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Abstract We study several fundamental properties of a class of stochastic processes
called spatial �-coalescents. In these models, a number of particles perform indepen-
dent random walks on some underlying graph G. In addition, particles on the same
vertex merge randomly according to a given coalescing mechanism. A remarkable
property of mean-field coalescent processes is that they may come down from infin-
ity, meaning that, starting with an infinite number of particles, only a finite number
remains after any positive amount of time, almost surely. We show here however that,
in the spatial setting, on any infinite and bounded-degree graph, the total number of
particles will always remain infinite at all times, almost surely. Moreover, if G = Z

d ,
and the coalescing mechanism is Kingman’s coalescent, then starting with N particles
at the origin, the total number of particles remaining is of order (log∗ N )d at any fixed
positive time (where log∗ is the inverse tower function). At sufficiently large times the
total number of particles is of order (log∗ N )d−2, when d > 2. We provide parallel
results in the recurrent case d = 2. The spatial Beta-coalescents behave similarly,
where log log N is replacing log∗ N .
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1 Introduction

1.1 Motivation and main results

The theory of stochastic coalescent processes has expanded considerably in the last
decade, as a consequence of their deep connections to population genetics, spin glass
models and polymers. In theoretical population genetics, coalescents arise as natu-
ral models of merging of ancestral lineages (see, for example, [9,18]). A particular
�-coalescent, usually called the Bolthausen–Sznitman coalescent, is thought to be
an important object for describing the conjectured universal ultrametric structure of
numerous mean-field spin glass models including the Sherrington-Kirkpatrick model
(see [12,13,38]). The same coalescent has also been recently linked in [15] to scaling
limits of directed polymers.

The �-coalescents are stochastic processes taking values in P , the space of parti-
tions of N = {1, 2, . . .}. In the current context, each class (or block) in � ∈ P can
and will be thought of as a particle. For any coalescent process (�t , t ≥ 0) it is true
that �t+s is a coarsening of �t , for any t, s > 0. There is a natural semi-group struc-
ture (P, �), where � � �′ is the result of merging the blocks of � “according to” the
partition �′. The �-coalescents can be canonically characterized as the Lévy processes
in (P, �), with the property that no two coagulation events occur simultaneously. The
above Lévy property corresponds to the fact that �t+s = �t � �′s , for all t, s ≥ 0,
where (�′t , t ≥ 0) is an independent, identically distributed process (see, e.g. [6,
Sect. 3.1.3] for details). A direct construction of �-coalescents from [34] is now con-
sidered standard in the probability literature. As will be discussed in more detail below,
each �-coalescent corresponds uniquely to a finite measures � on [0, 1]: for instance,
the case where � = δ{0} gives the well-known Kingman coalescent from mathemat-
ical population genetics, while the uniform measure on [0, 1] gives the Bolthausen–
Sznitman coalescent. These two processes, as well as the more general Beta-coales-
cents are especially interesting and amenable for analysis, since they are self-similar
in a certain sense made precise by the results of [4].

The present work is devoted to the study of several fundamental properties of a
more general class of models, introduced in [32] and called the spatial �-coalescents.
In this setting, particles (i.e., partition classes) are positioned on some underlying
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locally finite graph G= (V, E). The dynamics of the process is enriched in the pres-
ence of the geographical structure in two ways. First, the particles move as indepen-
dent continuous time simple random walks on G. Second, stochastically independent
�-coalescence takes place on each site of G. More precisely, at any given time, only
particles that are on a same site can coagulate. Moreover, at every site the coalescence
mechanism is that of the original (mean-field) �-coalescent. The spatial Kingman
coalescent is a natural model of an interacting particle system where particles perform
independent random walks on an underlying graph, and any pair of particles coalesce
at rate 1, as long as they are located at the same site.

The spatial �-coalescent processes are particularly well suited to model merging of
ancestral lineages for a population that is evolving in a geographical space G, where
the spatial motion of individuals is taken into account. In this way, geographical fac-
tors such as isolation and overpopulation can influence the dynamics, making it a
more realistic model for long-term population behavior. In the above interpretation,
the vertices of the graph are referred to as demes and represent a discretization of
physical space. Each edge represents potential migratory routes between two adjacent
demes.

While the mean-field �-coalescent processes are relatively well understood at this
point, even basic properties of their spatial counterparts are much more delicate to
analyze. Intuitively, the difficulty comes from the fact that the two ingredients in the
dynamics, the coalescence and the migration, affect the particles in the system in
opposite directions: the spatial motion makes particles diffuse away from one another,
and the coalescence keeps them together. Indeed, our results show that the compe-
tition between these two forces can be very tight. Our main results provide infor-
mation about the limiting behavior of spatial �-coalescents as the initial number of
particles n tends to infinity, at both small and large time-scales. We consider the
case where initially all the particles are located at the origin o of G. For some of
our results, the only assumptions on G are that it is connected and has bounded
degree � = maxv∈V degree(v) < ∞. However, several of our more precise results
on the asymptotic behavior are restricted to the setting where G is the d-dimensional
lattice Z

d .
Define the function log∗ n as the inverse log∗ n := inf{m ≥ 1 : Tow(m, 1) ≥ n} of

the tower function, where Tow(0, x) = x and

Tow(n, x) = eTow(n−1,x) = ee ..
.ex

︸ ︷︷ ︸

n iterations

. (1)

Theorem 1.1 Fix ε > 0, and consider the spatial Kingman coalescent on a graph G
with bounded degrees. Start with n particles located at o ∈ G, and let N n(t) be the
total number of particles at time t > 0. There are constants C, c > 0 depending only
on t and the degree bound such that

P
(

N n(t) ≥ c Vol B(o, (1− ε) log∗ n)
) −−−→

n→∞ 1, and

P
(

N n(t) ≤ C Vol B(o, (1+ ε) log∗ n)
) −−−→

n→∞ 1.
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A more concise way of stating Theorem 1.1 is that N n(t) 	 Vol B(o, (1+o(1)) log∗ n)

with high probability (see the paragraph on “Other notations” at the end of Sect. 1.3
for 	 and other notations related to asymptotic behavior).

Remark The function log∗ n tends to infinity with n, but at a very slow rate: log∗ n ≤ 4
for n ≤ 101656520. Thus while this function diverges to infinity from the mathemati-
cally rigorous point of view, for all practical sample sizes it takes value 3 or 4.

Remark The behavior in Theorem 1.1 contrasts that of the mean-field case, where
N n(t) converges (without renormalization) to a finite random variable N (t) for all
t > 0, due to well-known properties of Kingman coalescent. In the lattice case G = Z

d ,
we see that N n(t) diverges as (log∗ n)d , i.e. extremely slowly. Even on a regular tree,
where balls have maximal volume given the degree, N n(t) diverges only as eC log∗ n .

The mean-field �-coalescent processes can be classified according to the coming
down from infinity (CDI) property. For the partition-valued process (�t , t ≥ 0), this
means that the initial configuration �0 = {{i} : i ∈ N} is countably infinite, but that
�t contains only finitely many classes at any time t > 0, almost surely. The Kingman
and the Beta-coalescents with parameter in a certain range (see below) come down
from infinity, while the Bolthausen–Sznitman coalescent does not. If the spatial coa-
lescent is viewed as an interacting particle system, then CDI is the property that the
total number of particles in the system at any fixed positive time remains bounded
(tight), as the initial number of particles tends to∞. It turns out that for the mean-field
model (as well as the spatial model with G a finite graph), either the total number
of particles in the system converges almost surely to a finite random variable, or it
diverges at any given time.

A natural question, and one of the motivations of this work, is whether a similar
dichotomy occurs in spatial coalescents. It is known that if the mean-field �-coalescent
comes down from infinity, then the number of particles in its spatial counterpart will
be locally finite (see Sect. 1.3). It is natural to ask whether the total number of particles
can nevertheless be infinite on infinite graphs. We answer this question for general
spatial �-coalescents. It is remarkable that the answer is universal, in that it does
not depend on the driving measure � nor on the geometry of the underlying infinite
graph G.

Theorem 1.2 For any measure � on (0,1) and any infinite graph G, consider the
spatial �-coalescent on G started with n particles at o ∈ G. If N n(t) denotes the total
number of particles at time t, then N n(t)→∞ almost surely, as n →∞.

In particular, for � such that the mean-field coalescent comes down from infinity,
the number of particles will be locally finite, but globally infinite. For this reason we
call this phenomenon the global divergence of the spatial �-coalescent.

Our next result on the fixed time asymptotics of N n concerns a setting that is partic-
ularly relevant for some biological applications, where the coalescence mechanism is
given by the Beta-coalescent with parameter α ∈ (1, 2) (as defined in the next section).

Theorem 1.3 Fix α ∈ (1, 2), and consider the spatial Beta(2−α, α) coalescent on a
graph G with bounded degree. Start with n particles located at o ∈ G, and let N n(t)
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be the total number of particles at time t. There are constants C, c > 0 depending
only on t, α and the degree bound such that

P
(

N n(t) ≥ c Vol B(o, c log log n)
) −−−→

n→∞ 1, and

P
(

N n(t) ≤ C Vol B(o, C log log n)
) −−−→

n→∞ 1.

Similarly to Theorem 1.1, this may be stated more concisely as
Nn(t) = 	(Vol B(o,	(log log n))). When the graph has growth Vol B(o, R) 	 Rd ,
this translates to N n(t) 	 (log log n)d .

All the previous theorems describe the state of the system at a fixed time t . We
also provide estimates for the number of particles that survive for a long time. Here
the diffusion of particles plays a more important role, hence the results depend in
a more fundamental way on the underlying graph. We focus on Euclidean lattices
G = Z

d , d ≥ 2. Since by Theorem 1.1, particles are quickly spread on a region of
size roughly m = log∗ n, it is natural to look at a time scale of order m2 in order to
see this diffusion.

Theorem 1.4 Assume that the coalescence mechanism is Kingman’s coalescent. Let
G = Z

d , let m = log∗ n, and fix δ > 0. Then there exist some constants c > 0 and
C > 0 (depending only on d, δ) such that, if d > 2,

P

(

cmd−2 < N n(δm2) < Cmd−2
)

−−−→
n→∞ 1,

while, if d = 2, then

P

(

c log m < N n(δm2) < C log m
)

−−−→
n→∞ 1.

If the coalescence mechanism is a Beta-coalescent with parameter α ∈ (1, 2), then
the same statement holds with m = log log n.

One interpretation of this theorem is that, when the underlying graph G is Z
d , the

resulting random particle system may also be thought of as a microscopic description
of the small-time evolution of a solution to the parabolic nonlinear partial differential
equation:

∂t u = 1

2
�u − βu2, (β > 0), (2)

starting from a singular initial condition, such as a Dirac delta measure at a given
spatial location. We refer the reader to [22,23] for a discussion of this equation, and
to the end of Sect. 1.2 for intuition about the relation between (2) and our model.

As suggested by Theorem 1.4, for the study of the long-term particle system behav-
ior it is natural to rescale the particle system’s time by a factor of m2, while rescaling
space by a factor of m. Theorem 1.4 indicates that the rescaled system should exhibit a
Boltzmann-Grad limiting behavior, i.e., the number of interactions (intersections and
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coalescences) between a particle and all others over any finite time interval is tight and
does not tend to 0 as n →∞. The behavior of the rescaled system mirrors the system
of Brownian coagulating particles studied in [22] and [23], in which the PDE (2) is
derived as the governing macroscopic behavior, and is obtained as a particular case of
the Smoluchowski system of PDEs. It is worth pointing out that in the current case,
the discrete structure of the lattice remains important in determining the frequency of
coalescence events even after space and time have been rescaled, which would alter
the formula fixing the reaction coefficient in the limiting PDE.

Remark Greven, Limic and Winter [20, Theorem 3] have shown that when d =
2, (N n(m2δ), δ ≥ 1) (i.e. the process seen at an exponential time scale) converges in
distribution to a time-changed mean-field Kingman coalescent, as n →∞. Thus the
diffusivity of the particles is observed at time scale m2, but the recurrence of particles
starts to affect the behaviour in a significant way only at later time scales.

Remark The log∗ function featured in Theorem 1.1 might remind the reader of a result
of Kesten [24,25], who studied the number of allelic types in a Wright-Fisher model
with small mutation probability.

In Kesten’s model, allelic types take values in Z, and the type of an offspring is iden-
tical to that of its parent, except on a mutation event of a small probability (inversely
proportional to the total population size). When a mutation occurs, the offspring’s
type is chosen by adding an independent Z-valued random variable (with some given,
bounded, distribution) to the parent’s type, that is, by making a random walk step from
the parent’s type. It turns out that the number of types (and, in fact, their relative posi-
tions in space) has an equilibrium distribution. It is shown in [24,25] that the number
of observed types at equilibrium is of order log∗ n, where n is the sample size. The
above Fisher-Wright model may seem closely related to the one-dimensional spatial
Kingman coalescent, but on a closer look one realizes that the dynamics of the two
models are quite different, and there is no direct relation between the results.

Kesten’s result may be phrased as follows. Let Tn be the tree generated by Kingman’s
(non-spatial) coalescent started with n particles, and consider a branching random
walk indexed by Tn . Then the number of distinct values at the leaves is of order log∗ n.
A variation of the strategy used in Sect. 3 applies in this setting, and can lead to an
alternate proof of Kesten’s result.

1.2 Heuristics and proof ideas

It is evident from Theorems 1.1 and 1.3 that the long term behavior of the number of
particles in the spatial coalescent depends delicately on the precise nature of the coa-
lescent. We now describe the approximate behavior of the spatial coalescent started
with a large number of particles, all located at o. The proofs are mostly a detailed
treatment of the following heuristic observations.

To understand the finite initial condition, we turn to the infinite one. Consider a
given �-coalescent which comes down from infinity (see below). Let Nt be the num-
ber of particles in the (non-spatial) coalescent started with N0 = ∞. For Kingman’s
coalescent it is the case that Nt ∼ 2/t , whereas for Beta-coalescents with parameters
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(2 − α, α) with 1 < α < 2, we have Nt ∼ cαt1−α [4,5]. The rough description that
follows applies to both of these, as well as more general coalescents. In general, one
would expect Nt to be concentrated (for small t) around some function g(t) (such
a function is found in [3]). The coalescent started with N particles is similar to the
infinite coalescent observed from time g−1(N ) onward.

Consider now the non-spatial coalescent with emigration, where each particle also
disappears at some rate ρ. In fact, the parameter ρ may depend on the size of the
population, as long as nρ(n) is non-decreasing. It turns out that for coalescents that
come down from infinity, the emigration does not influence Nt so much, and Nt is
still close to g(t). The total number of particles that emigrate when starting with N
particles is then close to a Poisson variable with mean

f (N ) :=
∫

g−1(N )

g(t)ρ(g(t))dt. (3)

(The upper bound of integration is some arbitrary constant.)
Now comes the key observation: if N is large, the number of particles migrating

back into o is negligible (under a technical condition that holds for most spatial coa-
lescents), and in fact, an overwhelming proportion of those particles that emigrate will
have emigrated by time g−1( f (N )). Thus we find that at this time, the number of par-
ticles at o and each of its neighbors is of order f (N ). A second observation is that the
resulting populations can be approximated by independent spatial coalescents, when
observed from time g−1( f (N )) onward. In particular, at time g−1( f ◦ f (N )) there
are of the order of f ◦ f (N ) particles at each vertex in B(o, 2). This “cascading onto
neighbors” continues until step m, where m is such that f ◦ · · · ◦ f (N ) (m repeated
iterations of f ) is of order 1. Note that in these m steps a ball of radius m has been
roughly filled.

