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Abstract We consider N × N Hermitian or symmetric random matrices with inde-
pendent entries. The distribution of the (i, j)-th matrix element is given by a probability
measure νi j whose first two moments coincide with those of the corresponding Gauss-
ian ensemble. We prove that the joint probability distribution of the components of
eigenvectors associated with eigenvalues close to the spectral edge agrees with that of
the corresponding Gaussian ensemble. For eigenvectors associated with bulk eigen-
values, the same conclusion holds provided the first four moments of the distribution
νi j coincide with those of the corresponding Gaussian ensemble. More generally, we
prove that the joint eigenvector–eigenvalue distributions near the spectral edge of two
generalized Wigner ensembles agree, provided that the first two moments of the entries
match and that one of the ensembles satisfies a level repulsion estimate. If in addition
the first four moments match then this result holds also in the bulk.
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1 Introduction

The universality of random matrices can be roughly divided into the bulk universality
in the interior of the spectrum and the edge universality near the spectral edge. Over the
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544 A. Knowles, J. Yin

past two decades, spectacular progress on bulk and edge universality has been made
for invariant ensembles, see e.g. [2,5,6,22] and [1,3,4] for a review. For non-invariant
ensembles with i.i.d. matrix elements (Standard Wigner ensembles), edge universality
can be proved via the moment method and its various generalizations; see e.g. [23–25].
In order to establish bulk universality, a new approach was developed in a series of
papers [9–12,14–17] based on three basic ingredients: (1) A local semicircle law—
a precise estimate of the local eigenvalue density down to energy scales containing
around N ε eigenvalues. (2) The eigenvalue distribution of Gaussian divisible ensem-
bles via an estimate on the rate of decay to local equilibrium of the Dyson Brownian
motion [7]. (3) A density argument which shows that for any probability distribution
there exists a Gaussian divisible distribution with identical eigenvalue statistics down
to scales 1/N . In [17], edge universality is established as a corollary of this approach. It
asserts that, near the spectral edge, the eigenvalue distributions of two generalized Wig-
ner ensembles are the same provided the first two moments of the two ensembles match.

Another approach to both bulk and edge universality was developed in [20,26,27].
Using this approach, the authors show that the eigenvalue distributions of two standard
Wigner ensembles are the same in the bulk, provided that the first four moments match.
They also prove a similar result at the edge, assuming that the first two moments match
and the third moments vanish.

In this paper, partly based on the approach of [17], we extend edge universality to
eigenvectors associated with eigenvalues near the spectral edge, assuming the match-
ing of the first two moments of the matrix entries. We prove that, under the same
two-moment condition as in [17], the edge eigenvectors of Hermitian and symmetric
Wigner matrices have the same joint distribution as those of the corresponding Gauss-
ian ensembles. The joint distribution of the eigenvectors of Gaussian ensembles is well
known and can be easily computed. More generally, we prove that near the spectral
edge the joint eigenvector–eigenvalue distributions of two generalized Wigner matrix
ensembles coincide provided that the first two moments of the ensembles match and
one of the ensembles satisfies a level repulsion condition.

We also prove similar results in the bulk, under the stronger assumption that the
first four moments of the two ensembles match. In particular, we extend the result of
[26] to cover the universality of bulk eigenvectors.

1.1 Setup

We now introduce the basic setup and notations. Let H ν ≡ H = (hi j )
N
i, j=1 be an

N × N Hermitian or symmetric matrix whose upper-triangular matrix elements hi j =
h̄ j i , i � j , are independent random variables with law νi j having mean zero and
variance σ 2

i j :

E hi j = 0, σ 2
i j := E|hi j |2. (1.1)

The law νi j and its variance σ 2
i j may depend on N , but we omit this fact in the notation.

We denote by B := (σ 2
i j )

N
i, j=1 the matrix of the variances. We shall always make the

following three assumptions on H .
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Eigenvector distribution of Wigner matrices 545

(A) For any fixed j we have

N∑

i=1

σ 2
i j = 1. (1.2)

Thus B is symmetric and doubly stochastic and, in particular, satisfies −1 �
B � 1.

(B) There exists constants δ− > 0 and δ+ > 0, independent of N , such that 1 is a
simple eigenvalue of B and

spec(B) ⊂ [−1 + δ−, 1 − δ+] ∪ {1}.
(C) There exists a constant C0, independent of N , such that σ 2

i j � C0 N−1 for all
i, j = 1, . . . , N .

Examples of matrices satisfying Assumptions (A)–(C) include Wigner matrices,
Wigner matrices whose diagonal elements are set to zero, generalized Wigner matri-
ces, and band matrices whose band width is of order cN for some c > 0. See [17],
Sect. 2, for more details on these examples.

In our normalization, the matrix entries hi j have a typical variance of order N−1.
It is well known that in this normalization the empirical eigenvalue density converges
to the Wigner semicircle law �sc(E) dE with density

�sc(E) := 1

2π

√
(4 − E2)+ for E ∈ R. (1.3)

In particular, the spectral edge is located at ±2. We denote the ordered eigenvalues of
H by λ1 � · · · � λN , and their associated eigenvectors by u1, . . . , uN . The eigen-
vectors are 	2-normalized. We use the notation uα = (uα(i))N

i=1 for the components
of the vector uα .

Our analysis relies on a notion of high probability which involves logarithmic fac-
tors of N . The following definitions introduce convenient shorthands.

Definition 1.1 We set L ≡ L N := A0 log log N for some fixed A0 as well as ϕ ≡
ϕN := (log N )log log N .

Definition 1.2 We say that an N -dependent event � holds with high probability if
P(�) � 1 − e−ϕc

for large enough N and some c > 0 independent of N .

A key assumption for our result is the following level repulsion condition, which
is in particular satisfied by the Gaussian ensembles (see Remark 1.5 below). Consider
a spectral window whose size is much smaller than the typical eigenvalue separation.
Roughly, the level repulsion condition says that the probability of finding more than
one eigenvalue in this window is much smaller than the probability of finding pre-
cisely one eigenvalue. In order to state the level repulsion condition, we introduce the
following counting function. For any E1 � E2 we denote the number of eigenvalues
in [E1, E2] by

N (E1, E2) := #{ j : E1 � λ j � E2}.
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546 A. Knowles, J. Yin

Definition 1.3 (Level repulsion at the edge) The ensemble H is said to satisfy level
repulsion at the edge if, for any C > 0, there is an α0 > 0 such that the following
holds. For any α satisfying 0 < α � α0 there exists a δ > 0 such that

P

(
N (E − N−2/3−α, E + N−2/3−α) � 2

)
� N−α−δ (1.4)

for all E satisfying |E + 2| � N−2/3ϕC

Definition 1.4 (Level repulsion in the bulk) The ensemble H is said to satisfy level
repulsion in the bulk if, for any κ > 0, there is an α0 > 0 such that the following
holds. For any α satisfying 0 < α � α0 there exists a δ > 0 such that

P

(
N (E − N−1−α, E + N−1−α) � 2

)
� N−α−δ (1.5)

for all E ∈ [−2 + κ, 2 − κ].
Remark 1.5 Both the Gaussian unitary ensemble (GUE) and the Gaussian orthogonal
ensemble (GOE) satisfy level repulsion in sense of Definitions 1.3 and 1.4. This can
be established for instance as follows; see [1], Sects. 3.5 and 3.7, and in particular
Lemmas 3.5.1 and 3.7.2, for full details. For GUE and GOE, the correlation functions
can be explicitly expressed in terms of Hermite polynomials. Using Laplace’s method,
one may then derive the large-N asymptotics of the correlation functions, from which
(1.4) and (1.5) immediately follow. (Note that in [1], the exponent of N in the error
estimates was not tracked in order to simplify the presentation.)

In the more general case of Wigner matrices, level repulsion in the bulk, (1.5),
was proved for matrices with smooth distributions in [11] and without a smoothness
assumption in [26].

We shall use the level repulsion condition of Definition 1.3 to estimate the prob-
ability of finding two eigenvalues closer to each other than the typical eigenvalue
separation. For definiteness, we formulate this estimate at the lower spectral edge −2.
By partitioning the interval

[
−2 − N−2/3ϕC ,−2 + N−2/3ϕC

]

into O(ϕC Nα) subintervals of size N−2/3−α , we get from (1.4) that for any sufficiently
small α there exists a δ > 0 such that

P

(
there exists E with |E + 2| � N−2/3ϕC such that

N (E − N−2/3−α, E + N−2/3−α) � 2
)

� N−δ. (1.6)

A similar result can be derived in the bulk using (1.5).

1.2 Results

Before stating our main results, we recall the definition of the classical eigenvalue
locations. Let
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Eigenvector distribution of Wigner matrices 547

nsc(E) :=
E∫

−∞
�sc(x)dx (1.7)

be the integrated distribution function of the semicircle law. We use γα ≡ γα,N to
denote the classical location of the α-th eigenvalue under the semicircle law, defined
through

nsc(γα) = α

N
. (1.8)

To avoid unnecessary technicalities in the presentation, we shall assume that the
entries hi j of H have uniform subexponential decay, i.e.

P(|hi j | � xσi j ) � ϑ−1 exp(−xϑ) (1.9)

where ϑ > 0 is some fixed constant. As observed in [8], Sect. 7, one may easily check
that all of our results hold provided the subexponential condition (1.9) is replaced with
the weaker assumption that there is a constant C such that

E
∣∣hi jσ

−1
i j

∣∣C0 � C,

where C0 is a large universal constant.
Our main result on the distributions of edge eigenvectors is the following theorem.

Theorem 1.6 (Universality of edge eigenvectors) Let Hv and Hw both satisfy
Assumptions (A)–(C) as well as the uniform subexponential decay condition (1.9).
Let E

v and E
w denote the expectations with respect to these collections of random

variables. Suppose that the level repulsion estimate (1.4) holds for the ensemble Hv.
Assume that the first two moments of the entries of Hv and Hw are the same, i.e.

E
vh̄l

i j h
u
i j = E

wh̄l
i j h

u
i j f or 0 � l + u � 2. (1.10)

Let ρ be a positive constant. Then for any integer k and any choice of indices i1, . . . ik,

j1, . . . , jk, β1, . . . βk and α1, . . . αk with min(|αl |, |αl − N |) + min(|βl |, |βl − N |) �
ϕ

ρ
N for all l we have

lim
N→∞

[
E

v − E
w]θ

(
N 2/3(λβ1 − γβ1), . . . , N 2/3(λβk − γβk ) ;

Nūα1(i1)uα1( j1), . . . , Nūαk (ik)uαk ( jk)
) = 0, (1.11)

where θ is a smooth function that satisfies

|∂nθ(x)| � C(1 + |x |)C (1.12)

for some arbitrary C and all n ∈ N
2k satisfying |n| � 3. The convergence is uniform

in all the parameters il , jl , αl , βl satisfying the above conditions.

