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Abstract Let X be a n-dimensional Ornstein-Uhlenbeck process, solution of the
S.D.E.

dXt = AXt dt + dBt

where A is a real n × n matrix and B a Lévy process without Gaussian part. We show
that when A is non-singular, the law of X1 is absolutely continuous in R

n if and only
if the jumping measure of B fulfils a certain geometric condition with respect to A,
which we call the exhaustion property. This optimal criterion is much weaker than
for the background driving Lévy process B, which might be singular and sometimes
even have a one-dimensional discrete jumping measure. This improves on a result by
Priola and Zabczyk.
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1 Introduction and statement of the result

If Z is a real Lévy process without Gaussian part, finding a necessary and sufficient
condition on its jumping measure ν for the absolute continuity of Zt at some given
t > 0, is a hard problem for which no sensible conjecture has been formulated as yet.
One of the main difficulties for this formulation stems from the time-dependency of
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174 T. Simon

the absolute continuity property: if ν is infinite and has discrete support, then there are
some situations where e.g. Z1 is singular and Z2 is absolutely continuous. We refer to
[17] and Chapter 27 in [13] for more on this topic as well as further references. When Z
is multidimensional, the problem becomes increasingly complicated and some partial
results had been given in [20], involving conditions of geometrical nature on ν.

On the other hand, the problem of absolute continuity may well become simpler,
and yield weaker conditions, when considering certain functionals of Z . In the real
case for example, one can show that

1∫

0

Zt dt is a.c. ⇐⇒ ν is infinite. (1.1)

Notice that the condition on the right-hand side is only equivalent to the non-atomicity
of Z1—see Theorem 27.4 in [13]. With a view towards the methods developed later in
the present paper, let us give a short proof of the reverse inclusion in (1.1), the direct
one being straightforward. If ν is infinite and T η1 , T η2 denote the two first jumping
times of Z into [−η, η]c, then P[T η2 ≥ 1] → 0 as η → 0. Besides on {T η2 < 1} one
can write

1∫

0

Zt dt = (T η2 − T η1 )�ZT η1
+ (1 − T η2 )�ZT η1

+
1∫

0

(
Zt − 1{T η1 ≤t}�ZT η1

)
dt

and the right-hand side is a.c. on {T η2 < 1} for every η > 0, since conditionally on
Fη which is the σ -field generated by all the information given by Z on [0, 1] except
T η1 , the variable (T η2 − T η1 ) has uniform hence absolutely continuous law on [0, T η2 ],
the variable �ZT η1

is non-zero a.s. and Fη-measurable, and the remaining terms are
Fη-measurable.

This conditioning method together with, roughly speaking, a derivation procedure
along certain jumping times, has been systematically developed in the monograph [5]
where various absolute continuity results and smoother properties were established
for several functionals of Wiener and other Lévy processes, such as L p-norms, proper
integrals along a given function, one-sided and two-sided suprema. In [8,11], it was
also applied to a class of real stochastic equations with non-linear drift driven by Z .

In this paper, we will deal with Non-Gaussian multidimensional Ornstein-Uhlen-
beck processes, which are solutions to the S.D.E.

dXt = AXt dt + B dZt (1.2)

where A is a real n × n matrix, B a real n × d matrix and Z a d-dimensional Lévy
process without Gaussian part. Adaptating without difficulty the discussion made in
[13] pp. 104–105 to the case where A is not necessarily a multiple of the identity
matrix, we see that the solution to (1.2) is given in terms of some Lévy integral:
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Absolute continuity of Ornstein-Uhlenbeck process 175

Xt = et Ax +
t∫

0

e(t−s)A B dZs, t ≥ 0, (1.3)

where x ∈ R
n is the initial condition. Apart from a natural extension of the Langevin

equation, these processes have their roots in distribution theory because in the ergo-
dic case their limit laws are known [15] to be operator-self decomposable—see [14]
for further results. Nowadays, Non-Gaussian OU processes are also quite popular in
modelling [2].

To state our result, we need some notation. We will assume that the reader is familiar
with basic properties of Lévy processes and jumping measures which can be found at
the beginning of the two monographs [3,13]. Setting {Bt , t ≥ 0} for the R

n-valued
Lévy process {B Zt , t ≥ 0} and νB for its Lévy measure, we introduce the vector
spaces

Bt = Vect[�Bs, s ≤ t] and At = 〈A,Bt 〉, t > 0,

where here and throughout, for every vector subspace E ⊂ R
n with basis {e1, . . . , ep},

we use the notation

〈A, E〉 = Vect[Ai−1e j , i = 1, . . . , n, j = 1, . . . , p].

Notice that actually At = Vect[Ai−1�Bs, i = 1, . . . , q, s ≤ t], where q stands for
the degree of the minimal polynomial of A. Setting B = Im B ⊂ R

n, the condition
〈A,B〉 = R

n or, in an equivalent Kalman matrix formulation,

Rank
[

B, AB, . . . , Aq−1 B
]

= n, (1.4)

is well-known as a controllability condition on the deterministic linear system

x ′
t = Axt + But

where {ut , t ≥ 0} is some input function—see e.g. Chapter 1 in [18] and the references
therein. When (1.4) holds, we will say that (A, B) is controllable.

