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Abstract We consider a process given by a n-dimensional fractional Brownian
motion with Hurst parameter 1

4 < H < 1
2 , along with an associated Lévy area-like

process, and prove the smoothness of the density for this process with respect to
Lebesgue measure.
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1 Introduction

Let Bt := (B1
t , B2

t , . . . , Bn
t ), t ∈ [0, T ]be n-dimensional fractional Brownian motion

of Hurst parameter 1
4 < H < 1

2 , and let

(Bm)t :=
(
(B1

m)t , (B2
m)t , . . . , (Bn

m)t

)

denote the mth dyadic approximation of B (as defined below in Sect. 2.2). Suppose α

is an alternating bilinear map from R
n × R

n to R
k . Define the sequence of area-like

process approximations

(Am)t := 1

2

⎡
⎣

t∫

0

α ((Bm)s, d(Bm)s)

⎤
⎦ , (1.1)

and At := limm→∞(Am)t (where this convergence is almost sure - see Theorem 2 of
[8]).
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2 P. Driscoll

The main result of this paper is as follows:

Theorem 1.1 Define the random process {Y }0≤t≤T , taking values in R
3, by

Y0 = 0,

Yt = (Bt , At ). (t ∈ (0, T ])

Then for all t ∈ [0, T ], the density of Yt with respect to Lebesgue measure is C∞.

The investigation of this process is motivated by the potential for fractional Brown-
ian motion to be a useful driving signal in stochastic differential equations that model
a wide variety of natural and financial phenomena; in particular, the presence of long-
range persistence (for H > 1/2) or anti-persistence (for H < 1/2) makes fBm a
natural candidate for a driving process in many scenarios. Several examples of such
applications are included in [21] and [18].

One area of interest in the study of stochastic differential equations is on find-
ing sufficient conditions for existence and regularity of densities for solutions. More
specifically, given some solution {Yt } to the equation

dYt =
d∑

i=1

Xi (Yt )dξt , (1.2)

where {Xi } is some collection of vector fields and ξt is a Gaussian driving pro-
cess on the space C([0, T ], R

d), it is natural ask whether ξ admits a density with
respect to Lebesgue measure. It is due to the celebrated theorem of Hörmander
(see, for example, Theorem 38.16 of [20]) that, when our driving process is stan-
dard Brownian motion, our solution admits a smooth density so long as the set of
vectors {Xi , [Xi , X j ], [[Xi , X j ], Xk] . . .} spans R

d .
In the case of fractional Brownian motion, one may no longer appeal to the types

of martingale arguments used in proofs of the above result in the standard case. When
H > 1

2 , the positive correlation of increments of sample paths results in better varia-
tional properties than those of Brownian motion, and so one may use Young’s integra-
tion theory to attack the problem—existence of a density to a solution of (1.2) under
this condition is proven in [19], and smoothness is proven in [1]. When H < 1

2 , one
must turn to the rough path theory of T. Lyons (see [15]) in order to interpret (1.2)
in a meaningful manner. The connection between fractional Brownian motion with
1
4 < H < 1

2 and rough paths is investigated in [8]. Existence of a density is proven in
[7] in the case when the vector fields satisfy an ellipticity condition and 1

3 < H < 1
2 ;

the same results under the more general Hörmander hypoellipticity condition above
in the case of 1

4 < H < 1
2 is show in [6]. As far as we are aware, Theorem 1.1 is the

first positive result involving smoothness, and may give hope that similar results will
hold in a more general setting.

In order to prove Theorem 1.1, we appeal to the usual technique of Malliavin cal-
culus. It follows from Theorem 5.1 of [16] that it is enough to show that for each
t ∈ (0, T ], the random variable Yt satisfies the following two conditions:
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Smoothness of densities for area of FBM 3

1. Yt ∈ D
∞;

2. If γ = DYt (DYt )
∗ is the Malliavin covariance matrix associated to Yt , then

(det γ )−1 ∈ L∞−(Wn, P) :=
⋂
j≥1

L j (Wn, P),

where Wn is the path-space associated to the driving fractional Brownian motion.

Without loss of generality, it will suffice if we restrict our attention to the end-time
random variable YT .

We will begin by calculating the derivative DYT explicitly, and from this Condition
1 will be proven in Proposition 3.8. Condition 2 will then follow by direct analysis of
the Malliavin covariance matrix; see Theorem 3.16.

2 Background

2.1 Fractional Brownian motion

A (one-dimensional) fractional Brownian motion {B H
t ; (t ∈ [0, T ])}of Hurst parame-

ter H ∈ [0, 1] is a continuous-time centered Gaussian process with covariance given by

E(B H
s B H

t ) = R(s, t) := 1

2

(
s2H + t2H − |t − s|2H

)

Our focus will be on the case when 1
4 < H < 1

2 ; henceforth, we shall assume that
such an H has been fixed and will drop the parameter from our notation whenever
possible to do so without causing confusion.

An n-dimensional fractional Brownian motion {Bt = (B1
t , . . . , Bn

t ); t ∈ [0, T ]}
is a continuous-time process comprised of n independent copies of one-dimensional
fractional Brownian motion, each having the same Hurst parameter H .

It is straightforward to check that the process B satisfies a self-similarity property;
that is to say, the processes Bat and a−H Bt are equal in distribution. By Kolmogorov’s
continuity criterion, the sample paths t �→ Bt are almost surely Hölder continuous of
order α, for any α < H—see Theorem 1.6.1 of [3] for details of this proof.

2.2 Dyadic approximation

For each m, we will let Dm := {k2−m T ; k = 0, 1, . . . , 2m}. We define the mth dyadic
approximator πm : C([0, T ], R

d) −→ C([0, T ], R
d) as the unique projection operator

such that, for any given f ∈ C([0, T ], R
d),

πm f (t) = f (t), (t ∈ Dm)

d2

dt2 πm f (t) = 0. (t /∈ Dm)

In words, πm f is nothing more than the piecewise linear path agreeing with f on the
set Dm . We will regularly use the shorthand notation fm := πm f where convenient.
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4 P. Driscoll

Similarly, we will define the mth dyadic approximation of fractional Brownian motion
Bm := πm B; more explicitly,

(Bm)t := Bt− + (t − t−)2m[Bt+ − Bt−], (0 ≤ t ≤ T )

where t− is the largest member of Dm such that t− ≤ t and t+ is the smallest member
of Dm such that t ≤ t+.

2.3 Euclidean p-variation

Let P[0, T ] denote the set of finite partitions of [0, T ]. Suppose we are given a path
f ∈ C([0, T ], R

d); then for each 1 ≤ p < ∞ and � = {0 = t1, t2, . . . , tN = 1} ∈
P[0, T ], one may define the quantities

�i f := f (ti ) − f (ti−1),

Vp( f : �) :=
(

N∑
i=1

|�i f |p

) 1
p

,

‖ f ‖p := sup
�∈P[0,T ]

Vp( f : �).

The norm ‖ · ‖p is referred to as the p-variation norm; we shall define the space
Cp(R

d) := { f ∈ C([0, T ], R
d); ‖ f ‖p < ∞}, which is a Banach space under ‖ · ‖p.

We will regularly refer to these spaces as Cp when the underlying Euclidean image
space is clear from context. It is easy to check that for given α and p such that α < 1

p ,
any α-Hölder continuous function is in Cp.

It will also be worthwhile to define the normalized variational spaces

C0,p := { f ∈ Cp : f (0) = 0}.

Using the definition of the variational norm, it is straightforward to check that the
identity embedding of C0,p into C under the uniform norm ‖ · ‖u is a contraction.

