Statistical inference for the optimal approximating model

Angelika Rohde · Lutz Dümbgen

Received: 28 January 2010 / Revised: 6 January 2012 / Published online: 22 February 2012 © Springer-Verlag 2012

Abstract In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (cf. Li in Ann Stat 17:1001–1008, 1989). The present paper sheds new light on this gap. We develop exact and adaptive confidence regions for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral χ^2 -distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.

Keywords Adaptivity · Confidence regions · Coupling · Exponential inequality · Model selection · Multiscale inference · Risk optimality

Mathematics Subject Classification (2000) 62G15 · 62G20

1 Introduction

When dealing with a high dimensional observation vector, the natural question arises whether the data generating process can be approximated by a model of substantially

A. Rohde (🖂)

Department Mathematik, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany e-mail: angelika.rohde@math.uni-hamburg.de

L. Dümbgen Institut für Mathematische Statistik und Versicherungslehre, Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland e-mail: duembgen@stat.unibe.ch lower dimension. Typically the models under consideration are characterized by the non-zero components of some parameter vector, and especially the presence of some approximately sparse parametrization found recently substantial interest in the literature. Sometimes consistent estimation of the so-called sparsity pattern (the locations of the non-zero components, i.e. the true model) is one of the central goals. However, consistently estimating the true model requires the rather idealistic situation that each component is either equal to zero or has sufficiently large modulus: A tiny perturbation of the parameter vector may result in the biggest model, so the question about the true model does not seem to be adequate in general. Instead of focussing on the true model one could aim for parsimonious ones which still contain the essential information and are easier to interpret. However there may exist several and quite different models which explain the data comparably well. This leads to the question which models are definitely inferior to others with a given confidence. The present paper is concerned with confidence regions for those approximating models which are optimal in terms of risk.

Suppose that we observe a random vector $X_n = (X_{in})_{i=1}^n$ with distribution $\mathcal{N}_n(\theta_n, \sigma^2 I_n)$, where the mean vector θ_n is unknown while the noise level is assumed to be known for the moment. Often the signal θ_n represents coefficients of an unknown smooth function with respect to a given orthonormal basis of functions. There is a vast amount of literature on point estimation of θ_n . For a given estimator $\hat{\theta}_n = \hat{\theta}_n(X_n, \hat{\sigma}_n)$ for θ_n , let

$$L(\hat{\theta}_n, \theta_n) := \|\hat{\theta}_n - \theta_n\|^2$$
 and $R(\hat{\theta}_n, \theta_n) := \mathbb{E}L(\hat{\theta}_n, \theta_n)$

be its quadratic loss and the corresponding risk, respectively. Here $\|\cdot\|$ denotes the standard Euclidean norm of vectors. Various adaptivity results are known for this setting, often in terms of oracle inequalities. A typical result reads as follows: Let $(\check{\theta}_n^{(c)})_{c \in C_n}$ be a family of candidate estimators $\check{\theta}_n^{(c)} = \check{\theta}_n^{(c)}(X_n)$ for θ_n . Then there exist estimators $\hat{\theta}_n$ and constants $A_n = 1 + o(1)$, $B_n = O(\log(n)^{\gamma})$ with $\gamma \ge 0$ such that for arbitrary θ_n in a certain set $\Theta_n \subset \mathbb{R}^n$,

$$R(\hat{\theta}_n, \theta_n) \le A_n \inf_{c \in \mathcal{C}_n} R(\check{\theta}_n^{(c)}, \theta_n) + B_n \sigma^2.$$

Results of this type are provided, for instance, by [11-13,25], in the framework of Gaussian model selection by [5]. The latter article copes in particular with the fact that a model is not necessarily true. Further results of this type, partly in different settings, have been provided by [6,7,17,23,28], to mention just a few.

By way of contrast, when aiming at adaptive confidence sets one faces severe limitations. Here is a result of [24], slightly rephrased: suppose that Θ_n contains a closed Euclidean ball $B(\theta_n^o, cn^{1/4})$ around some vector $\theta_n^o \in \mathbb{R}^n$ with radius $cn^{1/4} > 0$. Let $\hat{D}_n = \hat{D}_n(X_n) \subset \Theta_n$ be a $(1 - \alpha)$ -confidence set for $\theta_n \in \Theta_n$. Such a confidence set may be used as a test of the (Bayesian) null hypothesis that θ_n is uniformly distributed on the sphere $\partial B(\theta_n^o, cn^{1/4})$ versus the alternative that $\theta_n = \theta_n^o$: We reject this null hypothesis at level α if $||\eta - \theta_n^o|| < cn^{1/4}$ for all $\eta \in \hat{D}_n$. Since this test cannot have larger power than the corresponding Neyman-Pearson test,

$$\mathbb{P}_{\theta_n^o}\left(\sup_{\eta\in\hat{D}_n}\|\eta-\theta_n^o\|_n < cn^{1/4}\right) \le \mathbb{P}(S_n^2 \le \chi_{n;\alpha}^2(c^2n^{1/2}/\sigma^2))$$
$$= \Phi(\Phi^{-1}(\alpha) + 2^{-1/2}c^2/\sigma^2) + o(1),$$

where $S_n^2 \sim \chi_n^2$ and $\chi_{n;\alpha}^2(\delta^2)$ stands for the α -quantile of the noncentral chi-squared distribution with *n* degrees of freedom and noncentrality parameter δ^2 . Throughout this paper, asymptotic statements refer to $n \to \infty$. The previous inequality entails that no reasonable confidence set has a diameter of order $o_p(n^{1/4})$ uniformly over the parameter space Θ_n , as long as the latter is sufficiently large. Despite these limitations, there is some literature on confidence sets in the present or similar settings; see for instance [2–4, 18].

Improving the rate of $O_p(n^{1/4})$ is only possible via additional constraints on θ_n , i.e. considering substantially smaller sets Θ_n . For instance, Baraud [1] developed nonasymptotic confidence regions which perform well on finitely many linear subspaces. Juditsky and Lambert-Lacroix [22] develop adaptive L_2 -confidence balls for a regression function in fixed design Gaussian regression via unbiased risk estimates within the scale of Besov spaces if it is known a priori that the function belongs to a certain Besov ball. Robins and van der Vaart [26] construct confidence balls via sample splitting which adapt to some extent to the unknown "smoothness" of θ_n . In their context, Θ_n corresponds to a Sobolev smoothness class with given parameter (β, L) . However, adaptation in this context is possible only within a range $[\beta, 2\beta]$. Independently, Cai and Low [8] treat the same problem in the special case of the Gaussian white noise model, obtaining the same kind of adaptivity in the broader scale of Besov bodies. Other possible constraints on θ_n are so-called shape constraints; see for instance [9,14,20]. New input to the related problem in sup-norm loss has come very recently by [19] who demonstrate in the context of density estimation that honest confidence bands can be achieved over Hölder balls if a set of only first Baire category is removed, see also [21].

The motivation of our work is twofold. First of all, the natural question arises whether one can bridge the gap mentioned above between point estimators and confidence sets. More precisely, we would like to understand profoundly the possibility of adaptation for point estimators in terms of some confidence region for the set of all optimal candidate estimators $\check{\theta}_n^{(c)}$. That means, we want to construct a confidence region $\hat{\mathcal{K}}_{n,\alpha} = \hat{\mathcal{K}}_{n,\alpha}(X_n, \hat{\sigma}_n) \subset C_n$ for the set

$$\mathcal{K}_{n}(\theta_{n}) := \underset{c \in \mathcal{C}_{n}}{\operatorname{Arg\,min}} R(\check{\theta}_{n}^{(c)})$$
$$= \{ c \in \mathcal{C}_{n} : R(\check{\theta}_{n}^{(c)}, \theta_{n}) \leq R(\check{\theta}_{n}^{(c')}, \theta_{n}) \text{ for all } c' \in \mathcal{C}_{n} \}$$

such that for arbitrary $\theta_n \in \mathbb{R}^n$,

and

$$\max_{\substack{c \in \hat{\mathcal{K}}_{n,\alpha} \\ c \in \hat{\mathcal{K}}_{n,\alpha}}} R(\check{\theta}_n^{(c)}, \theta_n) \\ = O_p(A_n) \min_{c \in \mathcal{C}_n} R(\check{\theta}_n^{(c)}, \theta_n) + O_p(B_n)\sigma^2.$$
(2)

Solving this problem means that statistical inference about differences in the performance of estimators is possible, although inference about their risk and loss is severely limited. Our second motivation is that in some settings, selecting estimators out of a class of competing estimators entails estimating implicitly an unknown regularity, smoothness class or model for the underlying signal θ_n , and the statistician may be interested in drawing conclusions about the model or the data generating process itself rather than about the specific signal. Computing a confidence region for optimal estimators is particularly suitable in situations in which several good candidate estimators fit the data quite well although they look different. Here it is important not to overinterpret a single fit. This aspect of exploring various candidate estimators is not covered by the usual theory of point estimation. For a good point estimator it is sufficient to pick a candidate estimator the risk of which is close to $\min_{c \in C_n} R(\check{\theta}_n^{(c)}, \theta_n)$. This is substantially easier than trying to cover a really optimal candidate estimator. Note also that our confidence region $\hat{\mathcal{K}}_{n,\alpha}$ is even required to cover the whole set $\mathcal{K}_n(\theta_n)$ rather than just some element of it, with probability at least $1 - \alpha$; see also the remark at the end of Sect. 3.

The remainder of this paper is organized as follows. In Sect. 3 we develop and analyze an explicit confidence region $\hat{\mathcal{K}}_{n,\alpha}$ related to $\mathcal{C}_n := \{0, 1, ..., n\}$ with candidate estimators

$$\check{\theta}_n^{(k)} := (1\{i \le k\}X_{in})_{i=1}^n.$$

These correspond to a standard nested sequence of approximating models. For this purely data-dependent set $\hat{\mathcal{K}}_{n,\alpha}$ we shall prove the following main result.

