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Abstract In the setting of high-dimensional linear models with Gaussian noise,
we investigate the possibility of confidence statements connected to model selec-
tion. Although there exist numerous procedures for adaptive (point) estimation, the
construction of adaptive confidence regions is severely limited (cf. Li in Ann Stat
17:1001–1008, 1989). The present paper sheds new light on this gap. We develop
exact and adaptive confidence regions for the best approximating model in terms of
risk. One of our constructions is based on a multiscale procedure and a particular
coupling argument. Utilizing exponential inequalities for noncentral χ2-distributions,
we show that the risk and quadratic loss of all models within our confidence region
are uniformly bounded by the minimal risk times a factor close to one.
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1 Introduction

When dealing with a high dimensional observation vector, the natural question arises
whether the data generating process can be approximated by a model of substantially
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840 A. Rohde, L. Dümbgen

lower dimension. Typically the models under consideration are characterized by the
non-zero components of some parameter vector, and especially the presence of some
approximately sparse parametrization found recently substantial interest in the litera-
ture. Sometimes consistent estimation of the so-called sparsity pattern (the locations
of the non-zero components, i.e. the true model) is one of the central goals. However,
consistently estimating the true model requires the rather idealistic situation that each
component is either equal to zero or has sufficiently large modulus: A tiny perturbation
of the parameter vector may result in the biggest model, so the question about the true
model does not seem to be adequate in general. Instead of focussing on the true model
one could aim for parsimonious ones which still contain the essential information and
are easier to interpret. However there may exist several and quite different models
which explain the data comparably well. This leads to the question which models are
definitely inferior to others with a given confidence. The present paper is concerned
with confidence regions for those approximating models which are optimal in terms
of risk.

Suppose that we observe a random vector Xn = (Xin)n
i=1 with distribution

Nn(θn, σ 2 In), where the mean vector θn is unknown while the noise level is assumed
to be known for the moment. Often the signal θn represents coefficients of an unknown
smooth function with respect to a given orthonormal basis of functions. There is a vast
amount of literature on point estimation of θn . For a given estimator θ̂n = θ̂n(Xn, σ̂n)

for θn , let

L(θ̂n, θn) := ‖θ̂n − θn‖2 and R(θ̂n, θn) := EL(θ̂n, θn)

be its quadratic loss and the corresponding risk, respectively. Here ‖ · ‖ denotes the
standard Euclidean norm of vectors. Various adaptivity results are known for this
setting, often in terms of oracle inequalities. A typical result reads as follows: Let
(θ̌

(c)
n )c∈Cn be a family of candidate estimators θ̌

(c)
n = θ̌

(c)
n (Xn) for θn . Then there exist

estimators θ̂n and constants An = 1 + o(1), Bn = O(log(n)γ ) with γ ≥ 0 such that
for arbitrary θn in a certain set �n ⊂ R

n ,

R(θ̂n, θn) ≤ An inf
c∈Cn

R(θ̌ (c)
n , θn) + Bnσ 2.

Results of this type are provided, for instance, by [11–13,25], in the framework of
Gaussian model selection by [5]. The latter article copes in particular with the fact that
a model is not necessarily true. Further results of this type, partly in different settings,
have been provided by [6,7,17,23,28], to mention just a few.

By way of contrast, when aiming at adaptive confidence sets one faces severe lim-
itations. Here is a result of [24], slightly rephrased: suppose that �n contains a closed
Euclidean ball B(θo

n , cn1/4) around some vector θo
n ∈ R

n with radius cn1/4 > 0. Let
D̂n = D̂n(Xn) ⊂ �n be a (1 − α)-confidence set for θn ∈ �n . Such a confidence set
may be used as a test of the (Bayesian) null hypothesis that θn is uniformly distributed
on the sphere ∂ B(θo

n , cn1/4) versus the alternative that θn = θo
n : We reject this null

hypothesis at level α if ‖η − θo
n ‖ < cn1/4 for all η ∈ D̂n . Since this test cannot have
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Inference for the optimal approximating model 841

larger power than the corresponding Neyman–Pearson test,

Pθo
n

(
sup
η∈D̂n

‖η − θo
n ‖n < cn1/4

)
≤ P(S2

n ≤ χ2
n;α(c2n1/2/σ 2))

= 
(
−1(α) + 2−1/2c2/σ 2) + o(1),

where S2
n ∼ χ2

n and χ2
n;α(δ2) stands for the α-quantile of the noncentral chi-squared

distribution with n degrees of freedom and noncentrality parameter δ2. Throughout
this paper, asymptotic statements refer to n → ∞. The previous inequality entails
that no reasonable confidence set has a diameter of order op(n1/4) uniformly over the
parameter space �n , as long as the latter is sufficiently large. Despite these limitations,
there is some literature on confidence sets in the present or similar settings; see for
instance [2–4,18].

Improving the rate of Op(n1/4) is only possible via additional constraints on θn ,
i.e. considering substantially smaller sets �n . For instance, Baraud [1] developed
nonasymptotic confidence regions which perform well on finitely many linear sub-
spaces. Juditsky and Lambert-Lacroix [22] develop adaptive L2-confidence balls for
a regression function in fixed design Gaussian regression via unbiased risk estimates
within the scale of Besov spaces if it is known a priori that the function belongs to
a certain Besov ball. Robins and van der Vaart [26] construct confidence balls via
sample splitting which adapt to some extent to the unknown “smoothness” of θn . In
their context, �n corresponds to a Sobolev smoothness class with given parameter
(β, L). However, adaptation in this context is possible only within a range [β, 2β].
Independently, Cai and Low [8] treat the same problem in the special case of the Gauss-
ian white noise model, obtaining the same kind of adaptivity in the broader scale of
Besov bodies. Other possible constraints on θn are so-called shape constraints; see
for instance [9,14,20]. New input to the related problem in sup-norm loss has come
very recently by [19] who demonstrate in the context of density estimation that honest
confidence bands can be achieved over Hölder balls if a set of only first Baire category
is removed, see also [21].

The motivation of our work is twofold. First of all, the natural question arises
whether one can bridge the gap mentioned above between point estimators and con-
fidence sets. More precisely, we would like to understand profoundly the possibility
of adaptation for point estimators in terms of some confidence region for the set of
all optimal candidate estimators θ̌

(c)
n . That means, we want to construct a confidence

region K̂n,α = K̂n,α(Xn, σ̂n) ⊂ Cn for the set

Kn(θn) := Arg min
c∈Cn

R(θ̌ (c)
n )

= {c ∈ Cn : R(θ̌ (c)
n , θn) ≤ R(θ̌ (c′)

n , θn) for all c′ ∈ Cn}

such that for arbitrary θn ∈ R
n ,

Pθn (Kn(θn) ⊂ K̂n,α) ≥ 1 − α (1)

123



842 A. Rohde, L. Dümbgen

and

max
c∈K̂n,α

R(θ̌ (c)
n , θn)

max
c∈K̂n,α

L(θ̌ (c)
n , θn)

⎫⎪⎬
⎪⎭ = Op(An) min

c∈Cn

R(θ̌ (c)
n , θn) + Op(Bn)σ 2. (2)

Solving this problem means that statistical inference about differences in the perfor-
mance of estimators is possible, although inference about their risk and loss is severely
limited. Our second motivation is that in some settings, selecting estimators out of a
class of competing estimators entails estimating implicitly an unknown regularity,
smoothness class or model for the underlying signal θn , and the statistician may be
interested in drawing conclusions about the model or the data generating process itself
rather than about the specific signal. Computing a confidence region for optimal esti-
mators is particularly suitable in situations in which several good candidate estimators
fit the data quite well although they look different. Here it is important not to overin-
terpret a single fit. This aspect of exploring various candidate estimators is not covered
by the usual theory of point estimation. For a good point estimator it is sufficient to
pick a candidate estimator the risk of which is close to minc∈Cn R(θ̌

(c)
n , θn). This is

substantially easier than trying to cover a really optimal candidate estimator. Note also
that our confidence region K̂n,α is even required to cover the whole set Kn(θn) rather
than just some element of it, with probability at least 1 − α; see also the remark at the
end of Sect. 3.

