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Abstract Let X = {Xt , t ≥ 0} be a continuous time random walk in an envi-
ronment of i.i.d. random conductances {μe ∈ [1,∞), e ∈ Ed}, where Ed is the set
of nonoriented nearest neighbor bonds on the Euclidean lattice Z

d and d ≥ 3. Let
R = {x ∈ Z

d : Xt = x for some t ≥ 0} be the range of X . It is proved that, for almost
every realization of the environment, dimH R = dimP R = 2 almost surely, where
dimH and dimP denote, respectively, the discrete Hausdorff and packing dimension.
Furthermore, given any set A ⊆ Z

d , a criterion for A to be hit by Xt for arbitrarily
large t > 0 is given in terms of dimH A. Similar results for Bouchoud’s trap model in
Z

d (d ≥ 3) are also proven.
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2 Y. Xiao, X. Zheng

1 Introduction

Ordinary fractal dimensions such as Hausdorff dimension and packing dimension are
useful tools not only for analyzing the (microscopic) geometric structures of various
thin sets and measures in the Euclidean space R

d , but also for many scientific applica-
tions; see Falconer [15] for a systematic account. In probability theory, they have been
applied to study fine properties of the sample paths of Brownian motion, Lévy pro-
cesses and random fields. We refer to Taylor [28], Xiao [30,31] for more information.
Many discrete sets, such as percolation clusters, also exhibit (macroscopic or global)
fractal phenomena. In order to investigate their geometric structures, Barlow and
Taylor [5,6] have introduced the notions of discrete Hausdorff and packing dimensions
and used them to study the fractal properties of strictly stable random walks. See also
Khoshnevisan [18].

In this paper, we apply discrete Hausdorff and packing dimensions of Barlow and
Taylor [6] to describe the range of a class of random walks in random environment,
namely the random conductance models (RCM) on the Euclidean lattice Z

d considered
by Barlow and Deuschel [4], among others.

More specifically, for x, y ∈ Z
d , we say that x ∼ y if x and y are neighboring

sites, (i.e., |x − y| = 1, where | · | is the Euclidean distance) and x �∼ y otherwise. Let
Ed be the set of nonoriented nearest neighbor bonds, i.e., Ed = {e = (x, y) : x ∼ y},
and let {μe, e ∈ Ed} be a sequence of nonnegative i.i.d. random variables with values
in [1,∞), defined on a probability space (�, P). We may take � = [1,∞)Ed , the set
of configurations of conductances, and let P be the product probability measure on �

under which the coordinates μe, e ∈ Ed , are i.i.d. random variables.
We write μxy = μ(x,y) = μyx , let μxy = 0 if x � y and set μx = ∑

y μxy . There

are two natural continuous time random walks on Z
d associated with {μe, e ∈ Ed}.

Both jump from x to y ∼ x with probability P(x, y) = μxy/μx . The first [the var-
iable speed random walk or (VSRW)] waits at x for an exponential time with mean
1/μx while the second [the constant speed random walk or (CSRW)] waits at x for
an exponential time with mean 1. Their generators LV and LC are given by

LV (ω) f (x) =
∑

y

μxy(ω)( f (x) − f (y)), and

LC (ω) f (x) = μx (ω)−1
∑

y

μxy(ω)( f (x) − f (y)),
(1.1)

respectively. VSRW is reversible with stationary measure ν defined by ν({x}) = 1,
x ∈ Z

d ; and CSRW is reversible with μx , x ∈ Z
d as its stationary measure. Since the

generators LV and LC only differ by a multiple, VSRW and CSRW are time change
of each other; see Barlow and Deuschel [4, pp. 39–40] for precise information.

The random conductance model has been studied by several authors under various
restrictions on the law of μe. There are three typical cases: c−1 ≤ μe ≤ c for some
c ≥ 1 (strong ellipticity), 0 ≤ μe ≤ 1, and 1 ≤ μe < ∞. An important example
of the RCM is a continuous time simple random walk on a supercritical percolation
cluster C∞ in Z

d . In this case {μe, e ∈ Ed} are i.i.d. Bernoulli random variables with
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Fractal dimensions of the range of the random conductance model 3

mean p > pc(d), the critical probability for bond percolation in Z
d . See Barlow [2],

Berger et al. [9], Biskup and Prescott [10], Mathieu [22] and the references therein for
further information.

Under the assumptions that d ≥ 2 and P(μe ≥ 1) = 1, Barlow and Deuschel [4]
prove that the VSRW satisfies a quenched functional central limit theorem and the
limiting process is σV B, where σV > 0 is a nonrandom constant and B is a Brownian
motion on R

d . As shown by Barlow and C̆erný [3], Barlow and Zheng [7] and C̆erný
[11], the scaling limit of CSRW in Z

d with d ≥ 2 in the heavy-tailed environment
can either be a Brownian motion or a fractional-kinetics process (which is a Brownian
motion time-changed by the inverse of a stable subordinator). RCM under the gen-
eral conditions P(0 ≤ μe < ∞) = 1 and P(μe > 0) > pc(d) have been recently
investigated by Andres et al. [1]. In this paper we focus on the case P(μe ≥ 1) = 1.

This paper is concerned with fractal properties of the ranges of RCM. Since the
time change which relates CSRW and VSRW is strictly increasing and continuous,
VSRW and CSRW have the same range. Hence, in the following, we consider VSRW
in Z

d and denote it by X . Also, for any environment {μe(ω), e ∈ Ed} and any x ∈ Z
d ,

we write Pω
x for the (quenched) law of X started at x .

Let

R = {x ∈ Z
d : Xt = x for some t ≥ 0}

be the range of VSRW X in Z
d . It follows from Theorem 1.2 of Barlow and Deuschel

[4] that when d ≥ 2 X is transient if and only if d ≥ 3. Hence for d = 2, X is recurrent
and R = Z

2 Pω
0 -a.s. The case of d = 1 is similar because by, for example, Lemma

1.5 of Solomon [26], the range is almost surely the whole line. We shall henceforth
assume that d ≥ 3.

The following are our main theorems, which describe the fractal structures of R
and characterize the transient sets for X by using the discrete Hausdorff and packing
dimensions defined by Barlow and Taylor [5,6].

Theorem 1 Assume that d ≥ 3 and P(μe ≥ 1) = 1. Then for P-almost every ω ∈ �,

dimH R = dimP R = 2, Pω
0 -a.s.,

where dimH and dimP denote, respectively, the discrete Hausdorff and packing dimen-
sion.

Theorem 2 Assume that d ≥ 3 and P(μe ≥ 1) = 1. Let A ⊂ Z
d be any (infinite) set.

Then for P-almost every ω ∈ �, the following statements hold.

(i) If dimH A < d − 2, then

Pω
0 (Xt ∈ A for arbitrarily larget > 0) = 0.

(ii) If dimH A > d − 2, then

Pω
0 (Xt ∈ A for arbitrarily larget > 0) = 1.
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4 Y. Xiao, X. Zheng

The above theorems show that, if μe ≥ 1, then for almost every realization of
the environment, VSRW and CSRW have long term fractal and asymptotic behavior
similar to the simple random walk on Z

d and Brownian motion in R
d .