Applying this heuristics to the case of Kingman’s coalescent and the Beta-coales-
cents with parameters (2− α, α) and 1 < α < 2, gives the following. For Kingman’s
coalescent and constant ρ, we have f (n) ∼ 2ρ log n, and for Beta-coalescents we have
f (n) ∼ Cαρn2−α , for some constant Cα > 0. Thus in the first case, m = log∗ N . In
the second case, we find m ∼ c log log N . In general, this gives m ∼ f ∗(n), where

f ∗(n) = inf

⎧

⎨

⎩

m ≥ 1 : f ◦ · · · ◦ f
︸ ︷︷ ︸

m iterations

(n) ≤ 1

⎫

⎬

⎭

. (4)

Note that if ρ(n) decreases fast enough so that f (n) is bounded, then it follows from
this heuristic analysis that the spatial coalescent will come down from infinity globally.
However, when ρ is constant, it can be proved that f is always unbounded, which in
turn implies the result about global divergence of any spatial �-coalescent.

Turning to the long time asymptotics, by the above reasoning we may start from a
configuration consisting of a tight number of particles at each site of the ball of radius
m around the origin. Since the number of particles per site is tight, the coalescent
dynamics influences the evolution less than the diffusion. In particular, the structure
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of the underlying graph becomes important for the asymptotic behavior of the pro-
cess. For simplicity, let us restrict ourselves to d-dimensional Euclidean lattices with
d ≥ 3. Let ρ(t) denote the average number of particles per site in the ball of radius m
at time t . Then at time t0 = 1 we have ρ(t0) 	 1 and limt→∞ ρ(t) = 0. Each particle
present in the configuration at time t coalesces with another particle at an average rate
approximately ρ(t), so that d

dt N (t) = −N (t)ρ(t)/2. Dividing by the volume of the
ball, one arrives to the ODE

d

dt
ρ(t) = −1

2
ρ(t)2, (5)

whose solution is given by ρ(t) = 2/(t + c) for some c > 0.
The approximation (5) should be valid as long as the diffusion of particles away

from the initial region (i.e., B(o, m)) is negligible. The influence of diffusion should
start to be visible at times of order m2. In particular, at time m2, the density ρ(m2) is
of order m−2, so the total number of remaining particles is of order md−2. Assuming
the plausible claim that the remaining particles are approximately uniformly distrib-
uted over a ball of radius order m, a simple calculation (using hitting probabilities for
random walks) now implies that each of them has a positive probability of never meet-
ing any other particle again, and so the number of particles that survive indefinitely is
of order md−2.

We wish to point out that van den Berg and Kesten [7,8] have shown a density
decay similar to (5) for a related model of coalescing random walks. However their
results differ in two ways. On the one hand, the coalescence mechanism which they
analyze is different. On the other hand, and more importantly, their initial condition
is initially homogeneous in space, and not restricted to a large ball. This restriction is
the cause of much of the difficulty in the current setting—see Sect. 7 for more details.

1.3 Definitions and background on spatial coalescents

Kingman’s coalescent. Suppose that we are given an integer n ≥ 1. Kingman’s
n-coalescent is the Markov process (�n

t , t ≥ 0), with values in the set Pn of partitions
of [n] := {1, . . . , n}, such that �n

0 = {{1}, {2}, . . . , {n}}, and such that each pair of
blocks merges at rate 1, and these are the only transitions of the process. Blocks of
the partition �n

t may be viewed as indistinguishable particles, and we often refer to
the number of blocks of �n

t as the number of particles alive at time t . A simple but
essential property of Kingman’s n-coalescent is the so-called sampling consistency
property: the restriction of (�n+1

t , t ≥ 0) to [n] has the same distribution as an n-
coalescent. This enables one to construct a Markov process (�t , t ≥ 0) with state
space P , the set of partitions of N, such that the law of � when restricted to [n] equals
the law of �n . In particular, the initial state of this process is the trivial partition
�0 = {{1}, {2}, . . .}. The process � is called Kingman’s coalescent. For background
reading, see for instance [6,18,35].

�-coalescents. Let � be a finite measure on [0, 1]. A coalescent with multiple col-
lisions, or �-coalescent, is a Markov process (�t , t ≥ 0) with values in the set of
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partitions of N characterized by the following properties. If n ∈ N, then the restriction
of (�t , t ≥ 0) to [n] is a Markov chain (�

(n)
t , t ≥ 0), where �n

0 = {{1}, {2}, . . . , {n}},
and where the only possible transitions are mergers of blocks (it is possible to merge
several blocks simultaneously into one block, but no two mergers of this kind can
occur simultaneously) so that whenever the current configuration consists of b blocks,
any given k-tuple of blocks merges at rate

λb,k =
∫

[0,1]
xk−2(1− x)b−k�(dx). (6)

Note that 00 is interpreted as 1, so that an atom of � at 0 causes each pair of parti-
cles to coalesce at a finite positive rate �({0}). In this way any �-coalescent can be
thought of as a superposition of a “pure” coalescent with multiple collisions driven by
measure �(dx)1(0,1](x), and a time-changed Kingman’s coalescent. An atom of � at
1 causes all the particles to coalesce at some positive fixed rate. Such �-coalescent
may be viewed as a killed �′-coalescent where �′(dx) = �(dx)1[0,1)(x). Kingman’s
coalescent is a particular �-coalescent, obtained when the measure � equals δ0, the
unit Dirac mass at 0. Any �-coalescent � is sampling consistent, that is, if m < n then
the restriction of �n to [m] is equal in law to �m . It is this observation that allows one
to construct an infinite version of the process. It is interesting to note the following fact
shown by Pitman [34]: �-coalescents are the only exchangeable Markov coalescent
processes without simultaneous collisions. We refer the reader to [34] for definitions
and further properties.

As already mentioned, if �(dx) = dx1[0,1], the corresponding �-coalescent is
usually called the Bolthausen–Sznitman coalescent, and more generally if � is the
Beta(2− α, α) distribution where α ∈ (0, 2) is a fixed parameter, that is,

�(dx) = 1

�(2− α)�(α)
x1−α(1− x)α−1 dx, (7)

the corresponding �-coalescent is called Beta-coalescent with parameter α. The
Bolthausen–Sznitman coalescent is the special case α = 1, and it does not come down
from infinity. For α ∈ (1, 2), the corresponding Beta-coalescents come down from
infinity, and they are important processes from the theoretical evolutionary biology
perspective, due to the following result from [36]: the Beta-coalescent with parameter
α ∈ (1, 2) arises in the scaling limit of population models where the offspring distri-
bution of a typical individual is in the domain of attraction of a stable law with index α.
Apart from the Kingman coalescent, the Beta-coalescents with parameter α ∈ (1, 2)

are the most-studied class of �-coalescents (see, e.g., [4,5,11]).

Spatial coalescents. As informally described above, spatial coalescents are processes
which combine spatial motion of individual particles with coalescence of particles
located on the same site of a given graph of bounded degree. Let � be a given finite
measure on [0, 1]. A spatial �-coalescent, as defined in [32], is a Markov process
(��

t , t ≥ 0) with values in the space P� = P × V {1,2,...} of partitions of {1, 2, . . .}

123



634 O. Angel et al.

indexed by spatial locations. That is, an element x = (π, �) ∈ P� consists of a partition
π = {A1, A2, . . .}, and a sequence � = (�1, �2, . . .), where �i specifies the location
of the block Ai . There are only two types of transitions possible for ��

t = (�t , �t ):
(i) provided there are b blocks at a location v ∈ V , then any given k-tuple of them
will merge at rate λb,k given by (6), independently over v; and (ii) independently of
the coalescent mechanism, each block Ak of π migrates at rate θ . This means that if
the block is at v, then some vertex w is chosen according to the distribution p(v, ·),
where p(v,w) is a given Markov kernel. When this happens, �k is changed from v to
w. To simplify the discussion, we will assume unless otherwise specified, that p(x, y)

is the transition kernel for the simple random walk on the underlying graph G.
If π is a partition let i ∼π j mean that the particles labeled i and j belong to the

same block of π . For (π, �) ∈ P� and v ∈ V , denote by #v(π, �) the number of blocks
in π with label (location) v.

Spatial �-coalescents inherit the sampling consistency directly from �-coalescents.
Namely, if we consider a spatial coalescent started from n+1 particles (that is, blocks)
and consider its restriction to the first n particles, the new process has the law of a
spatial coalescent started from n particles. This simple property will be used on sev-
eral occasions. In particular, it implies that if (π1, �1) and (π2, �2) are such that
#v(π

1, �1) ≤ #v(π
2, �2), for all v, then there exists a coupling of two spatial coa-

lescents ((�1
t , �

1
t ), (�

2
t , �

2
t )), t ≥ 0) such that (�i

0, �
i
0) = (π i , �i ), i = 1, 2 and

#v(�
1
t , �

1
t ) ≤ #v(�

2
t , �

2
t ) for all v, almost surely. The same property guarantees the

existence of spatial coalescents started with infinitely many particles on an infinite
graph (see Theorem 1 in [32] for a particular construction).

Spatial �-coalescents may be started from configurations containing countably infi-
nitely many particles at each site of G, see [32]. However, our main results concern
spatial �-coalescents started from the following initial condition:

��
0 = ({{1}, {2}, . . .}, (o, o, . . .)), (8)

where o is some given reference vertex called the origin of G. In words, all the infinitely
many particles are initially located at the origin o.

From now on we abbreviate

Xv(t) = #v(�t , �t ) and Xn
v (t) = #v(�

n
t , �t ). (9)

We denote the total number of blocks by N∗(t) = ∑

v∈V Xv(t) (resp. N n(t) =
∑

v∈V Xn
v (t)). When not in risk of confusion, we will drop the superscript n to sim-

plify notations. It is clear from the definitions that ({Xv(t)}v∈G, t ≥ 0) has Markovian
transitions, with respect to the filtration generated by the coalescent process �. All
these processes carry only partial information about the evolution of the corresponding
spatial coalescent, in particular, they do not determine the evolving partition structure.

In the language of theoretical population biology, a sample of n individuals is
selected from the population at the present time, and their ancestral lineages are fol-
lowed in reversed time. The transition rules (i)–(ii) given above reflect the idea that
individuals typically reproduce within their own colony (so that only lineages on the
same site may coalesce), and occasionally there is a rare migration event, which corre-
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sponds to the random walk transitions. In the case where the coalescence mechanism is
simply Kingman’s coalescent, we note that this model may be viewed as the ancestral
partition process associated with Kimura’s stepping-stone model [26,27].

Previous works on spatial processes of coalescence include the papers of Cox and
Griffeath [17] who study instantaneous coalescence on Z

2; Cox and Durrett [16] and
Zähle, Cox and Durrett [39], who study Kingman’s coalescent on a large but finite
two-dimensional torus and with a fixed sample size; Limic and Sturm [32] who intro-
duce the spatial �-coalescent and study asymptotics on a torus with a fixed sample
size; and Greven, Limic and Winter [20] who study Kingman’s coalescent with a large
number of particles on a torus on an exponential (rather than linear) time scale. An
informal survey of some of these results may be found in Chapter 5 of [6].

Coming down from infinity. Let (�t , t ≥ 0) be Kingman’s coalescent. As already
mentioned, Kingman [28,29] realized that while � starts with an infinite number
of blocks at t = 0, its number of blocks becomes finite for all t > 0, almost surely.
A coalescent with multiple collisions may or may not have the same property, depend-
ing on the measure �. More precisely, there are only two possibilities as shown in [34]:
let E (resp. F) denote the event that for all t > 0 there are infinitely (resp. finitely)
many blocks. Then, if �({1}) = 0, either P(E) = 1 or P(F) = 1. When P(F) = 1,
the process � is said to come down from infinity. For instance, a Beta-coalescent comes
down from infinity if and only if 1 < α < 2, henceforth we make this an assumption
whenever working with Beta-coalescents.

In the context of spatial coalescents, assuming that �({1}) = 0, Proposition 11 in
[32] implies that when the initial number of particles is infinite, then Xv(t) becomes
finite for all v ∈ V and t > 0 with probability 1, if and only if the underlying measure
� is such that the mean-field (i.e., non-spatial) �-coalescent comes down from infin-
ity. In this situation, we may say that the spatial coalescent comes down from infinity
locally. Naturally, this stays true if the initial condition is (8).

Other notations. Unless specified otherwise, c, C (and variations c1, C2, . . .) will
henceforth denote positive constants that depend only on the underlying graph, and that
may change from line to line. Typically, c, c1, . . . denote sufficiently small, whereas
C, C1, . . . denote sufficiently large constants. We also use the symbols an ∼ bn and
an 	 bn to denote respectively that an/bn → 1, and an/bn is bounded away from 0
and∞, as n →∞.

Organization of the paper. The rest of the paper is organized as follows. Section 2
starts with some preliminary remarks and observations concerning large deviation
estimates for Kingman’s coalescent and Ewens’s sampling formula, as well as sev-
eral couplings between the spatial �-coalescents and the corresponding (mean-field)
�-coalescents, which will be used throughout the paper. Section 3 contains a proof of
Theorem 1.1 on the behavior of the spatial Kingman coalescent in finite time. As many
of the subsequent results in the paper build on this, we recommend reading this section
prior to any of the following sections. Section 4 contains the proof of Theorem 1.3
on the finite-time behavior of the spatial Beta-coalescents. Section 5 returns to the
general case of spatial �-coalescents and arbitrary graphs with bounded degree, and
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contains the proof of global divergence (Theorem 1.2). In final Sects. 6 and 7 we study
respectively the lower bound and the upper bound for long term behavior of Kingman’s
coalescent (as stated in Theorem 1.4). The lower bound obtained in Sect. 6.2 is true
for general �-coalescents, but we provide in Sect. 6.3 an alternate shorter proof for
the special case of Kingman’s coalescent, that also gives tighter bounds. The proof of
the upper bound in Sect. 7 turns out to be the most technical part of the paper, and it
is based on a delicate multi-scale analysis.

Sections 4–6 may be read in any order, depending on the interest of the reader. We
recommend reading Sect. 6 prior to Sect. 7.

2 Preliminary lemmas

2.1 Some large deviation estimates

We begin with an easy Chernoff type bound for a sum of exponential random vari-
ables, which we prefer to state in an abstract form now so as to refer to it on several
occasions later. In our applications, ES will typically be small.

Lemma 2.1 Let {Ei }i∈I be independent exponential random variables with EEi =
μi . Let S =∑

i∈I Ei . Then for any 0 < ε < 1

P (S < (1− ε)ES) ≤ exp

(

−ε2(ES)2

4 Var S

)

.

Additionally, for 0 < ε < Var S
ES sup{μi } ,

P (S > (1+ ε)ES) ≤ exp

(

−ε2(ES)2

4 Var S

)

.

Remark If I = {n, n + 1, . . . } and μi ∼ ci−α for some α > 1, then as n →∞,
Var S

ES sup{μi } is bounded away from 0, hence the second bound holds for all ε > 0 small
enough, for all n.

Proof Using Markov’s inequality, for any 0 < λ ≤ 1
2 inf{μ−1

i }

P (S > (1+ ε)ES) ≤ e−λ(1+ε)ES
EeλS

= e−λ(1+ε)ES
∏ 1

1− λμi

< e−λ(1+ε)ES exp
(
∑

λμi + λ2μ2
i

)

= e−λεES+λ2 Var S,

where we have used that for x ∈ (0, 1/2) we have − ln(1 − x) < x + x2. Taking
λ = εES

2 Var S , which is allowed since ε < Var S
ES sup{μi } , yields the upper bound.

The lower bound follows from a similar argument with λ = − εES
2 Var S . �
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We now apply this to get a large deviation estimate for Kingman’s coalescent. This
uses a simple idea which can already be found in Aldous [1], who used it to prove a
central limit theorem for the number of particles at time t . Denote by P

n the law of
the (non-spatial) Kingman coalescent started with n blocks. Let N (t) be the number
of blocks at time t .

Lemma 2.2 Let t = t (n) → 0 in such a way that t (n)−1 = o(n). For any 0 < ε <

1/4, for n large enough,

P
n
(

1− ε <
N (t)

2/t
< 1+ ε

)

> 1− exp

(

−ε2

t

)

.

Proof For the upper bound, let m = �(1 + ε)2/t�. The time it takes the process to
get from n to m particles is a sum of independent exponential random variables with

means
(k

2

)−1
for k = m + 1, . . . , n. Call this sum S. Note that N (t) > m if and only

if S > t . We have

ES =
n

∑

k=m+1

(

k

2

)−1

∼ 2m−1 ∼ t/(1+ ε)

provided m = o(n). Similarly,

Var S =
n

∑

k=m+1

(

k

2

)−2

∼ (4/3)m−3.

