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Abstract We study invasion percolation in two dimensions, focusing on properties
of the outlets of the invasion and their relation to critical percolation and to incipient
infinite clusters (IICs). First we compute the exact decay rate of the distribution of both
the weight of the kth outlet and the volume of the kth pond. Next we prove bounds
for all moments of the distribution of the number of outlets in an annulus. This result
leads to almost sure bounds for the number of outlets in a box B(2n) and for the decay
rate of the weight of the kth outlet to pc. We then prove existence of multiple-armed
IIC measures for any number of arms and for any color sequence which is alternating
or monochromatic. We use these measures to study the invaded region near outlets
and near edges in the invasion backbone far from the origin.
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1 Introduction

1.1 The model

Invasion percolation is a stochastic growth model both introduced and numerically
studied independently by [1,14]. Let G = (V, E) be an infinite connected graph in
which a distinguished vertex, the origin, is chosen. Let (τe)e∈E be independent random
variables, uniformly distributed on [0, 1]. The invasion percolation cluster (IPC) of
the origin on G is defined as the limit of an increasing sequence (Gn) of connected
subgraphs of G as follows. For an arbitrary subgraph G ′ = (V ′, E ′) of G, we define
the outer edge boundary of G ′ as

�G ′ = {e = 〈x, y〉 ∈ E : e /∈ E ′, but x ∈ V ′ or y ∈ V ′}.

We define G0 to be the origin. Once the graph Gi = (Vi , Ei ) is defined, we select the
edge ei+1 that minimizes τ on �Gi . We take Ei+1 = Ei ∪ {ei+1} and let Gi+1 be the
graph induced by the edge set Ei+1. The graph Gi is called the invaded region at time
i . Let E∞ = ∪∞i=0 Ei and V∞ = ∪∞i=0Vi . Finally, define the IPC S = (V∞, E∞).

In this paper, we study invasion percolation on two-dimensional lattices; however,
for simplicity we restrict ourselves hereafter to the square lattice Z

2 and denote by E
2

the set of nearest-neighbor edges. The results of this paper still hold for lattices which
are invariant under reflection in one of the coordinate axes and under rotation around
the origin by some angle. In particular, this includes the triangular and honeycomb
lattices.

We define Bernoulli percolation using the random variables τe to make a coupling
with the invasion immediate. For any p ∈ [0, 1] we say that an edge e ∈ E

2 is p-open
if τe < p and p-closed otherwise. It is obvious that the resulting random graph of
p-open edges has the same distribution as the one obtained by declaring each edge
of E

2 open with probability p and closed with probability 1 − p, independently of
the state of all other edges. The percolation probability θ(p) is the probability that
the origin is in the infinite cluster of p-open edges. There is a critical probability
pc = inf{p : θ(p) > 0} ∈ (0, 1). For general background on Bernoulli percolation
we refer the reader to [9].

In [3], it was shown that, for any p > pc, the invasion on (Zd , E
d) intersects the

infinite p-open cluster with probability one. The definition of the invasion mechanism
implies that if the invasion reaches the p-open infinite cluster for some p, it will never
leave this cluster. Combining these two facts yields that if ei is the edge added at step i
then lim supi→∞ τei = pc. It is well-known that for Bernoulli percolation on (Z2, E

2),
the percolation probability at pc is 0. This implies that, for infinitely many values of
i , the weight τei > pc. The last two results give that τ̂1 = max{τe : e ∈ E∞} exists
and is greater than pc. The above maximum is attained at an edge which we shall
call ê1. Suppose that ê1 is invaded at step i1, i.e. ê1 = ei1 . Following the terminology
of [16], we call the graph Gi1−1 the first pond of the invasion, denoting it by the
symbol V̂1, and we call the edge ê1 the first outlet. The second pond of the invasion
is defined similarly. Note that a simple extension of the above argument implies that
τ̂2 = max{τei : ei ∈ E∞, i > i1} exists and is greater than pc. If we assume that τ̂2
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Outlets of 2D invasion percolation and multiple-armed incipient infinite clusters 259

is taken on the edge ê2 at step i2, we call the graph Gi2−1 \ Gi1−1 the second pond of
the invasion, and we denote it V̂2. The edge ê2 is called the second outlet. The further
ponds V̂k and outlets êk are defined analogously. For a hydrological interpretation of
the ponds we refer the reader to [20].

In this paper we study the sequence of outlets (êk) and the sequence of their weights
(τ̂k). In Theorem 1.1 we give the asymptotic behaviour for the distribution of τ̂k for
any fixed k. For k > 1, we compute the exact decay rate of the distribution of the
size of the kth pond in Theorem 1.2. This result can be also seen as a statement about
the sequence of steps ik at which êk are invaded. In Theorem 1.3, we find uniform
bounds on all moments of the number of outlets in an annulus. We use this result in
Theorem 1.4 to derive almost sure bounds on the number of outlets in a box B(2n). An
important consequence of Theorem 1.4 is Corollary 1.1; it states almost sure bounds
on the difference (τ̂k − pc) and on the radii of the ponds.

In Theorem 1.6 we prove the existence of an IIC with several infinite pc-open and
pc-closed paths from a neighborhood of the origin. Last, we show in Theorems 1.8
and 1.9 that the local description of the invaded region near the backbone of the IPC
far away from the origin is given by the IIC with two infinite pc-open paths, and the
local description of the invaded region near an outlet of the IPC far away from the
origin is given by the IIC with two infinite pc-open paths and two infinite pc-closed
paths so that these paths alternate.

1.2 Notation

In this section we collect most of the notation and the definitions used in the paper.
For a ∈ R, we write |a| for the absolute value of a, and, for a site x = (x1, x2) ∈ Z

2,
we write |x | for max(|x1|, |x2|). For n > 0 and x ∈ Z

2, let B(x, n) = {y ∈ Z
2 :

|y− x | ≤ n} and ∂ B(x, n) = {y ∈ Z
2 : |y− x | = n}. We write B(n) for B(0, n) and

∂ B(n) for ∂ B(0, n). For m < n and x ∈ Z
2, we define the annulus Ann(x;m, n) =

B(x, n) \ B(x, m). We write Ann(m, n) for Ann(0;m, n).
We consider the square lattice (Z2, E

2), where E
2 = {〈x, y〉 ∈ Z

2×Z
2 : |x− y| =

1}. Let (Z2)∗ = (1/2, 1/2) + Z
2 and (E2)∗ = (1/2, 1/2) + E

2 be the vertices and
the edges of the dual lattice. For x ∈ Z

2, we write x∗ for x + (1/2, 1/2). For an edge
e ∈ E

2 we denote its endpoints (left respectively right or bottom respectively top) by
ex , ey ∈ Z

2. The edge e∗ = 〈ex + (1/2, 1/2), ey − (1/2, 1/2)〉 is called the dual edge
to e. Its endpoints (bottom respectively top or left respectively right) are denoted by
e∗x and e∗y . Note that, in general, e∗x and e∗y are not the same as (ex )

∗ and (ey)
∗. For a

subset K ⊂ Z
2, let K∗ = (1/2, 1/2)+K. We say that an edge e ∈ E

2 is in K ⊂ Z
2 if

both its endpoints are in K. For any graph G we write |G| for the number of vertices
in G.

Let (τe)e∈E2 be independent random variables, uniformly distributed on [0, 1],
indexed by edges. We call τe the weight of an edge e. We define the weight of an edge
e∗ as τe∗ = τe. We denote the underlying probability measure by P and the space of
configurations by ([0, 1]E2

,F), where F is the natural σ -field on [0, 1]E2
. We say

that an edge e is p-open if τe < p and p-closed if τe ≥ p. An edge e∗ is p-open if e
is p-open, and it is p-closed if e is p-closed. Accordingly, for p ∈ [0, 1], we define
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the edge configuration ωp ∈ {0, 1}Z2
by ωp(e) = 1 if τe < p and 0 if τe ≥ p. We

make a similar definition for ω∗p, the dual edge configuration. The event that two sets

of sites K1,K2 ⊂ Z
2 are connected by a p-open path is denoted by K1

p←→ K2, and
the event that two sets of sites K∗1,K∗2 ⊂ (Z2)∗ are connected by a p-closed path in

the dual lattice is denoted by K∗1
p∗←→ K∗2. For any n ≥ 1 and p ∈ [0, 1], we define

the event

Bn,p = {There is a p-closed circuit with radius at least n

around the origin in the dual lattice}.

For p ∈ [0, 1], we consider a probability space (�p,Fp, Pp), where �p = {0, 1}E2
,

Fp is the σ -field generated by the finite-dimensional cylinders of �p, and Pp is a prod-
uct measure on (�p,Fp), defined as Pp =∏

e∈E2 μe, where μe is the probability mea-
sure on {0, 1} with Pp(ωe = 1) = μe({1}) = 1 − μe({0}) = 1 − Pp(ωe = 0) = p.
We say that an edge e is open or occupied if ωe = 1, and e is closed or vacant if
ωe = 0. We say that an edge e∗ is open or occupied if e is open, and it is closed or
vacant if e is closed. The event that two sets of sites K1,K2 ⊂ Z

2 are connected by an
open path is denoted by K1 ↔ K2, and the event that two sets of sites K∗1,K∗2 ⊂ Z

2

are connected by a closed path in the dual lattice is denoted by K∗1
∗↔ K∗2. For any

n ≥ 1 and p ∈ [0, 1], let πn = Ppc (0 ↔ ∂ B(n)) and π(n, p) = Pp(0 ↔ ∂ B(n)).
Also define the event

Bn = {There is a closed circuit with radius at least n around the origin in the

dual lattice}.

For any k ≥ 1, let R̂k be the radius of the union of the first k ponds. In other words,
R̂k = max{|x | : x ∈ ∪k

j=1V̂ j }. For two functions g and h from a set X to R, we write
g(z) � h(z) to indicate that g(z)/h(z) is bounded away from 0 and∞, uniformly in
z ∈ X . Throughout this paper we write log for log2. We also write Pcr for Ppc . All
the constants (Ci ) in the proofs are strictly positive and finite. Their exact values may
be different from proof to proof.

1.3 Main results

1.3.1 Weight of the kth outlet

Let τ̂k be the weight of the kth outlet, as defined in Sect. 1.1.

Theorem 1.1 For any k ≥ 1,

P(τ̂k < p) � (log L(p))k−1θ(p), p > pc, (1.1)

where the correlation length L(p) is defined in Sect.2.
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Remark 1 Note that the statement is trivial in the case k = 1. Indeed, it follows from
the definition of the invasion that P(τ̂1 < p) = θ(p) for all p.

1.3.2 Volumes of the ponds

Theorem 1.2 For any k ≥ 1,

P(|V̂k | ≥ n2πn) � (log n)k−1πn, n ≥ 2. (1.2)

In particular,

P(|V̂k | ≥ n) � (log n)k−1
Pcr (|C(0)| ≥ n), n ≥ 2. (1.3)

Remark 2 The case k = 1 is considered in [20].

Remark 3 The second set of inequalities follows from the first one using the relations
Pcr (|C(0)| ≥ n2πn) � πn (see [20, Theorem 2]) and log(n2πn) � log n.

Remark 4 Let ik be the index such that eik = êk . Then ik is comparable to |V̂1|+· · ·+
|V̂k |. Therefore the statements (1.2) and (1.3) hold with |V̂k | replaced by ik .

1.3.3 Almost sure bounds

For any m < n, let O(m, n) be the number of outlets in Ann(m, n), and let O(n) be
the number of outlets in B(n). We first give n-independent bounds on all moments of
O(n, 2n).