The remainder of this paper is organized as follows. In Sect. 3 we develop and ana-
lyze an explicit confidence region K̂n,α related to Cn := {0, 1, . . . , n} with candidate
estimators

θ̌ (k)
n := (1{i ≤ k}Xin)n

i=1.

These correspond to a standard nested sequence of approximating models. For this
purely data-dependent set K̂n,α we shall prove the following main result.

Theorem 1 Let (θn)n∈N be arbitrary. Then

Pθn (Kn(θn) �⊂ K̂n,α) ≤ α,

and K̂n,α satisfies the oracle inequality

max
θ̌

(k)
n ∈K̂n,α

Rn(θ̌
(k)
n , θn) ≤ min

j∈Cn

Rn(θ̌
( j)
n , θn)

+(4
√

3 + op(1))

√
σ 2 log(n) min

j∈Cn

Rn(θ̌
( j)
n , θn)

+Op(σ
2 log n).

Note that this statement implies and is more precise than (2), where Bn = log n.
Since our result is not about the existence only but contains additionally an explicit
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Inference for the optimal approximating model 843

construction of the set K̂n,α which is rather involved, the mathematical techniques of
our approach are first described in a simple toy model in Sect. 2 for the reader’s conve-
nience. Section 4 discusses richer and rather general families of candidate estimators.
In Sect. 5 we discuss briefly the case of unknown σ and explain that the main results
remain valid under moderate regularity assumptions on an estimator σ̂n . For a more
detailed treatment of this case we refer to the technical report of [27]. All proofs and
auxiliary results are deferred to Sect. 6.

2 A toy problem

Suppose we observe a stochastic process Y = (Y (t))t∈[0,1], where

Y (t) = F(t) + W (t), t ∈ [0, 1],

with an unknown fixed continuous function F on [0, 1] and a Brownian motion W =
(W (t))t∈[0,1]. We are interested in the set

S(F) := Arg min
t∈[0,1]

F(t).

Precisely, we want to construct a (1 − α)-confidence region Ŝα = Ŝα(Y ) ⊂ [0, 1] for
S(F) in the sense that

P(S(F) ⊂ Ŝα) ≥ 1 − α, (3)

regardless of F . To construct such a confidence set we regard Y (s)−Y (t) for arbitrary
different s, t ∈ [0, 1] as a test statistic for the null hypothesis that s ∈ S(F), i.e. large
values of Y (s) − Y (t) give evidence for s �∈ S(F).

A first and naive proposal is the set

Ŝnaive
α :=

{
s ∈ [0, 1] : Y (s) ≤ min[0,1] Y + κnaive

α

}

with κnaive
α denoting the (1−α)-quantile of max[0,1] W −min[0,1] W . Here is a refined

method based on results of [15]: Let κα be the (1 − α)-quantile of

sup
s,t∈[0,1] : s �=t

( |W (s) − W (t)|√|s − t | − �(|s − t |)
)

, (4)

where

�(u) := √
2 log(e/u) for 0 < u ≤ 1.
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844 A. Rohde, L. Dümbgen

Then constraint (3) is satisfied by the confidence region Ŝα which consists of all
s ∈ [0, 1] such that

Y (s) ≤ Y (t) + √|s − t | (�(|s − t |) + κα) for all t ∈ [0, 1].

To illustrate the power of this method, consider for instance a sequence of functions
F = Fn = cn Fo with positive constants cn → ∞ and a fixed continuous function Fo

with unique minimizer so. Suppose that

lim
t→so

Fo(t) − Fo(so)

|t − so|γ = 1

for some γ > 1/2. Then the naive confidence region satisfies only

max
t∈Ŝnaive

α

|t − so| = Op(c
−1/γ
n ), (5)

whereas

max
t∈Ŝα

|t − so| = Op(log(cn)1/(2γ−1)c−1/(γ−1/2)
n ). (6)

3 Confidence regions for nested approximating models

In this section we develop the confidence regions K̂n,α in detail. As in the introduction
let Xn = θn + εn denote the n-dimensional observation vector with θn ∈ R

n and
εn ∼ Nn(0, σ 2 In). For any candidate estimator θ̌

(k)
n = (1{i ≤ k}Xin)n

i=1 the loss is
given by

Ln(k) := L(θ̌ (k)
n , θn) =

n∑
i=k+1

θ2
in +

k∑
i=1

(Xin − θin)2

with corresponding risk

Rn(k) := R(θ̌ (k)
n , θn) =

n∑
i=k+1

θ2
in + kσ 2.

Model selection usually aims at estimating a candidate estimator which is optimal
in terms of risk. Since the risk depends on the unknown signal and therefore is not
available, the selection procedure minimizes an unbiased risk estimator instead. In the
sequel, the bias-corrected risk estimator for the candidate θ̌

(k)
n is defined as

R̂n(k) :=
n∑

i=k+1

(X2
in − σ 2) + kσ 2.
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Inference for the optimal approximating model 845

Important for our analysis is the behavior of the centered and rescaled difference
process Dn = (Dn( j, k))0≤ j<k≤n with

Dn( j, k) := R̂n( j) − R̂n(k) − Rn( j) + Rn(k)

σ 2
√

4‖θn/σ‖2 + 2n

=
∑k

i= j+1(X2
in − σ 2 − θ2

in)

σ 2
√

4‖θn/σ‖2 + 2n

= 1√
4‖θn/σ‖2 + 2n

k∑
i= j+1

(2(θin/σ)(εin/σ) + (εin/σ)2 − 1).

Hence the process Dn consists of partial sums of the independent and centered, but in
general not identically distributed random variables 2(θin/σ)(εin/σ) + (εin/σ)2 − 1.
The standard deviation of Dn( j, k) is given by

τn( j, k) := 1√
4‖θn/σ‖2 + 2n

⎛
⎝ k∑

i= j+1

(4θ2
in/σ 2 + 2)

⎞
⎠

1/2

.

Note that τn(0, n) = 1 by construction. To imitate the more powerful confidence
region of Sect. 2 based on the multiscale approach, one needs a refined analysis of
the increment process Dn . Since this process does not have subgaussian tails, the
standardization is more involved than the correction in (4).

