
Probab. Theory Relat. Fields (2012) 152:231–264
DOI 10.1007/s00440-010-0321-8

A new approach to strong embeddings

Sourav Chatterjee

Received: 21 July 2008 / Revised: 2 July 2010 / Published online: 8 October 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We revisit strong approximation theory from a new perspective, culmi-
nating in a proof of the Komlós–Major–Tusnády embedding theorem for the simple
random walk. The proof is almost entirely based on a series of soft arguments and easy
inequalities. The new technique, inspired by Stein’s method of normal approximation,
is applicable to any setting where Stein’s method works. In particular, one can hope
to take it beyond sums of independent random variables.
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1 Introduction

Let ε1, ε2, . . . be i.i.d. random variables with E(ε1) = 0 and E(ε2
1) = 1. For each k,

let

Sk =
k∑

i=1

εi .
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232 S. Chatterjee

Suppose we want to construct a standard Brownian motion (Bt )t≥0 on the same prob-
ability space so as to minimize the growth rate of

max
1≤k≤n

|Sk − Bk |. (1)

Since Sn and Bn both grow like
√

n, one would typically like to have the above quantity
growing like o(

√
n), and preferably, as slowly as possible. This is the classical problem

of coupling a random walk with a Brownian motion, usually called an ‘embedding
problem’ because the most common approach is to start with a Brownian motion and
somehow extract the random walk as a process embedded in the Brownian motion.

The study of such embeddings began with the works of Skorohod [19,20] and
Strassen [22], who showed that under the condition E(ε4

1) < ∞, it is possible to
make (1) grow like n1/4(log n)1/2(log log n)1/4. In fact, this was shown to be the best
possible rate under the finite fourth moment assumption by Kiefer [12].

For a long time, this remained the best available result in spite of numerous efforts
by a formidable list of authors to improve on Skorohod’s idea. For a detailed account
of these activities, see the comprehensive recent survey of Obłój [16] and the bibli-
ography of the monograph by Csörgő and Révész [6]. Therefore it came as a great
surprise when Komlós et al. [13], almost fifteen years after Skorohod’s original work,
proved by a completely different argument that one can actually have

max
k≤n

|Sk − Bk | = O(log n)

when ε1 has a finite moment generating function in a neighborhood of zero. Moreover,
they showed that this is the best possible result that one can hope for in this situation.

Theorem 1.1 (Komlós–Major–Tusnády [13]) Let ε1, ε2, . . . be i.i.d. random vari-
ables with E(ε1) = 0, E(ε2

1) = 1, and E exp θ |ε1| < ∞ for some θ > 0. For each k,

let Sk := ∑k
i=1 εi . Then for any n, it is possible to construct a version of (Sk)0≤k≤n

and a standard Brownian motion (Bt )0≤t≤n on the same probability space such that
for all x ≥ 0,

P

(
max
k≤n

|Sk − Bk | ≥ C log n + x

)
≤ K e−λx ,

where C, K , and λ do not depend on n.

The paper [13] also contains another very important result, a similar embedding
theorem for uniform empirical processes. However, this will not be discussed in this
article. See the recent articles by Mason [15] and Csörgő [4] as well as the book [5]
for more on the KMT embedding theorem for empirical processes.

One problem with the proof of Theorem 1.1, besides being technically difficult, is
that it is very hard to generalize. Indeed, even the most basic extension to the case of
non-identically distributed summands by Sakhanenko [17] is so complex that some
researchers are hesitant to use it (see also Shao [18]). A nearly optimal multivariate
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version of the KMT theorem was proved by Einmahl [10]; the optimal result was
obtained by Zaitsev [23] at the end of an extraordinary amount of hard work. More
recently, Zaitsev has established multivariate versions of Sakhanenko’s theorem [24–
26]. For further details and references, let us refer to the survey article by Zaitsev [27]
in the Proceedings of the ICM 2002.

The investigation in this paper is targeted towards a more conceptual understanding
of the problem that may allow one to go beyond sums of independent random vari-
ables. It begins with the following abstract method of coupling an arbitrary random
variable W with a Gaussian random variable Z so that W − Z has exponentially
decaying tails at the appropriate scale. (Such a coupling will henceforth be called a
strong coupling, to distinguish it from the ‘weak’ couplings given by bounds on total
variation or Wasserstein metrics.)

Theorem 1.2 Suppose W is a random variable with E(W ) = 0 and finite second
moment. Let T be another random variable, defined on the same probability space as
W , such that whenever ϕ is a Lipschitz function and ϕ′ is a derivative of ϕ a.e., we
have

E(Wϕ(W )) = E(ϕ′(W )T ). (2)

Suppose |T | is almost surely bounded by a constant. Then, given any σ 2 > 0, we can
construct Z ∼ N (0, σ 2) on the same probability space such that for any θ ∈ R,

E exp(θ |W − Z |) ≤ 2 E exp

(
2θ2(T − σ 2)2

σ 2

)
.

Let us make a definition here, for the sake of convenience. Whenever (W, T ) is a
pair of random variables satisfying (2), we will say that T is a Stein coefficient for W .

The key idea, inspired by Stein’s method of normal approximation [21], is that if
T 	 σ 2 with high probability, then one can expect that W is approximately Gaussian
with mean zero and variance σ 2. This conclusion is heuristically justified because
a random variable Z follows the N (0, σ 2) distribution if and only if E(Zϕ(Z)) =
σ 2

E(ϕ′(Z)) for all continuously differentiable ϕ such that E|ϕ′(Z)| < ∞. Stein’s
method is a process of getting rigorous bounds out of this heuristic.

However, classical Stein’s method can only give bounds on quantities like

sup
f ∈F

|E f (W )− E f (Z)|,

for various classes of functions F . This includes, for example, bounds on the total
variation distance and the Wasserstein distance, and the Berry–Esséen bounds. Theo-
rem 1.2 seems to be of a fundamentally different nature.

To see how Stein coefficients can be constructed in a large array of situations, let
us consider a few examples.

Example 1 Suppose X is a random variable with E(X) = 0, E(X2) < ∞, and fol-
lowing a density ρ that is positive on an interval (bounded or unbounded) and zero
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outside. Let

h(x) :=

∫ ∞

x
yρ(y)dy

ρ(x)
(3)

on the support of ρ. Then, assuming ideal conditions and applying integration by
parts, we have E(Xϕ(X)) = E(ϕ′(X)h(X)) for all Lipschitz ϕ. Thus, h(X) is a Stein
coefficient for X . The above computation is carried out more precisely in Lemma 2.3
in Sect. 2.

Example 2 Suppose X1, . . . , Xn are i.i.d. copies of the random variable X from the
above example, and let W = 1√

n

∑n
i=1 Xi . Then by Example 1,

E(Wϕ(W )) = 1√
n

n∑

i=1

E(Xiϕ(W ))

= 1

n

n∑

i=1

E(h(Xi )ϕ
′(W )) = E

(
ϕ′(W )

1

n

n∑

i=1

h(Xi )

)
.

Thus, 1
n

∑
i h(Xi ) is a Stein coefficient for W . Note that this becomes more and more

like a constant as n increases, and so we can use Theorem 1.2 to get more and more
accurate couplings.

Example 3 Suppose ε1, . . . , εn are i.i.d. symmetric ±1-valued r.v. Let Sn = ∑n
i=1 εi .

Let Y ∼ Uniform[−1, 1]. Let Wn = Sn + Y . Let

Tn = n − SnY + 1 − Y 2

2
.

It will be shown in the proof of Theorem 3.1 in Sect. 3 that Tn is a Stein coefficient
for Wn . (The construction of this Tn is somewhat ad hoc. The author has not yet found
a general technique for smoothening of discrete random variables in a way that can
automatically generate a Stein coefficient.) Letting σ 2 = n, Lemma 1.2 tells us that it
is possible to construct Zn ∼ N (0, n) such that

E exp(θ |Wn − Zn|) ≤ 2 E exp

(
2θ2(Tn − n)2

n

)
.

Since Tn = n + O(
√

n) and |Wn − Sn| ≤ 1, it is now clear how to use Theorem 1.2
to construct Sn and Zn on the same probability space such that irrespective of n,

E exp(θ |Sn − Zn|) ≤ C

for some fixed constants θ and C . By Markov’s inequality, for all x ≥ 0,

P(|Sn − Zn| ≥ x) ≤ Ce−θx .
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This is the first step in our proof of the KMT embedding theorem for the simple random
walk.