Remark 1 (i) When c−1 ≤ μe ≤ c for some constant c ≥ 1, Barlow and Deuschel
[4, Remark 6.3 and Theorem 6.1] prove that, if {μe, e ∈ Ed} is stationary, sym-
metric and ergodic, then Lemmas 1 and 14 below still hold. (See also Delmott
[14] for i.i.d. environment.) As the proofs of Theorems 1 and 2 only make use
of Lemmas 1 and 14, it follows that in this case the independence assumption
on {μe} in Theorems 1 and 2 can be weakened and the same conclusions remain
valid.

(ii) When P(0 ≤ μe ≤ 1) = 1, only partial estimates on the heat kernel of X on
the diagonal are available, see [9,10,22]. Berger et al. [9] show that Gaussian
heat kernel bounds do not hold in general. This is caused by traps due to edges
in Ed with small positive conductances.
Under the extra condition that P(μe > 0) > pc(d), (otherwise the range R of
X is a finite set,) Andres et al. [1] prove that the Green’s function of X satisfies
bounds in (d) of Lemma 1 below, but their Remark 7.6 shows that (e) of Lemma
1 does not hold in general. Since our proofs of Theorems 1 and 2 rely heavily
on Lemma 1, it is not known whether similar results still hold. We will consider
these and related problems separately.

The proofs of Theorems 1 and 2 are similar to those of Theorems 7.8 and 8.3
of Barlow and Taylor [6], where transient, strictly α-stable random walks on Z

d are
treated. However, there are significant differences between VSRW and strictly stable
random walks. One major difference is that VSRW is not a random walk in the clas-
sical sense since it does not have i.i.d. increments. We make use of general Markov
techniques to derive hitting probability estimates and maximal inequality for VSRW,
and also to overcome the difficulties caused by the dependence between the incre-
ments, see, e.g., Lemma 6. These results and the proofs of Theorems 1 and 2 are given
in Sect. 3. Since our arguments are based on general Markovian techniques, they will
be useful for studying other properties of VSRW, as well as more general Markov
chains.

We also consider another kind of random walk in random environment, namely
Bouchaud’s trap model (BTM). This model was first introduced in the physics liter-
ature to explain some strange dynamical properties of complex disordered systems,
in particular aging. We refer to Barlow and C̆erný [3] for a brief historical account
on BTM and to Ben Arous and C̆erný [8], Barlow and C̆erný [3] and C̆erný [11] for
results on scaling limits.

To recall the definition of BTM, let {κx , x ∈ Z
d} be i.i.d. positive random vari-

ables on a probability space (�̃, P̃). For a given constant a ∈ [0, 1], define random
conductances μ̃e (e ∈ Ed ) on Z

d by

μ̃xy = κa
x κa

y , if x ∼ y.
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Fractal dimensions of the range of the random conductance model 5

Then BTM is the continuous time Markov chain on Z
d whose transition rates wxy are

given by

wxy = μ̃xy

κx
= κa−1

x κa
y , if x ∼ y.

If a = 0, then μ̃e = 1 for all e ∈ Ed and the BTM is a time change of the simple
random walk on Z

d . If a �= 0, then, following Barlow and C̆erný [3], it is referred to
as the nonsymmetric BTM.

Just in the same way as for the RCM, we can define the VSRW, denoted by X̃ ,
associated with the conductances {μ̃e}. The BTM and X̃ are again related to each
other by a time change, see Eq. (2.3) in [3], and so in particular have the same range.
Similarly as before, for any environment {μ̃e(ω), e ∈ Ed} and any x ∈ Z

d , we write
P̃ω

x for the (quenched) law of X̃ started at x .
Even though the conductances {μ̃e, e ∈ Ed} are not independent any more, they

form a stationary symmetric ergodic process. By applying the results in Barlow and
Deuschel [4] and Barlow and C̆erný [3] to the VSRW X̃ , we can use the method in
Sect. 3 to prove the following theorem.

Theorem 3 Assume that d ≥ 3 and P̃(κx ≥ 1) = 1. Let R̃ be the range of the BTM.
Then for P̃-almost every ω ∈ �̃,

dimH R̃ = dimP R̃ = 2, P̃ω
0 -a.s.

Moreover, the conclusions of Theorem 2 hold for X̃ .

The proof of Theorem 3 is given in Sect. 4. Similarly to Remark 1 (ii), it would be
interesting to determine whether the assumption that κx is bounded from below can
be removed.

As is mentioned by an anonymous referee, in light of the above results it would
be interesting to investigate the discrete fractal dimensions of percolation clusters and
the images X (E), where E ⊂ R+ and X is VSRW or BTM, or an ordinary α-stable
random walk as in Barlow and Taylor [6]. We thank him/her for his/her thoughtful
suggestions, and we will study these questions in subsequent work.

Throughout this paper, for any x, y ∈ Z
d , |x − y| stands for the Euclidean distance,

and the �∞ distance is denoted by ||x − y||∞ = maxd
i=1 |xi − yi |. We will use c, c′, c′′

etc to denote unspecified positive and finite (nonrandom) constants, which may depend
on the distribution of the environment and may be different in each occurrence. More
specific constants are numbered as c1, c2, . . ..

2 Preliminaries

In this section, we recall some known facts about the VSRW and discrete Hausdorff and
packing dimensions, and prove a strong law of large numbers (SLLN) for dependent
events, which will be used in this paper.
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6 Y. Xiao, X. Zheng

2.1 Some basic properties of VSRW

Let X = {Xt , t ≥ 0} be a VSRW with values in Z
d with d ≥ 3 and let pω

t (x, y) =
Pω

x (X (t) = y) be its transition density or the heat kernel of LV .
The following estimates for the transition density pω

t (x, y) and the Green’s func-
tion gω(x, y) will be used in the sequel. Recall that when d ≥ 3, X is transient and
gω(x, y) is defined by

gω(x, y) =
∞∫

0

pω
t (x, y) dt.

Lemma 1 Let d ≥ 3, P(μe ≥ 1) = 1, and η ∈ (0, 1). There exist random vari-
ables {Ux , x ∈ Z

d} and positive (nonrandom) constants ci (depending on d and the
distribution of μe) such that

P(Ux ≥ n) ≤ c1 exp(−c2nη).

(a) [4, Theorem 1.2(a)] For all x, y ∈ Z
d and t > 0,

pω
t (x, y) ≤ 1 ∧ (c3t−d/2).

(b) [4, Theorem 1.2(b)] If |x − y| ∨ √
t ≥ Ux , then

pω
t (x, y) ≤

{
c4t−d/2 exp(−c5|x − y|2/t), when t ≥ |x − y|,
c4 exp(−c5|x − y|(1 ∨ log(|x − y|/t))), when t ≤ |x − y|.

(c) [4, Theorem 1.2(c)] If t ≥ U 2
x ∨ |x − y|1+η, then

pω
t (x, y) ≥ c6t−d/2 exp(−c7|x − y|2/t).

(d) [4, Theorem 1.3] If |x − y| ≥ Ux ∧ Uy, then

c8

|x − y|d−2 ≤ gω(x, y) ≤ c9

|x − y|d−2 .

(e) [3, Lemma 3.4] For all x, y ∈ Z
d ,

gω(x, y) ≤ c10.