Thus, for ε < 1/3+ o(1),

P(S > t) < exp

(

− (3+ o(1))ε2

2t

)

,

by Lemma 2.1. The lower bound is similar using the upper bound on S. �
We now consider Kingman’s coalescent with spatial migration. Let P

n be the law
of a simplified process where n particles initially located at a single site o coalesce
according to Kingman’s dynamics, while each particle (or block of particles) migrates
at rate ρ, and any block that migrates away from o is ignored from that time onwards.
Denote by Zn the total number of blocks that ever migrate away from o.

One can think of each migration event as of a “unique mutation on the genealogical
tree”, by giving it for example the label equal to its occurrence time. Since migrations
happen at rate ρ for each block present in the configuration at site o, one quickly
realizes that Zn is a realization from a well-known distribution arising in mathemat-
ical population genetics. Namely, set θ = 2ρ, and suppose that on the (non-spatial)
Kingman coalescent tree mutation marks occur at a Poisson rate of θ/2 per unit length.
Using the language of mathematical population genetics, assume the infinite alleles
models (all mutations create a different allele, and so different individuals in the
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Fig. 1 The random partition
generated by mutations
(squares). Here Z5 = 4

original sample of n are in the same family if and only if they descend from the same
mutation and there has been no other mutation between this common ancestor and the
present individuals). The marks of the mutation process generate a random partition
�θ on the leaves of the tree by declaring that i and j are in the same block of �θ if
and only if there is no mutation mark on the shortest path that connects i and j . In
Figure 1 different blocks of this partition are represented by different colors. Then it
is easy to see that Zn has the law of the number of blocks in �θ . It is well-known (see,
e.g., (3.24) in Pitman [35]) that Zn is of order θ log n for large n. The following large
deviation estimate is part of the folklore, but we could not find a precise reference for
it in the literature.

Lemma 2.3 Fix ε > 0. There are c, C > 0 such that

P
n
(∣

∣

∣

∣

Zn

log n
− θ

∣

∣

∣

∣
> ε

)

< Cn−c.

Furthermore, for any U,

P
n(Zn > U ) < CnC e−U .

The proof is based on the Chinese restaurant process representation of Ewens’s
sampling formula. Let Kn,i be the number of blocks of size i in �θ , where i =
1, . . . , n. Then the distribution of (Kn,1, . . . , Kn,n) is given by Ewens’s sampling
formula E SF(θ):
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P(Kn,i = ai , i = 1, . . . , n) = n!
θ(θ + 1) · · · (θ + n − 1)

n
∏

i=1

θai

iai ai ! , (10)

for any given collection a1, . . . , an of non-negative integers such that
∑n

i=1 iai = n.
The Chinese restaurant process representation of (10) (see [35, Sect. 3.1]), states

that the number of blocks in �θ satisfies

Zn
d=

n
∑

i=1

ζi (11)

where ζi are independent Bernoulli random variables with mean

P(ζi = 1) = θ

i + θ
.

Proof of Lemma 2.3. By (11) we have for λ > 0

Ee−λZn =
∏

i≤n

(

1− θ

i + θ
(1− e−λ)

)

< exp

⎛

⎝

∑

i≤n

− θ

i + θ
(1− e−λ)

⎞

⎠

< exp
(−θ(1− e−λ)(C + log n)

)

.

By Markov’s inequality

P(Zn < (1− ε)θ log n) < exp
(

λ(1− ε)θ log n − θ(1− e−λ)(C + log n)
)

< exp
(

(−λεθ + O(λ2)) log n + C
)

For small positive λ the coefficient of log n is strictly negative.
Similarly, for λ > 0

EeλZn =
n
∏

i=1

(

1+ θ

i + θ
(eλ − 1)

)

< exp

(

n
∑

i=1

θ

i
(eλ − 1)

)

< exp
(

θ(eλ − 1)(C + log n)
)

.

Thus, by Markov’s inequality,

P (Zn > U ) < exp
(

θ(eλ − 1)(C + log n)− λU
)

(12)
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Taking U = (1+ ε)θ log n and λ = λ(ε, θ) small enough gives the first upper bound.
Taking λ = 1 gives the second claim. �

A similar computation can be found in Greven et al. [20, Lemma 3.3].

2.2 Coupling and comparison

The final general tool we use is a coupling of the spatial process with simpler coales-
cent processes such as non-spatial ones. While it is usual in coalescent theory to keep
track of the entire partition structure as time evolves, here we are only interested in
the number of particles remaining in the system at any given time, so accounting for
the full partition data is cumbersome.

However, the detailed Poisson process construction (see e.g., [32, Theorem 1])
becomes useful in the context of coupling. Its advantage comes from the following
fact: all the information on both the merging and the migration is given by the Poisson
clocks (ringing for jumps and for mergers), hence one builds the spatial coalescent
process path (keeping track of the particle labels, and of the partition structure) by
applying a deterministic function ω-by-ω to this data. Therefore, it is straightforward to
append another deterministic ingredient (as the “coloring procedure” in the following
lemma) to the construction.

Henceforth, it is convenient to consider the following simpler variation, where
the partition structure is ignored. Label the n initial particles by 1, . . . , n, and let
x1, . . . , xn be their initial locations. Let S1, . . . , Sn be n i.i.d. simple random walks
on G in continuous time with jump rate ρ started at x1, . . . , xn , respectively. To each
k-tuple of labels i1 < · · · < ik , and each b ≥ k, corresponds an independent Poisson
process Mb

i1,...,ik
with intensity λb,k . The particles labeled i1 < · · · < ik coalesce at a

jump time t of Mb
ii ,...,ik

if and only if they are all located at the same site v at time t−,
and there are a total of b particles at v. In this case, the newly created particle inherits
the minimal label i1. (Subsequently there are no particles with labels i2, . . . , ik .) In
particular, its trajectory starting from time t will be (Si1

s , s ≥ t).
Suppose that the n initial particles are grouped into classes according to a partition

π = (B1, . . . , Br ) of {1, . . . , n}, where r ≥ 1. Informally, we give a color to each
particle initially, and Bi is the set of particles with color i . We wish to compare the
system X = {Xv(t), t ≥ 0}v∈V to the one which consists only of the particles that
belong to a particular class B of π . More precisely, for each B ∈ π , denote by X B

the spatial coalescent process whose initial configuration contains only the particles
from B. Denote by N∗(t) the total number of particles of X (t) and by N B(t) the total
number of particles of X B(t).

Lemma 2.4 There is a coupling (X, X B1 , . . . , X Br ) such that, almost surely,

∀v ∈ V X B
v (t) ≤ Xv(t) ≤

r
∑

i=1

X Bi
v (t),
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for each block B of π , and hence

N
B(t) ≤ N∗(t) ≤

r
∑

i=1

N Bi (t).

Note that in the coupling given below, the processes X Bi are not independent. In
fact, under weak assumptions on the coalescent and when all the blocks are “small”,
there is a coupling including independence, see Lemma 7.2.

Proof Fix a realization of the process (X (t), t ≥ 0) as described above. Note that
at any time t , each particle in the current configuration can be identified with a set
of particles from the original configuration, that have been merging (possibly in sev-
eral steps) to form this particle (this is the partition-valued realization of the spatial
coalescent). In the rest of the argument, we say that a particle intersects B ∈ π if its
corresponding set intersects B.

For each i = 1, . . . , r , and t ≥ 0, let X Bi (t) be the configuration obtained from
X (t) by restricting to only those particles that intersect Bi . The consistency property
of �-coalescents implies that for each i the law of X Bi is that of the spatial coales-
cent started from the initial configuration restricted to elements of Bi . Thus this is a
coupling of the processes.

In this construction we have X Bi
v (t) ≤ Xv(t), since Xv may contain particles that

do not intersect Bi . Moreover, any particle contributing to Xv(t) intersects at least one
Bi , giving the bound Xv(t) ≤∑

i X Bi
v (t). The inequalities relating N∗(t) and N Bi (t)

are an immediate consequence. �
A second type of coupling we will need is between a spatial �-coalescent and its

mean-field (i.e., non-spatial) counterpart. Fix a vertex u ∈ V of the graph, and consider
a spatial �-coalescent {Xv(t), t ≥ 0}v∈V started with a finite number of particles and
such that initially Xu(0) = n. Let M(t) denote the number of particles on u at time t
that have always stayed at u, and let Z(t) denote the number of particles that jumped
out of u prior to time t . In parallel, let (N (t), t ≥ 0) denote the number of particles at
time t in a mean-field �-coalescent started with n particles.

Lemma 2.5 There exists a coupling of X and N such that:

M(t) ≤ N (t) ≤ M(t)+ Z(t), a.s. for all t ≥ 0, (13)

and

N (t)− Z(t) ≤ Xu(t) ≤ N (t)+ Z(t), a.s. for all t ≥ 0. (14)

Proof The process M(t) may be realized as a mean-field coalescent where, in addition,
particles are killed at rate ρ. In that case, if we let Z(t) denote the total number of parti-
cles that have been killed, we see immediately that on the one hand, M(t) ≤ N (t), and
on the other hand, N (t) = M(t)+ Z̄(t)where Z̄(t) ≤ Z(t). Indeed, M(t)+Z(t) counts
the number of particles if we freeze particle instead of killing them. However, in N (t)
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these particles keep coalescing, and so the difference Z̄(t) = N (t) − M(t) ≤ Z(t).
This proves (13). For (14), note first that Xu(t) ≥ M(t) = N (t)− Z̄(t) ≥ N (t)−Z(t).
Finally, the last inequality in (14) is obtained by observing that Xu(t) is made of par-
ticles that never jumped out of u (there are M(t) such particles) and of particles that
have jumped out of u and have come back at some time later, potentially coalescing
in the meantime. There can never be more than Z(t) such particles, since this is the
total number of particles that jump out of u. �

In fact, one can be slightly more precise than the above estimate by using the
following observation. Define two processes

S(t) = Z(t)−
t

∫

0

ρM(s)ds V (t) = S(t)2 −
t

∫

0

ρM(s)ds. (15)

Let P
n denote the law of the above coupling (thus N (0) = n and Xu(0) = n and

Xv(0) = 0 if v �= u), and let F denote the filtration that it generates. It is a standard
(and easy) fact that both processes are continuous time martingales under P

n with
respect to F . In fact, if we define G = σ {N (u), u ≥ 0} to be the σ -algebra generated
by N , and let F∗t = σ {G,Ft }, then the processes S(·) and V (·) are continuous-time
martingales with respect to the filtration F∗.
Lemma 2.6 For each time interval [a, b], we have the stochastic domination

P(Z(b)− Z(a) ≥ x |G) ≤ P

⎛

⎝Poisson

⎛

⎝ρ

b
∫

a

N (s) ds

⎞

⎠ ≥ x

∣

∣

∣

∣

∣

∣

G
⎞

⎠ .

Proof Given G, Z is a pure jump process with jumps of size 1 that arrive at rate
ρM(t) ≤ ρN (t) at time t , almost surely. �

Finally, a global comparison with mean-field coalescents can be obtained in the
case of the spatial Kingman coalescent as follows (see also [21, Sect. 6.1]). Let S be
an arbitrary subset of vertices and consider the restriction of X to S.

Lemma 2.7 Fix a time τ ≤ 2, and vertex set S, and assume that all particles are in S
at time 0. Let Z = Z(τ ) be the number of distinct particles that exit S by time τ , and
let N∗S (t) be the number of particles in S at time t. Then, for some c = c(ε) > 0,

P

(

N∗S (τ ) > Z + (4+ ε)|S|
τ

)

< e−c|S|/τ .

Note that the bound is independent of the starting configuration. This lemma is a
precursor to Lemma 7.5.

Proof Let Qt be the number of particles in S that have survived until time t but have
not left S. We have then that N∗S (t) ≤ Z + Qt . The rate of coalescence inside S at
time t is

123



Global divergence of spatial coalescents 643

∑

v∈S

(

Xv(t)

2

)

≥ |S|
(

Qt/|S|
2

)

(by Jensen’s inequality for
(x

2

)

.) If Qt < 2|S| for some t ≤ τ then we are done (since

τ ≤ 2.) Otherwise, |S| · (Qt /|S|
2

) ≥ 1
2|S|

(Qt
2

)

, and so Qt is stochastically dominated by
the block counting process of a Kingman coalescent slowed down by a factor of 2|S|.
Lemma 2.2 completes the proof. �

3 Finite time behaviour of the spatial Kingman coalescent

3.1 An induction

The first step of the argument is to show that for some m (close to log∗ n) there
are no particles outside B(o, m) at some specified time, and to provide lower and
upper bounds (both polynomial in the volume of the ball) on the number of particles
at each site inside the ball at the same time, on an event of high probability. This
can be done for any n, but it is easier to consider initially a sub-sequence of n’s,
and then interpolate to get the result for all n. With this in mind, for a given inte-
ger m denote Vm = Vol B(o, m), and define n = n(m) := Tow(m, V 2

m). Note that
log∗ n = m + log∗ V 2

m is very close to m, as m →∞.
Define the sequence of times tk = (Tow(m − k, V 2

m))−3, where k = 0, . . . , m.
This sequence is increasing from t0 = n−3 to tm = V−6

m . Moreover, tk+1 � tk (in
particular tk+1 > 2tk). Recall that θ = 2ρ, where ρ is the jump rate of particles, and
that � is the maximal degree in the graph. Define the events Bk by

Bk = {Xv(tk) = 0 for all v /∈ B(o, k)}
⋂

{

Xv(tk)

∈
[

min(1,
ρ
�

)t−1/3
k , 4t−1

k

]

for all v ∈ B(o, k)
}

. (16)

We are particularly interested in the event Bm which states that at time tm each site
of B(o, m) has between cV 2

m and CV 6
m particles, with no remaining particles outside

B(o, m).

Lemma 3.1 With the above notations, P(Bm)→ 1 as m →∞.

The idea is to prove a bound on P(Bc
k ) by induction on k. For k = 0 we have

P
n(B0) ≥ 1 − n−1, since the probability of a pair of particles coalescing by time

t0 = n−3 is at most
(n

2

)

t0, and the probability of a particle jumping by that time is at
most t0n. The key to the induction step is the following

Lemma 3.2 Fix constants a0, a1, ε > 0 with ε < 1/2. Consider the coalescent started
with n particles, all located at u ∈ V , that is, Xv(0) = nδu(v). Let τ = a(log n)−3

for some a ∈ [a0, a1], and define the event

A = ∩v {Xv(τ ) ∈ [(1− ε)Qv, (1+ ε)Qv]},

123



644 O. Angel et al.

where, letting du be the degree of u,

Qv =
⎧

⎨

⎩

2/τ v = u,

(θ/du) log n |v − u| = 1,

0 |v − u| > 1.

Then there exists a C depending on ε, a0, a1, du only such that

P
n(Ac) <

C

log n
.

Proof In this argument, the expression with high probability (w.h.p.) stands for “with
probability greater or equal to 1 − C

log n ”. Let Z(t) be the number of distinct labels
corresponding to particles that exit u during [0, t] (where each label is counted at
most once). Let N (t) denote the total number of particles in the coupling with the
mean-field coalescent of Lemma 2.5. Thus we have:

N (t)− Z(t) ≤ Xu(t) ≤ N (t)+ Z(t), almost surely. (17)

Therefore one needs to estimate N (t) and Z(t). For any fixed ε, by Lemma 2.2 we have

P
n(|τ N (τ )/2− 1| > ε) < Ce−c/τ < Cn−1. (18)

So the event
{ N (τ )

2/τ
∈ (1 − ε, 1 + ε)

}

happens with high probability. By Lemma 2.3
we have

P
n
(∣

∣

∣

∣

Z(∞)

log n
− θ

∣

∣

∣

∣
> ε

)

< Cn−c. (19)

In the rest of the argument consider the process on the event B := { N (τ )
2/τ

∈ (1 −
ε, 1+ ε)

} ∩ { Z(∞)
log n ∈ (θ − ε, θ + ε)

}

that occurs with high probability. Note that on
B, Z(τ ) ≤ Z(∞) ≤ (θ + ε)log n � 2/τ and (17) imply the required bounds for
Xu(τ ).