Example 4 Suppose X = (X1, . . . , Xn) is a vector of i.i.d. standard Gaussian random
variables. Let W = f (X), where f is absolutely continuous. Suppose E(W ) = 0. Let
X′ = (X ′

1, . . . , X ′
n) be an independent copy of X. Let

T =
1∫

0

1

2
√

t

n∑

i=1

∂ f

∂xi
(X)

∂ f

∂xi
(
√

1 − tX + √
tX′)dt.

Then one can show that T is a Stein coefficient for W (see [3], Lemma 5.3). This has
been used to prove CLTs for linear statistics of eigenvalues of random matrices [3].

Example 5 Theorem 1.2 can be used to construct strong couplings for sums of depen-
dent random variables. An example of such a result is the following.

Theorem 1.3 Suppose X1, . . . , Xn, Xn+1 are i.i.d. random variables with mean zero,
variance 1, and probability density ρ. Suppose ρ is bounded above and below by
positive constants on a compact interval, and zero outside. Let Sn := ∑n

i=1 Xi Xi+1.
Then it is possible to construct Sn and a Gaussian random variable Zn ∼ N (0, n) on
the same probability space such that for all x ≥ 0,

P(|Sn − Zn| ≥ x) ≤ e−C(ρ)x ,

where C(ρ) is a positive constant depending only on the density ρ (and not on n).

The process {Sn}, upon proper scaling, is sometimes called the ‘autocorrelation
process’ for the sequence {Xn}. It may be possible to use the above result to prove a
KMT type coupling for autocorrelation processes. The proof of Theorem 1.3 is short
enough to be presented right here.

Proof of Theorem 1.3 Let X0 ≡ 0. Let h be defined as in (3). Then note that for
any ϕ, the definition of h and Example 1 show that

E(Snϕ(Sn)) =
n∑

i=1

E(Xi Xi+1ϕ(Sn))

=
n∑

i=1

E(Xi+1(Xi−1 + Xi+1)h(Xi )ϕ
′(Sn)).

This shows that if

Di := h(Xi )Xi+1(Xi−1 + Xi+1),

then Tn := ∑n
i=1 Di is a Stein coefficient for Sn . Now, for any 1 ≤ i ≤ n,

E(Di − 1 | X1, . . . , Xi−1) = E(h(Xi ))E(X
2
i+1)− 1 = 0,
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236 S. Chatterjee

since E(h(Xi )) = E(X2
i ) = 1. Moreover it is easy to show that by the assumed

conditions on ρ that |Di | is almost surely bounded by a constant depending on ρ.
Therefore by the Azuma–Hoeffding inequality [1,11] for sums of bounded martingale
differences, we get that for each α ∈ R,

E(eα(Tn−n)) ≤ eC1(ρ)α
2n

where C1(ρ) is some constant depending only on ρ. Thus if Z is a standard Gaussian
random variable, independent of all else, then for any α ∈ R

E(eαZ(Tn−n)/
√

n) ≤ E(eC1(ρ)Z2α2
).

Therefore choosing α = C2(ρ) small enough, one gets

E(eC2(ρ)Z(Tn−n)/
√

n) ≤ 2.

On the other hand, first conditioning on Tn we get

E(eC2(ρ)Z(Tn−n)/
√

n) = E(eC2(ρ)
2(Tn−n)2/2n).

By Theorem 1.2, this completes the proof. ��
Sketch of the proof of Theorem 1.2 (Full details are given in Sect. 2.) First, let
h(W ) := E(T |W ). Then h(W ) is again a Stein coefficient for W . Moreover, one
can show that the function h is non-negative a.e. on the support of W . It is not difficult
to verify that to prove Theorem 1.2 it suffices to construct a coupling such that for
all θ ,

E exp(θ |W − Z |) ≤ 2 E exp

(
2θ2

(√
h(W )− σ

)2
)
.

Fix a function r : R
2 → R. For f ∈ C2(R2), let

L f (x, y) := h(x)
∂2 f

∂x2 + 2r(x, y)
∂2 f

∂x∂y
+ σ 2 ∂

2 f

∂y2 − x
∂ f

∂x
− y

∂ f

∂y
.

Suppose there exists a probability measure μ on R
2 such that for all f ,

∫

R2

L f dμ = 0. (4)

The main idea is as follows: every choice of r that admits a μ satisfying (4) gives a
coupling of W and Z . Indeed, suppose μ is as above and (X,Y ) is a random vector
with law μ. Take any 
 ∈ C2(R), and let ϕ = 
′. Putting f (x, y) = 
(x) in (4)
gives

E(h(X)ϕ′(X)) = E(Xϕ(X)).
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A new approach to strong embeddings 237

Since this holds for all ϕ (which is a property that characterizes W ) it is possible to
argue that X must have the same law as W . Similarly, putting f (x, y) = 
(y), we
get E(Yϕ(Y )) = σ 2

E(ϕ′(Y )), and thus, Y ∼ N (0, σ 2). Note that this argument did
not depend on the choice of r at all, except through the assumption that there exists a
μ satisfying (4).

Now the question is, for what choices of r does there exist a μ satisfying (4)? In
Lemma 2.1 it is proved that this is possible whenever the matrix

(
h(x) r(x, y)

r(x, y) σ 2

)

is positive semidefinite for all (x, y), plus some extra conditions. Note that this is the
same as saying that the operator L is elliptic.

Intuitively, the ‘best’ coupling of W and Z is obtained when the choice of r(x, y)
is such that the matrix displayed above is the ‘most singular’. This choice is given by
the geometric mean

r(x, y) = σ
√

h(x).

With this choice of r and f (x, y) = 1
2k (x − y)2k (where k is an arbitrary positive

integer), a small computation gives

L f (x, y) = (2k − 1)(x − y)2k−2(
√

h(x)− σ)2 − (x − y)2k .

Since (4) holds for this f , we get

E(X − Y )2k = (2k − 1)E((X − Y )2k−2(
√

h(X)− σ)2)

≤ (2k − 1)(E(X − Y )2k)(k−1)/k(E(
√

h(X)− σ)2k)1/k .

This gives

E(X − Y )2k ≤ (2k − 1)kE(
√

h(X)− σ)2k .

It is now easy to complete the proof by combining over k ≥ 1.

The KMT theorem for the SRW. As an application of Theorem 1.2, we give a new
proof of Theorem 1.1 for the simple random walk. Although this is just a special case
of the full theorem, it is important in its own right due to the importance of the SRW
in various areas of science and mathematics. For instance, within the last ten years,
the KMT embedding for the SRW played a pivotal role in the solution of a series of
long-standing open questions about the simple random walk by the quartet of authors
Dembo et al. [7,8].

The proof of the KMT theorem for the SRW is obtained using a combination of
Theorem 1.2, Example 3, and an induction argument. The induction step involves
proving the following theorem about sums of exchangeable binary variables. This
seems to be a new result.
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238 S. Chatterjee

Theorem 1.4 There exist positive universal constants C, K and λ0 such that the fol-
lowing is true. Take any integer n ≥ 2. Suppose ε1, . . . , εn are exchangeable ±1
random variables. For k = 0, 1, . . . , n, let Sk = ∑k

i=1 εi and let Wk = Sk − k
n Sn.

It is possible to construct a version of W0, . . . ,Wn and a standard Brownian bridge
(B̃t )0≤t≤1 on the same probability space such that for any 0 < λ < λ0,

E exp(λmax
k≤n

|Wk − √
nB̃k/n|) ≤ exp(C log n)E exp

(
Kλ2S2

n

n

)
.

Note that by Example 2, it is possible to use Theorem 1.2 and induction whenever
the summands have a density with respect to Lebesgue measure and the function h
is reasonably well-behaved. This holds, for instance, for log-concave densities, or
densities of the type considered in Theorem 1.3. In such cases it is not very difficult
(although technically messier than the binary case) to prove a version of Theorem 1.4
using the method of this paper. However, we do not know yet how to use Theorem 1.2
to prove the KMT theorem in its full generality, because we do not know how to
generalize the smoothing technique of Example 3.

The theorem that we prove about the KMT coupling for the SRW, stated below, is
somewhat stronger than existing results.

Theorem 1.5 Let ε1, ε2, . . . be i.i.d. symmetric ±1-valued random variables. For
each k, let Sk := ∑k

i=1 εi . It is possible to construct a version of the sequence (Sk)k≥0
and a standard Brownian motion (Bt )t≥0 on the same probability space such that for
all n and all x ≥ 0,

P

(
max
k≤n

|Sk − Bk | ≥ C log n + x

)
≤ K e−λx ,

where C, K , and λ do not depend on n.