(f) [3, Lemma 3.3] There exists c11 > 0 such that for each K > 0, the inequality

max|x |≤K n
Ux ≤ c11(log n)1/η (2.1)

holds with P-probability no less than 1 − c12 K dn−2. In particular, P-a.s. there
exists n0 = n0(ω) such that (2.1) holds for all n ≥ n0.
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Fractal dimensions of the range of the random conductance model 7

In the rest of this paper, we take η = 1/3. Hence P-a.s. there exists n0 = n0(ω)

such that

max||x ||∞≤2n
Ux ≤ c11 n3 for all n ≥ n0. (2.2)

We will sometimes work with the discrete time VSRW X̂ = {X̂n : n = 0, 1, . . .}
defined by X̂n = Xn for n = 0, 1, . . .. Its transition probabilities are nothing but
pω

n (x, y), so in particular, satisfy (a), (b), (c) of the previous lemma. Define its Green’s
function as

ĝω(x, y) =
∞∑

n=0

pω
n (x, y). (2.3)

Then using (a), (b) and (c) of Lemma 1 and similar computations as in §4.3 of Lawler
and Limic [20] one can derive

Lemma 2 When d ≥ 3, the inequalities in (d) and (e) of Lemma 1 also hold for
ĝω(x, y).

We also recall the following connection between the hitting probabilities of a time
homogeneous transient Markov chain {Xt , t ≥ 0, Px , x ∈ E} on a discrete state space
E and the capacity with respect to its Green’s function g(x, y).

It is known that for any finite set A ⊆ E , there is a positive function b(·) supported
by A such that

Px (Xt ∈ A for some t ≥ 0) =
∑

y∈A

g(x, y)b(y). (2.4)

This follows from Chung [12,13]. For an explicit expression of the function b(·), see
also Syski [27, p. 435] or the proof of Lemma 3 in the Appendix.

The natural capacity of A with respect to g is defined by

Capg(A) =
∑

y∈A

b(y). (2.5)

For any measure σ on A, write (gσ)(x) = ∑
y∈A g(x, y)σ (y) for the potential due to

the charge σ . Then we have

Lemma 3 If the time homogeneous transient Markov chain {Xt , t ≥ 0} has a discrete
state space E, is right continuous, and satisfies the following conditions:

(i) pt (x, y) ≤ f (t) for all x, y ∈ E, where the function f may depend on (x, y)

and is decreasing and integrable on [0,∞);
(ii) for any x ∈ E, the rate qx of leaving x is finite.

Then for any finite set A ⊆ E,
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8 Y. Xiao, X. Zheng

Capg(A) = max
{
σ(A) : σ is a measure on A such that max

x∈A
(gσ)(x) ≤ 1

}
.

(2.6)

In particular, (2.6) holds for the VSRW.

It follows from (2.6) that the capacity of a singleton {x} is g(x, x)−1.
As Lemma 3 is (more or less) well known (but we didn’t succeed in finding a ver-

sion similar to what is stated above that fits our needs), we shall only briefly sketch
its proof in the Appendix.

2.2 Discrete fractal dimensions

We recall briefly the definitions and basic properties of fractal dimensions for subsets
of Z

d from Barlow and Taylor [6].
For x ∈ Z

d and n ≥ 1, define cubes

C(x, n) = {y ∈ Z
d : xi ≤ yi < xi + n}, and

V (x, n) =
{

y ∈ Z
d : xi − 1

2
n ≤ yi < xi + 1

2
n

}

.
(2.7)

Clearly C(x, 1) = V (x, 1) = {x} and #(C(x, n)) = #(V (x, n)) = nd . Here and in
the sequel, #(A) denotes the cardinality of A.

Denote by C,Cd and Cs the classes of cubes, dyadic cubes and semi-dyadic cubes
in Z

d . Namely,

C = {C(x, n) : x ∈ Z
d , n ≥ 1},

Cd = {C(x, 2n) : x ∈ 2n
Z

d , n ≥ 1}, and (2.8)

Cs = {V (x, 2n) : x ∈ 2n−1
Z

d , n ≥ 1}.

The side of A ⊆ Z
d , denoted by s(A), is defined by

s(A) = inf{r > 0 : A ⊆ C(x, r) for some x ∈ Z
d}.

Let Ck
d and Ck

s denote the classes of dyadic and semi-dyadic cubes of side 2k . Note
that each x ∈ Z

d belongs to a unique cube in Ck
d , which is denoted by Qk(x). Each

x ∈ Z
d belongs to 2d cubes in Ck

s and we write Ṽ (x, 2k) for the semi-dyadic cube
V ∈ Ck

s with center closest to x .
Let Vn = V (0, 2n) for all n ≥ 0, S1 = V1 and Sn = Vn\Vn−1 for n ≥ 2. Thus

{Sn, n ≥ 2} is a sequence of disjoint cubical shells centered on the point (− 1
2 , . . . ,− 1

2 ).
Let H be the collection of functions h : R+ → R+ such that h is continuous,

monotone increasing, h(0) = 0, and satisfies h(2r) ≤ ch h(r) for all r ∈ [0, 1/2],
where ch is a constant. Functions in H are called measure functions.
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Fractal dimensions of the range of the random conductance model 9

For any A ⊆ Z
d and h ∈ H, set

νh(A, Sn) = min

{
k∑

i=1

h
( s(Bi )

2n

)
: Bi ∈ C, A ∩ Sn ⊂

k⋃

i=1

Bi

}

. (2.9)

The discrete Hausdorff measure of A with respect to the measure function h is defined
by

mh(A) =
∞∑

n=1

νh(A, Sn). (2.10)

If h(r) = rα (α > 0), we write να and mα for νh and mh , respectively. The discrete
Hausdorff dimension of A is defined by

dimH A = inf{α > 0 : mα(A) < ∞}. (2.11)

It is often more convenient to replace C in (2.9) by the smaller class Cd , the
corresponding values to (2.9) and (2.10) will be written as ν̃h(A, Sn) and m̃h(A),
respectively. Barlow and Taylor [6, p. 128] proved that νh(A, Sn) ≤ ν̃h(A, Sn) ≤
2dνh(A, Sn). Hence mh(A) and m̃h(A) are comparable, and replacing mα in (2.11)
by m̃α defines the same dimH A.

Discrete packing measure and packing dimension of A are defined in a dual way.
For any h ∈ H and ε > 0, define

τh(A, Sn, ε)=max

{
k∑

i=1

h
( ri

2n

)
: xi ∈ A∩Sn, V (xi , ri ) disjoint, 1≤ri ≤2(1−ε)n

}

(2.12)

and

ph(A, ε) =
∞∑

n=1

τh(A, Sn, ε). (2.13)

A set A ⊆ Z
d is said to be h-packing finite if ph(A, ε) < ∞ for all ε ∈ (0, 1). Again,

if h(r) = rα , we write τh and ph as τα and pα .
The discrete packing dimension of A is defined by

dimP A = inf{α > 0 : A is rα-packing finite}. (2.14)
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10 Y. Xiao, X. Zheng

One can use semi-dyadic cubes in (2.12) and define

τ̃h(A, Sn, ε)=max

{
k∑

i=1

h
(2ki

2n

)
: xi ∈ A∩Sn, Ṽ (xi , 2ki ) disjoint, 2ki ≤2(1−ε)n

}

(2.15)

and the corresponding p̃h(A, ε). [6, p. 130] proved that there exists a constant c > 1
(depending on h) such that

c−1τh(A, Sn, ε) ≤ τ̃h(A, Sn, ε) ≤ c τh(A, Sn, ε)

for all A, n and ε ∈ (0, 1). Thus, A is h-packing finite if and only if p̃h(A, ε) < ∞
for all ε ∈ (0, 1).