Remark 1.7 The scaling in front of the arguments in (1.11) is the natural scaling
near the spectral edge. Indeed, for e.g. GUE or GOE it is known (see e.g. [1]) that
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(λβ − γβ) ∼ N−2/3 near the edge, and that uα(i) ∼ N 1/2 (complete delocalization
of eigenvectors).

Remark 1.8 The form (1.11) characterizes the distribution of the edge eigenvectors
completely. Choosing il = jl yields the modulus |uαl (il)|2; fixing il and varying jl
gives the relative phases of the entries of the vector uαl , which is only defined up to a
global phase.

Remark 1.9 Theorem 1.6 and Remark 1.5 imply that the joint eigenvector–eigenvalue
distribution of Hermitian Wigner matrices agrees with that of GUE. In the case of GUE,
it is well known that the joint distribution of the eigenvalues is given by the Airy kernel
[29]. The eigenvectors are independent of the eigenvalues, and the matrix (uα(i))α,i

of the eigenvector entries is distributed according to the Haar measure on the unitary
group U (N ). In particular, any eigenvector uα is uniformly distributed on the unit
(N − 1)-sphere.

Similarly, Theorem 1.6 and Remark 1.5 imply that the joint eigenvector–eigenvalue
distribution of symmetric Wigner matrices agrees with that of GOE. Results similar to
those outlined above on the eigenvector–eigenvalue distribution of GUE hold for GOE.

The universality of the eigenvalue distributions near the edge was already proved
in [17] under the assumption that the first two moments of the matrix entries match,
and in [27] under the additional assumption that the third moments vanish. Note that
Theorem 1.6 holds in a stronger sense than the result in [17]: it holds for probability
density functions, not just the distribution functions.

In the bulk, a result similar to Theorem 1.6 holds under the stronger assumption
that four, instead of two, moments of the matrix entries match.

Theorem 1.10 (Universality of bulk eigenvectors) Let Hv and Hw both satisfy
Assumptions (A)–(C) as well as the uniform subexponential decay condition (1.9).
Suppose that the level repulsion estimate (1.5) holds for the ensemble Hv. Suppose
moreover that the first four off-diagonal moments of H v and Hw are the same, i.e.

E
vh̄l

i j h
u
i j = E

wh̄l
i j h

u
i j for i 	= j and 0 � l + u � 4, (1.13)

and that the first two diagonal moments of Hv and Hw are the same, i.e.

E
vh̄l

i i h
u
i j = E

wh̄l
i i h

u
i j f or 0 � l + u � 2. (1.14)

Let ρ > 0 be fixed. Then for any integer k and any choice of indices i1, . . . ik,

j1, . . . , jk , as well as ρN � α1, . . . αk, β1, . . . , βk � (1 − ρ)N, we have

lim
N→∞

[
E

v − E
w]θ

(
N (λβ1 − γβ1), . . . , N (λβk − γβk ) ;

Nūα1(i1)uα1( j1), . . . , Nūαk (ik)uαk ( jk)
) = 0, (1.15)

where θ is a smooth function that satisfies

|∂nθ(x)| � C(1 + |x |)C (1.16)
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for some arbitrary C and all n ∈ N
2k satisfying |n| � 5. The convergence is uniform

in all the parameters il , jl , αl , βl satisfying the above conditions.

The universality restricted to the bulk eigenvalues only has been previously estab-
lished in several works. The following list provides a summary. Note that the small-
scale statistics of the eigenvalues may be studied using correlation functions, which
depend only on eigenvalue differences, or using joint distribution functions, as in (1.11)
and (1.15), which in addition contain information about the eigenvalue locations.

(i) In [17], bulk universality for generalized Wigner matrices was proved in the
sense that correlation functions of bulk eigenvalues, averaged over a spectral
window of size N ε, converge to those of the corresponding Gaussian ensemble.

(ii) In [26] the statement (1.15) on distribution functions, restricted to eigenvalues
only, was proved for Hermitian and symmetric Wigner matrices for the case
where the first four moments match as in (1.13).

(iii) For the case of Hermitian Wigner matrices with a finite Gaussian component,
it was proved in [19] that the correlation functions converge to those of GUE.

(iv) In [18], the joint distribution function of the eigenvalues of GUE was computed.
This result was extended to cover GOE in [21].

Note that (ii) and (iii) together imply the universality of the joint distribution of
eigenvalues for Hermitian Wigner matrices, for which the first three moments match
those of GUE and the distribution is supported on at least three points. Moreover,
combining (ii) and (iv) allows one to compute the eigenvalue distribution of Hermi-
tian and symmetric Wigner matrices, provided the four first moments match those of
GUE/GOE.

Thus, Theorem 1.15 extends the results of [17] to distribution functions of individ-
ual eigenvalues as well as to eigenvectors.

Remark 1.11 A while after this paper was posted online, a result similar to Theorem
1.10 appeared in [28]. Its proof relies on a different method. The hypotheses of [28] are
similar to those of Theorem 1.10, with the two following exceptions. The result of [28]
is restricted to Wigner matrices instead of the generalized Wigner matrices defined
by Assumptions (A)–(C). Moreover, in [28] the derivatives of the observable θ are
required to be uniformly bounded in x , where this uniform bound may grow slowly
with N . This latter restriction allows the authors of [28] to let k grow slowly with N .

While the results of [28] apply to eigenvectors near the spectral edge, the matching
of four moments (as in Theorem 1.10) is also required for this case. As shown in
Theorem 1.6, the universality of edge eigenvectors in fact only requires the first two
moments to match.

1.3 Outline of the proof

The main idea behind our proof is to express the eigenvector components using matrix
elements of the Green function G(z) = (H − z)−1. To this end, we use the identity

∑

β

η/π

(E − λβ)2 + η2 Nūβ(i)uβ( j)= N

2π i

(
Gi j (E + iη) − Gi j (E −iη)

)
, (1.17)
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where η > 0. Using a good control on the matrix elements of G(z), we may then
apply a Green function comparison argument (similar to the Lindeberg replacement
strategy) to complete the proof. For definiteness, let us consider a single eigenvalue
λα located close to the spectral edge −2.

In a first step, we write Nūα(i)uα( j) as an integral of (1.17) over an appropriately
chosen (random) domain, up to a negligible error term. We choose η in (1.17) to be
much smaller than the typical eigenvalue separation, i.e. we set η = N−2/3−ε for
some small ε > 0. Note that the fraction on the left-hand side of (1.17) is an approxi-
mate delta function on the scale η. Then the idea is to integrate (1.17) over the interval
[λα −ϕCη, λα +ϕCη] for some large enough constant C . For technical reasons related
to the Green function comparison (the third step below), it turns out to be advantageous
to replace the above interval with I := [λα−1 + ϕCη, λα + ϕCη]. Using eigenvalue
repulsion, we infer that, with sufficiently high probability, the eigenvalues λα−1 and
λα+1 are located at a distance greater than ϕCη from λα . Therefore the E-integration
over I of the right-hand side of (1.17) yields Nūα(i)uα( j) up to a negligible error term.

In a second step, we replace the sharp indicator function 1(E ∈ I) with a smoothed
indicator function expressed in terms of the Green function G. This is necessary for
the Green function comparison argument, which requires all H -dependence to be
expressed using Green functions. To that end, we choose a scale η̃ := N−2/3−6ε 
 η

and write

1(E ∈ I) ≈ q
[
Tr
(
1[EL ,E−ϕC η] ∗ θη̃

)
(H)

]
(1.18)

where the error is negligible. Here EL = −2−ϕC N−2/3, q is a smooth function equal
to 1 in the 1/3-neighbourhood of α − 1 and vanishing outside the 2/3-neighbourhood
of α − 1, and θη̃ is the approximate delta function defined in (2.16) below. Thanks to
the special form of the right-hand side of (2.16), we have θη(H) = 1

π
Im G(iη). Hence

the argument on right-hand side of (1.18) may be expressed as an integral over Green
functions. Thus we have expressed Nūα(i)uα( j) using matrix elements of G alone.
Note that the above choice of I was made precisely so as to make the right-hand side
of (1.18) a simple function of G.

In a third step, we use a Green function comparison argument to compare the dis-
tributions of Nūα(i)uα( j) under the two ensembles Hv and Hw. The basic strategy is
similar to [17], but requires a more involved analysis of the resolvent expansion. The
reason for this is that we need to exploit the smallness associated with off-diagonal
elements of G, which requires us to keep track of their number in the power counting.
This bookkeeping is complicated by the presence of the two fixed indices i and j .
Another important ingredient in the error estimates of the Green function comparison
argument is the restriction of the integration over E to a deterministic interval of size
ϕC N−2/3 around −2. This can be done with negligible errors using the eigenvalue
rigidity proved in [17]; see Theorem 2.2.

The above proof may be easily generalized to multiple eigenvector components as
well as to eigenvalues; this allows us to consider observables of the form given in
(1.11). The necessary changes are given in Sect. 4.

The proof for bulk eigenvectors is similar, with two major differences. At the edge,
the convolution integral on the right-hand side of (1.18) was over a domain of size
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ϕC N−2/3. If the same expression were used in the bulk, this size would be O(1) (since
E is separated from the spectral edge −2 by a distance of order O(1)), which is not
affordable in the error estimates. Instead, a more refined multiscale approach using the
Helffer–Sjöstrand functional calculus is required in order to rewrite the sharp indicator
function on the left-hand side of (1.18) in terms of Green functions. The second major
difference for bulk eigenvectors is the power counting in the Green function compar-
ison argument, which is in fact easier than at the edge. The main reason for this is that
the smallness associated with off-diagonal elements of G is not available in the bulk.
Hence we need to assume that four instead of two moments match, and the intricate
bookkeeping of the number of off-diagonal resolvent elements is not required. Thus,
thanks to the very strong assumption of four-moment matching, the proof of Theorem
1.10 is considerably simpler than that of Theorem 1.6. See Sect. 5 for a more detailed
explanation as well the proof.

Conventions. We shall use the letters C and c to denote generic positive constants,
which may depend on fixed quantities such as ϑ from (1.9), δ± from Assumption (B),
and C0 from Assumption (C). We use C for large constants and c for small constants.

2 Local semicircle law and rigidity of eigenvalues

In this preliminary section we collect the main tools we shall need for our proof. We
begin by introducing some notation and by recalling the basic results from [17] on the
local semicircle law and the rigidity of eigenvalues.

