k,n−q

J0,n

∫
eTr Λ2kU detm−q(1 − n−1U )

detn−q+2k U

× exp

⎧⎨
⎩Tr (1 − n−1U )Λ2k

q∑
p=1

Wp −
q∑

p=1

(z p + cm,n)Tr Wp

⎫⎬
⎭
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×
q∏

s=1

d zs

2π i z3
s

q∏
s=1

K2k,1d μ(Ws)

det2k+1 Ws
d μ(U )

= K2k,n−q

J0,n

∫
eTr Λ2kU detm−q(1 − n−1U )

detn−q+2k U

×Sq
2 ((1 − n−1U )Λ2k)d μ(U )+ O(n−1), (60)

where S2 is defined in (22).
Recall that we are interested in Λ2k = Λ0,2k + ξ̂ /(na)β , where

Λ0,2k = diag{λ0, . . . , λ0}, ξ̂ = diag{ξ1, . . . , ξ2k}, and a, β are defined in (19), (20).
Thus,

Ĩ2k,q = O(n−β)+ O(n−1)+ K2k,n−q

J0,n

×
∫

eTr Λ2kU detm−q(1 − n−1U )

detn−q+2k U
Sq

2 ((1 − n−1U )Λ0)d μ(U ), (61)

Let us change variables to U = W ∗V W , where W is a unitary 2k × 2k matrix and
V = diag{v1, . . . , v2k}. Since det(I − n−1U ), S2((I − n−1U )Λ0), and det U are
unitary invariant, (61) implies

I2k,q = O(n−β)+ O(n−1)+ K2k,n−q

J0,n

∮

ω

2k∏
j=1

d v j

2π i

∫
d μ(W )eTr W ∗V WΛ2k

×Δ2(V )
detm−q(I − n−1V )

detn−q+2k V
Sq

2 ((I − n−1V )Λ0). (62)

where ω is any closed contour encircling 0. The integral over the unitary group U (2k)
can be computed using the Harish Chandra/Itsykson-Zuber formula (44). Shifting
vi → nvi , we obtain

Ĩ2k,q = S2k K2k,n−q(nβ−1aβ)k(2k−1)

n2k(n−q) J0,n D2k

∮

ω

2k∏
j=1

d v j

2π i
enTr VΛ0+n1−βa−βTr V ξ̂

×Δ(V )
Δ(̂ξ)

2k∏
l=1

(1 − vl)
m−q

v
n−q+2k
l

Sq
2 (I − V )+ O(n−β)+ O(n−1). (63)

Hence, since

n!
(n − q)! ·

∏2k−1
s=0 (n − q + s)!

n2k(n−q)+q
= (2π)kn2k2

e−2kn(1 + O(1/n)),

we get (21) from (53), (54), (57), and (63).
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2.4 Proofs of Lemmas 1, 2

Proof of Lemma 1 Let A be a normal matrix. Then we can set A = V ∗
0 A0V0 and

U = W ∗U0W , where A0 = diag (a1, . . . , ap), U0 = diag (u1, . . . , u p) and V0, W
are the matrices diagonalizing A and U correspondingly. We obtain

I :=
∫

eTr AU

detp+lU
d U =

∫
eTr V ∗

0 A0V0W ∗U0W 	2(u1, . . . , u p)∏p
j=1 u p+l

j

d μ(W )

p∏
j=1

du j

2π i
.

Shifting integration with respect to W as W V ∗
0 → W and using (44), we obtain

I = qp

∮

ω

e
∑p

j=1 a j u j 	(u1, . . . , u p)

	(A0)
p∏

j=1
u p+l

j

p∏
j=1

d u j

2π i

= qp

	(A0)
det

⎡
⎣
∮

ω

ea j u j

u p+l−s
j

d u j

2π i

⎤
⎦

p,p−1

j,s=1,0

= qp

	(A0)
det

⎡
⎣ a p+l−s−1

j

(p + l − s − 1)!

⎤
⎦

p,p−1

j,s=1,0

= qp	(1/a1, . . . , 1/ap)
∏p

j=1 a p+l−1
j∏p−1

s=0 (p + l − s − 1)!	(A0)
= (−1)

p(p−1)
2 qp detl A∏p−1

s=0 (p + l − s − 1)!
,

and (38) is proved for the normal A.
Let now A be an arbitrary matrix. According to the polar decomposition, we can

write A = SW , where W is a unitary p × p matrix and S is a diagonal p × p matrix.
Since we proved (38) for any normal A, we proved it for S = diag {eiα1 , . . . , eiαp },
α1, . . . , αp ∈ R. Besides, it is easy to see that both sides of (38) is analytic functions
of the elements of S. Therefore, (38) is valid for any A. ��

Proof of Lemma 2 According to Lemma 1 and (49), we have

Jl,r = K2k,m−l

∫ ∫
eTrΛ2kΨ

(r)
2k +Tr (1−n−1Ψ

(r)
2k )V

detm−l+2k V
d μ(V )d Ψ2k,r

= K2k,m−l

∫
eTr V detr (Λ2k − n−1V )

detm−l+2k V
d μ(V ). (64)

It is proved below (see Sects. 3 and 4 taking into account that the change v → λ0(1−v)
convert Jl,r in the integral similar to (79) and (101)) that
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∣∣Jl,r
∣∣ ≥ C K2k,m−l

n2k(m−l)

∮

ω̃

en
∑2k

j=1 �v j +n1−βa−β∑2k
j=1 ξ j �v j

×
2k∏
j=1

|λ0 − v j |r |Δ(V )|2
2k∏
j=1

|dv j |
|v j |m−l+2k

, (65)

where a and β are defined in (19) and (20) and

ω̃ =
{

z ∈ C : |z| =
(m − l

n
λ0

)1/2}
. (66)