From (2.11) and (2.14) it is clear that dimH A and dimP A do not depend on the part
of A which lies inside any ball of finite radius. They are determined by the geometric
structure of A at infinity. Similarly to the ordinary Hausdorff and packing dimensions
in R

d , the discrete Hausdorff and packing dimensions on Z
d satisfy the following

relationship: For all A ⊆ Z
d ,

0 ≤ dimH A ≤ dimP A ≤ d, (2.16)

and the inequalities may be strict. See Barlow and Taylor [6, pp. 130, 132 and 136].
It is often not difficult to find optimal covering or packing for A ∩ Sn , which leads

to good upper bound for νh(A ∩ Sn) and lower bound for τh(A, Sn, ε). However, a
direct approach for obtaining the lower bound for νh(A ∩ Sn) [or upper bound for
τh(A, Sn, ε)] is usually tricky. The following lemmas are useful. The first is an ana-
logue of the density lemma and is a consequence of Theorem 4.1 of Barlow and Taylor
[6]. The second is an analogue of Frostman’s lemma and follows from Theorem 4.2
of Barlow and Taylor [6].

Lemma 4 Let h ∈ H and μ be a measure on A ⊆ Sn. If

μ(A ∩ V (x, 2k)) ≤ a1 h(2k−n) for all x ∈ Z
d , 0 ≤ k ≤ n.

Then νh(A, Sn) ≥ 2−da−1
1 μ(A).

Lemma 5 Let h ∈ H and A ⊆ Sn. Then there is a measure μ on A that satisfies

μ(A) ≥ νh(A, Sn) and μ(V (x, 2k)) ≤ 2d h

(
2k

2n

)

for all 0 ≤ k ≤ n, x ∈ A.

2.3 A SLLN for dependent events

The increments of VSRW are not independent. For this reason, we here establish a
SLLN for dependent events which will be used in our proof of Theorem 1 below.

123



Fractal dimensions of the range of the random conductance model 11

Lemma 6 Suppose that {Ai }, {Bi } are two sequences of events adapted to a (common)

filtration {Fi } and are such that for some positive constants p, a and δ

P(Ai+1|Fi ) ≥ p on event Bi , and P(Bc
i ) ≤ ae−δi for all i. (2.17)

Write Xi = 1Ai , and Sn = ∑n
i=1 Xi . Then there exists ε > 0 such that

lim inf
n→∞

Sn

n
≥ ε almost surely.

Proof We first estimate the moment generating function of Sn . For any t > 0,

E(e−t Sn ) = E(E(e−t Xn |Fn−1) · e−t Sn−1)

≤ E(E(e−t Xn |Fn−1) · 1Bn−1 · e−t Sn−1) + P(Bc
n−1). (2.18)

By using the first inequality in (2.17) and the elementary inequality 1 − x ≤ e−x

(x ≥ 0), we derive that

E(e−t Xn |Fn−1) ≤ q(t) := e−p(1−e−t ) < 1 on event Bn−1. (2.19)

Now choose k > 0 large enough and b > 0 small enough such that

b ≤ δ, ke−b ≥ 1, and q(t)eb + aeδ

k
≤ 1.

We go on to show that

E(e−t Sn ) ≤ ke−bn, for all n. (2.20)

In fact, by the choices of k and b, (2.20) holds automatically for n = 1. Now suppose
that it holds for n − 1, then by (2.18) and (2.19) and using induction one gets that

E(e−t Sn ) ≤ q(t)E(e−t Sn−1) + P(Bc
n−1) ≤ q(t)ke−b(n−1) + aeδ · e−δn .

The last term is bounded by ke−bn , by the choices of k and b.
Once we have the bound (2.20) for E(e−t Sn ), the conclusion then follows easily by

using the Chebyshev’s inequality and the Borel–Cantelli lemma.

3 Proofs of Theorems 1 and 2

As in Barlow and Taylor [6], the proof of Theorem 1 is divided into proving the
upper bound dimP R ≤ 2 Pω

0 -a.s. and the lower bound dimH R ≥ 2 Pω
0 -a.s., separately.

The upper bound is proved by using a first moment argument and the lower bound is
proved by using a “mass distribution” method. However, since there are significant
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12 Y. Xiao, X. Zheng

differences between VSRW and the strictly stable random walks in Barlow and Taylor
[6], some preparations are needed.

In the following we establish quenched results on hitting probability, sojourn time,
maximal inequality, and a zero-one law for VSRW. These results may also be useful
for studying other properties of VSRW.

3.1 Hitting probability estimates

We start with the following lemma. Its proof is a slight modification of that of Propo-
sition 2.1 in Xiao [29] which is an extension of Theorem 1 in Khoshnevisan [19] for
Lévy processes.

Lemma 7 Let {Xt , t ≥ 0, Px , x ∈ Z
d} be a time homogeneous (continuous time)

Markov chain. Then for any x, y ∈ Z
d , b > a ≥ 0 and r > 0,

1

2

∫ b
a Px (Xt ∈ C(y, r)) dt

supz∈C(y,r)

∫ b
0 Pz(Xt ∈ C(y, r)) dt

≤ Px (Xt ∈ C(y, r) for some a ≤ t ≤ b)

≤
∫ 2b−a

a Px (Xt ∈ C(y, r)) dt

inf z∈C(y,r)

∫ b−a
0 Pz(Xt ∈ C(y, r)) dt

.

(3.1)

Observe that, if
∫ ∞

0 Px (Xs ∈ C(y, r)) ds < ∞, then we can take a = 0 and b = ∞
in Lemma 7.

Now we apply Lemma 7 to derive the following hitting probability estimates for
the VSRW X .

Lemma 8 Assume that d ≥ 3 and P(μe ≥ 1) = 1. Then P-a.s. for all n large enough,
r ∈ [n3d/2, 2n−1], y ∈ V (0, 2n), and all x ∈ Z

d such that ||x − y||∞ ≥ 2r we have

Pω
x (Xt ∈ C(y, r) for some t > 0) �

(
r

|x − y|
)d−2

. (3.2)

Here and in the sequel, f � g means that the ratio f/g is bounded from below and
above by positive and finite constants which are independent of the variables involved
(x, y and r in this case).

Proof We will apply Lemma 7 with a = 0 and b = ∞. We first consider the denom-
inators in (3.1) and show that there exists a constant c > 1 such that

c−1r2 ≤
∞∫

0

Pω
z (Xs ∈ C(y, r)) ds ≤ c r2 (3.3)

for all z ∈ C(y, r) and for all y and r that we consider.
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Fractal dimensions of the range of the random conductance model 13

By Fubini’s theorem, we write the integral in (3.3) in terms of the Green’s function
of X :

∞∫

0

Pω
z (Xs ∈ C(y, r)) ds = ∑

w∈C(y,r) gω(z, w). (3.4)

By (2.2), for all n sufficiently large and for all r ≤ 2n−1,

max
y∈V (0,2n), z∈C(y,r)

Uz ≤ c11 n3 ≤ n3d/2/4. (3.5)

Hence we can apply (d) and (e) of Lemma 1 to (3.4) and obtain that for every z ∈
C(y, r) with r ≥ n3d/2,

∞∫

0

Pω
z (Xs ∈ C(y, r)) ds ≤

∑

{|w−z|≤c11n3}
c10 +

∑

{c11n3≤|w−z|≤√
d r}

c9

|z − w|d−2

≤ c (n3d + r2) ≤ c r2. (3.6)

This proves the upper bound in (3.3). On the other hand, since we only consider large
r ’s, for any z ∈ C(y, r),

#
{
w ∈ C(y, r) : r

4
≤ |w − z| ≤ 3r

4

}
� rd .