The above result is stronger than the corresponding statement about the SRW
implied by Theorem 1.1 because it gives a single coupling for the whole process,
instead of giving different couplings for different n. Such results have been recently
established in the KMT theorem for summands with finite pth moment [14], A.Y.
Zaitsev (2008, Pers. commun.).

The paper is organized as follows. In Sect. 2, we prove Theorem 1.2. Two versions
of Example 3 are worked out in Sect. 3. The main induction step, which proves The-
orem 1.4, is carried out in Sect. 4. Finally, the proof of Theorem 1.5 is completed in
Sect. 5.

2 Proof of Theorem 1.2

The proof will proceed as a sequence of lemmas. The lemmas will not be used in the
subsequent sections, and only Theorem 1.2 is relevant for the future steps.
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Lemma 2.1 Let n be a positive integer, and suppose A is a continuous map from R
n

into the set of n × n positive semidefinite matrices. Suppose there exists a constant
b ≥ 0 such that for all x ∈ R

n,

‖A(x)‖ ≤ b.

Then there exists a probability measure μ on R
n such that if X is a random vector

following the law μ, then

E exp
〈
θ, X

〉 ≤ exp(b‖θ‖2) (5)

for all θ ∈ R
n, and

E
〈
X,∇ f (X)

〉 = E Tr(A(X)Hess f (X)) (6)

for all f ∈ C2(Rn) such that the expectations E| f (X)|2, E‖∇ f (X)‖2, and E| Tr(A(X)
Hess f (X))| are finite. Here ∇ f and Hess f denote the gradient and Hessian of f ,
and Tr stands for the trace of a matrix.

Proof Let K denote the set of all probability measures μ on R
n satisfying

∫
xμ(dx) = 0 and

∫
exp〈θ, x〉μ(dx) ≤ exp(b‖θ‖2) for all θ ∈ R

n .

It is easy to see by the Skorokhod representation theorem and Fatou’s lemma that
K is a (nonempty) compact subset of the space V of all finite signed measures on
R

n equipped with the topology of weak-* convergence (that is, the locally convex
Hausdorff topology generated by the separating family of seminorms |μ| f :=| ∫ f dμ|,
where f ranges over all continuous functions with compact support). Also, obviously,
K is convex.

Now fix ε ∈ (0, 1). Define a map Tε : K → V as follows. Given μ ∈ K , let X
and Z be two independent random vectors, defined on some probability space, with
X ∼ μ and Z following the standard gaussian law on R

n . Let Tεμ be the law of the
random vector

(1 − ε)X + √
2εA(X)Z ,

where
√

A(X) denotes the positive semidefinite square root of the matrix A(X). Then
for any θ ∈ R

n ,

∫
exp 〈θ, x〉Tεμ(dx) = E exp

〈
θ, (1 − ε)X + √

2εA(X)Z
〉

= E exp
(〈
θ, (1 − ε)X

〉 + ε
〈
θ, A(X)θ

〉)

≤ exp(bε‖θ‖2)E exp
〈
θ, (1 − ε)X

〉

≤ exp(bε‖θ‖2 + b(1 − ε)2‖θ‖2).
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240 S. Chatterjee

For ε ∈ (0, 1), 1 − ε+ ε2 ≤ 1. Hence, bε+ b(1 − ε)2 ≤ b, and therefore Tε maps K
into K . Since A is a continuous map, and the transformation A �→ √

A is continuous
(see e.g. [2, p. 290, Eq. (X.2)]), it is easy to see that Tε is continuous under the weak-*
topology. Hence, by the Schauder–Tychonoff fixed point theorem for locally convex
topological vector spaces (see e.g. [9, Chapter V, 10.5]), we see that Tε must have a
fixed point in K . For each ε ∈ (0, 1), let με be a fixed point of Tε, and let Xε denote
a random vector following the law με.

Now take any f ∈ C2(Rn)with ∇ f and Hess f bounded and uniformly continuous.
Fix ε ∈ (0, 1), and let

Yε = −εXε + √
2εA(Xε)Z .

By the definition of Tεμ, note that

E ( f (Xε + Yε)− f (Xε)) = 0. (7)

Now let

Rε = f (Xε + Yε)− f (Xε)− 〈
Yε,∇ f (Xε)

〉 − 1

2

〈
Yε,Hess f (Xε) Yε

〉
.

First, note that

E
〈
Yε,∇ f (Xε)

〉 = −εE〈
Xε,∇ f (Xε)

〉
. (8)

By the definition of K , all moments of ‖Xε‖ are bounded by constants that do not
depend on ε. Hence, as ε → 0, we have

E
〈
Yε,Hess f (Xε) Yε

〉 = 2εE Tr(
√

A(Xε)Hess f (Xε)
√

A(Xε))+ O(ε3/2)

= 2εE Tr(A(Xε)Hess f (Xε))+ O(ε3/2). (9)

Now, by the boundedness and uniform continuity of Hess f , one can see that

|Rε| ≤ ‖Yε‖2δ(‖Yε‖),

where δ : [0,∞) → [0,∞) is a bounded function satisfying limt→0 δ(t) = 0. Now,
by the nature of K , it is easy to verify that the moments of ε−1‖Yε‖2 can be bounded by
constants that do not depend on ε. Combining this with the above-mentioned properties
of δ and the fact that ‖Yε‖ → 0 in probability as ε → 0, we get

lim
ε→0

ε−1
E|Rε| = 0. (10)

Now let μ be a cluster point of the collection {με}0<ε<1 as ε → 0, and let X denote
a random variable following the law μ. Such a cluster point exists because K is a
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compact set. By uniform integrability, Eqs. (7), (8), (9), (10), and the continuity of A,
we get

E
〈
X,∇ f (X)

〉 = E Tr(A(X)Hess f (X)).

This completes the proof for f ∈ C2(Rn) with ∇ f and Hess f bounded and uni-
formly continuous. Next, take any f ∈ C2(Rn). Let g : R

n → [0, 1] be a C∞
function such that g(x) = 1 if ‖x‖ ≤ 1 and g(x) = 0 if ‖x‖ ≥ 2. For each a > 1,
let fa(x) = f (x)g(a−1x). Then fa ∈ C2 with ∇ fa and Hess fa bounded and uni-
formly continuous. Moreover, fa and its derivatives converge pointwise to those of f
as a → ∞, as is seen from the expressions

∂ fa

∂xi
= ∂ f

∂xi
(x)g(a−1x)+ a−1 f (x)

∂g

∂xi
(a−1x),

∂2 fa

∂xi∂x j
= ∂2 f

∂xi∂x j
(x)g(a−1x)+ a−1 ∂ f

∂xi
(x)

∂g

∂x j
(a−1x)

+a−1 ∂ f

∂x j
(x)

∂g

∂xi
(a−1x)+ a−2 f (x)

∂2g

∂xi∂x j
(a−1x).

Since E‖X‖2 < ∞ and ‖A(x)‖ ≤ b, the above expressions also show that if the
expectations E| f (X)|2, E‖∇ f (X)‖2, and E| Tr(A(X)Hess f (X))| are finite, then we
can apply the dominated convergence theorem to conclude that

lim
a→∞ E

〈
X,∇ fa(X)

〉 = E
〈
X,∇ f (X)

〉
and

lim
a→∞ E Tr(A(X)Hess fa(X)) = E Tr(A(X)Hess f (X)).

This completes the proof. ��
Lemma 2.2 Let A and X be as in Lemma 2.1. Take any 1 ≤ i < j ≤ n. Let

vi j (x) := aii (x)+ a j j (x)− 2ai j (x),

where ai j denotes the (i, j)th element of A. Then for all θ ∈ R,

E exp(θ |Xi − X j |) ≤ 2E exp(2θ2vi j (X)).

Proof Take any positive integer k. Define f : R
n → R as

f (x) := (xi − x j )
2k .

Then a simple calculation shows that

〈
x,∇ f (x)

〉 = 2k(xi − x j )
2k,
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and

Tr(A(x)Hess f (x)) = 2k(2k − 1)(xi − x j )
2k−2vi j (x).

The positive definiteness of A shows that vi j is everywhere nonnegative. An applica-
tion of Hölder’s inequality now gives

E| Tr(A(X)Hess f (X))| ≤ 2k(2k − 1)
(
E(Xi − X j )

2k
) k−1

k
(
Evi j (X)

k
) 1

k
.

From the identity (6) we can now conclude that

E(Xi − X j )
2k ≤ (2k − 1)

(
E(Xi − X j )

2k
) k−1

k
(
Evi j (X)

k
) 1

k
.

This shows that

E(Xi − X j )
2k ≤ (2k − 1)kEvi j (X)

k .