Theorem 1.3 There exists c1 > 0 such that for all t, n ≥ 1,

E(O(n, 2n)t ) ≤ (c1t)3t . (1.4)

In particular, there exists c2, λ > 0 such that for all n,

E(exp(λO(n, 2n)1/3)) < c2. (1.5)

Next we show almost sure bounds on the sequence of random variables (O(2n))n≥1.

Theorem 1.4 There exists c3, c4 > 0 such that with probability one, for all large n,

c3n ≤ O(2n) ≤ c4n. (1.6)

Theorem 1.4 implies related bounds on the convergence rate of the weights τ̂k to
pc and on the growth of the radii (R̂k)k≥1.

Corollary 1.1 1. There exists c5 and c6 with 1 < c5, c6 <∞ such that with proba-
bility one, for all large k,

(c5)
k ≤ R̂k ≤ (c6)

k . (1.7)
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2. There exists c7 and c8 with 0 < c7, c8 < 1 such that with probability one, for all
large k,

(c7)
k ≤ τ̂k − pc ≤ (c8)

k . (1.8)

Remark 5 Asymptotics of various ponds statistics as well as CLT-type and large devi-
ations results for deviations of those quantities away from their limits are studied
in [8] for invasion percolation on regular trees. Not only do the results in [8] imply
exponential almost sure bounds similar to (1.7) and (1.8), they are very explicit. For
instance, it is shown that limk→∞ 1

k ln(τ̂k − pc) = −1 and limk→∞ 1
k ln(R̂k) = 1 a.s.

Our last theorem concerns ratios of successive terms of the sequence (τ̂k − pc)k≥1.

Theorem 1.5 With probability one, the set

{
τ̂k+1 − pc

τ̂k − pc
: k ≥ 1

}

is a dense subset of [0, 1].

1.3.4 Outlets and multiple-armed IICs

First we recall the definition of the incipient infinite cluster from [12]. It is shown in
[12] that the limit

ν(E) = lim
N→∞Pcr (E | 0↔ ∂ B(N ))

exists for any event E that depends on the state of finitely many edges in E
2. The

unique extension of ν to a probability measure on configurations of open and closed
edges exists. Under this measure, the open cluster of the origin is a.s. infinite. It is
called the incipient infinite cluster (IIC). In Theorem 1.7 [10, Theorem 3], a relation
between IPC and IIC is given.

In this section we introduce multiple-armed IIC measures (Theorem 1.6) and study
their relation to invasion percolation (Theorems 1.8, 1.9). For this, let k ≥ 1 and
σ ∈ {open, closed}k . Let r1 be the number of ‘open’ entries in σ and let r2 be the
number of ‘closed’ entries in σ . For l < n such that |∂ B(l)| > |σ |, we say that B(l) is
σ -connected to ∂ B(n), denoted B(l)↔σ ∂ B(n), if there exist r1 disjoint open paths
between B(l) and ∂ B(n) and r2 disjoint dual closed paths between B(l)∗ and ∂ B(n)∗
such that the relative counterclockwise arrangement of these paths is given by σ . In
the definition above we allow n = ∞, in this case we write B(l)↔σ ∞.

Theorem 1.6 Suppose that σ is alternating and let l be the minimal number such that
|∂ B(l)| ≥ |σ |. For every cylinder event E, the limit

νσ (E) = lim
n→∞Pcr (E | B(l)↔σ ∂ B(n)) (1.9)

123



Outlets of 2D invasion percolation and multiple-armed incipient infinite clusters 263

exists. For the unique extension of νσ to a probability measure on the configurations
of open and closed edges,

νσ (B(l)↔σ ∞) = 1.

We call the resulting measure νσ the σ -incipient infinite cluster measure.

Remark 6 Note that Kesten’s IIC measure corresponds to the case σ = {open} with
l = 0. One can check that Kesten’s original proof [12] also works for the case σ =
{open, open}. We use this second IIC measure in Theorem 1.8.

Remark 7 The proof we present of Theorem 1.6 can be easily modified to give the
existence of IICs for σ ’s which either do not contain neighboring open paths or do
not contain neighboring closed paths (here we take the first and last elements of σ to
be neighbors). In particular, it works for any 3-arm IIC and for monochromatic IICs.
In the case when there are neighboring open paths (but no neighboring closed paths)
one needs to change the proof by considering closed circuits with defects instead of
open circuits.

Define O = {êk : k ≥ 1}, the set of outlets of the invasion and let B be the
backbone, i.e., those vertices which are connected in the IPC of the origin by two
disjoint paths, one to the origin and one to∞. For any vertex v, define the shift oper-
ator θv on configurations ω so that for any edge e, θv(ω)(e) = ω(e − v), where
e − v = 〈ex − v, ey − v〉. For any event E , define

θv E = {θv(ω) : ω ∈ E},

and if K is a set of edges in E
2, define

EK = {K ⊂ S}, θvK = {e ∈ E
2 : e − v ∈ K}, and �v EK = {θvK ⊂ S}.

For an edge e, let ρe be the rotation of the lattice around the origin that maps e− ex

to 〈(0, 0), (1, 0)〉. We define the operator θe on configurations ω so that for any edge
f , θe(ω)( f ) = ω(ρe( f − ex )). We define θe E, θeK, and �e EK similarly. Let E ′K be
the event that K is contained in the cluster of the origin. We recall [10, Theorem 3],
which states that asymptotically the distribution of invaded edges near a vertex v is
given by the IIC measure.

Theorem 1.7 Let E be an event which depends on finitely many values ωpc (·) and let
K ⊂ E

2 be finite.

lim|v|→∞P(θv E | v ∈ S) = ν(E) and lim|v|→∞P(�v EK | v ∈ S) = ν(E ′K),

where the measure on the right is the IIC measure.

We are interested in the distribution of invaded edges near the backbone (Theo-
rem 1.8) or near an outlet (Theorem 1.9). While the analysis of the distribution of the

123



264 M. Damron, A. Sapozhnikov

invaded edges near the backbone is very similar to the proof of Theorem 1.7, the study
of the distribution of the invaded edges near an outlet is more involved. Define ν̃2,0

to be the measure constructed in the same way as ν2,0 except that we condition that
the origin is connected to ∂ B(n) by two disjoint open paths and take n to∞. Define
ν̃2,2 similarly, but by conditioning that the endpoints of the edge e0 = 〈(0, 0), (1, 0)〉
are connected to ∂ B(n) by two disjoint open paths and that the endpoints of e∗0 are
connected to ∂ B(n)∗ by two disjoint closed dual paths and taking n to∞. Obvious
modifications of Theorem 1.6 hold for these measures.

Theorem 1.8 Let E be an event which depends on finitely many values ωpc (·) and let
K ⊂ E

2 be finite.

lim|v|→∞P(θv E | v ∈ B) = ν̃2,0(E) and lim|v|→∞P(�v EK | v ∈ B) = ν̃2,0(E ′K).

Proof Similar to the proof of [10, Theorem 3]. ��
Theorem 1.9 Let E be an event which depends on finitely many values ωpc (·) (but
not on ωpc (e0)), and let K be a finite set of edges such that e0 /∈ K.

lim|e|→∞P(θe E | e ∈ O) = ν̃2,2(E) and lim|e|→∞P(�e EK | e ∈ O) = ν̃2,2(E ′K).

1.4 Structure of the paper

We define the correlation length and state some of its properties in Sect. 2. We prove
Theorems 1.1 and 1.2 in Sects. 3 and 4, respectively. The proofs of Theorems 1.3–1.5
are in Sect. 5: the proof of Theorem 1.3 is in Sect. 5.1; the proofs of Theorem 1.4 and
Corollary 1.1 are in Sect. 5.2; and the proof of Theorem 1.5 is in Sect. 5.3. We prove
Theorem 1.6 in Sect. 6 and Theorem 1.9 in Sect. 7. For the notation in Sects. 3–7 we
refer the reader to Sect. 1.2.

2 Correlation length and preliminary results

In this section we define the correlation length that will play a crucial role in our
proofs. The correlation length was introduced in [2] and further studied in [13].

2.1 Correlation length

For m, n positive integers and p ∈ (pc, 1] let

σ(n, m, p) = Pp(there is an open horizontal crossing of [0, n] × [0, m]).

Given ε > 0 and p > pc, we define

L(p, ε) = min{n : σ(n, n, p) ≥ 1− ε}. (2.1)
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L(p, ε) is called the finite-size scaling correlation length and it is known that L(p, ε)

scales like the usual correlation length (see [13]). It was also shown in [13] that the
scaling of L(p, ε) is independent of ε given that it is small enough, i.e. there exists
ε0 > 0 such that for all 0 < ε1, ε2 ≤ ε0 we have L(p, ε1) � L(p, ε2). For simplicity
we will write L(p) = L(p, ε0) for the entire paper. We also define

pn = sup{p : L(p) > n}.

It is easy to see that L(p)→∞ as p → pc and L(p)→ 0 as p → 1. In particular,
the probability pn is well-defined. It is clear from the definitions of L(p) and pn and
from the RSW theorem that, for positive integers k and l, there exists δk,l > 0 such
that, for any positive integer n and for all p ∈ [pc, pn],

Pp(there is an open horizontal crossing of [0, kn] × [0, ln]) > δk,l

and

Pp(there is a closed horizontal dual crossing of ([0, kn] × [0, ln])∗) > δk,l .

By the FKG inequality and a standard gluing argument [9, Section 11.7] we get that,
for positive integers n and k ≥ 2 and for all p ∈ [pc, pn],

Pp(Ann(n, kn) contains an open circuit around the origin) > (δk,k−2)
4

and

Pp(Ann(n, kn)∗ contains a closed dual circuit around the origin) > (δ2k,k−1)
4.

2.2 Preliminary results

For any positive l we define log(0) l = l and log( j) l = log(log( j−1) l) for all j ≥ 1,
as long as the right-hand side is well defined. For l > 10, let

log∗ l = min{ j > 0 : log( j) l is well-defined and log( j) l ≤ 10}. (2.2)

Our choice of the constant 10 is quite arbitrary, we could take any other large enough
positive number instead of 10. For l > 10, let

pl( j) =

⎧
⎪⎨

⎪⎩

inf
{

p > pc : L(p) ≤ l
C∗ log( j) l

}
if j ∈ (0, log∗ l),

pc if j ≥ log∗ l,
1 if j = 0.

(2.3)

The value of C∗ will be chosen differently in each proof. For any C∗, notice that there
exists a universal constant L0(C∗) > 10 such that pl( j) are well-defined if l > L0(C∗)
and non-increasing in l. The last observation follows from monotonicity of L(p) and
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the fact that the functions l/ log( j) l are non-decreasing in l for j ∈ (0, log∗ l) and
l ≥ 3.

We give the following results without proofs.

1. ([10, (2.10)]) There exists a universal constant D1 such that, for every l > L0(C∗)
and j ∈ (0, log∗ l),

C∗ log( j) l ≤ l

L(pl( j))
≤ D1C∗ log( j) l. (2.4)

2. ([13, Theorem 2]) There is a constant D2 such that, for all p > pc,

θ(p) ≤ Pp [0↔ ∂ B(L(p))] ≤ D2Pcr [0↔ ∂ B(L(p))] , (2.5)

where θ(p) = Pp(0→∞) is the percolation function for Bernoulli percolation.
3. ([17, Section 4]) There is a constant D3 such that, for all n ≥ 1,

Ppn (B(n)↔∞) ≥ D3. (2.6)

4. ([13, (3.61)]) There is a constant D4 such that, for all positive integers r ≤ s,

Pcr (0↔ ∂ B(s))

Pcr (0↔ ∂ B(r))
≥ D4

√
r

s
. (2.7)

5. There exist positive constants D5 and D6 such that, for all p > pc,

Pp(Bn) ≤ D5 exp

{

−D6
n

L(p)

}

. (2.8)

It follows, for example, from [10, (2.6) and (2.8)] (see also [18, Lemma 37 and
Remark 38]).