Given f ∈ Cp, g ∈ Cq , where p and q are such that 1
p + 1

q > 1, one can develop the
notion of integration of f against g in the following manner: if {�n := {ti }} ⊂ P[0, T ]
is a collection of partitions such that the mesh size |�n | tends to 0 as n → ∞, we define

T∫

0

f dg := lim
n→∞

#(�n)∑
i=1

f (ci )�i g

where ci ∈ (ti−1, ti ). This limit is guaranteed to exist under the assumptions pre-
sented, and is independent of the choice we make of the family of partitions so long
as their mesh size tends to zero - see Theorem 3.3.1 of [14] for further details. The

element
1∫

0
f dg is referred to as the Young’s integral of f against g. This expression
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Smoothness of densities for area of FBM 5

was originally formulated in [26]. We have the following estimate for this expression
(see Formula 10.9 of [26]):

∣∣∣∣∣∣

T∫

0

[ f − f (0)] dg

∣∣∣∣∣∣
≤ C‖ f ‖p‖g‖q , (2.1)

where the constant C depends only on the values of p and q.
Similarly, given some f ∈ C([0, T ]2, R

d), and partitions �1 = {si }, �2 = {t j } ∈
P[0, T ], we may define

�i j f := f (si , t j ) − f (si , t j−1) − f (si−1, t j ) + f (si−1, t j−1),

Vp( f : �1,�2) :=
⎛
⎝

#(�1)∑
i=1

#(�2)∑
j=1

|�i j f |p

⎞
⎠

1
p

,

‖ f ‖(2D)
p := sup

�1,�2∈P[0,T ]
Vp( f : �1,�2).

As in the (one-dimensional) case above, we shall define the spaces

C(2D)
p = C(2D)

p (Rd) := { f ∈ C([0, T ]2, R
d); ‖ f ‖(2D)

p < ∞}
C(2D)

0,p := { f ∈ C(2D)
p : f (0, ·) = f (·, 0) = 0}

It is helpful to note that for each f ∈ C(2D)
0,p and fixed s ∈ [0, T ], the function

f (s, ·) ∈ Cp and ‖ f (s, ·)‖p ≤ ‖ f ‖(2D)
p , since

#(�)∑
i=1

|�i f (s, ·)|p =
#(�)∑
i=1

|�i f (s, ·) − �i f (0, ·)|p

≤
#(�)∑
i=1

(|�i f (s, ·) − �i f (0, ·)|p

+|�i f (T, ·) − �i f (s, ·)|p) ≤
(
‖ f ‖(2D)

p

)p
.

Trivially, one also has that for each f, g ∈ Cp(R
d), the function f ⊗ g : [0, T ]2 →

R
d defined by

( f ⊗ g) (s, t) := f (s)g(t)

is contained in C(2D)
p , and ‖ f ⊗ g‖(2D)

p ≤ ‖ f ‖p‖g‖p.

123



6 P. Driscoll

Given f ∈ C(2D)
p and g ∈ C(2D)

q , where p and q are such that 1
p + 1

q > 1, the

2D-Young’s integral of f against g, denoted by
∫

[0,T ]2

f dg, is defined by

∫

[0,T ]2

f dg := lim
n→∞

#(�n)∑
i=1

#(�n)∑
j=1

f (ci , d j )�i j g,

where, as before, {�n := {ti }}, {�n := {s j }} ⊂ P[0, T ] are collections of par-
titions such that the maximum mesh size |�n| ∨ |�n| tends to 0 as n → ∞ and
ci ∈ (ti−1, ti ), d j ∈ (s j−1, s j ). Existence of this limit under the given assumptions,
independent of the choice of the family of partitions, is proven in Theorem 1.2 of [23],
as is an estimate similar to that of the one-dimensional case:

∣∣∣∣∣∣∣

∫

[0,T ]2

f dg

∣∣∣∣∣∣∣
≤ C‖g‖(2D)

q

(
‖ f ‖(2D)

p + ‖ f (0, ·)‖p + ‖ f (·, 0)‖p + | f (0, 0)|
)
.

Lemma 2.1 (1) For each 1 ≤ p < q, C0,p ⊂ C0,q; in particular, if f ∈ C0,p, one
has the bound

‖ f ‖q ≤ (2‖ f ‖u)
1− p

q ‖ f ‖
p
q
p ,

where ‖ · ‖u denotes the uniform norm on C([0, T ]).
(2) For each 1 ≤ p < q, C(2D)

0,p ⊂ C(2D)
0,q ; in particular, if f ∈ C(2D)

0,p , one has the
bound

‖ f ‖(2D)
q ≤ (4‖ f ‖u)

1− p
q

(
‖ f ‖(2D)

p

) p
q

.

Proof Pick f ∈ C0,p, and let q > p. Then it is immediately clear that for each
s, t ∈ [0, T ],

| f (t) − f (s)| ≤ 2‖ f ‖u .

The claim then follows from noting that for each � ∈ P[0, T ],

(
Vq( f : �)

)q =
N∑

i=1

|�i f |q =
N∑

i=1

|�i f |p |�i f |q−p

≤ sup
�

|�i f |q−p
N∑

i=1

|�i f |p ≤ (2‖ f ‖u)q−p (
Vp( f : �)

)p
.

As usual, we take the supremum over partitions to complete the proof. �
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Smoothness of densities for area of FBM 7

It will be helpful to record here a pair of results relating the variation of paths with
their linear approximations.

Theorem 2.2 (Propositions 5.20 and 5.60 of [12])

(1) Suppose x ∈ Cp(U ), and let xm := πm x be the dyadic approximation to x as
defined above. Then one has that

‖xm‖p ≤ 3p−1‖x‖p.

(2) Suppose x ∈ C(2D)
p (U ), and let xm := πm x be the dyadic approximation to x as

defined above. Then one has that

‖xm‖(2D)
p ≤ 9p−1‖x‖(2D)

p .

For further development of the theory, the interested reader may look in [10,26],
and [23].

2.4 Gaussian measure spaces

Let (W, ‖·‖) denote a separable Banach space. We will say that a measure P on W is
Gaussian if there exists a symmetric bilinear form q : W∗ × W∗ −→ R such that for
all ϕ ∈ W∗,

∫

W
exp (iϕ(ω)) dP(ω) = exp

(
−1

2
q(ϕ, ϕ)

)
.

Let B refer to the Borel σ -algebra on W; we will call the triple (W,B, P) a Gaussian
space. Define a continuous mapping J : L2(P) → W by

J f :=
∫

W
ω f (ω) dP(ω).

Let H denote the image of J restricted to the space W∗L2(P)
; this space may be

equipped with inner product given by

〈J f, Jg〉H = 〈 f, g〉L2(P) .

We will refer to H as the Cameron–Martin space associated to the Gaussian space
(W,B, P). More information regarding the construction of these spaces may be found
in [4,9], and [13].

A well-known example of a Gaussian measure space is the one associated to Brown-
ian motion where

W := {ω ∈ C([0, T ], R) : ω(0) = 0}
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8 P. Driscoll

and the Gaussian measure P on W is the law of standard Brownian motion. Details
of the construction of this measure may be found in [24] and [25]. In this case, the
Cameron–Martin space is

H = H 1
2

:=
⎧
⎨
⎩h ∈ W : h(s) =

s∫

0

φ(u) du;φ ∈ L2[0, T ]
⎫
⎬
⎭

with inner product given by

〈h, k〉H 1
2

:=
t∫

0

h′(s)k′(s)ds.

A second example of a Gaussian measure space which is pertinent to the results
described below, is as follows: let W be defined as above, and define the Gaussian
measure P on W as the law of fractional Brownian motion with Hurst parameter
H < 1/2; then by following Proposition 2.1.2 of [3], we have that H consists of

functions of the form h(t) =
t∫

0
K H (t, s)ĥ(s) ds, where ĥ ∈ L2[0, T ] and

K H (t, s) := bH

[(
t

s

)H− 1
2

(t − s)H− 1
2

−
(

H − 1

2

)
s

1
2 −H

t∫

s

(u − s)H − 1

2
u H− 3

2 du

]
,

where bH is some suitable normalization constant. One may verify that relatively
“nice” functions on [0, T ], such as continuous piecewise linear and C∞

0 functions, are
contained in H. The inner product on this space is given by

〈h, k〉H := 〈ĥ, k̂〉L2[0,T ].

For each fixed t ∈ [0, T ], the function R(t, ·) = E[Bt B·] ∈ H is a reproducing kernel
for the space; that is to say, for any h ∈ H, we have the following:

〈h, R(t, ·)〉H = h(t).