Denote the above set by . Then by using (3.4), (3.5) and (d) of Lemma 1 again, we
have

∞∫

0

Pω
z (Xs ∈ C(y, r)) ds ≥

∑

w∈

c8

|z − w|d−2 ≥ c−1 r2, (3.7)

which proves the lower bound in (3.3).
To estimate the numerators in (3.1), noting that for all w ∈ C(y, r), since ||x −

y||∞ ≥ 2r and hence |x − w| ≥ ||x − w||∞ ≥ r ≥ maxw∈C(y,r) Uw, we can use
again (d) of Lemma 1 to get

∞∫

0

Pω
x (Xt ∈ C(y, r)) dt =

∑

w∈C(y,r)

gω(x, w)

�
∑

w∈C(y,r)

1

|x − w|d−2 � rd

|x − y|d−2 , (3.8)

where in the last step we used again that |x − y| ≥ ||x − y||∞ ≥ 2r. Hence (3.2)
follows from Lemma 7, (3.3) and (3.8).
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14 Y. Xiao, X. Zheng

Similarly, for the discrete time VSRW {X̂n, n ≥ 0}, we have the following estimate
regarding the hitting probabilities.

Lemma 9 Assume that d ≥ 3 and P(μe ≥ 1) = 1. Then P-a.s. for all n large enough,
for all x ∈ V (0, 2n−2), and for all y ∈ Sn(= V (0, 2n)\V (0, 2n−1)),

Pω
x (X̂i = y for some i ≥ 0) ≥ c8

c10|x − y|d−2 . (3.9)

Proof By the strong Markov property,

ĝω(x, y) = Pω
x (X̂i = y for some i ≥ 0) · ĝω(y, y).

The conclusion then follows from Lemma 2 and (2.2).

Our next lemma, which is similar to Proposition 8.1 in Barlow and Taylor [6],
establishes a connection between the capacity Capgω associated with VSRW X and
Hausdorff measures.

Lemma 10 Assume that d ≥ 3 and P(μe ≥ 1) = 1. Then there exists a constant
c13 ≥ 1 such that for P-almost every ω ∈ �, all n large enough and sets A ⊆ Sn,

c−1
13 2n(d−2) νh2(A, Sn) ≤ Capgω(A) ≤ c13 2n(d−2) νh1(A, Sn). (3.10)

In the above,

h1(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rd−2
(

log
(1

r

))3d(d−2)/2

, if r ≤ r0;

rd−2
(

log
(1

r 0

))3d(d−2)/2

, if r ≥ r0,

where r0 = exp(−3d/2) is such that h1(·) is monotone increasing; and

h2(r) = rd−2
(

log
(1

r

))−c14

,

where c14 > (3/ log 2 + 1)(d − 2) is a constant.

Proof Let {Bi , 1 ≤ i ≤ m} be an optimal cover for A, in the sense that

νh1(A, Sn) =
m∑

i=1

h1

(
s(Bi )

2n

)

.

Write ri = s(Bi ). If ri ≥ n3d/2, then by Lemma 8, (d) of Lemma 1 and (2.2), and the
definitions (2.4) and (2.5) of capacity, one can get that Capgω(Bi ∩ Sn) ≤ crd−2

i . On
the other hand, if ri < n3d/2, then we enlarge the cube so that its side r ′

i = [n3d/2]+1,
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Fractal dimensions of the range of the random conductance model 15

which has capacity bounded by c(r ′
i )

d−2 ≤ cn3d(d−2)/2 ≤ c(log(2n/ri ))
3d(d−2)/2. It

follows that for some constant c13 > 0, for all n sufficiently large,

Capgω(A)≤
m∑

i=1

Capgω(Bi ∩ Sn)≤c13 2n(d−2)
m∑

i=1

h1

(
ri

2n

)

=c13 2n(d−2)νh1(A, Sn).

Next we prove the lower bound in (3.10). By Lemma 5 there is a measure μ on A
such that

μ(A) ≥ νh2(A, Sn) and μ(V (x, 2k)) ≤ 2d h2

(
2k

2n

)

for all 0 ≤ k ≤ n, x ∈ A.

(3.11)

For any x ∈ A, let Sk(x) = V (x, 2k)\V (x, 2k−1). Let c0 = 3/ log 2 + 1 so that for
all n large enough, 2c0 log n ≥ c12n3. Then by (d) and (e) of Lemma 1 and (2.2),

(gωμ)(x) ≤
2n∑

k=0

∑

y∈A∩Sk (x)

gω(x, y)μ(y)

≤
c0 log n∑

k=0

c10μ(Sk(x)) +
2n∑

k=1+c0 log n

c9

2k(d−2)
μ(Sk(x)). (3.12)

By using the second inequality in (3.11), and noting that c14 > c0(d − 2) one can
verify that

c0 log n∑

k=0

c10μ(Sk(x)) ≤ c 2−n(d−2) and
2n∑

k=1+c0 log n

c9

2k(d−2)
μ(Sk(x)) ≤ c 2−n(d−2).

This and (3.12) imply (gωμ)(x) ≤ c152−n(d−2) for all x ∈ A. Now we take the mea-
sure μ′ = c−1

15 2n(d−2)μ. Then (gωμ′)(x) ≤ 1 for all x ∈ A. Therefore, by (2.6) and
the first inequality in (3.11),

Capgω(A) ≥ μ′(A) = c−1
15 2n(d−2)μ(A) ≥ c−1

15 2n(d−2) νh2(A, Sn).

This proves the lower bound in (3.10).

3.2 Tail probability of the sojourn measure for the discrete time VSRW

In this subsection we focus on the discrete time VSRW {Xn, n = 0, 1, . . . , }. For this
process, for any F ⊆ Z

d , the sojourn time of F is defined by

T (F) = #{n ≥ 0 : Xn ∈ F}. (3.13)
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16 Y. Xiao, X. Zheng

The following lemma is an analogue of Lemma 7.6 in Barlow and Taylor [6] for
random walks, which holds for any time-homogeneous Markov chains and can be
proved similarly as in Lemma 3.1 in Pruitt and Taylor [24].

Lemma 11 If F ⊆ Z
d satisfies

M(F) := sup
y∈F

Ey(T (F)) ∈ (0,∞). (3.14)

Then for every δ ∈ (0, 1) and any λ ≥ 0, and for all x ∈ Z
d ,

Px (T (F) ≥ λM(F)) ≤ e−δλ.

Proof It suffices to prove that for all x ∈ Z
d and all integers m ≥ 1,

Ex (T (F)m) ≤ m!(M(F))m . (3.15)

This can be verified by using induction and the Markov property in a standard way
(see, e.g., [24]). We omit the details.

Next we estimate M(F). Denote by Vk(y) = V (y, 2k) the cube in Z
d centered at

y with side 2k . Let c17 be a large constant so that

2k ≥ 2c11n3 and 22k ≥ n3d for all k ≥ c17 log n > 0. (3.16)

Lemma 12 Assume that d ≥ 3 and P(μe ≥ 1) = 1. Then there exists a constant c16
such that P-a.s. for all n large enough, and c17 log n ≤ k ≤ n the inequality

Eω
x (T (Vk(y))) ≤ c16 22k (3.17)

holds uniformly for all x, y ∈ V (0, 2n+1).

Proof As in (3.4), we have that for any F ⊆ Z
d and x ∈ Z

d ,

Eω
x (T (F)) =

∑

z∈F

ĝω(x, z).

