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Abstract Let F be a separable uniformly bounded family of measurable functions
on a standard measurable space (X,X), and let N[](F, ε, μ) be the smallest number
of ε-brackets in L1(μ) needed to cover F. The following are equivalent:

1. F is a universal Glivenko–Cantelli class.
2. N[](F, ε, μ) < ∞ for every ε > 0 and every probability measure μ.
3. F is totally bounded in L1(μ) for every probability measure μ.
4. F does not contain a Boolean σ -independent sequence.

It follows that universal Glivenko–Cantelli classes are uniformity classes for general
sequences of almost surely convergent random measures.

Keywords Universal Glivenko–Cantelli classes · Uniformity classes · Uniform
convergence of random measures · Entropy with bracketing · Boolean independence

Mathematics Subject Classification (2000) 60F15 · 60B10 · 41A46

1 Main results

Let (X,X) be a measurable space, and let F be a family of measurable functions
on (X,X). Given a probability measure μ on (X,X), the family F is said to be a
μ-Glivenko–Cantelli class (cf. [31] or [13, Sect. 6.6]) if
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∑
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f (Xk)− μ( f )

∣
∣
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∣
∣

n→∞−−−→ 0 a.s.,

where (Xk)k≥1 is the i.i.d. sequence of X -valued random variables with distribution μ,
defined on its canonical product probability space.1 The class F is said to be a universal
Glivenko–Cantelli class if it is μ-Glivenko–Cantelli for every probability measure μ

on (X,X). The goal of this paper is to characterize the universal Glivenko–Cantelli
property in the case that F is separable and (X,X) is a standard measurable space
(these regularity assumptions will be detailed below). Somewhat surprisingly, we find
that universal Glivenko–Cantelli classes are in fact uniformity classes for convergence
of (random) probability measures under the assumptions of this paper, so that their
applicability extends substantially beyond the setting of laws of large numbers for
i.i.d. sequences that is inherent in their definition.

The following probability-free independence properties for families of functions
will play a fundamental role in this paper. These notions date back to Marczewski [23]
(for sets) and Rosenthal [27] (for functions, see also [8]).

Definition 1.1 A family F of functions on a set X is said to be Boolean independent
at levels (α, β) if for every finite subfamily { f1, . . . , fn} ⊆ F

⋂

j∈F

{ f j < α} ∩
⋂

j �∈F

{ f j > β} �= ∅ for every F ⊆ {1, . . . , n}.

A sequence ( fi )i∈N is said to be Boolean σ -independent at levels (α, β) if

⋂

j∈F

{ f j < α} ∩
⋂

j �∈F

{ f j > β} �= ∅ for every F ⊆ N.

A family (sequence) of functions is called Boolean (σ -)independent if it is Boolean
(σ -)independent at levels (α, β) for some α < β.

We also recall the well-known notions of bracketing and covering numbers.

Definition 1.2 Let F be a class of functions on a measurable space (X,X). Given
ε > 0 and a probability measure μ on (X,X), a pair of measurable functions f +, f −
such that f − ≤ f + pointwise and μ( f + − f −) ≤ ε defines an ε-bracket in L1(μ)

[ f −, f +] := { f : f − ≤ f ≤ f + pointwise}. Denote by N[](F, ε, μ) the cardinality
of the smallest collection of ε-brackets in L1(μ) covering F, and by N (F, ε, μ) the
cardinality of the smallest covering of F by ε-balls in L1(μ).

A measurable space (X,X) is said to be standard if it is Borel-isomorphic to a
Polish space. A class of functions F on a set X will be said to be separable if it con-

1 The supremum in the definition of the μ-Glivenko–Cantelli property need not be measurable in general
when the class F is uncountable. However, measurability will turn out to hold in the setting of our main
results as a consequence of the proofs. See Sect. 3.5 below for further discussion of this point.
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The universal Glivenko–Cantelli property 913

tains a countable dense subset for the topology of pointwise convergence in R
X .2 We

can now formulate our main result.

Theorem 1.3 Let F be a separable uniformly bounded family of measurable functions
on a standard measurable space (X,X). The following are equivalent:

1. F is a universal Glivenko–Cantelli class.
2. N[](F, ε, μ) < ∞ for every ε > 0 and every probability measure μ.
3. N (F, ε, μ) < ∞ for every ε > 0 and every probability measure μ.
4. F contains no Boolean σ -independent sequence.

A notable aspect of this result is that the four equivalent conditions of Theorem 1.3
are quite different in nature: roughly speaking, the first condition is probabilistic, the
second and third are geometric and the fourth is combinatorial.

The implication 1 ⇒ 2 in Theorem 1.3 is the most important result of this paper.
A consequence of this implication is that universal Glivenko–Cantelli classes can be
characterized as uniformity classes in a much more general setting.

Corollary 1.4 Under the assumptions of Theorem 1.3, the following are equivalent
to the equivalent conditions 1–4 of Theorem 1.3:

5. For any probability measure μ on (X,X) and net of probability measures (μτ )τ∈I

such that μτ → μ setwise, we have sup f ∈F |μτ ( f )− μ( f )| → 0.
6. For any probability measure μ on (X,X) and sequence of random probability

measures (kernels) (μn)n∈N such that μn(A) → μ(A) a.s. for every A ∈ X, we
have sup f ∈F |μn( f )− μ( f )| → 0 a.s.

7. For any countably generated reverse filtration (G−n)n∈N and X-valued random
variable Z, sup f ∈F |PG−n ( f (Z))− PG−∞( f (Z))| → 0 a.s.

8. For any strictly stationary sequence (Zn)n∈N of X-valued random variables,
sup f ∈F | 1

n

∑n
k=1 f (Zk)− PI( f (Z0))| → 0 a.s. (I is the invariant σ -field).

Here PG denotes any version of the regular conditional probability P[ · |G].
The characterization provided by Theorem 1.3 and Corollary 1.4 is proved under

three regularity assumptions: that F is uniformly bounded and separable, and that
(X,X) is standard. It is not difficult to show that any universal Glivenko–Cantelli class
is uniformly bounded up to additive constants (see, for example, [15, Proposition 4]),
so that the assumption that F is uniformly bounded is not a restriction. We will pres-
ently argue, however, that without the remaining two assumptions a characterization
along the lines of this paper cannot be expected to hold in general.

In the case that F is not separable, there are easy counterexamples to Theorem 1.3.
For example, consider the class F consisting of all indicator functions of finite subsets

2 This notion of separability is not commonly considered in empirical process theory. A sequential coun-
terpart is more familiar: F is called pointwise measurable if it contains a countable subset F0 such that every
f ∈ F is the pointwise limit of a sequence in F (cf. [33, Example 2.3.4]). In general, separability is much
weaker than pointwise measurability. However, a deep result of Bourgain et al. [8, Theorem 4D(viii)⇒(vi)]
implies that a separable uniformly bounded family of measurable functions on a standard space is necessarily
pointwise measurable if it contains no Boolean σ -independent sequence. Thus universal Glivenko–Cantelli
classes satisfying the assumptions of Theorem 1.3 below are always pointwise measurable, though this is
far from obvious a priori. This fact will not be needed in our proofs.
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914 R. van Handel

of X . It is clear that this class is not μ-Glivenko–Cantelli for any nonatomic measure
μ, yet condition 3 of Theorem 1.3 holds. Conversely, [2, Sect. 1.2] gives a simple
example of a universal Glivenko–Cantelli class (in fact, a Vapnik–Chervonenkis class
that is image admissible Suslin, cf. [13, Corollary 6.1.10]) for which condition 8 of
Corollary 1.4, and therefore condition 2 of Theorem 1.3, are violated.