Theorem 2 Define �n( j, k) := �(τn( j, k)2) for 0 ≤ j < k ≤ n. Then

sup
0≤ j<k≤n

|Dn( j, k)|
τn( j, k)

≤ √
32 log n + Op(1),

and for any fixed c > 2,

dn := max
0≤ j<k≤n

(
|Dn( j, k)|
τn( j, k)

− �n( j, k) − c · �n( j, k)2√
4‖θn/σ‖2 + 2n τn( j, k)

)+

is bounded in probability. In the special case of θn having components ±σ , the random
variable dn converges in distribution to the random variable in (4).

The limiting distribution is closely related to Lévy’s modulus of continuity of
Brownian motion, and this indicates that the additive correction term in the defi-
nition of dn cannot be chosen essentially smaller. It will play a crucial role for the
efficiency of the confidence region.

As shown by Rohde and Dümbgen [27], convergence in distribution of dn holds
under much weaker assumptions on the signal-to-noise vector θn/σ . However, to
utilize this fact for inference on the set Kn(θn), we are facing the problem that the
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846 A. Rohde, L. Dümbgen

auxiliary function τn(·, ·) depends on the unknown signal-to-noise vector θn/σ . In
fact, knowing τn would imply knowledge of Kn(θn) already. One could try to estimate
the variances τn( j, k)2, j < k, by

τ̂n( j, k)2 :=
{

n∑
i=1

(4(X2
in/σ 2 − 1) + 2)

}−1 k∑
i= j+1

(4(X2
in/σ 2 − 1) + 2).

However, using such an estimator does not seem to work since

sup
0≤ j<k≤n

∣∣∣∣ τ̂n( j, k)

τn( j, k)
− 1

∣∣∣∣ �−→p 0

as n goes to infinity. This can be verified by noting that the (rescaled) numerator of
(τ̂n( j, k)2)0≤ j<k≤n is essentially, up to centering, of the same structure as the rescaled
difference process Dn itself. These difficulties may be overcome with a trick described
next.

The least favourable case of constant risk

The problem of estimating the set Arg mink Rn(k) can be cast into our toy model where
Y (t), F(t) and W (t) correspond to R̂n(k), Rn(k) and the difference R̂n(k) − Rn(k),
respectively. One may expect that the more distinctive the global minima are, the eas-
ier it is to identify their location. Hence the case of constant risks appears to be least
favourable, corresponding to a signal

θ∗
n := (±σ)n

i=1,

In this situation, each candidate estimator θ̌
(k)
n has the same risk of nσ 2.

A related consideration leading to an explicit procedure is as follows: For fixed
indices 0 ≤ j < k ≤ n,

Rn( j) − Rn(k) =
k∑

i= j+1

θ2
in − (k − j)σ 2,

and the test statistic

Tjkn :=
k∑

i= j+1

X2
in/σ 2 = 2(k − j) − (R̂n(k) − R̂n( j))/σ 2

has a noncentral χ2 distribution

χ2
k− j

⎛
⎝ k∑

i= j+1

θ2
in/σ 2

⎞
⎠ = χ2

k− j (k − j + (Rn( j) − Rn(k))/σ 2).
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Inference for the optimal approximating model 847

Thus large or small values of Tjkn give evidence for Rn( j) being larger or smaller,
respectively, than Rn(k). Precisely,

Lθn (Tjkn)

{
≤st. Lθ∗

n
(Tjkn) whenever j ∈ Kn(θn),

≥st. Lθ∗
n
(Tjkn) whenever k ∈ Kn(θn).

Via a suitable construction involving Poisson mixtures of central χ2-distributed ran-
dom variables, this pointwise stochastic ordering can be extended to a coupling for
the whole process (Tjkn)0≤ j<k≤n :

Proposition 3 (Coupling) For any θn ∈ R
n there exists a probability space with

random variables (T̃ jkn)0≤ j<k≤n and (T̃ ∗
jkn)0≤ j<k≤n such that

L((T̃ jkn)0≤ j<k≤n) = Lθn
((Tjkn)0≤ j<k≤n),

L((T̃ ∗
jkn)0≤ j<k≤n) = Lθ∗

n
((Tjkn)0≤ j<k≤n),

and for arbitrary indices 0 ≤ j < k ≤ n,

T̃ jkn

{
≤ T̃ ∗

jkn whenever j ∈ Kn(θn),

≥ T̃ ∗
jkn whenever k ∈ Kn(θn).

By means of Proposition 3 we can define a confidence set for Kn(θn), based on the
least favourable case θn = θ∗

n . Let κn,α denote the (1 −α)-quantile of Lθ∗
n
(dn), where

for simplicity c := 3 in the definition of dn . Note also that τn( j, k)2 = (k − j)/n in
case of θn = θ∗

n . Motivated by Theorem 2, we define

K̂n,α := { j : R̂n( j) ≤ R̂n(k) + σ 2c jkn for all k �= j}
= { j : Ti jn ≥ 2( j − i) − ci jn for all i < j,

Tjkn ≤ 2(k − j) + c jkn for all k > j} (7)

with

c jkn = c jkn,α := √
6|k − j |

(
�

( |k − j |
n

)
+ κn,α

)
+ 3�

( |k − j |
n

)2

.

With this construction we obtain an extended version of Theorem 1 from the intro-
duction:

Theorem 4 Let (θn)n∈N be arbitrary. With K̂n,α as defined above,

Pθn (Kn(θn) �⊂ K̂n,α) ≤ α.
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848 A. Rohde, L. Dümbgen

The critical values κn,α converge to κα introduced in Sect. 2, and the confidence regions
K̂n,α satisfy the oracle inequalities

max
k∈K̂n,α

Rn(k) ≤ min
j∈Cn

Rn( j) + (4
√

3 + op(1))

√
σ 2 log(n) min

j∈Cn

Rn( j)

+Op(σ
2 log n) (8)

and

max
k∈K̂n,α

√
Ln(k) ≤ min

j∈Cn

√
Ln( j) + Op(

√
σ 2 log n). (9)

The upper bounds in this theorem are of the form

√
ρn

(
1 + Op

(√
σ 2 log(n)/ρn

))

with ρn denoting minimal risk or minimal loss. Thus the maximal risk (loss) over
K̂n,α exceeds the minimal risk (loss) only by a factor close to one, provided that the
minimal risk (loss) is substantially larger than σ 2 log n.

Remark (Dependence on α) The proof reveals a refined version of the bounds in
Theorem 4 in case of signals θn such that

(
min
j∈Cn

Rn( j)

)−1

= O(log(n)−3).

Let 0 < α(n) → 0 such that κ6
n,α(n) = O(min j∈Cn Rn( j)). Then

max
k∈K̂n,α

Rn(k) ≤ min
j∈Cn

Rn( j)

+ (4
√

3
√

log n + 2
√

6 κn,α + Op(1))

√
σ 2 min

j∈Cn

Rn( j)

uniformly in α ≥ α(n).