Let κ denote the cyclic index of A, which is the maximal dimension of its proper
subspaces. The condition κ = 1 means that A is a cyclic matrix i.e. there exists a gen-
erating vector b ∈ R

n such that (b, Ab, . . . , An−1b) forms a basis of R
n . This is also

equivalent to q = n, that is the minimal polynomial of A is in fact its characteristic
polynomial. When κ > 1, it is the number of the invariant factors of A, viz. the unique
number of subspaces Ai ⊂ R

n such that A1 ⊕ . . .⊕ Aκ = R
n, with each Ai stable

by A and each A/Ai a cyclic operator whose minimal polynomial αi divides αi−1,

α1 being the minimal polynomial of A itself—see Chapter 4 in [7] or Section 0.10 in
[18] for more precisions.

Let m = Dim B = Rank B. When (1.4) holds, a result of M. Heymann—see
Theorem 1.2. in [18]—entails that necessarily m ≥ κ. More precisely, there exist κ
linearly independent vectors b1, . . . , bκ ∈ B such that
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B1 + · · · + Bκ = R
n (1.5)

with the notation Bi = Vect
[
bi , Abi , . . . , Aq−1bi

]
for i = 1, . . . , κ. Actually, Hey-

mann’s result was originally more precisely stated, connecting the subspaces Bi to
the above κ invariant factors of A. Nevertheless we shall not need this in the sequel.
Assuming (1.4), a sequence (b1, . . . , br ) ∈ B of linearly independent vectors such that
B1 + · · · + Br = R

n with the above notations will be called a generating sequence
of R

n with respect to (A, B), or simply a generating sequence when no confusion is
possible. Notice that r ≤ m. Besides, the very definition of κ entails that necessarily
r ≥ κ as well—see the proof of Theorem 1.2 in [18] for details. We now come to the
central definition of this work:

Definition With the above notations, the Lévy measure νB is said to exhaust R
n with

respect to A if 〈A,B〉 = R
n and there exists r ∈ [κ,m] and a subspace Hr ⊂ B of

dimension r such that 〈A,Hr 〉 = R
n and νB(Hr ∩ Hc) = +∞ for every hyperplane

H ⊂ Hr .

This definition is related to the conditions given in [20] for the absolute continuity
of multivariate infinitely divisible distributions, but it is less stringent since no arcwise
absolute continuity is required, and since νB may be carried by any subspace with
dimension r ∈ [κ,m]. Here, however, the important fact is that this subspace must be
chosen with respect to A. Introducing finally the stopping time

τ = inf{t > 0, At = R
n},

our result reads as follows:

Theorem If A is non-singular, then one has

X1 is a.c. ⇐⇒ τ = 0 a.s. ⇐⇒ νB exhausts R
n w.r.t. A.

Notice that the above equivalences are time-independent, so that when X1 is a.c.
then Xt is a.c. as well for every t > 0. In other words absolute continuity is not a
temporal property for Non-Gaussian OU processes, unlike Lévy processes without
Gaussian part. Besides, when X1 is not a.c. then the first equivalence entails that X1 is
valued with positive probability in some fixed affine hyperplane of R

n, or equivalently
that a certain one-dimensional projection of X1 must have an atom. This, again, con-
trasts with Lévy processes since Z1 may be non-atomic and not absolutely continuous
- see Theorem 27.19 in [13].

We stress that the variable X1 itself is infinitely divisible, i.e. it is the distribution
at time 1 of some Lévy process {Yt , t ≥ 0} valued in R

n . Indeed, a straightforward
extension of Lemma 17.1 in [13] shows that X1 is ID without Gaussian part and Lévy
measure

νX (	) =
∫

Rn

νB(dx)

1∫

0

1	(es Ax) ds, 	 ∈ B(Rn).
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Absolute continuity of Ornstein-Uhlenbeck process 177

Hence, our result yields an optimal criterion of absolute continuity for a certain sub-
class of multivariate Non-Gaussian ID distributions, which we may call the OU class.
To this end, one can check—as will be done in Paragraph 2.2 below with a slightly
different formulation—that if νB does not exhaust R

n w.r.t. A, then νX satisfies Con-
dition 2 given in the main theorem of [20], so that X1 is not absolutely continuous. On
the other hand, when νB exhausts R

n w.r.t. A, then νX might not be arcwise absolutely
continuous, so that our criterion is weaker than Conditions 3 or 4 in the main theorem
of [20].

As we mentioned before, the variables Xt converge in law when t → ∞ to some
operator self-decomposable or OL distribution in R

n under an ergodicity assumption,
that is when the eigenvalues of A have all negative real parts and νB is log-integrable
at infinity [15]. If in addition νB exhausts R

n w.r.t. A, then it is easy to see that the limit
distribution is also genuinely n-dimensional. Let us notice that the absolute continuity
of non-degenerated OL distributions had been established in [19]. This is probably
related to our result, even though absolute continuity and non absolute continuity
properties are barely stable under weak convergence. To make a true connection, one
would need a stronger type of convergence such as convergence in total variation [5],
but no such result seems available in the literature.