6. ([18, Proposition 34]) Fix e = 〈(0, 0), (1, 0)〉, and let A2,2
n be the event that ex and

ey are connected to ∂ B(n) by open paths, and e∗x and e∗y are connected to ∂ B(n)∗
by closed dual paths. Note that these four paths are disjoint and alternate. Then

(pn − pc)n
2
Pcr (A2,2

n ) � 1, n ≥ 1. (2.9)

3 Proof of Theorem 1.1

We give the proof for the case k = 2. The proof for k ≥ 3 is similar to the proof for
k = 2, and we omit the details. Note that [13, Theorem 2] it is sufficient to prove that

P(τ̂2 < p) � (log L(p))Pcr (0↔ ∂ B(L(p))). (3.1)
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We first prove the upper bound. We partition the box B(L(p)) into �log L(p)� disjoint
annuli:

P(τ̂2 < p) ≤ P(R̂1 ≥ L(p))

+
�log L(p)�∑

k=0

P

(

τ̂2 < p; R̂1 ∈
[

L(p)

2k+1 ,
L(p)

2k

))

.

We show that there is a universal constant C1 such that for any p > pc and m ≤
L(p)/2,

P

(
τ̂2 < p; R̂1 ∈ [m, 2m]

)
≤ C1Pcr (0↔ ∂ B(L(p))) . (3.2)

From [20], P(R̂1 ≥ L(p)) ≤ C2Pcr (0↔ ∂ B(L(p))). Therefore the upper bound
in (3.1) will immediately follow from (3.2). We partition the event {τ̂2 < p; R̂1 ∈
[m, 2m]} according to the value of τ̂1:

log∗ m∑

j=1

P

(
τ̂2 < p; R̂1 ∈ [m, 2m]; τ̂1 ∈ [pm( j), pm( j − 1))

)
. (3.3)

Note that if the event {R̂1 ≥ m, τ̂1 ∈ [pm( j), pm( j − 1))} occurs then (a) there is
a pm( j − 1)-open path from the origin to ∂ B(m), and (b) the origin is surrounded
by a pm( j)-closed circuit of diameter at least m in the dual lattice. Also note that
if the event {τ̂2 < p, R̂1 ≤ 2m} occurs then there is a p-open path from B(2m) to
∂ B(L(p)).

From the above observations, it follows that the sum (3.3) is bounded from above
by

log∗ m∑

j=1

P

(

0
pm ( j−1)←→ ∂ B(m); B(2m)

p←→ ∂ B(L(p)); Bm,pm ( j)

)

.

The FKG inequality and independence give an upper bound of

log∗ m∑

j=1

Ppm ( j−1)(0↔ ∂ B(m))Pp(B(2m)↔ ∂ B(L(p)))Ppm ( j)(Bm).

It follows from (2.4) and (2.8) that Ppm ( j)(Bm) ≤ C3(log( j−1) m)−C4 for some C3
and C4, where C4 can be made arbitrarily large given that C∗ is made large enough.
Inequalities (2.7) and (2.5) give

Ppm ( j−1)(0↔ ∂ B(m)) ≤ C5(log( j−1) m)
1
2 Pcr (0↔ ∂ B(m)),
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and (2.5) and the RSW Theorem give

Pp(B(2m)↔ ∂ B(L(p))) ≤ C6Pcr (B(2m)↔ ∂ B(L(p))).

Also, the RSW Theorem and the FKG inequality imply that

Pcr (0↔ ∂ B(m))Pcr (B(2m)↔ ∂ B(L(p))) ≤ C7Pcr (0↔ ∂ B(L(p))).

Therefore, we obtain that the probability P

(
τ̂2 < p; R̂1 ∈ [m, 2m]

)
is bounded from

above by

C8Pcr (0↔ ∂ B(L(p)))

log∗ m∑

j=1

(log( j−1) m)−C4+1/2.

As in [10, (2.26)], one can easily show that, for C4 > 1,

log∗ m∑

j=1

(log( j−1) m)−C4+1/2 < C9.

The upper bound in (3.1) follows.
We now prove the lower bound in (1.1). For p > pc and a positive integer m <

L(p)/2, we consider the event Cm,p that there exists an edge e ∈ Ann(m, 2m) such
that

– τe ∈ (pc, pm);
– there exist two pc-open paths in B(2L(p))\{e}, one connecting the origin to one of

the endpoints of e, and another connecting the other endpoint of e to the boundary
of B(2L(p));

– there exists a pm-closed dual path P in Ann(m, 2m)∗ \ {e∗} connecting the end-
points of e∗ such that P ∪ {e∗} is a circuit around the origin;

– there exists a pc-open circuit around the origin in Ann(L(p), 2L(p));
– there exists a p-open path connecting B(L(p)) to infinity.

See Fig. 1 for an illustration of the event Cm,p. It can be shown similarly to [4,
Corollary 6.2] that

P(Cm,p) ≥ C10Pcr (0↔ ∂ B(L(p))),

where we also use the fact that Pp(B(L(p)) ↔ ∞) > C11 [see (2.6)]. It remains to
notice that for fixed p, the events C�L(p)/2k�,p are disjoint and each of them implies
the event {τ̂2 < p}. Therefore,

P(τ̂2 < p) ≥
�log L(p)�−1∑

k=0

P(C�L(p)/2k�,p) ≥ C10�log L(p)�Pcr (0↔ ∂ B(L(p))).
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Outlets of 2D invasion percolation and multiple-armed incipient infinite clusters 269

Fig. 1 The event Cm,p . The boxes, in order from smallest to largest, are B(m), B(2m), B(L(p)), and
B(2L(p)). The dotted path is pm -closed, the path to infinity is pm -open, and all other paths are pc-open

4 Proof of Theorem 1.2

The case k = 1 is considered in [20, Theorem 2]. We give the proof for k = 2. The
proof for k ≥ 3 is similar to the proof for k = 2, and we omit the details.

We first prove the upper bound. By the RSW Theorem, it is sufficient to bound the
probability P(|V̂2| ≥ 2n2πn). We partition this probability according to the value of
the radii R̂1 and R̂2, defined in Sect. 1.2. Without loss of generality we can assume
that n = 2N .

P(|V̂2| ≥ 2n2πn) ≤ P(R̂2 ≥ n)

+
N∑

m=1

m∑

k=1

P

(
|V̂2|≥2n2πn; R̂1 ∈ [2k−1, 2k); R̂2 ∈ [2m−1, 2m)

)
.

It follows from [4] that P(R̂2 ≥ n) � (log n)πn . We now consider the second term.
We decompose the probability of the event

En,k,m =
{
|V̂2| ≥ 2n2πn; R̂1 ∈ [2k−1, 2k); R̂2 ∈ [2m−1, 2m)

}

according to the values of τ̂1 and τ̂2:

log∗ 2k
∑

i=1

log∗ 2m
∑

j=1

P
(
En,m,k; τ̂1 ∈ [p2k (i), p2k (i−1)); τ̂2∈[p2m ( j), p2m ( j−1))

)
. (4.1)
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We consider the event Dn,k,m that the number of vetices in the annulus Ann(2k, 2m)

connected to B(2k) inside Ann(2k, 2m) is at least n2πn . If the vertices in the definition
of Dn,k,m are connected to B(2k) by p-open paths, we denote the corresponding event
by Dn,k,m(p). We also consider the event Dn,k that the number of vertices in the box
B(2k) connected to the boundary ∂ B(2k) is at least n2πn . If the vertices in the defini-
tion of Dn,k are connected to ∂ B(2k) by p-open paths, we denote the corresponding
event by Dn,k(p). The probability of a typical summand in (4.1) can be bounded from
above by

P

(

B2k−1,p2k (i); B2m−1,p2m ( j); 0
p2k (i−1)←→ ∂ B(2k); B(2k)

p2m ( j−1)←→ ∞;
Dn,k,m(p2m ( j − 1)) ∪ Dn,k(p2k (i − 1))

)

,

where we use the fact that τ̂1 > τ̂2 a.s.
We use the FKG inequality and independence to estimate the above probability. It

is no greater than

P

(
B2k−1,p2k (i); B2m−1,p2m ( j)

)
Pp2k (i−1)

(
0↔ ∂ B(2k)

)
Pp2m ( j−1)

×
(

B(2k)↔∞; Dn,k,m

)
(4.2)

+P

(
B2k−1,p2k (i); B2m−1,p2m ( j)

)
Pp2k (i−1)

(
0↔ ∂ B(2k); Dn,k

)
Pp2m ( j−1)

×
(

B(2k)↔∞
)

. (4.3)

The probability P(B2k−1,p2k (i); B2m−1,p2m ( j)) is bounded from above by [4, (6.6)]

C1(log(i−1) 2k)−C2(log( j−1) 2m)−C2 ,

where the constant C2 can be made arbitrarily large given C∗ is made large enough.
We first estimate (4.2). It follows from (2.7) that

Pp2k (i−1)

(
0↔ ∂ B(2k)

)
≤ C3(log(i−1) 2k)1/2

Pcr (0↔ ∂ B(2k))

≤ C4(log(i−1) 2k)1/2(log( j−1) 2m)1/2

× Pcr (0↔ ∂ B(2m))

Pp2m ( j−1)(B(2k)↔∞)
.

Substitution gives the following upper bound for (4.2):

Pcr (0↔ ∂ B(2m))C1C4(log(i−1) 2k log( j−1) 2m)−C2+1/2
Pp2m ( j−1)

×(Dn,k,m | B(2k)↔∞).

We now estimate (4.3). It follows from the FKG inequality and (2.7) that

Pp2k (i−1)

(
0↔ ∂ B(2k)

)
≤ C5(log(i−1) 2k)1/2

Pcr

(
0↔ ∂ B(2k)

)
.
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Substitution gives the following upper bound for (4.3):

Pcr (0↔ ∂ B(2k))C1C5(log(i−1) 2k log( j−1) 2m)−C2+1/2
Pp2k (i−1)

×(Dn,k | 0↔ ∂ B(2k)).

Therefore, the sum (4.1) is bounded from above by

C6Pcr (0↔ ∂ B(2m))

log∗ 2k
∑

i=1

log∗ 2m
∑

j=1

(log(i−1) 2k log( j−1) 2m)−C2+1/2
Pp2m ( j−1)

×(Dn,k,m | B(2k)↔∞)

+C6Pcr (0↔ ∂ B(2k))

log∗ 2k
∑

i=1

log∗ 2m
∑

j=1

(log(i−1) 2k log( j−1) 2m)−C2+1/2
Pp2k (i−1)

×(Dn,k | 0↔ ∂ B(2k)).

Note that [10, (2.26)] if C2 > 1/2, then there exists C7 > 0 such that for all k,

log∗ 2k
∑

i=1

(log(i−1) 2k)−C2+1/2 ≤ C7 <∞.