In the case that (X,X) is not standard, an easy counterexample to Theorem 1.3 is
obtained by choosing X = [0, 1] and X = 2X . Assuming the continuum hypothesis,
nonatomic probability measures on (X,X) do not exist [14, Theorem C.1], so that any
uniformly bounded family of functions is trivially universal Glivenko–Cantelli. But we
can clearly choose a uniformly bounded Boolean σ -independent sequence F of func-
tions on X , in contradiction to Theorem 1.3. This example is arguably pathological,
but various examples given by Dudley et al. [15] show that such phenomena can appear
even in Polish spaces if we admit universally measurable functions. Therefore, in the
absence of some regularity assumption on (X,X), the universal Glivenko–Cantelli
property can be surprisingly broad. In Appendix C, we show that it is consistent with
the usual axioms of set theory that the implications in Theorem 1.3 whose proof relies
on the assumption that (X,X) is standard may fail in a general measurable space. I do
not know whether it is possible to obtain examples of this type that do not depend on
additional set-theoretic axioms.

For the case where (X,X) is a general measurable space we will prove the following
quantitative result, which is of independent interest.

Definition 1.5 Let γ > 0. A family F of functions on a set X is said to γ -shatter a
subset X0 ⊆ X if there exist levels α < β with β − α ≥ γ such that, for every finite
subset {x1, . . . , xn} ⊆ X0, the following holds:

∀ F ⊆ {1, . . . , n}, ∃ f ∈ F so that f (x j ) < α for j ∈ F, f (x j ) > β for j �∈ F.

The γ -dimension of F is the maximal cardinality of γ -shattered finite subsets of X .

Theorem 1.6 Let F be a separable uniformly bounded family of measurable functions
on a measurable space (X,X), and let γ > 0. Consider:

a. F has finite γ -dimension.
b. No sequence in F is Boolean independent at levels (α, β) with β − α ≥ γ .
c. N[](F, ε, μ) < ∞ for every ε > γ and every probability measure μ.

Then the implications a ⇒ b ⇒ c hold.

The notion of γ -dimension appears in Alon et al. [5] (called Vγ /2-dimension there).
The implication a ⇒ c of Theorem 1.6 contains the recent results of Adams and
Nobel [1–3]. Let us note that condition b is strictly weaker than condition a: for
example, the class F = {1C : C is a finite subset of N} has infinite γ -dimension for
γ < 1, but does not contain a Boolean independent sequence. Similarly, condition
c is strictly weaker than condition b: if X = {x ∈ {0, 1}N : limn→∞ xn = 0} and
F = {1{x∈X :x j=1} : j ∈ N}, then F contains a Boolean independent sequence, but
all the bracketing numbers are finite as X is countable (note that F does not contain
a Boolean σ -independent sequence, so there is no contradiction with Theorem 1.3).
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The universal Glivenko–Cantelli property 915

Condition b is dual (in the sense of Assouad [7]) to the nonexistence of a γ -shattered
sequence in X . A connection between the latter and the universal Glivenko–Cantelli
property for families of indicators is considered by Dudley et al. [15].

An interesting question arising from Theorem 1.6 is as follows. If F is uniformly
bounded and has finite γ -dimension for all γ > 0, then supμ N (F, γ, μ) < ∞ for
all γ > 0, that is, the covering numbers of F are bounded uniformly with respect to
the underlying probability measure (see [25] for a quantitative statement). If F is a
family of indicators, we have in fact the polynomial bound supμ N (F, ε, μ) � ε−d

[13, Theorem 4.6.1]. In view of Theorem 1.6, one might ask whether one can similarly
obtain uniform or quantitative bounds on the bracketing numbers of F. Unfortunately,
this is not the case: N[](F, ε, μ) can blow up arbitrarily quickly as ε ↓ 0. The following
result is based on a combinatorial construction of Alon et al. [6].

Proposition 1.7 There exists a countable class C of subsets of N, whose Vapnik–
Chervonenkis dimension is two (that is, the γ -dimension of {1C : C ∈ C} is two for all
0 < γ < 1) such that the following holds: for any function n(ε) ↑ ∞ as ε ↓ 0, there
is a probability measure μ on N such that N[](C, ε, μ) ≥ n(ε) for all 0 < ε < 1/3.
In particular, supμ N[](C, ε, μ) = ∞ for all 0 < ε < 1/3.

Probabilistically, this result has the following consequence. In contrast to the univer-
sal Glivenko–Cantelli property, it is known that both the uniform Glivenko–Cantelli
property and the universal Donsker property are equivalent to finiteness of the Vapnik–
Chervonenkis dimension for image admissible Suslin classes of sets (see [13, p. 225
and p. 215, respectively]). These results are proved using symmetrization arguments.
In view of Theorem 1.6, one might expect that it is possible to provide an alterna-
tive proof of these results for separable classes using bracketing methods (as in [13,
Chapter 7]). However, this would require either uniform or quantitative control of the
bracketing numbers, both of which are ruled out by Proposition 1.7.

The original motivation of the author was an attempt to characterize uniformity
classes for reverse martingales that appear in filtering theory. In a recent paper, Adams
and Nobel [2] showed that Vapnik–Chervonenkis classes of sets are uniformity classes
for the convergence of empirical measures of stationary ergodic sequences; their proof
could be extended to more general random measures. A simplified argument, which
makes the connection with bracketing, appeared subsequently in [3]. While attempt-
ing to understand the results of [2], the author realized that the techniques used in the
proof are closely related to a set of techniques developed by Bourgain et al. [8,30] to
study pointwise compact sets of measurable functions. The proof of Theorem 1.3 is
based on this elegant theory, which does not appear to be well known in the probability
literature (however, the proofs of our main results, Theorem 1.3, Corollary 1.4, and
Theorem 1.6, are intended to be essentially self-contained).

A key innovation in this paper is the construction in Sect. 2 of a “weakly dense”
set which allows to prove the implication 4 ⇒ 2 in Theorem 1.3 (and b ⇒ c in
Theorem 1.6). This result is the essential step that closes the circle of implications in
Theorem 1.3 and Corollary 1.4. Many of the remaining implications are essentially
known, albeit in more restrictive settings and/or using significantly more complicated
proofs: these results are unified here in what appears to be (in view the simplicity of
the proofs and the counterexamples above and in Appendix C) their natural setting.
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916 R. van Handel

In a topological setting (continuous functions on a compact space), the equivalence
of 1, 3, 4 in Theorem 1.3 can be deduced by combining [30, Theorem 14-1-7] with
Talagrand’s characterization of the μ-Glivenko–Cantelli property [30, Theorem 11-
1-1], [31] (note that in this setting the distinction between Boolean independent and
σ -independent sequences is irrelevant). The equivalence between 3, 4 in Theorem
1.3 is also obtained in [8, Theorem 4D] by a much more complicated method. The
implication 5 ⇒ 2 follows from the characterization of uniformity classes for setwise
convergence of Stute [29] and Topsøe [32]. The implications 2 ⇒ 1, 5–8 follow from
the classical Blum–DeHardt argument, up to measurability problems that are resolved
here. Finally, the implication a ⇒ c (but not b ⇒ c) of Theorem 1.6 is shown in [3]
for the special case of Vapnik–Chervonenkis classes of sets.

The remainder of this paper is organized as follows. We first prove Theorem 1.6
in Sect. 2. The proofs of Theorem 1.3, Corollary 1.4, and Proposition 1.7 are subse-
quently given in Sects. 3, 4, and 5, respectively. Finally, Appendix A and Appendix B
develop some properties of Boolean σ -independent sequences and decomposition the-
orems that are used in the proofs of our main results, while Appendix C is devoted to
the aforementioned counterexamples to Theorem 1.3 in nonstandard spaces.

2 Proof of Theorem 1.6

In this section, we fix a measurable space (X,X) and a separable uniformly bounded
family of measurable functions F. Let F0 ⊆ F be a countable family that is dense in
F in the pointwise convergence topology.

Definition 2.1 Denote by Π(X,X) the collection of all finite measurable partitions
of X . For π, π ′ ∈ Π(X,X), we write π � π ′ if π is finer than π ′. For any pair of sets
A, B ∈ X, finite partition π ∈ Π(X,X), and probability measure μ on (X,X), define
the μ-essential π -boundary of (A, B) as

∂μ
π (A, B) =

⋃

{P ∈ π : μ(P ∩ A) > 0 and μ(P ∩ B) > 0}.

We begin by proving an approximation result.