To complete the proof, note that

E exp(θ |Xi − X j |) ≤ 2E cosh(θ(Xi − X j ))

= 2
∞∑

k=0

θ2k
E(Xi − X j )

2k

(2k)!

≤ 2 + 2
∞∑

k=1

(2k − 1)kθ2k
E(vi j (X)k)

(2k)! .

By the slightly crude but easy inequality

(2k − 1)k

(2k)! ≤ 2k

k! ,

the proof is done. ��
Lemma 2.3 Suppose ρ is a probability density function on R which is positive on an
interval (bounded or unbounded) and zero outside. Suppose

∫ ∞
−∞ xρ(x)dx = 0. For

each x in the support of ρ, let

h(x) :=
∫ ∞

x yρ(y)dy

ρ(x)
.

Outside the support, let h ≡ 0. Let X be a random variable with density ρ and finite
second moment. Then

E(Xϕ(X)) = E(h(X)ϕ′(X)) (11)
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for each absolutely continuous ϕ such that both sides are well defined and E|h(X)ϕ
(X)| < ∞. Moreover, if h1 is another function satisfying (11) for all Lipschitz ϕ, then
h1 = h a.e. on the support of ρ.

Conversely, if Y is a random variable such that (11) holds with Y in place of X, for
all ϕ such that |ϕ(x)|, |xϕ(x)|, and |h(x)ϕ′(x)| are uniformly bounded, then Y must
have the density ρ.

Proof Let u(x) = h(x)ρ(x). Note that u is continuous, positive on the support of ρ,
and limx→−∞ u(x) = limx→∞ u(x) = 0 since

u(x) =
∞∫

x

yρ(y)dy = −
x∫

−∞
yρ(y)dy.

Note that the above identity holds because
∫ ∞
−∞ xρ(x)dx = 0. Again, by the assump-

tion that E(X2) < ∞, it is easy to verify that

E(h(X)) =
∞∫

−∞
u(x)dx = E(X2) < ∞.

When ϕ is a bounded Lipschitz function, then (11) is just the integration by parts
identity

∞∫

−∞
xϕ(x)ρ(x)dx =

∞∫

−∞
ϕ′(x)u(x)dx .

Now take any absolutely continuous ϕ and a C∞ map g : R → [0, 1] such that
g(x) = 1 on [−1, 1] and g(x) = 0 outside [−2, 2]. For each a > 1, let

ϕa(x) := ϕ(x)g(a−1x).

Then

ϕ′
a(x) = ϕ′(x)g(a−1x)+ a−1ϕ(x)g′(a−1x).

It is easy to see that ϕa and ϕ′
a are bounded, and they converge to ϕ and ϕ′ pointwise

as a → ∞. Moreover, |xϕa(x)| ≤ |xϕ(x)| and

|h(x)ϕ′
a(x)| ≤ |h(x)ϕ′(x)| + a−1‖g′‖∞|h(x)ϕ(x)|.

Since we have assumed that E|Xϕ(X)|, E|h(X)ϕ′(X)|, and E|h(X)ϕ(X)| are finite,
we can now apply the dominated convergence theorem to conclude that (11) holds
for ϕ.
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Suppose h1 is another function satisfying (11) for all Lipschitz ϕ and E(X2) < ∞.
Let ϕ(x) be a Lipschitz function such that ϕ′(x) = sign(h1(x)− h(x)). Then

0 = E(ϕ′(X)(h1(X)− h(X))) = E|h1(X)− h(X)|.

This shows that h1 = h a.e. on the support of ρ.
For the converse, let X have density ρ and take any bounded continuous function

v : R → R, let m = Ev(X), and define

ϕ(x) := 1

u(x)

x∫

−∞
ρ(y)(v(y)− m)dy = − 1

u(x)

∞∫

x

ρ(y)(v(y)− m)dy

on the support of ρ. Since u is nonzero and absolutely continuous everywhere on the
support of ρ, therefore ϕ is well-defined and absolutely continuous. Next, we prove
that |xϕ(x)| is uniformly bounded. If x ≥ 0, then

|xϕ(x)| =
∣∣∣∣∣∣

x

u(x)

∞∫

x

ρ(y)(v(y)− m)dy

∣∣∣∣∣∣

≤ 2‖v‖∞
|u(x)|

∞∫

x

yρ(y)dy = 2‖v‖∞.

Similarly, the same bound holds for x < 0. A direct verification shows that

h(x)ϕ′(x)− xϕ(x) = v(x)− m.

Thus, |h(x)ϕ′(x)| is uniformly bounded. Finally, by the continuity of ϕ, |ϕ(x)| ≤
sup|t |≤1 |ϕ(t)| + |xϕ(x)| is also uniformly bounded.

So, if Y is a random variable such that (11) holds for Y in place of X and every ϕ
such that |ϕ(x)|, |xϕ(x)|, and |h(x)ϕ′(x)| are uniformly bounded, then

Ev(Y )− Ev(X) = E(v(Y )− m) = E(h(Y )ϕ′(Y )− Yϕ(Y )) = 0.

Thus, Y must have the same distribution as X . ��

Proof of Theorem 1.2 First, assume W has a density ρ with respect to Lebesgue mea-
sure which is positive and continuous everywhere. Define h in terms of ρ as in the
statement of Lemma 2.3. Then by the second assertion of Lemma 2.3,

h(w) = E(T |W = w) a.s.
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Note that h is nonnegative by definition. So we can define a function A from R
2 into

the set of 2 × 2 positive semidefinite matrices as

A(x1, x2) :=
(

h(x1) σ
√

h(x1)

σ
√

h(x1) σ 2

)
.

Note that A(x1, x2) does not depend on x2 at all. It is easy to see that A is positive
semidefinite. Also, since ρ is assumed to be continuous, therefore so are h and A. Since
T is bounded by a constant, so is h. Let X = (X1, X2) be a random vector satisfying
(5) and (6) of Lemma 2.1 with this A. Take any absolutely continuous ϕ : R → R

such that |ϕ(x)|, |xϕ(x)|, and |h(x)ϕ′(x)| are uniformly bounded. Let 
 denote an
antiderivative of ϕ, i.e. a function such that 
′ = ϕ. We can assume that 
(0) = 0.
Define f : R

2 → R as f (x1, x2) := 
(x1). Then for some constant C , for all x1, x2,

| f (x1, x2)| ≤ C |x1|, ‖∇ f (x1, x2)‖ ≤ C,

and | Tr(A(x1, x2)Hess f (x1, x2))| ≤ C.

Thus, we can apply Lemma 2.1 to conclude that for this f ,

E
〈
X,∇ f (X)

〉 = E Tr(A(X)Hess f (X)),

which can be written as

E(X1ϕ(X1)) = E(h(X1)ϕ
′(X1)).

Since this holds for all ϕ such that |ϕ(x)|, |xϕ(x)|, and |h(x)ϕ′(x)| are uniformly
bounded, Lemma 2.3 tells us that X1 must have the same distribution as W .

Similarly, taking anyϕ such that |ϕ(x)|, |xϕ(x)|, and |ϕ′(x)| are uniformly bounded,
letting 
 be an antiderivative of ϕ, and putting f (x1, x2) = 
(x2), we see that

E(X2ϕ(X2)) = σ 2
E(ϕ′(X2)),

which implies that X2 ∼ N (0, σ 2). We now wish to apply Lemma 2.2 to the pair
(X1, X2). Note that

v12(x1, x2) = h(x1)+ σ 2 − 2σ
√

h(x1) =
(√

h(x1)− σ
)2

Since h(x1) ≥ 0, we have

(√
h(x1)− σ

)2 =
(
h(x1)− σ 2

)2

(√
h(x1)+ σ

)2 ≤
(
h(x1)− σ 2

)2

σ 2 .

Since h(X1) has the same distribution as h(W ), and h(W ) = E(T |W ), the required
bound can now be obtained using Lemma 2.2 and Jensen’s inequality.
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So we have finished the proof when W has a probability density ρ with respect to
Lebesgue measure which is positive and continuous everywhere. Let us now drop that
assumption, but keep all others. For each ε > 0, let Wε := W + εY , where Y is an
independent standard gaussian random variable. If ν denotes the law of W on the real
line, then Wε has the probability density function

ρε(x) =
∞∫

−∞

e−(x−y)2/2ε2

√
2πε

dν(y).

From the above representation, it is easy to deduce that ρε is positive and continuous
everywhere. Again, note that for any Lipschitz ϕ,

E(Wεϕ(Wε)) = E(Wϕ(W + εY ))+ εE(Yϕ(W + εY ))

= E(Tϕ′(W + εY ))+ ε2
E(ϕ′(W + εY ))

= E((T + ε2)ϕ′(Wε)).