Also note that analogously to [20, Lemma 4] one can show that there exist C8 − C11
such that, for all p > pc,

Pp(Dn,k,m | B(2k)↔∞) ≤ C8 exp

{

−C9
n2πn

22mπ(2m, p)

}

and

Pp(Dn,k | 0↔ ∂ B(2k)) ≤ C10 exp

{

−C11
n2πn

22kπ(2k, p)

}

,

where πn and π(n, p) are defined in Sect. 1.2. In particular,

Pp2m ( j−1)(Dn,k,m | B(2k)↔∞) ≤ C8 exp

{

−C9
n2πn

22mπ(2m, p2m ( j − 1))

}

≤ C8 exp

{

−C12
n2πn

22mπ2m
(log( j−1) 2m)−1/2

}

,
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and, similarly,

Pp2k (i−1)(Dn,k | 0↔ ∂ B(2k)) ≤ C10 exp

{

−C11
n2πn

22kπ(2k, p2k (i − 1))

}

≤ C10 exp

{

−C13
n2πn

22kπ2k
(log(i−1) 2k)−1/2

}

.

Therefore, the sum
∑N

m=1
∑m

k=1 P(En,k,m) is not bigger than

C14(log n)πn

N∑

m=1

π2m

πn

log∗ 2m
∑

j=1

(log( j−1) 2m)−C2+1/2

× exp

{

−C12
n2πn

22mπ2m
(log( j−1) 2m)−1/2

}

+C14(log n)πn

N∑

k=1

π2k

πn

log∗ 2k
∑

i=1

(log(i−1) 2k)−C2+1/2

× exp

{

−C13
n2πn

22kπ2k
(log(i−1) 2k)−1/2

}

, (4.4)

where log n comes from the fact that
∑m

k=1 1 = m ≤ N = log n. Finally, it follows
from [20, p. 419] that

N∑

m=1

π2m

πn

log∗ 2m
∑

j=1

(log( j−1) 2m)−C2+1/2 exp

{

−C12
n2πn

22mπ2m
(log( j−1) 2m)−1/2

}

≤ C15 <∞.

A similar bound holds for the summand (4.4). The proof for the second inequality in
(1.2) is completed.

We now prove the first inequality in (1.2). For m ≤ N , let Cn,m be the event that
there exists an edge in Ann(2m−1, 2m) such that

– its weight τe ∈ (pc, p2m );
– there exist two disjoint pc-open paths, one connecting an end of e to the origin,

and one connecting the other end of e to ∂ B(2n);
– there exist a p2m -closed dual path connecting the endpoints of e∗ in Ann(2m−1,

2m)∗;
– there exists a pc-open circuit in Ann(n, 2n).

It can be shown similarly to [4, Corollary 6.2] that P(Cn,m) � πn . We also note
that the events Cn,m are disjoint and each of them implies the event {R̂2 ≥ n}.
Using the arguments from the proof of [4, Corollary 6.2], it follows that, for any
x ∈ Ann(2N−1, n) =: An and 1 ≤ m ≤ N − 2,

P(x
pc←→ ∂ B(2n) |Cn,m) ≥ C16πn,
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from which we conclude that

E(|(V̂1 ∪ V̂2) ∩ An| |Cn,m) ≥ C17n2πn . (4.5)

We will show later that, for 1 ≤ m ≤ N − 2,

E(|(V̂1 ∪ V̂2) ∩ An|2 |Cn,m) ≤ C18

(
E(|(V̂1 ∪ V̂2) ∩ An| |Cn,m)

)2
. (4.6)

If (4.6) holds, the second moment estimate gives that, for some C19 > 0,

P(|V̂1 ∪ V̂2| ≥ C19n2πn;Cn,m) ≥ C19P(Cn,m) ≥ C20πn .

Therefore

P(|V̂1 ∪ V̂2| ≥ C19n2πn; R̂2 ≥ n) ≥
N−2∑

m=1

P

(
|V̂1 ∪ V̂2| ≥ C19n2πn;Cn,m

)

≥ C20(N − 2)πn .

In particular, using (2.7), we obtain P(|V̂1 ∪ V̂2| ≥ n2πn) ≥ C21(log n)πn . Recall
that P(|V̂1| ≥ n2πn) � πn . It immediately gives the inequality P(|V̂2| ≥ n2πn) ≥
C22(log n)πn .

It remains to prove (4.6). Note that

E(|(V̂1 ∪ V̂2) ∩ An|2 |Cn,m) =
∑

x,y∈An

P(x, y ∈ V̂1 |Cn,m)

+
∑

x,y∈An

P(x, y ∈ V̂2 |Cn,m), (4.7)

where we use the fact that, by construction, V̂1 and V̂2 cannot both intersect An . We
estimate the two sums on the r.h.s. separately. We only consider the first sum. The other
sum is treated similarly. We decompose the probability P(x, y ∈ V̂1;Cn,m) according
to the value of τ̂1:

log∗ n∑

j=1

P(x, y ∈ V̂1;Cn,m; τ̂1 ∈ [pn( j), pn( j − 1))).

Using arguments as in the first part of the proof of this theorem, the above sum is
bounded from above by
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log∗ n∑

j=1

P

⎛

⎜
⎝

0
pc←→ ∂ B(2m−1); B(2m)

pc←→ ∂ B(2N−2);
x

pn( j−1)←→ ∂ B(x, 2N−2); y pn( j−1)←→ ∂ B(y, 2N−2);
Bn,pn( j)

⎞

⎟
⎠

≤ Pcr (0↔ ∂ B(2m−1))Pcr (B(2m)↔ ∂ B(2N−2))

×
log∗ n∑

j=1

Ppn( j)(Bn)Ppn( j−1)(x ↔ ∂ B(x, 2N−2); y ↔ ∂ B(y, 2N−2)).

Again, using tools from the first part of the proof of this theorem (see also the proof
of Theorem 1.5 in [4]), the above sum is no greater than

C23Pcr (0↔ ∂ B(n))Pcr (x ↔ ∂ B(x, 2N−2); y ↔ ∂ B(y, 2N−2)).

Similar arguments apply to the second sum in (4.7). Since P(Cm,n) � πn , we get

E(|(V̂1 ∪ V̂2) ∩ An|2 |Cn,m)

≤ C24

∑

x,y∈An

Pcr

(
x ↔ ∂ B(x, 2N−2), y ↔ ∂ B(y, 2N−2)

)
.

The last sum is bounded from above by C25n4π2
n (see, e.g., the proof of Theorem 8

in [12]), which along with (4.5) gives (4.6).

5 Proof of Theorems 1.3–1.5

5.1 Proof of Theorem 1.3

We will use the following lemma. For m, n ≥ 1, and p ∈ [0, 1], let N (m, n, p)

be the number of edges e in the annulus Ann(n, 2n) such that (a) e is connected to
∂ B(ex , m) by two disjoint p-open paths, (b) e∗ is connected to ∂ B(ex , m)∗ by two
disjoint pc-closed paths, (c) the open and closed paths are disjoint and alternate, and
(d) τe ∈ [pc, p].
Lemma 5.1 Let m be such that m ≤ L(p) and m ≤ n. There exists C1 such that for
all t, n,

E(N (m, n, p)t ) ≤ t !
(

C1
n

m

)2t
. (5.1)

Proof The proof is very similar to the proof of the upper bound in [12, Theorem 8],
where we need to use [4, Lemma 6.3] to deal with p-open paths. We omit the details.

��
To continue the proof of Theorem 1.3, define for n ≥ 1 and k with 0 ≤ k ≤ log∗ n,

the event

Hn,k =
{

There exists a pn(k)− open circuit in Ann(n/4, n/2)

which is connected to infinity by a pn(k)− open path.

}

, (5.2)
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where pn(k) is defined in (2.3). Let us decompose the t th moment of O(n, 2n) accord-
ing to the events Hn,k . By (2.4) and (2.8), there exists C2, C3 such that for all n, k,

P(Hc
n,k) ≤ C2(log(k−1) n)−C∗C3 . (5.3)

Writing nk = n
C∗ log(k) n

and using the Cauchy-Schwarz inequality for 1 < k < log∗ n,

E(O(n, 2n)t ; Hn,k, Hc
n,k+1) ≤ (E(N (nk, n, pn(k)))2t )1/2(P(Hc

n,k+1))
1/2

≤ ((2t)!)1/2(C1C∗ log(k) n)2t C1/2
2 (log(k) n)−

C∗C3
2

= (C2(2t)!)1/2(C∗C1)
2t (log(k) n)

4t−C∗C3
2 .

Choosing C∗ = 4t+2
C3

, this becomes

(C2(2t)!)1/2
(

(4t + 1)C1

C3

)2t

(log(k) n)−1 ≤ (C4t)3t (log(k) n)−1

for some C4. For the case k = 0, we have

E(O(n, 2n)t ; Hc
n,1) ≤ n2t

P(Hc
n,1) ≤

C2

n
≤ C2.

If we sum over k and bound
∑(log∗ n)−1

k=1 (log(k) n)−1 independent of n as in [10, (2.26)],
we get

E(O(n, 2n)t ) ≤ (Ct)3t .

��

5.2 Proof of Theorem 1.4

Proof of upper bound Consider the event A that, for all large n, for all 1 ≤ i ≤ n,
the annulus Ann(2i , 2i+c log n) contains a pc-open circuit around the origin. Note that
P(A) = 1 for large enough c. We assume that c is an integer. Then 2c log n = nc is an
integer too.

In the annulus Ann(2i , 2i+2c log n+1), we define the graph Gn
i as follows. Let U be

the union of pc-open clusters in Ann(2i , 2i+2c log n+1) attached to ∂ B(2i+2c log n+1).
In particular, we assume that all the sites in ∂ B(2i+2c log n+1) are in U . If U contains
a path from B(2i ) to ∂ B(2i+2c log n+1), we define Gn

i as U . Otherwise, we consider
the invasion percolation cluster I in Ann(2i , 2i+2c log n+1) of the invasion percolation
process with G0 = B(2i ) (that is B(2i ) is assumed to be invaded at step 0) terminated
at the first time a site from U is invaded, and define Gn

i as I ∪ U . We say that an edge
e is disconnecting for Gn

i , if the graph Gn
i \ {e} does not contain a path from B(2i ) to

∂ B(2i+2c log n+1).
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Let Xn
i be the number of disconnecting edges for Gn

i in Ann(2i+c log n, 2i+c log n+1).
Note that if the event A occurs then, for all large n, Xn

i dominates O(2i+c log n,

2i+c log n+1), the number of outlets of the IPC S of the origin in Ann(2i+c log n,

2i+c log n+1). Moreover, for any i < �3c log n�, (Xn
i+k�3c log n�)

�n/3c log n�−1
k=0 are inde-

pendent and the reader can verify that the proof of Theorem 1.3 is valid when the
number of outlets is replaced with Xn

i . Therefore, there exist constants λ > 0 and
C5 <∞ so that, for all n and i ,

E exp
(
λ
(
Xn

i

)1/3
)

< C5.

Let Yi be a sequence of independent integer-valued random variables with P(Yi >

n) = min{1, C5e−λn1/3}. Then, for any i < �3c log n�, (Xn
i+k�3c log n�)

�n/3c log n�−1
k=0 is

stochastically dominated by (Yk)
�n/3c log n�−1
k=0 . In particular,

P

(
n∑

i=1

Xn
i > C6n

)

≤ 3c log nP

⎛

⎝
�n/3c log n�−1∑

i=1

Yi > C6n/3c log n

⎞

⎠

≤ C7 log n exp(−C8nC9).

The last inequality follows, for example, from [15]. Therefore, a.s., for all large n,∑n
i=1 Xn

i ≤ C6n.
Note that, if the event A occurs, then, for all large n,

O(2c log n, 2n) ≤
n∑

i=1

Xn
i ≤ C6n.

Finally, since the event A occurs with probability one,

O(2n) ≤ O(2c log n, 2n)+ O(2c log(c log n), 2c log n)+ |B(2c log(c log n))| ≤ C10n.