Lemma 2.2 Let μ be a probability measure on (X,X) and let γ > 0. If

inf
π∈Π(X,X)

sup
f ∈F0

μ
(

∂μ
π ({ f < α}, { f > β})) = 0 for all β − α ≥ γ,

then N[](F, ε, μ) < ∞ for every ε > γ .

Proof There is clearly no loss of generality in assuming that every f ∈ F takes values
in [0, 1] and that γ < 1. Fix k ≥ 1, and let δ := γ /k. Choose π ∈ Π(X,X) so that

sup
f ∈F0

μ (Ξ( f )) < δ, Ξ( f ) :=
⋃

1≤ j≤�δ−1�
∂μ
π ({ f < jδ}, { f > jδ + γ }).
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The universal Glivenko–Cantelli property 917

For each f ∈ F0, define the functions f + and f − as follows:

f + = δ �δ−1� 1Ξ( f ) +
∑

P∈π :P �⊆Ξ( f )

δ �δ−1 ess sup
P

f � 1P ,

f − =
∑

P∈π :P �⊆Ξ( f )

δ �δ−1 ess inf
P

f � 1P .

Here ess supP f (ess inf P f ) denotes the essential supremum (infimum) of f on the
set P with respect to μ. By construction, f − ≤ f ≤ f + outside a μ-null set and
μ( f + − f −) < γ + 3δ. Moreover, as f +, f − are constant on each P ∈ π and take
values in the finite set { jδ : 0 ≤ j ≤ �δ−1�}, there is only a finite number of such
functions. As F0 is countable, we can eliminate the null set to obtain a finite num-
ber of (γ + 3δ)-brackets in L1(μ) covering F0. But F0 is pointwise dense in F, so
N[](F, γ + 3δ, μ) < ∞, and we may choose δ = γ /k arbitrarily small. ��

To proceed, we need the notion of a “weakly dense” set, which is the measure-
theoretic counterpart of the corresponding topological notion defined in [8].

Definition 2.3 Given a measurable set A ∈ X and a probability measure μ on (X,X),
the family of functions F is said to be μ-weakly dense over A at levels (α, β) if
μ(A) > 0 and for any finite collection of measurable sets B1, . . . , Bp ∈ X such that
μ(A∩Bi ) > 0 for all 1 ≤ i ≤ p, there exists f ∈ F such that μ(A∩Bi∩{ f < α}) > 0
and μ(A ∩ Bi ∩ { f > β}) > 0 for all 1 ≤ i ≤ p.

The key idea of this section, which lies at the heart of the results in this paper, is
that we can construct such a set if the bracketing numbers fail to be finite. The proof
is straightforward but requires some elementary topological notions: the reader unfa-
miliar with nets is referred to the classic text [20], while weak compactness of the unit
ball in L2 follows from Alaoglu’s theorem [12, Theorem V.3.1].

Proposition 2.4 Suppose there exists a probability measure μ on (X,X) such that
N[](F, ε, μ) = ∞ for some ε > γ . Then there exist α < β with β − α ≥ γ and a
measurable set A ∈ X such that F0 is μ-weakly dense over A at levels (α, β).

Proof By Lemma 2.2, there exist α < β with β − α ≥ γ such that

inf
π∈Π(X,X)

sup
f ∈F0

μ
(

∂μ
π ({ f < α}, { f > β})) > 0.

Choose for every π ∈ Π(X,X) a function fπ ∈ F0 such that

μ
(

∂μ
π ({ fπ < α}, { fπ > β})) ≥ 1

2
sup
f ∈F0

μ
(

∂μ
π ({ f < α}, { f > β})).

Define Aπ :=∂
μ
π ({ fπ < α}, { fπ > β}). Then (1Aπ )π∈Π(X,X) is a net of random vari-

ables in the unit ball of L2(μ). By weak compactness, there is for some directed set
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918 R. van Handel

T a subnet (1Aπ(τ)
)τ∈T that converges weakly in L2(μ) to a random variable H . We

claim that F0 is μ-weakly dense over A := {H > 0} at levels (α, β).
To prove the claim, let us first note that as infπ μ(Aπ ) > 0, clearly μ(A) > 0.

Now fix B1, . . . , Bp ∈ X such that μ(A ∩ Bi ) > 0 for all i . This trivially implies that
μ(H1A∩Bi ) > 0 for all i , so we can choose τ0 ∈ T such that

μ(Aπ(τ) ∩ A ∩ Bi ) > 0 ∀ 1 ≤ i ≤ p, τ � τ0.

Let π0 be the partition generated by A, B1, . . . , Bp, and choose τ ∗ ∈ T such that
τ ∗ � τ0 and π∗ := π(τ ∗) � π0. As A∩ Bi is a union of atoms of π∗ by construction,
μ(Aπ∗ ∩ A ∩ Bi ) > 0 must imply that A ∩ Bi contains an atom P ∈ π∗ such that
μ(P ∩ { fπ∗ < α}) > 0 and μ(P ∩ { fπ∗ > β}) > 0. Therefore

μ(A ∩ Bi ∩ { fπ∗ < α}) > 0 and μ(A ∩ Bi ∩ { fπ∗ > β}) > 0 ∀ i.

Thus F0 is μ-weakly dense over A at levels (α, β) as claimed. ��
We can now complete the proof of Theorem 1.6.

Proof of Theorem 1.6
a ⇒ b: Lemma A.3 in Appendix A shows that if F contains a subset of cardinality
2n that is Boolean independent at levels (α, β) with β − α ≥ γ , then F γ -shatters
a subset of X of cardinality n. Therefore, if condition b fails, there exist γ -shattered
finite subsets of X of arbitrarily large cardinality, in contradiction with condition a.
b ⇒ c: Suppose that condition c fails. By Proposition 2.4, there exist a probability
measure μ, levels α < β with β−α ≥ γ , and a set A ∈ X so that F0 is μ-weakly dense
over A at levels (α, β). We now iteratively apply Definition 2.3 to construct a Boolean
independent sequence. Indeed, applying first the definition with p = 1 and B1 = X ,
we choose f1 ∈ F0 so that μ(A ∩ { f1 < α}) > 0 and μ(A ∩ { f1 > β}) > 0. Then
applying the definition with p = 2 and B1 = { f1 < α}, B2 = { f1 > β}, we choose
f2 ∈ F0 so that μ(A ∩ { f1 < α} ∩ { f2 < α}) > 0, μ(A ∩ { f1 < α} ∩ { f2 > β}) > 0,
μ(A ∩ { f1 > β} ∩ { f2 < α}) > 0, and μ(A ∩ { f1 > β} ∩ { f2 > β}) > 0. Repeating
this procedure yields the desired sequence ( fi )i∈N.

3 Proof of Theorem 1.3

Throughout this section, we fix a standard measurable space (X,X) and a separable
uniformly bounded family of measurable functions F. We will prove Theorem 1.3 by
proving the implications 1 ⇒ 4 ⇒ 2 ⇒ 1 and 2 ⇒ 3 ⇒ 4.

3.1 1 ⇒ 4

Suppose there exists a sequence ( fi )i∈N ⊆ F that is Boolean σ -independent at levels
(α, β) for some α < β. Clearly we must have

κ− < α < β < κ+, κ− := inf
f ∈F

inf
x∈X

f (x), κ+ := sup
f ∈F

sup
x∈X

f (x).
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The universal Glivenko–Cantelli property 919

Let p = (κ+ − β + ε)/(κ+ − α), where we choose ε > 0 such that p < 1. Applying
Theorem A.1 in Appendix A to the sets Ai = { fi < α} and Bi = { fi > β}, there
exists a probability measure μ on (X,X) such that ({ fi < α})i∈N is an i.i.d. sequence
of sets with μ({ fi < α}) = μ(X\{ fi > β}) = p for every i ∈ N.

We now claim that F is not μ-Glivenko–Cantelli, which yields the desired contra-
diction. To this end, note that we can trivially estimate for any f ∈ F

β 1 f >β + κ− 1 f≤β ≤ f ≤ α 1 f <α + κ+ 1 f≥α.

We therefore have

sup
f ∈F

∣
∣
∣
∣
∣

1

n

n
∑

k=1

f (Xk)− μ( f )

∣
∣
∣
∣
∣
≥ sup

j∈N

1

n

n
∑

k=1

{ f j (Xk)− μ( f j )}

≥ (κ− − β) inf
j∈N

1

n

n
∑

k=1

1 f j≤β(Xk)+ ε.