Moreover, by (2.2) maxx∈Vn+1 Ux ≤ c11 n3. It follows from Lemma 2 that

Eω
x (T (Vk(y))) ≤

∑

z∈V (x,c11n3)

ĝω(x, z) +
∑

z∈V (y,2k )\V (x,c11n3)

c9

|x − z|d−2

≤ C (n3d + 22k) ≤ c16 22k .

This proves (3.17).
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Fractal dimensions of the range of the random conductance model 17

It follows from Lemma 12 that P-a.s. for all n large enough, c17 log n ≤ k ≤ n and
all x ∈ Vn ,

M(Qk(x)) ≤ c16 22k, (3.18)

where, recall that, for any x ∈ Z
d and any 0 ≤ k ∈ Z, Qk(x) is the unique cube in Ck

d
that contains x .

3.3 A maximal inequality

The following lemma estimates the tail probability of the maximal displacement of
VSRW X .

Lemma 13 Assume that d ≥ 3 and P(μe ≥ 1) = 1. Then there exist constants c18,
c19 and c20 such that P-a.s. for all n large enough (n ≥ n0) the inequality

Pω
x

(

sup
0≤t≤T

|Xt − x | > λ
√

T

)

≤ c18 exp(−c19λ
2) (3.19)

holds for all x ∈ V (0, 2n−1), (c11n3)2 ≤ T ≤ 2n and c20 ≤ λ <
√

T /2.

Proof For any n and T, a > 0, let

α(T, a) = sup
||x ||∞≤2n , 0≤t≤T

Pω
x (|Xt − X0| > a). (3.20)

For any x ∈ V (0, 2n−1) and 2 ≤ M < 2n−1, we consider the stopping time

τ = inf{t > 0 : ||Xt − x ||∞ > M}.

For VSRW X started at x , we have ||Xτ − x ||∞ ≤ M + 1 and hence ||Xτ ||∞ ≤
2n−1 + M + 1 ≤ 2n . The triangle inequality and the strong Markov property imply
that

Pω
x

(

|XT − x | >
M

2

)

≥ Eω
x

[

Pω
Xτ

(

|XT −τ − X0| ≤ M

2

)

1{τ≤T }
]

. (3.21)

By the definition (3.20) and that ||Xτ ||∞ ≤ 2n , for any pair (τ, Xτ ),

Pω
Xτ

(

|XT −τ − X0| ≤ M

2

)

= 1 − Pω
Xτ

(

|XT −τ − X0| >
M

2

)

≥ 1 − α(T, M/2). (3.22)
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18 Y. Xiao, X. Zheng

Hence we derive the following quenched Ottaviani-type inequality: For all x ∈
V (0, 2n−1), 2 ≤ M < 2n−1 and T > 0 such that α(T, M/2) < 1,

Pω
x

(

sup
0≤t≤T

|Xt − x | > M

)

≤ Pω
x (|XT − x | > M/2)

1 − α(T, M/2)
. (3.23)

This is reminiscent to Lemma 2 in Gikhman and Skorohod [16, p. 420].
Next, recall that P-a.s. for all n ≥ n0, we have max||x ||∞≤2n Ux ≤ c11n3, see (2.2).

If a > c11n3, then we can apply (b) of Lemma 1 to deduce that for all x ∈ V (0, 2n+1)

and all 0 ≤ t ≤ T with t ≤ a,

Pω
x (|Xt − x | > a) =

∑

y∈Zd :|y−x |>a

pω
t (x, y)

≤ c4

∑

y∈Zd :|y−x |>a

exp(−c5|y − x |)

≤ c21 e−c22a . (3.24)

If T > a (> c11n3) and a < t ≤ T , then it can be verified that for all x ∈ V (0, 2n+1),

Pω
x (|Xt − x | > a) =

∑

a<|y−x |≤t

pω
t (x, y) +

∑

|y−x |>t

pω
t (x, y)

≤ c4

∑

a<|y−x |≤t

t−d/2 exp(−c5|y − x |2/t) + c21e−c22t

≤ c23e−c24(a/
√

t)2 + c21e−c22t . (3.25)

Now we apply (3.23) with M = λ
√

T , where (c11n3)2 ≤ T < 2n and c20 ≤ λ ≤√
T /2. It follows from (3.24) and (3.25) that we can choose n and the constant c20

large enough such that

α(T, M/2) ≤ 1

2
. (3.26)

By (3.25), we have that for all λ ≤ √
T /2,

Pω
x (|XT − x | > λ

√
T ) ≤ c′e−c′′λ2

. (3.27)

Plugging (3.26) and (3.27) into (3.23) yields (3.19).

It is known that VSRW spends a time of order n2 in the cube V (0, n) (Barlow and
C̆erný [3, p. 655]). By applying Lemma 13 and the Borel–Cantelli lemma we obtain

Corollary 1 For P-a.e. ω, Pω
0 -a.s.,

lim sup
T →∞

max0≤t≤T |Xt |√
T log log T

≤ 1√
c19

.
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Fractal dimensions of the range of the random conductance model 19

Consequently, the time that VSRW X spends in the cube V (0, n) is at least
cn2/

√
log log n.

3.4 A zero-one law

Lemma 14 For any (infinite) set A ⊂ Z
d , for P-almost every ω ∈ �,

Pω
0 (Xt ∈ A for arbitrarily large t > 0) ∈ {0, 1}.

Proof This is a consequence of an elliptic Harnack inequality that the VSRW X sat-
isfies. More explicitly, define

h(x) = Pω
x (Xt ∈ A for arbitrarily large t > 0).

Then h is a harmonic function [with respect to the generator LV in (1.1)]. Let a =
infx h(x) ≥ 0, and let g = h − a, so g ≥ 0 with inf x g(x) = 0. If g is not identically
zero, then there exists x0 such that g(x0) > 0. Now for any R ≥ Ux0 , by Corollary
4.8 in Barlow and Deuschel [4],

g(x0) ≤ sup
x∈B(x0,R/2)

g(x) ≤ C inf
x∈B(x0,R/2)

g(x).

This holds for all R ≥ Ux0 , so one gets

g(y) ≥ g(x0)/C for all y,

a contradiction to that infx g(x) = 0. So h must be a constant function. On the other
hand, the martingale convergence theorem tells us that Pω

0 almost surely,

h(Xt ) → 1{Xt ∈A for arbitrarily large t>0} as t → ∞.

So h is either constantly 0 or constantly 1.

3.5 Proofs of Theorems 1 and 2

With the results established above, we are ready to prove Theorems 1 and 2. Even
though the arguments are similar to the proofs of Theorem 7.8 and Theorem 8.3 of
Barlow and Taylor [6], several modifications are needed.