��
Proof of lower bound For i ≥ 1, let Gi be the event that there is no p2i -closed dual
circuit around the origin with radius larger than 2i+log i , and let G be the event that
Gi occurs for all but finitely many i . It is easy to see [using inequality (2.8)] that
P(G) = 1.

For i ≥ 1, let Ki be the event that (a) there exists a p2i -closed dual circuit C around
the origin in Ann(2i , 2i+1)∗, (b) there exists a pc-open circuit C′ around the origin in
Ann(2i , 2i+1) and (c) the circuit C′ is connected to ∂ B(2i+log i ) by a p2i -open path.
See Fig. 2 for an illustration of the event Gi ∩ Ki . Note that C′ is in B(2i+1)∩ ext (C).
By RSW theorem and (2.6),

P(Ki ) > C11 > 0,
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Fig. 2 The event Gi ∩Ki . The boxes, in order from smallest to largest, are B(2i ), B(2i+1), and B(2i+log i ).
Because there is no p2i -closed circuit around the origin of radius larger than 2i+log i , the p2i -open path

which connects ∂ B(2i+log i ) to the circuit in Ann(2i , 2i+1) must be connected to∞ by a p2i -open path

for some C11 that does not depend on i . Fix an integer n, and let j be an integer
between 1 and log n. We consider events K j

i = K j+i log n . Note that, for any fixed j ,

the events (K j
i )

(�n/ log n�)−1
i=0 are independent.

Let X j
i = I

K j
i
. Recall that P(X j

i = 1) > C11. We need the following lemma. Its

proof is standard, so we omit it.

Lemma 5.2 Let c > 0. There exist α > 0 and β < 1 depending on c with the follow-
ing property. If Xi are independent 0/1 random variables (not necessarily identically
distributed) with P(Xi = 1) > c for all i , then for all n,

P

(
n∑

i=1

Xi < αn

)

< βn .

It follows that there exist α > 0 and β < 1 such that for any n and 1 ≤ j ≤ log n

P

⎛

⎝
�n/ log n�−1∑

i=0

X j
i <

αn

log n

⎞

⎠ < βn/ log n .

Therefore,

P

⎛

⎝
log n∑

j=1

�n/ log n�−1∑

i=0

X j
i < αn

⎞

⎠

≤ P

⎛

⎝
�n/ log n�−1∑

i=0

X j
i < αn/ log n for some j ∈ [1, log n]

⎞

⎠ ≤ log nβn/ log n .
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In particular, it follows from Borel–Cantelli’s lemma that, with probability one, for
all large n,

n∑

i=1

IKi ≥ αn.

Finally, observe that the event G occurs with probability one, and the event Gi ∩ Ki

implies that there exists an outlet in Ann(2i , 2i+1). The lower bound in (1.6) follows.
��

Proof of Corollary 1.1 The inequalities (1.7) follow immediately from those in
Theorem 1.4. Therefore we will only prove (1.8). First we show the upper bound.

Choose c5 from (1.7). Using (2.4) and (2.8), we can show that if C∗ is made suffi-
ciently large, then with probability one, for all large n, after the invasion has reached
∂ B(n), the weight of each further accepted edge is no larger than pn(1), where pn(1)

is defined in (2.3). Therefore, for all large k,

τ̂k − pc ≤ p(c5)
k (1)− pc.

Since there exists C12, C13 > 0 such that for all n, pn(1)− pc ≤ C12n−C13 [use (2.9)]
and the fact that the 4-arm exponent is strictly smaller than 2 (see, e.g., Section 6.4 in
[21]), we have

τ̂k − pc ≤ C12(c5)
−C13k,

proving the upper bound. To show the lower bound, choose c6 from (1.7). For a < 1,
we obtain

P(τ̂k < pc + ak, R̂k < (c6)
k) ≤ P(B((c6)

k)
pc+ak

←→ ∞)

≤ C14Pcr (B((c6)
k)↔ ∂ B(L(pc + ak)))

≤ C15

(
(c6)

k

a−C16k

)C17

≤ C18e−C19k,

for constants C14−C19, where the last inequality holds for small enough a. The second
inequality follows from (2.5). The third one follows from, for example, [9, eq. 11.90]
and the fact that L(p) > (p− pc)

−δ for some δ > 0 (see, e.g., Cor. 1 and eq. 2.3 from
[13]). Borel–Cantelli’s lemma gives the lower bound of (1.8). ��

5.3 Proof of Theorem 1.5

Given any nonempty subinterval of (0, 1], we will show that with probability one,
(
τ̂k+1−pc
τ̂k−pc

) is in this subinterval for infinitely many k. We will use the following fact.
From [13, (4.35)] it follows that, for any a > 0,

L(pc + aδ) � L(pc + δ).
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Fig. 3 The event Dn . The boxes, from smallest to largest, are B(n), B(2n), B(4n), and B(8n). The edge
e1 is connected to both B(n) and ∂ B(4n). The edge e2 is connected to both B(4n) and infinity. The solid
curves represent occupied paths and the dotted curves represent vacant dual paths. In the figure, both e1
and e2 are outlets of the invasion

The constants above depend on a but do not depend on δ so long as δ is sufficiently
small.

Pick a nonempty interval [x, y] ⊂ (0, 1] and choose a, b > 0 such that

a < b and 1 ≤ bx < ay.

We consider the event Dn that there exist pc-open circuits around the origin in
the annulus Ann(n, 2n); and in the annulus A(4n, 8n), and there exist two edges,
e1 ∈ Ann(2n, 3n) and e2 ∈ Ann(8n, 9n) such that

– there is a pc-open path connecting one of the ends of e1 to B(n), and there is a
pc-open path connecting the other end of e1 to ∂ B(8n);

– there is a pc-open path connecting one of the ends of e2 to B(4n), and there is a
pn-open path connecting the other end of e2 to infinity;

– there is a (pc+b(pn− pc))-closed path P1 in the dual lattice inside Ann(2n, 3n)∗
connecting the ends of e∗1 such that P1 ∪ {e∗1} is a circuit around the origin;

– there is a (pc+ay(pn− pc))-closed path P2 in the dual lattice inside Ann(8n, 9n)∗
connecting the ends of e∗2 such that P2 ∪ {e∗2} is a circuit around the origin;

– the weight τe1 ∈ (pc + a(pn − pc), pc + b(pn − pc)), and the weight τe2 ∈
(pc + bx(pn − pc), pc + ay(pn − pc)).

See Fig. 3 for an illustration of the event Dn . By RSW arguments and [4, Lemma
6.3] (similar to the proof of [4, Corollary 6.2]), there exists a constant C20 > 0 which
depends on a, b, x, and y but not on n such that

P(Dn) ≥ C20. (5.4)

Since lim supn Dn does not depend on the states of finitely many edges, P(lim supn
Dn) ∈ {0, 1}. Assume that this probability is 0. Then there exists N (deterministic)
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such that

P(Dn occurs for some n ≥ N ) < C20/2.

But this probability is, in fact, at least P(DN ). This contradicts (5.4). Therefore

P(lim sup
n

Dn) = 1. (5.5)

Note that the event Dn implies that there exists k = k(n) such that e1 and e2
are respectively the kth and (k + 1)st outlets of the invasion. In particular, using the
above bounds for τe1 and τe2 , τ̂k+1−pc

τ̂k−pc
∈ [x, y]. Combining this with (5.5), we get

P(
τ̂k+1−pc
τ̂k−pc

∈ [x, y] for infinitely many k) = 1. This completes the proof.

6 Proof of Theorem 1.6

Since the proof is very similar to the proof of Theorem 3 in [12], we only sketch the
main ideas. From now on we fix σ ∈ {open, closed}2m , and assume that σ consists of
m ‘open’ and m ‘closed’.

The RSW theorem implies that there exists δ > 0 such that for all N ,

Pcr (there exists an occupied circuit in Ann(N , 2N )) ≥ δ.

Since events depending on the state of edges in disjoint annuli are independent, we
can find an increasing sequence Ni such that

αi = Pcr (there exists an occupied circuit in Ann(Ni , Ni+1))→ 1,

as i →∞. We fix the sequence Ni and write Ai for Ann(Ni , Ni+1).
Let C be a (self-avoiding) circuit in (Z2, E

2). We say that C is occupied with m
defects if all but m edges of C are occupied. Write F (m)

i for the event that there
exists an occupied circuit with m defects in Ai . On the event B(Ni ) ↔σ ∂ B(Ni+1),
define Fi (Ce1,...,em ) as the event that there exists an occupied circuit with m defects in
Ai around B(Ni ), and moreover, the innermost such circuit is C with defected edges
e1, . . . , em . Recall from Section 1.3.4 that the number l is defined so that |∂ B(l)| ≥ |σ |.
Let E be any event depending only on the state of edges in B(r) (where we assume
that r > l) and let i be such that r < Ni < Ni+1 < n. Then

Pcr (E∩{B(l)↔σ ∂ B(n)})=Pcr (E∩{B(l)↔σ ∂ B(n)}∩(F (m)
i )c)

+
∑

C⊂Ai

∑

e1,...,em∈C∩E2

Pcr (E∩{B(l)↔σ ∂ B(n)}∩Fi (Ce1,...,em )).

Let {B(l)↔σ Ce1,...,em } denote the event that B(l) is σ -connected to C so that the m
disjoint closed dual paths connect B(l)∗ to the edges e∗1, . . . , e∗m in the interior of C.
Similarly, let {Ce1,...,em ↔σ ∂ B(n)} denote the event that C is σ -connected to ∂ B(n)
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so that the m disjoint closed dual paths connect ∂ B(n)∗ to the edges e∗1, . . . , e∗m in the
exterior of C.

We now estimate the probability Pcr (E ∩{B(l)↔σ ∂ B(n)}∩ (F (m)
i )c). By Meng-

er’s theorem [6, Theorem 3.3.1], the event {B(l) ↔σ ∂ B(n)} ∩ (F (m)
i )c implies that

there exist (m + 1) disjoint closed crossings of the annulus Ai . We use Reimer’s
inequality [19] to conclude that the probability Pcr (E ∩{B(l)↔σ ∂ B(n)}∩ (F (m)

i )c)

is bounded from above by

Pcr (B(l)↔σ ∂ B(n))Pcr ( there exists a closed crossing of Ai )

≤ (1− αi )Pcr (B(l)↔σ ∂ B(n)).

We have just shown how a statement similar to (17) in [12] is obtained. An anal-
ogous statement to (18) in [12] is also valid. The remainder of the proof is similar to
the proof of Kesten [12], where in the proof of the statement analogous to Lemma 23
in [12] we use extensions of arm separation techniques from [18, Section 4]. We use
the following analogue of Kesten’s Lemma 23.

Lemma 6.1 Consider circuits C in annulus Ai , D in annulus Ai+3, sets of edges
e1, . . . , em on C and f1, . . . , fm on D respectively. Let P(C,D) be the probability,
conditional on the event that all edges in C\{e1, . . . , em} are open and e1, . . . , em are
closed, that (1) there are disjoint closed dual paths from e∗i to f ∗i , (2) there are m
disjoint open paths that connect C to D such that, for any two of them, there is a closed
dual path (one of the paths from (1)) between them, (3) D is the innermost open circuit
with defects f1, . . . , fm in annulus Ai+3, (4) there is an open circuit with m defects
in annulus Ai+2. (Dependence on the edges ei and fi is suppressed in the notation.)
We similarly define C′, D′, etc. There exists a finite constant C1 that may depend only
on m (it does not depend on particular choice of circuits or defects) such that

P(C,D)P(C′,D′)
P(C,D′)P(C′,D)

< C1.