But if (Xk)k≥1 are i.i.d. with distribution μ then, by construction, the family of random
variables {1 f j≤β(Xk) : j, k ∈ N} is i.i.d. with P[1 f j≤β(Xk) = 0] > 0, so

inf
j∈N

1

n

n
∑

k=1

1 f j≤β(Xk) = 0 a.s. for all n ∈ N.

Thus F is not a μ-Glivenko–Cantelli class. This completes the proof.

3.2 4 ⇒ 2

Suppose there exists a probability measure μ and ε > 0 such that N[](F, ε, μ) = ∞.
By Proposition 2.4, there exist levels α < β and a set A ∈ X such that F is μ-weakly
dense over A at levels (α, β). We will presently construct a Boolean σ -independent
sequence, which yields the desired contradiction. The idea is to repeat the proof of
Theorem 1.6, but now exploiting the fact that (X,X) is standard to ensure that the
infinite intersections in the definition of Boolean σ -independence are nonempty.

As (X,X) is standard, we may assume without loss of generality that X is Polish
and that X is the Borel σ -field. Thus μ is inner regular. We now apply Definition 2.3
as follows. First, setting p = 1 and B1 = X , choose f1 ∈ F such that

μ(A ∩ { f1 < α}) > 0, μ(A ∩ { f1 > β}) > 0.

As μ is inner regular, we may choose compact sets F1 ⊆ { f1 < α} and G1 ⊆ { f1 > β}
such that μ(A ∩ F1) > 0 and μ(A ∩ F2) > 0. Applying the definition with p = 2,
B1 = F1, and B2 = G1, we can choose f2 ∈ F such that

μ(A ∩ F1 ∩ { f2 < α}) > 0, μ(A ∩ F1 ∩ { f2 > β}) > 0,

μ(A ∩ G1 ∩ { f2 < α}) > 0, μ(A ∩ G1 ∩ { f2 > β}) > 0.
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920 R. van Handel

Using again inner regularity, we can now choose compact sets F2 ⊆ { f2 < α} and
G2 ⊆ { f2 > β} such thatμ(A∩F1∩F2) > 0,μ(A∩F1∩G2) > 0,μ(A∩G1∩F2) > 0,
and μ(A∩G1 ∩G2) > 0. Iterating the above steps, we construct a sequence of func-
tions ( fi )i∈N ⊆ F and compact sets (Fi )i∈N, (Gi )i∈N such that Fi ⊆ { fi < α},
Gi ⊆ { fi > β} for every i ∈ N, and for any n ∈ N

μ

⎛

⎝
⋂

j∈Q

Fj ∩
⋂

j∈{1,...,n}\Q

G j

⎞

⎠ > 0 for every Q ⊆ {1, . . . , n}.

Now suppose that the sequence ( fi )i∈N is not Boolean σ -independent. Then

⋂

j∈R

{ f j < α} ∩
⋂

j �∈R

{ f j > β} = ∅

for some R ⊆ N. Thus we certainly have

⋂

j∈R

Fj ∩
⋂

j �∈R

G j = ∅.

Choose arbitrary � ∈ R (if R is the empty set, replace F� by G1 throughout the
following argument). Then clearly {X\Fj : j ∈ R} ∪ {X\G j : j �∈ R} is an open
cover of F�. Therefore, there exist finite subsets Q1 ⊆ R, Q2 ⊆ N\R such that
{X\Fj : j ∈ Q1} ∪ {X\G j : j ∈ Q2} covers F�. But then

F� ∩
⋂

j∈Q1

Fj ∩
⋂

j∈Q2

G j = ∅,

a contradiction. Thus ( fi )i∈N is Boolean σ -independent at levels (α, β).

3.3 2 ⇒ 1

This is the usual Blum–DeHardt argument, included here for completeness. Fix a prob-
ability measure μ and ε > 0, and suppose that N[](F, ε, μ) < ∞. Choose ε-brackets
[ f1, g1], . . . , [ fN , gN ] in L1(μ) covering F. Then

sup
f ∈F

|μn( f )− μ( f )| = sup
f ∈F

{μn( f )− μ( f )} ∨ sup
f ∈F

{μ( f )− μn( f )}
≤ max

i=1,...,N
{μn(gi )− μ( fi )} ∨ max

i=1,...,N
{μ(gi )− μn( fi )},

where we define the empirical measure μn := 1
n

∑n
k=1 δXk for an i.i.d. sequence

(Xk)k∈N with distribution μ. The right hand side in the above expression is measur-
able and converges a.s. to a constant not exceeding ε by the law of large numbers. As
ε > 0 and μ were arbitrary, F is universal Glivenko–Cantelli.
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The universal Glivenko–Cantelli property 921

3.4 2 ⇒ 3 ⇒ 4

As N (F, ε, μ) ≤ N[](F, 2ε, μ), the implication 2 ⇒ 3 is trivial. It therefore remains
to prove the implication 3 ⇒ 4.

To this end, suppose that there exists a sequence ( fi )i∈N ⊆ F that is Boolean
σ -independent at levels (α, β) for some α < β. Construct the probability measure μ

as in the proof of the implication 1 ⇒ 4. We claim that N (F, ε, μ) = ∞ for ε > 0
sufficiently small, which yields the desired contradiction.

To prove the claim, it suffices to note that for any i �= j

μ(| fi − f j |) ≥ μ(| fi − f j |1 f j <α1 fi >β)

≥ (β − α)μ({ f j < α} ∩ { fi > β}) = (β − α)p(1 − p) > 0

by the construction of μ. Therefore F contains an infinite set of (β − α)p(1 − p)-
separated points in L1(μ), so N (F, (β − α)p(1 − p)/2, μ) = ∞.

3.5 A remark about a.s. convergence and measurability

When the class F is only assumed to be separable, the quantity

�n(F, μ) := sup
f ∈F

∣
∣
∣
∣
∣

1

n

n
∑

k=1

f (Xk)− μ( f )

∣
∣
∣
∣
∣

may well be nonmeasurable. For nonmeasurable functions, there are inequivalent
notions of convergence that coincide with a.s. convergence in the measurable case.
In this paper, following Talagrand [31], we defined μ-Glivenko–Cantelli classes as
those for which the quantity �n(F, μ) converges to zero a.s., that is, pointwise outside
a set of probability zero. A different definition, given by Dudley [13, Sect. 3.3], is to
require that �n(F, μ) converges to zero almost uniformly, that is, it is dominated by
a sequence of measurable random variables converging to zero a.s.

For nonmeasurable functions, almost uniform convergence is in general much
stronger than a.s. convergence. Nonetheless, in the fundamental paper characteriz-
ing the μ-Glivenko–Cantelli property, Talagrand showed [31, Theorem 22] that for
μ-Glivenko–Cantelli classes a.s. convergence already implies almost uniform conver-
gence. Thus this is certainly the case for universal Glivenko–Cantelli classes. In the
setting of Theorem 1.3, the latter can also be seen directly: indeed, the proof of the
implication 1 ⇒ 4 requires only a.s. convergence, while the Blum–DeHardt argument
2 ⇒ 1 automatically yields the stronger notion of almost uniform convergence.

However, let us note that in Corollary 4.2 below we will prove an even stronger prop-
erty: for separable uniformly bounded classes F with finite bracketing numbers, the
quantity sup f ∈F |ν( f )− ρ( f )| is Borel-measurable for arbitrary random probability
measures ν, ρ. Thus �n(F, μ) is automatically measurable for universal Glivenko–
Cantelli classes satisfying the assumptions of Theorem 1.3, though this is far from
obvious a priori. Similarly, if any of the equivalent conditions of Theorem 1.3 or
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922 R. van Handel

Corollary 1.4 holds, then all the suprema in Corollary 1.4 are measurable. It follows
that a.s. and almost uniform convergence coincide trivially in our main results.