Remark (Point estimation versus confidence regions) As stated in the introduction,
the construction of a confidence region for Kn(θn) is more ambitious than the con-
struction of an adaptive point estimator for θn . To see this, suppose that the true signal
vector θn satisfies

|θin|

⎧⎪⎨
⎪⎩

>> σ for i ≤ jn
∈ [σ − cn, σ + cn] for jn < i ≤ kn

<< σ for i > kn

123



Inference for the optimal approximating model 849

with indices 1 ≤ jn < kn ≤ n such that kn − jn → ∞ and arbitrarily small constants
cn > 0 tending to zero. Constructing an almost optimal point estimator (based on
the given candidates) requires to pick a candidate estimator θ̌

(k)
n with jn ≤ k ≤ kn .

However, depending on the precise values of |θin| for jn < i ≤ kn , the set Kn(θn) may
be any given nonvoid subset of { jn, . . . , kn}, see also the proof of Proposition 3 and
Fig. 1. Hence it may happen with asymptotically positive probability that the point
estimator uses a candidate θ̌

(k)
n with k �∈ Kn(θn). By way of contrast, if cn is small, the

confidence region K̂n,α will contain { jn, . . . , kn} with probability close to or higher
than 1 − α and thus indicate that there are many candidate estimators of comparable
quality.

4 Confidence sets in case of larger families of candidates

The previous result relies strongly on the assumption of nested models. It is possible to
obtain confidence sets for the optimal approximating models in a more general setting,
albeit the resulting oracle property is not as strong as in the nested case. In particular,
we can no longer rely on a coupling result but need a different construction.

Let Cn be a family of index sets C ⊂ {1, 2, . . . , n} with candidate estimators

θ̌ (C) := (1{i ∈ C}Xin)n
i=1

and corresponding risks

Rn(C) := R(θ̌ (C), θn) =
∑
i �∈C

θ2
in + |C |σ 2,

where |S| denotes the cardinality of a set S. For two index sets C and D,

σ−2(Rn(D) − Rn(C)) = δ2
n(C\D) − δ2

n(D\C) + |D| − |C |

with the auxiliary quantities

δ2
n(J ) :=

∑
i∈J

θ2
in/σ 2, J ⊂ {1, 2, . . . , n}.

Hence we aim at simultaneous (1 − α)-confidence intervals for these noncentrality
parameters δn(J ), where J ∈ Mn := {D\C : C, D ∈ Cn}. To this end we utilize the
fact that

Tn(J ) := 1

σ 2

∑
i∈J

X2
in

has a χ2|J |(δ2
n(J ))-distribution. We denote the distribution function of χ2

k (δ2) by Fk(· |
δ2). Now let Mn := |Mn| − 1 ≤ |Cn|(|Cn| − 1), the number of nonvoid index sets
J ∈ Mn . Then with probability at least 1 − α,
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850 A. Rohde, L. Dümbgen

α/(2Mn) ≤ F|J |(Tn(J ) | δ2
n(J )) ≤ 1 − α/(2Mn) for ∅ �= J ∈ Mn . (10)

Since F|J |(Tn(J ) | δ2) is strictly decreasing in δ2 with limit 0 as δ2 → ∞, (10) entails
the simultaneous (1 −α)-confidence intervals [δ̂2

n,α,l(J ), δ̂2
n,α,u(J )] for all parameters

δ2
n(J ) as follows: We set δ̂2

n,α,l(∅) := δ̂2
n,α,u(∅) := 0, while for nonvoid J ,

δ̂2
n,α,l(J ) := min{δ2 ≥ 0 : F|J |(Tn(J )|δ2) ≤ 1 − α/(2Mn)}, (11)

δ̂2
n,α,u(J ) := max{δ2 ≥ 0 : F|J |(Tn(J ) | δ2) ≥ α/(2Mn)}. (12)

By means of these bounds, we may claim with confidence 1 − α that for arbi-
trary C, D ∈ Cn the normalized difference (n/σ 2)(Rn(D) − Rn(C)) is at most
δ̂2

n,α,u(C\D)− δ̂2
n,α,l(D\C)+ |D| − |C |. Thus a (1 −α)-confidence set for Kn(θn) =

Arg minC∈Cn
Rn(C) is given by

K̂n,α := {C ∈ Cn : δ̂2
n,α,u(C\D) − δ̂2

n,α,l(D\C) + |D| − |C | ≥ 0 for allD ∈ Cn}.

These confidence sets K̂n,α satisfy the following oracle inequalities:

Theorem 5 Let (θn)n∈N be arbitrary, and suppose that log |Cn| = o(n). Then

max
C∈K̂n,α

√
Rn(C) ≤ min

D∈Cn

√
Rn(D) +Op(

√
σ 2 log |Cn|)

and

max
C∈K̂n,α

√
Ln(C) ≤ min

D∈Cn

√
Ln(D) +Op(

√
σ 2 log |Cn|).

The upper bounds in this theorem are of the form

√
ρn

(
1 + Op

(√
σ 2 log(|Cn|)/ρn

))

with ρn denoting minimal risk or minimal loss. This is analogous to the setting of
nested models, where log n is replaced with log |Cn|. Again, the maximal risk (loss)
over K̂n,α exceeds the minimal risk (loss) only by a factor close to one, provided that
the minimal risk (loss) is substantially larger than σ 2 log |Cn|.
Remark (Suboptimality in case of nested models) In case of nested models, the gen-
eral construction in this section is suboptimal. For if one follows the proof carefully
and uses σ 2 log |Cn| = 2σ 2 log n + O(1) in this special setting, one obtains the refined
inequality

max
k∈K̂n,α

Rn(k) ≤ min
j∈Cn

Rn( j) +(4
√

8 + op(1))

√
σ 2 log(n) min j∈Cn Rn( j)

+Op(σ
2 log n),
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so the multiplier of the term
√

min j Rn( j) is larger than the one in Theorem 4. The
intrinsic reason is that the general procedure does not assume any structure of the
family of candidate estimators. Hence advanced multiscale theory is not applicable.

5 The impact of estimating the noise level

We discuss briefly the extension of our results to the case of unknown noise variance.
It is assumed subsequently that a variance estimator σ̂ 2

n satisfying the subsequent
condition (A) is available.

(A) σ̂ 2
n and Xn are stochastically independent with

mσ̂ 2
n

σ 2 ∼ χ2
m,

where m = mn ≥ 1 satisfies

β2
n := 2n

mn
= O(1).

Example Suppose that we observe Y = Mη + δ with given design matrix M ∈
R

(n+m)×n of rank n, unknown parameter vector η ∈ R
n and unobserved error vec-

tor δ ∼ Nn+m(0, σ 2 In+m). Then the previous assumptions are satisfied by Xn :=
(M�M)1/2η̂ with the least squares estimator η̂ := (M�M)−1 M�Y and σ̂ 2

n := ‖Y −
M η̂‖2/m, where θn := (M�M)1/2η.

Assumption (A) implies the following weaker condition:
(A′) σ̂ 2

n and Xn are stochastically independent such that for constants 0 < βn = O(1),

√
n(σ̂ 2

n /σ 2 − 1)/βn →L N (0, 1).

This condition covers, for instance, estimators of σ used in connection with wave-
lets. There σ is estimated by the median of some very high frequency wavelet coef-
ficients divided by the normal quantile 
−1(3/4), whereas the signal θn corresponds
only to the other wavelet coefficients.