We define the Green function of H by

Gi j (z) =
(

1

H − z

)

i j
, (2.1)

where we the spectral parameter x = E + iη satisfies E ∈ R and η > 0. The Stieltjes
transform of the empirical eigenvalue distribution of H is defined as

m(z) := 1

N

∑

i

Gii (z) = 1

N
Tr

1

H − z
= 1

N

∑

α

1

λα − z
. (2.2)

Similarly, we define msc(z) as the Stieltjes transform of the local semicircle law:

msc(z) :=
∫

�sc(λ)dλ

λ − z
.

It is well known that msc(z) can also be characterized as the unique solution of

msc(z) + 1

z + msc(z)
= 0 (2.3)

with positive imaginary part for all z with Im z > 0. Thus,

msc(z) = −z + √
z2 − 4

2
, (2.4)
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where the square root function is chosen with a branch cut in the segment [−2, 2] so
that asymptotically

√
z2 − 4 ∼ z at infinity. This guarantees that the imaginary part

of msc is non-negative for η = Im z > 0 and in the limit η → 0.
In order to state the local semicircle law, we introduce the control parameters

�d := max
i

|Gii − msc|, �o := max
i 	= j

|Gi j |, � := |m − msc|, (2.5)

where the subscripts refer to “diagonal” and “off-diagonal” matrix elements. All these
quantities depend on the spectral parameter z and on N , but for simplicity we often
omit the explicit mention of this dependence from the notation. The following two
results were proved in [17].

Theorem 2.1 (Strong local semicircle law) Let H = (hi j ) be a Hermitian or symmet-
ric N × N random matrix satisfying Assumptions (A)–(C). Suppose that the distribu-
tions of the matrix elements hi j have a uniformly subexponential decay in the sense
of (1.9). Then there exist positive constants A0 > 1, C, c, and τ < 1, such that the
following estimates hold for L as in Definition 1.1 and for N � N0(ϑ, C0, δ±) large
enough.

(i) The Stieltjes transform of the empirical eigenvalue distribution of H satisfies

P

⎛

⎝
⋃

z∈SL

{
�(z) � (log N )4L

Nη

}⎞

⎠ � e−c(log N )τ L
, (2.6)

where

SL :=
{

z = E + iη : |E | � 5, N−1(log N )10L < η � 10
}
. (2.7)

(ii) The individual matrix elements of the Green function satisfy

P

⎛

⎝
⋃

z∈SL

{
�d(z)+�o(z)� (log N )4L

√
Im msc(z)

Nη
+ (log N )4L

Nη

}⎞

⎠�e−c(log N )τ L
.

(2.8)

(iii) The norm of H is bounded by 2 + N−2/3(log N )9L in the sense that

P

(
‖H‖ � 2 + N−2/3(log N )9L

)
� e−c(log N )τ L

. (2.9)

The local semicircle law implies that the eigenvalues are close to their classical
locations with high probability. Recall that λ1 � λ2 � · · · � λN are the ordered
eigenvalues of H . The classical location γα of the α-th eigenvalue was defined in (1.7).

Theorem 2.2 (Rigidity of eigenvalues) Under the assumptions of Theorem 2.1 there
exist positive constants A0 > 1, C, c, and τ < 1, depending only on ϑ in (1.9), δ± in
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Assumption (B), and C0 in Assumption (C), such that such that

P

{
∃α : |λα − γα|�(log N )L[min(α, N − α + 1)

]−1/3
N−2/3

}
�e−c(log N )τ L

,

(2.10)

where L is given in Definition 1.1.

A simple consequence of Theorem 2.1 is that the eigenvectors of H are completely
delocalized.

Theorem 2.3 (Complete delocalization of eigenvectors) Under the assumptions of
Theorem 2.1 we have

P

{
∃α, i : |uα(i)|2 � ϕC

N

}
� e−c(log N )τ L

(2.11)

for some positive constants C and c.

Proof Using (2.8) and (2.9) we have, with probability greater than 1 − e−c(log N )τ L
,

C � Im Gii (λα + iη) =
∑

β

η|uβ(i)|2
(λα − λβ)2 + η2 � |uα(i)|2

η
.

Choosing η = N−1(log N )20L yields the claim. ��

2.1 Stability of the level repulsion condition

In this section we prove that level repulsion, in the sense of (1.4) (respectively (1.5)),
holds for the ensemble Hw provided it holds for the ensemble Hv and the first two
(respectively four) moments of the entries of Hv and Hw match.

Proposition 2.4 (Stability of level repulsion at the edge) Let Hv and Hw both satisfy
Assumptions (A)–(C) as well as the uniform subexponential decay condition (1.9).
Assume moreover that the first two moments of the entries of Hv and Hw are the
same, in the sense of (1.10). If the level repulsion estimate (1.4) holds for Hv then it
holds for Hw.

Proposition 2.5 (Stability of level repulsion in the bulk) Let Hv and Hw both satisfy
Assumptions (A)–(C) as well as the uniform subexponential decay condition (1.9).
Assume moreover that the first four moments of the entries of Hv and Hw are the
same, in the sense of (1.13) and (1.14). If the level repulsion estimate (1.5) holds for
Hv then it holds for Hw.

The proofs of Propositions 2.4 and 2.5 are very similar. For definiteness, we give
the details for the edge case (Proposition 2.4). The rest of this section is devoted to the
proof of Proposition 2.4. The main tool is the following Green function comparison
theorem, which was proved in [17], Theorem 6.3.
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Lemma 2.6 (Green function comparison theorem at the edge) Suppose that the
assumptions of Theorem 2.1 hold for both ensembles Hv and Hw. Let F : R → R be
a function whose derivatives satisfy

max
x

∣∣F (n)(x)
∣∣(1 + |x |)−C1 � C1 for n = 1, 2, 3, 4, (2.12)

with some constant C1 > 0. Then there exists a constant ε0 > 0, depending only on
C1, such that for any ε < ε0 and for any real numbers E1 and E2 satisfying

|E1 + 2| � N−2/3+ε, |E2 + 2| � N−2/3+ε,

we have

∣∣∣∣∣∣∣

[
E

v − E
w]F

⎛

⎜⎝N

E2∫

E1

dy Im m
(
y + iN−2/3−ε

)
⎞

⎟⎠

∣∣∣∣∣∣∣
� C N−1/6+Cε (2.13)

and

∣∣∣
[
E

v − E
w]F

(
Nη Im m(E1 + iN−2/3+ε)

)∣∣∣ � C N−1/6+Cε, (2.14)

for some constant C and large enough N, depending only on C1, ϑ in (1.9), δ± in
Assumption (B), and C0 in Assumption (C).

The basic idea behind the proof of Proposition 2.4 is to first cast the level repulsion
estimate into an estimate in terms of Green functions and then use the Green function
comparison theorem. Recalling L from Definition 1.1, we set

EL := −2 − 2(log N )L N−2/3. (2.15)

For any E � EL let

χE := 1[EL ,E]

be the characteristic function of the interval [EL , E]. For any η > 0 we define the
approximate delta function θη on the scale η through

θη(x) := η

π(x2 + η2)
= 1

π
Im

1

x − iη
. (2.16)

The following result provides a tool for estimating the number operator using Green
functions. It is proved in [17], Lemma 6.1 and Corollary 6.2.
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Lemma 2.7 Suppose that the assumptions of Theorem 2.1 hold, and let A0 and τ be
as in Theorem 2.1. For any ε > 0, set 	1 := N−2/3−3ε and η := N−2/3−9ε. Then
there exist constants C, c such that, for any E satisfying

|E + 2|N 2/3 � 3

2
(log N )L , (2.17)

we have

∣∣Tr χE (H) − Tr χE ∗ θη(H)
∣∣ � C

(
N−2ε + N (E − 	1, E + 	1)

)
(2.18)

with high probability.
Moreover, let 	 := 1

2	1 N 2ε = 1
2 N−2/3−ε. Then under the above assumptions the

inequalities

Tr(χE−	 ∗ θη)(H) − N−ε � N (−∞, E) � Tr(χE+	 ∗ θη)(H) + N−ε (2.19)

hold with high probability.

After these preparations we may complete the proof of Proposition 2.4.
Proof of Proposition 2.4 Assume that Hv satisfies the level repulsion assumption (1.4)
with constant α0. We shall show that Hw satisfies also satisfies Definition (1.4) with
the same constant α0. Fix α satisfying 0 < α � α0, and let δ > 0 be as chosen so that
(1.4) holds for the ensemble Hv.

Abbreviate E± = E ± N−2/3−α and set ε := 2α. By using (2.19) for E = E+ and
E = E−, and subtracting the resulting two inequalities, we get, with high probability,

Tr(1[E−+	,E+−	] ∗ θη)(H) − 2N−ε � N (E−, E+)

� Tr(1[E−−	,E++	] ∗ θη)(H)+2N−ε. (2.20)

Let F be a nonnegative increasing smooth function satisfying F(x) = 1 for x � 2
and F(x) = 0 for x � 3/2. Then, using (2.20) and Lemma 2.6, we have

E
w F(N (E−, E+)) � E

w F
(
Tr(1[E−−	,E++	] ∗ θη)(H) + 2N−ε

)

� E
v F
(
Tr(1[E−−	,E++	] ∗ θη)(H)

)+ C N−ε + C N−1/6+Cε

� E
v F(N (E− − 2	, E+ + 2	) + N−ε) + C N−ε + C N−1/6+Cε

� N−α−δ + C N−ε + C N−1/6+Cε.

Since ε = 2α, we get that (1.4) holds for the ensemble Hw with exponent δ′ =
min{δ, α} > 0. ��
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3 Proof of Theorem 1.6

To simplify presentation, in this section we prove Theorem 1.6 in the special case
θ = θ

(
Nūα(i)uα( j)

)
, where α � ϕρ . The proof of the general case is analogous; see

Sect. 4 for more details.
In a first step we convert the eigenvector problem into a problem involving the

Green function Gi j . To that end, we define

G̃i j (z) := 1

2i

(
Gi j (z) − Gi j (z̄)

) = η
∑

k

Gik(z)G jk(z), (3.1)

where the second equality follows easily by spectral decomposition, Gi j (z) =
∑

β
ūβ(i)uβ( j)

λβ−z . Note that

G̃i j (E + iη) =
∑

β

η

(E − λβ)2 + η2 ūβ(i)uβ( j)

as well as Im Gii (z) = G̃ii (z). It is a triviality that all of the results from Sect. 2 hold
with z replaced with z̄.

The following lemma expresses the eigenvector components as an integral of the
Green function over an appropriate random interval.

Lemma 3.1 Under the assumptions of Theorem 1.6, for any ε > 0 there exist con-
stants C1, C2 such that for η = N−2/3−ε we have

lim
N→∞ max

α�ϕρ
max

i, j

⎧
⎨

⎩E
uθ (Nūα(i)uα( j))

− E
uθ

⎡

⎣N

π

∫

I

G̃i j (E + iη)1(λα−1 � E− � λα)dE

⎤

⎦

⎫
⎬

⎭ = 0, (3.2)

where

E± := E ± ϕC1η, I :=
[
−2 − N−2/3ϕC2 ,−2 + N−2/3ϕC2

]
(3.3)

and we introduce the convention λ0 := −∞. Here u stands for either v or w.