Proof of Theorem 1 Firstly we prove that for P-a.e. ω, the packing dimension of the
range dimP R ≤ 2 Pω

0 -a.s. This is done by using a first moment argument.
Let Mk be the total number of semi-dyadic cubes in Ck

s of order k which are con-
tained in Sn and are hit by {Xt , t ≥ 0}. Since there are at most c2(n−k)d semi-dyadic
cubes of order k contained in Sn and, by Lemma 8, for all k such that n3d/2 ≤ 2k ≤
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20 Y. Xiao, X. Zheng

2n−1, or equivalently, c log n ≤ k ≤ n − 1 for some c > 0, each of them can be hit
by X with probability at most c2(d−2)(k−n). Hence

Eω
0 (Mk) ≤ c 22(n−k), for all c log n ≤ k ≤ n − 1. (3.28)

Now we take δ > 0 small, and β = 2 + δ. It follows from (2.15) and (3.28) that for
ε ∈ (0, 1),

Eω
0 (̃τβ(R, Sn, ε)) ≤

c log n∑

k=1

c2(n−k)d · 2(d−2)(c log n−n) ·
(

2k

2n

)β

+ c
n(1−ε)∑

k=c log n

22(n−k)

(
2k

2n

)β

≤ c 2(d−2)c log n · 2−nεδ. (3.29)

Hence p̃β(R, ε) < ∞ for all ε ∈ (0, 1) Pω
0 -a.s. This and the arbitrariness of δ > 0

imply dimP R ≤ 2 Pω
0 -a.s.

Secondly we prove dimH R ≥ 2 Pω
0 -a.s. Let R̂ be the range of the discrete time

VSRW X̂ :

R̂ := {x ∈ Z
d : X̂n = x for some n ≥ 0}

= {x ∈ Z
d : Xn = x for some n ≥ 0}.

Since R̂ is a subset of R, it suffices to show that dimH R̂ ≥ 2 Pω
0 -a.s. Let μ be the mea-

sure on R̂ which assigns mass 1 to each point of R̂. We claim that there is a constant
c27 such that Pω

0 -a.s. for all n large enough

μ(Qk(x)) ≤ c27 n 22k for every x ∈ Sn and 0 ≤ k ≤ n. (3.30)

Note that the above inequality holds automatically for all x ∈ Sn and 0 ≤ k ≤
1/(d − 2) · log n. A simple covering argument shows that it also holds for all x ∈ Sn

and 0 ≤ k ≤ c17 log n, where c17 is the constant in (3.16). Hence, in order to prove
(3.30), it is sufficient to consider the event

En = {μ(Qk(x)) > γ n 22k for some x ∈ Snand c17 log n ≤ k ≤ n} (3.31)

and show that
∑∞

n=1 Pω
0 (En) < ∞. In the above, γ > 0 is a generic constant whose

value will be chosen later.
Since μ(Qk(x)) > 0 implies Qk(x) is hit by X̂ , it follows from Lemma 8 that for

all c17 log n ≤ k ≤ n − 3 (note that by (3.16), 2c17 log n ≥ n3d/2, hence Lemma 8
applies), for every x ∈ Sn ,

Pω
0 (X̂n ∈ Qk(x)for some n) ≤ Pω

0 (Xt ∈ Qk(x)for some t) ≤ c2(k−n)(d−2).

By enlarging c if necessary we can assume that the above inequality also holds for
k = n − 2, n − 1 and n. Moreover, restarting at the hitting point (say, X̂τ , which
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Fractal dimensions of the range of the random conductance model 21

necessarily lies in Vn+1) and applying Lemma 11 and (3.18), we have that for all n
large enough,

Pω

X̂τ
(μ(Qk(x)) > γ n 22k) ≤ Pω

X̂τ
(T (Qk(x)) > γ n 22k) ≤ e−δγ n, Pω

0 -a.s.,

where δ ∈ (0, 1) is a constant. Note that when applying (3.18) we have again used the
fact that k ≥ c17 log n.

It follows from the above and the strong Markov property that

Pω
0 (En) ≤

∑

c17 log n≤k≤n

Pω
0 {μ(Qk(x)) > γ n 22k for some x ∈ Sn}

≤
∑

c17 log n≤k≤n

c 2(n−k)d · 2(k−n)(d−2) · e−γ δn

≤ c e−(γ δ−2)n, (3.32)

for all n large enough. We now take γ > 2/δ so that
∑∞

n=1 Pω
0 (En) < ∞. This and

the Borel–Cantelli lemma prove (3.30).
Hence, by (3.30) and Lemma 4, we have

ν2(R̂, Sn) ≥ 2−d c−1
27 n−12−2n μ(Sn) (3.33)

for all n large enough. By Lemma 9 we have

Eω
0 (μ(Sn)) =

∑

y∈Sn

Pω
0 (X̂i = y for some i ≥ 0) ≥ c28 22n (3.34)

for all n large. This, (3.33) and (2.10) imply Eω
0 (m2(R̂)) = ∞.

Next we prove that m2(R̂) = ∞ Pω
0 -a.s. By (3.15) and (3.18), we have

Eω
0 (μ(Sn)2) ≤ Eω

0 (T (Sn)2) ≤ 2(M(Sn))2 ≤ c2924n . (3.35)

Thus, by the Paley–Zygmund inequality ([17, p. 8]), we obtain

Pω
0

(
μ(Sn) ≥ 1

2
c2822n

)
≥ Pω

0

(
μ(Sn) ≥ 1

2
Eω

0

(
μ(Sn)

))

≥ 1

4

(Eω
0 (μ(Sn)))2

Eω
0 (μ(Sn)2)

≥ (c28)
2

4 c29
:= p.

Moreover, we can replace Pω
0 by Pω

x and use Lemma 12 and the same argument as
above to show that the inequality
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22 Y. Xiao, X. Zheng

Pω
x

(
μ(Sn) ≥ 1

2
c28 22n

)
≥ p (3.36)

holds uniformly for all n large and for all x ∈ V (0, 2n−2).
We let nk = �λk log k�, where λ > 0 denotes a constant whose value will be chosen

later, and define a sequence of stopping times by

τk = inf{n > 0 : X̂n /∈ V (0, 2nk )}, (k ≥ 1). (3.37)

Note that |X̂τk+1 | ≥ 2nk+1/2, hence by using the strong Markov property and Lemma
8 we obtain that Pω

0 almost surely,

Pω

X̂τk−1
(X̂n ∈ Snk for some n ≥ τk+1) ≤ c

(
2nk

2nk+1

)d−2

≤ 1

k2 , (3.38)

when the constant λ is chosen large enough.
Next we consider

Pω
0 (|X̂τk−1 | > 2nk−3) ≤ Pω

0 (|X̂τk−1 | > 2nk−3, τk−1 ≤ 22nk−1nk−1)

+ Pω
0 (τk−1 > 22nk−1nk−1). (3.39)

Lemma 13 implies that

Pω
0 (|X̂τk−1 |>2nk−3, τk−1 ≤22nk−1nk−1) ≤ Pω

0

(

sup
0≤t≤22nk−1 nk−1

|Xt |>2nk−3
)

≤ c18 exp

(

− c19
(k − 1)2 log(2)λ

64λ(k − 1) log(k − 1)

)

≤ c18 exp(−c29k) (3.40)

for all k large enough when λ is chosen large enough. On the other hand, by Lem-
mas 11 and 12 we have

Pω
0 (τk−1 > 22nk−1nk−1) ≤ Pω

0 (T (V (0, 2nk−1)) ≥ 22nk−1nk−1) ≤ c18 exp(−c29k)

(3.41)

for all k large enough, again when λ is chosen large enough. Combining (3.39), (3.40)
and (3.41) yields

Pω
0 (|X̂τk−1 | > 2nk−3) ≤ 2c18 exp(−c29k) (3.42)

for all k large enough.
By (3.36) we have that Pω

0 -a.s. on the event {|X̂τk−1 | ≤ 2nk−3},

Pω

X̂τk−1
(μ(Snk ) ≥ 1

2
c28 22nk ) ≥ p. (3.43)
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Define

R̂k = {x ∈ Z
d : X̂n = x for some τk−1 ≤ n < τk+1}

to be the range of the discrete time VSRW X̂ between the times τk−1 and τk+1. Noting
that X̂� does not belong to Snk when � < τk−1, and using (3.38), the strong Markov
property and (3.43), one obtains that for k large, on the event {|X̂τk−1 | ≤ 2nk−3},

Pω

X̂τk−1

(
μ(R̂k ∩ Snk ) ≥ 1

2
c28 22nk

)
≥ p − 1

k2 ≥ p

2
. (3.44)

Using (3.44) and (3.42) and applying Lemma 6 we conclude that Pω
0 -a.s. the inequal-

ity

μ(R̂2k ∩ Sn2k ) ≥ 1

2
c28 22nk

holds for a sequence K of integers k of lower density at least ε for some constant
ε > 0. This and (3.33) imply

ν2(R̂2k, Sn2k ) ≥ c30n−1
2k , for all k ∈ K .