(Note that in the second step, we required that (2) holds for any derivative of ϕ instead
of just one.) Thus, by what we have already proved, we can construct a version of Wε

and a N (0, σ 2 + ε2) r.v. Zε on the same probability space such that for all θ ,

E exp(θ |Wε − Zε|) ≤ 2E exp

(
2θ2(T − σ 2)2

σ 2 + ε2

)
.

Letμε be the law of the pair (Wε, Zε) on R
2. Clearly, {με}ε>0 is a tight family. Letμ0

be a cluster point as ε → 0, and let (W0, Z0) ∼ μ0. Then W0 has the same distribution
as W , and Z0 ∼ N (0, σ 2). By the Skorokhod representation, Fatou’s lemma, and the
monotone convergence theorem, it is clear that

E exp(θ |W0 − Z0|) ≤ lim inf
ε→0

E exp(θ |Wε − Zε|) ≤ 2E exp

(
2θ2(T − σ 2)2

σ 2

)
.

This completes the proof. ��

3 Elaborations on Example 3

The goal of this section is to prove the following two theorems. The first one is simply
Example 3 from Sect. 1. The second one can be called a conditional version of the
same thing (which is harder to prove).

Theorem 3.1 There exist universal constants κ and θ0 > 0 such that the following is
true. Let n be a positive integer and let ε1, . . . , εn be i.i.d. symmetric ±1 random vari-
ables. Let Sn = ∑n

i=1 εi . It is possible to construct a version of Sn and Zn ∼ N (0, n)
on the same probability space such that

E exp(θ0|Sn − Zn|) ≤ κ.
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Note that by Markov’s inequality, this implies exponentially decaying tails for
|Sn − Zn|, with a rate of decay that does not depend on n.

Theorem 3.2 Let ε1, . . . , εn be n arbitrary elements of {−1, 1}. Let π be a uniform
random permutation of {1, . . . , n}. For each 1 ≤ k ≤ n, let Sk = ∑k

�=1 επ(�), and let

Wk = Sk − kSn

n
.

There exist universal constants c > 1 and θ0 > 0 satisfying the following. Take any
n ≥ 3, any possible value of Sn, and any n/3 ≤ k ≤ 2n/3. It is possible to con-
struct a version of Wk and a gaussian random variable Zk with mean 0 and variance
k(n − k)/n on the same probability space such that for any θ ≤ θ0,

E exp(θ |Wk − Zk |) ≤ exp

(
1 + cθ2S2

n

n

)
.

Both of the above theorems will be proved using Theorem 1.2. We proceed as before
in a sequence of lemmas that are otherwise irrelevant for the rest of the manuscript
(except Lemma 3.5, which has an important application later on).

Lemma 3.3 Suppose X and Y are two independent random variables, with X follow-
ing the symmetric distribution on {−1, 1} and Y following the uniform distribution on
[−1, 1]. Then for any Lipschitz ϕ, we have

E(Xϕ(X + Y )) = E((1 − XY )ϕ′(X + Y )),

and

E(Yϕ(X + Y )) = 1

2
E((1 − Y 2)ϕ′(X + Y )).

Proof We have

E((1 − XY )ϕ′(X + Y )) = 1

4

1∫

−1

(1 + y)ϕ′(−1 + y)dy

+1

4

1∫

−1

(1 − y)ϕ′(1 + y)dy.

Integrating by parts, we see that

1∫

−1

(1 + y)ϕ′(−1 + y)dy = 2ϕ(0)−
1∫

−1

ϕ(−1 + y)dy,
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and

1∫

−1

(1 − y)ϕ′(1 + y)dy = −2ϕ(0)+
1∫

−1

ϕ(1 + y)dy.

Adding up, we get

E((1 − XY )ϕ′(X + Y )) = 1

4

1∫

−1

ϕ(1 + y)dy − 1

4

1∫

−1

ϕ(−1 + y)dy

= E(Xϕ(X + Y )).

For the second part, just observe that for any x , integration by parts gives

1

2

1∫

−1

yϕ(x + y)dy = 1

2

1∫

−1

1 − y2

2
ϕ′(x + y)dy.

This completes the proof. ��
Proof of Theorem 3.1 For simplicity, let us write S for Sn . Let Y be a random variable
independent of ε1, . . . , εn and uniformly distributed on the interval [−1, 1]. Suppose
we are given the values of ε1, . . . , εn−1. Let E

− denote the conditional expectation
given this information. Let

S− =
n−1∑

i=1

εi , X = εn .

Then Lemma 3.3 gives

E
−(Xϕ(S− + X + Y )) = E

−((1 − XY )ϕ′(S + Y ))

= E
−((1 − εnY )ϕ′(S + Y )).

Taking expectation on both sides we get

E(εnϕ(S + Y )) = E((1 − εnY )ϕ′(S + Y )).

By symmetry, this gives

E(Sϕ(S + Y )) = E((n − SY )ϕ′(S + Y )).

Again, by Lemma 3.3, we have

E(Yϕ(S + Y )) = 1

2
E((1 − Y 2)ϕ′(S + Y )).
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Thus, putting S̃ = S + Y and

T = n − SY + 1 − Y 2

2
,

we have

E(S̃ϕ(S̃)) = E(Tϕ′(S̃)). (12)

Let σ 2 = n. Then

(T − σ 2)2

σ 2 ≤ 2S2 + 1
2

n
.

Now, clearly, E(S̃) = 0 and E(S̃2) < ∞. The Eq. (12) holds and the random variable
T is a.s. bounded. Therefore, all conditions for applying Theorem 1.2 to S̃ are met, and
hence we can conclude that it is possible to construct a version of S̃ and a N (0, σ 2)

random variable Z on the same space such that for all θ ,

E exp(θ |S̃ − Z |) ≤ 2E exp(2θ2σ−2(T − σ 2)2).

Since the value of S is determined if we know S̃, we can now construct a version of S
on the same probability space satisfying |S − S̃| ≤ 1. It follows that

E exp(θ |S − Z |) ≤ 2E exp(|θ | + 2θ2σ−2(T − σ 2)2).

Using the bound on (T − σ 2)2/σ 2 obtained above, we have

E exp(θ |S − Z |) ≤ 2 exp(|θ | + θ2/n)E exp(4θ2S2/n).

To complete the argument, note that if V is a standard gaussian r.v., independent of S,
then

E exp(4θ2S2/n) = E exp(
√

8θV S/
√

n)

= E(E(exp(
√

8θV ε1/
√

n)|V )n)
= E(coshn(

√
8θV/

√
n)).

Using the simple inequality cosh x ≤ exp x2, this gives

E exp(4θ2S2/n) ≤ E exp(8θ2V 2) = 1√
1 − 16θ2

if 16θ2 < 1. (13)

The conclusion now follows by choosing θ0 sufficiently small. ��
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Lemma 3.4 Let all notation be as in the statement of Theorem 3.2. Then for any θ ∈ R

and any 1 ≤ k ≤ n, we have

E exp(θWk/
√

k) ≤ exp θ2.

Remark Note that the bound does not depend on the value of Sn . This is crucial for
the next lemma and the induction step later on. Heuristically, this phenomenon is not
mysterious because the centered process (Wk)k≤n has maximum freedom to fluctuate
when Sn = 0.

Proof Fix k, and let m(θ) := E exp(θWk/
√

k). Since Wk is a bounded random vari-
able, there is no problem in showing that m is differentiable and

m′(θ) = 1√
k

E(Wk exp(θWk/
√

k)).

Now note that

1

n

k∑

i=1

n∑

j=k+1

(επ(i) − επ( j)) = (n − k)
∑k

i=1 επ(i) − k
∑n

j=k+1 επ( j)

n

= (n − k)
∑k

i=1 επ(i) − k(Sn − ∑k
i=1 επ(i))

n

=
k∑

i=1

επ(i) − kSn

n
= Wk .

Thus,

m′(θ) = 1

n
√

k

k∑

i=1

n∑

j=k+1

E((επ(i) − επ( j)) exp(θWk/
√

k)). (14)

Now fix i ≤ k < j . Let π ′ = π ◦ (i, j), so that π ′(i) = π( j) and π ′( j) = π(i).
Then π ′ is again uniformly distributed on the set of all permutations of {1, . . . , n}.
Moreover, (π, π ′) is an exchangeable pair of random variables. Let

W ′
k =

k∑

�=1

επ ′(�) − kSn

n
.