Theorem 1 Let $(\theta_n)_{n \in \mathbb{N}}$ be arbitrary. Then

$$\mathbb{P}_{\theta_n}(\mathcal{K}_n(\theta_n) \not\subset \hat{\mathcal{K}}_{n,\alpha}) \leq \alpha,$$

and $\hat{\mathcal{K}}_{n,\alpha}$ satisfies the oracle inequality

$$\begin{aligned} \max_{\check{\theta}_n^{(k)} \in \hat{\mathcal{K}}_{n,\alpha}} R_n(\check{\theta}_n^{(k)}, \theta_n) &\leq \min_{j \in \mathcal{C}_n} R_n(\check{\theta}_n^{(j)}, \theta_n) \\ &+ (4\sqrt{3} + o_p(1)) \sqrt{\sigma^2 \log(n) \min_{j \in \mathcal{C}_n} R_n(\check{\theta}_n^{(j)}, \theta_n)} \\ &+ O_p(\sigma^2 \log n). \end{aligned}$$

Note that this statement implies and is more precise than (2), where $B_n = \log n$. Since our result is not about the existence only but contains additionally an explicit construction of the set $\hat{\mathcal{K}}_{n,\alpha}$ which is rather involved, the mathematical techniques of our approach are first described in a simple toy model in Sect. 2 for the reader's convenience. Section 4 discusses richer and rather general families of candidate estimators. In Sect. 5 we discuss briefly the case of unknown σ and explain that the main results remain valid under moderate regularity assumptions on an estimator $\hat{\sigma}_n$. For a more detailed treatment of this case we refer to the technical report of [27]. All proofs and auxiliary results are deferred to Sect. 6.

2 A toy problem

Suppose we observe a stochastic process $Y = (Y(t))_{t \in [0,1]}$, where

$$Y(t) = F(t) + W(t), t \in [0, 1],$$

with an unknown fixed continuous function *F* on [0, 1] and a Brownian motion $W = (W(t))_{t \in [0,1]}$. We are interested in the set

$$\mathcal{S}(F) := \operatorname*{Arg\,min}_{t \in [0,1]} F(t).$$

Precisely, we want to construct a $(1 - \alpha)$ -confidence region $\hat{S}_{\alpha} = \hat{S}_{\alpha}(Y) \subset [0, 1]$ for S(F) in the sense that

$$P(\mathcal{S}(F) \subset \hat{\mathcal{S}}_{\alpha}) \ge 1 - \alpha, \tag{3}$$

regardless of *F*. To construct such a confidence set we regard Y(s) - Y(t) for arbitrary different *s*, $t \in [0, 1]$ as a test statistic for the null hypothesis that $s \in S(F)$, i.e. large values of Y(s) - Y(t) give evidence for $s \notin S(F)$.

A first and naive proposal is the set

$$\hat{\mathcal{S}}_{\alpha}^{\text{naive}} := \left\{ s \in [0, 1] : Y(s) \le \min_{[0, 1]} Y + \kappa_{\alpha}^{\text{naive}} \right\}$$

with $\kappa_{\alpha}^{\text{naive}}$ denoting the $(1 - \alpha)$ -quantile of $\max_{[0,1]} W - \min_{[0,1]} W$. Here is a refined method based on results of [15]: Let κ_{α} be the $(1 - \alpha)$ -quantile of

$$\sup_{s,t\in[0,1]:\,s\neq t} \left(\frac{|W(s) - W(t)|}{\sqrt{|s-t|}} - \Gamma(|s-t|) \right),\tag{4}$$

where

$$\Gamma(u) := \sqrt{2\log(e/u)} \quad \text{for} \quad 0 < u \le 1.$$

Then constraint (3) is satisfied by the confidence region \hat{S}_{α} which consists of all $s \in [0, 1]$ such that

$$Y(s) \le Y(t) + \sqrt{|s-t|} \left(\Gamma(|s-t|) + \kappa_{\alpha} \right) \quad \text{for all } t \in [0, 1].$$

To illustrate the power of this method, consider for instance a sequence of functions $F = F_n = c_n F_o$ with positive constants $c_n \to \infty$ and a fixed continuous function F_o with unique minimizer s_o . Suppose that

$$\lim_{t \to s_o} \frac{F_o(t) - F_o(s_o)}{|t - s_o|^{\gamma}} = 1$$

for some $\gamma > 1/2$. Then the naive confidence region satisfies only

$$\max_{t \in \hat{S}_{\alpha}^{\text{naive}}} |t - s_o| = O_p(c_n^{-1/\gamma}), \tag{5}$$

whereas

$$\max_{t \in \hat{\mathcal{S}}_{\alpha}} |t - s_o| = O_p(\log(c_n)^{1/(2\gamma - 1)} c_n^{-1/(\gamma - 1/2)}).$$
(6)

3 Confidence regions for nested approximating models

In this section we develop the confidence regions $\hat{\mathcal{K}}_{n,\alpha}$ in detail. As in the introduction let $X_n = \theta_n + \epsilon_n$ denote the *n*-dimensional observation vector with $\theta_n \in \mathbb{R}^n$ and $\epsilon_n \sim \mathcal{N}_n(0, \sigma^2 I_n)$. For any candidate estimator $\check{\theta}_n^{(k)} = (1\{i \leq k\}X_{in})_{i=1}^n$ the loss is given by

$$L_n(k) := L(\check{\theta}_n^{(k)}, \theta_n) = \sum_{i=k+1}^n \theta_{in}^2 + \sum_{i=1}^k (X_{in} - \theta_{in})^2$$

with corresponding risk

$$R_n(k) := R(\check{\theta}_n^{(k)}, \theta_n) = \sum_{i=k+1}^n \theta_{in}^2 + k\sigma^2.$$

Model selection usually aims at estimating a candidate estimator which is optimal in terms of risk. Since the risk depends on the unknown signal and therefore is not available, the selection procedure minimizes an unbiased risk estimator instead. In the sequel, the bias-corrected risk estimator for the candidate $\check{\theta}_n^{(k)}$ is defined as

$$\hat{R}_n(k) := \sum_{i=k+1}^n (X_{in}^2 - \sigma^2) + k\sigma^2.$$

Important for our analysis is the behavior of the centered and rescaled difference process $D_n = (D_n(j,k))_{0 \le j < k \le n}$ with

$$D_n(j,k) := \frac{\hat{R}_n(j) - \hat{R}_n(k) - R_n(j) + R_n(k)}{\sigma^2 \sqrt{4\|\theta_n/\sigma\|^2 + 2n}}$$

= $\frac{\sum_{i=j+1}^k (X_{in}^2 - \sigma^2 - \theta_{in}^2)}{\sigma^2 \sqrt{4\|\theta_n/\sigma\|^2 + 2n}}$
= $\frac{1}{\sqrt{4\|\theta_n/\sigma\|^2 + 2n}} \sum_{i=j+1}^k (2(\theta_{in}/\sigma)(\epsilon_{in}/\sigma) + (\epsilon_{in}/\sigma)^2 - 1).$

Hence the process D_n consists of partial sums of the independent and centered, but in general not identically distributed random variables $2(\theta_{in}/\sigma)(\epsilon_{in}/\sigma) + (\epsilon_{in}/\sigma)^2 - 1$. The standard deviation of $D_n(j,k)$ is given by

$$\tau_n(j,k) := \frac{1}{\sqrt{4\|\theta_n/\sigma\|^2 + 2n}} \left(\sum_{i=j+1}^k (4\theta_{in}^2/\sigma^2 + 2)\right)^{1/2}$$

Note that $\tau_n(0, n) = 1$ by construction. To imitate the more powerful confidence region of Sect. 2 based on the multiscale approach, one needs a refined analysis of the increment process D_n . Since this process does not have subgaussian tails, the standardization is more involved than the correction in (4).

Theorem 2 Define $\Gamma_n(j,k) := \Gamma(\tau_n(j,k)^2)$ for $0 \le j < k \le n$. Then

$$\sup_{0 \le j < k \le n} \frac{|D_n(j,k)|}{\tau_n(j,k)} \le \sqrt{32} \log n + O_p(1),$$

and for any fixed c > 2,

$$d_n := \max_{0 \le j < k \le n} \left(\frac{|D_n(j,k)|}{\tau_n(j,k)} - \Gamma_n(j,k) - \frac{c \cdot \Gamma_n(j,k)^2}{\sqrt{4\|\theta_n/\sigma\|^2 + 2n} \tau_n(j,k)} \right)^+$$

is bounded in probability. In the special case of θ_n having components $\pm \sigma$, the random variable d_n converges in distribution to the random variable in (4).

The limiting distribution is closely related to Lévy's modulus of continuity of Brownian motion, and this indicates that the additive correction term in the definition of d_n cannot be chosen essentially smaller. It will play a crucial role for the efficiency of the confidence region.

As shown by Rohde and Dümbgen [27], convergence in distribution of d_n holds under much weaker assumptions on the signal-to-noise vector θ_n/σ . However, to utilize this fact for inference on the set $\mathcal{K}_n(\theta_n)$, we are facing the problem that the auxiliary function $\tau_n(\cdot, \cdot)$ depends on the unknown signal-to-noise vector θ_n/σ . In fact, knowing τ_n would imply knowledge of $\mathcal{K}_n(\theta_n)$ already. One could try to estimate the variances $\tau_n(j, k)^2$, j < k, by

$$\hat{\tau}_n(j,k)^2 := \left\{ \sum_{i=1}^n (4(X_{in}^2/\sigma^2 - 1) + 2) \right\}^{-1} \sum_{i=j+1}^k (4(X_{in}^2/\sigma^2 - 1) + 2).$$

However, using such an estimator does not seem to work since

$$\sup_{0 \le j < k \le n} \left| \frac{\hat{\tau}_n(j,k)}{\tau_n(j,k)} - 1 \right| \not\longrightarrow_p 0$$

as *n* goes to infinity. This can be verified by noting that the (rescaled) numerator of $(\hat{\tau}_n(j,k)^2)_{0 \le j < k \le n}$ is essentially, up to centering, of the same structure as the rescaled difference process D_n itself. These difficulties may be overcome with a trick described next.