4 Proof of Corollary 1.4

Throughout this section, we fix a standard measurable space (X,X) and a separable
uniformly bounded family of measurable functions F. We will prove Corollary 1.4 by
proving the implications 2 ⇔ 5 and 2 ⇒ {6, 7, 8} ⇒ 1. The implication 5 ⇒ 2 is
related to a result of Topsøe [32], though we give here a direct proof inspired by Stute
[29]. The remaining implications are straightforward modulo measurability issues.

4.1 2 ⇔ 5

The implication 2 ⇒ 5 follows from the Blum–DeHardt argument as in Sect. 3.3.
Conversely, suppose that condition 2 does not hold, so that N[](F, ε, μ) = ∞ for
some ε > 0 and probability measure μ. Then by Lemma 2.2, there exist δ > 0 and
α < β such that we can choose for every π ∈ Π(X,X) a function fπ ∈ F with

μ(Dπ ) ≥ δ, Dπ := ∂μ
π ({ fπ < α}, { fπ > β}).

We now define for every π ∈ Π(X,X) two probability measures μ+π , μ−
π as follows.

For every P ∈ π such that P ⊆ Dπ , choose two points x+P ∈ P ∩ { fπ > β} and
x−P ∈ P ∩ { fπ < α} arbitrarily, and define for every A ∈ X

μ±π (A) = μ(A\Dπ )+
∑

P∈π :P⊆Dπ

μ(P) 1A(x±P ).

Then (μ±
π )π∈Π(X,X) is a net of probability measures that converges to μ setwise:

indeed, for every A ∈ X, we have μ±π (A) = μ(A) whenever π � πA with πA =
{A, X\A}. On the other hand, by construction we have

sup
f ∈F

|μ+
π ( f )− μ−

π ( f )| ≥ |μ+
π ( fπ )− μ−

π ( fπ )| ≥ (β − α)μ(Dπ ) ≥ (β − α)δ

for every π ∈ Π(X,X). Therefore either (μ+π )π∈Π(X,X) or (μ−
π )π∈Π(X,X) does not

converge to μ uniformly over F, in contradiction to condition 5.

4.2 2 ⇒ {6, 7, 8}

The implication 2 ⇒ 6 follows immediately from the Blum–DeHardt argument as in
Sect. 3.3. The complication for the implications 2 ⇒ {7, 8} is that the limiting mea-
sure is a random measure (unlike 2 ⇒ 6 where the limiting measure is nonrandom).
Intuitively one can simply condition on G−∞ or I, respectively, so that the problem
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The universal Glivenko–Cantelli property 923

reduces to the implication 2 ⇒ 6 under the conditional measure. The main work in
the proof consists of resolving the measurability issues that arise in this approach.

Let F0 ⊆ F be a countable family that is dense in F in the topology of pointwise
convergence. We first show that F0 is also L1(μ)-dense in F for any μ: this is not
obvious, as the dominated convergence theorem does not hold for nets.

Lemma 4.1 If N[](F, ε, μ) < ∞ for all ε > 0, then F0 is L1(μ)-dense in F.

Proof Fix ε > 0, and choose ε-brackets [ f1, g1], . . . , [ fN , gN ] in L1(μ) covering
F. As topological closure and finite unions commute, for every f ∈ F there exists
1 ≤ i ≤ N such that f is in the pointwise closure of [ fi , gi ] ∩ F0. But then clearly
f ∈ [ fi , gi ], and choosing any g ∈ [ fi , gi ]∩F0 we have μ(| f −g|) ≤ μ(gi− fi ) ≤ ε.
As ε > 0 is arbitrary, the proof is complete. ��

We can now reduce the suprema in conditions 7 and 8 to countable suprema.

Corollary 4.2 Suppose that N[](F, ε, μ) < ∞ for every ε > 0 and probability mea-
sure μ. Then for any pair of probability measures μ, ν we have

sup
f ∈F

|μ( f )− ν( f )| = sup
f ∈F0

|μ( f )− ν( f )|.

In particular, this holds when μ and ν are random measures.

Proof Fix (nonrandom) probability measures μ, ν, and define ρ = {μ+ ν}/2. Then
F0 is L1(ρ)-dense in F by Lemma 4.1. In particular, for every f ∈ F and ε > 0, we
can choose g ∈ F0 such that μ(| f − g|)+ ν(| f − g|) ≤ ε. Now let ( fn)n∈N ⊆ F be a
sequence such that sup f ∈F |μ( f )− ν( f )| = limn→∞ |μ( fn)− ν( fn)|. For each fn ,
choose gn ∈ F0 such that μ(| fn − gn|)+ ν(| fn − gn|) ≤ n−1. Then

sup
f ∈F

|μ( f )− ν( f )| = lim
n→∞ |μ(gn)− ν(gn)| ≤ sup

f ∈F0

|μ( f )− ν( f )|,

which clearly yields the result (as F0 ⊆ F). In the case of random probability measures,
we simply apply the nonrandom result pointwise. ��

To prove 2 ⇒ 8 we use the ergodic decomposition (cf. Appendix B). Consider
a stationary sequence (Zn)n∈N of X -valued random variables on a probability space
(�,G, P). Using Corollary 4.2 and the ergodic theorem, it suffices to prove that

P

[

lim sup
n→∞

sup
f ∈F0

∣
∣
∣
∣
∣

1

n

n
∑

k=1

f (Zk)− lim sup
N→∞

1

N

N
∑

k=1

f (Zk)

∣
∣
∣
∣
∣
= 0

]

= 1.

The event inside the probability is an X⊗N-measurable function of (Zn)n∈N. Therefore,
by Theorem B.1 in Appendix B, it suffices to prove the result for the case that (Zn)n∈N
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924 R. van Handel

is stationary and ergodic. But in the ergodic case 1
N

∑N
k=1 f (Zk) → E( f (Z0)) a.s.,

so that the result follows from the Blum–DeHardt argument.
To prove the implication 2 ⇒ 7, we aim to repeat the proof of 2 ⇒ 8 with a suitable

tail decomposition (cf. Theorem B.2 in Appendix B). On an underlying probability
space (�,G, P), let (G−n)n∈N be a reverse filtration such that G−n ⊆ G is countably
generated for each n ∈ N, and consider a random variable Z taking values in the
standard space (X,X). Using Corollary 4.2 and the reverse martingale convergence
theorem, it evidently suffices to prove that

P

[

lim sup
n→∞

sup
f ∈F0

∣
∣
∣
∣
E( f (Z)|G−n)− lim sup

N→∞
E( f (Z)|G−N )

∣
∣
∣
∣
= 0

]

= 1.

If (�,G) is standard, then by Theorem B.2 it suffices to prove the result for the case
that the tail σ -field G−∞ = ⋂

n G−n is trivial. But in the latter case E( f (Z)|G−n) →
E( f (Z)) a.s., so that the result follows from the Blum–DeHardt argument.

It therefore remains to show that there is no loss of generality in assuming that
(�,G) is standard. To this end, choose for every n ≥ 1 a countable generating class
(Hn, j ) j∈N ⊆ G−n , and define the {0, 1}N-valued random variable Z−n = (1Hn, j ) j∈N.
Then, by construction, G−n = σ {Z−k : k ≥ n}. If we define Z0 = Z , then it is clear
that the implication 2 ⇒ 7 depends only on the law of (Z−n)n≥0. There is therefore
no loss of generality in assuming that (�,G) is the canonical space of the process
(Z−n)n≥0, which is clearly standard as {0, 1}N is Polish.