Let S refer to the space of cylinder functions; that is to say, random variables of the
form

F(ω) = f (φ1(ω), . . . , φn(ω)),

where f ∈ C∞(Rd) with all partial derivatives having at most polynomial growth, and
{φ1, . . . , φn} ⊂ W∗. Let the Malliavin derivative D : S → S ⊗ H∗ be the operator
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Smoothness of densities for area of FBM 9

defined by the action by

DF(ω)k := d

dt
|t=0 F (ω + tk)

=
n∑

i=1

∂i f (φ1(ω), . . . , φn(ω))φi (k) (k ∈ H) .

For 1 ≤ q < ∞, we will let D
1,q denote the closure of S with respect to the norm

‖F‖1,q := (
E[|F |q ] + E[‖DF‖q

H∗ ]
)

One can naturally define an iterated derivate operator Dk taking values in H⊗k ; from
this we can define the seminorm

‖F‖k,q :=
⎛
⎝E[|F |q ] +

k∑
j=1

E[‖D j F‖q
H⊗k ]

⎞
⎠

and we will denote by D
k,q the closure of S with respect to ‖ · ‖k,q . Additionally, we

will define

D
∞ :=

⋂
k∈N

⋂
q≥1

D
k,q .

Finally, given some F ∈ D
1,q , we may define the Malliavin covariance matrix γ as

the d × d matrix given by

γ := DF(DF)∗.

3 Proof of main result

Let

Wn := W ⊗ R
n ∼= {ω ∈ C([0, T ], R

n) : ω(0) = 0}.

On Wn , one may construct a unique Gaussian measure P such that the coordinate
process {Bt }0≤t≤T defined by

Bt (ω) = ω(t)

is an n-dimensional fractional Brownian motion with Hurst parameter H and P =
Law(B·). The Cameron–Martin space in this instance is given as Hn = H⊗R

n , where
H is the Cameron–Martin space for one-dimensional fractional Brownian motion; for a
general element h = (h1, . . . , hn) ∈ Hn , the norm is given by ‖h‖2

Hn = ∑n
i=1 ‖hi‖2

H.
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10 P. Driscoll

We shall fix

p ∈
(

1

H
,

1

1 − 2H

)
, (3.1)

and define (following Section 5.3.3 of [12]) the spaces

Wp := C∞ ([0, T ] , R) ∩ W‖·‖p ;
Wn

p := Wp ⊗ R
n ∼= C∞ ([0, T ] , Rn) ∩ Wn‖·‖p

.

For reasons which will become apparent as we progress, it will be beneficial for us
to declare that from here on out our process {Bt } will be restricted to the probability
space (Wn

p,BWn
p
, P|Wn

p
); the details of this restriction are included in the Appendix.

Most importantly, the Cameron–Martin space Hn associated to the restriction of our
measure is the same as the Cameron–Martin space associated to (Wn,B, P) as given
previously. The following proposition shows that elements of H live within a smaller
variational space, and will be used repeatedly in the sequel.

Proposition 3.1 (see Theorem 3 and Corollary 1 of [11]) Let H be the Cameron–Mar-
tin space associated to fractional Brownian motion with Hurst parameter 1

4 < H < 1
2 .

Then for every r > (1 + 2H)−1, one has the (compact) embedding

H ⊂ Cr .

The most important implication of Proposition 3.1 is that pathwise Young’s inte-
gration of the fractional Brownian motion with respect to Cameron–Martin vectors is
a well-defined operation. Indeed, for each 1

4 < H < 1
2 , we may set r above such that

(1 + 2H)−1 < r < 2; one then has the Hölder-type inequality

1

p
+ 1

r
> 1 − 2H + 1

2
> 1.

This is precisely the condition sufficient to guarantee the existence of integrals of the
form

T∫

0

ω dh

for ω ∈ Wn
p and h ∈ Hn .

3.1 Stochastic differential equation solutions

Recall that B = (B1, . . . , Bn) is an n-dimensional fractional Brownian motion with
Hurst parameter 1

4 < H < 1
2 .
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Smoothness of densities for area of FBM 11

Let k ∈ {1, . . . ,
n(n−1)

2 }, and suppose that {α1, . . . , αk} is a collection of maps from
R

n × R
n to R with the following properties:

(I) Each αl is a skew-symmetric bilinear form;
(II) The set {αl} is a linearly independent set; i.e., the bilinear form

∑
l clαl is the

zero map if and only if cl = 0 for all l.

Define α : R
n × R

n → R
k by α := (α1, . . . , αk); this map induces a function from

Wn × Wn into Wk , which we will also refer to as α; its action is given by

[α (ω, τ)] (t) := α(ω(t), τ (t)).

Let {Xi }n
i=1 be vector fields on R

n × R
k defined by

Xi (v, w) =
(

ei ,
1

2
α(v, ei )

)
,

with {ei } denoting the standard Euclidean basis on R
n . The objects of interest for our

discussion are solutions to equations of the differential equation

dY =
∑

i

Xi (Y )d Bi . (3.2)

Here, we are considering the solution Y as the limiting process of solutions to (3.2)
when the driving signal is replaced. by dyadic approximation processes Bm = πm B.
The stochastic differential equation in the dyadic approximation case is of the form

dYm =
∑

i

Xi (Ym)d Bi
m =

∑
i

(
ei ,

1

2
α(y, ei )

)
d Bi

m

=
(

d B1
m, . . . , d Bn

m,
1

2

∑
i

α(y, ei )d Bi
m

)
.

One may check that the solution is given as Ym := (ym, ŷm), where

(ym)T = (Bm)T ,

(ŷm)T = 1

2

T∫

0

α((Bm)t , d(Bm)t ) := 1

2

∑
i

T∫

0

α((Bm)t , ei )d(Bi
m)t ,

with the integrals above interpreted as Riemann–Stieltjies integrals since the piecewise
linearity of Bm implies that α(Bm, ei ) is piecewise linear as well for each i .

Theorem 2 of [8] and Theorem 4.1.1 of [15] imply that the limiting process Y :=
limm→∞ Ym exists a.s. We will suggestively write this process heuristically as

YT =
⎛
⎝BT ,

1

2

T∫

0

α(Bt , d Bt )

⎞
⎠ .

123



12 P. Driscoll

We record here a pair of simple lemmas which allow for some control of the process Y .

Lemma 3.2 Suppose α is a continuous bilinear form on R
n. Then for each fixed

v ∈ R
n, the mapping

f �→ α( f, v)

is a map from Cp([0, T ], R
n) into Cp([0, T ], R) for all p ≥ 1; more explicitly, one

has the bound

‖α( f, v)‖p ≤ ‖α‖L(Rn×Rn ,R)|v|‖ f ‖p.

Proof Fix f ∈ Cp([0, T ], R
n); and let � = {ti }N

i=0 ∈ P[0, T ]. Then one has that

N∑
i=1

|α( f (ti+1), v) − α( f (ti ), v)|p =
N∑

i=1

|α( f (ti+1) − f (ti ), v)|p

≤
N∑

i=1

‖α‖p‖v‖p | f (ti+1) − f (ti )|p .

Taking the supremum over all such partitions of [0, T ] will then complete the proof.
�

Lemma 3.3 Let α be a continuous bilinear map on R
n, and suppose v ∈ R

n. If p, q be
constants such that 1

p + 1
q > 1, then for any f ∈ Cp([0, T ], R

n), g ∈ Cq([0, T ], R),
the Young’s integral

t∫

s

α( f (τ ), v)dg(τ )

is well defined for all 0 ≤ s < t ≤ T , and satisfies the bounds

∣∣∣∣∣∣

t∫

s

(α( f (τ ), v) − α( f (s), v)) dg(τ )

∣∣∣∣∣∣
≤ C‖ f |[s,t]‖p‖g|[s,t]‖q ,

where C is a constant depending on p, q, α, and v.

Proof This immediately follows from Lemma 3.2 and the Young’s integral bound
given in (2.1). �
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Smoothness of densities for area of FBM 13

3.2 Operator realization

For j = 1, . . . , k, define a quadratic form q j on Hn × Hn as follows:

q j (h, k) := 1

2

⎡
⎣

T∫

0

α j (h(s), dk(s)) +
T∫

0

α j (k(s), dh(s))

⎤
⎦ (3.3)

=
T∫

0

α j (h(s), dk(s)) − α j (h(T ), k(T ))

2
.