Moreover, on {Z(τ ) ≤ (1+ ε)log n} ⊃ B, the probability that at least one particle
jumps more than once before time τ is bounded by ρτ(1 + ε)log n = C/ log2 n. On
the event that no particle jumps more than once, there cannot be any particle located
at a distance strictly greater than 1 from u at time τ .

Similarly, on {Z(τ ) ≤ (1+ε)log n} ⊃ B, the probability of at least one coalescence
event involving particles located at site v �= u before time τ is at most τ

(
(1+ε)log n

2

)

,
again bounded by C/ log n. We conclude that w.h.p. there is no coalescence outside
of u before time τ .

This implies that w.h.p. the particles located at a neighbor v of u at time τ are pre-
cisely those that made a (single) jump from u to v. To show that their number is close
to (θ/du) log n, it suffices to show that Z(τ ) is concentrated around θ log n (which
is already known for Z(∞)). Namely, since (on the event of high probability) each
jump is to made from u to a random neighbor of u, and there are no further moves
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or coalescence events involving the particles outside of u, Xv(τ ) is concentrated near
Z(τ )/du for any v ∼ u, due to a law of large numbers argument. Indeed, the number
of particles jumping from u to any particular of its neighbors has variance of order
log n, and using a normal approximation to binomial random variables, the probability
of deviating by ε log n from the mean is no more than Cn−c.

Thus it remains to show that Z(∞) − Z(τ ) ≤ ε log n with high probability. To
this end, note that Z(∞) − Z(τ ) is the number of particles that exit u after time τ .
Denote by Fτ the σ -field generated by the evolution of the process up to time τ .
By Lemma 2.3, monotonicity and the Markov property at time τ ,

P
n(Z(∞)− Z(τ ) > ε log n|Fτ )1{N (τ )<3/τ } < P

3/τ (Z(∞) > ε log n)

< C(3/τ)C e−ε log n

� 1/ log n,

and since {N (τ ) < 3/τ } ⊃ B occurs w.h.p. (because ε < 1/2), this concludes the
argument. �

Proof of Lemma 3.1 We have P(Bc
m) ≤ P(Bc

m ∩ Bm−1) + P(Bc
m−1) ≤ P(Bc

0) +
∑

k≤m P(Bc
k |Bk−1). Noting that P(Bc

0) ≤ 1/n, we turn to estimating P(Bc
k |Bk−1).

Given Ftk−1 , consider now the coupling of Lemma 2.4 applied to the process
observed on [tk−1, tk], where the partition π is Ftk−1 -measurable and where two
labels belong to the same equivalence class of π if and only if their correspond-
ing particles have the same position at time tk−1. On the event Bk−1 we have that
(−1/4) log tk−1 < log Xu(tk−1) < −4 log tk−1 for u ∈ B(o, k − 1), and note that by
definition,− log tk−1 = 3t−1/3

k . Hence Lemma 3.2 applies to each of the correspond-
ing processes, where we may take a1 = 123 and a0 = (1/2)(3/4)3. We conclude that
with probability at least 1 − C

log Xu(tk−1)
≥ 1 − Ct1/3

k the following occurs: during
[tk−1, tk] (i) No particle from u jumps more than once; (ii) At most 3/tk particles
remain at u; (iii) Each neighbor of u receives between ρ

�
t−1/3
k and 3ρt−1/3

k particles.
Say that a vertex u ∈ B(o, k − 1) is bad at stage k on the complement of the above
event.

Applying the right hand inequality of Lemma 2.4, on the event Bk−1 ∩ {there
are no bad vertices at stage k}, we have that Xu(tk) = 0 outside B(o, k) (since
no particle jumps twice and at time tk−1 all the particles are inside B(o, k − 1).
Moreover, each site v ∈ Bk has at least ρ

�
t−1/3
k particles jumping to it from some

neighbor u of v, hence Xv(tk) ≥ ρ
�

t−1/3
k . Finally, for each v ∈ B(o, k) we have

Xv(tk) ≤ 3t−1
k + 3ρ�t−1/3

k < 4t−1
k (here we may assume that t2/3

k < 1/(3ρ�)),

since it receives at most 3ρt−1/3
k from each of its (at most �) neighbors. Hence

Bk−1 ∩ {there is no bad vertex at stage k} ⊂ Bk .
Therefore P(Bc

k |Bk−1) ≤ P(∃ a bad vertex at stage k) ≤ CVk−1t1/3
k ≤

CVm
Tow(m−k,V 2

m )
. It follows that
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P(Bc
m) ≤ 1

n
+

∑

k≤m

CVm

Tow(m − k, V 2
m)
≤ C

Vm
,

since the term for k = m overwhelmingly dominates all the others. �

3.2 Lower bound estimates

Lemma 3.1 gives us a fairly accurate description of the spatial coalescent up to positive
times of order o(1). Additional estimates are needed for understanding the behavior up
to a constant time t . We begin with the lower bound, since it is simpler. Henceforth, we
let t > 0 be a fixed time. Recall that the initial configuration of the spatial coalescent
consists of n = Tow(m, V 2

m) particles located at o.

Lemma 3.3 Fix t > 0. The collection (Xt (v), v ∈ B(o, m)) can be coupled with the
family (ζv, v ∈ B(o, m)) of i.i.d. Bernoulli variables with mean e−ρt , so that

P (∀v ∈ B(o, m), Xv(t) ≥ ζv) −−−−→
m→∞ 1.

Proof Assume that m is sufficiently large so that tm < t . By Lemma 3.1, with proba-
bility tending to 1, each site in B(o, m) is not empty at time tm . On this event, fix one
particle at each v ∈ B(o, m), and color it red. Consider the evolution with coloring (see
the proof of Lemma 2.4 for a similar construction), so that if a red particle coalesces
with another particle, the newly formed particle retains the red color. Now, it is obvious
that between time tm and t , each red particle has probability e−ρ(t−tm ) > e−ρt of not
migrating, independently of all other red particles, so the claim holds. �

3.3 Upper bound estimates

After time tm , the bounds in the definition of Bm (cf. 16) still hold for most vertices,
but will begin to fail for some vertices. As the number of particles per vertex decreases,
the probability of failure increases. We overcome this by combining the second part
of Lemma 2.3 with Lemma 2.7.

Lemma 3.4 Fix ε, t > 0, and start with n = Tow(m, V 2
m) particles at o. With high

probability there is no particle outside B(o, (1 + ε)m) at or before time t, and the
total number of particles at time t is at most CV(1+ε)m.

Proof By Lemma 3.1, with high probability at time tm there are no particles outside Bm ,
and the number of particles inside B(o, m) is at most 4Vm/tm = 4V 7

m . We ignore all
coalescence transitions after time tm , so that each particle performs a simple random
walk independently of all the others. By ignoring coalescence events, the number
of particles located at any particular site at any later time can only become larger.
Between times tm and t , each particle makes an additional Poisson(ρ(t − tm)) steps,
so the probability that at least one of these particles makes at least εm steps is bounded
by 4V 7

mCεm/�εm�!. This last quantity tends to 0, since Vm ≤ C�m .
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Thus with an overwhelming probability, there are no particles outside B(o, (1+ε)m)

at time t . By Lemma 2.7 and the above observation, the number of particles within
B(o, (1+ ε)m) is at most a constant multiple of V(1+ε)m , again with an overwhelming
probability. �

3.4 Interpolation

Proof of Theorem 1.1 If n = n(m) = Tow(m, V 2
m) for some m, then Lemmas 3.3 and

3.4 imply that with high probability the number of particles at time t is between cVm

and CV(1+ε)m . Since log∗ n = m + log∗ V 2
m ∼ m, this implies the claim.

For intermediate n, we use the monotonicity of the process in n. Note that
log∗ n(m + 1) − log∗ n(m) ≤ 2 (since Vm+1 < eVm ), so that the sequence n(m)

is sufficiently dense to imply the theorem. �

Remark Since m = log∗ n(m) − log∗m + O(1), the proof above gives the lower
bound cVm−log∗ m . As for the upper bound, the proof of Lemma 3.4 works with radius
m + Cm/ log m in general, and m + log m for graphs with polynomial growth.

It is possible to get both lower and upper bounds that are closer to Vol B(o, log∗ n).
For the lower bound, one way would be to argue that most vertices continue to behave
typically (as in Lemma 3.2) even up to constant times.

The upper bound is more delicate. One way of improving it is by considering the
evolution of the total number of particles in B(o, k) for k > m, similarly to the argu-
ment of Sect. 6. Under additional growth assumptions on the graph, both bounds are
of order Vol B(o, log∗ n).

4 Results for spatial Beta-coalescents

We now turn to the proof of Theorem 1.3. In fact, we prove a slightly more general
result. Suppose that � has a sufficiently regular density near 0: �(dx) = g(x)dx ,
where for some B > 0 and α ∈ (1, 2) we have

g(x) ∼ Bx1−α, x → 0. (20)

This includes the case where � is the Beta(2 − α, α) distribution. A consequence of
(20) is the following standard estimate for the rate of coalescence events when there
are n particles remaining:

Lemma 4.1 The sequence (λn)n≥2 is increasing in n. Furthermore, there exists c0 > 0
which depends only on α, B, such that if � satisfies (20), then λn ∼ c0nα .

Proof The monotonicity of λn in n is a consequence of the natural consistency of
�-coalescents. The second part of the statement is a consequence of (20) and Taube-
rian theorems. See, e.g., [10, Lemma 4] for more details. �
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4.1 Lower bound in Theorem 1.3

As in the Kingman case, we first consider the mean-field coalescent satisfying (20).
Define the following parameters

β = α − 1

2
γ = min

{

2− α

4
,
β

2

}

, (21)

and observe that both γ > 0 and α − 2 + γ ≤ −γ . We shall consider τ = n−β . We
first consider the quantity

Yn =
τ

∫

0

N (s) ds.

Lemma 4.2 Assume that � satisfies (20). Then for c1 = 1/(4c0), for some constant
C depending only on �,

P(Yn ≥ n2−α+γ ) ≤ Cn−γ , ∀n ≥ 2, (22)

and

P(Yn ≤ c1n1−α/2) ≤ Cn−γ , ∀n ≥ 2. (23)

Remark It follows from Theorem 5 in [3] that Yn ∼ cn2−α , almost surely as n →∞,
for some c > 0. However this result does not provide any estimate on the deviation
probability.

Proof The key fact is that if the process N (t) attains some value k, then it stays at k
for an exponentially distributed time with mean 1/λk . Since the probability of hitting
k is at most 1,

EYn ≤
∑

k≤n

k

λk
≤ Cn2−α

by Lemma 4.1. The upper bound (22) follows by Markov’s inequality.
The lower bound is more delicate. We argue that with high probability N (t) ≥ n/2

for all t < 1/(2c0)n−α/2 = o(τ ), yielding (23). In order for N (t) to decrease to below
n/2 quickly, there must either be an unusually large number of jumps, or else there
must be unusually large jumps. We proceed to define these two events and bound their
probability.

Let M = nα/2, and consider first the event that the first M jumps occur before
time n−α/2/(2c0). By monotonicity, the rate of each jump is at most λn , and so the
expected time tM to make M jumps stochastically dominates

∑M
i=1 Ei , where Ei are
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i.i.d. exponentials with rate λn . Now, from Lemma 4.1 we know that

E

M
∑

i=1

Ei = M/λn ∼ n−α/2/c0,

and by Lemma 2.1 with ε = 1/2,

P(tM ≤ n−α/2/(2c0)) ≤ P

(

M
∑

i=1

Ei < n−α/2/(2c0)

)

≤ e−M/16 ≤ Cn−γ

as needed.
Let Bm be the decrease in the number of particles due to the next coalescence event,

when the current configuration consists of m particles. It is known [5, Lemma 7.1]
that there exists C > 0 such that

P(Bm > k) ≤ Ck−α for all m, k ≥ 1. (24)

In particular, EBm ≤ C for some constant depending only on �. Hence the expected
total decrease in the number of particles due to the first M jumps is at most C M . By
Markov’s inequality, the probability that at least n/2 particles are lost in the first M
jumps is at most MC/(n/2) = Cnα/2−1 < Cn−γ . �

We now turn to the spatial setting. The next result gives a lower bound on the num-
ber of particles that exit the origin. This complements the upper bound of Lemma 2.6.
Recall the coupling of Lemma 2.5, and that Z(t) is the number of particles that exit
the origin by time t and N (t) counts the number of particles in a coupled mean-field
coalescent with N (0) = n. The idea is that as long as Z is small, the true behavior is
close to the upper bound.

Lemma 4.3 With τ, γ as above, there is constants C, c so that P(Z(τ ) < ρnγ /2) ≤
Cn−c.

Proof Recall the notations introduced in Lemma 2.6. We introduce the random time
T defined by T = inf{t > 0 : Z(t) ≥ 1

4 N (t)}, and note that T is a stopping
time with respect to the filtration F∗. Recall Yn =

∫ τ

0 N (s)ds, and define the events
A = {Z(τ ) < ρnγ /2}, and

B =
{

1

2
<

Zτ

ρYn
<

5

4

}

.

We bound the event A by

A ⊂ {A ∩ B}
⋃

{Bc ∩ {T ≥ τ }}
⋃

{A ∩ {T < τ }},

and proceed to bound the probability of each.
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For the first, A ∩ B implies Yn ≤ nγ ≤ n1−α/2/(4c0) for n large enough, so by
(23), P

n(A ∩ B) < Cn−γ for n large enough.
Denote by P̃

n the law

P̃
n(·) = P

n(·|G),

of all processes, conditioned on the entire evolution of N . Consider the martingale St

stopped at time τ . By Doob’s inequality, we find that for any δ > 0

P̃
n

⎛

⎝sup
s≤τ
|Ss | ≥ δ

τ
∫

0

ρN (s)ds

⎞

⎠ ≤ 4ρẼ
n
(∫ τ

0 Mudu
)

δ2
(∫ τ

0 ρN (s)ds
)2 ∧ 1

≤ 4

ρδ2
∫ τ

0 N (s)ds
∧ 1. (25)

The last inequality follows from the first bound of (13), which implies that
Ẽ

n(
∫ τ

0 M(u)du) ≤ ∫ τ

0 N (u)du. Until time T we have M(t) ≥ 3
4 N (t), and so (13)

and (25) with δ = 1/4 imply

P̃
n(Bc; T ≥ τ) ≤ 16

ρ
∫ τ

0 N (s) ds
∧ 1.

By (23), P
n(Bc; T ≥ τ) ≤ Cn−γ .

Finally, note that A∩{T < τ } ⊂ {N (τ ) ≤ 2ρnγ } since Z(τ ) ≥ Z(T ) ≥ 1
4 N (T ) ≥

1
4 N (τ ). By (24), there is a probability at most Cn−γα < Cn−γ that N (s) jumps from
above 3ρnγ directly to below 2ρnγ . Otherwise there is some s such that N (s) ∈
[2ρnγ , 3ρnγ ]. The time N (·) stays at each visited value in this range is exponential
with rate at most λ3ρnγ . Thus the probability that N stays less than τ at such a value
is bounded by τλ3ρnγ < Cnγα−β . Since γα − β < 0, this finishes the proof. �

We are now ready to start proving the lower-bound of Theorem 1.3. Let t0 > 0 be
a fixed time.

Lemma 4.4 Consider the spatial coalescent started with n particles, all located at
u ∈ V , that is, Xv(0) = nδu(v). Let τ = n−β , and define the event A by

A =
⋂

v∼u

{

Xv(τ ) ≥ ρ

4du
nγ

}

.

There are constants c, C depending on du only such that P(Ac) < Cn−c.