Therefore,

m2(R̂) ≥ c30

∑

k∈K

1

n2k
≥ c31

∑

k∈K

1

2k log(2k)
= ∞, Pω

0 -a.s.

This proves that dimH R̂ ≥ 2 Pω
0 -a.s. and the theorem.

Proof of Theorem 2 It follows from (2.4), (2.5) and (d) of Lemma 1 that for all n large
enough,

Pω
0 (Xt ∈ A ∩ Sn for some t > 0) � 1

2n(d−2)
Capgω(A ∩ Sn). (3.45)

Hence the proof of Theorem in Lamperti [21] gives that

Pω
0 (Xt ∈ A for arbitrarily large t > 0) = 0

if and only if
∑∞

n=1 2−n(d−2)Capgω(A ∩ Sn) < ∞. The set Sn here and the Sn in [21]
have different meanings, nevertheless it is straightforward to modify the arguments
in [21] to our setting. The assumption (7) therein should be modified to: there exist
a, b < ∞ (depending on the environment) such that for any x ∈ Sn , y ∈ Sn+m where
n, m ≥ b,

gω(x, y) ≤ a2−(n+m)(d−2), gω(y, x) ≤ a2−n(d−2).

This holds thanks to (d) of Lemma 1 and (2.2).
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Combining this with Lemma 10, we deduce

– If mh1(A) < ∞, then Pω
0 (Xt ∈ A for arbitrarily large t > 0) = 0.

– If mh2(A) = ∞, then Pω
0 (Xt ∈ A for arbitrarily large t > 0) > 0.

These and Lemma 14 imply the conclusions of Theorem 2.

4 Proof of Theorem 3

The proofs of Theorems 1 and 2 only make use of Lemmas 1 and 14. Bounds on the
Green’s function are used for estimating the hitting probabilities in Sects. 3.1 and 3.2;
and the upper bound on the transition density pω

t (x, y) is used to derive the maximal
inequality in Sect. 3.3.

Proof of Theorem 3 If a = 0, X̃ is a time change of the simple random walk on Z
d .

Hence Theorem 3 follows from Theorems 7.8 and 8.3 in Barlow and Taylor [6].
Assume a ∈ (0, 1]. It follows from Lemma 9.1 of Barlow and C̆erný [3] and The-

orem 6.1 in Barlow and Deuschel [4] that, under the assumption that P̃(κx ≥ 1) = 1,
the transition density and the Green’s function of the VSRW X̃ satisfy Lemma 1.
Moreover, by Lemma 9.1 and Proposition 3.2 in Barlow and C̆erný [3], X̃ also enjoys
an elliptic Harnack inequality and hence a zero-one law as in Lemma 14 holds as well.
Therefore, the proof of Theorem 3 is the same as those of Theorems 1 and 2.

Acknowledgments We thank Martin Barlow for the proof of Lemma 14. We also thank the editor and an
anonymous referee for their helpful and thoughtful comments and suggestions.

Appendix: Proof of Lemma 3

We first list some known facts about discrete time Markov chains with discrete space
E . Suppose {Xi , i ≥ 0} is such a process, for any finite set A in the state space, let

TA = inf{i ≥ 0 : Xi ∈ A}, and SA = inf{i > 0 : Xi ∈ A} (A.1)

be the first hitting time and the first return time of A, respectively. Then by the last-exit
decomposition, see, e.g., Proposition 3.5 in Revuz [25, p. 57]

Px (TA < ∞) =
∑

y∈A

g(x, y)Py(SA = ∞), for all x,

where g(x, y) = ∑∞
i=0 pi (x, y) is the Green’s function. Moreover, if we define

Cap(A) =
∑

y∈A

Py(SA = ∞)

to be the capacity of A, then it satisfies that Revuz [25, Exercise 4.13 on p. 64]

Cap(A) = max
{
σ(A) : σ is a measure on A such that max

x∈A
(gσ)(x) ≤ 1

}
. (A.2)
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We now prove Lemma 3. For any n, define discrete time Markov chain {X (n)
i :=

Xi/2n , i = 0, 1, . . .}. It has transition density p(n)
i (x, y) = pi/2n (x, y), and Green’s

function g(n)(x, y) = ∑∞
i=0 pi/2n (x, y). Now for any finite set A in the state space

E , define the hitting time and return time T (n)
A and S(n)

A similarly as in (A.1) for the
process X (n). We then have that

Px (T
(n)
A < ∞) =

∑

y∈A

g(n)(x, y)Py(S(n)
A = ∞), for all x . (A.3)

Moreover, Cap(n)(A) = ∑
y∈A Py(S(n)

A = ∞) satisfies (A.2) with g replaced by g(n).
We now let n go to ∞. By the right continuity of the process {Xt , t ≥ 0},

Px (T
(n)
A < ∞) ↑ Px (TA < ∞), where TA = inf{t ≥ 0 : Xt ∈ A}. (A.4)

Moreover, by condition (ii) and Lemma 3.6.1 in Norris [23], for any x, y ∈ E and any
0 ≤ s < t < ∞,

|ps(x, y) − pt (x, y)| ≤ 1 − e−qx (t−s) = O(t − s).

Combining this with condition (i) one can verify that

1

2n
g(n)(x, y) → g(x, y) =

∞∫

0

pt (x, y) dt, for all x, y ∈ E . (A.5)

Furthermore, by condition (ii) again, for any y ∈ A and n ≥ 1,

2nPy(S(n)
A = ∞) ≤ 2nPy(X1/2n �= y) ≤ qy < ∞,

hence {2nPy(S(n)
A = ∞) : n ≥ 1} must admit a subsequence converging to some limit,

say b(y). By (A.3), (A.4) and (A.5) the b(y)’s must satisfy

Px (TA < ∞) =
∑

y∈A

g(x, y)b(y), for all x ∈ E .

Thus we have explicitly built a function b(y) which solves (2.4). Moreover, by the
uniqueness of Riesz decomposition (see, for example, Syski [27, Theorem 1, p. 165]),
the solution to the above equation is unique, and hence we conclude that the whole
sequence {2nPy(S(n)

A = ∞)} must converge to b(y). We then have that

Cap(A) = lim
n→∞ 2nCap(n)(A).

That it satisfies (2.6) follows from the above convergence and that Cap(n)(A) satisfies
(A.2).
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26 Y. Xiao, X. Zheng

Finally the lemma applies to the VSRW, because condition (i) holds thanks to (a)
of Lemma 1, and (ii) holds by the definition of VSRW. ��
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