Note that the above integrals are to be interpreted in the manner of Young, and are
well-defined by Lemma 3.3 along with the Cameron–Martin embedding in Propo-
sition 3.1. Since piecewise linear continuous functions are contained in H, we may
write our approximating process Ym as:

(Ym)T =
(

(Bm)T ,
1

2
q1(Bm, Bm), . . . ,

1

2
qk(Bm, Bm)

)
.

In order to facilitate the computation of the necessary Malliavin derivatives, we will
construct the operators from H⊗R

n to itself which characterize the action of each ql ;
that is to say, we will describe the actions of the operators Ql , l = 1, . . . , k for which.

〈Qlh, k〉H⊗Rn = ql(h, k).

The proposition and corollary which follow define elements of the Cameron–Martin
space closely associated to these operators.

Proposition 3.4 Fix ω ∈ Wp; for each partition � = {ti }N
i=0 ∈ P[0, T ], define the

vector S� ∈ H in the following manner:

S�(·) :=
N∑

i=1

ω(ci )
[
R(ti , ·) − R(ti−1, ·)

]
,

where ci ∈ (ti−1, ti ). Then H − limk→∞ S�k exists, where {�k}∞k=1 ⊂ P[0, T ] with
|�k | converging to zero as k −→ ∞; furthermore, this limit is independent of the
family of partitions. We will denote this limit by

T∫

0

ω(t)R(dt, ·).

This limit satisfies the following properties:

123



14 P. Driscoll

(1)

∥∥∥∥∥
T∫
0

ω(t)R(dt, ·)
∥∥∥∥∥

2

H
= ∫

[0,T ]2

ω ⊗ ω d R; hence, there exists a constant C > 0

such that

∥∥∥∥∥∥

T∫

0

ω(t)R(dt, ·)
∥∥∥∥∥∥

2

H
≤ C‖ω‖2

p‖R‖(2D)
r .

(2) For each h ∈ H,

〈
T∫
0

ω(t)R(dt, ·), h

〉

H
=

T∫
0

ω(t)dh(t).

(3)

(
T∫
0

ω(t)R(dt, ·)
)

(s) =
T∫
0

ω(t)R(dt, s).

Proof First note that 1
p + 1

r > (1 − 2H) + 2H = 1, which implies that

(1) the Young’s integral of ω against R(·, s) for any s ∈ [0, T ] is well-defined, and
(2) the 2D-Young’s integral of ω ⊗ ω against R is well-defined.

It follows from Theorem 2.1 of [23] that for each k,

‖S�k ‖2
H =

#(�k)∑
i=1

#(�k)∑
j=1

ω(ci )ω(c j )
〈
�i R(ti , ·),� j R(t j , ·)

〉
H (3.4)

≤ C‖ω‖2
p‖R‖(2D)

r ,

where C is a constant depending only on p and r . Given any two partitions �n =
{si },�m = {tk} in the family, for ci ∈ [si−1, si ], dk ∈ [tk−1, tk],

‖S�n − S�m ‖2
H = ‖S�n ‖2

H + ‖S�m ‖2
H − 2〈S�n , S�m 〉H

=
#(�n)∑
i=1

#(�n)∑
j=1

ω(ci )ω(c j )
[
�i j R(si , s j )

]

+
#(�m )∑

k=1

#(�m )∑
l=1

ω(dk)ω(dl) [�kl R(tk, tl)]

− 2
#(�n)∑
i=1

#(�m)∑
k=1

ω(ci )ω(dk) [�ik R(si , tk)]

n,m→∞−→
∫

[0,T ]2

(ω ⊗ ω)(s, t) d R(s, t)
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Smoothness of densities for area of FBM 15

+
∫

[0,T ]2

(ω ⊗ ω)(s, t) d R(s, t)

−2
∫

[0,T ]2

(ω ⊗ ω)(s, t) d R(s, t) = 0.

Hence, the completeness of H implies the existence of
∫ T

0 ω(t)R(dt, ·). Since the
2D-Young’s integral is independent of choice of partitions, one may also see from the
calculation above that the limit of S�k is also independent of choice of partition, as
claimed. Letting k tend to infinity in (3.4) and applying bounds as in Theorem 1.2 of
[23] proves (1). For an arbitrary h ∈ H, we note that

〈 T∫

0

ω(t) R(dt, ·), h

〉

H
= lim|�|→0

〈S�, h〉H

= lim|�|→0

#(�)∑
i=1

ω(ci )
〈
R(ti+1, ·) − R(ti , ·), h

〉
H

= lim|�|→0

#(�)∑
i=1

ω(ci )
[
h(ti+1) − h(ti )

]

=
T∫

0

ω(t) dh(t),

and so (2) holds. In particular, by setting h = R(s, ·), (3) is a consequence of (2). �
Corollary 3.5 Suppose α is a continuous skew-symmetric bilinear form on R

n. Then
for any h ∈ Hn and for each partition � = {t j }N

j=0 ∈ P[0, T ], define the vector
S� ∈ H in the following manner:

S�(·) :=
N∑

j=1

α(h(c j ),
[
R(t j , ·) − R(t j−1, ·)

]
ei )

where c j ∈ (t j−1, t j ). Then H − limk→∞ S�k exists, where {�k}∞k=1 ⊂ P[0, T ] with
|�k | converging to zero as k −→ ∞; furthermore, this limit is independent of the
family of partitions. We will denote this limit by

T∫

0

α(h(t), R(dt, ·)ei ).

This limit satisfies the following properties:
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16 P. Driscoll

(1)

∥∥∥∥∥
T∫
0

α(h(t), R(dt, ·)ei )

∥∥∥∥∥
2

H
= ∫

[0,T ]2

α(h(s), ei )α(h(t), ei ) d R(s, t); hence, there

exists a constant C > 0 such that

∥∥∥∥∥∥

T∫

0

α(h(t), R(dt, ·)ei )

∥∥∥∥∥∥

2

H
≤ C‖α(h, ei )‖2

p‖R‖(2D)
r .

(2) For each k ∈ H,

〈 T∫

0

α(h(t), R(dt, ·)ei ), k

〉

H
=

T∫

0

α(h(t), ei ) dk(t).

(3)

(
T∫
0

α(h(t), R(dt, ·)ei )

)
(s) =

T∫
0

α(h(t), R(dt, s)ei ).

Proof This is an application of Proposition 3.4 along with Lemma 3.2. �
Define the linear mapping a : Wp → H by

aω := 1

2
ω(T )R(T, ·) −

T∫

0

ω(t)R(dt, ·).

The above integral is to be interpreted in the manner of Young, and the mapping above
is well-defined as a result of Proposition 3.4. Additionally, one may verify using Prop-
osition 3.4 that

‖aω‖2
H = 1

4
T 2H |ω(T )|2 − ω(T )

T∫

0

ω(t) R(dt, T )

+
∫

[0,T ]2

ω(s)ω(t) d R(s, t).

By applying one- and two-dimensional Young’s integral bounds to the right-hand side
of this expression, one may conclude that a is a bounded operator on Wp.

Given a skew-symmetric bilinear form ξ on R
n , we define Jξ as the linear map on

R
n with action given by

Jξ x =
∑

i

ξ(ei , x)ei . (3.5)

We will regularly refer to Jl := Jαl for the operators {αl} defined in Sect. 3.1.
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Smoothness of densities for area of FBM 17

Using this notation, one has the identity

ql(Bm, Bm) =
T∫

0

(Bm)t d Jl(Bm)t .

One may take the tensor product of these two operators to form an operator on
H ⊗ R

n :

(a ⊗ Jξ )h = 1

2
R(T, ·) ⊗ Jξ h(T ) −

T∫

0

R(dt, ·) ⊗ Jξ h(t) (3.6)

= 1

2

⎡
⎣

T∫

0

R(t ·) ⊗ d Jξ h(t) −
T∫

0

R(dt, ·) ⊗ Jξ h(t)

⎤
⎦ .