It follows from our definition that when νB exhausts R
n, then (A, B) is neces-

sarily controllable. On the other hand, when (A, B) is not controllable then τ =
+∞ a.s. so that from our result X1 is not a.c. In a recent paper [12] which was the
starting point of this work, it was proved that X1 is absolutely continuous as soon
as (A, B) is controllable and the jumping measure ν of Z is absolutely continu-
ous in an open neighbourhood of 0 (see also [4] for some further results related to
the smoothness of the density function). These conditions entail of course that νB

exhausts R
n, but they are highly non-equivalent: for example when A is cyclic and

non-singular, then our result entails that Z might be genuinely one-dimensional with
an infinite, and possibly discrete, jumping measure carried by some line in B−1(b)
where b is a generating vector of A, nevertheless X1 will be a.c. in R

n . Our method
is also very different from [12], which hinges upon a certain derivation procedure,
made possible by the absolute continuity condition on ν, along the jumping sizes
of Z . Here, as shortly suggested above, we will differentiate along suitably cho-
sen jumping times, the price to pay being the non-singularity assumption on A. Our
time-derivation procedure is close to the one developed in [8], whose Theorem 1.1.
actually entails that X1 is a.c. when A is non-singular and νB(Hc) = ∞ for every
hyperplane H ⊂ R

n . But again this latter assumption is more stringent than our
exhaustion property, as well as, to the best of our knowledge, all conditions given in
the literature on Malliavin’s calculus for jump processes—see the references given in
[8,11,12].

In the third section of this paper we will briefly describe what happens when the
driving process Z has some Gaussian component. By independence and by the linearity
of the equation (1.2), we get an analogous result which only requires a small modifi-
cation of the proof in the Non-Gaussian case. Then we will discuss a few examples
in order to provide more geometrical insight on the exhaustion property. In particular
we will give a complete description in the case n = 2. Finally, we will mention some
counterexamples and open questions.
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2 Proof of the theorem

2.1 Proof that X1 is a.c. ⇒ τ = 0 a.s.

Setting

B0 =
⋂
t>0

Bt

which is a deterministic subspace of B by the 0-1 law, it follows from the definition
of Bt and that of a jumping measure that necessarily ν(Bc

0) < +∞. In particular,
P[T > 1] > 0 where T = inf{t > 0, �Bt ∈ Bc

0}. Endow B with a canonical
Euclidean structure and set B⊥

0 for the orthogonal supplementary of B0 in B, which
may be reduced to {0} if B0 = B. Decomposing the Lévy process {Bt , t > 0} along
the orthogonal sum B = B0 ⊕ B⊥

0 :

Bt = B0
t + B⊥

t , t > 0,

notice that the Lévy process {B⊥
t , t > 0} is either the zero process or a compound

Poisson process with drift coefficient, say, b⊥. Hence, on {T > 1}, we deduce from
(1.3) that

X1 = eAx +
1∫

0

e(1−s)A dB0
s −

1∫

0

e(1−s)Ab⊥ ds

where we use the notation b⊥ = 0 if B⊥ ≡ 0. Last, writing for every t ∈ R

et A =
q∑

k=1

ψr (t)A
r−1, (2.1)

where the ψr ’s are certain real functions whose exact expression is given e.g. in [7]
Chapter 5, we see that

1∫

0

e(1−s)A dB0
s ∈ 〈A,B0〉 a.s.

Putting everything together entails that if X1 is a.c. then necessarily 〈A,B0〉 = R
n .

But from the definitions of B0 and τ, this yields τ = 0 a.s. ��
Remark 1 The above proof shows also that if P[τ > 0] > 0, then X1 is valued in
some fixed affine hyperplane with probability P[T > 1]. Notice that if B0 = B, then
this probability is 1 and (A, B) is not controllable, which entails that actually τ = ∞
a.s.

123



Absolute continuity of Ornstein-Uhlenbeck process 179

2.2 Proof that τ = 0 a.s. ⇒ νB exhausts R
n w.r.t. A

We may assume 〈A,B〉 = R
n since otherwise τ = ∞ a.s. Suppose now that νB does

not exhaust R
n . By the above assumption there exists a hyperplane H1 ⊂ B such that

νB(Hc
1) < ∞. If 〈A,H1〉 �= R

n, then

τ ≥ inf{t > 0, �Bt ∈ Hc
1} > 0 a.s.

If 〈A,H1〉 = R
n, then there exists a hyperplane H2 ⊂ H1 such that νB(H1 ∩

Hc
2) < ∞ because νB does not exhaust R

n, and in particular νB(Hc
2) < ∞ since we

already have νB(Hc
1) < ∞. Similarly, when 〈A,H2〉 �= R

n, then

τ ≥ inf{t > 0, �Bt ∈ Hc
2} > 0 a.s.