Then

E((επ(i) − επ( j)) exp(θWk/
√

k)) = E((επ ′(i) − επ ′( j)) exp(θW ′
k/

√
k))

= E((επ( j) − επ(i)) exp(θW ′
k/

√
k)).
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Averaging the two equal quantities, we get

E((επ(i) − επ( j)) exp(θWk/
√

k))

= 1

2
E((επ(i) − επ( j))(exp(θWk/

√
k)− exp(θW ′

k/
√

k))).

Thus, from the inequality

|ex − ey | ≤ 1

2
|x − y|(ex + ey)

and the fact that Wk − W ′
k = επ(i) − επ( j), we get

∣∣∣E((επ(i) − επ( j)) exp(θWk/
√

k))
∣∣∣

≤ |θ |
4
√

k
E((επ(i) − επ( j))

2(exp(θWk/
√

k)+ exp(θW ′
k/

√
k)))

≤ |θ |√
k

E(exp(θWk/
√

k)+ exp(θW ′
k/

√
k))

= 2|θ |√
k

E exp(θWk/
√

k) = 2|θ |√
k

m(θ).

Using this estimate in (14), we get

|m′(θ)| ≤ 2|θ |
nk

k∑

i=1

n∑

j=k+1

m(θ) ≤ 2|θ |m(θ).

Using that m(0) = 1, it is now easy to complete the proof. ��

Lemma 3.5 Let us continue with the notation of Theorem 3.2. There exists a
universal constant α0 > 0 such that for all n, all possible values of Sn, all k such that
k ≤ 2n/3, and all α ≤ α0, we have

E exp(αS2
k /k) ≤ exp

(
1 + 3αS2

n

4n

)
.

Remark The exact value of the constant 3/4 in the above bound is not important;
what is important is that the constant is <1 as long as we take k ≤ 2n/3. This is why
the induction argument can be carried out in Sect. 4. However, there is no mystery;
the fact that one can always get a constant < 1 can be explained via simple heuristic
arguments once Lemma 3.4 is known.
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Proof Let Z be an independent standard gaussian random variable. Then

E exp(αS2
k /k) = E exp

(√
2α

k
Z Sk

)

= E exp

(√
2α

k
Z Wk +

√
2α

k

kSn

n
Z

)
.

Now, by Lemma 3.4 we have

E

(
exp

(√
2α

k
Z Wk

) ∣∣∣∣Z

)
≤ exp(2αZ2).

Thus, we have

E exp(αS2
k /k) ≤ E exp

(
2αZ2 +

√
2α

k

kSn

n
Z

)
.

Since Sn is nonrandom, the right hand side is just the expectation of a function of
a standard gaussian random variable, which can be easily computed. This gives, for
0 < α < 1/4,

E exp(αS2
k /k) ≤ 1√

1 − 4α
exp

(
αkS2

n

(1 − 4α)n2

)
.

The lemma is now proved by bounding k by 2n/3 and choosing α0 small enough to
ensure that 1/(1 − 4α0) is sufficiently close to 1. ��

Proof of Theorem 3.2 For simplicity, we shall write W for Wk and S for Sn , but Sk

will be written as usual.
Let Y be a random variable independent of π and uniformly distributed on the

interval [−1, 1]. Fix 1 ≤ i ≤ k and k < j ≤ n. Suppose we are given the values of
{π(�), � �= i, j}. Let E

− denote the conditional expectation given this information.
Let

S− =
∑

� �=i, j

επ(�), W − =
∑

�≤k,� �=i

επ(�) − kS

n
.

If S �= S−, then we must have επ(i) = επ( j), and hence in that case

E
−((επ(i) − επ( j))ϕ(W + Y )) = 0.
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Next let us consider the only other possible scenario, S = S−. Then the conditional
distribution of επ(i) − επ( j) is symmetric over {−2, 2}. Let

X = επ(i) − επ( j)

2
= επ(i),

and note that

W = W − + X.

Thus, under S = S−, Lemma 3.3 shows that for all Lipschitz ϕ,

E
−((επ(i) − επ( j))ϕ(W + Y )) = 2E

−(Xϕ(W − + X + Y ))

= 2E
−((1 − XY )ϕ′(W + Y ))

= E
−((2 − (επ(i) − επ( j))Y )ϕ

′(W + Y )).

Next, let

ai j := 1 − επ(i)επ( j) − (επ(i) − επ( j))Y.

A simple verification shows that

ai j =
{

2 − (επ(i) − επ( j))Y if επ(i) �= επ( j)

0 if επ(i) = επ( j).

Thus, irrespective of whether S = S− or S �= S−, we have

E
−((επ(i) − επ( j))ϕ(W + Y )) = E

−(ai jϕ
′(W + Y )).

Clearly, we can now replace E
− by E in the above expression. Now, as in the proof of

Lemma 3.4, observe that

W = 1

n

k∑

i=1

n∑

j=k+1

(επ(i) − επ( j)).

Combining the last two observations, we have

E(Wϕ(W + Y )) = E

⎛

⎝

⎛

⎝1

n

k∑

i=1

n∑

j=k+1

ai j

⎞

⎠ϕ′(W + Y )

⎞

⎠ .

Again, by Lemma 3.3, we have

E(Yϕ(W + Y )) = 1

2
E((1 − Y 2)ϕ′(W + Y )).
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Thus, putting W̃ = W + Y and

T = 1

n

k∑

i=1

n∑

j=k+1

ai j + 1 − Y 2

2
,

we have

E(W̃ϕ(W̃ )) = E(Tϕ′(W̃ )). (15)

Now

1

n

k∑

i=1

n∑

j=k+1

ai j = k(n − k)

n
−

(∑k
i=1 επ(i)

) (∑n
j=k+1 επ( j)

)

n
− W Y.

Let σ 2 = k(n − k)/n. Since n/3 ≤ k ≤ 2n/3 and |W | ≤ |Sk | + 2
3 |S|, a simple

computation gives

(T − σ 2)2

σ 2 ≤ n

k(n − k)
(|Sk | + |W | + 1/2)2

≤ C

(
S2

k

k
+ S2

n
+ 1

)
,

where C is a universal constant.
Now, clearly, E(W̃ ) = 0 and E(W̃ 2) < ∞. The Eq. (15) holds and the random

variable T is a.s. bounded. Therefore, all conditions for applying Theorem 1.2 to W̃
are met, and hence we can conclude that it is possible to construct a version of W̃ and
a N (0, σ 2) random variable Z on the same space such that for all θ ,

E exp(θ |W̃ − Z |) ≤ 2E exp(2θ2σ−2(T − σ 2)2).

Since the value of W is determined if we know W̃ , we can now construct a version of
W on the same probability space satisfying |W − W̃ | ≤ 1. It follows that

E exp(θ |W − Z |) ≤ 2E exp(|θ | + 2θ2σ−2(T − σ 2)2).

Using the bound on (T − σ 2)2/σ 2 obtained above, we have

E exp(θ |W − Z |) ≤ 2 exp(|θ | + Cθ2S2/n + Cθ2)E exp(Cθ2S2
k /k),

where, again, C is a universal constant. The conclusion now follows from Lemma 3.5
by choosing θ sufficiently small. ��
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4 The induction step

The goal of this section is to prove the following theorem, which couples a pinned
random walk with a Brownian Bridge. The tools used are Theorem 3.2 and induc-
tion. The induction hypothesis, properly formulated, allows us to get rid of the dyadic
construction of the usual KMT proofs. The following is an alternative statement of
Theorem 1.4, given here for the convenience of the reader.

Theorem 4.1 Let us continue with the notation of Theorem 3.2. There exist positive
universal constants C, K and λ0 such that the following is true. For any n ≥ 2, and
any possible value of Sn, it is possible to construct a version of W0,W1, . . . ,Wn and
gaussian r.v. Z0, Z1, . . . , Zn with mean zero and

Cov(Zi , Z j ) = (i ∧ j)(n − (i ∨ j))

n
(16)

on the same probability space such that for any λ ∈ (0, λ0),

E exp(λmax
i≤n

|Wi − Zi |) ≤ exp

(
C log n + Kλ2S2

n

n

)
.

Proof Recall the universal constants α0 from Lemma 3.5 and c and θ0 from Theo-
rem 3.2. We contend that for carrying out the induction step, it suffices to take

K = 8c, λ0 ≤
√
α0

16c
∧ θ0

2
, and C ≥ 1 + log 2

log(3/2)
. (17)

Choosing the constants to satisfy these constraints, we will now prove the claim by
induction on n. Now, for each n, and each possible value a of Sn , let f n

a (s) denote the
discrete probability density function of the sequence (S0, S1, . . . , Sn). Note that this
is just the uniform distribution over An

a , where

An
a := {s ∈ Z

n+1 : s0 = 0, sn = a, and |si − si−1| = 1 for all i.} (18)

Thus, for any s ∈ An
a ,

f n
a (s) = 1

|An
a | . (19)

Let φn(z) denote the probability density function of a gaussian random vector
(Z0, . . . , Zn) with mean zero and covariance (16).