Of course, we are particularly interested in such operators arising from our skew-sym-
metric αl ; we will write Ql := a ⊗ Jl to denote these mappings in the sequel.

Proposition 3.6 Let Ql : H ⊗ R
n → H ⊗ R

n, l = 1, . . . , k be the linear operators
described above. For each symmetric form ql as defined in Eq. (3.3) with l = 1, . . . , k,
one has the identity

ql(h, h̃) =
〈
Qlh, h̃

〉
H⊗Rn

.

Proof This result follows from computing the right-hand inner product, using part 2
of Corollary 3.5. �

3.3 Malliavin derivative

Let R j
T : H ⊗ R

n → R be the evaluation operator on the j th coordinate; i.e.,

R j
T h := h j (T ) = 〈

R(T, ·) ⊗ e j , h
〉
H⊗Rn .

Proposition 3.7 For each skew-symmetric bilinear form ξ on R
n, the mapping a ⊗ Jξ

may be extended to a bounded linear functional from Wp ⊗ R
n to H ⊗ R

n; we will
also denote this extension by a ⊗ Jξ . Its action is given by

(a ⊗ Jξ )ω = 1

2

⎡
⎣

T∫

0

R(t, ·) ⊗ d Jξω(t) −
T∫

0

R(dt, ·) ⊗ Jξω(t)

⎤
⎦ .

Proof The result follows immediately from the variational properties of the path-space
and Cameron–Martin space along with the boundedness of a and Jξ ; we will prove
the result by hand here in order to record an explicit upper bound on the operator norm
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18 P. Driscoll

of a ⊗ Jξ . To that end, given an ω ∈ Wp ⊗ R
n , we have

‖(a ⊗ Jξ )ω‖2
H⊗Rn =

n∑
i=1

(∥∥∥∥
ξ(ω(T ), ei )R(t, ·)

2

∥∥∥∥
2

+
∥∥∥∥∥∥

T∫

0

ξ(ei , ω(t))R(dt, ·)
∥∥∥∥∥∥

2

−
〈
ξ(ω(T ), ei )R(T, ·),

T∫

0

ξ(ei , ω(t))R(dt, ·)
〉)

=
n∑

i=1

(
(ξ(ω(T ), ei ))

2 T 2H

4

+
∫

[0,T ]2

ξ(ei , ω(s))ξ(ei , ω(t))d R(s, t)

+ ξ(ω(T ), ei )

T∫

0

ξ(ei , ω(t))R(dt, T )

)

≤
n∑

i=1

(
‖ξ‖2

(
|ω(T )|2 T 2H

4
+ ‖ω‖2

p‖R‖(2D)
r

+|ω(T )|‖ω‖p‖R‖r

))

≤ n‖ξ‖2
(

T 2H

4
+ ‖R‖(2D)

r + ‖R‖r

)
‖ω‖2

p.

�
We may thus define random processes Ql B for each l = 1, . . . , k by the formula

Ql B = 1

2

⎡
⎣

T∫

0

R(t, ·) ⊗ d Jl Bt −
T∫

0

R(dt, ·) ⊗ Jl Bt )

⎤
⎦ . (a.s.)

Proposition 3.8 The process YT has derivative DYT taking values in L(H ⊗
R

n, R
n+k), with action given by

DYT h =
(

R1
T h, . . . , Rn

T h, 〈Q1 B, h〉H⊗Rn , . . . , 〈Qk B, h〉H⊗Rn

)
(a.s.)

Proof We begin by computing the derivative of ql(Bm, Bm) for l = 1, . . . , k in the
direction of some h ∈ H ⊗ R

n . Define Tj := j
2m T .

Dql(Bm, Bm)h = D

⎡
⎣

2m∑
j=1

BTj + BTj−1

2

(
Jl BTj − Jl BTj−1

)
⎤
⎦ h
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Smoothness of densities for area of FBM 19

= 1

2

2m∑
j=1

(
h(Tj ) + h(Tj−1)

) (
Jl BTj − Jl BTj−1

)

+ (
BTj + BTj−1

) (
Jl h(Tj ) − Jl h(Tj−1)

)

= 1

2

2m∑
j=1

(
h(Tj ) + h(Tj−1)

) (
Jl BTj − Jl BTj−1

)

− (
Jl BTj + Jl BTj−1

) (
h(Tj ) − h(Tj−1)

)

= 1

2

⎡
⎣

T∫

0

hm(t)d(Jl Bm)t −
T∫

0

(Jl Bm)t dhm(t)

⎤
⎦

= 〈Ql Bm, h〉H⊗Rn .

It is easy to check that D2ql is entirely deterministic, and that higher Malliavin deriv-
atives are equivalently zero. Thus, in order to prove the claim, it suffices to show that
for each l = 1, . . . , k,

E ‖〈Ql B, ·〉 − 〈Ql Bm, h〉‖2
(H⊗Rn)∗

= E

∥∥∥∥∥∥

T∫

0

R(dt, ·) ⊗ (Jl B)t −
T∫

0

Rm(dt, ·) ⊗ (Jl Bm)t

∥∥∥∥∥∥

2

H⊗Rn

tends to zero as m → ∞. Yet one can dominate each term by

ClE

∥∥∥∥∥∥

T∫

0

R(dt, ·) ⊗ Bt −
T∫

0

Rm(dt, ·) ⊗ (Bm)t

∥∥∥∥∥∥

2

H⊗Rn

for some suitable constant Cl depending only on αl . Our proof then rests upon dem-
onstrating that the above quantity vanishes in the limit. Let us begin by noting that

∥∥∥∥
T∫

0

Bi (s) R(ds, ·) −
T∫

0

Bi
m(s) Rm(ds, ·)

∥∥∥∥
2

H

≤
(∥∥∥∥∥∥

T∫

0

Bi (s) (R − Rm)(ds, ·)
∥∥∥∥∥∥

2

H

+
∥∥∥∥∥∥

T∫

0

(Bi − Bi
m)(s)Rm(ds, ·)

∥∥∥∥∥∥

2

H

)
.
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20 P. Driscoll

In order to prove convergence of the above expression, it will be helpful to introduce
the following notation:

�m(u, v) := 〈(R − Rm)(u, ·), (R − Rm)(v, ·)〉H
= R(u, v) − Rm(u, v) − Rm(v, u) + 〈Rm(u, ·), Rm(v, ·)〉H
= R(u, v) − Rm(u, v) − Rm(v, u) + πm [Rm(u, ·)] (v).

Note that �m converges uniformly to zero as m tends to infinity. As a linear com-
bination of R and Rm, �m has finite two-dimensional r -variation for r = 1

2H . Let
r ′ be a number such that r ′ > r and 1

r ′ + 1
r > 1; then it follows that �m has finite

two-dimensional r ′-variation; furthermore, Lemma 2.1 implies that

lim
m→∞ ‖�m‖(2D)

r ′ = 0.

Using the continuity of the inner product, we find that

∥∥∥∥
T∫

0

Bi (s) (R − Rm)(ds, ·)
∥∥∥∥

2

H

= lim|�|→0

∑
u j ,vk∈�

Bi (c j )Bi (dk)〈�i (R − Rm)(u j , ·),� j (R − Rm)(vk, ·)〉H

= lim|�|→0

∑
u j ,vk∈�

(
Bi (c j )Bi (dk)

)
�i j�m(u j , vk) =

∫

[0,T ]2

Bi ⊗ Bi d�m

≤ C‖�m‖(2D)

r ′ ‖Bi‖2
p.

Hence,

E

∥∥∥∥
T∫

0

Bi (s) (R − Rm)(ds, ·)
∥∥∥∥

2

H
≤ C‖�m‖(2D)

r ′ E‖Bi‖2
p;

Fernique’s Theorem guarantees that the right-hand expression is finite; from our above
remarks, we know that its value tends to zero as m → ∞. We may then conclude that

E

∥∥∥∥
T∫

0

Bi (s) (R − Rm(ds, ·))
∥∥∥∥

2

H
m→∞−→ 0.