When 〈A,H2〉 = R
n, one can then repeat a finite number of times the same discus-

sion as above: alltogether this entails that τ > 0 a.s. if νB does not exhaust R
n, which

completes the proof by contraposition. ��

2.3 Proof that νB exhausts R
n w.r.t. A ⇒ X1 is a.c.

This is the difficult inclusion and we will first establish three lemmas. The first one is
an easy application of the implicit function theorem. The second one is an a.s. inde-
pendence result on a certain class of linear systems, for which we could not find any
reference in the literature on control theory. The third one allows to choose suitably the
jumping times of B which will be later targeted into X1 via a certain a.s. submersion.
Throughout, λ will stand for the Lebesgue measure independently of the underlying
Euclidean space.

Lemma 2 Let X be an absolutely continuous random variable in R
p with p ≥ n

and ϕ : R
p → R

n be a C1 function such that its Jacobian matrix dϕ verifies
Rank dϕ(X) = n a.s. Then ϕ(X) is absolutely continuous in R

n .

Proof Choose any xN ∈ R
p ∩ N c, where N = {x ∈ R

p / Rank dϕ(x) < n}.
Setting

X̃ = X1{X∈N c} + xN 1{X∈N },

we see by assumption that X = X̃ a.s. so that ϕ(X) = ϕ(X̃) a.s. as well. Hence, it
suffices to show that ϕ(X̃) is absolutely continuous in R

n . In the case p = n this is a
well-known fact for which we found a proof in [16], Lemma IV.3.1. For the sake of
completeness, we will give an argument in the general case p ≥ n.

Fix an underlying probability space (,F ,P). By approximation, it is enough to
show that for every relatively compact set � ⊂ � = {ϕ(X̃(ω)), ω ∈ } such that
λ(�) = 0,

P[ϕ(X̃) ∈ �] = 0.
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For every y ∈ �, fix x ∈ ϕ−1(y) ⊂ A. Since Rank dϕ(x) = n, by the implicit
function theorem there exist Vx and Wy open neighbourhoods of x and y respectively,
Op and On open neighbourhoods of 0 respectively in R

p and R
n endowed with a

canonical basis, ψx : Vx → Op and ψy : Wy → On diffeomorphisms such that

ψy ◦ ϕ ◦ ψ−1
x : Op → On

is the canonical projection from Op to On . Taking a finite covering
{Wy1, . . . ,Wyk

}
of � yields

P[ϕ(X̃) ∈ �] ≤
k∑

i=1

P[ϕ(X̃) ∈ Wyi ∩ �]

=
k∑

i=1

P[ψyi ◦ ϕ(X̃) ∈ �i ]

with the notation �i = ψyi (Wyi ∩ �), which has Lebesgue measure zero in R
n since

ψyi is a diffeomorphism. Setting Ai = {ψyi ◦ ϕ(X̃) ∈ �i } for every i ∈ {1, . . . , k},
the random variables Yi = 1Aiψxi (X̃) are absolutely continuous in R

p since ψxi are
diffeomorphisms. Besides, since the projections ψyi ◦ ϕ ◦ ψxi have full rank, from
Lemma 2.3 in [12] the random variables ψyi ◦ ϕ ◦ ψxi (Yi ) are absolutely continuous
in R

n . Hence, for every i ∈ {1, . . . , k},

P[ψyi ◦ ϕ(X̃) ∈ �i ] = P
[
ψyi ◦ ϕ ◦ ψxi (Yi ) ∈ �i

] = 0,

which entails that P[ϕ(X̃) ∈ �] = 0 and completes the proof. ��
Lemma 3 Assuming (1.4), let (b1, . . . , br ) be a generating sequence with respect to
(A, B) for some r ∈ [κ,m]. Then the set

{
(t1

1 , . . . , t1
q , . . . , tr

1 , . . . , tr
q ) ∈ R

q×r / Rank

×
[
et1

1 Ab1, . . . , et1
q Ab1, . . . , etr

1 Abr , . . . , etr
q Abr

]
< n

}

has zero Lebesgue measure.

Proof We first consider the case κ = r = 1. Fix b ∈ B a generating vector such that
R

n = Vect
[
b, Ab, . . . , An−1b

]
. The function

(t1, . . . , tn) �→ Det
[
et1 Ab, . . . , etn Ab

]

is analytic in R
n and it is not identically zero. Actually, if it were, then the analytic

function ρ : t �→ et Ab would be valued in some fixed hyperplane of R
n, as well as all
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Absolute continuity of Ornstein-Uhlenbeck process 181

its successive derivatives, which is impossible since

Vect
[
ρ(0), ρ′(0), . . . , ρ(n−1)(0)

]
= Vect

[
b, Ab, . . . , An−1b

]
= R

n .

Hence, since the zero set of a real analytic function over R
n either is R

n itself or has
zero Lebesgue measure—see [6] p. 240 or Lemma 2 in [19], we obtain that

Rank
[
et1 Ab, . . . , etn Ab

]
= n

almost everywhere in R
n , which completes the proof when κ = r = 1.