Proof Lemma 4.3 gives a bound on the probability of too few particles leaving the
origin; thus with high probability at least (ρ/2)nγ particles leave u. It is highly prob-
able that a proportion close to 1/du of these particles jumps to v. By consistency it
suffices to select ρnγ /(4du) of them and check that with high probability they have
neither the time to coalesce nor to move an extra step before time τ .
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If all these particles that migrate to v would do so immediately at time 0, so that they
would have strictly more chance to coalesce, the number of particles remaining at v at
time τ would still be sufficiently large. Indeed, it would then take Y amount of time,
where Y is an exponential random variable with parameter λρnγ /(4du), before the first
coalescence. Since λm ≤ cmα for all m ≥ 1, we deduce that E(Y ) ≥ cn−γα . However,
since γ ≤ β/2 and α < 2, we have τ = n−β � cn−γα , hence P(Y < τ) ≤ cnαγ−β .

In addition, note that by Lemma 4.1, the total jump rate of ρnγ /(4du) particles is
smaller than the total coalescence rate (since α > 1), so the probability of an extra
jump before time τ for any of the particles that have already jumped to v is smaller
than cnαγ−β . It follows (by consistency) that there are at least ρnγ /(4du) particles
located at v at time τ , with probability greater than 1− Cn−c. �
Proof of Theorem 1.3 (lower bound) Let fk(n) = f ◦ f . . .◦ f (n) (k iterations) where
f (n) = ρnγ /(4�). Define the sequence of times (τk)

∞
k=1

τk = τk−1 + fk−1(n)−β.

It is easy to check that if we take k = k(n) = log log n/(−2 log γ ), then

fk(n) ≥ c exp(
√

log n)

Let A be the event that at each site within radius k there was at some time t ≤ τk

more than fk(n) particles. On A, reasoning as in Lemma 3.3, (at each site of this
ball at least one particle remains with positive probability until time t0), we see that
N n(τ ) ≥ c Vol B(o, k) ≥ c Vol B(o, c log log n) for some c > 0. Thus to obtain the
lower bound of Theorem 1.3, it suffices to compute the cumulative error probability
in the iterated application of Lemma 4.4. However, it is easy to check that

P(Ac) ≤
k

∑

i=1

C Vol B(o, i) fi (n)−γ ≤ Ck Vol B(o, k) fk(n)−γ .

Since Vol B(o, k) < �k , where � is the degree of the graph, this converges to 0 as
n →∞. �

4.2 Upper bound in Theorem 1.3

The proof of the upper-bound in Theorem 1.3 requires a few additional estimates.
Consider the spatial coalescent on any graph G. Given some subset A ⊂ V of the

vertices, denote by Qt the number of particles that are present in A throughout the
time interval [0, t].
Lemma 4.5 There are constants c, C > 0 which depend on � only, so that

P

(

Qt0 > Ct−1/(α−1)
0 |A|

)

< e−c|A|.
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Proof Ignoring the particles after they exit A, one may assume that any particle leav-
ing A is immediately killed. The main reason for Qt0 being small is the coalescence.
The total rate of coalescence at a site v holding Xv particles is λXv ∼ c(Xv)

α . At each
such event at least one particle disappears, and therefore the total rate of decrease of
Qt at time t ≤ t0 is at least

∑

v∈A

c(Xv(t))
α ≥ c|A|1−α Qα

t ,

due to Jensen’s inequality, since α > 1. (This is similar to [32, Theorem 12], but the
above inequality is stronger). Thus (Qt , t ≤ t0) is stochastically dominated by a pure
death chain where the rate of decrease from i to i − 1 is c|A|1−αiα .

One concludes the argument using Lemma 2.1. Let Ek be independent exponential
random variables with mean μk = c|A|α−1k−α , and define SK = ∑

k>K Ek . Then
we have

P(Qt0 > K ) < P(SK > t0).

To apply Lemma 2.1 to SK we need to estimate ESK and Var SK : note that for suitable
constants, as K →∞,

ESK =
∑

k>K

μk ∼ c1|A|α−1 K 1−α (26)

and

Var SK =
∑

k>K

μ2
k ∼ c2|A|2α−2 K 1−2α. (27)

In particular Var SK
ESkμK

is asymptotically constant and we may apply Lemma 2.1 with
some constant ε. Thus for some c3 > 0,

P(SK > 2ESK ) ≤ exp

(

−c
(ESK )2

Var SK

)

< e−c3 K .

Now, if K is such that ESK < t0/2 we may conclude that

P(Qt0 > K ) < e−c3 K .

From (26) we see that K = Ct−1/(α−1)
0 |A| works for C large enough. �

Lemma 4.6 Fix ε > 0. Consider the coalescent started with n particles, all located
at u ∈ V , that is, Xv(0) = nδu(v). Let τ = n−β , and define the event A by

A =
⋂

v

{Xv(τ ) ≤ C1 Qv},
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with

Qv =
⎧

⎨

⎩

n1−(α−1)/4 if v = u,

n2−α+γ if |v − u| ≤ r := �4/(α − 1)�,
0 otherwise.

Then there are constants C, C1 depending only on � such that P(Ac) < Cn−γ .

Proof We have that A = Au ∩ A≤r ∩ A>r , where Au = {Xu(τ ) ≤ C1 Qu} and

A≤r =
⋂

0<|v−u|≤r

{Xv(τ ) ≤ C1 Qv}, A>r =
⋂

|v−u|>r

{Xv(τ ) = 0}.

With sufficiently high probability, at most n2−α+γ particles leave the origin by
time τ (due to Lemma 2.6 and 22). This implies the required bound for P(Ac≤r ).

We claim that except on an event of polynomially small probability, none of the
(at most n2−α+γ many) particles that leave u before time τ jump more than r times
before time τ . Indeed, the probability any given particle makes more than r jumps
before time τ is smaller than (ρτ)r . Since there are at most n particles in total, we
conclude that the probability of any particle reaching distance r is less than Cn−γ

whenever r is such that n1−rβ < n−γ . This implies the required bound for P(Ac
>r ).

It remains to prove a similar bound for P(Ac
u). Here we invoke Lemma 4.5

with an arbitrary set A � u of size c log n. If c is large enough then, ex-
cept on an event of probability bounded by n−γ , we have Qτ < Cn1/2|A| �
n3/4 ≤ n1−(α−1)/4. However, Xu(τ ) < Qτ + Zτ . It thus suffices to bound Zτ .
By Lemma 2.6, note that if δ = 2− α + γ ,

P(Zτ > 2ρnδ|G) ≤ 1{Yn>nδ} + P(Poisson(ρnδ) > 2ρnδ)1{Yn≤nδ}.

Using standard Chernoff estimates for Poisson random variables, taking expectations
and using (22), we deduce Zτ ≤ 2ρnδ with probability at least 1 − Cn−γ . It is easy
to see from (21) that for all α ∈ (1, 2) we have δ < 1− (α − 1)/4, so we deduce that
Xu(τ ) ≤ n1−(α−1)/4 with probability at least 1− Cn−γ . �
Proof of Theorem 1.3 Upper bound Let C2 = �C1×Vol B(o, r), where C1 and r are
the constants in Lemma 4.6. Let c3 = 1− (α−1)/4, and note that c3 ∈ (2−α+γ, 1).
Let f (n) = C2nc3 , and as before set fk(n) = f ◦ · · · ◦ f (n) (k iterations). Also set
τ1 = τ = n−β , and

τk = τk−1 + fk−1(n)−β.

Finally, let Ai be the event that at time τi there are no particles outside B(o, ir)

intersected with

⋂

v, |v|≤ir

{Xv(τi ) ≤ fi (n)}.
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Choose k = k(n) to be the maximal k so that fk(n) > log n. It is clear that
fk(n) < (log n)2. It is also straightforward to check that k ∼ c log log n, and that
τk = o(1).

Applying Lemma 4.6 iteratively, we see that

P(Ac
k) ≤

∑

i<k

C fi (n)−γ Vol(B(o, ir)) ≤ C Vol(B(o, kr)) fk(n)−γ −−−→
n→∞ 0. (28)

Consequently, at time τk the total number of remaining particles is at most
C fk(n) Vol(B(o, kr)), and these particles are all located in B(o, kr), with high prob-
ability.

Consider now the set B ′ = B(o, M log log n) for some large M to be specified
soon. In order for any particle to exit B ′ by time t it must survive to time τk and jump
at least M log log n − kr times by time t . Thus the expected number of particles that
exit B ′ by time t is at most

C fk(n) Vol(B(o, kr))e−c(M log log n−kr) < C(log n)2(log log n)de−(cM−c′) log log n .

Fix M large enough that the last expression tends to 0 as n →∞.
Finally note that if no particle leaves B ′ then

∑

v Xv(t) = Qt . By Lemma 4.5, with
high probability the number of particles that remain in B ′ throughout [0, t] is at most
O(VolB ′). �

5 Global divergence of spatial �-coalescents

5.1 Infinite tree length for �-coalescents

Fix an arbitrary probability measure � on [0, 1]. Consider the corresponding mean-
field �-coalescent that starts from a configuration consisting of infinitely many blocks,
and let (K n(s), s ≥ 0) be the number of blocks process of its restriction to the first n
particles. Define:

Xn(t) ≡ Xn =
t

∫

0

(K n(s)− 1)ds. (29)

The notation K n might be suggestive of the Kingman coalescent, so we wish to point
out that the measure � in the following calculation is quite general.

We are interested in the quantity Xn due to the following observation: if K n is a
good approximation for the number of blocks at the origin of the spatial �-coalescent
at small times s, then for t small, ρXn approximates well the number of particles
that emigrate from the origin up to time t (see, for instance, Lemma 2.6). The key
ingredient in the proof of Theorem 1.2 is the following result.

Lemma 5.1 For any fixed t > 0 we have Xn −−−→
n→∞ ∞ almost surely.
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Proof Denote by∼t the equivalence relation on the labels generated by the coalescent
blocks at time t . For n ≥ 2 let

τn := min{t > 0 : ∃ j < n s.t. n ∼t j}

be the first time that the particle labeled n coalesces with any of the particles with
smaller labels. We have that

K n(s) = K n−1(s)+ 1{s<τn},

and therefore

Xn = Xn−1 + (τn ∧ t),

i.e. the contribution to Xn of particle n is τn ∧ t .
Define Fn to be the σ -algebra generated by {K j

s } j≤n,s>0. Conditioned on Fn−1,
the infinitesimal rate of coalescence of particle n with particles with smaller labels at
time s is given by

∫

[0,1]

1

x2 · x · (1− (1− x)K n−1(s)) d�(x).

Applying (1 − x)k ≥ 1 − kx (for x ∈ [0, 1]) we find that the rate of coalescence of
particle n is at most K n−1(s) (with equality if and only if � is the point mass at 0, in
which case the coalescent is Kingman’s coalescent). Thus

E(τn ∧ t |Fn−1) =
t

∫

0

P(τn > s|Fn−1) ds

≥
t

∫

0

exp

⎛

⎝−
s

∫

0

K n−1(u) du

⎞

⎠ ds

≥
t

∫

0

exp

⎛

⎝−s −
t

∫

0

(K n−1(u)− 1) du

⎞

⎠ ds

= e−Xn−1

t
∫

0

e−sds = (1− e−t )e−Xn−1 .

Note that Xn is increasing and consider the martingale

Mn = Xn −
n

∑

k=2

E(τk ∧ t |Fk−1).
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On the event that Xn is bounded, the last calculation implies that E(τk ∧ t |Fk−1) is
bounded from below, hence Mn → −∞. Since M is a martingale, the last event has
probability 0. �

Note that a different proof of Lemma 5.1 follows from Corollary 3 in [3], although
the arguments there are significantly more involved.

5.2 Proof of Theorem 1.2

We now consider the spatial coalescent corresponding to some fixed � as in the previ-
ous section, on an arbitrary locally finite graph G. As usual, let n denote the initial size
of the population, with all particles initially located at o, a fixed vertex of G. Recall
the definitions of the processes M and Z in Lemma 2.5. Both processes M and Z
depend implicitly on n, omitted from the notation. We consider the usual coupling of
coalescents that correspond to different n.

Lemma 5.2 For any t > 0 we have that Z(t) −→∞ almost surely as n →∞.

Proof We follow the argument of Lemma 4.3, except that we are only interested in
showing that Z diverges, which simplifies the argument. Since Z(t) is non-decreasing
in n it suffices to show that for any fixed m we have P(Z(t) < m) −−−→

n→∞ 0.

Recall the martingales (15). On the event {Z(t) ≤ m}, we have for all s ≤ t that
Ms ≥ N (s) − Zs ≥ N (s) − m, and therefore St ≤ m + ρmt − ∫ t

0 ρN (t)dt . Due to
Lemma 5.1, for any fixed m, t and any sufficiently large n, on the event {Z(t) ≤ m}
(this event also depends on n)

St ≤ −1

2

t
∫

0

ρN (s)ds.

As in (25), Doob’s maximal inequality yields that for large enough n

P(Zt < m|G) ≤ P

⎛

⎝ sup
s≤t
|Ss | ≥ 1

2

t
∫

0

ρNsds

∣

∣

∣

∣

∣

∣

G
⎞

⎠ ≤ 16

ρ
∫ t

0 Nsds
.

By Lemma 5.1 the right-hand side tends to 0 almost surely, so P(Z(t) < m) −−−→
n→∞ 0.

�
Fix ε > 0 and a vertex v of the graph, and let Em,ε,v = {supt∈[0,ε] Xn

v (t) ≥ m} be
the event that at some time t < ε there are at least m particles located at site v.

Lemma 5.3 We have P
n(Em,ε,v) −−−→

n→∞ 1.

Proof Note that the claim is trivially true if v = o. We prove it first for v a neighbor
of o. Take

t0 = η min{ε, λ−1
m , (ρm)−1},
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where η is an arbitrarily small number. Now, choose n0 = n0(t0) large enough that
Zt0 >2dm with probability at least 1−η, where d = deg(o). By the weak law of large
numbers, one can choose n0 = n0(t0, h) large enough that on the event {Zt0 >2dm}, v

receives at least m particles from o with probability at least 1− η. We concentrate on
this event of high probability, and on these m particles, ignoring any further particles
that might visit v.

Jumps from v occur at rate ρ per particle, so the probability that any of the m
particles above leave v before time t0 is at most η. Since a coalescent event involving
any k-tuple of particles occurs at total rate λk (increasing in k), and since at a given
time s < t0 there are up to m of the above particles located at v, the probability of a
coalescent event before time t0 in which two or more of the m above particles partici-
pate is at most η. It follows that P(Xn

v (t) ≥ m) ≥ 1− 4η, for all n > n0. Since η can
be made arbitrarily small, this proves our claim for v a neighbor of o.

For other v we use induction in the distance |v| to o. Indeed, such v has a neigh-
bor u satisfying |u| < |v|. For any fixed m′, η, and n sufficiently large, we have
P

n(Em′,ε,u) ≥ 1−η. Given this, and using the strong Markov property, one can repeat
the previous argument with m′ sufficiently large to conclude that with probability at
least 1−2η there will be at least m particles at v (arriving from u) at some time t < 2ε.

�
Proof of Theorem 1.2 Again, due to monotonicity in n and t , it suffices to show that
for any m <∞ and any t > 0, we have limn→∞ P(N n

t > m) = 1.
Let η, ε > 0 be small numbers. Fix m < ∞, and choose a subgraph Gm ⊂ G of

size m such that the distance between any two vertices of Gm is larger than 1/η. By
Lemma 5.3 we have that

P
n(E1,ε,v) −−−→

n→∞ 1, ∀v ∈ Gm .

Moreover, if Av,ε is the event that the first (if any) particle that enters v before time ε

stays at v up to time ε (while it may possibly coalesce with other particles), note that
P(Av,ε|E1,ε,v) ≥ e−ρε. By choosing ε sufficiently small we arrive to

lim
n→∞P(∩v∈Gm Av,ε) ≥ 1− η.