To prove Lemma 6.1, we need the following extension of Kesten’s arm separa-
tion [13, Lemmas 4 and 5]. Let I be a fixed partition of ∂ B(1) (in R

2) into 2m
disjoint connected subsets Ii , each of diameter at least 1/(2m) (ordered clockwise).
Let I(s) be the corresponding partition of ∂ B(s) into 2m disjoint connected subsets
Ii (s) = sIi = {sx : x ∈ Ii }. Let I(n, n′) be the partition of Ann(n, n′) into 2m
disjoint connected subsets Ii (n, n′) = ∪n≤s≤n′Ii (s).

Lemma 6.2 (external arm separation) Let n0 and n be positive integers with n0 ≤
n − 3. We consider a circuit C in B(2n0) and a set of edges e1, . . . , em on C. Let
E(Ce1,...,em ) be the event that (1) the edges in C \{e1, . . . , em} are open and e1, . . . , em

are closed, (2) there are m disjoint closed dual paths from e∗j to ∂ B(2n)∗, (3) there are m
disjoint open paths from C to the boundary of B(2n) in (B(2n) \ int(C))\{e1, . . . , em}
such that these paths alternate with the closed paths defined in (2). Let Ẽ(Ce1,...,em ) be
the event that E(Ce1,...,em ) occurs with 2m paths P1, . . . , P2m (ordered clockwise, all
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paths with odd indices are closed, and the ones with even indices are open) satisfying
the requirement that, for all 1 ≤ i ≤ 2m, Pi ∩ Ann(2n−1, 2n) ⊂ Ii (2n−1, 2n). Then

P(E(Ce1,...,em )) ≤ C2P(Ẽ(Ce1,...,em )),

where the constant C2 may depend on m but not on n, n0, or the choice of circuit.

Remark 8 The event Ẽ is reminiscent of the event � in [13, p. 127 and Figure 8].

Remark 9 It is actually believed [7] and is the aim of ongoing work of Garban and
Pete that a much stronger statement holds: given any configuration inside B(2n0),
if we condition on the existence of m open paths and m closed dual paths from a
neighborhood of the origin to ∂ B(2n) and these paths are alternating, then they will be
well-separated (refer to [13] for this definition) on ∂ B(2n) with positive probability
independent of n and the configuration inside B(2n0).

Lemma 6.3 (internal arm separation) Let n and n1 be positive integers with n+3 ≤ n1.
Consider a circuit D in B(2n1)c and a set of edges f1, . . . , fm on D. Let F(D f1,..., fm )

be the event that (1) the edges in D\{ f1, . . . , fm} are open and f1, . . . , fm are closed,
(2) there are m disjoint closed dual paths from f ∗j to B(2n)∗, (3) there are m disjoint

open paths from D to B(2n) in int(D) such that these paths alternate with the closed
dual paths defined in (2). Let F̃(D f1,..., fm ) be the event that the event F(D f1,..., fm )

occurs with 2m paths P1, . . . , P2m (ordered clockwise, all paths with odd indices are
closed, and the ones with even indices are open) satisfying the requirement that, for
all 1 ≤ i ≤ 2m, Pi ∩ Ann(2n, 2n+1) ⊂ Ii (2n, 2n+1). Then

P(F(D f1,..., fm )) ≤ C3P(F̃(D f1,..., fm )),

where the constant C3 may depend on m but not on n, n1, or the choice of circuit.

The proofs of Lemmas 6.2 and 6.3 are similar, and we only give the proof of
Lemma 6.2 here. Moreover, parts of the proof of Lemma 6.2 are similar to the proof of
Lemma 4 in [13]. We will refer the reader to [13] for the proof of those parts. Before
we give the proof of Lemma 6.2, we show how to deduce Lemma 6.1 from the above
two lemmas. Using Lemmas 6.2, 6.3 and “gluing” arguments (see [13,18]), we prove

Lemma 6.4 For two circuits, C1 in annulus Ai and D1 in annulus Ai+2, sets of edges
e1, . . . , em on C1 and f1, . . . , fm on D1, if M(C1,D1) is the probability, conditioned
on the event that all edges in C1 \ {e1, . . . , em} and in D1 \ { f1, . . . , fm} are open and
e1, . . . , em, f1, . . . , fm are closed, that there are disjoint closed dual paths from e∗i to
f ∗i for all i , and there are m disjoint open paths from C1 to D1 in int(D1) \ int(C1),
which alternate with the closed dual paths defined above (and similar definitions for
C2 and D2), then

M(C1,D1)M(C2,D2)

M(C1,D2)M(C2,D1)
< C4,

for some constant C4 that does not depend on the particular choice of circuits or
defects. (Dependence on the edges ei and fi is suppressed in the notation.)
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Proof This lemma follows from Lemmas 6.2, 6.3, the RSW theorem (Section 11.7 in
[9]), and the generalized FKG inequality [13, Lemma 3]. For more details we refer
the reader to the proof of (2.43) in [13]. ��
Proof of Lemma 6.1 Consider circuits C1 in annulus Ai+2, D1 in Ai+3, sets of edges
g1, . . . , gm on C1 and h1, . . . , hm on D1 respectively. Let H(C1,D1) be the probability
of the event that (1) C1 is the outermost open circuit with defects g1, . . . , gm in annulus
Ai+2, (2) D1 is the innermost open circuit with defects h1, . . . , hm in annulus Ai+3,
(3) there are disjoint closed dual paths from g∗i to h∗i , and (4) there are m disjoint open
paths from C1 to D1 in int (D1) \ int (C1), which alternate with the closed dual paths
defined above. (Dependence on the edges gi and hi is suppressed in the notation.)

We write

P(C,D)P(C′,D′) =
∑

C1

M(C, C1)H(C1,D)
∑

C′1
M(C′, C′1)H(C′1,D′).

We then apply the previous lemma to C, C1, C′ and C′1. ��
Proof of Lemma 6.2 We only consider the case m = 2. The case m = 1 is simpler,
and the general case is similar to the case m = 2. Fix a circuit C in B(2n0) and edges
e, f on C, and assume that the event E(Ce, f ) occurs.

We define γ l
1 as the leftmost closed dual path from e∗ to ∂ B(2n0 + 1/2) in B(2n0 +

1/2) \ int(C), and γ r
1 as the rightmost closed dual path from e∗ to ∂ B(2n0 + 1/2) in

B(2n0+1/2)\ int(C). We denote the first vertex on ∂ B(2n0) to the left of γ l
1 as a1, and

the first vertex on ∂ B(2n0) to the right of γ r
1 as a2. Let γ l

2 be the leftmost open path
from the right end-vertex of e (using the clockwise ordering of vertices end edges on
C) to a2. This path is necessarily contained in B(2n0) \ int(C). Let γ r

4 be the rightmost
open path from the left end-vertex of e (using the clockwise ordering of vertices end
edges on C) to a1 in B(2n0) \ int(C). Similarly we define γ l

3, γ r
3 , a3, a4, γ l

4 and γ r
2 (see

Fig. 4).
For i ∈ {1, 2, 3, 4}, let Ti be the piece of ∂ B(2n0) between (and including) ai and

ai+1 that does not contain ai+2 or ai+3, where we use the convention ai = ai−4 for
i > 4. Note that it is possible that a2 = a3 (in which case T2 = {a2}) or a4 = a1 (in
which case T4 = {a4}); however, we necessarily have a1 �= a2 and a3 �= a4.

Let γi be the part of γ l
i ∪ γ r

i ∪ C that consists of the piece of γ l
i from the last

intersection with γ r
i ∪C, the piece of γ r

i from the last intersection with γ l
i ∪C, and the

piece of C that connects the first two pieces (if the pieces are disconnected). Note that
it is possible that γ2 or γ4 is a single point set on ∂ B(2n0), which happens if a2 = a3
or a4 = a1, respectively. Let Ri denote the connected subset of R

2 with the boundary
that consists of Ti and γi (see Fig. 4). Note that these sets are disjoint. Moreover, if γ2
or γ4 is a single point set ({a2} or {a4}, respectively), then R2 or R4 is the same single
point set. Let S := B(2n0)c ∪ R1 ∪ R2 ∪ R3 ∪ R4. Note that once γ1, γ2, γ3, and γ4
are fixed, the percolation process in S is still an independent Bernoulli percolation.

Let E(γ1, . . . , γ4) be the event that (1) γ1 and γ3 are connected to ∂ B(2n)∗ by closed
dual paths P1 and P3 in S, and (2) γ2 and γ4 are connected to ∂ B(2n) by open paths
P2 and P4 in S. Let Ẽ(γ1, . . . , γ4) be the event that E(γ1, . . . , γ4) occurs with paths
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Fig. 4 The event E(Ce1,...,em ) occurs if and only if γ1 and γ3 are connected by closed paths to ∂ B(2n)∗,
and γ2 and γ4 are connected by open paths to ∂ B(2n) in B(2n0 )c ∪ R1 ∪ R2 ∪ R3 ∪ R4

P1, . . . , P4 satisfying the requirement that, for all 1 ≤ i ≤ 4, Pi ∩ Ann(2n−1, 2n) ⊂
Ii (2n−1, 2n). Lemma 6.2 follows if there exists a constant C2 which does not depend
on n, n0, or the choice of γi ’s, such that

P(E(γ1, . . . , γ4)) ≤ C2P(Ẽ(γ1, . . . , γ4)). (6.1)

If T1, . . . , T4 are comparable in size, the proof of (6.1) is essentially the same as the
proof of Lemma 4 in [13]. If T1, . . . , T4 are of different scales, the proof of (6.1) is
similar in spirit to the proof of Lemma 4 in [13], but more involved. We indicate the
differences below. We first construct a family of disjoint annuli in four stages. We
define

li (1)=min{l : ∃x ∈ 2l
Z

2 ∩ ∂ B(2n0) s.t. B(x, 2l) ⊃ Ti }

if such l exists (the definition implies that it is no bigger than n0), and let Bi (1) =
B(xi (1), 2li (1)) be such a box. If there are several choices for the box, we pick the
first one in clockwise ordering. If there are no such l, we let li (1) = n0 + 1 and
Bi (1) = B(2n0+1) (in this case xi (1) = 0). The boxes B1(1), . . . , B4(1) form a cov-
ering of ∂ B(2n0) such that Bi (1) ⊃ Ti , and either xi (1) ∈ Ti or xi (1) = 0 (in which
case Bi (1) = B(2n0+1)). We also define

l̃i (1) = min{l ≥ li (1) : B(xi (1), 2l) ⊃ B j (1) for some j �= i}.
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Let Anni (1) = Ann(xi (1); 2li (1), 2l̃i (1)−3) = B(xi (1), 2l̃i (1)−3)\ Bi (1), if l̃i (1)−5 >

li (1); otherwise, let Anni (1) = ∅. Note that if li (1) ≥ li−1(1) or li (1) ≥ li+1(1), then
Anni (1) = ∅. In particular, if li (1) = n0 + 1, then Anni (1) = ∅. If Anni (1) �= ∅, we
let B̃i (1) = B(xi (1), 2l̃i (1)−3); otherwise, we let B̃i (1) = Bi (1). We write B̃i (1) =
B(xi (1), 2li (1)′). We observe that the boxes B̃i (1) form a covering of ∂ B(2n0), and
that there exists i such that |li+1(1)′ − li (1)′| ≤ 5, in other words, B̃i+1(1) and B̃i (1)

are comparable in size. This completes the first stage of our construction.
We proceed further by defining

li (2) = min{l : ∃x ∈ 2l
Z

2 ∩ ∂ B(2n0) s.t. B(x, 2l) ⊃ (B̃i (1) ∪ B̃i+1(1))}

if such l exists (it is necessarily not bigger than n0), and let Bi (2) = B(xi (2), 2li (2)) be
such a box (if there are several choices, we pick the first one in clockwise ordering).
If there are no such l, we let li (2) = n0 + 1 and Bi (2) = B(2n0+1) (in this case
xi (2) = 0). We also define

l̃i (2) = min{l ≥ li (2) : B(xi (2), 2l) ⊃ B̃ j (1) for some j �= i, i + 1}.