We can approach the convergence of the second term in a similar manner. Choose p′
such that p′ > p and 1

p′ + 1
r > 1; then the sample paths of Bi − Bi

m has finite r -var-

iation and Lemma 2.1 tells us that ‖Bi − Bi
m‖p′ tends to zero as m tends to infinity.
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Smoothness of densities for area of FBM 21

Therefore, it follows that

E

∥∥∥∥
T∫

0

(Bi − Bi
m)(s)Rm(ds, ·)

∥∥∥∥
2

H
= E

∫

[0,T ]2

(Bi − Bi
m) ⊗ (Bi − Bi

m) d Rm

≤ E

[
‖Bi − Bi

m‖2
p′
]
‖R‖(2D)

r → 0

�

3.4 Integrability of the Malliavin covariance determinant

Recall that the Malliavin covariance matrix is defined as the operator DYT (DYT )∗.
We will indicate by � the Gram matrix for the operators {Ql}k

l=1; more precisely,
� will be the function from Wp ⊗ R

n to Mk(R) defined by

[�(ω)]i j = 〈
Qiω, Q jω

〉
H⊗Rn .

We will let � denote the linear mapping from Wp ⊗ R
n into Mn,k(R) with entries

given by

[�ω]i j := [
Q jω

]
(T ) · ei .

Each of these matrices may be extended to matrix-valued random variables �(B) and
�B in the usual manner.

Proposition 3.9 Suppose γ : Wp ⊗ R
n → Mn+k(R) is given by

γ (ω) :=
[

T 2H In �ω

(�ω)tr �(ω)

]
.

then DYT (DYT )∗ = γ (B) almost surely.

Proof Given x ∈ R
n+k and h ∈ H ⊗ R

n ,

〈
(DYT )∗x, h

〉 = x ·
(

R1
T h, . . . , Rn

T h, 〈Q1 B, h〉H⊗Rn , . . . , 〈Qk B, h〉H⊗Rn

)

=
〈

n∑
i=1

xi R(T, ·) ⊗ ei +
k∑

j=1

xn+ j Q j B, h

〉

H⊗Rn

.

Direct calculations reveal the following identities:

Rl
T (R(T, ·) ⊗ ei ) = δil T

2H ;
〈Ql B, R(T, ·) ⊗ ei 〉H⊗Rn = Rl

T (Ql B) = [Ql B]T · ei .
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22 P. Driscoll

By linearity, it follows that

DYT (DYT )∗x =
n∑

i=1

xi DYT [R(T, ·) ⊗ ei ] +
k∑

j=1

xn+ j DYT
[
Q j B

]

=
n∑

i=1

xi
(

T 2H ei , [Q1 B]T · ei , . . . , [Qk B]T · ei

)

+
k∑

j=1

xn+ j
( [

Q j B
]

T · e1, . . . ,
[
Q j B

]
T · en,

〈Q1 B, Q j B〉, . . . , 〈Qk B, Q j B〉
)
.

One may readily verify that this is almost surely equivalent to [γ (B)]x. �

Recall that proving smoothness of the density of Y with respect to Lebesgue mea-
sure requires showing that

(det γ (B))−1 ∈ L∞−. (3.7)

We will use the following elementary lemma from matrix algebra in order to compute
the determinant of the covariance matrix.

Lemma 3.10 Given any a �= 0, C ∈ Mm,n(R), and D ∈ Mn(R), one has that

det

[
aIm C
Ctr D

]
= am

(
det(D − a−1Ctr C)

)
.

Proof This claim follows immediately when one writes

[
aIm C
Ctr D

]
=

[
aIm 0
Ctr In

] [
Im a−1C
0 D − a−1Ctr C

]
.

�

As an application of Lemma 3.10, we have that

det γ (B) = T 2Hn det
(
�(B) − T −2H [�B]tr�B

)
.

For each y ∈ Sk−1, define the operator �y on Wp ⊗ R
n by

�y(ω) :=
(
�(ω) − T −2H [�ω]tr�ω

)
y · y (3.8)
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This operator is continuous both in ω and y. If for each y ∈ Sk−1 we let y · α :=∑k
i=1 yiαi , then one has the identities

(�(B))y · y = ∥∥(a ⊗ Jy·α)B
∥∥2

H⊗Rn

([�B]tr�B
)

y · y = ∣∣([a ⊗ Jy·α)B](T )
∣∣2 ,

where
(
a ⊗ Jy·α

)
is the almost sure extension of the operator as defined in Eqs. (3.5)

and (3.6). Thus, we may write

�y(ω) = ∥∥(a ⊗ Jy·α)B
∥∥2

H⊗Rn − T −2H
∣∣([a ⊗ Jy·α)B](T )

∣∣2 ;

an application of the Cauchy–Schwarz inequality gives that each �y is non-negative.
Once again, we may almost surely identify this operator with a random variable

�y(B). We note that

(det γ (B))−1 ≤ T −2Hn
(

min
y∈Sk−1

�y(B)

)−k

;

hence our desired integrability condition will be implied by showing that

(
min

y∈Sk−1
�y(B)

)−1

∈ L∞−.

Lemma 3.11 Suppose that X is a non-negative random variable such that, for each
j ≥ 1, there exists a constant C j > 0 for which

E

[
e−s X

]
≤ C j s

− j ∀ s ≥ 1.

Then X−1 ∈ L∞−.

Proof Fix j ≥ 1. We note that for any k ≥ 0,

∞∫

0

s j−1e−ks ds = k− j�( j),

where � denotes the standard Gamma function. By replacing k with the random vari-
able X , we find that

E[X− j ] = 1

�( j)
E

⎡
⎣

∞∫

0

s j−1e−s X ds

⎤
⎦ = 1

�( j)

∞∫

0

s j−1
E

[
e−s X

]
ds.
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It is sufficient for completion of the proof to note that, under the assumption given,
the right-hand expression is finite:

1∫

0

s j−1 E
[
e−s X

]
ds ≤

1∫

0

s j−1ds = 1

j
;

∞∫

1

s j−1 E
[
e−s X

]
ds ≤

∞∫

1

s j−1(C j+1s−( j+1)) ds = C j+1.

�
Theorem 3.12 (see Melcher [17, pp. 26–27]) Let (W,B, P) be a Gaussian measure
space with associated Cameron–Martin space H, and suppose � : W × W → R is
a bounded non-negative quadratic form. Then the operator �̂ : H → H given by

�(h, k) = 〈�̂h, k〉H
is trace-class. In addition, if �̂ is not a finite rank operator, then

�−1 ∈ L∞−(W, P).

Proof By Theorem 5.3.32 of [22], we have that there exists a set of independent,
identically distributed standard normal random variables {ξn}∞n=1 such that the series

B N := ∑N
n=1 ξnhn converges in W to B P-a.s. and in all L j , j ≥ 1 as N → ∞, and

Law

( ∞∑
n=1

ξnhn

)
= P.

In particular, the fact that E‖B N − B‖2
W → 0 implies that �(B N , B N ) → �(B, B)

in L1. Thus, Fernique’s Theorem allows us to conclude that

∞∑
n=1

〈
�̂hn, hn

〉
H = lim

N→∞

N∑
n=1

�(hn, hn)

= lim
N→∞ E

[
�(B N , B N )

]

= E[�(B)] ≤ CE[‖B‖2
W ] < ∞.

Thus, �̂ is trace-class.
Suppose that �̂ is not finite rank. Since �̂ is compact, there exists an orthonor-

mal basis {hn}∞n=1 ⊂ H for which �̂hn = λnhn ; our assumption guarantees that
#{n : λn > 0} = ∞. Using this, it is easy to check that

�(B N , B N ) =
〈
�̂B N , B N

〉
H =

N∑
n=1

λnξ
2
n
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and so

�(B, B) = L1 − lim
N→∞

N∑
n=1

λnξ
2
n .

We will let KN := #{1 ≤ n ≤ N : λn > 0}; it is clear that {KN } is an non-decreasing

sequence with KN
N→∞−→ ∞. Therefore, for each fixed N and positive s,

E
[
exp (−s�(B, B))

] = E

[
exp

(
−s lim

N→∞

N∑
n=1

λnξ
2
n

)]

≤ E

[
exp

(
−s

N∑
n=1

λnξ
2
n

)]

=
N∏

n=1

(
1

2λns + 1

) 1
2 ≤ CN s− KN

2 .