Moreover the integral over the exterior of any n-independent neighborhood of

v± =
(
λ0 + m − l

n
− 1

)
/2 ± πλ0ρ(λ0)

gives contribution O(e−nC ), hence we can can deform ω̃ near z = (m−l
n λ0

)1/2 such
that |v − λ0| > δ on ω̃. Thus, if we define the “expectation”

〈(. . .)〉 = J−1
l,r

∫
(. . .)μ̃

(r)
2k,l(Ψ )d Ψ2k,r (67)

the definition is correct.
Using (26), we get

〈Φr 〉 : = 〈Φr (n
−1Ψ

(r)
2k , σ

(r))〉 =
∮

Ω

Φr (A, b)
2k∏

i, j=1

d ai, j

2π i

∏

l,s

d bl,s

2π i

×
〈

2k∏
i, j=1

1

ai, j − n−1(Ψ
(r)
2k )i, j

∏

l,s

1

bl,s − n−1σ
(r)
l,s

〉
. (68)

Thus, to prove Lemma 2, we have to estimate the expectation above. Expanding the
functions with respect to {Ψ (r)

2k )i, j }, {σ (r)
l,s

}, we get

〈
2k∏

i, j=1

1

ai, j − n−1(Ψ
(r)
2k )i, j

∏

l,s

1

bl,s − n−1σ
(r)
l,s

〉

=
∑

i, j,l,s

r∑
li, j =1

r∑
tl,s=1

〈
2k∏

i, j=1

(n−1(Ψ
(r)
2k )i, j )

li, j
∏

l,s

(n−1σ
(r)
l,s
)
tl,s

〉
2k∏

i, j=1

a
−li, j −1
i, j

×
∏

l,s

b
−tl,s−1

l,s
:=

∑

i, j,l,s

r∑
li, j =1

r∑
tl,s=1

M({li, j }, {tl,s})
2k∏

i, j=1

a
−li, j −1
i, j

∏

l,s

b
−tl,s−1

l,s
.

(69)
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To estimate the moments {M({li, j }, {tl,s})}, we introduce the generating function

F(ζ, z) :=
〈

exp
{

n−1Tr ζΨ (r)
2k + n−1

∑

l,s

zl,sσ
(r)
l,s

}〉
, (70)

where ζ = {ζi, j }2k
i, j=1. It is easy to see that the derivatives F(ζ, z) with respect to

{ζi, j } and {zl,s} at zero give the moments {M({li, j }, {tl,s})}.
Using Lemma 1 and then integrating over Ψ2k,r , we obtain

F(ζ, z) = K2k,m−l

Jl,r

∫
e
Tr V +Tr (Λ2k+ζ/n−V/n)Ψ (r)2k +n−1∑

l,s zl,sσ
(r)
l,s

detm−l+2k V
d μ(V )d Ψ2k,r

= K2k,m−l

Jl,r

∫
eTr V

detm−l+2k V
Φr

1(Λ2k − n−1V, n−1ζ, n−1z)d μ(V )

with Jl,r of (64). Moreover, according to (30)–(31),Φ1(Λ2k −n−1V, n−1ζ, n−1z) is a
polynomial in the entries ofΛ2k −n−1V and of {ζi, j }, {zl,s} with n-independent coeffi-
cients and degree at most 2k such that the degree of each variable inΦ1(V, n−1ζ, n−1z)
is at most one. Here we also used that the integral over d Ψ2k,r can be factorized in
{ψ piψpj }2k

i, j=1. Besides,

Φ1(n
−1V, n−1ζ, n−1z)=det(Λ2k − n−1V )+ f̃ (Λ2k − n−1V, n−1ζ, n−1z), (71)

where f̃ (Λ2k − n−1V, n−1ζ, n−1z) contains the terms of Φ1 which include {ζi, j } or
{zl,s}.

Recall that we are interested inΛ = Λ0,2k + ξ̂ /(na)β , whereΛ0,2k = diag{λ0, . . . ,

λ0}, ξ̂ = diag{ξ1, . . . , ξ2m}, and a and β are defined in (19) and (20). Change the vari-
ables v j → nv j , j = 1, . . . , 2k, where {v j } are the eigenvalues of V , and replace the
integration over the unit circle by the integration over ω̃ of (66). This yields

F(ζ, z) = K2k,m−l

Jl,r · n2k(m−l)

∫
enTr V

detm−l+2k V
Φr

1(Λ2k − V, n−1ζ, n−1z)d μ(V ). (72)

We have from the description of Φ1 and (71)

|Φ1(Λ2k − V, n−1ζ, n−1z)|

≤ C |det(Λ0 − V )|
2k∏

i, j=1

(
1 + C(V )|ζi, j |

n

)∏

l,s

(
1 + C(V )|zl,s |

n

)
, (73)

where C(V ) > 0 is bounded for v j ∈ ω̃ with ω̃ of (66) (recall that we can deform ω̃

near z = (m−l
n λ0

)1/2 such that |v − λ0| > δ on ω̃ ). Since {M({li, j }, {tl,s})} are the
derivatives of (70) at zero, we can write
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M({li, j }, {tl,s}) =
〈

2k∏
i, j=1

∮

Ωi, j

li, j !
2π i

d ζi, j

ζ
li, j +1
i, j

∏

l,s

∮

Σl,s

tl,s !
2π i

d zl,s

z
tl,s+1

l,s

F(ζ, z)

〉
. (74)