4.3 {6, 7, 8} ⇒ 1

These implications follow from the fact that each of the conditions {6, 7, 8} contains
condition 1 as a special case. For the implication 6 ⇒ 1, it suffices to choose μn to be
the empirical measure of an i.i.d. sequence with distribution μ. Similarly, the impli-
cation 8 ⇒ 1 follows from the fact that an i.i.d. sequence is stationary and ergodic.
Finally, the implication 7 ⇒ 1 follows from the following well known construction.
Let (Xk)k∈N be an i.i.d. sequence of X -valued random variables with distribution μ,
let Z = X1, and let G−n = σ {∑n

k=1 1A(Xk) : A ∈ X}. As (X,X) is standard, X and
hence G−n are countably generated. Moreover, we have

E( f (Z)|G−n) = E( f (X�)|G−n) = 1

n

n
∑

k=1

E( f (Xk)|G−n) = 1

n

n
∑

k=1

f (Xk)

for any bounded measurable function f and 1 ≤ � ≤ n, as the right hand side
is G−n-measurable and every element of G−n is symmetric under permutations of
{X1, . . . , Xn}. Therefore, 1

n

∑n
k=1 δXk is a version of the regular conditional proba-

bility P(Z ∈ · |G−n) for every n ≥ 1. By the law of large numbers and the martingale
convergence theorem, it follows that μ is a version of the regular conditional proba-
bility P(Z ∈ · |G−∞). The implication 7 ⇒ 1 is now immediate.
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The universal Glivenko–Cantelli property 925

5 Proof of Proposition 1.7

The construction of the classC in Proposition 1.7 is based on a combinatorial construction
due to Alon et al. [6, Theorem A(2)]. We begin by recalling the essential results in
that paper, and then proceed to the proof of Proposition 1.7.

5.1 Construction

Let q ≥ 2 be a prime number, and denote by Fq the finite field Z/qZ of order q. In the
following, we consider the three-dimensional vector space F

3
q over the finite field Fq .

Denote by Vq the family of all one-dimensional subspaces of F
3
q , and denote by Eq the

family of all two-dimensional subspaces of F
3
q . Each element of Eq is identified with

a subset of Vq by inclusion, that is, a two-dimensional subspace C ∈ Eq is identified
with the set of one-dimensional subspaces x ∈ Vq contained in it. An elementary
counting argument, cf. [9, Sect. 9.3], yields the following properties:

1. card Vq = card Eq = q2 + q + 1.
2. Every set C ∈ Eq contains exactly q + 1 points in Vq .
3. Every point x ∈ Vq belongs to exactly q + 1 sets in Eq .
4. For every x, x ′ ∈ Vq , x �= x ′ there is a unique set C ∈ Eq with x, x ′ ∈ C .

A pair (Vq , Eq) with these properties is called a finite projective plane of order q. For
our purposes, the key property of finite projective planes is the following result due to
Alon et al. whose proof is given in [6, p. 336] (the proof is based on a combinatorial
lemma proved in [4, Theorem 2.1(2)]).

Proposition 5.1 Let q ≥ 2 be prime, define m = q2 + q + 1, and let ε > 0. Then for
any partition π of Vq such that (card π)2 ≤ m1/2(1 − ε), we have

max
C∈Eq

card ∂πC

m
> ε.

Here we defined the π -boundary ∂πC :=⋃{P ∈ π : P ∩ C �= ∅ and P �⊆ C}.

We now proceed to construct the class C in Proposition 1.7. Let q j ↑ ∞ be an
increasing sequence of primes (q j ≥ 2), and define m j = q2

j + q j + 1. We now
partition N into consecutive blocks of length m j , as follows:

N =
∞
⋃

j=1

N j , N j =
⎧

⎨

⎩

j−1
∑

i=1

mi + 1, . . . ,

j
∑

i=1

mi

⎫

⎬

⎭
� Vq j .

Define C as the disjoint union of copies of Eq j defined on the blocks N j : that is, choose
for every j a bijection ι j : Vq j → N j , and define
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C =
∞
⋃

j=1

C j , C j = {B ⊆ N j : ι−1
j (B) ∈ Eq j }.

We claim that the countable class C of subsets of N has γ -dimension two.

Lemma 5.2 C has Vapnik–Chervonenkis dimension two.

Proof Choose any three distinct points n1, n2, n3 ∈ N. If two of these points are in
distinct intervals N j , then no set in C contains both points. On the other hand, suppose
that all three points are in the same interval N j . Then by the properties of the finite
projective plane, either there is no set in C that contains all three points, or there is no
set that contains two of the points but not the third (as each pair of points must lie in
a unique set in C). Thus we have shown that no family of three points {n1, n2, n3} is
γ -shattered for 0 < γ < 1. On the other hand, it is easily seen that the properties of
the finite projective plane imply that any pair of points {n1, n2} belonging to the same
interval N j is γ -shattered for 0 < γ < 1. ��

5.2 Proof of Proposition 1.7

The following crude lemma yields lower bounds on the bracketing numbers.

Lemma 5.3 Let μ be a probability measure on N. Then

inf
card π≤3N

sup
C∈C

μ(∂πC) > ε implies N[](C, ε, μ) > N ,

where the infimum ranges over all partitions of N with card π ≤ 3N .

Proof Suppose that N[](C, ε, μ) ≤ N . Then there are k ≤ N pairs {C+
i , C−

i }1≤i≤k

of subsets of N such that μ(C+
i \C−

i ) ≤ ε for all 1 ≤ i ≤ k, and for every C ∈ C,
there exists 1 ≤ i ≤ k such that C−

i ⊆ X ⊆ C+
i . Let π be the partition generated by

{C+
i , C−

i : 1 ≤ i ≤ k}. Then card π ≤ 3N , as π is the common refinement of at most
N partitions {C−

i , C+
i \C−

i , N\C+
i } of size three.

Now choose any C ∈ C, and choose 1 ≤ i ≤ k such that C−
i ⊆ C ⊆ C+

i .
As C−

i and N\C+
i are unions of atoms of π by construction, and as C−

i ⊆ C and
(N\C+

i ) ∩ C = ∅, we evidently have ∂πC ⊆ C+
i \C−

i . Thus μ(∂πC) ≤ ε. As this
holds for any C ∈ C, we complete the proof by contradiction. ��

Denote by μ j the uniform distribution on N j . Let (p j ) j∈N be a sequence of non-
negative numbers p j ≥ 0 so that

∑

j p j = 1, and define the probability measure

μ =
∞
∑

j=1

p jμ j .

We first obtain a lower bound on N[](C, ε, μ). Subsequently, we will be able to choose
the sequence (p j ) j∈N such that this bound grows arbitrarily quickly.

123



The universal Glivenko–Cantelli property 927

To obtain a lower bound, let us suppose that N[](C, ε, μ) ≤ N . Then applying
Lemma 5.3, there exists a partition π of N with card π ≤ 3N such that

sup
j∈N

p j min
card π ′≤3N

max
C∈Eq j

card ∂π ′C

m j
≤ sup

j∈N

p j max
C∈Cj

μ j (∂πC) ≤ sup
C∈C

μ(∂πC) ≤ ε.

By Proposition 5.1,

min
card π ′≤3N

max
C∈Eq j

card ∂π ′C

m j
≤ ε

p j
implies m1/4

j

√

1 − ε

p j
∧ 1 < 3N .

Therefore, N[](C, ε, μ) ≤ N implies that

N >
1

4
log3 m j + 1

2
log3

(

1 − ε

p j
∧ 1

)

for every j ∈ N. It follows that

N[](C, ε, μ) ≥ sup
j∈N

⌊
1

4
log3 m j + 1

2
log3

(

1 − ε

p j
∧ 1

)⌋

.

This bound holds for any choice of (p j ) j∈N.
Fix n(ε) ↑ ∞ as ε ↓ 0. We now choose (p j ) j∈N such that N[](C, ε, μ) ≥ n(ε).

First, as m j ↑ ∞, we can choose a subsequence j (k) ↑ ∞ such that

m j (�log2(2/3ε)�) ≥ 34n(ε)+6 for all 0 < ε < 1/3.

Now define (p j ) j∈N as follows:

p j (k) = 2−k for k ∈ N, p j = 0 for j �∈ { j (k) : k ∈ N}.

Then we clearly have, setting J (ε) = j (�log2(2/3ε)�),

N[](C, ε, μ) ≥
⌊

1

4
log3 m J (ε) + 1

2
log3

(

1 − ε

pJ (ε)

∧ 1

)⌋

≥ �n(ε)+ 1� ≥ n(ε)

for all 0 < ε < 1/3. This completes the proof.

Acknowledgments The author would like to thank Terry Adams and Andrew Nobel for making available
an early version of [3] and for interesting discussions on the topic of this paper.