Nested models In the setting of Sect. 3, the modified bias-corrected risk estimator
for the candidate θ̌

(k)
n is redefined as

R̂n(k) :=
n∑

i=k+1

(X2
in − σ̂ 2

n ) + kσ̂ 2
n ,
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852 A. Rohde, L. Dümbgen

and we consider Tjkn := ∑k
i= j+1 X2

in/σ̂ 2
n . Now

D̂n( j, k) := R̂n( j) − R̂n(k) − Rn( j) + Rn(k)

σ̂ 2
n

√
4‖θn/σ‖2 + 2n

= σ 2

σ̂ 2
n

(Dn( j, k) + Vn( j, k)),

where Dn( j, k) is defined as in Sect. 3, while

Vn( j, k) := 2(k − j)(1 − σ̂ 2/σ 2)√
4‖θn/σ‖2 + 2n

.

Since σ̂ 2
n /σ 2 = 1 + Op(n−1/2), the processes D̂n and Dn behave similarly on small

scales (i.e. for arguments ( j, k) with |k − j |/n being small). Nevertheless the contri-
bution of Vn is non-negligible asymptotically, unless βn → 0.

The confidence region K̂n,α is defined as before in (7) with the new versions of R̂n

and Tjkn , σ 2 replaced with σ̂ 2
n , and the quantile κn,α in the definition of c jkn has to be

redefined to be the (1 − α)-quantile of Lθ∗
n
(d̂n). Here d̂n is defined as dn with D̂n in

place of Dn . Note that D̂n involves the process Dn and the ratio S2
n := (σ̂n/σ)2. The

latter random variable is known to be independent of Xn and to have distribution χ2
m

under (A). In case of the weaker assumption (A′), one may replace S2
n with a random

variable with distribution χ2
m , where m := �2n/β2

n�.
With these modifications, Theorem 4 remains true under (A) or (A′). The only

modification is that κn,α �→ κα in general, but still κn,α = O(1).

General candidate families In the setting of Sect. 4, one could replace Tn(J ) with∑
i in J X2

in/σ̂ 2
n which has a non-central F distribution under (A). However, this

approach might be very conservative because it ignores the fact that all test statis-
tics involve one and the same denominator σ̂ 2

n . Here is an alternative proposal: Let
α′ := 1 − (1 − α)1/2. It follows from Assumption (A) that with probability 1 − α′,

τn,α,l := m

χm;1−α′/2
≤ σ̂ 2

n

σ 2 ≤ τn,α,u := m

χm;α′/2
.

Under Assumption (A′) this is true with asymptotic probability 1−α′. Now we obtain
simultaneous (1 − α)-confidence bounds δ̂2

n,α,l(J ) and δ̂2
n,α,u(J ) as in (11) and (12)

by replacing α with α′ and Tn(J ) with

τn,α,l

σ̂ 2
n

∑
i∈J

X2
in and

τn,α,u

σ̂ 2
n

∑
i∈J

X2
in,

respectively. The conclusions of Theorem 5 continue to hold, essentially because
τn,α,l , τn,α,u = 1 + O(n−1/2) and (σ̂n/σ)2 = 1 + Op(n−1/2).
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6 Proofs

6.1 Proof of (5) and (6)

Note first that min[0,1] Y lies between Fn(so)+min[0,1] W and Fn(so)+W (so). Hence
for any α′ ∈ (0, 1),

Ŝnaive
α ⊂ {s ∈ [0, 1] : Fn(s) + W (s) ≤ Fn(so) + W (so) + κnaive

α }
⊂ {s ∈ [0, 1] : Fn(s) − Fn(so) ≤ κnaive

α′ + κnaive
α }

= {s ∈ [0, 1] : Fo(s) − Fo(so) ≤ c−1
n (κnaive

α′ + κnaive
α )}

and

Ŝnaive
α ⊃ {

s ∈ [0, 1] : Fn(s) + W (s) ≤ Fn(so) + min[0,1] W + κnaive
α

}
⊃ {s ∈ [0, 1] : Fn(s) − Fn(so) ≤ κnaive

α − κnaive
α′ }

= {s ∈ [0, 1] : Fo(s) − Fo(so) ≤ c−1
n (κnaive

α − κnaive
α′ )}

with probability 1 − α′. Since κnaive
α′ < κnaive

α if α < α′ < 1, these considerations,
combined with the expansion of Fo near so, show that the maximum of |s − so| over
all s ∈ Ŝnaive

α is precisely of order Op(c
−1/γ
n ).

On the other hand, the confidence region Ŝα is contained in the set of all s ∈ [0, 1]
such that

Fn(s) + W (s) ≤ Fn(so) + W (so) + √|s − so|(
√

2 log(e/|s − so|) + κα),

and this entails that

Fo(s) − Fo(so) ≤ c−1
n

√|s − so|(
√

2 log(e/|s − so|) + κα + Op(1))

with Op(1) not depending on s. Now the expansion of Fo near so entails claim (6).
��

6.2 Exponential inequalities

An essential ingredient for our main results is an exponential inequality for quadratic
functions of a Gaussian random vector. It extends inequalities of [10] for quadratic
forms and is of independent interest.

Proposition 6 Let Z1, . . . , Zn be independent, standard Gaussian random variables.
Furthermore, let λ1, . . . , λn and δ1, . . . , δn be real constants, and define γ 2 :=
Var(

∑n
i=1 λi (Zi + δi )

2) = ∑n
i=1 λ2

i (2 + 4δ2
i ). Then for arbitrary η ≥ 0 and λmax :=
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854 A. Rohde, L. Dümbgen

max(λ1, . . . , λn, 0),

P

(
n∑

i=1

λi ((Zi + δi )
2 − (1 + δ2

i )) ≥ ηγ

)
≤ exp

(
− η2

2 + 4ηλmax/γ

)

≤ e1/4 exp(−η/
√

8).

Note that replacing λi in Proposition 6 with −λi yields twosided exponential
inequalities. By means of Proposition 6 and elementary calculations one obtains expo-
nential and related inequalities for noncentral χ2 distributions:

Corollary 7 For an integer n > 0 and a constant δ ≥ 0 let Fn(· | δ2) be the distribu-
tion function of χ2

n (δ2). Then for arbitrary r ≥ 0,

Fn(n + δ2 + r | δ2) ≥ 1 − exp

(
− r2

4n + 8δ2 + 4r

)
, (13)

Fn(n + δ2 − r | δ2) ≤ exp

(
− r2

4n + 8δ2

)
. (14)

In particular, for any u ∈ (0, 1/2),

F−1
n (1 − u | δ2) ≤ n + δ2 +

√
(4n + 8δ2) log(u−1) + 4 log(u−1), (15)

F−1
n (u | δ2) ≥ n + δ2 −

√
(4n + 8δ2) log(u−1). (16)

Moreover, for any number δ̂ ≥ 0, the inequalities u ≤ Fn(n + δ̂2 | δ2) ≤ 1 − u entail
that

δ2 − δ̂2

⎧⎨
⎩≤ +

√
(4n + 8δ̂2) log(u−1) + 8 log(u−1),

≥ −
√

(4n + 8δ̂2) log(u−1).
(17)

Conclusion (17) follows from (13) and (14), applied to r = δ̂2 −δ2 and r = δ2 − δ̂2,
respectively.