This, (72), and (73) yield

|M({li, j }, {tl,s})| ≤
2k∏

i, j=1

min
t∈Ωi, j

li, j !eC|t |−li, j log |t |∏

l,s

min
t∈Σl,s

tl,s !eC|t |−tl,s log |t | (75)

Choose Ωi, j = {ζ ∈ C : |ζ | = li, j/C}, Σl,s = {z ∈ C : |z| = tl,s/C}. Then (75)
yields

|M({li, j }, {tl,s})| ≤
2k∏

i, j=1

√
2πli, j C

li, j
∏

l,s

√
2π tl,sCtl,s

=
2k∏

i, j=1

√
2πli, j C

li, j
∏

l,s

√
2π tl,sCtl,s . (76)

Thus, if |ai, j | > C and |bl,s | > C in (69) we obtain Lemma 2 from (64) and (68)–(69).
��

3 Asymptotic analysis in the bulk of the spectrum

In this section we prove Theorem 1, passing to the limit (4) in (63) for λ j = λ0 +
ξ j/nρ(λ0), where ρ is defined in (6), λ0 ∈ σ with σ of (7), and ξ j ∈ [−M,M], |M | ≤
∞, j = 1, . . . , 2k.

To this end consider the function

V (v, λ0) = −λ0v − cm,n log(1 − v)+ log v + S∗, (77)

where

cm,n = m

n
, S∗ = λ0 − cm,n + 1

2
+ cm,n

2
log

cm,n

λ0
− 1

2
log

1

λ0
. (78)

Then (21) and (63) yield

D−1
2k (λ0)n

−k2
F2k(Λ2k) = Z2k

∮

ω0

Wn(v1, . . . , v2k)

2k∏
j=1

d v j (1 + o(1)), (79)

where D2k is defined in (14),

Wn(v1, . . . , v2k) = e
−n

∑2k
l=1 V (vl ,λ0)+∑2k

l=1
ξl

ρ(λ0)
vl 	(V )

	(̂ξ )
2k∏
j=1

1

v2k
j

× exp

{
2cm,nκ4S2((I − V )Λ0)

2k∏
l=1

vl

1 − vl

}
, (80)
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and

Z2k = nk2
ρ(λ0)

k(k−1)e−2kκ4−α(λ0)
∑2k

j=1 ξ j

22kπ2kck/2 . (81)

Now we need the following lemma

Lemma 3 The function �V (v, λ0) for v = λ
−1/2
0 eiϕ, ϕ ∈ (−π, π ] attains its mini-

mum at

v = v± := λ
−1/2
0 e±iϕ0 := λ0 − cm,n + 1

2λ0
± iπρ(λ0). (82)

Moreover, if ϕ 
∈ Un(±ϕ0) := (±ϕ0 − n−1/2 log n,±ϕ0 + n−1/2 log n), then we have
for sufficiently big n

�V (λ−1/2
0 eiϕ, λ0) ≥ C log2 n

n
. (83)

Proof Note that for ϕ ∈ (−π, π ]

�V (λ−1/2
0 eiϕ, λ0) = −λ1/2

0 cosϕ

− cm,n

2
log
(
1 + λ−1

0 − 2λ−1/2
0 cosϕ

)+ log λ−1
0 + S∗, (84)

where S∗ and cm,n are defined in (78). Thus

d

d ϕ
�V (λ−1/2

0 eiϕ, λ0) = λ
1/2
0 sin ϕ

(
1 − cm,n/λ0

1 + λ−1
0 − 2λ−1/2

0 cosϕ

)
,

d2

d ϕ2 �V (λ−1/2
0 eiϕ, λ0) = λ

1/2
0 cosϕ

(
1 − cm,n/λ0

1 + λ−1
0 − 2λ−1/2

0 cosϕ

)
(85)

+ 2cm,n sin2 ϕ/λ0

(1 + λ−1
0 − 2λ−1/2

0 cosϕ)2
,

and ϕ = ±ϕ0 of (82) are the minimum points of �V (λ−1/2
0 eiϕ, λ0). Writing

V± :=V (v±, λ0)=∓iλ−1/2
0 sin ϕ0 ± iϕ0 ± icm,n arcsin

λ
−1/2
0 sin ϕ0

1 + λ−1
0 −2λ−1/2

0 cosϕ0

,

(86)

where ϕ0 is defined in (82), we conclude that

�V (v±, λ0) = 0.
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Expanding �V (λ−1/2
0 eiϕ, λ0) in ϕ ± ϕ0 and using (85)–(86), we obtain for ϕ ∈

Un(±ϕ0):

�V (λ−1/2
0 eiϕ, λ0) = (πλ0ρ(λ0))

2

cm,n
(ϕ ∓ ϕ0)

2 + O(n−3/2 log3 n). (87)

This and cm,n → c, m, n → ∞ imply for ϕ 
∈ Un(±ϕ0)

�V (λ−1/2
0 eiϕ, λ) ≥ C log2 n

n
.