The least favourable case of constant risk

The problem of estimating the set Arg min_k $R_n(k)$ can be cast into our toy model where Y(t), F(t) and W(t) correspond to $\hat{R}_n(k)$, $R_n(k)$ and the difference $\hat{R}_n(k) - R_n(k)$, respectively. One may expect that the more distinctive the global minima are, the easier it is to identify their location. Hence the case of constant risks appears to be least favourable, corresponding to a signal

$$\theta_n^* := (\pm \sigma)_{i=1}^n,$$

In this situation, each candidate estimator $\check{\theta}_n^{(k)}$ has the same risk of $n\sigma^2$.

A related consideration leading to an explicit procedure is as follows: For fixed indices $0 \le j < k \le n$,

$$R_n(j) - R_n(k) = \sum_{i=j+1}^k \theta_{in}^2 - (k-j)\sigma^2,$$

and the test statistic

$$T_{jkn} := \sum_{i=j+1}^{k} X_{in}^2 / \sigma^2 = 2(k-j) - (\hat{R}_n(k) - \hat{R}_n(j)) / \sigma^2$$

has a noncentral χ^2 distribution

$$\chi_{k-j}^{2}\left(\sum_{i=j+1}^{k}\theta_{in}^{2}/\sigma^{2}\right) = \chi_{k-j}^{2}(k-j+(R_{n}(j)-R_{n}(k))/\sigma^{2}).$$

Thus large or small values of T_{jkn} give evidence for $R_n(j)$ being larger or smaller, respectively, than $R_n(k)$. Precisely,

$$\mathcal{L}_{\theta_n}(T_{jkn}) \begin{cases} \leq_{\text{st.}} \mathcal{L}_{\theta_n^*}(T_{jkn}) & \text{whenever } j \in \mathcal{K}_n(\theta_n), \\ \geq_{\text{st.}} \mathcal{L}_{\theta_n^*}(T_{jkn}) & \text{whenever } k \in \mathcal{K}_n(\theta_n). \end{cases}$$

Via a suitable construction involving Poisson mixtures of central χ^2 -distributed random variables, this pointwise stochastic ordering can be extended to a coupling for the whole process $(T_{jkn})_{0 \le j < k \le n}$:

Proposition 3 (Coupling) For any $\theta_n \in \mathbb{R}^n$ there exists a probability space with random variables $(\tilde{T}_{jkn})_{0 \leq j < k \leq n}$ and $(\tilde{T}^*_{jkn})_{0 \leq j < k \leq n}$ such that

$$\mathcal{L}((\tilde{T}_{jkn})_{0 \le j < k \le n}) = \mathcal{L}_{\theta_n}((T_{jkn})_{0 \le j < k \le n}),$$

$$\mathcal{L}((\tilde{T}^*_{jkn})_{0 \le j < k \le n}) = \mathcal{L}_{\theta^*_n}((T_{jkn})_{0 \le j < k \le n}),$$

and for arbitrary indices $0 \le j < k \le n$,

$$\tilde{T}_{jkn} \begin{cases} \leq \tilde{T}_{jkn}^* & \text{whenever } j \in \mathcal{K}_n(\theta_n), \\ \geq \tilde{T}_{jkn}^* & \text{whenever } k \in \mathcal{K}_n(\theta_n). \end{cases}$$

By means of Proposition 3 we can define a confidence set for $\mathcal{K}_n(\theta_n)$, based on the least favourable case $\theta_n = \theta_n^*$. Let $\kappa_{n,\alpha}$ denote the $(1 - \alpha)$ -quantile of $\mathcal{L}_{\theta_n^*}(d_n)$, where for simplicity c := 3 in the definition of d_n . Note also that $\tau_n(j, k)^2 = (k - j)/n$ in case of $\theta_n = \theta_n^*$. Motivated by Theorem 2, we define

$$\hat{\mathcal{K}}_{n,\alpha} := \{j : \hat{R}_n(j) \le \hat{R}_n(k) + \sigma^2 c_{jkn} \text{ for all } k \ne j\}$$

$$= \{j : T_{ijn} \ge 2(j-i) - c_{ijn} \text{ for all } i < j,$$

$$T_{jkn} \le 2(k-j) + c_{jkn} \text{ for all } k > j\}$$
(7)

with

$$c_{jkn} = c_{jkn,\alpha} := \sqrt{6|k-j|} \left(\Gamma\left(\frac{|k-j|}{n}\right) + \kappa_{n,\alpha} \right) + 3\Gamma\left(\frac{|k-j|}{n}\right)^2$$

With this construction we obtain an extended version of Theorem 1 from the introduction:

Theorem 4 Let $(\theta_n)_{n \in \mathbb{N}}$ be arbitrary. With $\hat{\mathcal{K}}_{n,\alpha}$ as defined above,

$$\mathbb{P}_{\theta_n}(\mathcal{K}_n(\theta_n) \not\subset \hat{\mathcal{K}}_{n,\alpha}) \leq \alpha.$$

The critical values $\kappa_{n,\alpha}$ converge to κ_{α} introduced in Sect. 2, and the confidence regions $\hat{\mathcal{K}}_{n,\alpha}$ satisfy the oracle inequalities

$$\max_{k \in \hat{\mathcal{K}}_{n,\alpha}} R_n(k) \le \min_{j \in \mathcal{C}_n} R_n(j) + (4\sqrt{3} + o_p(1)) \sqrt{\sigma^2 \log(n) \min_{j \in \mathcal{C}_n} R_n(j)} + O_p(\sigma^2 \log n)$$
(8)

and

$$\max_{k \in \hat{\mathcal{K}}_{n,\alpha}} \sqrt{L_n(k)} \le \min_{j \in \mathcal{C}_n} \sqrt{L_n(j)} + O_p(\sqrt{\sigma^2 \log n}).$$
(9)

The upper bounds in this theorem are of the form

$$\sqrt{\rho_n} \left(1 + O_p \left(\sqrt{\sigma^2 \log(n) / \rho_n} \right) \right)$$

with ρ_n denoting minimal risk or minimal loss. Thus the maximal risk (loss) over $\hat{\mathcal{K}}_{n,\alpha}$ exceeds the minimal risk (loss) only by a factor close to one, provided that the minimal risk (loss) is substantially larger than $\sigma^2 \log n$.

Remark (Dependence on α) The proof reveals a refined version of the bounds in Theorem 4 in case of signals θ_n such that

$$\left(\min_{j\in\mathcal{C}_n}R_n(j)\right)^{-1}=O(\log(n)^{-3}).$$

Let $0 < \alpha(n) \to 0$ such that $\kappa_{n,\alpha(n)}^6 = O(\min_{j \in C_n} R_n(j))$. Then

$$\max_{k \in \hat{\mathcal{K}}_{n,\alpha}} R_n(k) \le \min_{j \in \mathcal{C}_n} R_n(j) + (4\sqrt{3}\sqrt{\log n} + 2\sqrt{6}\kappa_{n,\alpha} + O_p(1))\sqrt{\sigma^2 \min_{j \in \mathcal{C}_n} R_n(j)}$$

uniformly in $\alpha \geq \alpha(n)$.

Remark (Point estimation versus confidence regions) As stated in the introduction, the construction of a confidence region for $\mathcal{K}_n(\theta_n)$ is more ambitious than the construction of an adaptive point estimator for θ_n . To see this, suppose that the true signal vector θ_n satisfies

$$|\theta_{in}| \begin{cases} >> \sigma & \text{for } i \leq j_n \\ \in [\sigma - c_n, \sigma + c_n] & \text{for } j_n < i \leq k_n \\ << \sigma & \text{for } i > k_n \end{cases}$$

with indices $1 \le j_n < k_n \le n$ such that $k_n - j_n \to \infty$ and arbitrarily small constants $c_n > 0$ tending to zero. Constructing an almost optimal point estimator (based on the given candidates) requires to pick a candidate estimator $\check{\theta}_n^{(k)}$ with $j_n \le k \le k_n$. However, depending on the precise values of $|\theta_{in}|$ for $j_n < i \le k_n$, the set $\mathcal{K}_n(\theta_n)$ may be any given nonvoid subset of $\{j_n, \ldots, k_n\}$, see also the proof of Proposition 3 and Fig. 1. Hence it may happen with asymptotically positive probability that the point estimator uses a candidate $\check{\theta}_n^{(k)}$ with $k \notin \mathcal{K}_n(\theta_n)$. By way of contrast, if c_n is small, the confidence region $\hat{\mathcal{K}}_{n,\alpha}$ will contain $\{j_n, \ldots, k_n\}$ with probability close to or higher than $1 - \alpha$ and thus indicate that there are many candidate estimators of comparable quality.

4 Confidence sets in case of larger families of candidates

The previous result relies strongly on the assumption of nested models. It is possible to obtain confidence sets for the optimal approximating models in a more general setting, albeit the resulting oracle property is not as strong as in the nested case. In particular, we can no longer rely on a coupling result but need a different construction.