We now proceed to the remaining cases. Recalling (2.1), we first claim that the
q × q matrix

�q(t1, . . . , tq) = {
ψi (t j )

}
1≤i, j≤q

has rank q a.e. in R
q . Indeed, by the definition of q there exists b ∈ R

n such that Rank
[b, Ab, . . . , Aq−1b] = q. Setting Ab = Vect[b, Ab, . . . , Aq−1b] and viewing A as
a cyclic endomorphism of the q-dimensional vector space Ab, we see from the case
κ = r = 1 that Rank [et1 Ab, . . . , etq Ab] = q a.e. in R

q . However, it follows from
(2.1) that

[et1 Ab, . . . , etq Ab] = [b, . . . , Aq−1b] ×�q(t1, . . . , tq)

so that �q(t1, . . . , tq) must have rank q a.e. in R
q as well. Let now (b1, . . . , br ) be a

generating sequence with respect to (A, B). Setting Bi = Vect[bi , Abi , . . . , Aq−1bi ],
we have Dim Bi ≤ q for every i = 1 . . . r. Similarly as above,

[et1 Abi , . . . , etq Abi ] = [bi , . . . , Aq−1bi ] ×�q(t1, . . . , tq)

and since �q is a.e. invertible, this entails that Rank [et1 Abi , . . . , etq Abi ] = Dim
Bi a.e. in R

q . Notice that by (2.1), one has et Abi ∈ Bi for every t ∈ R, so that
[et1 Abi , . . . , etq Abi ] forms actually a basis of Bi a.e. in R

q , for every i = 1, . . . , r.
Besides, it follows from the definition of the Lebesgue measure that if A1, . . . ,Ar are
negligible sets in R

q , then (Ac
1 ×· · ·×Ac

r )
c is negligible in R

q×r . Putting everything
together entails that a.e. in R

q×r ,

Rank
[
et1

1 Ab1, . . . , et1
q Ab1, . . . , etr

1 Abr , . . . , etr
q Abκ

]
= Dim(B1 + · · · + Br ) = n,

where the last equality comes from the definition of the generating sequence
(b1, . . . , br ). The proof is complete. ��
Remark 4 By the same argument, one can prove that

λ
{
(t1, . . . , tn) ∈ R

n/Rank
[
et1 A B, . . . , etn A B

]
< n

}
= 0
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182 T. Simon

as soon as (1.4) holds. An interesting point is that when A has real spectrum, then
(1.4) actually entails

Rank
[
et1 A B, . . . , etn A B

]
= n (2.2)

for every t1 < · · · < tn . The latter is false nevertheless when A has non-real eigen-
values. When d = 1 i.e. q = n, this follows from the fact that the above matrix
�(t1, . . . , tq) is actually invertible for every t1 < · · · < tq confined in any inter-
val whose length is strictly smaller than ω = max{Imμ, μ ∈ Sp(A)}—see Lemma
4 in [10] and also Theorem 5 therein for a more general result. When d > 1, this
hinges upon rather technical considerations on generalized Vandermonde matrices
and Chebyshev systems, which we shall not discuss here.

A family (C1, . . . , Cr ) of disjoint pointed cones with common vertex at zero such
that every (c1, . . . , cn) ∈ (C1, . . . , Cr ) is a generating sequence with respect to (A, B)
will be called a generating garland with respect to (A, B), or simply a generating
garland when there is no ambiguity. When (b1, . . . , br ) is a generating sequence,
notice that (C1, . . . , Cr ) defined by Ci = {μbi , μ > 0} for i = 1 . . . r, is a generating
garland. Our last lemma makes a connection between this notion and the exhaustion
property:

Lemma 5 If νB exhausts R
n w.r.t. A, then for every M > 0 there exists r ∈ [κ,m]

and a generating garland (C1, . . . , Cr ) such that νB(Ci ) ≥ M for every i = 1, . . . , r.

Proof Fix M > 0. If νB exhausts R
n w.r.t. A, then we know that 〈A,B〉 = R

n . Sup-
pose first that νB(Hc) = ∞ for every hyperplane H ⊂ B and let us show that there
exists a generating garland (C1, . . . , Cm) such that νB(Ci ) ≥ M for every i = 1 . . .m,
which is intuitively obvious.

If Sm−1 denotes the unit Euclidean sphere of B, consider a family {�δ, δ > 0} of
finite measurable partitions of Sm−1 such that Diam (�δ) < δ and �δ′ is a subparti-
tion of �δ for every δ′ < δ. Let CδM denote the disjoint finite family of pointed cones
with vertex at zero and apex in �δ such that νB(C) ≥ M for every C ∈ CδM . If for
every δ > 0 no generating garland of size m is contained in CδM , then for every δ > 0
there exists at least one hyperplane Hδ intersecting every C ∈ CδM , and the assumption
Diam (�δ) < δ readily entails that all these Hδ’s converge—in the sense that their
normal unit vectors converge in the metric space Sm−1—to some fixed hyperplane H0.

Last, it is a bit tedious but not difficult to see that by construction and by the finiteness
of � delta, one must have νB(Hc

0) < ∞, which yields a contradiction. Hence, there
exists δ > 0 such that CδM contains a generating garland of size m, and we are done.