Proof We shall fix i, j and α � ϕρ ; it is easy to check that all constants in the following
are uniform in i, j , and α � ϕρ . We write

ūα(i)uα( j) = η

π

∫
ūα(i)uα( j)

(E − λα)2 + η2 dE . (3.4)
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Using Theorem 2.3 it is easy to prove that for C1 large enough we have

ūα(i)uα( j) = η

π

b∫

a

ūα(i)uα( j)

(E − λα)2 + η2 dE + O

(
1

NϕC1/2

)
(3.5)

holds with high probability for some c > 0, as long as

a � λ−
α , b � λ+

α , (3.6)

where we use the notation (3.3), i.e. λ±
α := λα ± ϕC1η. We now choose

a := min{λ−
α , λ+

α−1}, b := λ+
α .

By the assumption on θ and using Theorem 2.3, we therefore find

E
uθ
(
Nūα(i)uα( j)

) = E
uθ

⎛

⎝Nη

π

b∫

a

ūα(i)uα( j)

(E − λα)2 + η2 dE

⎞

⎠+ o(1). (3.7)

Now we split

b∫

a

dE =
λ+

α∫

λ+
α−1

dE + 1(λ+
α−1 > λ−

α )

λ+
α−1∫

λ−
α

dE

to get

E
uθ
(
Nūα(i)uα( j)

) = E
uθ

⎛

⎜⎜⎝
Nη

π

λ+
α∫

λ+
α−1

ūα(i)uα( j)

(E − λα)2 + η2 dE

⎞

⎟⎟⎠

+O
(
ϕC0E

u1(λ+
α−1 > λ−

α )
)+ o(1) (3.8)

for some constant C0, where we used Theorem 2.3 and the assumption on θ . Now the
level repulsion estimate (1.6) implies that the second term of (3.8) is o(1). We now
observe that, by (2.10), we have λ+

α � −2 + N−2/3ϕC2 and λ+
α−1 � −2 − N−2/3ϕC2

with high probability. It therefore easy to see that

E
uθ
(
Nūα(i)uα( j)

) = E
uθ

⎛

⎝Nη

π

∫

I

ūα(i)uα( j)

(E − λα)2 + η2 1(λα−1 � E− � λα)dE

⎞

⎠

+o(1). (3.9)
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Next, we replace the integrand in (3.9) by G̃i j (E + iη). By definition, we have

1

η
G̃i j (E + iη) =

∑

β 	=α

ūβ(i)uβ( j)

(E − λβ)2 + η2 + ūα(i)uα( j)

(E − λα)2 + η2 . (3.10)

In order to be able to apply the mean value theorem to θ with the decomposition (3.10),
we need an upper bound on

∑

β

Nη

π

∫

I

|ūβ(i)uβ( j)|
(E −λβ)2 + η2 dE � ϕC0+C3 +ϕC0

∑

β�ϕC3

∫

I

η

(E − λβ)2 + η2 dE,

(3.11)

where the inequality holds with high probability for any C3; here we used Theorem
2.3. Using γβ � −2 + c(β/N )2/3 as well as (2.10), we find with high probability for
large enough C3

ϕC0
∑

β�ϕC3

∫

I

η

(E − λβ)2 + η2 dE � ϕC0+C2 N−2/3
∑

β�ϕC3

η

(β/N )4/3 � N−ε/2.

(3.12)

Thus the left-hand side of (3.11) is bounded by ϕC0+C3+1.
Let us abbreviate χ(E) := 1(λα−1 � E− � λα). Now, recalling the assumption

on θ , we may apply the mean value theorem as well as Theorem 2.3 to get

∣∣∣∣∣∣
E

uθ

⎛

⎝Nη

π

∫

I

ūα(i)uα( j)

(E − λα)2 + η2 χ(E)dE

⎞

⎠−E
uθ

⎛

⎝N

π

∫

I

G̃i j (E +iη)χ(E)dE

⎞

⎠

∣∣∣∣∣∣

� ϕC̃
E

u
∑

β 	=α

Nη

π

∫

I

|ūβ(i)uβ( j)|
(E − λβ)2 + η2 χ(E)dE (3.13)

for some constant C̃ � C(C0 + C3 + 1) independent of C1. We now estimate the
right-hand side of (3.13). Exactly as in (3.12), one finds that there exists C4 such that
the contribution of β � ϕC4 to the right-hand side of (3.13) vanishes in the limit
N → ∞. Next, we deal with the eigenvalues β < α (in the case α > 1). Using
Theorem 2.3 we get

∑

β<α

Nη

π
E

u
∫

I

|ūβ(i)uβ( j)|
(E −λβ)2+η2 χ(E)dE �ϕC

E
u

∞∫

λ+
α−1

η

(E − λα−1)2+η2 dE � ϕ−C̃−c,

where c > 0 for C1 large enough.
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What remains is the estimate of the terms α < β � ϕC4 in (3.13). For a given
constant C5 > 0 we partition I = I1 ∪ I2 with I1 ∩ I2 = ∅ and

I1 :=
{

E ∈ I : ∃β, α < β � ϕC4 , |E − λβ | � ηϕC5
}
. (3.14)

It is easy to see that, for large enough C5, we have

∑

β : α<β�ϕC4

Nη

π
E

u
∫

I2

|ūβ(i)uβ( j)|
(E − λβ)2 + η2 χ(E)dE � ϕ−C̃−c

where c > 0. Let us therefore consider the integral over I1. One readily finds, for
λα � λα+1 � λβ , that

1

(E −λβ)2 + η2 1(E− � λα) � ϕ2C1

(λβ − λα)2 + η2 � ϕ2C1

(λα+1 − λα)2 + η2 . (3.15)

From Theorem 2.3 we therefore find that there exists a constant C6, depending on C1,
such that

∑

β : α<β�ϕC4

Nη

π
E

u
∫

I1

|ūβ(i)uβ( j)|
(E − λβ)2 + η2 χ(E)dE � ϕC6E

u η2

(λα+1 − λα)2 + η2 .

(3.16)

The right-hand side of (3.16) is bounded by E
u1(|λα+1 − λα| � N−1/3η1/2) +

O(N−ε). Using (1.6) we now obtain

∑

β : α<β�ϕC4

Nη

π
E

u
∫

I1

|ūβ(i)uβ( j)|
(E − λβ)2 + η2 χ(E)dE � ϕ−C̃−c (3.17)

where c > 0. This concludes the proof. ��
In a second step we convert the cutoff function in lemma 3.1 into a function of G̃i j .

Lemma 3.2 Recall the definition (2.16) of the approximate delta function θη on the
scale η. Let α � ϕρ and q ≡ qα : R → R+ be a smooth cutoff function concentrated
around α − 1, satisfying

q(x) = 1 if |x − α + 1| � 1/3, q(x) = 0 if |x − α + 1| � 2/3.

Let

χ := 1[EL ,E−], EL := −2 − 2N−2/3(log N )L (3.18)
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where

η := N−2/3−ε, η̃ := N−2/3−6ε (3.19)

for ε > 0. Then for ε small enough we have (recall the Definition (3.3))

lim
N→∞ max

α�ϕρ
max

i, j

⎧
⎨

⎩E
uθ
(
Nūα(i)uα( j)

)

−E
uθ

⎡

⎣N

π

∫

I

G̃i j (E + iη)q
[
Tr(χ ∗ θη̃)(H)

]
dE

⎤

⎦

⎫
⎬

⎭ = 0. (3.20)

Here u stands for either v or w.

Proof Note first that

N

π

∫

I

G̃i j (E + iη)1(λα−1 � E− � λα)dE

= N

π

∫

I

G̃i j (E + iη)1
(N (−∞, E−) = α − 1

)
dE

= N

π

∫

I

G̃i j (E + iη)q
[
Tr χ(H)

]
dE

with high probability.
Next, recall that (2.18) asserts that for 	 = N−2/3−2ε we have

∣∣Tr χ(H) − Tr(χ ∗ θη̃)(H)
∣∣ � C

(
N−ε + N (E− − 	, E− + 	)

)
(3.21)

with high probability for sufficiently large N . We therefore find that
∣∣∣∣∣∣

N

π

∫

I

G̃i j (E + iη)1
(
λα−1 � E− � λα

)
dE

− N

π

∫

I

G̃i j (E + iη)q
[
Tr(χ ∗ θη̃)(H)

]
dE

∣∣∣∣∣∣

� C N
N∑

β=1

∫

I

∣∣G̃i j (E + iη)
∣∣1(|E− − λβ | � 	)dE + ϕC N−ε

� C N
ϕC∑

β=1

∫

I

∣∣G̃i j (E + iη)
∣∣1(|E− − λβ | � 	)dE + ϕC N−ε

� CϕC N	 sup
E∈I

|G̃i j (E + iη)| + ϕC N−ε
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holds with high probability, where in the first inequality we estimated the integral∫
I |G̃i j (E + iη)|dE exactly as (3.11), and in the second inequality we used (2.10).

Using the definition of I and (2.8) we get

sup
E∈I

|G̃i j (E + iη)| � ϕC
(

N−1/3 + N−2/3η−1/2 + N−1η−1
)

� N−1/3+ε.

Together with (3.2), the claim follows. ��
In a third and final step, we use the Green function comparison method to show the

following statement.

Lemma 3.3 Under the assumptions of Lemma 3.2, we have

lim
N→∞ max

i, j

(
E

v − E
w)θ

⎡

⎣N

π

∫

I

G̃i j (E + iη)q
[
Tr(χ ∗ θη̃)(H)

]
dE

⎤

⎦ = 0.

The rest of this section is devoted to the proof of Lemma 3.3.

3.1 Green function comparison: proof of Lemma 3.3

The claimed uniformity in i and j is easy to check in our proof, and we shall not
mention it anymore. Throughout the following we rename i = α and j = β in order
to use i and j as summation indices. We now fix α and β for the whole proof. (Note
that α and β need not be different.)

We use the identity (see (3.1))

G̃i j (z) = (Im z)
∑

k

Xi j,k(z), Xi j,k(z) := Gik(z)G jk(z). (3.22)

We begin by dropping the diagonal terms in (3.22).

Lemma 3.4 For small enough ε > 0 we have

E
uθ

⎡

⎣N

π

∫

I

G̃αβ(E +iη)q
[
Tr(χ ∗ θη̃)(H)

]
dE

⎤

⎦−E
uθ

⎡

⎣
∫

I

x(E)q(y(E))dE

⎤

⎦=o(1),

(3.23)

where u stands for either v or w, and

x(E) := Nη

π

∑

k 	=α,β

Xαβ,k(E + iη), y(E) := η̃

E−∫

EL

∑

i 	=k

Xii,k(Ẽ + iη̃)dẼ .