Applying Lemma 3.11 finishes the proof. �
Theorem 3.12 implies that the operator �̂y : Hn → Hn defined by

〈
�̂yh, h

〉
Hn

= �yh

is trace-class.

Proposition 3.13 For each fixed y ∈ Sk−1, the map �y is contained in L∞−(P).

Proof Again recalling Theorem 3.12, it suffices to show that �̂y is not a finite rank
operator. To that aim, we begin by noting that �̂yh = 0 implies that �y(h) = 0. By
Cauchy–Schwarz, this is true if and only if

(
a ⊗ Jy·α

)
h = cR(T, ·)

for some c ∈ R
n . By definition, this is equivalent to the statement that

T∫

0

R(dt, ·) ⊗ (
Jy·αh(T ) − Jy·αh(t) − c

) = 0.

Taking the inner product of each side against an arbitrary test function ϕ ∈ C∞
c ⊗R

n ⊂
H ⊗ R

n and applying integration by parts, we obtain the identity

0 =
T∫

0

ϕ(t) ⊗ d Jy·αh(t) (∀ϕ ∈ C∞
c ⊗ R

n)
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which implies Jy·αh ≡ 0; that is, h(t) ∈ Null
(
Jy·α

)
for all t ∈ [0, T ]. By the assump-

tion on our skew-symmetric operators, y · α is not the zero map. Thus, we may pick
some v �= 0 for which Jy·αv is non-zero; it follows that for each fixed non-zero
h ∈ H, h(t) ⊗ Jy·αv �= 0 for all t ∈ (0, T ] such that h(t) �= 0. Thus the set

{h ⊗ v : 0 �= h ∈ H}

is contained in the complement of the kernel of �̂; it is clear that the cardinality of
this set is infinite. �

Proposition 3.14 For each 1 ≤ p < ∞, the expectations E[�−p
y ] are uniformly

bounded over Sk−1; i.e.,

sup
y∈Sk−1

E[�−p
y ] < ∞.

Proof We begin by noting that the operator �̂y may be written as

�̂y = (a ⊗ Jy·α)∗(a ⊗ Jy·α) − T −2H (a ⊗ Jy·α)∗ R∗
T RT (a ⊗ Jy·α)

= (a∗a − T −2H a∗ R∗
T RT a) ⊗ J ∗

y·α Jy·α,

where RT denotes the evaluation operator at time T . We note that the quadratic form
A on Wp given by

A(ω, τ) = 〈aω, aτ 〉H − (aω(T ) · aτ(T ))

is non-negative and bounded; hence Theorem 3.12 implies that (a∗a−T −2H a∗ R∗
T RT a)

is trace-class and a fortiori compact. For each y, the (non-negative) eigenvalues {λy
n} of

the operator �̂y are given by the products of eigenvalues of (a∗a − T −2H a∗ R∗
T RT a)

and J ∗
y·α Jy·α . Recall from the proof of Theorem 3.12 that one has the equation

�y(B) = L1 − lim
N→∞

N∑
n=1

λ
y
nξ2

n

where {ξn} are a set of independent standard normal random variables.
For each y ∈ Sk−1, let ρy denote the spectral radius of J ∗

y·α Jy·α . Additionally, let

{σn} denote the eigenvalues of the operator (a∗a − T −2H a∗ R∗
T RT a). Define the set

Ey as the collection of non-zero eigenvalues of �̂y of the form ρyσn . Since a has a
trivial kernel, and Jy·α is not the zero map, we have that #(Ey) = ∞. Without loss of
generality, we may order our eigenvalues such that members of Ey are listed “first”;
i.e., λ

y
n ∈ Ey for any n ∈ N.
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For each 1 ≤ p < ∞, let N be the first integer for which N > 2p. Then

E[(�y(B)
)−p] ≤ E

⎡
⎣
(

N∑
n=1

λ
y
nξ

2
n

)−p⎤
⎦

≤
(

min
n=1,...,N

λ
y
n

)−p

E

⎡
⎣
(

N∑
n=1

ξ2
n

)−p⎤
⎦

=
(

min
n=1,...,N

λ
y
n

)−p ∞∫

0

r−2pr N−1e
−r2

2 dr

which is certainly a finite expression. In particular, a uniform bound on E[(�y(B)
)−p]

will be proven if we can find a constant M for which

(
min

n=1,...,N
λ

y
n

)−p

≤ M

for all y ∈ Sk−1. We note that

min
n=1,...,N

λ
y
n = ρy min

n=1,...,N
σn ≥ Cρy

where the constant C is dependent only on the value of N . Thus it is only left for us
to prove that

max
y∈Sk−1

ρ
−p
y ≤ M;

yet this is equivalent to the statement that

min
y∈Sk−1

ρy > 0,

which is true by the compactness of the unit sphere and the non-degeneracy condition
imposed upon α. �

With a uniform bound on the moments of �−1
y , we may now approach proving our

desired integrability condition by way of the compactness of the unit sphere and the
following lemma.

Lemma 3.15 (Lemma 6.6 of [2]) Suppose X is a non-negative random variable such
that

P(X < ε) = O(ε∞−) (ε −→ 0).

Then X−1 ∈ L∞−(P).
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Proof Fix some p ≥ 1. Pick some q > p; then by assumption, there exists some
constants K = Kq , M = Mq such that

P (X < ε) ≤ K εq ,

provided ε < 1
M . Using this, we see that

E[X−p] =
∞∫

0

τ p−1
P(X−1 > τ) dτ

=
∞∫

0

τ p−1
P(X < τ−1) dτ

=
M∫

0

τ p−1
P(X < τ−1) dτ +

∞∫

M

τ p−1
P(X < τ−1) dτ

≤
M∫

0

τ p−1 dτ + K

∞∫

M

τ p−1τ−q dτ

≤ M p

p
+ M p−q

q − p
< ∞.

�
Theorem 3.16 Let �y be defined as in Eq. (3.8). Then

(
min

y∈Sk−1
�y(B)

)−1

∈ L∞−(Wn
p, P).

Proof By Lemma 3.15, it suffices to check that for all q,

P

{(
min

y∈Sk−1
�y(B)

)
< ε

}
≤ Cqεq

for some suitable constant Cq dependent only on q. Fix ε > 0. We pick a natural

number N (ε) and vectors {yi }N (ε)
i=1 such that

N (ε)⋃
i=1

B(yi ; ε2)

form an open cover of Sk−1. Note that the value of N (ε) is bounded above by 2kε−2k ;
one may see this by slicing the cube [−1, 1]k into disjoint cubes of size length ε2.

123



Smoothness of densities for area of FBM 29

Define the following sets:

Ai :=
{

inf
z∈B(yi ;ε2)

�z B < ε : ‖B‖2
p ≤ 1

ε

}
;

Bi :=
{

inf
z∈B(yi ;ε2)

�z B < ε : ‖B‖2
p >

1

ε

}
.

Then one has that

P

{(
min

y∈Sk−1
�y(B)

)
< ε

}
≤

N∑
i=1

(
P(Ai ) + P(Bi )

)
.

Suppose z ∈ B(yi ; ε2). Then on Ai , one has the inequality

|�yi (B)| ≤ |�yi (B) − �z(B)| + |�z(B)| < C‖B‖2
pε

2 + ε = (1 + C)ε

for a suitable constant C . Therefore Ai ⊂ {
�yi (B) < (1 + C)ε

}
. Letting Mq :=

supy∈Sk−1 E[(�y(B)
)−q ] (a finite quantity by Proposition 3.14) and using Markov’s

inequality, we obtain the bound

P(Ai ) ≤ P
{
�yi (B) < 2ε

} = P

{(
�yi (B)

)−q
> (2ε)−q

}

≤ ((1 + C)ε)q
E[(�yi (B)

)−q ] ≤ (2q Mq)εq .