The lemma is proved. ��

Note that |v j | = λ
−1/2
0 , j = 1, . . . , 2k. Since ξ1, . . . , ξ2k are distinct (see Remark 1),

the inequality |	(T )/	(̂ξ )| ≤ C1 and (83) yield

∣∣∣∣Z2k

∮

ω0\(Uv,+∪Uv,−)

∮

ω0

· · ·
∮

ω0

Wn(v1, . . . , v2k)

2k∏
j=1

d v j

∣∣∣∣ ≤ C1nk2
e−C2 log2 n,

where

ω0 = {z ∈ C : |z| = λ
−1/2
0 }, (88)

Wn and Z2k are defined in (80) and (81) respectively, and

U± = {ϕ ∈ (−π, π ] : | ± ϕ0 − ϕ| ≤ n−1/2 log n},
Uv,± = {z = λ

−1/2
0 eiϕ |ϕ ∈ U±} (89)

with ϕ0 of (82).
Note that we have for ϕ ∈ U± in view of (77), (86), and (4)

V (λ−1/2
0 eiϕ, λ0)=V± +

(
1

v2±
− cm,n

(1 − v±)2

)
λ−1

0 e±2iϕ0
(ϕ ∓ ϕ0)

2

2
+ f±(ϕ ∓ ϕ0),

(90)

where f±(ϕ ∓ ϕ0) = O((ϕ ∓ ϕ0)
3) in the regime (4). Shifting ϕ j ∓ ϕ0 → ϕ j for

ϕ j ∈ U± and using (86) we obtain
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D−1
2k (λ0)

(nρ(λ0))k
2 F2k(Λ2k) = Z2kλ

k(2k−1)/2
0

2k∑
s=1

∑
αs

∫

(Un)2k

2k∏
j=1

d ϕ j
Δ(V αs

)

Δ(̂ξ)

× exp{Gs(ϕ1, . . . , ϕ2k)+
2k∑
j=1

dα j (ϕ j )ξ j }
s∏

l=1

e− nc+
2 ϕ2

l −(2k−1)i(ϕ j +ϕ0)

×
2k∏

j=s+1

e− nc−
2 ϕ2

j −(2k−1)i(ϕ j −ϕ0) =
2k∑

s=1

∑
αs

Ts,α, (91)

where the second sum in the r.h.s. is over permutation αs = {α j }2k
j=1 of s pluses and

2k − s minuses,

d±(ϕ j ) = ei(ϕ j ±ϕ0)

√
λ0ρ(λ0)

, a±(ϕ j ) = λ
−1/2
0 ei(ϕ j ±ϕ0) (92)

V s = diag{ei(ϕ1+ϕ0), . . . , ei(ϕs+ϕ0), ei(ϕs+1−ϕ0), . . . , ei(ϕ2k−ϕ0)},

Gs(ϕ1, . . . , ϕ2k) = 2cm,nκ4S2((I − V s)Λ0)

s∏
l=1

a+(ϕ j )

1 − a+(ϕ j )

×
2k∏

r=s+1

a−(ϕ j )

1−a−(ϕ j )
−n

s∑
l=1

( f+(ϕl)+V+(ϕl))−n
2k∑

r=s+1

( f−(ϕr )+V−(ϕr )),

c± =
(

1

v2±
− cm,n

(1 − v±)2

)
λ−1

0 e±2iϕ0 , Un = (−n−1/2 log n, n−1/2 log n), (93)

V αs = diag{ei(ϕ1+α1ϕ0), . . . , ei(ϕ2k+α2kϕ0)}.
Define

Is :=
∫

Ωn,s

e
1√
n

∑s
j=1 ξ j gn(ϕ j )

∏
j<l

(ϕ j − ϕl)d νs(ϕ)

=
∫

Ωn,s

det
{

e
1√
n
ξ j gn(ϕ j )

ϕl−1
j

}s

j,l=1
d νs(ϕ)

=
∞∑

p1,...,ps=0

∫

Ωn,s

det
{
(n−1/2ξ j gn(ϕ j ))

p jϕl−1
j /p j !

}s

j,l=1
d νs(ϕ), (94)

where d νs(ϕ) is a measure on Ωn,s := (− log n, log n)s which is symmetric in
(ϕ1, . . . , ϕs) and g(ϕ) is a function such that gn(ϕ) = Cϕ(1 + o(1)), n → ∞. Note
that if we take the term of (94) such that ps1 = ps2 , s1 
= s2, then this term is zero
since d νs(ϕ) is symmetric in (ϕ1, . . . , ϕs). Moreover, the order of

det
{
(n−1/2ξ j gn(ϕ j ))

p jϕl−1
j /p j !

}s
j,l=1

is n−(p1+···+ps )/2 and if {p1, . . . , ps} 
= {0, 1, . . . , s − 1} the order is less than
n−s(s−1)/2. Hence, denoting by

∑̃
the sum over all permutations {p1, . . . , ps} of
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{0, 1, . . . , s − 1} and by Δs(ϕ) the Vandermonde determinant 	(ϕ1, . . . , ϕs), we
obtain

Is = n−s(s−1)/2

∏s−1
j=0 j !

∑̃ ∫

Ωn,s

s∏
j=1

(ξ j gn(ϕ j ))
p j 	s(ϕ)d νs(ϕ)(1 + o(1))

= 	(ξ1, . . . , ξs)

ns(s−1)/2
∏s−1

j=0 j !
∫

Ωn,s

s∏
j=1

gn(ϕ j )
j−1	s(ϕ)d νs(ϕ)(1 + o(1))

= 	(ξ1, . . . , ξs)

ns(s−1)/2
∏s

j=0 j !
∫

Ωn,s

	(gn(ϕ1), . . . , gn(ϕs))	s(ϕ)d νs(ϕ)(1 + o(1)), (95)

Since gn(ϕ) = Cϕ(1 + o(1)), n → ∞, we get

I = Cs(s−1)/2	(ξ1, . . . , ξs)

ns(s−1)/2
∏s

j=0 j !
∫

Ωn,s

	2
s (ϕ)d νs(ϕ)(1 + o(1)). (96)

Consider Tα of (91) with α1 = · · · = αs = +, αs+1 = · · · = α2k = −. Since

2cm,nκ4S2((I − Vα)Λ0)

2k∏
l=1

λ
−1/2
0 ei(ϕl+αlϕ0)