(3.24)
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Proof We estimate

∣∣∣∣
N

π
G̃αβ(E + iη) − x(E)

∣∣∣∣ � ϕC Nη � ϕC N 1/3−ε

with high probability and, recalling that q ′ is bounded,

∣∣q
[
Tr(χ ∗ θη̃)(H)

]− y(E)
∣∣ � ϕC η̃N N−2/3 � ϕC N−1/3−6ε

with high probability. Therefore the difference of the arguments of θ in (3.23) is
bounded by ϕC N−1/3−ε with high probability. (Recall that |I | � ϕC N−2/3.) More-
over, since q is bounded, it is easy to see that both arguments of θ in (3.23) are bounded
with high probability by

ϕC NηN−2/3
(

1 + N sup
E∈I

�2
0(E + iη)

)
� ϕC N ε,

where we used Theorem 2.1. The claim now follows from the mean value theorem
and the assumption on θ . ��

For the following we work on the product probability space of the ensembles Hv

and Hw. To distinguish them we denote the elements of Hv by N 1/2vi j and the ele-
ments of Hw by N−1/2wi j . We fix a bijective ordering map � on the index set of the
independent matrix elements,

� : {(i, j) : 1 � i � j � N } → {1, . . . , γmax}, γmax := N (N + 1)

2
,

and denote by Hγ the generalized Wigner matrix whose matrix elements hi j follow the
v-distribution if �(i, j) � γ and the w-distribution otherwise. In particular, H0 = Hv

and Hγmax = Hw. Hence

[
E

v − E
w]θ

⎡

⎣
∫

I

x(E)q(y(E))dE

⎤

⎦

=
γmax∑

γ=1

[
E

(Hγ−1) − E
(Hγ )

]
θ

⎡

⎣
∫

I

x(E)q(y(E))dE

⎤

⎦ (3.25)

(in self-explanatory notation).
Let us now fix a γ and let (a, b) be determined by �(a, b) = γ . Throughout the

following we consider α, β, a, b to be arbitrary but fixed and often omit dependence
on them from the notation. Our strategy is to compare Hγ−1 with Hγ for each γ . In
the end we shall sum up the differences in the telescopic sum (3.25).
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Note that Hγ−1 and Hγ differ only in the matrix elements indexed by (a, b) and
(b, a). Let E (i j) denote the matrix whose matrix elements are zero everywhere except
at position (i, j) where it is 1; in other words, E (i j)

k	 = δikδ j	. Thus we have

Hγ−1 = Q + 1√
N

V, V := vab E (ab) + vba E (ba),

Hγ = Q + 1√
N

W, W := wab E (ab) + wba E (ba). (3.26)

Here Q is the matrix obtained from Hγ (or, equivalently, from Hγ−1) by setting
the matrix elements indexed by (a, b) and (b, a) to zero. Next, we define the Green
functions

R := 1

Q − z
, S := 1

Hγ−1 − z
. (3.27)

We shall show that the difference between the expectation E
(Hγ−1) and E

(Q) depends
only on the second moments of vab, up to an error term that is affordable even after
summation over γ . Together with same argument applied to E

(Hγ ), and the fact that
the second moments of vab and wab are identical, this will prove Lemma 3.3.

For the estimates we need the following basic result, proved in [17] (Eq. 6.32).

Lemma 3.5 For any η′ := N−2/3−δ we have with high probability

sup
E�N−2/3+ε

max
i, j

∣∣Ri j (E + iη′) − δi j msc(E + iη′)
∣∣ � �δ := N−1/3+2δ.

The same estimates hold for S instead of R.

Our comparison is based on the resolvent expansion

S = R−N−1/2 RV R + N−1(RV )2 R−N−3/2(RV )3 R + N−2(RV )4S. (3.28)

Using Lemma 3.5 we easily get with high probability, for i 	= j ,

|Si j − Ri j | � ϕC N−1/2�2−r
ε where r := 1(i ∈ {a, b}) + 1( j ∈ {a, b}).

(3.29)

Defining

�Xi j,k := Sik S jk − Rik R jk, (3.30)

we therefore have the trivial bound with high probability

∣∣�Xi j,k
∣∣ � ϕC N−1/2�3−s

ε (k 	= i, j), (3.31)
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where we abbreviated

s := max
{

1(i ∈ {a, b}) + 1(k ∈ {a, b}), 1( j ∈ {a, b}) + 1(k ∈ {a, b})
}

= 1
({i, j} ∩ {a, b} 	= ∅)+ 1(k ∈ {a, b}). (3.32)

The variable s counts the maximum number of diagonal resolvent matrix elements in
�Xi j,k . The bookkeeping of s will play a crucial role in our proof, since the small-
ness associated with off-diagonal elements (see Lemma 3.5) is needed to control the
resolvent expansion (3.28) under the two-moment matching assumption.

From now on it is convenient to modify slightly our notation, and to write EF(Hγ )

instead of E
(Hγ )F(H). We also use Eab to denote partial expectation obtained by

integrating out the variables vab and wab.
By applying (3.28) to (3.30) and taking the partial expectation Eab, one finds, as

above, that there exists a random variable A1, which depends on the randomness only
through Q and the first two moments of vab, such that for k 	= i, j and s as in(3.32)
we have with high probability

∣∣Eab�Xi j,k − A1
∣∣ � ϕC N−3/2�3−s

ε . (3.33)

Using this bound we may estimate

�x(E) := x S(E) − x R(E), �y(E) := yS(E) − y R(E), (3.34)

with the convention that a superscript S denotes a quantity defined in terms of the
matrix Hγ−1, and a superscript R a quantity defined in terms of the matrix Q.

Lemma 3.6 For fixed α, β, a, b there exists a random variable A, which depends on
the randomness only through Q and the first two moments of vab, such that

Eθ

⎡

⎣
∫

I

x S(E)q
(
yS(E)

)
dE

⎤

⎦− Eθ

⎡

⎣
∫

I

x R(E)q
(
y R(E)

)
dE

⎤

⎦

= A + o
(
N−2+t + N−2+1(a=b)

)
, (3.35)

where t := |{a, b} ∩ {α, β}|.
Before proving Lemma 3.6, we show how it implies Lemma 3.3.

Proof of Lemma 3.3 It suffices to prove that each summand in (3.25) is bounded by
o
(
N−2+t + N−2+1(a=b)

)
. This follows immediately by applying Lemma 3.6 to S =

(Hγ−1 − z)−1 and S′ := (Hγ − z)−1 and subtracting the statements; note that the
random variables A in the statement of Lemma 3.6 are by definition the same for S
and S′. ��
Proof of Lemma 3.6 Throughout the proof of Lemma 3.6 we shall abbreviate H ≡
Hγ−1 = (hi j ), as well as S ≡ S(z) = (H − z)−1.
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Since E ∈ I (recall (3.3)) we get from Theorem 2.1 that with high probability

|x(E)| � ϕC N 2η�2
ε � N Cε

η
, (3.36)

which implies

∫

I

|x(E)|dE � N Cε. (3.37)

Here we adopt the convention that if x or y appears without a superscript, the claim
holds for both superscripts R and S. Similarly, we find with high probability

|y(E)| � η̃ϕC N−2/3 N 2�2
6ε � N Cε. (3.38)

Next, in the definition of x(E) and y(E) we condition on the variable s defined in
(3.32) by introducing, for s = 0, 1, 2,

xs(E) := Nη

π

∑

k 	=α,β

Xαβ,k(E + iη)1
(

s = 1
({α, β} ∩ {a, b} 	= ∅)+ 1(k ∈ {a, b})

)
,

ys(E) := η̃

E−∫

EL

∑

i 	=k

Xii,k(Ẽ + iη̃)dẼ1
(

s = 1(i ∈ {a, b}) + 1(k ∈ {a, b})
)
.

As above, s is a bookkeeping index that bounds the number of diagonal resolvent
matrix elements appearing in the resolvent expansion.

We abbreviate �xs(E) := x S
s (E)−x R

s (E) and �ys(E) = yS
s (E)− y R

s (E). Recall-
ing the definition t = |{a, b} ∩ {α, β}|, we find with high probability

|�xs(E)| � ϕC NηN−1/2�3−s
ε N 1(s=1(t>0)) � ηs−2

N 3/2−t−Cε
, (3.39)

where we used Theorem 2.1 and the elementary inequality s+1
(
s = 1(t > 0)

)
� t+1

which holds if xs(E) 	= 0. Thus we get with high probability

∫

I

|�xs(E)|dE � ηs−1

N 3/2−t−Cε
= N−5/6 N−2s/3+t+Cε. (3.40)

Now we may argue similarly to (3.33). We find that, for any E-dependent random
variable f ≡ f (E) independent of hab, there exists a random variable A2, which
depends on the randomness only through Q, f , and the first two moments of hab, such
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that with high probability
∣∣∣∣∣∣

∫

I

(Eab�xs(E)) f (E)dE − A2

∣∣∣∣∣∣
1(�) � ‖ f 1(�)‖∞N−11/6 N−2s/3+t+Cε,

(3.41)

where � is any event. Note that, as in (3.33), we find that (3.41) is suppressed by a
factor N−1 compared to (3.31). This may be easily understood, as the leading order
error term in the resolvent expansion of (3.31) is of order 1 in H , whereas the leading
order error term in (3.41) is of order 3 in H . These error terms have the same number
of off-diagonal elements (estimated using Lemma 3.5), and the same entropy factor
of the summation indices.

We may derive similar bounds for ys(E). As in (3.31), we have with high probability

|�ys(E)| � ϕC η̃N−2/3 N 2−s N−1/2�3−s
6ε � N−5/6 N−2s/3+Cε. (3.42)

Furthermore, we find that there exists an E-dependent random variable A3(E), which
depends on the randomness only through Q and the first two moments of hab, such
that with high probability

∣∣∣E(Hγ−1)

ab �ys(E) − A3(E)

∣∣∣ � N−11/6 N−2s/3+Cε. (3.43)

After these preparations, we may now estimate the error resulting from setting hab

to zero in the expression Eθ
[∫

I x(E)q(y(E))dE
]
. Recalling the conditioning over

s = 0, 1, 2, we find

θ

⎡

⎣
∫

I

x Sq(yS)dE

⎤

⎦

=θ

⎡

⎣
∫

I

(
x R + �x0 + �x1 + �x2

)
q
(

y R + �y0 + �y1 + �y2

)
dE

⎤

⎦ ;

here and in the following we omit the argument E unless it is needed. Using (3.42)
we have with high probability

θ

⎡

⎣
∫

I

(
x R + �x0 + �x1 + �x2

)
q
(

y R + �y0 + �y1 + �y2

)
dE

⎤

⎦

= θ

⎡

⎣
∫

I

(
x R + �x0 + �x1 + �x2

) (
q(y R) + q ′(y R) (�y0 + �y1)

+ q ′′(y R)(�y0)
2
)

dE

⎤

⎦+ o(N−2).
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The use of the mean value theorem for ε small enough is easy to justify using the
assumption on θ and the bounds (3.37) and (3.38). In the following we shall no longer
mention such estimates of the argument of derivatives of θ , which can always be easily
checked in a similar fashion.