Let C_n be a family of index sets $C \subset \{1, 2, ..., n\}$ with candidate estimators

$$\check{\theta}^{(C)} := (1\{i \in C\}X_{in})_{i=1}^n$$

and corresponding risks

$$R_n(C) := R(\check{\theta}^{(C)}, \theta_n) = \sum_{i \notin C} \theta_{in}^2 + |C|\sigma^2,$$

where |S| denotes the cardinality of a set S. For two index sets C and D,

$$\sigma^{-2}(R_n(D) - R_n(C)) = \delta_n^2(C \setminus D) - \delta_n^2(D \setminus C) + |D| - |C|$$

with the auxiliary quantities

$$\delta_n^2(J) := \sum_{i \in J} \theta_{in}^2 / \sigma^2, \quad J \subset \{1, 2, \dots, n\}.$$

Hence we aim at simultaneous $(1 - \alpha)$ -confidence intervals for these noncentrality parameters $\delta_n(J)$, where $J \in \mathcal{M}_n := \{D \setminus C : C, D \in \mathcal{C}_n\}$. To this end we utilize the fact that

$$T_n(J) := \frac{1}{\sigma^2} \sum_{i \in J} X_{in}^2$$

has a $\chi^2_{|J|}(\delta^2_n(J))$ -distribution. We denote the distribution function of $\chi^2_k(\delta^2)$ by $F_k(\cdot | \delta^2)$. Now let $M_n := |\mathcal{M}_n| - 1 \le |\mathcal{C}_n|(|\mathcal{C}_n| - 1)$, the number of nonvoid index sets $J \in \mathcal{M}_n$. Then with probability at least $1 - \alpha$,

$$\alpha/(2M_n) \le F_{|J|}(T_n(J) \mid \delta_n^2(J)) \le 1 - \alpha/(2M_n) \quad \text{for } \emptyset \ne J \in \mathcal{M}_n.$$
(10)

Since $F_{|J|}(T_n(J) | \delta^2)$ is strictly decreasing in δ^2 with limit 0 as $\delta^2 \to \infty$, (10) entails the simultaneous $(1 - \alpha)$ -confidence intervals $[\hat{\delta}_{n,\alpha,l}^2(J), \hat{\delta}_{n,\alpha,u}^2(J)]$ for all parameters $\delta_n^2(J)$ as follows: We set $\hat{\delta}_{n,\alpha,l}^2(\emptyset) := \hat{\delta}_{n,\alpha,u}^2(\emptyset) := 0$, while for nonvoid J,

$$\hat{\delta}_{n,\alpha,l}^2(J) := \min\{\delta^2 \ge 0 : F_{|J|}(T_n(J)|\delta^2) \le 1 - \alpha/(2M_n)\},\tag{11}$$

$$\hat{\delta}_{n,\alpha,u}^{2}(J) := \max\{\delta^{2} \ge 0 : F_{|J|}(T_{n}(J) \mid \delta^{2}) \ge \alpha/(2M_{n})\}.$$
(12)

By means of these bounds, we may claim with confidence $1 - \alpha$ that for arbitrary $C, D \in C_n$ the normalized difference $(n/\sigma^2)(R_n(D) - R_n(C))$ is at most $\hat{\delta}_{n,\alpha,u}^2(C \setminus D) - \hat{\delta}_{n,\alpha,l}^2(D \setminus C) + |D| - |C|$. Thus a $(1 - \alpha)$ -confidence set for $\mathcal{K}_n(\theta_n) = \operatorname{Arg\,min}_{C \in C_n} R_n(C)$ is given by

$$\hat{\mathcal{K}}_{n,\alpha} := \{ C \in \mathcal{C}_n : \hat{\delta}_{n,\alpha,u}^2(C \setminus D) - \hat{\delta}_{n,\alpha,l}^2(D \setminus C) + |D| - |C| \ge 0 \text{ for all } D \in \mathcal{C}_n \}.$$

These confidence sets $\hat{\mathcal{K}}_{n,\alpha}$ satisfy the following oracle inequalities:

Theorem 5 Let $(\theta_n)_{n \in \mathbb{N}}$ be arbitrary, and suppose that $\log |\mathcal{C}_n| = o(n)$. Then

$$\max_{C \in \hat{\mathcal{K}}_{n,\alpha}} \sqrt{R_n(C)} \le \min_{D \in \mathcal{C}_n} \sqrt{R_n(D)} + O_p(\sqrt{\sigma^2 \log |\mathcal{C}_n|})$$

and

$$\max_{C \in \hat{\mathcal{K}}_{n,\alpha}} \sqrt{L_n(C)} \leq \min_{D \in \mathcal{C}_n} \sqrt{L_n(D)} + O_p(\sqrt{\sigma^2 \log |\mathcal{C}_n|}).$$

The upper bounds in this theorem are of the form

$$\sqrt{\rho_n} \left(1 + O_p \left(\sqrt{\sigma^2 \log(|\mathcal{C}_n|)/\rho_n} \right) \right)$$

with ρ_n denoting minimal risk or minimal loss. This is analogous to the setting of nested models, where log *n* is replaced with log $|C_n|$. Again, the maximal risk (loss) over $\hat{\mathcal{K}}_{n,\alpha}$ exceeds the minimal risk (loss) only by a factor close to one, provided that the minimal risk (loss) is substantially larger than $\sigma^2 \log |C_n|$.

Remark (Suboptimality in case of nested models) In case of nested models, the general construction in this section is suboptimal. For if one follows the proof carefully and uses $\sigma^2 \log |C_n| = 2\sigma^2 \log n + O(1)$ in this special setting, one obtains the refined inequality

$$\max_{k \in \hat{\mathcal{K}}_{n,\alpha}} R_n(k) \le \min_{j \in \mathcal{C}_n} R_n(j) + (4\sqrt{8} + o_p(1))\sqrt{\sigma^2 \log(n) \min_{j \in \mathcal{C}_n} R_n(j)} + O_n(\sigma^2 \log n),$$

Deringer

so the multiplier of the term $\sqrt{\min_j R_n(j)}$ is larger than the one in Theorem 4. The intrinsic reason is that the general procedure does not assume any structure of the family of candidate estimators. Hence advanced multiscale theory is not applicable.

5 The impact of estimating the noise level

We discuss briefly the extension of our results to the case of unknown noise variance. It is assumed subsequently that a variance estimator $\hat{\sigma}_n^2$ satisfying the subsequent condition (A) is available.

(A) $\hat{\sigma}_n^2$ and X_n are stochastically independent with

$$rac{m\hat{\sigma}_n^2}{\sigma^2}\sim\chi_m^2,$$

where $m = m_n \ge 1$ satisfies

$$\beta_n^2 := \frac{2n}{m_n} = O(1).$$

Example Suppose that we observe $Y = M\eta + \delta$ with given design matrix $M \in \mathbb{R}^{(n+m)\times n}$ of rank *n*, unknown parameter vector $\eta \in \mathbb{R}^n$ and unobserved error vector $\delta \sim \mathcal{N}_{n+m}(0, \sigma^2 I_{n+m})$. Then the previous assumptions are satisfied by $X_n := (M^\top M)^{1/2} \hat{\eta}$ with the least squares estimator $\hat{\eta} := (M^\top M)^{-1} M^\top Y$ and $\hat{\sigma}_n^2 := ||Y - M\hat{\eta}||^2/m$, where $\theta_n := (M^\top M)^{1/2} \eta$.

Assumption (A) implies the following weaker condition: (A') $\hat{\sigma}_n^2$ and X_n are stochastically independent such that for constants $0 < \beta_n = O(1)$,

$$\sqrt{n}(\hat{\sigma}_n^2/\sigma^2-1)/\beta_n \to_{\mathcal{L}} \mathcal{N}(0,1).$$

This condition covers, for instance, estimators of σ used in connection with wavelets. There σ is estimated by the median of some very high frequency wavelet coefficients divided by the normal quantile $\Phi^{-1}(3/4)$, whereas the signal θ_n corresponds only to the other wavelet coefficients.

Nested models In the setting of Sect. 3, the modified bias-corrected risk estimator for the candidate $\check{\theta}_n^{(k)}$ is redefined as

$$\hat{R}_n(k) := \sum_{i=k+1}^n (X_{in}^2 - \hat{\sigma}_n^2) + k\hat{\sigma}_n^2,$$

and we consider $T_{jkn} := \sum_{i=j+1}^{k} X_{in}^2 / \hat{\sigma}_n^2$. Now

$$\hat{D}_{n}(j,k) := \frac{\hat{R}_{n}(j) - \hat{R}_{n}(k) - R_{n}(j) + R_{n}(k)}{\hat{\sigma}_{n}^{2}\sqrt{4\|\theta_{n}/\sigma\|^{2} + 2n}}$$
$$= \frac{\sigma^{2}}{\hat{\sigma}_{n}^{2}}(D_{n}(j,k) + V_{n}(j,k)),$$

where $D_n(j, k)$ is defined as in Sect. 3, while

$$V_n(j,k) := \frac{2(k-j)(1-\hat{\sigma}^2/\sigma^2)}{\sqrt{4\|\theta_n/\sigma\|^2 + 2n}}$$

Since $\hat{\sigma}_n^2/\sigma^2 = 1 + O_p(n^{-1/2})$, the processes \hat{D}_n and D_n behave similarly on small scales (i.e. for arguments (j, k) with |k - j|/n being small). Nevertheless the contribution of V_n is non-negligible asymptotically, unless $\beta_n \to 0$.

The confidence region $\hat{\mathcal{K}}_{n,\alpha}$ is defined as before in (7) with the new versions of $\hat{\mathcal{R}}_n$ and T_{jkn} , σ^2 replaced with $\hat{\sigma}_n^2$, and the quantile $\kappa_{n,\alpha}$ in the definition of c_{jkn} has to be redefined to be the $(1 - \alpha)$ -quantile of $\mathcal{L}_{\theta_n^*}(\hat{d}_n)$. Here \hat{d}_n is defined as d_n with \hat{D}_n in place of D_n . Note that \hat{D}_n involves the process D_n and the ratio $S_n^2 := (\hat{\sigma}_n/\sigma)^2$. The latter random variable is known to be independent of X_n and to have distribution χ_m^2 under (A). In case of the weaker assumption (A'), one may replace S_n^2 with a random variable with distribution χ_m^2 , where $m := \lceil 2n/\beta_n^2 \rceil$.

With these modifications, Theorem 4 remains true under (A) or (A'). The only modification is that $\kappa_{n,\alpha} \not\rightarrow \kappa_{\alpha}$ in general, but still $\kappa_{n,\alpha} = O(1)$.

General candidate families In the setting of Sect. 4, one could replace $T_n(J)$ with $\sum_{iinJ} X_{in}^2/\hat{\sigma}_n^2$ which has a non-central *F* distribution under (A). However, this approach might be very conservative because it ignores the fact that all test statistics involve one and the same denominator $\hat{\sigma}_n^2$. Here is an alternative proposal: Let $\alpha' := 1 - (1 - \alpha)^{1/2}$. It follows from Assumption (A) that with probability $1 - \alpha'$,

$$\tau_{n,\alpha,l} := \frac{m}{\chi_{m;1-\alpha'/2}} \le \frac{\hat{\sigma}_n^2}{\sigma^2} \le \tau_{n,\alpha,u} := \frac{m}{\chi_{m;\alpha'/2}}$$

Under Assumption (A') this is true with asymptotic probability $1 - \alpha'$. Now we obtain simultaneous $(1 - \alpha)$ -confidence bounds $\hat{\delta}_{n,\alpha,l}^2(J)$ and $\hat{\delta}_{n,\alpha,u}^2(J)$ as in (11) and (12) by replacing α with α' and $T_n(J)$ with

$$\frac{\tau_{n,\alpha,l}}{\hat{\sigma}_n^2} \sum_{i \in J} X_{in}^2$$
 and $\frac{\tau_{n,\alpha,u}}{\hat{\sigma}_n^2} \sum_{i \in J} X_{in}^2$,

respectively. The conclusions of Theorem 5 continue to hold, essentially because $\tau_{n,\alpha,l}$, $\tau_{n,\alpha,u} = 1 + O(n^{-1/2})$ and $(\hat{\sigma}_n/\sigma)^2 = 1 + O_p(n^{-1/2})$.