If νB(Hc) < ∞ for some hyperplane H ⊂ B, then by definition of the exhaustion
property there must exist an hyperplane Hm−1 such that < A,Hm−1 >= R

n . If
νB(Hm−1 ∩ Hc) = ∞ for every subspace H ⊂ Hm−1, then reasoning exactly as
above we can show that there exists a generating garland (C1, . . . , Cm−1) such that
νB(Ci ) ≥ M for every i = 1, . . . ,m − 1. If νB(Hm−1 ∩Hc) < ∞ for some subspace
H ⊂ Hm−1, then we can repeat the same procedure as above. But again by the
definition of the exhaustion property, the latter procedure cannot be repeated more
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Absolute continuity of Ornstein-Uhlenbeck process 183

than (m − κ) times: all in all, this shows that there exists r ∈ [κ,m] and a generating
garland (C1, . . . , Cr ) such that νB(Ci ) ≥ M for every i = 1, . . . , r. ��
Remark 6 When νB exhausts R

n, there may exist no generating garland (C1, . . . , Cr )

such that νB(Ci ) = ∞ for every i = 1, . . . , r. Think of the situation where κ = m = 2
and νB is infinite with support in the arc y = x2, B being endowed with an orthonormal
frame Oxy.

End of the proof From (1.3) and after time-reversal, it is enough to prove that

Y =
1∫

0

es A B dZs =
1∫

0

es A dBs

is absolutely continuous. For this purpose, we will use the same method as depicted
in the introduction, in a somewhat more elaborated manner. If � ⊂ R

n is such that
λ(�) = 0, we need to show that for every ε > 0

P[Y ∈ �] < ε.

Fix ε > 0 and let M > 0 be such that

P[T M
q+1 ≥ 1] < ε/m

where T M
q+1 is the sum of (q + 1) independent exponential variables with parameter

M . By Lemma 5, there exists r ∈ [κ,m] and a generating garland (C1, . . . , Cr ) such
that νB(Ci ) ≥ 2M for every i = 1, . . . , r. Besides, if Bη stands for the Euclidean ball
of B centered at 0 with radius η and if Cηi = Ci ∩ Bc

η, then we can actually choose
η > 0 such that νB(Cηi ) ≥ M for every i = 1, . . . , r. Let {T ηi,p, p ≥ 1} be the

ordered sequence of jumping times of the Lévy process {Bt , t ≥ 0} into Cηi and set
T ηp = sup{T ηi,p, i = 1, . . . , r} for every p ≥ 1. We have

P[T ηq+1 ≥ 1] ≤
r∑

i=1

P[T ηi,q+1 ≥ 1] ≤ rP[T M
q+1 ≥ 1] < rε/m ≤ ε

and it is hence sufficient to prove that

P

[
T ηq+1 < 1, Y ∈ �

]
= 0 (2.3)

for every η > 0. Let Fη be the σ−algebra generated by {T ηi,p, p≥q +1, i =1 . . . r},
{�BT ηi,p

, p ≥ 1, i = 1 . . . r} and the Lévy process B̃η defined by

B̃ηt = Bt −
∑

T ηi,p≤t

�BT ηi,p
, t ≥ 0.
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On {T ηq+1 < 1}, one can write

Y = Y η +
r∑

i=1

q∑
j=1

eT ηi, j A
�BT ηi, j

with Y η a Fη-measurable random variable. Since T ηq+1 is Fη-measurable as well, we
have

P

[
T ηq+1 < 1, Y ∈ �

]
= P

[
T ηq+1 < 1, P

[
Y ∈ � | Fη

]]

= P

[
T ηq+1 < 1, P

[
Ỹ η ∈ �η | Fη

]]

where �η = � − Y η is a Fη-measurable set such that λ(�η) = 0, and

Ỹ η =
r∑

i=1

q∑
j=1

eT ηi, j A
�BT ηi, j

.

The key-point is that by standard properties of jumping measures, since the Cηi ’s are

disjoint, conditionally on Fη the law of the (r×q)−uple (T η1,1, . . . , T η1,q , . . . , T ηr,1, . . . ,

T ηr,q) is that of the tensor product of r independent q-th order statistics respectively on
[0, T ηi,q+1], viz. the tensor product of r independent uniform laws on the respective
sets

{
0 < t i

1 < · · · < t i
q < T ηi,q+1

}
.

In particular, the law of (T η1,1, . . . , T η1,q , . . . , T ηr,1, . . . , T ηr,q) is absolutely continuous in
R

q×r and by Lemma 2, (2.3) will hold as soon as the Jacobian matrix of the application

(t1
1 , . . . , t1

q , . . . , tr
1 , . . . , tr

q ) �→
r∑

i=1

q∑
j=1

et i
j A
�BT ηi, j

from R
q×r to R

n has rank n a.e. conditionally on Fη (recall that the sequence
{�BT ηi,p

, p ≥ 1, i = 1, . . . , r} is Fη-measurable and independent of {T ηi,p, p ≤
q, i = 1, . . . , r}). This Jacobian matrix is equal to

A ×
[
et1

1 A�BT η1,1
, . . . , et1

q A�BT η1,q
, . . . , etr

1 A�BT ηr,1
, . . . , etr

q A�BT ηr,q

]
(2.4)

and, since A is invertible and �Z B
T ηi, j

∈ Cηi for every i = 1, . . . , r and j = 1, . . . , q,

conditionally on Fη it has a.s. the same rank as

[
et1

1 Ab1, . . . , et1
q Ab1, . . . , etr

1 Abr , . . . , etr
q Abr

]
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where (b1, . . . , br ) is some generating sequence of R
n with respect to (A, B). Now

by Lemma 3, the latter has full rank a.e. and the proof is finished. ��
Remark 7 The invertibility assumption on A is only useful to get the full rank a.s. of
the Jacobian matrix given in (2.4). Nevertheless this is a crucial assumption, and in
the next section we will give a counterexample when A is singular.