1 − λ
−1/2
0 ei(ϕl+αlϕ0)

is symmetric in (ϕ1, . . . , ϕs) and (ϕs+1, . . . , ϕ2k), changing variables as
√

nϕ j → ϕ j

and using formulas (94)–(96), and formula for the Selberg integral (see, e.g., [14],
Chapter 17), we obtain

Tα = C0,s(ξ̂ )(1 + o(1))

n(k−s)2
∏s

j=0 j !∏2k−s
l=0 l!

log n∫

− log n

2k∏
j=1

d ϕ j 	2(ϕ1, . . . , ϕs)

s∏
j=1

e− c+ϕ2
j

2

× 	2(ϕs+1, . . . , ϕ2k)

2k∏
l=s+1

e− c−ϕ2
l

2 = C0,s(ξ̂ )(2π)k(1 + o(1))

cs2/2
+ c(2k−s)2/2

− n(k−s)2
, (97)

where C0,s(ξ̂ ) is n-independent. This expression is of order O(1) for s = k, and of
order o(1) for s 
= k. Hence, only the terms of (91) with exactly k pluses of {α j }2k

j=1
contribute in the limit (15). If we take s = k we obtain

C0,k(ξ̂ ) = λ
k(2k−1)/2
0

(
e2iϕ0

λ
1/2
0 ρ(λ0)

) k(k−1)
2
(

e−2iϕ0

λ
1/2
0 ρ(λ0)

) k(k−1)
2

(2i sin ϕ0)
k2

× exp{iπ(ξ1 + · · · + ξk − ξk+1 − · · · − ξ2k)}∏k
j=1
∏2k

l=k+1(ξ j − ξl)
ek(k−1)κ4(c−λ0+1)2c−1

= λk2

0 (2iπρ(λ0))
k2

(2π)2kck/2 ek(k−1)κ4(c−λ0+1)2c−1 eiπ(ξ1+···+ξk−ξk+1−···−ξ2k )

∏k
j=1
∏2k

l=k+1(ξ j − ξl)
. (98)
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Hence, since it is easy to check that

c+c− = 4π2λ2
0ρ(λ0)

2

cm,n
,

we get from (97) and (98) that Tα of (91) with α1 = · · · = αk = +, αk+1 = · · · =
α2k = − has the form

i k(k+1)eiπ(ξ1+···+ξk−ξk+1−···−ξ2k )

(2iπ)k
∏k

i, j=1(ξi − ξk+ j )
ck(k−1)/2ek(k−1)κ4(c−λ0+1)2c−1

(99)

In view of the identity

det

{
sin(π(ξ j − ξk+l))

π(ξ j − ξk+l)

}k

j,l=1

Δ(ξ1, . . . , ξk)Δ(ξk+1, . . . , ξ2k)
=

det

{
eiπ(ξ j −ξk+l ) − eiπ(ξk+l−ξ j )

ξ j − ξk+l

}k

j,l=1

(2iπ)kΔ(ξ1, . . . , ξk)Δ(ξk+1, . . . , ξ2k)

the determinant in the l.h.s. of (99) is a linear combination of exp{iπ∑2k
j=1 α jξ j } over

the collection {α j }2k
j=1, in which m elements are pluses, and the rest are minuses. By

the virtue of the following formula (see [18], Problem 7.3)

(−1)
k(k−1)

2

∏
j<l(a j − al)(b j − bl)∏k

j,l=1(a j − bl)
= det

{
(a j − bl)

−1
}m

j,l=1
. (100)

the coefficient of exp{iπ(ξk+1 + · · · + ξ2k − ξ1 − · · · − ξk)} is

det
{
(ξk+l − ξ j )

−1
}k

j,l=1

(2iπ)kΔ(ξ1, . . . , ξk)Δ(ξk+1, . . . , ξ2k)
= (−1)

k(k−1)
2

(−1)k2
(2iπ)k

∏k
i, j=1(ξi − ξk+ j )

.

Other coefficients can be computed analogously. Thus, restricting the sum in (91) to
that over the collection {α j }2k

j=1, in which exactly k elements are pluses, and k are
minuses, and using (99), we obtain Theorem 1 after a certain algebra.

4 Asymptotic analysis at the edge of the spectrum

Let now λ0 = λ+ (for λ0 = λ− the proof is similar) and λ j = λ+ + ξ j/(nγ+)2/3,
j = 1, . . . , 2k, where λ+ and γ+ are defined in (7) and (6), and ξ1, . . . , ξ2k ∈
[−M,M] ⊂ R.

According to (21) we have

D−1
2k (λ+)

(nγ+)2k2/3
F2k(Λ2k) = Z̃2k

∮

ω0

W̃n(v1, . . . , v2k)

2k∏
j=1

d v j (1 + o(1)), (101)
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where D2k is defined in (14),

W̃n(v1, . . . , v2k) = e−n
∑2k

l=1 V (+)(vl )+∑2k
l=1 n1/3ξl/γ

2/3vl+n(cm,n−c)
∑2k

l=1 log(1−vl ) (102)

× 	(V )
	(̂ξ ) exp

{
2cm,nκ4S2((I − V )Λ0)

2k∏
l=1

vl

1 − vl

}
2k∏
j=1

1

v2k
j

,

V (+)(v) = −λ0v − c log(1 − v)+ log v − S+, (103)

S+ = −1 − √
c − c log(1 − (1 + √

c)−1)− log(1 + √
c), (104)

and

Z̃2k = L2ke−n1/3α(λ+)
∑2k

j=1 ξ j +2k(nc−m) log(1−λ−1/2
+ )

, (105)

L2k = nk(2k+1)/3γ 2k(k−1)/3e−2kκ4−2k(nc−m) log(1−λ−1/2
+ )