Proof of Proposition 6 Standard calculations show that for 0 ≤ t < (2λmax)
−1,

E exp

(
t

n∑
i=1

λi (Zi + δi )
2

)
= exp

(
1

2

n∑
i=1

{
δ2

i
2tλi

1 − 2tλi
− log(1 − 2tλi )

})
.
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Then for any such t ,

P

(
n∑

i=1

λi ((Zi + δi )
2 − (1 + δ2

i )) ≥ ηγ

)

≤ exp

(
−tηγ − t

n∑
i=1

λi (1 + δ2
i )

)
· E exp

(
t

n∑
i=1

λi (Zi + δi )
2

)

= exp

(
−tηγ + 1

2

n∑
i=1

{
δ2

i
4t2λ2

i

1 − 2tλi
− log(1 − 2tλi ) − 2tλi

})
. (18)

Elementary considerations reveal that

− log(1 − x) − x ≤
{

x2/2 if x ≤ 0,

x2/(2(1 − x)) if x ≥ 0.

Thus (18) is not greater than

exp

(
−tηγ + 1

2

n∑
i=1

{
δ2

i
4t2λ2

i

1 − 2tλi
+ 2t2λ2

i

1 − 2t max(λi , 0)

})

≤ exp

(
−tηγ + γ 2t2/2

1 − 2tλmax

)
.

Setting

t := η

γ + 2ηλmax
∈ [0, (2λmax)

−1),

the preceding bound becomes

P

(
n∑

i=1

λi ((Zi + δi )
2 − (1 + δ2

i )) ≥ ηγ

)
≤ exp

(
− η2

2 + 4ηλmax/γ

)
.

Finally, since γ ≥ λmax
√

2, the second asserted inequality follows from

η2

2 + 4ηλmax/γ
≥ η2

2 + √
8η

= η√
8

− η√
8 + 4η

≥ η√
8

− 1

4
.

��

6.3 Proofs of the main results

Throughout this section we assume without loss of generality that σ = 1. Further let
Sn := {0, 1, . . . , n} and Tn := {( j, k) : 0 ≤ j < k ≤ n}.
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Proof of Theorem 2 Step I Let the metric ρn on Tn be defined by

ρn(( j, k), ( j ′, k′)) :=
√

τn( j, j ′)2 + τn(k, k′)2.

Later on we need bounds for the capacity numbers

D(u, T ′, ρn) := sup{|To| : To ⊂ T ′, ρn(s, t) > u for differents, t ∈ To}

for certain u > 0 and T ′ ⊂ T . Indeed the proof of Theorem 2.1 of [15] entails that

D(uδ, {t ∈ Tn : τn(t) ≤ δ}, ρn) ≤ 12u−4δ−2 for all u, δ ∈ (0, 1]. (19)

Note that for fixed ( j, k) ∈ Tn , ±Dn( j, k) may be written as

n∑
i=1

λi ((εin + θin)2 − (1 + θ2
in))

with

λi = λin( j, k) := ±(4‖θn‖2 + 2n)−1/2 I( j,k](i),

so |λi | ≤ (4‖θn‖2 + 2n)−1/2. Hence it follows from Proposition 6 that

P(|Dn(t)| ≥ τn(t)η) ≤ 2 exp

(
− η2

2 + 4η(4‖θn‖2 + 2n)1/2/τn(t)

)

for arbitrary t ∈ Tn and η ≥ 0. One may rewrite this exponential inequality as

P(|Dn(t)| ≥ τn(t)Gn(η, τn(t))) ≤ 2 exp(−η) (20)

for arbitrary t ∈ Tn and η ≥ 0, where

Gn(η, δ) := √
2η + 4η

(4‖θn‖2 + 2n)1/2δ
.

The second exponential inequality in Proposition 6 entails that

P(|Dn(t)| ≥ τn(t)η) ≤ 2e1/4 exp(−η/
√

8) (21)

and
P(|Dn(s) − Dn(t)| ≥ √

8ρn(s, t)η) ≤ 2e1/4 exp(−η) (22)

for arbitrary s, t ∈ Tn and η ≥ 0.
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Since |Tn| ≤ n2/2, one can easily deduce from (21) that the maximum of |Dn|/τn

over Tn exceeds
√

32 log n + η with probability at most e1/4 exp(−η/
√

8). Thus

max
t∈Tn

|Dn(t)|
τn(t)

≤ √
32 log n + Op(1).

Utilizing (19) and (22), it follows from Theorem 7 and the subsequent Remark 3
in [16] that

lim
δ↓0

sup
n

P

(
sup

s,t∈Tn :ρn(s,t)≤δ

|Dn(s) − Dn(t)|
ρn(s, t) log(e/ρn(s, t))

> Q

)
= 0 (23)

for a suitable constant Q > 0. Since Dn( j, k) = Dn(0, k) − Dn(0, j) and τn( j, k) =
ρn((0, j), (0, k)), this entails stochastic equicontinuity of Dn with respect to ρn .

For 0 ≤ δ < δ′ ≤ 1 define

Sn(δ, δ′) := sup
t∈Tn :δ<τn(t)≤δ′

( |Dn(t)|
τn(t)

− �n(t) − c · �n(t)2

τn(t)(4‖θn‖2 + 2n)1/2

)+

with a constant c > 0 to be specified later. Recall that �n(t) equals �(τn(t)2) =
(2 log(e/τn(t)2)1/2. Starting from (19), (20) and (23), Theorem 8 of [16] and its
subsequent remark imply that

Sn(0, δ) →p 0 as n → ∞ and δ ↘ 0, (24)

provided that c > 2. On the other hand, (19), (21) and (23) entail that

Sn(δ, 1) = Op(1) for any fixed δ > 0. (25)

In particular, dn = Sn(0, 1) = Op(1).
Step II In case of θn = (±σ)n

i=1, the process (Dn( j, k))0≤ j<k≤n has the same distri-
bution as (Wn(k/n) − Wn( j/n))0≤ j<k≤n where

Wn(t) := 1√
6n

�nt�∑
i=1

(εin + ε2
in − 1)

for t ∈ [0, 1] with
∑0

i=1 · · · := 0. Moreover, τn( j, k)2 = |k − j |/n and dn has the
same distribution as

max
0≤ j<k≤n

( |Wn(k/n) − Wn( j/n)|
τn( j, k)

− �(τn( j, k)2) − c · �(τn( j, k)2)√
6n τn( j, k)

)+
.
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According to Donsker’s theorem, the process (Wn(t))t∈[0,1] converges in distribution
to Brownian motion W on [0, 1]. Consequently, if we define

�(δ, δ′) := sup
s,t∈[0,1] : δ<|s−t |≤δ′

( |W (s) − W (t)|√|s − t | − �n(|s − t |)
)+

for 0 ≤ δ < δ′ ≤ 1, then

Sn(δ, 1) →L �(δ, 1)

for any fixed δ ∈ (0, 1]. Moreover, we have seen in (24) that Sn(0, δ) →p 0 as n → ∞
and δ ↘ 0. With similar arguments one can show that �(0, δ) →p 0 as δ ↘ 0. These
findings imply that dn = Sn(0, 1) converges in distribution to �(0, 1) as n → ∞. ��
Proof of Proposition 3 The main ingredient is a well-known representation of non-
central χ2 distributions as Poisson mixtures of central χ2 distributions. Precisely,

χ2
k (δ2) =

∞∑
j=0

e−δ2/2 (δ2/2) j

j ! · χ2
k+2 j ,

as can be proved via Laplace transforms. Now we define ‘time points’

tkn :=
k∑

i=1

θ2
in and t∗kn := t j (n)n + k − j (n)

with j (n) any fixed index in Kn(θn). This construction entails that t∗kn ≥ tkn with
equality if, and only if, k ∈ Kn(θn).