3 Final remarks

3.1 The case with a Brownian component

If the driving Lévy process Z has a non-trivial Gaussian component, then by the
linearity of (1.2) this amounts to consider the problem of absolute continuity for

Xt = et Ax +
t∫

0

e(t−s)A dWs +
t∫

0

e(t−s)A dBs, t ≥ 0,

where W is some B-valued Brownian motion independent of the Non-Gaussian Lévy
process B. Set H = 〈A, Im W 〉 and, given any Euclidean structure on R

n, denote by
H⊥ the orthogonal complement of H in R

n . The H -valued random variable

1∫

0

e(1−s)A dWs

is Gaussian and by a classical result in control theory—see e.g. Theorem 1.1 in [18]—it
is non-degenerated, hence absolutely continuous in H . Since W and B are independent,
Lemma 3 in [19] and Lemma 2.3 in [12] yield

X1 is a.c. ⇐⇒ �H⊥

⎛
⎝

1∫

0

e(1−s)A dBs

⎞
⎠ is a.c.

where�H⊥ stands for the orthogonal projection operator onto H⊥.A straightforward
modification of our proof entails then

X1 is a.c. ⇐⇒ τH = 0 a.s. ⇐⇒ νB exhausts R
n w.r.t. (A, H).

where with the notations of the introduction we set τH = inf{t > 0, At + H =
R

n}, κH for the minimal number of linearly independent vectors b1, . . . , bp ∈ B such
that

〈A, b1〉 + · · · + 〈A, bp〉 + H = R
n,
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and say that νB exhausts R
n with respect to (A, H) if 〈A,B〉+H = R

n and there exists
r ∈ [κH ,m] and a subspace Hr ⊂ B of dimension r such that 〈A,Hr 〉 + H = R

n

and νB(Hr ∩ Hc) = +∞ for every hyperplane H ⊂ Hr .

3.2 Some explicit descriptions of the exhaustion property

From now on we will assume that Z has no Gaussian part, that is B has no Gaussian
part either. Let us first consider the case n = 1, i.e. X is solution to

dXt = aXt dt + dBt (3.1)

where a ∈ R and B is one-dimensional. The exhaustion property just means that νB

is infinite and our result reads

X1 is a.c. ⇐⇒ νB is infinite (3.2)

as soon as a �= 0.Notice that this is actually an immediate consequence of Theorem A
in [11]—see also Theorem 1.1. in [8]. Let us also give a short proof of the non-trivial
reverse inclusion in (3.2), similar to that given in the introduction: the solution to (3.1)
is given by

Xt = eta x +
t∫

0

ea(t−s) dBs = eta x + Bt + a

t∫

0

ea(t−s)Bs ds, t ≥ 0,

where x is the initial condition and where in the second equality we made an integration
by parts, assuming B0 = 0 without lost of generality. Hence, leaving the details to
the reader, one may follow roughly the same method as for the integral of B, noticing
with the same notations that on {T η2 < 1} the value of B1 does not depend on T η1 ,
hence B1 is Fη-measurable as well.

Let us now discuss the case n = 2. To simplify the notations, we will denote by
I the set or family of sets where νB is infinite if and only if the exhaustion property
holds. We will also suppose implicitly that A is non-singular. Up to some equivalent
transformations on A which are not relevant to the absolute continuity problem, there
are four situations:

(a) A has no real eigenvalue, in other words A is a multiple of

(
cos θ sin θ

− sin θ cos θ

)

for some θ ∈]0, π [. Then κ = 1 i.e. A is cyclic, and it is easy to see that every
non-zero vector of R

2 is generating. Hence we simply have I = R
2 viz. as in

the real case, X1 is a.c. if and only if νB is infinite.
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(b) A is a multiple of the identity matrix. Then κ = 2 and 〈A, b〉 = Vect{b} for
every b ∈ R

2. This means that I = {(Vect{b})c, b ∈ R
2} viz. the infinite part

of νB must not be carried by any line in R
2.

(c) A is a Jordan cell matrix, i.e. A is of the type

(
α 1
0 α

)

with α �= 0. Then κ = 1 and every non-zero vector of R
2 is generating except

the multiples of (1, 0) : we have I = (Vect{(1, 0})c.
(d) A = Diag(α, β) with α �= β and α, β non zero. Then κ = 1 and every non-zero

vector of R
2 is generating except those in Vect {(1, 0)} ∪ Vect{(0, 1)}. On the

other hand, (Vect {(1, 0)} − {0}, Vect {(0, 1)} − {0}) is a generating garland: we
have I = {(Vect{(1, 0)})c ∩ (Vect{(0, 1)})c} ∪ {Vect{(1, 0)} and Vect{(0, 1)}}.