Let Anni (2) = Ann(xi (2); 2li (2), 2l̃i (2)−3) = B(xi (2), 2l̃i (2)−3)\ Bi (2), if l̃i (2)−5 >

li (2); otherwise, let Anni (2) = ∅. If Anni (2) �= ∅, we define B̃i (2) = B̃i+1(2) =
B(xi (2), 2l̃i (2)−3). For all remaining indices i for which B̃i (2) is not yet defined,
we let B̃i (2) = B̃i (1). In other words, if we have not succeeded in building a non-
empty annulus around B̃i (1), we take this box unchanged to the next stage of our
construction. We write B̃i (2) = B(xi (2), 2li (2)′). We observe that the boxes B̃i (2)

form a covering of ∂ B(2n0), and that there exists i such that |li+1(2)′ − li (2)′| ≤ 5,
|li+2(2)′ − li (2)′| ≤ 5 and |li+2(2)′ − li+1(2)′| ≤ 5. In other words B̃i (2), B̃i+1(2)

and B̃i+2(2) are comparable in size.
In the third stage, for any i , we define

li (3) = min{l : ∃x ∈ 2l
Z

2 ∩ ∂ B(2n0) s.t. B(x, 2l) ⊃ (B̃i (2) ∪ B̃i+1(2) ∪ B̃i+2(2))}

if such l exists (it is necessarily not bigger than n0), and let Bi (3) = B(xi (3), 2li (3)) be
such a box (if there are several choices, we pick the first one in clockwise ordering).
If there are no such l, we let li (3) = n0 + 1 and Bi (3) = B(2n0+1) (in this case
xi (3) = 0). We also define

l̃i (3) = n0 + 1.

Let Anni (3) = Ann(xi (3); 2li (3), 2l̃i (3)−3) = B(xi (3), 2l̃i (3)−3)\ Bi (3), if l̃i (3)−5 >

li (3), otherwise let Anni (3) = ∅. If Anni (3) �= ∅, we define B̃i (3) = B̃i+1(3) =
B̃i+2(3) = B(xi (3), 2l̃i (3)−3). For all remaining indices i for which B̃i (3) is not yet
defined, we let B̃i (3) = B̃i (2). In other words, if we have not succeeded in building
a nonempty annulus around B̃i (2), we take this box unchanged to the next stage of
our construction. We write B̃i (3) = B(xi (3), 2li (3)′). We observe that the boxes B̃i (3)
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Fig. 5 The family of annuli in the left figure consists of one annulus of each level. The family of annuli
in the right figure consists of two level 1 annuli and one level 4 annulus. In general, there are at most two
non-empty level 1 annuli, at most one level 2, 3 or 4 annulus each

form a covering of ∂ B(2n0) such that |li+1(3)′ − li (3)′| ≤ 5 for all i . Moreover, all of
these boxes are contained in B(2n0+1).

Finally, we define the annulus Anni (4) = Ann(2n0+1, 2n).
Note that (Anni (1))i , (Ann j (2)) j , (Annk(3))k , and (Annl(4))l are disjoint among

levels and between levels. In addition, the event E(γ1, . . . , γ4) implies the existence
of crossings of annulus Anni (1) by path Pi , annulus Anni (2) by paths Pi and Pi+1,
annulus Anni (3) by paths Pi , Pi+1 and Pi+2, and annulus Anni (4) by all four paths
P1, . . . , P4. Some examples of families of annuli are illustrated on Fig. 5.

To show (6.1), our strategy is to bound the probability of the event E(γ1, . . . , γ4)

by the product of probabilities of crossing events in such annuli. We should be more
careful though, since we have to take into account that we consider paths in S. For
k < 4 and for each nonempty annulus Anni (k), we define ai (k) as the first point on
γi−1 (seen as an oriented path from ai−1 to ai ) that belongs to Anni (k), and bi (k) as
the last point on γi+k (seen as an oriented path from ai+k to ai+k+1) that belongs to
Anni (k). Note that such points always exist if Anni (k) �= ∅. We then define the set
Si (k) as the subset of S with boundary that consists of four pieces (in clockwise order):
the piece of ∂ B(xi (k), 2l̃i (k)−3) between ai (k) and bi (k), the piece of γi+k from bi (k)

to the last intersection of γi+k with ∂ B(xi (k), 2li (k)), the piece of ∂ B(xi (k), 2li (k)) in
S, and the piece of γi−1 from ai (k) to the last intersection with ∂ B(xi (k), 2li (k)). Let
Li (k) be the common piece of the boundary of Si (k) and ∂ B(xi (k), 2l̃i (k)−3) between
ai (k) and bi (k) (Fig. 6).

For k < 4 and for each nonempty annulus Anni (k), let Ei (k) be the event that
there exist k disjoint paths from B(xi (k), 2li (k)) to Li (k) in Si (k) such that the order
and the status of paths (occupied or vacant) are induced by the order and the status
of Pi , . . . , Pi+k−1. For k < 4 and for each empty annulus Anni (k), let Ei (k) be the
sure event. Let Ei (4) be the event that the annulus Anni (4) is crossed by two open
and two closed dual paths such that the open paths are separated by the closed paths.

123



Outlets of 2D invasion percolation and multiple-armed incipient infinite clusters 287

Fig. 6 The small box is B(x1(2), 2l1(2)) and the big box is ∂ B(x1(2), 2l̃1(2)−3). The event E1(2) occurs
if there is a closed dual path P1 and an open path P2 from B(x1(2), 2l1(2)) to L1(2) in S1(2)

Since the sets Si (k) and Anni (4) are disjoint, we obtain

P(E(γ1, . . . , γ4)) ≤
4∏

i,k=1

P(Ei (k)).

It remains to prove an arm separation statement (analogous to Lemmas 4 and 5 in [13])
for each of the crossing events Ei (k). Once this is done, we can proceed similarly to
the proof of (2.43) in [13]. We can ‘glue’ those crossing into solid paths from the
γi ’s to ∂ B(2n) in such a way that the event Ẽ(γ1, . . . , γ4) occurs, and there exists a
constant C5 such that for any choice of γi ’s,

∏4
i,k=1 P(Ei (k)) ≤ C5P(Ẽ(γ1, . . . , γ4)).

Since this is a standard application of the RSW theorem (Section 11.7 in [9]) and the
generalized FKG inequality [13, Lemma 3], we omit the details.

The main difficulty in the proof of the arm separation statement for Ei (k) is that the
boundary of Si (k) is irregular. In the proof of Lemma 4 in [13] it was enough to make
sure that with high probability (uniformly in r ) all the crossings of Ann(2r , 2r+1)

have well-separated extremities. In our case, it is not enough to know that with high
probability (uniformly in r ) all the crossings of Ann(xi (k); 2r , 2r+1) in Si (k) are
well-separated. It is possible that their extremities are “trapped” in the sense that they
cannot be connected or can only be connected through narrow bottlenecks to Li (k)

in Si (k) \ B(xi (k), 2r+1). An application of the RSW theorem shows that this is very
unlikely. The remaining strategy of the proof is similar to the proof of Lemma 4 in [13],
and we omit it. The interested reader may find the details in the second version of [5].

��

7 Proof of Theorem 1.9

We prove only the first statement; the proof of the second is similar (see the proof
of the second statement in [10, Theorem 3]). We follow the same method used in
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[10, Theorem 3] but because many difficulties arise, we present details of the entire
proof. Pick an edge e and let n = 2|e|/3 (this choice makes e in the middle of
Ann(n, 2n)). Let ε > 0.

Step 1. First we give a lower bound for the probability that e ∈ O. The constant C∗
will be determined later. Consider the event De that

1. there exist pc-open circuits around the origin in the annuli Ann(n/2, n) and
Ann(2n, 4n);

2. there exist two disjoint pc-open paths, one connecting ey to the circuit in
Ann(2n, 4n) and one connecting ex to the circuit in Ann(n/2, n);

3. there exists a (2pn− pc)-closed dual circuit with one defect around 0 in the annulus
Ann(n, 2n)∗ which includes the edge e∗ as its defect;

4. τe ∈ [pn, 2pn − pc); and
5. the pc-open circuit in Ann(2n, 4n) is connected to∞ by a pn-open path.

By RSW arguments, [4, Lemma 6.3] and the fact that L(2pn − pc) is comparable
with n (see e.g. [13, (4.35)]),

P(De) � (pn − pc)Pcr (A2,2
n ), (7.1)

where A2,2
n is the event that the edge e−ex (we recall this notation means 〈0, ey−ex 〉)

is connected to ∂ B(n) by two disjoint pc-open paths and (e − ex )
∗ is connected to

∂ B(n)∗ by two disjoint pc-closed dual paths such that the open and closed paths
alternate. Since De implies that e ∈ O, we have for all e,

P(e ∈ O) ≥ C1(pn − pc)Pcr (A2,2
n ). (7.2)

Step 2. Let AN ,M (ex , pc) be the event that there is a pc-open circuit with 2 defects
around ex in Ann(ex , N , M). We will show that P(AN ,M (ex , pc), θe E | e ∈ O) is
close to P(θe E | e ∈ O) for certain values of N < M . To this end, recall the definition
of the event Hn,k in (5.2) and write H for the event Hn,1. By (5.3) and (7.2), we can
choose C∗ independent of n such that

P(θe E, Hc | e ∈ O) < ε. (7.3)

When the event H occurs, the invasion enters the pn(1)-open infinite cluster before
it reaches e. Hence if e is an outlet, then e must be connected to ∂ B(ex , n/4) by two
disjoint pn(1)-open paths and e∗ must be connected to ∂ B(ex , n/4)∗ by two disjoint
pc-closed dual paths such that the open and closed paths alternate and are all dis-
joint. Also, the weight τe must be in the interval [pc, pn(1)]. If, in addition, the event
AN ,M (ex , pc) does not occur, then there must be yet another pc-closed dual path from
B(ex , N )∗ to ∂ B(ex , M)∗. This crossing has the property that it is disjoint from the
two pc-closed paths which are already present; however, it does not need to be dis-
joint from the pn(1)-open crossings. Therefore, P(θe E, H, AN ,M (ex , pc)

c, e ∈ O) is
at most

≤ C2(pn(1)− pc)P(A2,2
n (pn(1), pc))P(A2,3∗

N ,M (pn(1), pc) | A2,2
N ,M (pn(1), pc)),
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where A2,2
N ,M (p, q) denotes the event that B(N ) is connected to ∂ B(M) by two p-open

paths and that B(N )∗ is connected to ∂ B(M)∗ by two q-closed paths so that the open
and closed paths alternate and are all disjoint. The symbol A2,3∗

N ,M (p, q) signifies the

event that A2,2
N ,M (p, q) occurs but that there is an additional q-closed path connecting

B(N ) to ∂ B(M) which is disjoint from the two other q-closed paths but not necessarily
from the two p-open paths. The above inequality, along with the estimate (7.2), gives
that P(θe E, H, AN ,M (ex , pc)

c | e ∈ O) is at most

C2(pn(1)− pc)P(A2,2
n (pn(1), pc))

C1(pn − pc)Pcr (A2,2
n )

P(A2,3∗
N ,M (pn(1), pc) | A2,2

N ,M (pn(1), pc)).