6 Proofs

6.1 Proof of (5) and (6)

Note first that $\min_{[0,1]} Y$ lies between $F_n(s_o) + \min_{[0,1]} W$ and $F_n(s_o) + W(s_o)$. Hence for any $\alpha' \in (0, 1)$,

$$\hat{S}_{\alpha}^{\text{naive}} \subset \{s \in [0, 1] : F_n(s) + W(s) \le F_n(s_o) + W(s_o) + \kappa_{\alpha}^{\text{naive}} \}$$
$$\subset \{s \in [0, 1] : F_n(s) - F_n(s_o) \le \kappa_{\alpha'}^{\text{naive}} + \kappa_{\alpha}^{\text{naive}} \}$$
$$= \{s \in [0, 1] : F_o(s) - F_o(s_o) \le c_n^{-1}(\kappa_{\alpha'}^{\text{naive}} + \kappa_{\alpha}^{\text{naive}}) \}$$

and

$$\hat{\mathcal{S}}_{\alpha}^{\text{naive}} \supset \left\{ s \in [0, 1] : F_n(s) + W(s) \le F_n(s_o) + \min_{[0, 1]} W + \kappa_{\alpha}^{\text{naive}} \right\}$$
$$\supset \left\{ s \in [0, 1] : F_n(s) - F_n(s_o) \le \kappa_{\alpha}^{\text{naive}} - \kappa_{\alpha'}^{\text{naive}} \right\}$$
$$= \left\{ s \in [0, 1] : F_o(s) - F_o(s_o) \le c_n^{-1}(\kappa_{\alpha}^{\text{naive}} - \kappa_{\alpha'}^{\text{naive}}) \right\}$$

with probability $1 - \alpha'$. Since $\kappa_{\alpha'}^{\text{naive}} < \kappa_{\alpha}^{\text{naive}}$ if $\alpha < \alpha' < 1$, these considerations, combined with the expansion of F_o near s_o , show that the maximum of $|s - s_o|$ over all $s \in \hat{S}_{\alpha}^{\text{naive}}$ is precisely of order $O_p(c_n^{-1/\gamma})$.

On the other hand, the confidence region \hat{S}_{α} is contained in the set of all $s \in [0, 1]$ such that

$$F_n(s) + W(s) \le F_n(s_o) + W(s_o) + \sqrt{|s - s_o|}(\sqrt{2\log(e/|s - s_o|)} + \kappa_{\alpha}),$$

and this entails that

$$F_o(s) - F_o(s_o) \le c_n^{-1} \sqrt{|s - s_o|} (\sqrt{2\log(e/|s - s_o|)} + \kappa_\alpha + O_p(1))$$

with $O_p(1)$ not depending on s. Now the expansion of F_o near s_o entails claim (6).

6.2 Exponential inequalities

An essential ingredient for our main results is an exponential inequality for quadratic functions of a Gaussian random vector. It extends inequalities of [10] for quadratic forms and is of independent interest.

Proposition 6 Let Z_1, \ldots, Z_n be independent, standard Gaussian random variables. Furthermore, let $\lambda_1, \ldots, \lambda_n$ and $\delta_1, \ldots, \delta_n$ be real constants, and define $\gamma^2 :=$ $Var(\sum_{i=1}^n \lambda_i (Z_i + \delta_i)^2) = \sum_{i=1}^n \lambda_i^2 (2 + 4\delta_i^2)$. Then for arbitrary $\eta \ge 0$ and $\lambda_{max} :=$ $\max(\lambda_1,\ldots,\lambda_n,0),$

$$\mathbb{P}\left(\sum_{i=1}^{n} \lambda_i ((Z_i + \delta_i)^2 - (1 + \delta_i^2)) \ge \eta\gamma\right) \le \exp\left(-\frac{\eta^2}{2 + 4\eta\lambda_{\max}/\gamma}\right) \le e^{1/4} \exp(-\eta/\sqrt{8}).$$

Note that replacing λ_i in Proposition 6 with $-\lambda_i$ yields twosided exponential inequalities. By means of Proposition 6 and elementary calculations one obtains exponential and related inequalities for noncentral χ^2 distributions:

Corollary 7 For an integer n > 0 and a constant $\delta \ge 0$ let $F_n(\cdot | \delta^2)$ be the distribution function of $\chi_n^2(\delta^2)$. Then for arbitrary $r \ge 0$,

$$F_n(n+\delta^2+r \mid \delta^2) \ge 1 - \exp\left(-\frac{r^2}{4n+8\delta^2+4r}\right),$$
 (13)

$$F_n(n+\delta^2 - r \mid \delta^2) \le \exp\left(-\frac{r^2}{4n+8\delta^2}\right).$$
(14)

In particular, for any $u \in (0, 1/2)$,

$$F_n^{-1}(1-u \mid \delta^2) \le n + \delta^2 + \sqrt{(4n+8\delta^2)\log(u^{-1})} + 4\log(u^{-1}), \qquad (15)$$

$$F_n^{-1}(u \mid \delta^2) \ge n + \delta^2 - \sqrt{(4n + 8\delta^2)\log(u^{-1})}.$$
(16)

Moreover, for any number $\hat{\delta} \ge 0$, the inequalities $u \le F_n(n + \hat{\delta}^2 | \delta^2) \le 1 - u$ entail that

$$\delta^{2} - \hat{\delta}^{2} \begin{cases} \leq +\sqrt{(4n+8\hat{\delta}^{2})\log(u^{-1})} + 8\log(u^{-1}), \\ \geq -\sqrt{(4n+8\hat{\delta}^{2})\log(u^{-1})}. \end{cases}$$
(17)

Conclusion (17) follows from (13) and (14), applied to $r = \hat{\delta}^2 - \delta^2$ and $r = \delta^2 - \hat{\delta}^2$, respectively.

Proof of Proposition 6 Standard calculations show that for $0 \le t < (2\lambda_{max})^{-1}$,

$$\mathbb{E}\exp\left(t\sum_{i=1}^{n}\lambda_i(Z_i+\delta_i)^2\right) = \exp\left(\frac{1}{2}\sum_{i=1}^{n}\left\{\delta_i^2\frac{2t\lambda_i}{1-2t\lambda_i} - \log(1-2t\lambda_i)\right\}\right).$$

Deringer

Then for any such t,

$$\mathbb{P}\left(\sum_{i=1}^{n} \lambda_{i} ((Z_{i}+\delta_{i})^{2}-(1+\delta_{i}^{2})) \geq \eta\gamma\right) \\
\leq \exp\left(-t\eta\gamma - t\sum_{i=1}^{n} \lambda_{i} (1+\delta_{i}^{2})\right) \cdot \mathbb{E} \exp\left(t\sum_{i=1}^{n} \lambda_{i} (Z_{i}+\delta_{i})^{2}\right) \\
= \exp\left(-t\eta\gamma + \frac{1}{2}\sum_{i=1}^{n} \left\{\delta_{i}^{2} \frac{4t^{2}\lambda_{i}^{2}}{1-2t\lambda_{i}} - \log(1-2t\lambda_{i}) - 2t\lambda_{i}\right\}\right). \quad (18)$$

Elementary considerations reveal that

$$-\log(1-x) - x \le \begin{cases} x^2/2 & \text{if } x \le 0, \\ x^2/(2(1-x)) & \text{if } x \ge 0. \end{cases}$$

Thus (18) is not greater than

$$\exp\left(-t\eta\gamma + \frac{1}{2}\sum_{i=1}^{n}\left\{\delta_{i}^{2}\frac{4t^{2}\lambda_{i}^{2}}{1-2t\lambda_{i}} + \frac{2t^{2}\lambda_{i}^{2}}{1-2t\max(\lambda_{i},0)}\right\}\right)$$
$$\leq \exp\left(-t\eta\gamma + \frac{\gamma^{2}t^{2}/2}{1-2t\lambda_{\max}}\right).$$

Setting

$$t := \frac{\eta}{\gamma + 2\eta\lambda_{\max}} \in [0, (2\lambda_{\max})^{-1}),$$

the preceding bound becomes

$$\mathbb{P}\left(\sum_{i=1}^{n}\lambda_{i}((Z_{i}+\delta_{i})^{2}-(1+\delta_{i}^{2}))\geq\eta\gamma\right)\leq\exp\left(-\frac{\eta^{2}}{2+4\eta\lambda_{\max}/\gamma}\right).$$

Finally, since $\gamma \ge \lambda_{\max}\sqrt{2}$, the second asserted inequality follows from

$$\frac{\eta^2}{2+4\eta\lambda_{\max}/\gamma} \ge \frac{\eta^2}{2+\sqrt{8}\eta} = \frac{\eta}{\sqrt{8}} - \frac{\eta}{\sqrt{8}+4\eta} \ge \frac{\eta}{\sqrt{8}} - \frac{1}{4}.$$

6.3 Proofs of the main results

Throughout this section we assume without loss of generality that $\sigma = 1$. Further let $S_n := \{0, 1, ..., n\}$ and $T_n := \{(j, k) : 0 \le j < k \le n\}$.