Recall that an error of order o(N−2+t ) is affordable in the error estimate. Thus,
using the basic power counting given by (3.37), (3.38), (3.40), and (3.42), we find
with high probability

θ

⎡

⎣
∫

I

x Sq(yS)dE

⎤

⎦− θ

⎡

⎣
∫

I

x Rq(y R)dE

⎤

⎦ = θ ′
⎡

⎣
∫

I

x Rq(y R)dE

⎤

⎦

×
⎡

⎣
∫

I

(
(�x0 + �x1) q(y R) + x Rq ′(y R) (�y0 + �y1)

+�x0q ′(y R)�y0 + x Rq ′′(y R)(�y0)
2
)

dE

⎤

⎦

+1

2
θ ′′
⎡

⎣
∫

I

x Rq(y R)dE

⎤

⎦

⎡

⎣
∫

I

(
�x0q(y R)+x Rq ′(y R)�y0

)
dE

⎤

⎦
2

+o(N−2+t ).

(3.44)

We now start dealing with the individual terms on the right-hand side of (3.44).
First, we consider the terms containing �x1 and �y1. Applying (3.41) and (3.43)

we find that there exists a random variable A4, which depends on the randomness only
through Q and the first two moments of hab, such that

∣∣∣∣∣∣
Eab

∫

I

(
�x1q(y R) + x Rq ′(y R)�y1

)
dE − A4

∣∣∣∣∣∣
= o(N−2+t ) (3.45)

with high probability. Inserting this into (3.44), we find with high probability

Eabθ

⎡

⎣
∫

I

x Sq(yS)dE

⎤

⎦− Eabθ

⎡

⎣
∫

I

x Rq(y R)dE

⎤

⎦

= Eabθ
′
⎡

⎣
∫

I

x Rq(y R)dE

⎤

⎦×
⎡

⎣
∫

I

(
�x0q(y R)

+x Rq ′(y R)�y0 + �x0q ′(y R)�y0 + x Rq ′′(y R)(�y0)
2
)

dE

⎤

⎦
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+1

2
Eabθ

′′
⎡

⎣
∫

I

x Rq(y R)dE

⎤

⎦

⎡

⎣
∫

I

(
�x0q(y R) + x Rq ′(y R)�y0

)
dE

⎤

⎦
2

+A4 + o(N−2+t ). (3.46)

Thus we only need to focus on the error terms �x0 and �y0. Note that we have

�x0(E) = 1(t = 0)
Nη

π

∑

k 	=α,β,a,b

�Xαβ,k(E + iη) (3.47)

�y0(E) = η̃

E−∫

EL

dẼ
∑

i 	=k

1(i, k /∈ {a, b})�Xii,k(Ẽ + iη̃). (3.48)

Recall that the (i, j)-component of the resolvent expansion (3.28) reads

Si j =
(

R−N−1/2 RV R+N−1(RV )2 R−N−3/2(RV )3 R+N−2(RV )4S
)

i j
. (3.49)

Now we assume that i 	= j and |{i, j} ∩ {a, b}| = 0. It is easy to see that this assump-
tion holds for any matrix element in the formulas (3.47) and (3.48). Then we can use
Lemma 3.5 to estimate the m-th term as follows:
∣∣∣N−m/2[(RV )m R

]
i j

∣∣∣ � N−m/2+Cε N−2/3,

∣∣∣N−2[(RV )4S
]

i j

∣∣∣ � N−8/3+Cε,

(3.50)

with high probability.
Next, we apply the resolvent expansion to Xi j,k . Note that in our applications errors

of size O(N−8/3−c) are affordable in �Xi j,k for some c > 0 independent of ε (see
(3.23) and (3.24)). Now let us assume that the indices i, j, a, b, k satisfy the condition

(∗) {i, j} ∩ {a, b} = ∅ and k 	= i, j, a, b.

In the applications we shall set i = α and j = β in (3.47), and i = j in (3.48). In both
cases, it is easy to check that the condition (∗) is satisfied for nonvanishing summands.

We can therefore separate �Xi j,k into three parts, indexed according to how many
V -matrix elements they contain,

�Xi j,k = �X (1)
i j,k + �X (2)

i j,k + �X (3)
i j,k + O(N−3+Cε) (3.51)

with high probability; here we defined

�X (1)
i j,k := −N−1/2 Rik(RV R) jk + [C]1, (3.52)

�X (2)
i j,k := N−1 Rik(RV RV R) jk + N−1(RV R)ik(RV R) jk + [C]1, (3.53)

�X (3)
i j,k := −N−3/2 Rik(RV RV RV R) jk − N−3/2(RV R)ik(RV RV R) jk + [C]2,

(3.54)
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where [C]l , l = 1, 2, means the complex conjugate of the first l terms on the right-
hand side with i and j exchanged. Furthermore, it easy to see that the second term
on the right-hand side of (3.54) is of order O(N−17/6+Cε). Thus we find with high
probability

− �X (3)
i j,k = N−3/2 Rik(RV RV RV R) jk + N−3/2(RV RV RV R)ik R jk

+O(N−17/6+Cε)

= Y + O(N−17/6+Cε), (3.55)

where Y is a finite sum of terms of the form

N−3/2 Rik(R ja Vab RbbVba Raa Vab Rbk) (3.56)

and terms obtained from (3.56) by (i) taking the complex conjugate and exchanging i
and j , and (ii) exchanging a and b. Using Lemma 3.5 we find that (3.56) is equal to

N−3/2 Rik(R ja Vab RbbVba Raa Vab Rbk) = N−3/2m2
sc Rik R ja VabVba Vab Rbk

+O(N−17/6+Cε)

with high probability. The splitting (3.51) induces a splitting

�x0 = �x (1)
0 + �x (2)

0 + �x (3)
0 + O(N−5/3+Cε) (3.57)

with high probability in self-explanatory notation. It is easy to see that

|�x (1)
0 | � N−1/6+Cε, |�x (2)

0 | � N−4/6+Cε, |�x (3)
0 | � N−7/6+Cε.

(3.58)

From (3.47) and (3.56), we find that �x (3)
0 is a finite sum of terms of the form

1(t = 0)
∑

k 	=α,β,a,b

ηm2
sc

π N 1/2 Rαk Rβa VabVba Vab Rbk + O(N−3/2+Cε) (3.59)

with high probability, where the other terms are obtained from (3.59) as described
after (3.56).

Similarly, we find

�y0 = �y(1)
0 + �y(2)

0 + �y(3)
0 + O(N−7/3+Cε) (3.60)

and

|�y(1)
0 | � N−5/6+Cε, |�y(2)

0 | � N−8/6+Cε, |�y(3)
0 | � N−11/6+Cε.

(3.61)
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Now we insert these bounds into (3.46). Recall that the upper index l in �x (l)
0 and

�y(l)
0 counts the number of V -matrix elements. Thus we find, recalling (3.46) and the

power counting estimates (3.58) and (3.61), that there is a random variable A5, depend-
ing on the randomness only through Q and the two first moments of hab, such that

Eabθ

⎡

⎣
∫

I

x Sq(yS)dE

⎤

⎦− Eabθ

⎡

⎣
∫

I

x Rq(y R)dE

⎤

⎦

= Eabθ
′
⎡

⎣
∫

I

x Rq(y R)dE

⎤

⎦

⎡

⎣
∫

I

(
�x (3)

0 q(y R) + x Rq ′(y R)�y(3)
0 dE

⎤

⎦

+A4 + A5 + o(N−2+t ). (3.62)

with high probability. Moreover, by the same power counting estimates we find that
the second line of (3.62) is bounded by o(N−1). We use this rough bound in the case
a = b, and get

Eabθ

⎡

⎣
∫

I

x Sq(yS)dE

⎤

⎦− Eabθ

⎡

⎣
∫

I

x Rq(y R)dE

⎤

⎦

= 1(a 	= b)Eabθ
′
⎡

⎣
∫

I

x Rq(y R)dE

⎤

⎦

⎡

⎣
∫

I

(
�x (3)

0 q(y R) + x Rq ′(y R)�y(3)
0 dE

⎤

⎦

+A4 + A5 + o(N−2+t ) + o(N−2+1(a=b)) (3.63)

with high probability.
Hence Lemma 3.6 is proved if we can show that, for a 	= b, we have

Eθ ′
⎡

⎣
∫

I

x Rq(y R)dE

⎤

⎦

⎡

⎣
∫

I

(
�x (3)

0 q(y R) + x Rq ′(y R)�y(3)
0

)
dE

⎤

⎦ = o(N−2)

(3.64)

with high probability. This is proved below. ��

Proof of (3.64) We shall prove, for a 	= b, that

Eθ ′
⎡

⎣
∫

I

x Rq(y R)dE

⎤

⎦

⎡

⎣
∫

I

�x (3)
0 q(y R)dE

⎤

⎦ = o(N−2). (3.65)
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The other term on the left-hand side of (3.64) is estimated similarly. Let us abbreviate

B R := θ ′
⎡

⎣
∫

I

x Rq(y R)dE

⎤

⎦ . (3.66)

From (3.36) and the assumption on θ , we find that |B R | � N Cε with high probability.
We shall estimate the contribution to (3.65) of one term of the form (3.59). Recalling

that Eab|Vab|3 = O(1) and msc = O(1), we find the bound

N−1/6+Cε max
k 	=α,β,a,b

∣∣∣∣∣∣
EB R

∫

I

Rαk Rβa Rbkq(y R)dE

∣∣∣∣∣∣
+ o(N−2)

� N−5/6+Cε max
k 	=α,β,a,b

sup
E∈I

∣∣∣EB R Rαk Rβa Rbkq(y R)

∣∣∣+ o(N−2). (3.67)

The proof of (3.64) is therefore complete if we can show that, assuming the sets
{α, β}, {a}, {b}, {k} are disjoint, we have

∣∣∣ERαk(Rβa Rbk)B Rq(y R)

∣∣∣ � N−4/3+Cε. (3.68)

In order to prove (3.68), we first use a simple resolvent expansion to show that with
high probability

∣∣∣Rαk(Rβa Rbk)B Rq(y R) − Sαk(Sβa Sbk)BSq(yS)