Appendix A Boolean and stochastic independence

An essential property of a Boolean σ -independent sequence of sets is that there must
exist a probability measure under which these sets are i.i.d. This idea dates back to
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Marczewski [23], who showed that such a probability measure exists on the σ -field
generated by these sets. For our purposes, we will need the resulting probability mea-
sure to be defined on the larger σ -field X of the underlying standard measurable space
(X,X). One could apply an extension theorem for measures on standard measurable
spaces (for example, [34, p. 194]) to deduce the existence of such a measure from
Marczewski’s result. However, a direct proof is easily given.

Theorem A.1 Let (X,X) be a standard measurable space, and let (Ai , Bi )i∈N be a
sequence of pairs of sets Ai , Bi ∈ X such that Ai ∩ Bi = ∅ for every i ∈ N and

⋂

j∈F

A j ∩
⋂

j �∈F

B j �= ∅ for every F ⊆ N.

Let p ∈ [0, 1]. Then there exists a probability measure μ on (X,X) such that μ(Ai ) =
μ(X\Bi ) = p for every i ∈ N, and such that (Ai )i∈N are independent under μ.

Proof Let B∗ be the universal completion of the the Borel σ -field of {0, 1}N, and let
C j = {ω ∈ {0, 1}N : ω j = 1} for j ∈ N. Moreover, let ν be the probability measure
on B∗ under which (C j ) j∈N are independent and ν(C j ) = p for every j ∈ N.

Define for every ω ∈ {0, 1}N the set

H(ω) =
⋂

j :ω j=1

A j ∩
⋂

j :ω j=0

B j .

It suffices to show that there is a measurable map ι : ({0, 1}N,B∗) → (X,X) such
that ι(ω) ∈ H(ω) for every ω ∈ {0, 1}N. Indeed, as ι−1(A j ) = C j and ι−1(B j ) =
{0, 1}N\C j for every j ∈ N, the measure μ(·) = ν(ι−1(·)) has the desired properties.

It remains to prove the existence of ι. To this end, note that the set

� = {(ω, x) : x ∈ H(ω)} =
⋂

j∈N

{

C j × A j ∪
(

{0, 1}N\C j

)

× B j

}

is measurable � ∈ B({0, 1}N) ⊗ X, where B({0, 1}N) denotes the Borel σ -field of
{0, 1}N. As H(ω) is nonempty for every ω ∈ {0, 1}N by assumption, the existence of
ι now follows by the measurable section theorem [11, Theorem 8.5.3]. ��
Remark A.2 In the above proof, the assumption that (X,X) is standard is required to
apply the measurable section theorem. When (X,X) is an arbitrary measurable space,
we could of course invoke the axiom of choice to obtain a map ι : {0, 1}N → X such
that ι(ω) ∈ H(ω) for every ω ∈ {0, 1}N, but such a map need not be measurable in
general. On the other hand, as ι−1(A j ) = C j and ι−1(B j ) = {0, 1}N\C j , it follows
that ι is necessarily Borel-measurable if we choose X = σ {A j , B j : j ∈ N}. Thus we
recover a result along the lines of Marczewski by using the same proof.

The proof of Theorem 1.6 uses the following connection between Boolean inde-
pendence and γ -shattering which is a trivial modification of a result of Assouad [7]
(cf. [13, Theorem 4.6.2]). We give the proof for completeness.
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Lemma A.3 Let { f1, . . . , f2n } be a finite family of functions on a set X that is Boolean
independent at levels (α, β) with β−α ≥ γ . Then the family { f1, . . . , f2n } γ -shatters
some finite subset {x1, . . . , xn} ⊆ X.

Proof Define �(F) = 1 +∑

j∈F 2 j−1 for F ⊆ {1, . . . , n}, so that �(F) assigns to
every F ⊆ {1, . . . , n} a unique integer between 1 and 2n . Choose some point

x j ∈
⋂

F� j

{ f�(F) < α} ∩
⋂

F �� j

{ f�(F) > β}

for every j = 1, . . . , n. Then for any F ⊆ {1, . . . , n}, we have f�(F)(x j ) < α if j ∈ F
and f�(F)(x j ) > β if j �∈ F . Therefore {x1, . . . , xn} is γ -shattered. ��

Appendix B Decomposition theorems

Part of the proof of Corollary 1.4 relies on the decomposition of stochastic processes
with respect to the invariant and tail σ -fields. These theorems will be given presently.

The first theorem is the well-known ergodic decomposition. As this result is clas-
sical, we state it here without proof (see [35, Theorem 6.6] or [19, Theorem 10.26],
for example, for elementary proofs). In the following, for any standard space (Y,Y),
we denote by P(Y,Y) the space of probability measures on (Y,Y). The space P(Y,Y)

is endowed with the σ -field generated by the evaluation mappings πB : μ �→ μ(B),
B ∈ Y. Recall that if (X,X) is standard, then so is (XN,X⊗N).

Theorem B.1 Let (X,X) be a standard space, and denote by (Zn)n∈N the canonical
process on the space (XN,X⊗N). Let μ ∈ P(XN,X⊗N) be a stationary probability
measure. Then there exists a probability measure ρ on P(XN,X⊗N) such that

μ(A) =
∫

ν(A) ρ(dν) for every A ∈ X⊗N,

and such that there exists a measurable subset B of P(XN,X⊗N) with ρ(B) = 1 and
with the property that every ν ∈ B is stationary and ergodic.

The second theorem is similar in spirit to Theorem B.1, where we now decompose
with respect to the tail σ -field rather than with respect to the invariant σ -field. This
result is closely related to the decomposition theorem for Gibbs measures (see, for
example, [16]). For completeness, we provide a self-contained proof.

Theorem B.2 Let (�,G, μ) be a standard probability space and let (G−n)n∈N be
a reverse filtration with each G−n ⊆ G countably generated. Fix for every n ∈ N

a version μ−n of the regular conditional probability μ( · |G−n). Then there exists a
probability measure ρ on P(�,G) such that

μ(A) =
∫

ν(A) ρ(dν) for every A ∈ G,
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and such that there is a measurable subset B of P(�,G) with ρ(B) = 1 and

1. The tail σ -field G−∞ =⋂

n G−n is ν-trivial for every ν ∈ B.
2. ν(A|G−n) = μ−n(A) ν-a.s. for every ν ∈ B, A ∈ G, and n ∈ N.

Proof Let μ−∞ be a version of the regular conditional probability μ( · |G−∞), whose
existence is guaranteed as (�,G) is standard. We consider μ−∞ : � → P(�,G) as a
G−∞-measurable random probability measure ω �→ μω−∞ in the usual manner (e.g.,
[19, Lemma 1.40]). Let ρ ∈ P(P(�,G)) be the law under μ of the random measure
μ−∞. It follows directly from the definition of regular conditional probability that

μ(A) =
∫

μω−∞(A) μ(dω) =
∫

ν(A) ρ(dν) for every A ∈ G.

It remains to obtain a set B with the two properties in the statement of the theorem.
We begin with the second property. Note that

∫

|ν(1Cμ−n(A))− ν(A ∩ C)| ρ(dν) =
∫

|μ(1Cμ(A|G−n)|G−∞)

−μ(A ∩ C |G−∞)| dμ = 0

for every n ∈ N, A ∈ G, and C ∈ G−n . Let G0−n be a countable generating algebra for
G−n and let G0 be a countable generating algebra for G. Evidently

∫

1C (ω)μω−n(A) ν(dω) = ν(A ∩ C) for every n ∈ N, A ∈ G0, C ∈ G0−n

for all ν in a measurable subset B0 of P(�,G) with ρ(B0) = 1. But the monotone
class theorem allows to extend this identity to all A ∈ G and C ∈ G−n . Thus we have
ν(A|G−n) = μ−n(A) ν-a.s. for every ν ∈ B0, A ∈ G, and n ∈ N.