Deringer

Proof of Theorem 2 *Step I* Let the metric ρ_n on \mathcal{T}_n be defined by

$$\rho_n((j,k),(j',k')) := \sqrt{\tau_n(j,j')^2 + \tau_n(k,k')^2}.$$

Later on we need bounds for the capacity numbers

$$D(u, \mathcal{T}', \rho_n) := \sup\{|\mathcal{T}_o| : \mathcal{T}_o \subset \mathcal{T}', \rho_n(s, t) > u \text{ for differents}, t \in \mathcal{T}_o\}$$

for certain u > 0 and $\mathcal{T}' \subset \mathcal{T}$. Indeed the proof of Theorem 2.1 of [15] entails that

$$D(u\delta, \{t \in \mathcal{T}_n : \tau_n(t) \le \delta\}, \rho_n) \le 12u^{-4}\delta^{-2} \text{ for all } u, \delta \in (0, 1].$$
(19)

Note that for fixed $(j, k) \in T_n, \pm D_n(j, k)$ may be written as

$$\sum_{i=1}^{n} \lambda_i ((\epsilon_{in} + \theta_{in})^2 - (1 + \theta_{in}^2))$$

with

$$\lambda_i = \lambda_{in}(j,k) := \pm (4\|\theta_n\|^2 + 2n)^{-1/2} I_{(j,k]}(i),$$

so $|\lambda_i| \le (4\|\theta_n\|^2 + 2n)^{-1/2}$. Hence it follows from Proposition 6 that

$$\mathbb{P}(|D_n(t)| \ge \tau_n(t)\eta) \le 2 \exp\left(-\frac{\eta^2}{2 + 4\eta(4\|\theta_n\|^2 + 2n)^{1/2}/\tau_n(t)}\right)$$

for arbitrary $t \in T_n$ and $\eta \ge 0$. One may rewrite this exponential inequality as

$$\mathbb{P}(|D_n(t)| \ge \tau_n(t)G_n(\eta, \tau_n(t))) \le 2\exp(-\eta)$$
(20)

for arbitrary $t \in T_n$ and $\eta \ge 0$, where

$$G_n(\eta, \delta) := \sqrt{2\eta} + \frac{4\eta}{(4\|\theta_n\|^2 + 2n)^{1/2\delta}}.$$

The second exponential inequality in Proposition 6 entails that

$$\mathbb{P}(|D_n(t)| \ge \tau_n(t)\eta) \le 2e^{1/4}\exp(-\eta/\sqrt{8})$$
(21)

and

$$\mathbb{P}(|D_n(s) - D_n(t)| \ge \sqrt{8}\rho_n(s, t)\eta) \le 2e^{1/4}\exp(-\eta)$$
(22)

for arbitrary $s, t \in T_n$ and $\eta \ge 0$.

Deringer

Since $|\mathcal{T}_n| \le n^2/2$, one can easily deduce from (21) that the maximum of $|D_n|/\tau_n$ over \mathcal{T}_n exceeds $\sqrt{32} \log n + \eta$ with probability at most $e^{1/4} \exp(-\eta/\sqrt{8})$. Thus

$$\max_{t\in\mathcal{T}_n} \frac{|D_n(t)|}{\tau_n(t)} \le \sqrt{32} \log n + O_p(1).$$

Utilizing (19) and (22), it follows from Theorem 7 and the subsequent Remark 3 in [16] that

$$\lim_{\delta \downarrow 0} \sup_{n} \mathbb{P}\left(\sup_{s,t \in \mathcal{T}_{n}:\rho_{n}(s,t) \le \delta} \frac{|D_{n}(s) - D_{n}(t)|}{\rho_{n}(s,t)\log(e/\rho_{n}(s,t))} > Q\right) = 0$$
(23)

for a suitable constant Q > 0. Since $D_n(j, k) = D_n(0, k) - D_n(0, j)$ and $\tau_n(j, k) = \rho_n((0, j), (0, k))$, this entails stochastic equicontinuity of D_n with respect to ρ_n . For $0 \le \delta < \delta' \le 1$ define

$$S_n(\delta, \delta') := \sup_{t \in \mathcal{T}_n: \delta < \tau_n(t) \le \delta'} \left(\frac{|D_n(t)|}{\tau_n(t)} - \Gamma_n(t) - \frac{c \cdot \Gamma_n(t)^2}{\tau_n(t)(4\|\theta_n\|^2 + 2n)^{1/2}} \right)^{-1}$$

with a constant c > 0 to be specified later. Recall that $\Gamma_n(t)$ equals $\Gamma(\tau_n(t)^2) = (2 \log(e/\tau_n(t)^2)^{1/2})$. Starting from (19), (20) and (23), Theorem 8 of [16] and its subsequent remark imply that

$$S_n(0,\delta) \to_p 0 \text{ as } n \to \infty \text{ and } \delta \searrow 0,$$
 (24)

provided that c > 2. On the other hand, (19), (21) and (23) entail that

$$S_n(\delta, 1) = O_p(1)$$
 for any fixed $\delta > 0.$ (25)

In particular, $d_n = S_n(0, 1) = O_p(1)$. Step II In case of $\theta_n = (\pm \sigma)_{i=1}^n$, the process $(D_n(j, k))_{0 \le j < k \le n}$ has the same distribution as $(W_n(k/n) - W_n(j/n))_{0 \le j < k \le n}$ where

$$W_n(t) := \frac{1}{\sqrt{6n}} \sum_{i=1}^{\lfloor nt \rfloor} (\epsilon_{in} + \epsilon_{in}^2 - 1)$$

for $t \in [0, 1]$ with $\sum_{i=1}^{0} \cdots := 0$. Moreover, $\tau_n(j, k)^2 = |k - j|/n$ and d_n has the same distribution as

$$\max_{0 \le j < k \le n} \left(\frac{|W_n(k/n) - W_n(j/n)|}{\tau_n(j,k)} - \Gamma(\tau_n(j,k)^2) - \frac{c \cdot \Gamma(\tau_n(j,k)^2)}{\sqrt{6n} \tau_n(j,k)} \right)^+.$$

According to Donsker's theorem, the process $(W_n(t))_{t \in [0,1]}$ converges in distribution to Brownian motion *W* on [0, 1]. Consequently, if we define

$$\Sigma(\delta, \delta') := \sup_{s,t \in [0,1]: \delta < |s-t| \le \delta'} \left(\frac{|W(s) - W(t)|}{\sqrt{|s-t|}} - \Gamma_n(|s-t|) \right)^+$$

for $0 \le \delta < \delta' \le 1$, then

$$S_n(\delta, 1) \to_{\mathcal{L}} \Sigma(\delta, 1)$$

for any fixed $\delta \in (0, 1]$. Moreover, we have seen in (24) that $S_n(0, \delta) \to_p 0$ as $n \to \infty$ and $\delta \searrow 0$. With similar arguments one can show that $\Sigma(0, \delta) \to_p 0$ as $\delta \searrow 0$. These findings imply that $d_n = S_n(0, 1)$ converges in distribution to $\Sigma(0, 1)$ as $n \to \infty$. \Box

Proof of Proposition 3 The main ingredient is a well-known representation of noncentral χ^2 distributions as Poisson mixtures of central χ^2 distributions. Precisely,

$$\chi_k^2(\delta^2) = \sum_{j=0}^{\infty} e^{-\delta^2/2} \frac{(\delta^2/2)^j}{j!} \cdot \chi_{k+2j}^2,$$

as can be proved via Laplace transforms. Now we define 'time points'

$$t_{kn} := \sum_{i=1}^{k} \theta_{in}^2$$
 and $t_{kn}^* := t_{j(n)n} + k - j(n)$

with j(n) any fixed index in $\mathcal{K}_n(\theta_n)$. This construction entails that $t_{kn}^* \ge t_{kn}$ with equality if, and only if, $k \in \mathcal{K}_n(\theta_n)$.

Figure 1 illustrates this construction. It shows the time points t_{kn} (crosses) and t_{kn}^* (dots and line) versus k for a hypothetical signal $\theta_n \in \mathbb{R}^{40}$. Note that in this example, $\mathcal{K}_n(\theta_n)$ is given by {10, 11, 20, 21}.

Let Π , G_1 , G_2 , ..., G_n and Z_1 , Z_2 , Z_3 , ... be stochastically independent random variables, where $\Pi = (\Pi(t))_{t \ge 0}$ is a standard Poisson process, and G_i and Z_j are standard Gaussian random variables. Then one can easily verify that

$$\begin{split} \tilde{T}_{jkn} &:= \sum_{i=j+1}^{k} G_i^2 + \sum_{s=2\Pi(t_{jn}/2)+1}^{2\Pi(t_{kn}/2)} Z_s^2, \\ \tilde{T}_{jkn}^* &:= \sum_{i=j+1}^{k} G_i^2 + \sum_{s=2\Pi(t_{jn}^*/2)+1}^{2\Pi(t_{kn}^*/2)} Z_s^2 \end{split}$$

define random variables $(\tilde{T}_{jkn})_{0 \le j < k \le n}$ and $(\tilde{T}^*_{jkn})_{0 \le j < k \le n}$ with the desired properties.

Fig. 1 Construction of the coupling

In the proofs of Theorems 4 and 5 we utilize repeatedly two elementary inequalities:

Lemma 8 Let a, b, c be nonnegative constants.

(i) Suppose that $0 \le x \le y \le x + \sqrt{b(x+y)} + c$. Then

$$y \le x + \sqrt{2bx} + b + \sqrt{bc} + c \le x + \sqrt{2bx} + (3/2)(b+c).$$

(ii) For $x \ge 0$ define $h(x) := x + \sqrt{a + bx} + c$. Then

$$h(h(x)) \le x + 2\sqrt{a+bx} + b/2 + \sqrt{bc} + 2c.$$

Proof of Theorem 4 The definition of $\hat{\mathcal{K}}_{n,\alpha}$ and Proposition 3 together entail that $\hat{\mathcal{K}}_{n,\alpha}$ contains $\mathcal{K}_n(\theta_n)$ with probability at least $1 - \alpha$. The assertion about $\kappa_{n,\alpha}$ is an immediate consequence of Theorem 2.