∣∣∣ � N−4/3+Cε, (3.69)

where BS is defined analogously to (3.66) with R replaced by S. Therefore it suffices
to prove

∣∣∣ESαk(Sβa Sbk)BSq(yS)

∣∣∣ � N−4/3+Cε. (3.70)

In order to complete the proof, we introduce some notation. Recall that H ≡ Hγ−1
and S = (H − z)−1. We define H (a) as the matrix obtained from H by setting
its a-th column and a-th row to be zero. For any function F ≡ F(H) we define
F (a) := F(H (a)). We now remove the a-th row and column from H in (3.70), which
we can do with a negligible error. The key identity is the following resolvent identity,
proved in Lemma 4.2 of [15]: For k 	= i, j we have

Si j = S(k)
i j + Sik Sk j

Skk
. (3.71)
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Using (3.71), one readily sees that

∣∣∣∣∣∣
Sαk(Sβa Sbk)BSq(yS) − S(a)

αk Sβa S(a)
bk θ ′

⎡

⎣
∫

I

(x S)(a)q((yS)(a))dE ′
⎤

⎦ q
(
(yS)(a)

)
∣∣∣∣∣∣

� N−4/3+Cε. (3.72)

Moreover, we have

S(a)
αk Sβa S(a)

bk θ ′
⎡

⎣
∫

I

(x S)(a)q((yS)(a))dE ′
⎤

⎦ q
(
(yS)(a)

)

=
⎛

⎝Sαk Sbkθ
′
⎡

⎣
∫

I

x Sq(yS)dE ′
⎤

⎦ q(yS)

⎞

⎠
(a)

Sβa . (3.73)

Next, we claim that the conditional expectation – with respect to the variables in
the a-th column of H – of Sβa is much smaller than its typical size. To that end, we
use the identities, valid for i 	= j ,

Si j = −Sii

∑

k 	=i

hik S(i)
k j , Si j = −S j j

∑

k 	= j

S( j)
ik hk j , (3.74)

proved in [8], Lemma 6.10. Now using (3.74) we find

− Sβa =
∑

j 	=a

Saa S(a)
β j h ja =

∑

j 	=a

msc S(a)
β j h ja + (Saa −msc)

∑

j 	=a

S(a)
β j h ja . (3.75)

The conditional expectation with respect to the variables in the a-th column of H
applied to the first term on the right-hand side of (3.75) vanishes; hence its contribu-
tion to the expectation of (3.73) also vanishes. In order to estimate the second term on
the right-hand side of (3.73), we note that with high probability

|Saa − msc| � N−1/3+Cε,

by Lemma 3.5. Moreover, using the large deviation bound (3.9) in [17], we get with
high probability

∣∣∣∣∣∣

∑

j 	=a

S(a)
β j h ja

∣∣∣∣∣∣
� N−1/2+ε

⎛

⎝
∑

j 	=a

|S(a)
β j

⎞

⎠
2

|1/2 � N−1/2+ε
∣∣S(a)

ββ

∣∣+ N ε max
j 	=a,β

|S(a)
β j |

� N−1/3+Cε,
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where in the last step we used (3.71) and Lemma 3.5. Putting everything together,
we find that the expectation of (3.73) is bounded in absolute value by N−4/3+Cε. By
(3.72), this completes the proof of (3.70), and hence of (3.64).

4 Extension to eigenvalues and several arguments

In this section we describe how the arguments of Sect. 3 extend to general functions
θ as in (1.11).

Consider first the case of a single eigenvalue, λβ , in which case the claim reads

lim
N→∞

[
E

v − E
w]θ
(

N 2/3(λβ − γβ)
)

= 0, (4.1)

uniformly in β � ϕρ . Denote by �v and �w the laws of λβ in the ensembles Hv and
Hw respectively. Using Theorem 2.2 we find

E
uθ(N 2/3(λβ − γβ)) =

∫

I

θ(N 2/3(E − γβ))�u(dE) + O(e−ϕc
), (4.2)

where u stands for either v or w, and I was defined in (3.3). Now integration by parts
yields

[
E

v − E
w]θ(N 2/3(λβ − γβ))

= −[Ev − E
w]
∫

I

N 2/3θ ′(N 2/3(E − γβ))1(λβ � E)dE + O(e−ϕc
), (4.3)

where the boundary terms are of order O(e−ϕc
) by Theorem 2.2. Next, we choose a

smooth nondecreasing function rβ that vanishes on the interval (−∞, β − 2/3] and is
equal to 1 on the interval [β − 1/3,∞). Recalling the definition (2.15), we get from
(4.3)

E
v − E

wθ(N 2/3(λβ − γβ))

= −E
v − E

w
∫

I

N 2/3θ ′(N 2/3(E − γβ))rβ

(N (EL , E)
)
dE + O(e−ϕc

)

= −[Ev − E
w]
∫

I

N 2/3θ ′(N 2/3(E − γβ))

×rβ

(
Tr(1[EL ,E] ∗ θη̃)(H)

)
dE + O

(
ϕC N−ε

)
,

where in the second step we used the assumption on θ , that r ′
β is bounded, and Lemma

2.7 with η̃ := N−2/3−6ε. More precisely, we apply Lemma 2.7 to estimate, with high
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probability,

ϕC N 2/3
∫

I

dE
∣∣Tr(1[EL ,E] ∗ θη̃)(H) − N (EL , E)

∣∣

� ϕC N 2/3
∫

I

dE
(

N−ε + N (E − N−2/3−ε, E + N−2/3−ε
))

� ϕC N−ε + ϕC N 2/3
ϕC∑

α=1

∫

I

dE1
(|E − λα| � N−2/3−ε

)

� ϕC N−ε, (4.4)

where the first step follows from (2.18) and the second from Theorem 2.2.
Integrating by parts again, we find with high probability

E
v−E

wθ(N 2/3(λβ −γβ))=E
v − E

w
∫

I

θ(N 2/3(E −γβ))r ′
β

(
Tr(1[EL ,E] ∗ θη̃)(H)

)

×N Im m(E + iη̃)dE + O
(
ϕC N−ε

)
.

Now we may apply the Green function comparison method from Sect. 3.1. In fact, in
this case the analysis is easier as we have no fixed indices i and j to keep track of.

The general case, θ as in (1.11), is treated similarly. Repeating successively the
above procedure for each argument λβ1 , . . . , λβk , we find that there is a constant Ck ,
depending on k, such that
[
E

v−E
w]θ
(

N 2/3(λβ1 − γβ1 ), . . . , N 2/3(λβk − γβk ); Nūα1 (i1)uα1 ( j1), . . . , Nūαk (ik)uαk ( jk)
)

= [Ev − E
w]
∫

I k

dE1 · · · dEkθ
(

N 2/3(E1 − γβ1 ), . . . , N 2/3(Ek − γβk ); ζ1, . . . , ζk

)

×
k∏

l=1

[
r ′
βl

(
Tr(1[EL ,El ] ∗ θη̃)(H)

)
N Im m(El + iη̃)

]
+ O

(
ϕCk N−ε

)
, (4.5)

where we introduced the shorthand

ζl := N

π

∫

I

dẼ G̃il jl (Ẽ + iη)qαl

[
Tr 1[EL ,Ẽ−] ∗ θη̃(H)

]
,

and set η := N−2/3−ε; qα is the function from Lemma 3.2. Here at each step we used
the assumption on θ , that r ′

β is bounded, and the estimate
∫

I

dE N Im m(E + iη̃) � N (−∞, E + N−2/3−ε/10)+ N−ε/10

� Nnsc(−2 + ϕC N−2/3) + 1 � ϕC , (4.6)
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where in the first step we used (2.19), in the second Theorem 2.2, and in the third the
definition (1.7) of nsc.

The randomness on the right-hand side of (4.5) is expressed entirely in terms of
Green functions; hence (4.5) is amenable to the Green function comparison method
from Sect. 3.1. The complications are merely notational, as we now have 2k fixed
indices i1, j1, . . . , ik, jk instead of just the two i, j .

5 Eigenvectors in the bulk: proof of Theorem 1.10

In this section we prove Theorem 1.10. In the bulk the eigenvalue spacing is of order
N−1 as opposed to N−2/3 at the edge. Thus, we shall have to take spectral windows of
size η = N−1−ε. To that end, we begin by extending the strong local semicircle law
from Theorem 2.1 to arbitrarily small values of η > 0. Recall the notation z = E + iη.

Lemma 5.1 For any |E | � 5 and 0 < η � 10, we have with high probability

max
i j

|Gi j (z) − δi j msc(z)| � ϕC

(√
Im msc(z)

Nη
+ 1

Nη

)
(5.1)

for large enough N.

Proof By Theorem 2.1, we only need to consider η � y := ϕC1 N−1 for some C1 > 0.
We use the trivial bound

Im Gii (E + iη) � y

η
Im Gii (E + iy) for η � y,

as well as

∣∣Gi j (E + iη)
∣∣ � C log N max

k
Im Gkk(E + iη),

which follows by a simple dyadic decomposition; see [15], Eq. (4.9). Thus we get

∣∣Gi j (E + iη)
∣∣ � C log N

y

η
max

k
Im Gkk(E + iy) � ϕC y

η
� ϕC

Nη
.

This completes the proof. ��
The strategy behind the proof of Theorem 1.10 is very similar to that of Theorem

1.6, given in Sect. 3. In a first step, we express the eigenvector components using
integrals involving resolvent matrix elements Gi j ; in a second step, we replace the
sharp indicator functions in the integrand by smoothed out functions which depend
only on the resolvent; in a third step, we use the Green function comparison method
to complete the proof.

For ease of presentation, we shall give the proof for the case θ = θ(Nūα(i)uα( j));
we show that

lim
N→∞

[
E

v − E
w]θ(Nūα(i)uα( j)) = 0, (5.2)
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where ρN � α � (1−ρ)N . As outlined in Sect. 4, the extension to general functions θ ,
as given in (1.15), is an easy extension which we sketch briefly at the end of this section.

We now spell out the three steps mentioned above.
Step 1. The analogue of Lemma 3.1 in the bulk is the following result whose proof
uses (1.5) and Lemma 2.5, and is very similar to the proof of Lemma 3.1 (in fact
somewhat easier). We omit further details.

Lemma 5.2 Under the assumption of Theorem 1.10, for any ε > 0 there exist con-
stants C1, C2 such that for η = N−1−ε we have

lim
N→∞ max

ρN�α�(1−ρ)N
max

i, j

⎧
⎪⎨

⎪⎩
E

uθ (Nūα(i)uα( j))

− E
uθ

⎡

⎢⎣
N

π

∫

Iα

G̃i j (E + iη)1(λα−1 � E− � λα)dE

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
= 0, (5.3)

where

E± := E ± (ϕN )C1η, Iα :=
[
γα − N−1(ϕN )C2 , γα + N−1(ϕN )C2

]
(5.4)

and we introduce the convention λ0 = −∞. Here u stands for either v or w.