When n > 2, it becomes quite lengthy to depict the exhaustion property. Let us
give however four typical examples when n = 3, keeping for I the same meaning
as above and using the notations Hx = {x = 0},Hy = {y = 0} and Hz = {z = 0}
where Oxyz is a given orthogonal frame of R

3.

(f) A is a Jordan cell matrix, i.e. A is of the type

⎛
⎝α 1 0

0 α 1
0 0 α

⎞
⎠

with α �= 0. Then κ = 1 and every non-zero vector of R
3 is generating except

those in Hz : we have I = Hc
z .

(g) A is a block matrix of the following type

⎛
⎝α 0 0

0 β 1
0 0 β

⎞
⎠

with α �= β and α, β non zero. Then κ = 1 and every non-zero vector of R
3 is

generating except those in Hx ∪ Hz : we have I = Hc
x ∩ Hc

z .

(h) A is a block matrix of the following type

⎛
⎝α 0 0

0 α 1
0 0 α

⎞
⎠

with α �= 0. Then κ = 2 and every generating sequence must not be valued in any
hyperplane Hu = u⊥ with u a unit vector of Oxz : we have I = {Hc

u, u ∈ Oxz}.
(i) A = Diag(α, β, γ ) with distinct non zero α, β and γ. Then κ = 1 and every

vector in Hc
x ∩ Hc

y ∩ Hc
z is generating. But as in dimension 2, one can also build

generating garlands with one component in Hx ,Hy or Hz . The infinity set I is
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then the union of the following eight sets or families of sets: Hc
x ∩Hc

y ∩Hc
z , {Hx ∩

Hc
y ∩Hc

z and Hy ∩Hc
x }, {Hy ∩Hc

x ∩Hc
z and Hx ∩Hc

y}, {Hy ∩Hc
z ∩Hc

x and Hz ∩
Hc

y}, {Hz ∩ Hc
y ∩ Hc

z and Hy ∩ Hc
z}, {Hz ∩ Hc

x ∩ Hc
y and Hx ∩ Hc

z}, {Hx ∩ Hc
z ∩

Hc
y and Hz ∩ Hc

x }, {Hx ∩ Hy ∩ Hc
z and Hy ∩ Hz ∩ Hc

x and Hz ∩ Hx ∩ Hc
y}.

3.3 Some open questions

As we mentioned before, our theorem no more holds when A is singular, as shows the
following counterexample with n = 2, d = m = 1,

A =
(

0 0
1 0

)
and B =

(
1
0

)
.

From the control theory viewpoint, this example yields the so-called rocket car equa-
tions, which serve as toy-models [9] for studying the Pontryagin maximum principle.
From the stochastic viewpoint, assuming x = (0, 0)one gets the so-called Kolmogorov
process X = (X1, X2), with

X1
t = Zt and X2

t =
t∫

0

Zs ds, t ≥ 0,

and Z is a one-dimensional Lévy process. Notice that (A, B) is controllable, so that νB

exhausts R
2 w.r.t. A if and only if νZ is infinite. But then X1

1 = Z1 may be singular—
see again Theorem 27.19 in [13]—so that by Lemma 2.3 in [12], X1 is not absolutely
continuous either.

When A is singular and m = n, one may wonder if the following holds true for
every t > 0 :

Bt is a.c. in R
n �⇒ Xt is a.c. in R

n .

From our theorem, this property is trivial when n = 1 and we also refer to Theorem
B in [11] for a non-linear extension. When n ≥ 2 some geometrical difficulties arise
however, which will be the matter of further research. When m < n the problem
seems much more complicated without further conditions on the jumping measure. In
particular I do not have the answer to the following basic question, which would solve
the problem at least for the Kolmogorov process:

For a real Lévy process Z , if Z1 is a.c. in R, is

⎛
⎝Z1,

1∫

0

Zt dt

⎞
⎠ a.c. in R

2?
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To conclude this paper, let us go back to the case n = 1 and consider the following
class of infinitely distributions

O =
⎧⎨
⎩L

⎛
⎝

1∫

0

es dBs

⎞
⎠ , B real Lévy process

⎫⎬
⎭ ,

for which we proposed the name OU class. If μB ∈ O corresponds to some Non-
Gaussian Lévy process B, after time-reversal our previous discussion entails

μB is a.c. ⇐⇒ νB is infinite. (3.3)

Besides, with a little reflexion, one can show that (3.3) also holds when replacing in
O the kernel es by any C1 function f (s) whose derivative does not vanish in ]0, 1[. In
particular, the equivalence (3.3) will hold for the well-known U-class where f (s) = s,
and B-class where f (s) = log s.Of course, for these two special classes one could get
(3.3) directly in considering the jumping measure ofμB which happens to be absolutely
continuous—see [1] for details—and applying Tucker’s result—see Theorem 27.7 in
[13]. It would be interesting to investigate which exact class of integration kernels
entails (3.3) for Lévy integrals, and also what occurs in the multivariate case.
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