From (2.9) and Lemma 6.3 in [4], we can deduce

C2(pn(1)− pc)P(A2,2
n (pn(1), pc))

C1(pn − pc)Pcr (A2,2
n )

≤ C3(C∗ log n)2, (7.4)

so that

P(θe E, H, AN ,M (ex , pc)
c | e ∈ O)

≤ C3(C∗ log n)2
P(A2,3∗

N ,M (pn(1), pc) | A2,2
N ,M (pn(1), pc)). (7.5)

The above can be made less than ε provided that M/N grows fast enough with n. Let
us assume this for the moment; we shall choose precise values for M and N at the end
of the proof. Therefore, using (7.3), we have

|P(θe E | e ∈ O)− P(θe E, H, AN ,M (ex , pc) | e ∈ O)| < 2ε. (7.6)

Step 3. We now condition on the outermost pc-open circuit with 2 defects in
Ann(ex , N , M). For any circuit C with 2 defects around the origin in the annulus
Ann(N , M), let D(C) be the event that it is the outermost pc-open circuit with 2
defects. Notice that D(C) depends only on the state of edges on or outside C. For
distinct C, C′ (i.e. the sets of edges in C and C′ are different or the sets of edges in C
and C′ are the same but the defects are different), the events D(C), D(C′) are disjoint.
Therefore, the second term of (7.6) is equal to

1

P(e ∈ O)

∑

C⊂Ann(N ,M)

P(θe E, H, θe D(C), e ∈ O), (7.7)

where it is implied that in the sum, and in future sums like it, we only use circuits
which enclose the origin.

Step 4. Let Q(θeC) be the event that there exists f �= e interior to θeC with
τ f ∈ [pc, pn(1)]. We will now show that with high probability, the event Q(θeC)

does not occur. In other words, we will bound the probability of the event {H, Q(θeC),

θe D(C), e ∈ O}. Supposing that this event occurs, then both τe ∈ [pc, pn(1)) and
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A2,2
M,n(pn(1), pc) must occur. Notice that the events A2,2

M,n(pn(1), pc), θe D(C), {τe ∈
[pc, pn(1))}, and Q(θeC) are all independent. Hence P(H, Q(θeC), θe D(C), e ∈ O)

is at most

P(A2,2
M,n(pn(1), pc))P(θe D(C))P(Q(θeC))P(τe ∈ [pc, pn(1)))

≤ C4 M2 (pn(1)− pc)
2

P(A2,2
M (pn(1), pc))

P(A2,2
n (pn(1), pc))P(θe D(C)),

where in the last inequality we used Corollary 6.1 from [4]. Consequently,

P(H, Q(θeC), θe D(C)|e ∈ O) ≤
[

C4 M2(pn(1)− pc)

Ppn(1)(A2,2
M )

]

×
[

(pn(1)− pc)P(A2,2
n (pn(1), pc))

C1(pn − pc)Pcr (A2,2
n )

]

P(θe D(C)),

which, by (7.4), is at most

C5(C∗ log n)2 M2

Ppn(1)(A2,2
M )

(pn(1)− pc)P(θe D(C)).

As long as M is not too big, from Ppn(1)(A2,2
M ) � Pcr (A2,2

M ) ≥ cM−2 (see, e.g.,
Theorem 24 and Theorem 27 in [18]), we get an upper bound of

C6(C∗ log n)2 M4(pn(1)− pc)P(θe D(C)) < εP(θe D(C)). (7.8)

We will be able to choose such an M (in fact it will be of the order of a power of log n),
but we delay justification of this to the end of the proof. We henceforth assume that
P(θe E | e ∈ O) is within 3ε of

1

P(e ∈ O)

∑

C⊂Ann(N ,M)

P(θe E, H, θe D(C), Q(θeC)c, e ∈ O). (7.9)

Step 5. We write our configuration ω as η⊕ ξ , where η is the configuration outside
or on θeC and ξ is the configuration inside θeC. We condition on both η and τe: the
summand of the numerator in (7.9) becomes

E
[
P(θe E, H, θe D(C), Q(θeC)c, e ∈ O | τe, η)

]
. (7.10)

Call the defected dual edges in θeC e∗1 and e∗2. Given the value of τe, on the event
θe D(C) ∩ H ∩ Q(θeC)c, the event {e ∈ O} occurs if and only if all of the following
occur:
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Fig. 7 The edge e is connected to the circuit θeC by two τe-open paths (the solid lines) and two pc-closed
paths (the dotted lines). The outer dotted circuit represents the τe-closed path P and the circuit θeC is
connected to ∞ by a τe-open path. It is assumed that the invasion from the origin touches θeC before it
touches P

1. e is connected to θeC \{e∗1, e∗2} in the interior of θeC by two disjoint pc-open paths;
2. e∗ is connected to {e∗1, e∗2} in the interior of θeC by two disjoint pc-closed dual

paths so that the pc-closed paths and the pc-open paths from item 1 alternate and
are disjoint;

3. outside of θeC, θeC is connected by a τe-open path to∞;
4. τe ∈ [pc, pn(1)); and
5. there exists a τe-closed dual path P outside of θeC, connecting e∗1 to e∗2 (both of

which are τe-closed) such that (a) P ∪ B(ex , M)∗ contains a circuit around the
origin and (b) the invasion graph contains a vertex from C before it contains an
edge f with f ∗ from P .

We will denote by e ↔2,2,pc θeC the event that the first two events occur, we will
denote by θeC ↔τe ∞ the third event, and we will use the symbol X (C) for the fifth
event. See Fig. 7 for an illustration of the intersection of these events. The term (7.10)
becomes

E
[
P(θe E, H, θe D(C), e↔2,2,pc θeC, θeC ↔τe ∞, Q(θeC)c,

τe ∈ [pc, pn(1)), X (C) | τe, η)] . (7.11)

On the event
{
e↔2,2,pc θeC

}∩{θeC ↔τe ∞
}∩ τe ∈ [pc, pn(1)), the event H occurs

if and only if there exists a pn(1)-open circuit C0 enclosing the origin in Ann(n/4, n/2)

and either C0
pn(1)←→ θeC or C0

pn(1)←→∞ outside of θeC. Denote by Y the event that such
a circuit C0 exists and that either one of the above occur. Note that Y is measurable
with respect to η. The term (7.11) becomes
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E
[
P(θe E, Y, θe D(C), e↔2,2,pc θeC, θeC↔ τe∞, Q(θeC)c, τe∈[pc, pn(1)), X (C) | τe, η)

]

=E
[
1Y 1θe D(C)1θeC↔τe∞1τe ∈ [pc,pn(1))1X (C)P(θe E, e↔2,2,pc θeC, Q(θeC)c | τe, η)

]
.

(7.12)

We now inspect the inner conditional probability. Clearly we have

P(θe E, e↔2,2,pc θeC, Q(θeC)c | τe, η) ≤ P(θe E, e↔2,2,pc θeC | τe, η)

≤ P(θe E, e↔2,2,pc θeC, Q(θeC)c | τe, η)

+P(Q(θeC)). (7.13)

Using arguments similar to those that led to (7.9), one can show that the same choice
of M and N that will make (7.8) hold will also make

1

P(e ∈ O)

∑

C⊂Ann(N ,M)

E
[
1Y 1θe D(C)1θeC↔τe∞1τe∈[pc,pn(1))1X (C)P(Q(θeC))

]
< ε.

Therefore we conclude from (7.13) that P(θe E | e ∈ O) is within 4ε of

1

P(e∈O)

∑

C⊂Ann(N ,M)

E
[
1Y 1θe D(C)1θeC↔τe∞1τe∈[pc,pn(1))1X (C)

×P(θe E, e↔2,2,pcθeC | τe, η)
]
. (7.14)

Step 6. Notice that since the events θe E and e↔2,2,pc θeC do not depend on τe or
on η, we have

P(θe E, e↔2,2,pc θeC | τe, η) = Pcr (E, 0↔2,2 C) a.s., (7.15)

where 0 ↔2,2 C denotes the event that the edge e − ex is connected to C by two
open paths and the dual edge (e − ex )

∗ is connected to {(e1 − ex )
∗, (e2 − ex )

∗} by
two closed paths such that all of these connections occur inside C and the open and
closed paths alternate. The quantity Pcr (E |0 ↔2,2 C) from the right side of (7.15)
approaches ν̃2,2(E) as long as N → ∞ as |e| → ∞ (this is a slight extension of
Theorem 1.6) so, assuming this growth on N , we have

1

(1+ ε)
Pcr (E, 0↔2,2 C) ≤ ν̃2,2(E)Pcr (0↔2,2 C) ≤ 1

(1− ε)
Pcr (E, 0↔2,2 C).

It is straightforward now (following the end of the proof of [10, Theorem 3]) to show
that

(1− ε)(1− 4ε)ν̃2,2(E) < R < (1+ ε)(1+ 4ε)ν̃2,2(E),

where R is the term which comprises the entire line of (7.15). Since R is within 4ε of
P(θe E | e ∈ O), all that remains is to choose M and N correctly.
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Step 7. Choice of M and N . Recall, from (7.5), that we need the inequality

C8(C∗ log n)2
P

(
A2,3∗

N ,M (pn(1), pc) | A2,2
N ,M (pn(1), pc)

)
< ε (7.16)

to hold. In addition, we need to satisfy (7.8). Using the facts that Pcr (A2,2
M ) ≥ C9/M2

and

P

(
A2,3∗

N ,M (pn(1), pc) | A2,2
N ,M (pn(1), pc)

)
< C10

(
N

M

)β

(7.17)

for some β > 0 (which is easily proved for what will be our choice of M and N , and
which we assume for the moment), the reader may check that a choice of

N = log n, M = (log n)2+2/β

satisfies these two conditions for n large. The reason that this choice satisfies (7.8)
is that (log n)γ (pn(1) − pc) → 0 for any γ [use (2.9)] and the fact that the 4-arm
exponent is strictly smaller than 2 (see, e.g., Section 6.4 in [21])).

We now prove (7.17). Let Q(M) be the event that there exists an edge in B(M)

which has weight in the interval [pc, pn(1)). If Q(M) does not occur then the event

A2,3∗
N ,M (pn(1), pc) implies the event A2,3

N ,M (pn(1), pc) (i.e. the same event but with all

five paths disjoint). Therefore, by Reimer’s inequality, P(A2,3∗
N ,M (pn(1), pc)) is at most

P

(
A2,3

N ,M (pn(1), pc)
)
+ P(Q(M)) ≤ P

(
A2,2

N ,M (pn(1), pc)
)

Pcr

(
A0,1

N ,M

)

+|B(M)|(pn(1)− pc), (7.18)

where A0,1
N ,M is the event that B(N ) is connected to ∂ B(M) by a pc-closed path. Putting

this estimate into (7.17), the term on its left is at most

Pcr

(
A0,1

N ,M

)
+ |B(M)| pn(1)− pc

P

(
A2,2

N ,M (pn(1), pc)
) .

Using the fact that

P

(
A2,2

N ,M (pn(1), pc)
)
≥

P

(
A2,3

N ,M (pn(1), pc)
)

Pcr

(
A0,1

N ,M

) ≥ C11 N 2

M2Pcr

(
A0,1

N ,M

) ,

we see that the term (7.18) is at most

Pcr

(
A0,1

N ,M

) [

1+ C12 M4

N 2 (pn(1)− pc)

]

≤ 2Pcr

(
A1,0

N ,M

)
≤ C13

(
N

M

)β
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for some β > 0, as we have chosen N and M on the order of log n. This shows (7.17)
and completes the proof.
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