Figure 1 illustrates this construction. It shows the time points tkn (crosses) and t∗kn
(dots and line) versus k for a hypothetical signal θn ∈ R

40. Note that in this example,
Kn(θn) is given by {10, 11, 20, 21}.

Let �, G1, G2, . . . , Gn and Z1, Z2, Z3, …be stochastically independent random
variables, where � = (�(t))t≥0 is a standard Poisson process, and Gi and Z j are
standard Gaussian random variables. Then one can easily verify that

T̃ jkn :=
k∑

i= j+1

G2
i +

2�(tkn/2)∑
s=2�(t jn/2)+1

Z2
s ,

T̃ ∗
jkn :=

k∑
i= j+1

G2
i +

2�(t∗kn/2)∑
s=2�(t∗jn/2)+1

Z2
s

define random variables (T̃ jkn)0≤ j<k≤n and (T̃ ∗
jkn)0≤ j<k≤n with the desired properties.

��
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Fig. 1 Construction of the coupling

In the proofs of Theorems 4 and 5 we utilize repeatedly two elementary inequalities:

Lemma 8 Let a, b, c be nonnegative constants.

(i) Suppose that 0 ≤ x ≤ y ≤ x + √
b(x + y) + c. Then

y ≤ x + √
2bx + b + √

bc + c ≤ x + √
2bx + (3/2)(b + c).

(ii) For x ≥ 0 define h(x) := x + √
a + bx + c. Then

h(h(x)) ≤ x + 2
√

a + bx + b/2 + √
bc + 2c.

Proof of Theorem 4 The definition of K̂n,α and Proposition 3 together entail that K̂n,α

contains Kn(θn) with probability at least 1 − α. The assertion about κn,α is an imme-
diate consequence of Theorem 2.

Now we verify the oracle inequalities (8) and (9). Let γn := (4‖θn‖2 +2n)1/2 ×τn .
With γ ∗

n we denote the function γn on Tn corresponding to θ∗
n . Throughout this proof

we use the shorthand notation Mn(�, k) := Mn(�)− Mn(k) for Mn = R̂n, Rn, L̂n, Ln

and arbitrary indices �, k ∈ Cn . Furthermore, γ ∗
n (�, k) := γ ∗

n (k, �) if � > k, and
γ ∗

n (k, k) := 0.
In the subsequent arguments, kn := min(Kn(θn)), while j stands for a generic

index in K̂n,α . The definition of the set K̂n,α entails that

R̂n( j, kn) ≤ γ ∗
n ( j, kn)

(
�

( | j − kn|
n

)
+ κn,α

)
+ O(log n). (26)
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Combining this with the equation Rn( j, kn) = R̂n( j, kn) − Dn( j, kn) yields

Rn( j, kn) ≤ γ ∗
n ( j, kn)

(
�

(
j − kn

n

)
+ κn,α

)
+ Op(log n) + |Dn( j, kn)|. (27)

Since γ ∗
n ( j, kn)2 ≤ 6n and maxt∈Tn |Dn(t)|/γn(t) = Op(log n), (27) yields

Rn( j, kn) ≤ √
12n + √

6n κn,α + Op(log n)γn( j, kn).

But elementary calculations yield

γn( j, kn)2 = γ ∗
n ( j, kn)2 + sign(kn − j)Rn( j, kn) ≤ 6n + Rn( j, kn). (28)

Hence we may conclude that

Rn( j, kn) ≤ Op(log n)
√

Rn( j, kn) + Op(
√

n(log n + κn,α)),

and Lemma 8(i), applied to x = 0 and y = Rn( j, kn), yields

max
j∈K̂n,α

Rn( j, kn) ≤ Op(
√

n(log n + κn,α)). (29)

This preliminary result allows us to restrict our attention to indices j in a certain
subset of Cn : Since 0 ≤ Rn(n, kn) = n − kn − ∑n

i=kn+1 θ2
in ,

n∑
i=kn+1

θ2
in ≤ n − kn .

On the other hand, in case of j < kn , Rn( j, kn) = ∑kn
i= j+1 θ2

in − (kn − j), so

n∑
i= j+1

θ2
in ≤ n + Op(

√
n(log n + κn,α)).

Thus if jn denotes the smallest index j ∈ Cn such that
∑n

i= j+1 θ2
in ≤ 2n, then kn ≥ jn ,

and K̂n,α ⊂ { jn, . . . , n} with asymptotic probability one, uniformly in α ≥ α(n). This
allows us to restrict our attention to indices j in { jn, . . . , n} ∩ K̂n,α . For any � ≥ jn ,
Dn(�, kn) involves only the restricted signal vector (θin)n

i= jn+1, and the proof of The-
orem 2 entails that

max
jn≤�≤n

( |Dn(�, kn)|
γn(�, kn)

− √
2 log n − 2c log n

γn(�, kn)

)+
= Op(1).
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Thus we may deduce from (27) the simpler statement that with asymptotic probability
one,

Rn( j, kn) ≤ (γ ∗
n ( j, kn) + γn( j, kn))(

√
2 log n + κn,α + Op(1))

+Op(log n). (30)

Now we need reasonable bounds for γ ∗
n ( j, kn)2 in terms of Rn( j) and the mini-

mal risk ρn = Rn(kn), where we start from the equation in (28): If j < kn , then
γn( j, kn)2 = γ ∗

n ( j, kn)2 + 4Rn( j, kn) and γ ∗
n ( j, kn)2 = 6(kn − j) ≤ 6ρn . If j > kn ,

then γ ∗
n ( j, kn)2 = γn( j, kn)2 + 4Rn( j, kn) and

γn( j, kn)2 =
j∑

i=kn+1

(4θ2
in + 2) ≤ 4ρn + 2Rn( j) = 6ρn + 2Rn( j, kn).

Thus

γ ∗
n ( j, kn) + γn( j, kn) ≤ 2

√
6
√

ρn + (
√

2 + √
6)

√
Rn( j, kn),

and inequality (30) leads to

Rn( j, kn) ≤ (4
√

3
√

log n + 2
√

6 κn,α + Op(1))
√

ρn

+Op(
√

log n + κn,α)
√

Rn( j, kn) + Op(log n)

for all j ∈ K̂n,α . Again we may employ Lemma 8 with x = 0 and y = Rn( j, kn) to
conclude that

max
j∈K̂n,α

Rn( j, kn) ≤ (4
√

3
√

log n + 2
√

6 κn,α + Op(1))
√

ρn

+Op((log(n)3/4 + κ
3/2
n,α(n))ρ

1/4
n + log n + κ2

n,α(n))

uniformly in α ≥ α(n).
If log(n)3 +κ6

n,α(n) = O(ρn), then the previous bound for Rn( j, kn) = Rn( j)−ρn

reads

max
j∈K̂n,α

Rn( j) ≤ ρn + (4
√

3
√

log n + 2
√

6 κn,α + Op(1))
√

ρn

uniformly in α ≥ α(n). On the other hand, if we consider just a fixed α > 0, then
κn,α = O(1), and the previous considerations yield

max
j∈K̂n,α

Rn( j) ≤ ρn + (4
√

3 + op(1))
√

log(n) ρn

+Op(log(n)3/4ρ
1/4
n + log n)

≤ ρn + (4
√

3 + op(1))
√

log(n) ρn + Op(log n).
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To verify the latter step, note that for any fixed ε > 0,

log(n)3/4ρ
1/4
n ≤

{
ε−1 log n if ρn ≤ ε−4 log n,

ε
√

log(n) ρn if ρn ≥ ε−4 log n.