However, given∩v∈Gm Av,ε, the probability that any pair of the above particles (located
at mutual distance greater than 1/η at time ε) will coalesce before time t tends to 0 as
η → 0. �

6 Lower bound for the long time asymptotics

We now turn to the large time asymptotic behavior of spatial coalescents. The under-
lying measure � does not play an important role here as it did for the behavior at
constant times (provided that the mean-field coalescent comes down from infinity).
The reason for this is that, as explained in the introduction (Sect. 1.2), at the beginning
of this phase, say at constant time t > 0, the number of particles at each site is tight
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with respect to n. When the number of particles at a site is small, the coalescents
corresponding to different choices of � behave similarly. In fact, the density of parti-
cles quickly decays, and once it is small enough, it rarely happens that more than two
particles are at the same location. With at most two particles at each site, any spatial
�-coalescent is equivalent to spatial Kingman’s coalescent.

An important quantity in this setting is the radius m of the region (ball) which is
initially “filled” with particles. As we have seen, for Kingman’s coalescent the radius
of this ball is m = log∗ n, while in the case of Beta-coalescents it is approximately
m = log log n up to constants. In the general case, the radius m should be a certain
function of both n and �, namely m= f ∗(n) where f ∗ is defined in (4). This was rig-
orously established only for Kingman’s coalescent and those with “regular variation”
(i.e., satisfying (20)). However, the results which we present in this section and the
next one, are valid for essentially arbitrary coalescence mechanisms (subject to (48)
for the upper bound in Sect. 7), and assume that the spatial �-coalescent starts with a
possibly random but tight number of particles per site in a large ball of radius m. See
Theorem 6.4 for the full statement. Note that in this result as in the rest of the paper,
we will be taking limits as m tends to∞, recalling that m is itself a function of n when
applying these results to get Theorem 1.4.

Let us first present some further heuristic arguments for the lower bound in Theo-
rem 1.4. Consider for the moment the case d > 2, so that the random walk migration
process is transient. The first heuristic comes from the first moment calculation and
simple Green function estimates: label the particles in an arbitrary way and let Si be
the total number of particles that ever coalesce with the i th particle (including the i th
particle itself). Observing that a typical particle is at initial distance of order k away
from an order kd−1 particles, where k ranges from 1 up to a number of order m, gives
for a typical i

E(Si ) 	
m
∑

k=1

kd−1 1

kd−2 	 m2,

where we use the fact that the probability that two particles ever coalesce is proportional
to the probability that their corresponding walks intersect (visit the same site at the
same time) (the constant comes from the delayed coalescence dynamics). The fact that
this probability is approximately k2−d is a well-known Green function estimate. Since
N =∑M

i=1 1/Si gives the total number of clusters that survive forever (with M being
the initial number of particles, of order md ), and since E(1/Si ) ≥ 1/E(Si ) we arrive at

E(N ) ≥ cmd−2. (30)

While Jensen’s inequality may seem crude, this does give the correct exponents
because the distribution of Si is sufficiently concentrated. The next section contains
results confirming this heuristic.

6.1 Technical random walk lemmas

We begin with technical results concerning random walks. Most of these are standard
yet difficult to “pinpoint” in the random walk literature. Let (Sn, n ≥ 0) be sim-
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ple symmetric random walk on Z
2, started from a point X0 ∈ B(o, 2m) which will

later be chosen in a certain random fashion (very roughly speaking, close to uniform)
and recall that m → ∞. Let (Xt , t ≥ 0) be a continuous time random walk on Z

2

obtained as Xt := SN∗t where (N∗t , t ≥ 0) is a Poisson process with rate 1, indepen-
dent of X . Let S′ be a lazy version of S, with S′0 = S0 and step distribution given
by P(S′n+1 − S′n = 0) = 1/2 and P(S′n+1 − S′n = ±ei ) = 1/8, where e1, e2 are the
coordinate vectors, then (S′N∗2t

, t ≥ 0) has the same law as X . We write Px for the

corresponding probability measures when X0 = x .
Define τ ′x := inf{n ≥ 0 : S′n = x}, τx := inf{s > 0 : Xs = x} to be the hitting

times of x . Similarly, let τ ′+x := inf{n ≥ 1 : S′n = x} denote the positive hitting time
of x . We abbreviate τ ′ = τ ′0, τ = τ0 etc.

The next result is a variation of an Erdős-Taylor formula [19] (see also [17], p. 354).
We assume that as m →∞,

E

(

1

‖X0‖2+

)

= O

(

1

log m

)

, E

(

log
m

‖X0‖+
)

= O(1), (31)

where for any y ∈ Z we abbreviate ‖y‖+ := ‖y‖ ∨ 1.

Lemma 6.1 Assume d = 2 and fix s > 4, assume a random ‖X0‖ ≤ 2m satisfies
(31). Then

P(τ < sm2) 	 log s

log m + log s
, (32)

where the constants implicit in the 	 notation depend only on those implicit in (31)
(and not on s or m).

It is easy to check that X0 drawn from a uniform on B(o, 2m) or from a difference
of two independent uniforms on B(o, m) will satisfy the hypotheses of Lemma 6.1 and
therefore (32) with universal constants (not depending on m) for any fixed s > 4. Also
note that if P(X0 /∈ B(o, 2m)) = 1, under no further restriction on the distribution of
X0, the upper bound on the probabilities P(τ < sm2) holds with the same constant as
in Lemma 6.1. Indeed, in order for τ to happen, the walk needs first to enter B(o, 2m)

at a location close to its boundary, for which the argument below gives the required
estimate.

Proof We estimate the above probability for any given x ∈ B(o, 2m), and then inte-
grate over the law of X0. Without loss of generality, assume that sm2 is an integer.
Use the “last-exit decomposition”:

1{τ ′<sm2} =
sm2−1
∑

k=1

1{S′k=0}
sm2−1
∏

j=k+1

1{S′j �=0}
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together with the Markov property, to obtain

Px (τ
′ < sm2) =

sm2−1
∑

k=1

Px (S′k = 0)P0(τ
′+ > sm2 − k − 1).

We now apply a local central limit theorem and an estimate on the distribution of
excursion length [37], statement E1 on p. 167, (or [30, Prop. 4.2.4]) and [37] state-
ment P10 on p. 79 (or [30, Theorem 2.1.1]). We find that for some universal sequence
en −−−→

n→∞ 0

Px (τ
′ < sm2) =

sm2−1
∑

k=1

1

k
e−

2‖x‖2
k

1+ esm2−k+1

log(sm2 − k + 1)

+O

⎛

⎝

sm2−1
∑

k=1

1

k‖x‖2+
1

log(sm2 − k + 1)

⎞

⎠

=
sm2−1
∑

k=1

1

k
e−

2‖x‖2
k

1+ esm2−k+1

log(sm2 − k + 1)
+ O

(

1

‖x‖2+

)

.

Split this sum in three: For k ≤ ‖x‖2 use e−x < x−1 to get a total contribution of
O(1/ log(sm2)). For k > sm2 − √sm2 each term is at most C/k so the total con-
tribution is O(1/(

√
s · m)). Finally, for the intermediate k’s each term is of order

1/k log sm2, so the total contribution is of order log(sm2/‖x‖2)/ log(sm2). Thus

Px (τ
′ < sm2) 	 log s + 2 log(m/‖x‖+)+ O(1)

log(sm2)
+ O

(

1

‖x‖2+

)

,

uniformly over x ∈ B(o, sm/2). Taking expectation with respect to X0 while using
(31) and s > 2, yields P(τ ′ < sm2) 	 log s

log(sm2)
as m →∞.

Going back to the continuous time random walk, we have P(|N∗2t − 2t | > εt) ≤
e−c(ε)t , t ≥ 0 for some c(ε) > 0, accounting for an additional error of O(e−c(ε)sm2

) =
o(1/ log(sm)) in the corresponding estimate for τ . �

We will also need later a simpler result which goes along the same lines.

Lemma 6.2 Assume d = 2 and X0 = x is such that ‖x‖ = m. For all c1 > 0, there
exists c2 > 0 which depends only on c1 such that Px (τ0 < c1m2) ≥ c2/ log m.

Proof First we note that by easy large deviations on Poisson random variables, it suf-
fices to prove the same inequality with τ0 replaced by the discrete time τ ′0. By the
strong Markov property, note that if K (t) counts the number of hits of 0 by time t ,
then for all c > 0,

Ex
(

K (cm2)
) ≤ Px (τ

′
0 ≤ cm2)E0(K (cm2)). (33)
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By the local central limit theorem,

E0(K (cm2)) =
cm2
∑

k=0

P0(S′k = 0) 	
cm2
∑

k=1

1

k
∼ 2c log m. (34)

Also,

Ex (K (cm2)) =
cm2
∑

k=0

P0(S′k = x) 	
cm2
∑

k=1

e−c′‖x‖2/(2k)

k
≥

cm2
∑

k=cm2/2

e−c′m2/(2k)

k
≥ c′′.

(35)

Combining (33)–(35), we complete the proof. �
If d ≥ 3, we denote by G X the Green function of a d-dimensional walk X . It is

well-known (see e.g. [37]) that

G X (x) ∼ c‖x‖2−d , as ‖x‖ → ∞, (36)

for some constant c that depends on d (here ‖x‖ denotes the Euclidean norm in Z
d ).

Let X (·), Y (·) be independent continuous random walks in Z
dd ≥ 2 with jump rate

1 and with starting points uniform in B(o, m). Denote byσt {X} := σ {X (s), 0 ≤ s ≤ t}
the natural filtration of X and let σ {X} := σ∞{X} = σ {X (s), 0 ≤ s < ∞}. Define
the stopping time τ := inf{t : X (t) = Y (t)}. Define the collision events by

Hs ≡ Hs(X, Y ) := {τ ≤ s}, H ≡ H(X, Y ) := {τ <∞}.

Lemma 6.3 Let X, Y be independent continuous time random walks in Z
d starting

at uniform points at B(o, m). For any d > 2 we have

P(H) 	 m2−d , (37)

Var (P(H |σ {X})) ≤ Cm2(2−d), (38)

while if d = 2, for any t > 4 we have

P
(

Htm2
) 	 log t

log m + log t
, (39)

Var
(

P(Htm2 |σ {X})) ≤ C

(

log t

log m + log t

)2

, (40)

where C and the constants in 	 relation depend only on d.

Proof Assume first that d ≥ 3. Note that the difference X (t)−Y (t) is also a continuous
time simple random walk (with a doubled rate of jumps), and abbreviate G X−Y = G.
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It is well-known and easy to check that

P(H |X0 = x0, Y0 = y0) = G(x0 − y0)− 1{x0=y0}
G(0)

. (41)

Since x "→ ‖x‖2−d is integrable near 0 as a function on R
d , then (36) implies that

1

Vol B(o, m)

∑

y∈B(o,m)

G(x − y) ≤ Cm2−d , for any x ∈ Z
d . (42)

If x ∈ B(o, m), then a corresponding lower bound holds since a positive fraction of
points in B(o, m) is at distance order m from x . Hence, for any x ∈ B(o, m),

1

Vol B(o, m)

∑

y∈B(o,m)

G(x − y) 	 m2−d ,

where the constants implicit in 	 depend only on d. Due to (41), averaging over
x ∈ B(o, m) gives that P(H) 	 m2−d as claimed. (It is not hard to show similarly
that P(H) ∼ cm2−d for some c.)

In order to show (38), introduce a third random walk Y ′ independent from, and
identically distributed as, X and Y . In analogy to H define H ′ = {∃t, X (t) = Y ′(t)}.
Given σ {X}, the events H, H ′ are independent and have the same probability. Thus

Var P(H |σ {X}) ≤ E
[

P(H |σ {X})2]

= E
[

P(H |σ {X})P(H ′|σ {X})]
= E

[

P(∃t, s : X (t) = Y (t), X (s) = Y ′(s)|σ {X})]
≤ 2P(∃t, s : t ≤ s, X (t) = Y (t), X (s) = Y ′(s)),

where for the last inequality we use the symmetry between Y and Y ′. Denote by Fτ the
standard σ -field generated by processes X and Y up to time τ . On the event {τ <∞},
due to the strong Markov property and (41),

P
(∃s ≥ τ : X (s) = Y ′(s) | Fτ

) ≤ cE
[

G(X (τ )− Y ′(τ )) | Fτ

]

.

Let Z = X (τ )− (Y ′(τ )− Y ′(0)). Noting that Y ′(0) is independent from both Fτ and
Z , we have E(G(Z − Y ′(0))|Fτ , Z) ≤ Cm2−d , almost surely, and therefore

E
(

G(X (τ )− Y ′(τ ))|Fτ

) = E[E (

G(Z − Y ′(0))|Fτ , Z
) |Fτ ] ≤ Cm2−d .

In view of the discussion above this yields a uniform bound on Var P(H |σ {X}).
If d = 2, we proceed similarly, with H replaced by Htm2 . In particular, Lemma 6.1

gives the asymptotics of P(Htm2). For the conditional variance estimate, one obtains
as above

Var P(Htm2(X, Y )|σ {X}) ≤ 2P[1{τ<t}P(Htm2(X ′′, Y ′′)|Fτ )],
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where X ′′, Y ′′ are independent random walks started from X (τ ) and Y ′(τ ), respec-
tively, and otherwise independent of Fτ . The result follows as before, since by
Lemma 6.1, P(Htm2(X ′′, Y ′′)|Fτ ) 	 log t

log m+log t . �

6.2 Proof of the lower bound

We return to the spatial coalescent. Let � be an arbitrary finite measure on (0,1). Con-
sider a spatial coalescent with initial configuration X (0) that stochastically dominates
i.i.d. Bernoulli random variables with mean p > 0 in B(o, m) (we make no assump-
tions on the initial configuration outside of B(o, m)). With a slight abuse of notation,
we write N m(t) in this section for the total number of particles at time t , and we define
N ≡ N m = limt→∞ N m(t) be the number of particles that survive to time∞.

Theorem 6.4 Consider the spatial coalescent with initial state dominating Bernoulli
variables in B(o, m). If d > 2, then there exist a constant a > 0 such that

P(N > amd−2) −−−−→
m→∞ 1.

If d = 2, then there exists a constant a > 0 such that, for any t > 4,

P

(

N m(tm2) > a
log m

log t

)

−−−−→
m→∞ 1.

Note that, since the total number of particles is non-increasing, the lower bound in
the d = 2 case holds for any t > 1 with modified constant a (or with log(2 + t) in
place of log t for any positive t).

We begin with a lemma stating a similar result for a simpler initial condition and
with an “instantaneous” coalescent mechanism, where two particles coalesce as soon
as they visit the same site. This model is called coalescing random walks (CRW).
Afterwards we couple the two models to obtain Theorem 6.4.

Lemma 6.5 Consider a system of s coalescing random walks, such that their initial
positions are i.i.d. uniform points in B(o, m), where

s ≡ s(a) =
{

amd−2, d ≥ 3,

a log m, d = 2.

Let Z(t) denote the total number of particles at time t and let Z = limt→∞ Z(t).
If d > 2, then for some a > 0 we have P(Z > amd−2/4) −−−−→

m→∞ 1.

If d=2, then for some a and all t > 4, we have P

(

Z(tm2) > a log m+log t
4 log t

)

−−−−→
m→∞ 1.

Proof We use the following explicit construction of the CRW model with the given
initial condition: Let (Xi (t), t ≥ 0), i = 0, 1, . . . , s − 1 be a family of i.i.d. (non-
coalescing) random walks, such that for each i, Xi (0) is uniform in B(o, m). At time 0,
each block contains a single particle that is assigned a unique label in {0, 1, . . . , s−1}.
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While present in the system, the particle (or block of particles) carrying label i follows
the trajectory of Xi . If the trajectories of blocks labeled i and j ever intersect, they
instantaneously merge into a new block that inherits the smaller label i ∧ j .

Consider first the case d > 2. For each pair i, j let Ai, j := {∀u ≥ 0 : Xi (u) �=
X j (u)} = H(Xi , X j )

c. Then on Ai, j the blocks carrying labels i and j cannot merge
as a consequence of a single coalescence event, but might merge due to a collection
of coalescence events involving lower indexed particles. However, on the event

Ak :=
⋂

i<k

Ak,i , (43)

the block carrying label k stays in the system indefinitely.
Consider the filtration Fk = σ

{

Xi (·), i ≤ k
}

. Define pk = P(Ak |Fk−1), and note
that p0 = 1. The random variables {pk}, are a non-increasing sequence of random
variables. To see this we use the fact that the random walks are independent and so

pk ≤ P

(

k−2
⋂

i=0

Ak,i |Fk−1

)

= P

(

k−2
⋂

i=0

Ak−1,i |Fk−2

)

= pk−1, almost surely.