Another application of Markov’s inequality gives us that

P(Bi ) ≤ P

{
‖B‖2

p >
1

ε

}
= P

{
‖B‖2q

p >
1

εq

}

≤ εq
E[‖B‖2q

p ],

which is finite as a consequence of Fernique’s Theorem.
We note that each inequality is independent of i , and so, for suitable constant Kq ,

we obtain the bound

P

{(
min

y∈Sk−1
�y(B)

)
< ε

}
≤ N (ε)((1 + C)q Mq + E[‖B‖2q

p ])εq

≤ Kqεq−2k .

As such a bound holds for all q ≥ 1, we may conclude that

P

{(
min

y∈Sk−1
�y(B)

)
< ε

}
= O(ε∞−),

as desired. �

123



30 P. Driscoll

4 Appendix

At first blush, it may seem natural to have our process B have the classical Wiener
space Wn := C([0, T ], R

n) as its sample space. However, doing so is not ideal, since
many of the operators we will be considering are only defined on smaller spaces, such
as the p-variation spaces.

We begin with a general result regarding σ -algebras.

Lemma 4.1 Let X be any real separable Banach space and L be any non-empty
subset of X∗. Then ‖·‖X is σ (L)-measurable if and only if BX = σ (L) .

Proof It it easy to see that, in any case, σ(L) ⊂ BX . Also, since ‖·‖X is contin-
uous it is always Borel measurable; therefore, if BX = σ (L) then ‖·‖X is clearly
σ (L)-measurable.

Suppose that ‖·‖X is σ (L)-measurable; then for each x0 ∈ σ (L) , ‖· − x0‖X is
also σ (L) – measurable, and x → x − x0 is σ (L) /σ (L)-measurable. From this
observation, it follows that σ (L) contains all balls in X. Since X is separable, every
open subset of X may be written as a countable union of open balls. It follows, then,
that σ (L) contains all open subsets of X and therefore that BX ⊂ σ(L). �
Theorem 4.2 Suppose (X,B = BX , μ) is a Gaussian probability space, and X̃ is a
linear subspace of X. Also let ‖ · ‖X̃ is a norm on X̃ such that

(1) The space (X̃ , ‖ · ‖X̃ ) is a separable Banach space,
(2) The embedding of X̃ into X is continuous,
(3) X̃ ∈ B and μ(X̃) = 1,
(4) B̃ := BX̃ = {A ∩ X̃ : A ∈ B}.
Then μ̃ := μ|X̃ is a Gaussian measure and (X̃ , B̃, μ̃) is a Gaussian probability space.
Furthermore, (X, μ) and (X̃ , μ̃) share the same Cameron–Martin space H.

Proof Let Rπ/4 : X × X → X × X is the rotation map defined by

Rπ/4(x, y) =
(√

2

2
(x − y),

√
2

2
(x + y)

)
;

then by the rotational invariance of Gaussian measures (see, for example, Theorem
3.1.1 of [5]), proving the statement that μ̃ is Gaussian is equivalent to proving that

∫

X̃×X̃

f (x, y) dμ̃(x)dμ̃(y) =
∫

X̃×X̃

f ◦ Rπ/4(x, y) dμ̃(x)dμ̃(y)

for any bounded B̃ × B̃-measurable function f . Let f be such a function; since X̃ is
of full μ measure, we may extend f to an B ×B-measurable function (which we shall
also refer to as f ) such that

∫
X̃×X̃

f dμdμ = ∫
X×X

f dμdμ (this extension may be done
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by setting a function equal to f on X̃ × X̃ and equal to zero on the complement, for
example). Then it follows that

∫

X̃×X̃

f (x, y) dμ̃(x)dμ̃(y) =
∫

X̃×X̃

f (x, y) dμ(x)dμ(y)

=
∫

X×X

f (x, y) dμ(x)dμ(y)

=
∫

X×X

f ◦ Rπ/4(x, y) dμ(x)dμ(y)

=
∫

X̃×X̃

f ◦ Rπ/4(x, y) dμ(x)dμ(y)

=
∫

X̃×X̃

f ◦ Rπ/4(x, y) dμ̃(x)dμ̃(y).

This proves the first assertion.
To see the equivalence of Cameron–Martin spaces, we recall that J : L2(X, μ) →

X , defined by

J f :=
∫

X

x f (x) dμ(x),

maps onto H. Again, by virtue of μ being fully supported on X̃ , we may extend any ele-
ment of L2(X̃ , μ̃) to an element of L2(X, μ); thus it is easy to see that J (L2(X̃ , μ̃)) =
J (L2(X, μ)) = H, as desired. �

Remark 4.3 An alternate proof of the equivalence of Cameron–Martin spaces may be
found in Proposition 2.8 of [9].

Let us now focus on restricting the law of fractional Brownian motion with Hurst
parameter 1

4 < H < 1
2 to a variational space. The standard Gaussian space on which

fBm is realized is (W,B, P), where W = {ω ∈ C([0, T ], R) : ω(0) = 0} and
P = Law(B H ). Pick 0 < ε << 1 and fix p := 1/H + ε. Let φt , 0 ≤ t ≤ T denote
the evaluation map on W; i.e., φt (x) = x(t) for any x ∈ W . Since

‖ · ‖W = sup
0≤t≤T

φt ,

it follows that ‖·‖W is a σ({φt : 0 ≤ t ≤ T })-measurable function, and by Lemma 4.1,
it then follows that σ({φt : 0 ≤ t ≤ T }) = BW . Recall that we have defined the
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p-variation norm on W by

‖x‖p = sup
�∈P[0,T ]

⎛
⎝

(#�)∑
i=1

|�i x |p

⎞
⎠

1
p

.

Recall that we have defined the space

Wp = {x ∈ C∞([0, T ], R) : x(0) = 0}‖·‖p
.

By Corollary 5.35 and Proposition 5.38 of [10], this space is a separable Banach space
under the p-variation norm and contains all q-variation paths starting at zero for any
1 ≤ q < p. Note that for x ∈ Wp, Hölder’s inequality implies that for any t ∈ [0, T ],

|x(t)| = |x(t) − x(0)|
≤ |x(t) − x(0)| + |x(T ) − x(0)|
≤ 2

p−1
p

(|x(t) − x(0)|p + |x(T ) − x(0)|p) 1
p

≤ 2
p−1

p ‖x‖p,

from which it follows that ‖x‖W ≤ ‖x‖p , and so the embedding of W p
0 into W is

continuous. Observe that we may rewrite the p-variation norm as

‖ · ‖p = sup
�∈P[0,T ]

⎛
⎝

(#�)∑
i=1

|φti − φti−1 |p

⎞
⎠

1
p

.

Thus, ‖ ·‖p is σ({φt |Wp : 0 ≤ t ≤ T })-measurable, which implies that σ(L) = BWp .
Furthermore, by Theorem 5.33 of [10], we know that the space Wp is equivalent to

⎧⎨
⎩x ∈ Wp : lim

δ→0
sup

�∈P[0,T ]:|�|<δ

#(�)∑
i=1

|x(ti ) − x(ti−1)|p = 0

⎫⎬
⎭

If we now define

αp(x) := lim
n→∞ sup

�∈P[0,T ]∩N:|�|< 1
n

#(�)∑
i=1

|x(ti ) − x(ti−1)|p,

then it follows that αp is a σ({φt |Wp : 0 ≤ t ≤ T })-measurable function, and that

Wp = Wp ∩ {αp = 0} ∈ BW .
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Additionally, we may now use Lemma 4.1 to conclude that

BWp = σ({φt |Wp : 0 ≤ t ≤ T })
= {A ∩ Wp : A ∈ σ({φt |W : 0 ≤ t ≤ T })}
= {A ∩ Wp : A ∈ BW }.

Finally, we note that since the paths t �→ B H
t are a.s. Hölder continuous of order

β := H
(
1 + εH

2

)−1
< H , each such path has finite q-variation for q = 1

β
= 1

H + ε
2 .

So by Corollary 5.35 of [10], P(Wp) ≥ P(Wq) = 1. Thus, we may appeal to Theo-
rem 4.2 to conclude that (Wp,BWp , P|Wp ) is also a Gaussian probability space, and
that the associated Cameron–Martin space H coincides with the usual Cameron–Mar-
tin space corresponding to P on W .
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