It remains to prove claim (9) about the losses. From now on, j denotes a generic
index in Cn . Note first that

Ln( j, kn) − Rn( j, kn) =
kn∑

i= j+1

(1 − ε2
in) = Rn(kn, j) − Ln(kn, j) if j < k.

Thus Theorem 2, applied to θn = 0, shows that

|Ln( j, kn) − Rn( j, kn)| ≤ γ +
n ( j, kn)(

√
2 log n + Op(1)) + Op(log n),

where

γ +
n ( j, kn) := √

2|kn − j | ≤ √
2ρn + √

2|Rn( j, k)|.

It follows from Ln(0) = Rn(0) = ‖θn‖2 that Ln( j) − ρn equals

Ln( j, kn) + (Ln − Rn)(kn, 0)

= Rn( j, kn) + Op(
√

log(n)ρn) + Op(
√

log n)
√

Rn( j, kn) + Op(log n)

≥ Op(
√

log(n)ρn + log n),

because Rn( j, kn) ≥ 0 and Rn( j, kn)+ Op(rn)
√

Rn( j, kn) ≥ Op(r2
n ). Consequently,

ρ̂n := min j∈Cn Ln( j) satisfies the inequality

ρ̂n ≥ ρn + Op(
√

log(n)ρn + log n) = (
√

ρn + Op(
√

log n))2,

and this entails that

ρn ≤ (
√

ρ̂n + Op(
√

log n))2.

Now we restrict our attention to indices j ∈ K̂n,α again. Here it follows from our
result about the maximal risk over K̂n,α that Ln( j) − ρn equals

Rn( j, kn) + Op(
√

log(n)ρn) + Op(
√

log n)
√

Rn( j, kn) + Op(log n)

≤ 2Rn( j, kn) + Op(
√

log(n)ρn + log n) ≤ Op(
√

log(n)ρn + log n).

123



Inference for the optimal approximating model 863

Hence max j∈K̂n,α
Ln( j) is not greater than

ρn + Op(
√

log(n)ρn + log n) = (
√

ρn + Op(
√

log n))2

≤ (
√

ρ̂n + Op(
√

log n))2.

��

Proof of Theorem 5 The application of inequality (17) in Corollary 7 to the tripel
(|J |, Tn(J ) − |J |, α/(2Mn)) in place of (n, δ̂2, α) yields bounds for δ̂2

n,α,l(J ) and

δ̂2
n,α,u(J ) in terms of δ̂2

n(J ) := (Tn(J ) − |J |)+. Then we apply (15–16) to Tn(J ),
replacing (n, δ2, u) with (|J |, δ2

n(J ), α′/(2Mn)) for any fixed α′ ∈ (0, 1). By means
of Lemma 8(ii) we obtain finally

δ̂2
n,α,u(J ) − δ2

n(J )

δ2
n(J ) − δ̂2

n,α,l(J )

}
≤ (1 + op(1))

√
(16|J | + 32 δ2

n(J )) log Mn

+(K + op(1)) log Mn (31)

for all J ∈ Mn . Here and throughout this proof, K denotes a generic constant not
depending on n. Its value may be different in different expressions. It follows from
the definition of the confidence region K̂n,α that for arbitrary C ∈ K̂n,α and D ∈ Cn ,

Rn(C) − Rn(D) = δ2
n(D\C) − δ2

n(C D) + |C | − |D|
= (δ2

n − δ̂2
n,α,l)(D\C) + (δ̂2

n,α,u − δ2
n)(C\D)

−(δ̂2
n,α,u(C\D) − δ̂2

n,α,l(D\C) + |D| − |C |)
≤ (δ2

n − δ̂2
n,α,l)(D\C) + (δ̂2

n,α,u − δ2
n)(C\D).

Moreover, according to (31) the latter bound is not larger than

(1 + op(1)){
√

(16|D\C | + 32δ2
n(D\C)) log Mn

+
√

(16|C\D| + 32δ2
n(C\D)) log Mn} + (K + op(1)) log Mn

≤ (1 + op(1))

√
2(16|D| + 32δ2

n(Cc) + 16|C | + 32δ2
n(Dc)) log Mn

+(K + op(1)) log Mn

≤ 8
√

(Rn(C) + Rn(D)) log Mn (1 + op(1)) + (K + op(1)) log Mn .

Thus we obtain the quadratic inequality

Rn(C) − Rn(D) ≤ 8
√

(Rn(C) + Rn(D)) log Mn (1 + op(1))

+(K + op(1)) log Mn,
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and with Lemma 8 this leads to

Rn(C) ≤ Rn(D) + 8
√

2
√

Rn(D) log Mn(1 + op(1)) + (K + op(1)) log Mn .

This yields the assertion about the risks.
As for the losses, note that Ln(·) and Rn(·) are closely related in that

(Ln − Rn)(D) =
∑
i∈D

ε2
in − |J |

for arbitrary D ∈ Cn . Hence we may utilize (15–16), replacing (n, δ2, u) with
(|D|, 0, α′/(2μn)), to complement (31) with the following observation:

− A
√|D| log Mn ≤ Ln(D) − Rn(D) ≤ A

√|D| log Mn + A log Mn (32)

simultaneously for all D ∈ Cn with probability tending to one as n → ∞ and A → ∞.
Note also that (32) implies that Rn(D) ≤ A

√
Rn(D) log Mn + Ln(D). Hence

Rn(D) ≤ (3/2)(Ln(D) + A2 log Mn) for all D ∈ Cn,

by Lemma 8 (i). Assuming that both (31) and (32) hold for some large but fixed A,
we may conclude that for arbitrary C ∈ K̂n,α and D ∈ Cn ,

Ln(C) − Ln(D)

= (Ln − Rn)(C) − (Ln − Rn)(D) + Rn(C) − Rn(D)

≤ A
√

2(|C | + |D|) log Mn + A
√

2(Rn(C) + Rn(D)) log Mn + 4A log Mn

≤ 2A
√

2(Rn(C) + Rn(D)) log Mn + 4A log Mn

≤ A′√(Ln(C) + Ln(D)) log Mn + A′′ log Mn

for constants A′ and A′′ depending on A. Again this inequality entails that

Ln(C) ≤ Ln(D) + A′√2Ln(D) log Mn + A′′′ log Mn

for another constant A′′′ = A′′′(A). ��
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