Step 2. We choose η = N−1−ε for some small enough ε > 0 and express the indicator
function in

E
uθ

⎡

⎣N

π

∫

I

G̃i j (E + iη)1(λα−1 � E− � λα)dE

⎤

⎦ (5.5)

using Green functions (as before, we write Iα ≡ I ). Using Theorem 2.2, we know that

(5.5) = E
uθ

⎡

⎣N

π

∫

I

G̃i j (E + iη)1
(N (EL , E−)=α − 1

)
dE

⎤

⎦+ o(1), (5.6)

where EL := −2 − ϕC N−2/3.
As explained in Sect. 1.3, the approach in Step 2 has to be modified slightly from

the one employed in Sect. 3. The reason is that the size of the interval [EL , E−] is no
longer small, but of order one.

For any E1, E2 ∈ [−3, 3] and ηd > 0 we define f (λ) ≡ fE1,E2,ηd (λ) to be the char-
acteristic function of [E1, E2] smoothed on scale ηd ; i.e. f = 1 on [E1, E2], f = 0
on R \ [E1 − ηd , E2 + ηd ] and | f ′| � Cη−1

d , | f ′′| � Cη−2
d . Let q ≡ qα : R → R+

be a smooth cutoff function concentrated around α − 1, satisfying

q(x) = 1 if |x − α + 1| � 1/3, q(x) = 0 if |x − α + 1| � 2/3.
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Now we choose ηd := N−1−dε, for some fixed d > 2. Then, using Lemma 5.1 and
an argument similar to the proof of Lemma 3.2, we find that

(5.6) = E
uθ

⎡

⎣N

π

∫

I

G̃i j (E + iη)q
(
Tr fEL ,E−,ηd (H)

)
dE

⎤

⎦+ o(1). (5.7)

To simplify notation, we follow the conventions of Sect. 3 in writing I ≡ Iα , q ≡ qα

and fE ≡ fEL ,E−,ηd , and set α = i and β = j . In this notation, we need to estimate

[
E

v − E
w]θ

⎡

⎣N

π

∫

I

G̃αβ(E + iη)q (Tr fE (H)) dE

⎤

⎦ . (5.8)

Now we express fE (H) in terms of Green functions using Helffer–Sjöstrand func-
tional calculus. Let χ(y) be a smooth cutoff function with support in [−1, 1], with
χ(y) = 1 for |y| � 1/2 and with bounded derivatives. Then we have (see e.g. Equation
(B.12) of [13])

fE (λ) = 1

2π

∫

R2

iσ f ′′
E (e)χ(σ ) + i fE (e)χ ′(σ ) − σ f ′

E (e)χ ′(σ )

λ − e − iσ
dedσ. (5.9)

Thus we get

Tr fE (H) = N

2π

∫

R2

(
iσ f ′′

E (e)χ(σ ) + i fE (e)χ ′(σ ) − σ f ′
E (e)χ ′(σ )

)
m(e + iσ)dedσ

= N

2π

∫

R2

(
i fE (e)χ ′(σ ) − σ f ′

E (e)χ ′(σ )
)

m(e + iσ)dedσ

+ iN

2π

∫

|σ |>η̃d

dσχ(σ)

∫
de f ′′

E (e)σm(e + iσ)

+ iN

2π

η̃d∫

−η̃d

dσ

∫
de f ′′

E (e)σm(e + iσ), (5.10)

where we introduced the parameter η̃d := N−1−(d+1)ε. We shall treat the last term of
(5.10) as an error term. From (5.1) we find with high probability

σm(e + iσ) � ϕC

N
.
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Therefore the third term of (5.10) is bounded, with high probability, by

∣∣∣∣∣∣∣

iN

π

η̃d∫

−η̃d

dσ

∫
de f ′′

E (e)σm(e + iσ)

∣∣∣∣∣∣∣
� ϕC η̃dη−1

d = ϕC N−ε, (5.11)

where in the first step we used that
∫ | f ′′

E (e)|de = O(η−1
d ).

Step 3 We estimate (5.8) using a Green function comparison argument, similarly to
Sect. 3.1. As in Sect. 3.1, we use the notation

x(E) = Nη

π

∑

k 	=α,β

Gαk(E + iη)Gβk(E + iη). (5.12)

Similarly to Lemma 3.4, we begin by dropping the diagonal terms. Using Lemma 5.1
we find

∫

I

∣∣∣∣
N

π
G̃αβ(E + iη) − x(E)

∣∣∣∣ dE � ϕC Nη2 � N−1+Cε (5.13)

with high probability, so that it suffices to prove

[
E

v − E
w]θ

⎡

⎣
∫

I

x(E)q (Tr fE (H)) dE

⎤

⎦ = o(1). (5.14)

Using (5.11) we find that it suffices to prove

[
E

v − E
w]θ

⎡

⎣
∫

I

x(E)q
(
y(E) + ỹ(E)

)
dE

⎤

⎦ = o(1), (5.15)

where

y(E) := N

2π

∫

R2

iσ f ′′
E (e)χ(σ )m(e + iσ)1(|σ | � η̃d)dedσ, (5.16)

ỹ(E) := N

2π

∫

R2

(
i fE (e)χ ′(σ ) − σ f ′

E (e)χ ′(σ )
)

m(e + iσ)dedσ. (5.17)
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By a telescopic expansion similar to (3.25), we find that (5.15) follows if we can prove,
with high probability,

Eθ

⎡

⎣
∫

I

x S(E)q
(
(y + ỹ)S(E)

)
dE

⎤

⎦− Eθ

⎡

⎣
∫

I

x R(E)q
(
(y + ỹ)R(E)

)
dE

⎤

⎦

= A + o(N 1(a=b)−2), (5.18)

where we use the notation of Sect. 3.1; here A is a random variable that depends on
the randomness only through Q and the first four moments of hab if a 	= b, and the
first two moments of hab if a = b. (As in Sect. 3.1, E denotes expectation with respect
to the product measure of the v and w ensembles.)

Now we prove (5.18). We use the resolvent expansion

S = R − N−1/2 RV R + N−1(RV )2 R − N−3/2(RV )3 R

+N−2(RV )4 R − N−5/2(RV )5S. (5.19)

Similarly to Sect. 3.1, we decompose

�m := mS − m R = �m0 + �m1,

where

�mr := 1

N

∑

i

(Sii − Rii )1
(
r = 1(i ∈ {a, b})).

Using (5.19) we can expand �mr , for |σ | � η̃d and with high probability,

�mr (e + iσ) =
4∑

p=1

�m(p)
r (e + iσ) + O

(
N−5/2+Cε�2−2r

σ N−r ), (5.20)

where

|�m(p)
r | � N−p/2+Cε�2−2r

σ N−r (5.21)

with high probability, and �m(p)
r is a polynomial in the matrix elements of R and

V , each term containing precisely p matrix elements of V ; here we set �σ :=
sup|e|�5 maxi 	= j |Gi j (e + iσ)|. Putting both cases r = 1, 2 together, we get, for
|σ � η̃d | and with high probability,

�m =
4∑

p=1

�m(p)+O
(
N−5/2+Cε(�2

σ +N−1)
)
, |�m(p)| � N−p/2+Cε(�2

σ +N−1).

(5.22)

We may now estimate the variables x, y, and ỹ. Let us first consider the variables
ỹ. From the definition of χ , we find that in the integrand of (5.17) we have σ � c and
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therefore by Theorem 2.1 we have �σ � ϕC N−1/2 with high probability. Thus we
get from (5.17)

�ỹ(E)=
4∑

p=1

�ỹ(p)(E) + O(N−5/2+Cε), |�ỹ(p)(E)| � N−p/2+Cε (5.23)

with high probability.
In order to estimate the contributions of the variables y, we integrate by parts, first

in e and then in σ , to obtain

∣∣∣∣∣∣∣
N
∫

R2

σ f ′′
E (e)χ(σ )�m(p)(e + iσ)1(|σ | � η̃d)dedσ

∣∣∣∣∣∣∣

� C N

∣∣∣∣
∫

de f ′
E (e)η̃d�m(p)(e + iη̃d)

∣∣∣∣

+C N

∣∣∣∣∣∣∣

∫
de f ′

E (e)

∞∫

η̃d

dσχ ′(σ )σ�m(p)(e + iσ)

∣∣∣∣∣∣∣

+C N

∣∣∣∣∣∣∣

∫
de f ′

E (e)

∞∫

η̃d

dσχ(σ)�m(p)(e + iσ)

∣∣∣∣∣∣∣
. (5.24)

Using (5.22), it is easy to see that the sum of the two first terms of (5.24) is bounded
by N−p/2+Cε. In order to estimate the last term of (5.24), we use (5.22) and (5.1) to
get the bound

C N

1∫

η̃d

dσ

(
1

Nσ
+ 1

(Nσ)2 + 1

N

)
N−p/2+Cε � N−p/2+Cε.

Thus we find that

�y(E)=
4∑

p=1

�y(p)(E) + O(N−5/2+Cε), |�y(p)(E)| � N−p/2+Cε (5.25)

with high probability.
Finally, as in (3.40), we find that

�x(E) =
4∑

p=1

�x (p)(E) + O(N−3/2+Cε) (5.26)
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with high probability. Moreover, we have the bound
∫

I

|�x (p)(E)|dE � N−p/2+Cε (5.27)

with high probability. This concludes our estimate of the terms in the resolvent expan-
sion of x, y, and ỹ.

Now using the power counting bounds from (5.23), (5.25), (5.26), and (5.27), we
may easily complete the Green function comparison argument to prove (5.18), as in
Sect. 3.1.

Finally, we comment on how to deal with more general observables θ , as in (1.15).
The basic strategy is the same as in Sect. 4. In fact, the argument is simpler because
the errors made in replacing sharp indicator functions with smooth indicator functions
are easier to control in the bulk. In Sect. 4, the relatively large errors arising from the
soft edge of the function 1[EL ,E] ∗ θη̃ were controlled by Lemma 2.7. In the bulk, we
replace 1[EL ,E] with the function fE whose edges are sharper. Thus, in the bulk the
error resulting from this replacement is bounded by N (E− − ηd , E− + ηd), whose
integral may be estimated exactly as in (4.4). The estimate (4.6) is replaced by the
trivial estimate

∫
I dE |∂E Tr fE (H)| � ϕC .

Acknowledgments The authors would like to thank L. Erdős and H.T. Yau for many insights and helpful
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16. Erdős, L., Yau, H.-T., Yin, J.: Universality for generalized Wigner matrices with Bernoulli distribution.
J. Combin. arXiv:1003.3813 (2011, to appear, preprint)
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