22kπ2kck/2 . (106)

We need the following lemma

Lemma 4 The function �V (+) of (103) for v = λ
−1/2
+ eiϕ, ϕ ∈ (−π, π ] attains its

minimum at

v0 := λ
−1/2
+ = (1 + √

c)−1. (107)

Moreover, if v ∈ ω0 = {v ∈ C : v = λ
−1/2
+ eiϕ, ϕ ∈ (−π, π ]}, |v − v0| ≥ δ, where δ

is small enough, then we have for sufficiently big n

�V (+)(v) ≥ Cδ4. (108)

Proof We have similarly to (84)–(85) we have

d

d ϕ
�V (+)(v0) = d2

d ϕ2 �V (+)(v0) = d3

d ϕ3 �V (+)(v0) = 0, (109)

d4

d ϕ4 �V (+)(v0) = 6. (110)

Hence, ϕ = 0 is a minimum point of the function �V (+)(λ−1/2
+ eiϕ), and �V (+)(λ−1/2

+
eiϕ) is monotone increasing for ϕ ∈ [0, π) and monotone decreasing for ϕ ∈ (−π, 0].

Expanding �V (+)(λ−1/2
+ eiϕ) in ϕ we obtain for |ϕ| ≤ δ similarly to (87):

�V (+)(λ−1/2
+ eiϕ) = ϕ4/4 + O(ϕ5). (111)
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This and monotonicity of �V (+)(λ−1/2
+ eiϕ) for ϕ 
= 0 imply for ϕ ∈ (−π, π ], |ϕ| ≥ δ

�V (+)(λ−1/2
+ eiϕ) ≥ Cδ4.

Since |v − v0| = 2λ−1/2
+ | sin(ϕ/2)| ≤ λ

−1/2
+ |ϕ|, we get (111). ��

Note that |v j | = λ
−1/2
+ , j = 1, . . . , 2k and according to (17) cm,n − c = o(n−2/3),

m, n → ∞. Since ξ1, . . . , ξ2k are distinct (see Remark 1), the inequality
|	(T )/	(̂ξ )| ≤ C1 and (108) yield

∣∣∣∣∣∣∣
Z̃2k

∫

ω0\Uδ(v0)

∮

ω0

· · ·
∮

ω0

W̃n(v1, . . . , v2k)

2k∏
j=1

d v j

∣∣∣∣∣∣∣
≤ C1nk(2k+1)/3e−C2n(1+o(1))+C3n1/3

, m, n → ∞,

where

Uδ(v0) = {v ∈ ω0 : |v − v0| ≤ δ}.

Hence,

D−1
2k (λ+)

(nγ+)2k2/3
F2k(Λ2k) = Z̃2k

∮

Uδ(v0)

W̃n(v1, . . . , v2k)

2k∏
j=1

d v j (1 + o(1))+ O(e−Cn).

(112)

Since

d

d v
V (+)(v0) = d2

d v2 V (v0) = 0,

we have for |v − v0| ≤ δ

V (+)(v) = γ−2(v − v0)
3/3 + O((v − v0)

4), |v − v0| → 0. (113)

Thus, we can write for v satisfying |v − v0| ≤ δ

V (+)(v) = γ−2χ3(v)/3, (114)

where χ(v) is analytic in the δ-neighborhood of v0 with the analytic inverse z(ϕ) (we
choose χ(v) such that χ(v) ∈ R for v ∈ R).
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Changing variables to v j = z(ϕ j ), j = 1, . . . , 2k, we rewrite (112) as

D−1
2k (λ+)

(nγ+)2k2/3
F2k(Λ2k) = L2k

∮

Ũδ,ϕ

e
−nγ−2 ∑2k

l=1 ϕ
3
l /3+∑2k

l=1
n1/3ξl
γ 2/3 (z(ϕl )−v0)

×e
n(cm,n−c)

∑2k
l=1 log

1−z(ϕl )
1−v0 +2cm,nκ4 S2((I−Z)Λ0)

∏2k
l=1

z(ϕl )
1−z(ϕl )

×	(Z)
	(̂ξ )

2k∏
j=1

z′(ϕ j )

z2k(ϕ j )
d ϕ j (1 + o(1))+ O(e−Cn)

=: L2k

∫

Ũδ,ϕ

Ŵ (ϕ1, . . . , ϕ2k)

2k∏
j=1

d ϕ j (1 + o(1))+ O(e−Cn), (115)

where L2k is defined in (105),

Z = diag {z(ϕ1), . . . , z(ϕ2k)}, (116)

Ũδ,ϕ = {ϕ ∈ C : z(ϕ) ∈ Uδ(v0)}. (117)

Moreover, we have from (114)

χ(v0) = 0,
d

d z
χ(v0) = 1, (118)

hence

0 < C1 < |χ ′(v)| < C2, |v − v0| ≤ δ. (119)

If σ̃ = {z ∈ C : |z − z∗
0,n| ≤ δ}, then χ(∂σ̃ ) is a closed curve encircling ϕ = 0 and

lying between the circles σ1 = {ϕ ∈ C : |ϕ| = C1δ} and σ2 = {ϕ ∈ C : |ϕ| = C2δ}
for 0 < C1 < C2. We have from (118)

z(0) = v0, z′(0) = 1, 0 < C1 < |z′(ϕ)| < C2, ϕ ∈ χ(̃σ ). (120)

According to Lemma 4, �V (+)(v) ≥ 0 for v ∈ Uδ(v0) and we get �ϕ3
j ≥ 0 for

ϕ j ∈ Ũδ,ϕ , i.e.,

cos(3 argϕ j ) ≥ 0, ϕ j ∈ Ũδ,ϕ,

where Ũδ,ϕ is defined in (117). Hence, Ũδ,ϕ can be located only in the sectors

−π/6 ≤ argϕ ≤ π/6, π/2 ≤ argϕ ≤ 5π/6, 7π/6 ≤ argϕ ≤ 3π/2.