We want to show that for each n, and each possible value a of Sn , we can construct
a joint probability density ρn

a (s, z) on Z
n+1 × R

n+1 such that

∫
ρn

a (s, z) dz = f n
a (s),

∫
ρn

a (s, z) ds = φn(z), (20)
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and for each λ < λ0,

∫
exp

(
λmax

i≤n

∣∣∣∣si − ia

n
− zi

∣∣∣∣

)
ρn

a (s, z) ds dz ≤ exp

(
C log n + Kλ2a2

n

)
.

Suppose ρk
a can be constructed for k = 1, . . . , n − 1, for allowed values of a in

each case. We will now demonstrate a construction of ρn
a when a is an allowed value

for Sn .
First, fix a possible value a of Sn and an index k such that n/3 ≤ k ≤ 2n/3 (for

definiteness, take k = [n/2]). Given Sn = a, let gn,k
a (s) denote the density function

of Sk . Recall the definition (18) of An
a and note that for all allowed values of s of Sk ,

an elementary counting argument gives

gn,k
a (s) = |Ak

s ||An−k
a−s |

|An
a | . (21)

Let hn,k(z) denote the density function of the gaussian distribution with mean 0 and
variance k(n −k)/n. By Theorem 3.2 and the inequality exp |x | ≤ exp(x)+exp(−x),
we see that there exists a joint density function ψn,k

a (s, z) on Z × R such that

∫
ψn,k

a (s, z) dz = gn,k
a (s),

∫
ψn,k

a (s, z) ds = hn,k(z), (22)

and for all 0 < θ ≤ θ0,

∫
exp

(
θ

∣∣∣∣s − ka

n
− z

∣∣∣∣

)
ψn,k

a (s, z) ds dz ≤ exp

(
1 + cθ2a2

n

)
. (23)

Now define a function γ n
a : Z × R × Z

k+1 × R
k+1 × Z

n−k+1 × R
n−k+1 → R as

follows:

γ n
a (s, z, s, z, s′, z′) := ψn,k

a (s, z)ρk
s (s, z)ρn−k

a−s (s
′, z′). (24)

By integrating over s′, z′, then s, z, and finally s, z, it is easy to verify that γ n
a is a prob-

ability density function (if either a or s is not an allowed value, then ψn,k
a (s, z) = 0,

so there is no problem).
Let (S, Z ,S,Z,S′,Z′) denote a random vector following the density γ n

a . In words,
this means the following: We are first generating (S, Z) from the joint distribution
ψ

n,k
a ; given S = s, Z = z, we are independently generating the pairs (S,Z) and
(S′,Z′) from the joint densities ρk

s and ρn−k
a−s respectively.

Now define two random vectors Y ∈ R
n+1 and U ∈ Z

n+1 as follows. For i ≤ k, let

Yi = Zi + i

k
Z ,
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and for i ≥ k, let

Yi = Z ′
i−k + n − i

n − k
Z .

Note that the two definitions match at i = k because Zk = Z ′
0 = 0. Next, define

Ui = Si for i ≤ k and Ui = S + S′
i−k for i ≥ k. Again, the definitions match at

i = k because Sk = S and S′
0 = 0. We claim that the joint density of (U,Y) is a valid

candidate for ρn
a . The claim is proved in several steps.

1. Marginal distribution of U From Eqs. (20) and (22) it is easy to see that

∫
γ n

a (s, z, s, z, s′, z′) dz dz′ dz = gn,k
a (s) f k

s (s) f n−k
a−s (s

′).

In other words, the distribution of the triplet (S,S,S′) can be described as follows:
Generate S from the distribution of Sk given Sn = a; then independently generate S
and S′ from the conditional distributions f k

s and f n−k
a−s . It should now be intuitively

clear that U has marginal density f n
a . Still, to be completely formal, we apply Eqs. (19)

and (21) to get

gn,k
a (s) f k

s (s) f n−k
a−s (s

′) = |Ak
s ||An−k

a−s |
|An

a |
1

|Ak
s |

1

|An−k
a−s |

= 1

|An
a | ,

and observe that there is a one-to-one correspondence between (S,S,S′) and U, and
U can take any value in An

a .
2. Marginal distribution of Y First, we claim that Z , Z, and Z′ are independent with
densities hn,k , φk , and φn respectively. Again, using (20) and (22), this is easily seen
as follows.

∫
γ n

a (s, z, s, z, s′, z′) ds′ ds ds =
∫
ψn,k

a (s, z)ρk
s (s, z)ρn−k

a−s (s
′, z′) ds′ ds ds

= φn−k(z′)
∫
ψn

a (s, z)ρk
s (s, z)ds ds

= φn−k(z′)φk(z)
∫
ψn

a (s, z)ds

= φn−k(z′)φk(z)hn,k(z).

Thus, Y is a gaussian random vector with mean zero. It only remains to compute
Cov(Yi ,Y j ). Considering separately the cases i ≤ j ≤ k, k ≤ i ≤ j , and i ≤ k ≤ j ,
it is now straightforward to verify that Cov(Yi ,Y j ) = i(n − j)/n in each case. Thus,
Y ∼ φn .
3. The exponential bound For 0 ≤ i ≤ n, let

Wi = Ui − ia

n
.
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We have to show that for 0 < λ < λ0,

E exp(λmax
i≤n

|Wi − Yi |) ≤ exp

(
C log n + Kλ2a

n

)
,

where C , K , and λ0 are as in (17). Now let

TL := max
i≤k

∣∣∣∣Si − i S

k
− Zi

∣∣∣∣ , TR := max
i≥k

∣∣∣∣S
′
i−k − i − k

n − k
(a − S)− Z ′

i−k

∣∣∣∣ ,

and

T :=
∣∣∣∣S − ka

n
− Z

∣∣∣∣ .

We claim that

max
i≤n

|Wi − Yi | ≤ max{TL , TR} + T . (25)

To prove this, first take any i ≤ k. Then

|Wi − Yi | =
∣∣∣∣Si − ia

n
−

(
Zi + i Z

k

)∣∣∣∣

≤
∣∣∣∣Si − i S

k
− Zi

∣∣∣∣ +
∣∣∣∣
i S

k
− ia

n
− i Z

k

∣∣∣∣

≤ TL + i

k
T ≤ TL + T .

Similarly, for i ≥ k,

|Wi − Yi | =
∣∣∣∣S + S′

i−k − ia

n
−

(
Z ′

i−k + n − i

n − k
Z

)∣∣∣∣

≤
∣∣∣∣S

′
i−k − i − k

n − k
(a − S)− Z ′

i−k

∣∣∣∣

+
∣∣∣∣S + i − k

n − k
(a − S)− ia

n
− n − i

n − k
Z

∣∣∣∣

=
∣∣∣∣S

′
i−k − i − k

n − k
(a − S)− Z ′

i−k

∣∣∣∣ + n − i

n − k

∣∣∣∣S − ka

n
− Z

∣∣∣∣
≤ TR + T .

This proves (25). Now fix λ < λ0. Using the crude bound exp(x ∨ y) ≤ exp x +exp y,
we get

exp(λmax
i≤n

|Wi − Yi |) ≤ exp(λTL + λT )+ exp(λTR + λT ). (26)
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Now, by the construction (24), it is easy to check that given (S, Z) = (s, z), the
conditional density of (S,Z) is simply ρk

s . By the induction hypothesis, this implies
that

E(exp(λTL)|S, Z) ≤ exp

(
C log k + Kλ2S2

k

)
.

It is easy to see that the moment generating functions of both TL and T are finite every-
where, and hence there is no problem in applying the Cauchy–Schwarz inequality to
get

E exp(λTL + λT ) ≤
[
E

(
E(exp(λTL)|S, Z)2

)
E(exp(2λT ))

]1/2

≤ exp(C log k)

[
E exp

(
2Kλ2S2

k

)
E exp(2λT )

]1/2

.

We wish to apply Lemma 3.5 to bound the first term inside the bracket. Observe that
by (17), we have

2Kλ2 ≤ 16c · α0

16c
= α0,

and also n/3 ≤ k ≤ 2n/3 by assumption. Hence Lemma 3.5 can indeed be applied to
get

E exp

(
2Kλ2S2

k

)
≤ exp

(
1 + 3Kλ2a2

2n

)
.