We now proceed to the first property. For any A ∈ G, we have

∫

ν(ν(A|G−∞) = ν(A)) ρ(dν) =
∫

ν

(

lim sup
n→∞

μ−n(A) = ν(A)

)

ρ(dν)

= μ

(

lim sup
n→∞

μ−n(A) = μ(A|G−∞)

)

= 1,

where we have used the martingale convergence theorem and the previously estab-
lished fact that ν(μ−n(A) = ν(A|G−n) for all n ∈ N) = 1 for ρ-a.e. ν. Therefore, it
follows that ν(A|G−∞) = ν(A) ν-a.s. for all A ∈ G0 for every ν in a measurable subset
B1 of P(�,G) with ρ(B1) = 1. By the monotone class theorem ν(A|G−∞) = ν(A)

ν-a.s. for every ν ∈ B1 and A ∈ G. But then evidently G−∞ is ν-trivial for every
ν ∈ B1. Choosing B = B0 ∩ B1 completes the proof. ��

123



The universal Glivenko–Cantelli property 931

Appendix C Counterexamples in nonstandard spaces

The assumption that (X,X) is standard is used in the proof of Theorem 1.3 to establish
the implications 1, 3 ⇒ 4 and 4 ⇒ 2. The goal of this appendix is to show that these
implications may indeed fail when (X,X) is not standard. To this end we provide two
counterexamples, based on the following simple observation.

Lemma C.1 There exists a Boolean σ -independent sequence of functions on a set X
if and only if card X ≥ 2ℵ0 .

Proof Suppose there exists a Boolean σ -independent sequence ( f j ) j∈N of functions
f j : X → R. Then there exist α < β such that for every F ⊆ N, the set

⋂

j∈F

{ f j < α} ∩
⋂

j �∈F

{ f j > β}

contains at least one point. As these sets are disjoint for distinct F ⊆ N, and there
are 2ℵ0 subsets of N, it follows that card X ≥ 2ℵ0 . Conversely, if card X ≥ 2ℵ0 ,
there exists an injective map ι : {0, 1}N → X . Define the sets C j = {ι(ω) : ω ∈
{0, 1}N, ω j = 1} ⊂ X . Then the sequence (1C j ) j∈N is Boolean σ -independent. ��

Both examples below are consistent with the usual axioms of set theory (that is, the
set theory ZFC) but depend on additional set-theoretic axioms. I do not know whether
it is possible to obtain counterexamples in the absence of additional axioms.

C.1 An example where 1, 3 �⇒ 4

Let X be an uncountable Polish space, and let X be the universal completion of its
Borel σ -field. Then (X,X) is certainly not a standard measurable space. It is known,
see Sierpiński and Szpilrajn [28], that there exists a set A ∈ X with card A = ℵ1 that
is universally null, that is, μ(A) = 0 for every nonatomic probability measure μ on X.
As every subset C ⊆ A is in the μ-completion of the Borel σ -field of X for every
probability measure μ, it follows that C ∈ X for every C ⊆ A.

As is noted by Dudley et al. [15, p. 494], the family of indicatorsFA = {1C : C ⊆ A}
is a universal Glivenko–Cantelli class. Moreover, as A is a μ-null set for every non-
atomic probability measure, it is evident that N (FA, ε, μ) = N (FA, ε, μat) < ∞ for
every ε > 0 and probability measure μ, where μat denotes the atomic part of μ. But
assuming the continuum hypothesis, we have card A = 2ℵ0 and therefore FA contains
a Boolean σ -independent sequence F by Lemma C.1. Clearly F is a separable uni-
formly bounded family of measurable functions on (X,X) for which the implications
1, 3 ⇒ 4 of Theorem 1.3 fail.

Remark C.2 The existence of a universally null set does not require the continuum
hypothesis: Sierpiński and Szpilrajn [28] construct such a set in ZFC (the construction
follows directly from Hausdorff [17], see also [22, Theorem 1.2]). Nonetheless, the
present counterexample does depend on the continuum hypothesis and may fail in
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932 R. van Handel

its absence. Indeed, there exist models of the set theory ZFC in which every univer-
sally null set has cardinality strictly less than 2ℵ0 , see Laver [22, p. 152], Miller [26,
pp. 577–578], or Ciesielski and Pawlikowski [10, p. xii and Theorem 1.1.4]. In such
a model, FA cannot contain a Boolean σ -independent sequence by Lemma C.1.

C.2 An example where 4 �⇒ 2

The present counterexample follows from the following result that is proved below.

Proposition C.3 It is consistent with the set theory ZFC that there exists a probability
space (X,X, μ) with card X < 2ℵ0 such that there is a sequence of sets (C j ) j∈N ⊂ X

that are independent under μ with μ(C j ) = 1/2 for every j ∈ N.

This result easily yields the desired example. Let (X,X, μ) and (C j ) j∈N be as in
Proposition C.3, and define the class F = {1C j : j ∈ N}. The proof of the implication
3 ⇒ 4 of Theorem 1.3 shows that N[](F, ε, μ) ≥ N (F, ε, μ) = ∞ for ε > 0 suffi-
ciently small. On the other hand, F cannot contain a Boolean σ -independent sequence
by Lemma C.1. Thus F is a separable uniformly bounded family of measurable func-
tions on (X,X) for which the implication 4 ⇒ 2 of Theorem 1.3 fails.

Remark C.4 It is clear that the present counterexample must depend on a model of set
theory in which the continuum hypothesis fails. Indeed, the set X in Proposition C.3
must be uncountable as it supports a (stochastically) independent sequence. Therefore,
if we assume the continuum hypothesis, then necessarily card X ≥ 2ℵ0 and we cannot
guarantee the nonexistence of a Boolean σ -independent sequence.

Denote by λ the Lebesgue measure on [0, 1], and denote by λ∗ the Lebesgue outer
measure. The proof of Proposition C.3 is based on the following remarkable fact:
there exist models of the set theory ZFC in which there is a subset X ⊂ [0, 1] with
card X < 2ℵ0 such that λ∗(X) > 0; see Martin and Solovay [24, Sect. 4.1], Kunen
[21, Theorem 3.19], or Judah and Shelah [18]. The existence of such a set X will
be assumed in the proof of Proposition C.3. Note that the set X cannot be Lebesgue
measurable (if X were measurable it must contain a Borel set of positive measure,
which has cardinality 2ℵ0 by the Borel isomorphism theorem).
Proof of Proposition C.3
Assume a model of the set theory ZFC in which there exists a set X ⊂ [0, 1] with
card X < 2ℵ0 such that λ∗(X) > 0. Let X be the trace of the Borel σ -field of [0, 1]
on X , that is, X = {A ∩ X : A ∈ B([0, 1])}. Choose a measurable cover X̃ of X , and
note that A ∩ X̃ is a measurable cover of A ∩ X whenever A ∈ B([0, 1]). We may
therefore unambiguously define μ(A ∩ X) = λ(A ∩ X̃)/λ(X̃) for A ∈ B([0, 1]), and
it is easily verified that μ is a probability measure on (X,X) whose definition does
not depend on the choice of X̃ .

We now claim the following: for every set C ∈ X with μ(C) > 0, there exists
a set C ′ ∈ X, C ′ ⊂ C with μ(C ′) = μ(C)/2. Indeed, let C = A ∩ X for some
A ∈ B([0, 1]). As the function φ : t �→ λ(A∩ X̃ ∩[0, t]) is continuous and φ(0) = 0,
φ(1) = λ(A∩ X̃), there exists by the intermediate value theorem 0 < s < 1 such that
φ(s) = λ(A ∩ X̃)/2. Therefore C ′ = C ∩ [0, s] yields the desired set.
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The universal Glivenko–Cantelli property 933

Now inductively define for every n ≥ 1 and ω ∈ {0, 1}n a set Aω ∈ X as follows.
For n = 1, choose a set A0 ∈ X such that μ(A0) = 1/2, and define A1 = X\A0.
For n > 1, choose for every ω ∈ {0, 1}n−1 a set Aω0 ∈ X such that Aω0 ⊂ Aω with
μ(Aω0) = μ(Aω)/2, and define Aω1 = Aω\Aω0. Finally, define for every n ≥ 1

Cn =
⋃

ω∈{0,1}n :ωn=0

Aω.

Then μ(Cn) = 1/2 for every n ≥ 1, and μ(Ci1 ∩ · · · ∩ Cik ) = 2−k for every k ≥ 1
and 1 ≤ i1 < i2 < · · · < ik . This evidently completes the proof. ��
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