Besides, χ is conformal in σ̃ (see (119)), hence angle-preserving. Taking into account
that χ(v) ∈ R for v ∈ R, the angle between ω0 and the real axis at the point v0 is
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π/2, and that Ũδ,ϕ is a continuous curve, we obtain that Ũδ,ϕ can be located only in
the sectors

π/2 ≤ argϕ ≤ 5π/6, 7π/6 ≤ argϕ ≤ 3π/2. (121)

Note that we can take any curve Ũ (ϕ) instead of Ũδ,ϕ provided that Ũ (ϕ) and ω0 \
Uδ(v0) are “glued”, i.e., the union of z(Ũ (ϕ)) and ω0 \ Uδ(v0) form a closed contour
encircling 0. Let us take

Ũ (ϕ) = {ϕ ∈ C : argϕ = 2π/3, ϕ ∈ χ(̃σ )}
∪ {ϕ ∈ C : argϕ = 4π/3, ϕ ∈ χ(̃σ )} ∪ U1,δ ∪ U2,δ,

where σ̃ = {v ∈ C : |v − v0| ≤ δ}, U1,δ is a curve along χ(∂σ̃ ) from the point of
intersection of the ray argϕ = 2π/3 and χ(∂σ̃ ) to the point ϕ1,δ of intersection of
Ũδ,ϕ and χ(∂σ̃ ) (π/2 < argϕ1,δ < 5π/6), and U2,δ is a curve along χ(∂σ̃ ) from
the point of intersection of the ray arg ϕ = 4π/3 and χ(∂σ̃ ) to the point ϕ2,δ of
intersection of Ũδ,ϕ and χ(∂σ̃ ) (7π/6 < argϕ2,δ < 3π/2). According to Lemma 4
and (114), �ϕ3

1,δ = r3 cos 3ϕ0 > C > 0, where r = |ϕ1,δ|, ϕ0 = argϕ1,δ . Since
0 < C1 < r < C2, we have

cos 3ϕ0 ≥ C/C3
2 > 0.

Moreover, it is easy to see that cos(3 argϕ1) > cos 3ϕ0 along U1,δ (since cos 3x
is monotone increasing for x ∈ [π/2, 2π/3] and monotone decreasing for x ∈
[2π/3, 5π/6]). This and |ϕ j | > C1 imply for ϕ j ∈ L1,δ

�
(
γ−2ϕ3

j

3

)
> C > 0, ϕ1 ∈ U1,δ. (122)

Also we have from (120)

|z(ϕ j )− v0| ≤ C2|ϕ j | < C, ϕ j ∈ χ(̃σ ).

This, (122), cm,n − c = o(n−2/3), m, n → ∞, and (120) yield

∣∣∣Ŵ (ϕ1, . . . , ϕ2k)

∣∣∣ ≤ e−Cn+o(n), ϕ1 ∈ U1,δ, ϕ j ∈ Ũ (ϕ j ), j > 1. (123)

Hence, the integral over U1,δ does not contribute to the l.h.s. of (115) The same state-
ment is valid for U2,δ . Thus, we have shown that integral over Ũδ,ϕ in (115) can be
replaced to the integral over the contour

l̃ = {ϕ ∈ C : argϕ = 2π/3, ϕ ∈ χ(̃σ )} ∪ {ϕ ∈ C : argϕ = 4π/3, ϕ ∈ χ(̃σ )}.
(124)
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According to the choice of l̃, we have

�ϕ3
j = r3

j , ϕ j ∈ l̃, (125)

where r j = |ϕ j |.
Set now

σn = {ϕ ∈ C : |ϕ| ≤ ε
−1/2
n n−1/3},

where εn is defined in (17). Note that we assume that ε−1/2
n n−1/3 → 0, n → ∞.

In other case we can take σn = {ϕ ∈ C : |ϕ| ≤ log n/n1/3} and the proof will be
similarly.

It is easy to see that σn ⊂ χ(̃σ ) for a sufficiently big n. Besides, we have from
(120) for ϕ ∈ σn

z(ϕ) = v0 + ϕ + O(ε−1
n n−2/3), n → ∞,

z′(ϕ) = 1 + O(ε−1/2
n n−1/3), n → ∞.

(126)

Taking into account (17), (126), (125), and

∣∣∣∣ log
1 − z(ϕ)

1 − v0

∣∣∣∣ ≤
∣∣∣v0 − z(ϕ)

1 − v0

∣∣∣,

we obtain for ϕ1 ∈ l̃ \ σn , ϕ j ∈ l̃, j = 2, . . . , 2k

∣∣∣Ŵ (ϕ1, . . . , ϕ2k)

∣∣∣ ≤ C1e−C2nr3
1 +C3n1/3r1 , (127)

where r1 = |ϕ1| ≥ ε
−1/2
n n−1/3. Since n1/3r1 ≥ ε

−1/2
n for ϕ1 ∈ l̃ \ σn , the integral

over l̃ \ σn is O(e−Cε−3/2
n ) as n → ∞. Hence,

D−1
2k (λ+)

(nγ+)2k2/3
F2k(Λ2k)

= L2k(1 + o(1))
∫

l̃
⋂
σn

Ŵ (ϕ1, . . . , ϕ2k)