Now we verify the oracle inequalities (8) and (9). Let $\gamma_n := (4\|\theta_n\|^2 + 2n)^{1/2} \times \tau_n$. With γ_n^* we denote the function γ_n on \mathcal{T}_n corresponding to θ_n^* . Throughout this proof we use the shorthand notation $M_n(\ell, k) := M_n(\ell) - M_n(k)$ for $M_n = \hat{R}_n$, R_n , \hat{L}_n , L_n and arbitrary indices $\ell, k \in C_n$. Furthermore, $\gamma_n^*(\ell, k) := \gamma_n^*(k, \ell)$ if $\ell > k$, and $\gamma_n^*(k, k) := 0$.

In the subsequent arguments, $k_n := \min(\mathcal{K}_n(\theta_n))$, while *j* stands for a generic index in $\hat{\mathcal{K}}_{n,\alpha}$. The definition of the set $\hat{\mathcal{K}}_{n,\alpha}$ entails that

$$\hat{R}_n(j,k_n) \le \gamma_n^*(j,k_n) \left(\Gamma\left(\frac{|j-k_n|}{n}\right) + \kappa_{n,\alpha} \right) + O(\log n).$$
(26)

Combining this with the equation $R_n(j, k_n) = \hat{R}_n(j, k_n) - D_n(j, k_n)$ yields

$$R_n(j,k_n) \le \gamma_n^*(j,k_n) \left(\Gamma\left(\frac{j-k_n}{n}\right) + \kappa_{n,\alpha} \right) + O_p(\log n) + |D_n(j,k_n)|.$$
(27)

Since $\gamma_n^*(j, k_n)^2 \le 6n$ and $\max_{t \in \mathcal{T}_n} |D_n(t)| / \gamma_n(t) = O_p(\log n)$, (27) yields

$$R_n(j,k_n) \le \sqrt{12n} + \sqrt{6n} \kappa_{n,\alpha} + O_p(\log n)\gamma_n(j,k_n)$$

But elementary calculations yield

$$\gamma_n(j,k_n)^2 = \gamma_n^*(j,k_n)^2 + \operatorname{sign}(k_n - j)R_n(j,k_n) \le 6n + R_n(j,k_n).$$
(28)

Hence we may conclude that

$$R_n(j,k_n) \le O_p(\log n)\sqrt{R_n(j,k_n)} + O_p(\sqrt{n}(\log n + \kappa_{n,\alpha})),$$

and Lemma 8(i), applied to x = 0 and $y = R_n(j, k_n)$, yields

$$\max_{j \in \hat{\mathcal{K}}_{n,\alpha}} R_n(j,k_n) \le O_p(\sqrt{n}(\log n + \kappa_{n,\alpha})).$$
⁽²⁹⁾

This preliminary result allows us to restrict our attention to indices j in a certain subset of C_n : Since $0 \le R_n(n, k_n) = n - k_n - \sum_{i=k_n+1}^n \theta_{in}^2$,

$$\sum_{i=k_n+1}^n \theta_{in}^2 \le n-k_n.$$

On the other hand, in case of $j < k_n$, $R_n(j, k_n) = \sum_{i=j+1}^{k_n} \theta_{in}^2 - (k_n - j)$, so

$$\sum_{i=j+1}^{n} \theta_{in}^2 \le n + O_p(\sqrt{n}(\log n + \kappa_{n,\alpha})).$$

Thus if j_n denotes the smallest index $j \in C_n$ such that $\sum_{i=j+1}^n \theta_{in}^2 \leq 2n$, then $k_n \geq j_n$, and $\hat{\mathcal{K}}_{n,\alpha} \subset \{j_n, \ldots, n\}$ with asymptotic probability one, uniformly in $\alpha \geq \alpha(n)$. This allows us to restrict our attention to indices j in $\{j_n, \ldots, n\} \cap \hat{\mathcal{K}}_{n,\alpha}$. For any $\ell \geq j_n$, $D_n(\ell, k_n)$ involves only the restricted signal vector $(\theta_{in})_{i=j_n+1}^n$, and the proof of Theorem 2 entails that

$$\max_{j_n \le \ell \le n} \left(\frac{|D_n(\ell, k_n)|}{\gamma_n(\ell, k_n)} - \sqrt{2\log n} - \frac{2c\log n}{\gamma_n(\ell, k_n)} \right)^+ = O_p(1).$$

Thus we may deduce from (27) the simpler statement that with asymptotic probability one,

$$R_n(j,k_n) \le (\gamma_n^*(j,k_n) + \gamma_n(j,k_n))(\sqrt{2\log n} + \kappa_{n,\alpha} + O_p(1)) + O_p(\log n).$$
(30)

Now we need reasonable bounds for $\gamma_n^*(j,k_n)^2$ in terms of $R_n(j)$ and the minimal risk $\rho_n = R_n(k_n)$, where we start from the equation in (28): If $j < k_n$, then $\gamma_n(j, k_n)^2 = \gamma_n^*(j, k_n)^2 + 4R_n(j, k_n)$ and $\gamma_n^*(j, k_n)^2 = 6(k_n - j) \le 6\rho_n$. If $j > k_n$, then $\gamma_n^*(j, k_n)^2 = \gamma_n(j, k_n)^2 + 4R_n(j, k_n)$ and

$$\gamma_n(j,k_n)^2 = \sum_{i=k_n+1}^{J} (4\theta_{in}^2 + 2) \le 4\rho_n + 2R_n(j) = 6\rho_n + 2R_n(j,k_n).$$

Thus

$$\gamma_n^*(j,k_n) + \gamma_n(j,k_n) \le 2\sqrt{6}\sqrt{\rho_n} + (\sqrt{2} + \sqrt{6})\sqrt{R_n(j,k_n)},$$

and inequality (30) leads to

$$R_n(j, k_n) \le (4\sqrt{3}\sqrt{\log n} + 2\sqrt{6}\kappa_{n,\alpha} + O_p(1))\sqrt{\rho_n} + O_p(\sqrt{\log n} + \kappa_{n,\alpha})\sqrt{R_n(j, k_n)} + O_p(\log n)$$

for all $j \in \hat{\mathcal{K}}_{n,\alpha}$. Again we may employ Lemma 8 with x = 0 and $y = R_n(j, k_n)$ to conclude that

$$\max_{j \in \hat{\mathcal{K}}_{n,\alpha}} R_n(j,k_n) \le (4\sqrt{3}\sqrt{\log n} + 2\sqrt{6}\kappa_{n,\alpha} + O_p(1))\sqrt{\rho_n} + O_p((\log(n)^{3/4} + \kappa_{n,\alpha(n)}^{3/2})\rho_n^{1/4} + \log n + \kappa_{n,\alpha(n)}^2)$$

uniformly in $\alpha \ge \alpha(n)$. If $\log(n)^3 + \kappa_{n,\alpha(n)}^6 = O(\rho_n)$, then the previous bound for $R_n(j, k_n) = R_n(j) - \rho_n$ reads

$$\max_{j\in\hat{\mathcal{K}}_{n,\alpha}} R_n(j) \le \rho_n + (4\sqrt{3}\sqrt{\log n} + 2\sqrt{6}\kappa_{n,\alpha} + O_p(1))\sqrt{\rho_n}$$

uniformly in $\alpha > \alpha(n)$. On the other hand, if we consider just a fixed $\alpha > 0$, then $\kappa_{n,\alpha} = O(1)$, and the previous considerations yield

$$\max_{j \in \hat{\mathcal{K}}_{n,\alpha}} R_n(j) \le \rho_n + (4\sqrt{3} + o_p(1))\sqrt{\log(n)} \rho_n + O_p(\log(n)^{3/4}\rho_n^{1/4} + \log n) \le \rho_n + (4\sqrt{3} + o_p(1))\sqrt{\log(n)} \rho_n + O_p(\log n).$$

To verify the latter step, note that for any fixed $\epsilon > 0$,

$$\log(n)^{3/4} \rho_n^{1/4} \le \begin{cases} \epsilon^{-1} \log n & \text{if } \rho_n \le \epsilon^{-4} \log n, \\ \epsilon \sqrt{\log(n) \rho_n} & \text{if } \rho_n \ge \epsilon^{-4} \log n. \end{cases}$$

It remains to prove claim (9) about the losses. From now on, j denotes a generic index in C_n . Note first that

$$L_n(j,k_n) - R_n(j,k_n) = \sum_{i=j+1}^{k_n} (1 - \epsilon_{in}^2) = R_n(k_n,j) - L_n(k_n,j) \quad \text{if } j < k.$$

Thus Theorem 2, applied to $\theta_n = 0$, shows that

$$|L_n(j,k_n) - R_n(j,k_n)| \le \gamma_n^+(j,k_n)(\sqrt{2\log n} + O_p(1)) + O_p(\log n),$$

where

$$\gamma_n^+(j,k_n) := \sqrt{2|k_n - j|} \le \sqrt{2\rho_n} + \sqrt{2|R_n(j,k)|}$$

It follows from $L_n(0) = R_n(0) = \|\theta_n\|^2$ that $L_n(j) - \rho_n$ equals

$$L_{n}(j, k_{n}) + (L_{n} - R_{n})(k_{n}, 0)$$

= $R_{n}(j, k_{n}) + O_{p}(\sqrt{\log(n)\rho_{n}}) + O_{p}(\sqrt{\log n})\sqrt{R_{n}(j, k_{n})} + O_{p}(\log n)$
 $\geq O_{p}(\sqrt{\log(n)\rho_{n}} + \log n),$

because $R_n(j, k_n) \ge 0$ and $R_n(j, k_n) + O_p(r_n)\sqrt{R_n(j, k_n)} \ge O_p(r_n^2)$. Consequently, $\hat{\rho}_n := \min_{j \in C_n} L_n(j)$ satisfies the inequality

$$\hat{\rho}_n \ge \rho_n + O_p(\sqrt{\log(n)\rho_n} + \log n) = (\sqrt{\rho_n} + O_p(\sqrt{\log n}))^2,$$

and this entails that

$$\rho_n \le (\sqrt{\hat{\rho}_n} + O_p(\sqrt{\log n}))^2.$$

Now we restrict our attention to indices $j \in \hat{\mathcal{K}}_{n,\alpha}$ again. Here it follows from our result about the maximal risk over $\hat{\mathcal{K}}_{n,\alpha}$ that $L_n(j) - \rho_n$ equals

$$R_n(j,k_n) + O_p(\sqrt{\log(n)\rho_n}) + O_p(\sqrt{\log n})\sqrt{R_n(j,k_n)} + O_p(\log n)$$

$$\leq 2R_n(j,k_n) + O_p(\sqrt{\log(n)\rho_n} + \log n) \leq O_p(\sqrt{\log(n)\rho_n} + \log n).$$