Next, note that by (17), 2λ ≤ θ0. Hence by inequality (23) with θ = 2λ, we get the
bound

E exp(2λT ) ≤ exp

(
1 + 4cλ2a2

n

)
.

Combining the last three steps, we have

E exp(λTL + λT ) ≤ exp
(

C log k + 1 + (3K+8c)λ2a2

4n

)
.

Now, by (17), 3K + 8c = 4K . Again, since n/3 ≤ k ≤ 2n/3, we have

log k = log n − log(n/k) ≤ log n − log(3/2).

Thus,

E exp(λTL + λT ) ≤ 21/2 exp
(

C log n − C log(3/2)+ 1 + Kλ2a2

n

)
.
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By the symmetry of the situation, we can get the exact same bound on E exp(λTR+λT ).
Combined with (26), this gives

E exp(λmax
i≤n

|Wi − Yi |) ≤ 2 exp

(
C log n − C log(3/2)+ 1 + Kλ2a2

n

)
.

Finally, from the condition on C in (17), we see that

−C log(3/2)+ 1 + log 2 ≤ 0.

This completes the induction step. To complete the argument, we just choose C so
large and λ0 so small that the result is true for n = 2 even if the vectors (W0,W1,W2)

and (Z0, Z1, Z2) are chosen to be independent of each other. ��

5 Completing the proofs of the main theorems

In this final section, we put together the pieces to complete the proofs of Theorem 1.4
and Theorem 1.5. The following lemma combines Theorem 4.1 and Theorem 3.1 to
give a ‘finite n version’ of Theorem 1.5.

Lemma 5.1 There exist universal constants B > 1 and λ > 0 such that the following
is true. Let n be a positive integer and let ε1, ε2, . . . , εn be i.i.d. symmetric ±1 random
variables. Let Sk = ∑k

i=1 εi , k = 0, 1, . . . , n. It is possible to construct a version
of the sequence (Sk)k≤n and gaussian random variables (Zk)k≤n with mean 0 and
Cov(Zi , Z j ) = i ∧ j on the same probability space such that E exp(λ|Sn − Zn|) ≤ B
and

E exp(λmax
k≤n

|Sk − Zk |) ≤ B exp(B log n).

Proof Recall the universal constants θ0 and κ from Theorem 3.1 and C , K , and λ0
from Theorem 4.1. Choose λ so small that

λ <
θ0 ∧ λ0

2
and 16Kλ2 < 1.

Let the probability densities f n
a , ρn

a , and φn be as in the proof of Theorem 4.1. Let gn

and hn denote the densities of Sn and Zn respectively. By Theorem 3.1 and the choice
of λ, there is a joint density ψn on Z × R such that

∫
ψn(s, z) dz = gn(s),

∫
ψn(s, z) ds = hn(z),

and
∫

exp(2λ|s − z|)ψn(s, z) ds dz ≤ κ. (27)
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Now define a function γ n : Z × R × Z
n+1 × R

n+1 → R as

γ n(s, z, s, z) := ψn(s, z)ρn
s (s, z).

It is easy to check that this is a probability density function. Let (S, Z ,S,Z) be a
random vector following this density. As in the proof of Theorem 4.1, an easy inte-
gration shows that the joint density of (Z ,Z) is simply

hn(z)φn(z).

Define a random vector Y = (Y0, . . . ,Yn) as

Yi = Zi + i

n
Z .

By the independence of Z and Z and their distributions, it follows that Y is a mean
zero gaussian random vector with Cov(Yi ,Y j ) = i ∧ j .

Next, integrating out z and z we see that the joint density of (S,S) is

gn(s) f n
s (s).

Elementary probabilistic reasoning now shows that the marginal distribution of S is
the same as that of a simple random walk up to time n.

Let us now show that the law of the pair (S,Y) satisfies the conditions of the
theorem. First, let Wi = Si − i S/n. Note that for any i ≤ n,

|Si − Yi | =
∣∣∣∣Si −

(
Zi + i

n
Z

)∣∣∣∣

≤ |Wi − Zi | + i

n
|S − Z |.

Note that the conditional distribution of (S,Z) given (S, Z) = (s, z) is simply ρn
s .

Since λ < λ0, we have by the construction of ρn
s that

E

(
exp(λmax

i≤n
|Wi − Zi |)

∣∣S, Z

)
≤ exp

(
C log n + Kλ2S2

n

)
.

Thus, using the Cauchy–Schwarz inequality and (27), we can now get

E exp(λmax
i≤n

|Si − Yi |)

≤
[

E

(
E

(
exp(λmax

i≤n
|Wi − Zi |)

∣∣S, Z

)2
)

E exp(2λ|S − Z |)
]1/2

≤ exp(C log n)
[
κE exp(2Kλ2S2/n)

]1/2
.
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By inequality (13) and the choice of λ, the proof of the maximal inequality is done.
For the other inequality, note that we have (27) and Yn = Z since Zn = 0. ��
Proofs of Theorems 1.4 and 1.5 The proof of Theorem 1.4 follows trivially from The-
orem 4.1. The proof of Theorem 1.5 also follows quite easily from Lemma 5.1, but
some more work is required. We carry out the few remaining steps below.

For r = 1, 2, . . . let mr = 22r
, and nr = mr − mr−1. For each r (S(r)k , Z (r)k )0≤k≤nr

be a random vector satisfying the conclusions of Lemma 5.1, and suppose these random
vectors are independent. Inductively define an infinite sequence (Sk, Zk)k≥0 as fol-
lows. Let Sk = S(1)k and Zk = Z (1)k for k ≤ m1. Having defined (Sk, Zk)k≤mr−1 , define
(Sk, Zk)mr−1<k≤mr as

Sk := S(r)k−mr−1
+ Smr−1 , Zk := Z (r)k−mr−1

+ Zmr−1 .

Clearly, since the increments are independent, Sk and Zk are indeed random walks
with binary and gaussian increments respectively.

Now recall the constants B and λ in Lemma 5.1. First, note that for each r , by
Lemma 5.1 and independence we have

E exp(λ|Smr − Zmr |) ≤ E exp

(
λ

r∑

�=1

|S(�)n� − Z (�)n� |
)

=
r∏

�=1

E exp
(
λ|S(�)n� − Z (�)n� |

)
≤ Br . (28)

Next, let

C = 1

1 − exp
(
− 1

2 B log 4
)

B

.

We will show by induction that for each r ,

E exp

(
λ max

k≤mr
|Sk − Zk |

)
≤ C Br exp(B log mr ). (29)

By Lemma 5.1 and the facts that B > 1 and C > 1, this holds for r = 1. Suppose it
holds for r − 1. By the inequality exp(x ∨ y) ≤ exp x + exp y, we have

E exp(λ max
k≤mr

|Sk − Zk |) ≤ E exp(λ max
mr−1≤k≤mr

|Sk − Zk |)
+ E exp(λ max

k≤mr−1
|Sk − Zk |).

(30)

Let us consider the first term. We have

max
mr−1≤k≤mr

|Sk − Zk | ≤ max
1≤ j≤nr

|S(r)j − Z (r)j | + |Smr−1 − Zmr−1 |.
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Thus, by independence and Lemma 5.1, and the inequality (28), we get

E exp(λ max
mr−1≤k≤mr

|Sk − Zk |) ≤ Br exp(B log mr ).

By the induction hypothesis and the relation mr = m2
r−1, we see that the second term

in (30) has the bound

E exp(λ max
k≤mr−1

|Sk − Zk |) ≤ C Br−1 exp(B log mr−1)

= C Br−1 exp

(
B log mr

2

)
.

Combining, we get

E exp(λ max
k≤mr

|Sk − Zk |) ≤ Br exp(B log mr )

(
1 + C

B
exp

(
− B log mr

2

))
.

From the definition of C , it easy to verify (since mr ≥ 4), that the term within the
parentheses in the above expression is bounded by C . This completes the induction
step.

So we have now shown (29). Since r ≤ const. log mr , this shows that there exists
a constant K such that for all r ,

E exp

(
λ max

k≤mr
|Sk − Zk |

)
≤ K exp(K log mr ).

Now let us prove such an inequality for arbitrary n instead of mr . Take any n ≥ 2. Let
r be such that mr−1 ≤ n ≤ mr . Then mr = m2

r−1 ≤ n2. Thus,

E exp(λmax
k≤n

|Sk − Zk |) ≤ E exp(λ max
k≤mr

|Sk − Zk |)
≤ K exp(K log mr ) ≤ K exp(2K log n).

It is now easy to complete the argument using Markov’s inequality. ��
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