Next, define events

Bk = Ak ∪ {pk < 1/2},

and note that

P(Bk |Fk−1) =
{

1, pk < 1/2,

pk, pk ≥ 1/2.

Consider the martingale

Mk =
k

∑

i=0

1Bi − P(Bi |Fi−1).

Note that Mk has increments with variance bounded (crudely) by 1. Thus Var Ms < s
(here s is the initial total number of blocks) and, by Markov’s inequality,

P(|Ms | > s/4) ≤ s

(s/4)2 =
16

s
.

However, P(Bk |Fk−1) ≥ 1/2, so by the definition of M , we find

P

(

∑

i<s

1Bi < s/4

)

≤ 16

s
−−−−→
m→∞ 0. (44)
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Since pk is non-increasing and since on the event {pk ≥ 1/2} the events Ak and
Bk coincide, we realize that on the event {ps ≥ 1/2}

∑

i<s

1Ai =
∑

i<s

1Bi .

Thus if we prove that

P(ps < 1/2) −−−−→
m→∞ 0, (45)

then (44) would imply the lemma. To this end we show that ps is bounded below
by a random quantity that is concentrated above 1/2, via second moment estimates.
Specifically, from the definition (43) we have

1− ps ≤
∑

i<s

P(Ac
s,i |Fs−1) =

∑

i<s

P(Ac
s,i |σ {Xi }),

where the last identity is due to independence of σ {Xi } for different i’s. Moreover,
{P(Ac

s,i |σ {Xi }), i = 0, . . . , s − 1} is an i.i.d. family of random variables. Using (37),

E

(

∑

i<s

P(Ac
s,i |σ {Xi })

)

< s · Cm2−d ≤ Ca.

We choose a = 1/(4C) so that this expectation is at most 1/4. Due to (38),

Var

(

∑

i<s

P(Ac
s,i |σ {Xi })

)

≤ s · Cm2(2−d) → 0.

so the sum is concentrated near its mean, and (45) follows.
In the case d = 2, the proof is almost identical. We take s = a log m and a <

1/(4C log t), where C is the constant that appears in (39). The event Ai, j is accord-
ingly redefined as Ai, j := Htm2(Xi , X j )

c. Otherwise, the argument proceeds exactly
as above, with (39), (40) used in place of (37), (38). �

Proof of Theorem 6.4 The idea is to couple the spatial coalescent X with a system of
coalescing random walks, denoted X$, with an initial state of s particles at i.i.d. sites,
uniform in B(o, m). We first argue that it is possible to couple the initial states so that
w.h.p. X$v (0) ≤ Xv(0) (at every vertex). Indeed, in X$, there are N$(0) ≤ s occu-
pied sites (since there may be repetitions) and given N$(0), these sites are uniformly
sampled from the ball B(0, m) without replacement. On the other hand, X (0) domi-
nates a Bernoulli configuration on B(o, m), hence X (0) has at least Bin(#B(o, m), p)

particles sampled without replacement. Since P(Bin(#B(o, m), p) > s) → 1, this
holds.
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The second step of the proof is that if the initial configurations satisfy X$v (0) ≤
Xv(0) for all v, then there is a coupling of the processes so that

Xv(t) ≥ X$v (t), t ≥ 0, v ∈ V . (46)

To see this, observe that by the consistency property of spatial �-coalescent it suffices
to prove the result assuming that Xv(0) = X$v (0) for all v ∈ V . In this case, (46)
follows easily by induction on the number of particles: Just apply the consistency
property of spatial �-coalescents, after the first time that two particles occupy the
same site. (This idea is further exploited in Lemma 7.2.)

Finally, Theorem 6.4 follows by Lemma 6.5. �

6.3 Concentration of the number of particles

The main result of this section is a concentration result for the number of particles
alive at a certain time. This provides a soft alternate route for the lower-bound on the
long-time behavior of the spatial coalescent, as we briefly explain.

Theorem 6.6 Fix t > 0, and consider a spatial Kingman coalescent started from
some arbitrary configuration containing a finite number of particles. Then we have

Var(N (t)) ≤ EN (t).

Proof The tool used here again is a comparison to the coalescing random walk model,
where particles coalesce immediately upon meeting. We denote by (X$(t), t ≥ 0) a
system of instantaneously coalescing random walks started from a certain set of verti-
ces A in a graph G = (V, E), to be chosen suitably later, and let N$(t) denote the total
number of particles at time t . The proof is based on Arratia’s correlation inequality
[2, Lemma 1], which states that

EX$x (t)X$y (t) ≤ EX$x (t) · EX$y (t). (47)

Thus at any time, any two sites are negatively correlated. This inequality holds not
just for the process on Z

d , but on any edge weighted graph.
We now remark that the spatial Kingman coalescent on Z

d can be approximated
by a system of instantly coalescing random walks on a larger graph. For any integer
N such that N > n (the initial number of particles), consider the graph G N = (V, E)

with vertices V =Z
d × {1, . . . , N }. The edges of G N are of two types. If x ∼ y in

Z
d then there is an edge between (x, i) and (y, j) with weight ρ/N . Additionally,

there is an edge with weight 1/2 between (x, i) and (x, j) for any x, i, j . Call the
set x × {1, . . . , N } a cluster. Clusters correspond to vertices of Z

d in a natural way.
The Z

d coordinate of a continuous time random walk on G N is a continuous time
random walk on Z

d with jump rate ρ. However, two walks may be present in the same
cluster and not meet. It is clear that as long as two random walks are in the same
cluster they will meet at rate one (since each may jump into the vertex occupied by
the other).
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The probability of two random walks meeting when one jumps from one clus-
ter to another is of order 1/N . Thus as long as the number of particles is neg-
ligible compared to N , the projection onto Z

d of the coalescing random walks
X$N on G N is close to the spatial Kingman coalescent on Z

d . As N → ∞,
the projection of X$N (t) converges to X (t) (in the sense of vague convergence,
identifying Xv and the projection of X$N to point measures on Z

d ). More pre-
cisely, for an initial configuration X (0) of particles on Z

d , we define a set
A ⊂ VN by choosing for each v (arbitrarily) Xv(0) particles from the clus-
ter of v. Let X$N (t) be the process of coalescing random walks on G N started
with this configuration. Then if M$

N (t) denote the total number of particles of
X$N (t),

E(M$
N (t)2) =

∑

x∈VN

EX$N ,t (x)+
∑

x �=y∈VN

EX$N ,t (x)X$N ,t (y)

≤ EM$
N (t)+

∑

x �=y∈VN

EX$N ,t (x)EX$N ,t (y)

≤ EM$
N (t)+ (EM$

N (t))2.

Thus for any N we have Var M$
N (t) ≤ EM$

N (t). By dominated convergence (since all
processes have at most n particles) we see that

lim
N→∞EM$

N (t) = EN (t) lim
N→∞EM$

N (t)2 = EN (t)2,

and the result follows. �
As a simple corollary of this result, we obtain an alternate proof of Theorem 6.4.

We have already seen in (30) that E(N (∞)) ≥ cmd−2 for some c > 0 if d ≥ 3 (this
argument is a simple Green function estimate, and is easy to adapt to the case d = 2).
Applying Theorem 6.6 concludes the proof. Indeed, letting t → ∞ in Theorem 6.6
by the monotone convergence theorem shows that Var(N (∞)) ≤ E(N (∞)). Thus,
by Chebyshev’s inequality, letting μ = E(N (∞)),

P

(

N (∞) ≤ c
2 md−2

)

≤ P

(

|N (∞)− μ| ≥ |μ− c
2 md−2|

)

≤ μ

(μ− c
2 md−2)2 ≤

4

μ
→ 0.

It would be also possible to derive a lower-bound on the expected number of par-
ticles in a system of instantaneously coalescing random walks at time tm2, starting
from a set A which dominates i.i.d. Bernoulli random variables with mean p > 0,
using technology from coalescing random walks. We briefly outline the steps needed
to do this. First, starting from a configuration where there is a particle at every site
of Z

d , and using a famous result of Bramson and Griffeath [14] on the asymptotic
density of particles, we conclude that about cmd−2 such particles are in a region of
volume Cmd for some large C >0 to be chosen suitably. If we treat the particles that
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started outside of A as ghosts, we are then led to estimate the number of ghost particles
among those cmd−2. For this, one can use the duality with the voter model (see [31])
and [33, Lemma 4], which gives good control on the probability that the voter model
escapes a ball of radius

√
t , for large t .

7 Upper bound for the number of survivors

Assume that � is a finite measure on [0, 1] such that for some a0 > 0, we have

λn ≥ a0n for all n ≥ 2, (48)

where λn = ∑n
k=2 λb,k is the total merger rate when there are n particles. Note that

most coalescents which come down from infinity satisfy (48), in particular, if � = δ{0}
(the Kingman case) then (48) holds since λn =

(n
2

)

, and if � has the regular variation
property of (20), then (48) holds by Lemma 4.1.

Our goal here is to prove the following result.

Theorem 7.1 Fix C0 ∈ (0,∞) and δ > 0, and consider the spatial �-coalescent in
Z

d satisfying (48), started from a configuration of at most C0md particles located in
B(o, m), and no particles in Z

d \ B(o, m). There exists C = C(δ, C0), such that if
d > 2 then

P

(

N∗(δm2) < Cmd−2
)

−−−−→
m→∞ 1,

while, if d = 2,

P

(

N∗(δm2) < C ln m
)

−−−−→
m→∞ 1.

Note that when d > 2 this order of magnitude bound is sharp, since Theorem 6.4
shows N∗(∞) ≥ cmd−2. For d = 2, due to recurrence, N∗(∞) = 1, almost surely.

The idea behind the proof is a comparison of the spatial system to a mean field
approximation. The actual argument is based on a somewhat technical construction
so we start with a non-technical overview. Recall the comparison with ODE described
in (5): if at time t the density of particles averaged over some ball is ρ(t) (typically
small), then we approximate the spatial coalescent with the mean-field model where
the coalescence rate per particle is ρ(t) at time t , leading to the differential equa-
tion

d

dt
ρ(t) = −ρ2(t)/2, t ≥ s.

Hence ρ(t)−1= ρ(s)−1 + (t − s)/2 and therefore ρ(t)= 2
t−s+2ρ(s)−1 , t ≥ s. Pro-

vided that all the particles in the spatial coalescent configuration are located in the
ball of radius m during the whole interval [s, t] (and that the above approximation is
valid) then their total number is approximately Cmdρ(t). In turn, this approximation
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remains valid as long as the particles remain inside a ball centered at the origin with
radius of order m, i.e. up to time of order m2. At times of order m2, the number of
remaining particles is of order md−2.

A key difficulty of the approach outlined above comes from the fact that some
particles diffuse away from the densest regions relatively early in the evolution, which
might enable them to survive longer. To account for such “runaways”, we adopt a
multi-scale approach, bounding at each stage the number of particles that “escape”.
This is done in Lemma 7.8. Lemma 7.5 provides the estimates on the number of
non-escaping particles at each stage.

To justify the comparison of the spatial process with the mean field process we
average over small time intervals (cf. Lemma 7.4 below). This is necessary since at
any given time it is possible that no vertex contains more than a single particle, in
which case the immediate rate of coalescence is 0. However, the system is unlikely
to stay in such states long enough to hinder the approximation. Indeed, Lemma 7.4
implies that the average rate of coalescence is (up to constants) as predicted by the
mean field heuristic. The multiplicative constants are inherent to the spatial structure,
and it seems difficult to compute them.

7.1 Preparatory lemmas

Our first step is a comparison lemma between the spatial �-coalescent X and a slower
spatial coalescent. We then consider a possibly more general spatial coalescent pro-
cess {(X̄v(t), t ≥ 0)}v∈V . If the process consists initially of n particles labeled by
[n] = {1, . . . , n}, a configuration consists as usual of labeled partitions of [n], where
the label of a block corresponds to its location on V . Equivalently, a configuration
x̄ = (x̄v)v∈V may be thought of as giving the list of blocks (referred to as parti-
cles) present at each particular site v ∈ V . We will also sometimes abuse notation and
denote by X̄v(t) the number of particles (i.e., blocks) present at time t and at position v.
We assume that particles perform independent continuous-time simple random walks
with jump rate ρ, and that there exists a family of real numbers λ̄x̄,S such that for all
configuration x̄ = (x̄v)v∈V , all v ∈ V , any particular subset S of all blocks present at
v ∈ V coalesces at an instantaneous rate λ̄x̄,S , if the current configuration is x̄ . More-
over, coalescence events at different sites occur independently of one another, and are
independent of the migration. We now make the following assumption on the family
of rates λ̄x̄,S : if v ∈ V and x̄v contains n ≥ 2 particles, then for every 2 ≤ k ≤ n, we
have:

∑

S:|S|≥k

λ̄x̄,S ≤
∑

�≥k

(

n

�

)

λn,�, (49)

where λn,k is the coalescence rate of any particular subset of size k in a �-coalescent.
The idea behind (49) is that if X and X̄ have the same number of particles at time t ,
then X (t + ε) is stochastically dominated by X̄(t + ε).
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Lemma 7.2 Consider a �-coalescent X and a coalescent process X̄ such that (49)
holds, and Xv(0) ≤ X̄v(0) for all v. Then there is a coupling of the processes X and
X̄ such that Xv(t) ≤ X̄v(t) holds for all v ∈ V and t ≥ 0.

Proof By the consistency of spatial �-coalescents, it suffices to prove the result when
Xv(0) = X̄v(0) for all v ∈ V . We associate each particle of X with a particle of X̄ and
let them perform the same random walks as long as there are no coalescence events.
A consequence of (49) is that it is possible to couple the processes so that if Xv = X̄v

then the coalescence events of X dominate those of X̄ , that is, any coalescence event
in X̄ occurs at the same time as an event in X involving at least as many particles.

The proof now proceeds by induction on the total number of particles, which are
allowed to be distributed arbitrarily. By the above remark, we may couple the pro-
cesses X and X̄ so that the domination holds up to and including the first time t0 of a
coalescence event, which involves particles from X and possibly from X̄ . Assume that
X̄ also experiences a coagulation event at this time. (Else, we can artificially retain
particles in X that were supposed to coagulate at time t0. By the consistency property,
this may only increase the process X stochastically.)

We now use the induction hypotheses to construct processes (X ′(t), t ≥ t0) and
(X̄ ′(t), t ≥ t0) with initial configuration X ′(t0) = X̄ ′(t0) = X̄(t0) such that X ′u(t) ≤
X̄ ′u(t) for all t ≥ t0. We can define X̄(t) = X̄ ′(t) for t > t0, and by consistency of the
spatial �-coalescents, we extend the coupling to X for t > t0 so that Xu(t) ≤ X ′u(t)
for all u ∈ V , which proves the claim. �
Remark This lemma holds for more general spatial coalescents: e.g., the instanta-
neous coalescence rates λx̄,S could be allowed to be arbitrary path-dependent (i.e.,
Ft -measurable at time t), almost surely nonnegative and finite random variables. The
only crucial assumption is that (49) holds uniformly.

We now apply Lemma 7.2 to the situation which is particularly useful in our setting.
Recall that we are considering a spatial �-coalescent for which (48) holds. Assume
that initially there are N particles, and let {Xv(t), t ≥ 0}v∈V denote the number of
particles of this process as a function of time and space.

Let π be a partition of {1, . . . , N }. We refer to the blocks of π as classes. Let
{X̄v(t), t ≥ 0}v∈V denote a process where classes evolve independently of one another,
and particles within each class evolve according to a spatial (�̄)-coalescent, where
�̄ will be specified soon. That is, particles move as continuous-time simple random
walks with rate ρ and coalesce when they are on the same site and from the same class
according to a �̄-coalescent.