2k∏
j=1

d ϕ j + O(e−Cε−3/2
n ), (128)

where L2k and Ŵ (ϕ1, . . . , ϕ2k) are defined in (105) and (115). This, (22), and (126)
imply
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D−1
2k

(nγ+)2k2/3
F2k(Λ2k) = L2ke2k(2k−1)κ4

v4k2

0

∫

l̃
⋂
σn

e
−nγ−2 ∑2k

l=1 ϕ
3
l /3+∑2k

l=1
n1/3ξl
γ 2/3 ϕl

×	(Φ)
	(̂ξ ) (1 + δ(ϕ1, . . . , ϕ2k))

2k∏
j=1

d ϕ j + O(e−Cε−3/2
n ),

(129)

where δ(ϕ1, . . . , ϕ2k) collects the reminder terms which appear when we replace
z(ϕ j ) → v0 + ϕ j + O(ϕ2

j ), z′(ϕ j ) → 1 + O(ϕ j ) and

log
1 − z(ϕ j )

1 − v0
→ ϕ j

1 − v0
+ O(ϕ2

j )

for j = 1, . . . , 2k. Hence

|δ(ϕ1, . . . , ϕ2k)| ≤ C(|ϕ1| + · · · + |ϕ2k |).
Changing variables in (129) as γ−2/3n1/3ϕ j → iϕ j we obtain in new variables

|̃δ(ϕ1, . . . , ϕ2k)| = |δ(iγ 2/3n−1/3ϕ1, . . . , iγ 2/3n−1/3ϕ2k)|
≤ Cn−1/3(|ϕ1| + · · · + |ϕ2k |). (130)

Therefore, using (10), (105), and (107), we obtain

D−1
2k (λ+)

(nγ+)2k2/3
F2k(Λ2k) = L2ke2k(2k−1)κ4(1 + o(n−1/3))

v4k2

0 (−iγ−2/3n1/3)k(2k+1)

×
∫

S

ei
∑2k

l=1 ϕ
3
l /3+∑2k

l=1 iξlϕl
	(Φ)
	(̂ξ )

2k∏
j=1

d ϕ j + O(e−Cε−3/2
n )

= i ke4k(k−1)κ4 ck(k−1)/2

(2π)2k(−1)k2 (1 + o(n−1/3))

×
∫

S

ei
∑2k

l=1 ϕ
3
l /3+∑2k

l=1 iξlϕl
	(Φ)
	(̂ξ )

2k∏
j=1

d ϕ j + O(e−Cε−3/2
n ),

(131)

where S is defined in (12).
Consider

K (̂ξ ) := i k

(2π)2k

∫

S

ei
∑2k

l=1 ϕ
3
l /3+∑2k

l=1 iξlϕl 	(Φ)
2k∏
j=1

d ϕ j

= i k

(2π)2k

∫
det

{
ϕ

j−1
l eiϕ3

l /3+iξlϕl

}2k

j,l=1

2k∏
j=1

d ϕ j . (132)
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Integrating by parts, we have for j ≥ 3

i
∫

S

ϕ
j−1

l eiϕ3
l /3+iξlϕl d ϕl =

∫

S

ϕ
j−3

l eiξlϕl
d

dϕl
eiϕ3

l /3d ϕl

= −
∫

S

(( j − 3)ϕ j−4
l + iξlϕ

j−3
l )eiϕ3

l /3+iξlϕl d ϕl .

Applying this identity to each row of the determinant, starting from the third, we
observe that the first term in the r.h.s. gives zero contribution. Repeating this proce-
dure and replacing and rearranging the rows, we obtain from (132)

K (̂ξ ) = i k

(2π)2k

∫
(−1)k(k−1)/2 det

{
ϕ

q j
l ξ

r j
l eiϕ3

l /3+iξlϕl

}2k

j,l=1

2k∏
j=1

d ϕ j , (133)

where j = q j k + r j , q j = 0, 1, r j = 0, 1, . . . , k − 1. Thus, we have

K (̂ξ )

Δ(̂ξ)
=
∫

S

∑
j1<···< jk

i k	(ξ j1, . . . , ξ jk )	(ξ j1, . . . , ξ jk )
k∏

s=1
ϕ js

(2π)2k(−1) j1+···+ jkΔ(ξ1, . . . , ξ2k)

2k∏
j=1

eiϕ3
j /3+iξ jϕ j d ϕ j

=
∫

S

∑
j1<···< jk

i k(2π)−2k(−1)k(k+1)/2
k∏

s=1
ϕ js

k∏
s=1

∏
t 
= j1,..., jk

(ϕ js − ϕt ) sign (t − js)

2k∏
j=1

eiϕ3
j /3+iξ jϕ j d ϕ j ,

(134)

where the sum is over all collections 1 ≤ j1 < · · · < jk ≤ 2k and 	(ξ j1, . . . , ξ jk ) is
the Vandermonde determinant of {ξ j } with j 
= j1, . . . , jk . Consider

(−1)k
2

(2π)2k

∫

S

det

{
iϕ j − iϕl+k

ξ j − ξl+k

}k

j,l=1

Δ(ξ1, . . . , ξk)Δ(ξk+1, . . . , ξ2k)
ei
∑2k

l=1 ϕ
3
l /3+∑2k

l=1 iξlϕl

2k∏
j=1

d ϕ j . (135)

According to the identity (100) the coefficient of
∏k

s=1 ϕ js in (135) is

i k

(2π)2k
· (−1)k(k+1)/2

∏k
s=1

∏
t 
= j1,..., jk (ϕ js − ϕt ) sign (t − js)

.

Thus, K (̂ξ )/Δ(̂ξ) is equal to (135), and (131) yield the assertion of Theorem 2.
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