Deringer

Hence $\max_{j \in \hat{\mathcal{K}}_{n,\alpha}} L_n(j)$ is not greater than

$$\rho_n + O_p(\sqrt{\log(n)\rho_n} + \log n) = (\sqrt{\rho_n} + O_p(\sqrt{\log n}))^2$$
$$\leq (\sqrt{\hat{\rho}_n} + O_p(\sqrt{\log n}))^2.$$

Proof of Theorem 5 The application of inequality (17) in Corollary 7 to the tripel $(|J|, T_n(J) - |J|, \alpha/(2M_n))$ in place of $(n, \hat{\delta}^2, \alpha)$ yields bounds for $\hat{\delta}^2_{n,\alpha,l}(J)$ and $\hat{\delta}^2_{n,\alpha,u}(J)$ in terms of $\hat{\delta}^2_n(J) := (T_n(J) - |J|)_+$. Then we apply (15–16) to $T_n(J)$, replacing (n, δ^2, u) with $(|J|, \delta^2_n(J), \alpha'/(2M_n))$ for any fixed $\alpha' \in (0, 1)$. By means of Lemma 8(ii) we obtain finally

$$\hat{\delta}_{n,\alpha,u}^{2}(J) - \delta_{n}^{2}(J) \\ \delta_{n}^{2}(J) - \hat{\delta}_{n,\alpha,l}^{2}(J) \\ + (K + o_{p}(1)) \log M_{n}$$

$$+ (K + o_{p}(1)) \log M_{n}$$

$$(31)$$

for all $J \in \mathcal{M}_n$. Here and throughout this proof, *K* denotes a generic constant not depending on *n*. Its value may be different in different expressions. It follows from the definition of the confidence region $\hat{\mathcal{K}}_{n,\alpha}$ that for arbitrary $C \in \hat{\mathcal{K}}_{n,\alpha}$ and $D \in \mathcal{C}_n$,

$$\begin{aligned} R_n(C) - R_n(D) &= \delta_n^2(D \setminus C) - \delta_n^2(C \ D) + |C| - |D| \\ &= (\delta_n^2 - \hat{\delta}_{n,\alpha,l}^2)(D \setminus C) + (\hat{\delta}_{n,\alpha,u}^2 - \delta_n^2)(C \setminus D) \\ &- (\hat{\delta}_{n,\alpha,u}^2(C \setminus D) - \hat{\delta}_{n,\alpha,l}^2(D \setminus C) + |D| - |C|) \\ &\le (\delta_n^2 - \hat{\delta}_{n,\alpha,l}^2)(D \setminus C) + (\hat{\delta}_{n,\alpha,u}^2 - \delta_n^2)(C \setminus D). \end{aligned}$$

Moreover, according to (31) the latter bound is not larger than

$$\begin{aligned} (1+o_p(1))\{\sqrt{(16|D\setminus C|+32\delta_n^2(D\setminus C))\log M_n} \\ +\sqrt{(16|C\setminus D|+32\delta_n^2(C\setminus D))\log M_n}\} + (K+o_p(1))\log M_n \\ &\leq (1+o_p(1))\sqrt{2(16|D|+32\delta_n^2(C^c)+16|C|+32\delta_n^2(D^c))\log M_n} \\ &+(K+o_p(1))\log M_n \\ &\leq 8\sqrt{(R_n(C)+R_n(D))\log M_n}(1+o_p(1)) + (K+o_p(1))\log M_n \end{aligned}$$

Thus we obtain the quadratic inequality

$$R_n(C) - R_n(D) \le 8\sqrt{(R_n(C) + R_n(D))\log M_n (1 + o_p(1))} + (K + o_p(1))\log M_n,$$

Deringer

and with Lemma 8 this leads to

$$R_n(C) \le R_n(D) + 8\sqrt{2}\sqrt{R_n(D)\log M_n}(1+o_p(1)) + (K+o_p(1))\log M_n.$$

This yields the assertion about the risks.

As for the losses, note that $L_n(\cdot)$ and $R_n(\cdot)$ are closely related in that

$$(L_n - R_n)(D) = \sum_{i \in D} \epsilon_{in}^2 - |J|$$

for arbitrary $D \in C_n$. Hence we may utilize (15–16), replacing (n, δ^2, u) with $(|D|, 0, \alpha'/(2\mu_n))$, to complement (31) with the following observation:

$$-A\sqrt{|D|\log M_n} \le L_n(D) - R_n(D) \le A\sqrt{|D|\log M_n} + A\log M_n$$
(32)

simultaneously for all $D \in C_n$ with probability tending to one as $n \to \infty$ and $A \to \infty$. Note also that (32) implies that $R_n(D) \le A\sqrt{R_n(D) \log M_n} + L_n(D)$. Hence

$$R_n(D) \le (3/2)(L_n(D) + A^2 \log M_n) \text{ for all } D \in \mathcal{C}_n,$$

by Lemma 8 (i). Assuming that both (31) and (32) hold for some large but fixed A, we may conclude that for arbitrary $C \in \hat{\mathcal{K}}_{n,\alpha}$ and $D \in \mathcal{C}_n$,

$$L_n(C) - L_n(D) = (L_n - R_n)(C) - (L_n - R_n)(D) + R_n(C) - R_n(D) \leq A\sqrt{2(|C| + |D|) \log M_n} + A\sqrt{2(R_n(C) + R_n(D)) \log M_n} + 4A \log M_n \leq 2A\sqrt{2(R_n(C) + R_n(D)) \log M_n} + 4A \log M_n \leq A'\sqrt{(L_n(C) + L_n(D)) \log M_n} + A'' \log M_n$$

for constants A' and A'' depending on A. Again this inequality entails that

$$L_n(C) \le L_n(D) + A' \sqrt{2L_n(D) \log M_n} + A''' \log M_n$$

for another constant A''' = A'''(A).

Acknowledgments This work was supported by the Swiss National Science Foundation. Constructive comments by two referees and an associate editor are gratefully acknowledged.

References

- 1. Baraud, Y.: Confidence balls in Gaussian regression. Ann. Stat. 32, 528–551 (2004)
- 2. Beran, R.: Confidence sets centered at Cp estimators. Ann. Inst. Stat. Math. 48, 1–15 (1996)
- Beran, R.: REACT scatterplot smoothers: superefficiency through basis economy. J. Am. Stat. Assoc. 95, 155–169 (2000)
- Beran, R., Dümbgen, L.: Modulation of estimators and confidence sets. Ann. Stat. 26, 1826– 1856 (1998)

- 5. Birgé, L., Massart, P.: Gaussian model selection. J. Eur. Math. Soc. 3, 203–268 (2001)
- Cai, T.T.: Adaptive wavelet estimation: a block thresholding and oracle inequality approach. Ann. Stat. 26, 1783–1799 (1999)
- Cai, T.T.: On block thresholding in wavelet regression: adaptivity, block size, and threshold level. Stat. Sin. 12, 1241–1273 (2002)
- 8. Cai, T.T., Low, M.G.: Adaptive confidence balls. Ann. Stat. 34, 202–228 (2006)
- 9. Cai, T.T., Low, M.G.: Adaptive estimation and confidence intervals for convex functions and monotone functions (2007) (manuscript in preparation)
- Dahlhaus, R., Polonik, W.: Nonparametric quasi-maximum likelihood estimation for Gaussian locally stationary processes. Ann. Stat. 34, 2790–2824 (2006)
- Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425– 455 (1994)
- Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. JASA 90, 1200–1224 (1995)
- Donoho, D.L., Johnstone, I.M.: Minimax estimation via wavelet shrinkage. Ann. Stat. 26, 879– 921 (1998)
- 14. Dümbgen, L.: Optimal confidence bands for shape-restricted curves. Bernoulli 9, 423–449 (2003)
- Dümbgen, L., Spokoiny, V.G.: Multiscale testing of qualitative hypotheses. Ann. Stat. 29, 124– 152 (2001)
- Dümbgen, L., Walther, G.: Multiscale inference about a density. Technical report 56, IMSV, University of Bern (2007)
- Efromovich, S.: Simultaneous sharp estimation of functions and their derivatives. Ann. Stat. 26, 273– 278 (1998)
- Genovese, C.R., Wassermann, L.: Confidence sets for nonparametric wavelet regression. Ann. Stat. 33, 698–729 (2005)
- 19. Giné, E., Nickl, R.: Confidence bands in density estimation. Ann. Stat. 38, 1122-1170 (2010)
- Hengartner, N.W., Stark, P.B.: Finite-sample confidence envelopes for shape-restricted densities. Ann. Stat. 23, 525–550 (1995)
- Hoffmann, M., Nickl, R.: On adaptive inference and confidence bands. Ann. Stat. 39, 2383–2409 (2011)
- Juditsky, A., Lambert-Lacroix, S.: Nonparametric confidence set estimation. Math. Methods Stat. 19, 410–428 (2003)
- Lepski, O.V., Mammen, E., Spokoiny, V.G.: Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Stat. 25, 929–947 (1997)
- 24. Li, K.-C.: Honest confidence regions for nonparametric regression. Ann. Stat. 17, 1001–1008 (1989)
- Polyak, B.T., Tsybakov, A.B.: Asymptotic optimality of the C_p-test for the orthogonal series estimation of regression. Theory Prob. Appl. 35, 293–306 (1991)
- 26. Robins, J., van der Vaart, A.: Adaptive nonparametric confidence sets. Ann. Stat. 34, 229–253 (2006)
- Rohde, A., Dümbgen, L.: Adaptive confidence sets for the optimal approximating model. Technical report 73, IMSV, Univ. of Bern (2009)
- Stone, C.J.: An asymptotically optimal window selection rule for kernel density estimates. Ann. Stat. 12, 1285–1297 (1984)