Lemma 7.3 Assume that the blocks of π are all of size 1 or 2, and that �̄ = (a0/λ2)�,
where a0 is the constant of (48) and λ2 = λ2,2 is the pairwise coalescence rate. Assume
also that Xv(0) ≤ X̄v(0) for all v. Then there is a coupling of the processes X and X̄
such that Xv(t) ≤ X̄v(t) holds for all v ∈ V and t ≥ 0.

Proof Observe first that our process X̄ is of the type described above Lemma 7.2,
so that it suffices to establish (49). Note however that if a configuration x̄ contains n
particles at site v, and S is a subset of particles with |S| = k and 2 ≤ k ≤ n, we have
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λ̄x̄,S = 0 for k ≥ 3, while if k = 2, λx̄,S = 0 when the particles of S are not of the
same class, and if they are of the same class, λx̄,S = (a0/λ2)λ2 = a0. Since there are
at most n subsets of particles that are allowed to coalesce, we have

∑

S:|S|≥2

λ̄x̄,S ≤ na0 ≤ λn =
n

∑

k=2

(

n

k

)

λn,k,

which proves (49), and completes the proof. �
Lemma 7.4 Fix c0, C0, and consider a spatial �-coalescent satisfying (48) with
N∗(0) particles all inside B(o, R). Let ρ(t) = N∗(t)

Rd be the density, and assume

ρ(0) ∈ (c0 R−2, C0). Denote τ = ρ(0)−2/d . Then for d > 2 we have

P

(

ρ(τ)−1 < ρ(0)−1 + c1τ
)

< exp
(

− cR(d−2)2/d
)

,

where c1 depends only on d, c0, C0, a0.
If d = 2 we have

P

(

ρ(τ)−1 < ρ(0)−1 + c1τ

log τ

)

< exp

(

− cR2

τ log τ

)

.

Proof We first argue that for some C = C(d), it is possible to find at least N∗(0)/4
disjoint pairs in the set of initial particles, so that for each pair the initial distance
between its particles is at most Cρ(0)−1/d (for large ρ(0), the particles forming such a
pair are initially located at the same site). To achieve this, cover B(o, R) with N∗(0)/2
(disjoint) boxes of diameter C RN∗(0)−1/d = C ′ρ−1/d (this is possible for some C).
Within each box match as many pairs as possible in an arbitrary manner. This leaves
at most one unpaired particle in each ball, so at least N∗(0)/2 are matched, with all
distances bounded as claimed. Refer to two particles forming a pair as “partners”.

Consider the coupling from Lemma 7.3, where π corresponds to the partitioned
formed by identifying particles with their partners (which therefore contains only sin-
gletons or doubletons). Let Z ′ be the total number of coalescence events in the process
�′ where coalescence events involving members of different classes are not allowed
and occur at rate a0 when they are. Lemma 7.3 implies that Z ′ % Z , in the sense
of stochastic domination. Hence, it suffices to prove the claimed bounds for Z ′. The
advantage of considering �′ instead of � is that different pairs of partners evolve
independently.

From this point on, the arguments for the cases d = 2 and d > 2 differ. In dimen-
sions d > 2, by our assumptions, τ > c0 for some c0. The probability that random
walkers started at distance at most ρ−1/d meet before time τ/2 = ρ−2/d/2 is at
least cρ(d−2)/d . On this event, there is probability bounded from 0 that they coa-
lesce before time τ . Thus the number of partners that coalesce by time τ dominates
a Bin(N∗(0)/4, cρ(d−2)/d) random variable. This random variable has expectation
cN∗(0)ρ(d−2)/d ≥ cR(d−2)2/d . The bound in the lemma is the probability that this
random variable is less than half its expectation.
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Finally, if the number of coalescence events is at least cN∗(0)ρ(0)(d−2)/d =
cN∗(0)ρ(0)τ then

ρ(t)−1 = Rd

N∗(t)
≥ Rd

N∗(0)(1− cρ(0)τ )
≥ Rd

N∗(0)
(1+ cρ(0)τ ) = ρ(0)−1 + cτ.

In the case d = 2, each pair coalesces with probability at least c/ log τ (along
the same lines) by Lemma 6.2. As above, the number of coalesce events is at least
cR2/τ log τ except with probability e−cR2/τ log τ . On this event, a similar computation
gives

ρ−1
t ≥ ρ−1

0 + c

τ log τ
.

�

Lemma 7.5 Let St denote the number of particles (in the spatial coalescent)
that remain in B(o, R) during the whole interval [0, t]. In particular, S0 =
∑

v∈B(o,R) Xv(0). Fix C0 > 0, and assume that S0 = n < C0 Rd and that 2 < t < R2.
Then for some C depending only on d,

P

(

St

Rd
>

C

t

)

< cR4 exp
(

− cR(d−2)2/d
)

if d > 2,

and

P

(

St

R2 >
C log t

t

)

< (log t)−1 if d = 2.

Proof As usual, the case d > 2 is considered first. Assume that S0 > Rd−2, else
there is nothing to prove. The previous lemma can then be formulated as follows:
The process {ρ−1

t } is unlikely to spend more than u−2/d units of time in the interval
[u, u + c1u−2/d ]. Note that St can only decrease faster than N∗(t), so this will also
hold for the modified density ρ(t) = St

Rd .
We apply this to the following sequence of intervals. Let u0 = ρ(0) and uk+1 =

uk + c1u−2/d
k . Let K be minimal with uK > t/c1. As long as u j < t/c1 the increment

is at least ct−2/d . It follows that K < Ct1+2/d < R4. If the process does not spend
more than u−2/d

k time in [uk, uk+1] then the time before ρ−1 exceeds t/c1 is at most

t . The probability that this fails to hold is at most R4 exp
(

−cR(d−2)2/d
)

.

This works provided K > 1, or equivalently t ≥ ρ(0)−2/d . If t < ρ(0)−2/d then
we have

St ≤ S0 = ρ(0)Rd ≤ Rd

td/2 <
Rd

t
.
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In the case d = 2, we instead have uk+1 = uk + c1uk
log uk

. It is not hard to see that

uk 	 e
√

2c1k+c (50)

for some c depending on u0. To this end, note that u is increasing and hence is dom-
inated by the solution of the ODE f ′ = c1 f/ log f (at least once u is large enough
that u/ log u is increasing). This ODE is solved by f = e

√
2c1x+x , giving the upper

bound on u. For the other direction, note that once uk is large uk+1/uk is close to 1.
This implies that u dominates a solution of f ′ = (c1 − ε) f/ log f .

Lemma 7.4 tells us that ρ−1
t is unlikely to spend more than uk units of time in

[uk, uk+1], and the probability of this unlikely event is at most

pk = e−cR2/uk log uk .

Let K be such that uK > αt/ log t , with α small to be determined soon. Note that now
the failure probability for the last intervals is of order 1, so a union bound does not work.
However, Lemma 7.4 tells us more. If the processρ−1

t fails to exceed uk+1 in the next uk

units of time, then by the Markov property and Lemma 7.4 again, it gets a fresh chance
to do so in the next uk units of time. Therefore, the number of attempts is smaller than
a geometric random variable with success probability 1− pk . It follows that the total
time spent in [u0, uK ] is stochastically dominated by Q :=∑K−1

k=1 uk Geom(1− pk),
where the geometric random variables are independent. The probability we wish to
bound is therefore at most P(Q > t). By making α small we can guarantee pk < 1/2
for all k, so that the geometric variables are typically small.

More precisely, from (50) it follows that K 	 log2 t and therefore that

∑

k<K

uk 	
K
∫

0

e
√

2c1t dt 	 √K uK 	 αt,

hence for small enough α we have EQ≤2
∑K−1

k=1 uk ≤ t/2. Similarly, we can compute

Var Q ≤ C
∑

k<K

u2
k <

Cα2t2

log t
.

The lemma now follows from Chebyshev’s inequality and choosing α small enough
that 4α2C ≤ 1. �

The following is a fairly standard fact which follows easily from the optional stop-
ping theorem and Doob’s inequality:
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Lemma 7.6 If Xt is a continuous time random walk on Z
d then for all x ≥ 0,

P

(

sup
s≤t
‖Xs‖2 ≥ x

)

≤ Ce−cx2/t ,

where c, C depend only on d.

Lemma 7.7 If W = Bin(n, p), and � > 0, then

P(W > 2np +�) < �−1/2. (51)

Proof If � > (np)2, then Markov’s inequality gives P(W > �) ≤ np/� < �−1/2.
If � ≤ (np)2, one can use Chebyshev’s inequality to obtain P(W > 2np + �) ≤
P(W − EW > np) ≤ (1− p)/(np) < �−1/2. �

7.2 Completing the proof

Lemma 7.5 is almost sufficient to deduce Theorem 7.1. The missing piece is to account
for the particles that “escape” from the ball under observation. We accomplish this by
partitioning the time interval [0, m2] into several segments and applying Lemma 7.5 to
each segment. More precisely, let K =K (m)=�log log m�, and consider the process
at a particular sequence of times given by

tk =
{

0 k = 0,

ek−K m2 k = 1, . . . , K .

Thus t1 	 m2/ ln m, and the sequence increases geometrically up to tK = m2. At each
time tk , we will consider the behavior of the process with respect to the ball B(o, Rk),
where the radii Rk are defined by:

Rk =
{

0 k = 0,

γ (m +√tk(K + 1− k)) k > 0,

where γ > 1 is some constant to be determined during the proof of Lemma 7.8. Note
that Rk is increasing in k, and that RK = 2γ m.

With the above notations in mind, let Xk (resp. Yk) be the number of particles inside
(resp. outside) B(o, Rk) at time tk . Let Am = Am(α, β, γ ) be the event

Am =
{

Xk <
αRd

k

tk
and Yk <

β Rd
k

tk
for all k ≤ K

}

when d > 2.

and

Am =
{

Xk <
αR2

k log m

tk
and Yk <

β Rd
k log m

tk
for all k ≤ K

}

when d = 2.
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Lemma 7.8 Assume the initial conditions of Theorem 7.1. Then for some choice of
α, β, γ we have P(Am) −−−−→

m→∞ 1.

Proof The idea is to inductively bound Xk+1, Yk+1 in terms of Xk, Yk . The bound on
Xk+1 is mostly an application of Lemma 7.5. However, to bound Xk+1 we need to
also account for particles that are outside the ball B(o, Rk) at time tk , or particles that
exit the ball B(o, Rk+1) at some time before time tk+1 and re-enter it. These quantities
can be bounded in terms of Yk and Xk as well as auxiliary quantities introduced soon.
A delicate point in the proof is that the number of steps of the induction is not fixed
(ln ln m), so we make sure that constants do not grow with m. Thus all constants below
depend only on d.

At time t0 our assumptions are that Y0 = 0 and X0 ≤ C0md . For the induction
step we define two additional quantities: Sk and Zk . Let Sk be the number of parti-
cles that remain in B(o, Rk) throughout the time interval [tk−1, tk]. We wish to apply
Lemma 7.5 to Sk . The conditions are clearly satisfied (recall Sk ≤ C0md < C0 Rd

k ,
since γ > 1). Since tk − tk−1 ≥ ctk this will imply that with high probability

Sk < C1
Rd

k

tk
for all k ≤ K . (52)

(The probability of failure at each of log log m steps is exponentially small.)
Let Zk be the number of particles located inside B(o, Rk) at time tk that exit

B(o, Rk+1) before time tk+1. Lemma 7.6, bounds the escape probability for each of
Xk particles inside B(o, Rk). Coalescence can only reduce the number of escaping
particles, so given Xk ,

Zk % Z ′k = Bin

(

Xk, C2 exp

(

−c2
(Rk+1 − Rk)

2

tk+1 − tk

))

.

Here c2, C2 depend only on d, and “%” denotes stochastic domination.
If k = 0 this implies

EZ0 ≤ C0mdC2e−c2γ
2m2/t1 .

Since m2/t1 	 ln m, by making γ large enough we obtain EZ0 = o(1). Then in
particular Z0 = 0 with probability tending to 1. For k ≥ 1 we use Lemma 7.7, with
� = K 4 to find

P

(

K
⋃

k=1

{

Z ′k ≥ K 4 + 2EZ ′k
}

)

≤ K/
√

K 4 = 1/K .

Thus with probability at least 1− K−1 → 1 (as m →∞), we have

Zk < K 4 + 2C2 Xk exp

(

−c2
(Rk+1 − Rk)

2

tk+1 − tk

)

for all k.

123



676 O. Angel et al.

Using tk+1 = etk, k ≥ 1, together with
√

tk+1(K − k) ≥ √e/2
√

tk(K + 1− k), we
conclude that with high probability, Z0 = 0 and

Zk < K 4 + 2C2 Xke−c3γ
2(K−k) for all k ≤ K . (53)

With these preparations in place, we are ready for the induction. Assume from here
on that Z0 = 0 and (52), (53) hold. We have, for each k, the deterministic bounds

Xk ≤ Sk + Yk−1 + Zk−1,

Yk ≤ Yk−1 + Zk−1.

To see this, note that particles in B(o, Rk) either stayed inside (S), started outside (Y ),
or exited and returned (Z ). The bound on Y is similar.

We now carry out an induction over k to bound Xk, Yk for all k = 1, . . . , K . Sup-
pose that the bound (from the event Am) on X j and Y j hold for all j < k. It follows
from (53) and the inductive hypothesis that

Yk ≤
∑

j<k

Z j < kK 4 + 2C2α
∑

1≤ j<k

Rd
j

t j
e−c3γ

2(K− j)

< kK 4 + 2C2α
Rd

k

tk

∑

j<k

tk
t j

e−c3γ
2(K− j)

= kK 4 + 2C2α
Rd

k

tk
e−c3γ

2(K−k)
∑

j<k

e(1−c3γ
2)(k− j).

We require γ to be large enough that c3γ
2 > 2. Then the last sum is at most 1/(e−1) <

1 and so

Yk < kK 4 + 2C2α
Rd

k

tk
e−c3γ

2(K−k). (54)

This proves the induction step for Yk with any choice of β > 2C2α (since kK 4 ≤
K 5 � Rd

k /tk , the last inequality coming from the fact that K = �log log m�, while
tk ≥ t1 	 m2/ ln m and Rk ≤ RK ≤ 2γ m), on the event from (53), for all sufficiently
large m.

It remains to bound Xk , for which we will use the bounds on Sk, Yk−1 and Zk−1.
We already have

Yk−1 < (k − 1)K 4 + 2C2α
Rd

k−1

tk−1
e−c3γ

2(K+1−k) < (k − 1)K 4 + 2eC2α
Rd

k

tk
e−c3γ

2
.
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Using the induction hypothesis and (53) (with k − 1 replacing k) one finds

Zk−1 < K 4 + 2C2α
Rd

k−1

tk−1
e−c3γ

2(K+1−k) < K 4 + 2eC2α
Rd

k

tk
e−c3γ

2
.

Thus we have

Xk ≤ Sk + Yk−1 + Zk−1 < C1
Rd

k

tk
+ kK 4 + 4eC2α

Rd
k

tk
e−c3γ

2

= kK 4 +
(

C1 + 4eC2αe−c3γ
2
) Rd

k

tk
. (55)

To finish the proof it remains to select α and γ (and β > 2C2α) so that

C1 + 4eC2αe−c3γ
2

< α.

This is done by requiring γ to satisfy ec3γ
2

> 4eC2 and taking any sufficiently large α.
Turning to the case d = 2, we proceed along the same lines. Lemma 7.5 gives with

probability with high probability

Sk < C1
R2

k log m

tk
for all k ≤ K . (56)

The failure probability is log−1 m at each of log log m steps. Note that log ti ∼ log m
for all i , so we are not giving much away here. Furthermore, w.h.p. Z0 = 0 and (53)
holds (the proof of these facts does not depend on d).

We now repeat the induction. Given (53) and the induction hypothesis bounds on
X we get (as above, with an extra log m factor)

Yk < kK 4 + 2C2α
R2

k log m

tk
e−c3γ

2(K−k).

Since the bounds for Sk, Yk−1 and Zk−1 differ from the general case only by a log m
on the R2

k /tk term, the bound for Xk gets the same factor as well. �
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