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Abstract The focus of this article is on the different behavior of large deviations of
random functionals associated with the parabolic Anderson model above the mean ver-
sus large deviations below the mean. The functionals we treat are the solution u(x, t)
to the spatially discrete parabolic Anderson model and a functional An which is used
in analyzing the a.s. Lyapunov exponent for u(x, t). Both satisfy a “law of large num-
bers”, with limt→∞ 1

t log u(x, t) = λ(κ) and limn→∞ An
n = α. We then think of αn

and λ(κ)t as being the mean of the respective quantities An and log u(t, x). Typically,
the large deviations for such functionals exhibits a strong asymmetry; large deviations
above the mean take on a different order of magnitude from large deviations below
the mean. We develop robust techniques to quantify and explain the differences.
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350 M. Cranston et al.

0 Introduction

The parabolic Anderson model has long been of interest to physicists and mathe-
maticians. It presents a physically relevant model for real world phenomena such as
transport of electrons in crystals with impurities and the temperature on the surface
of the sun to name just a couple of examples, see [3] and [14]. On the other hand, its
analysis has provided mathematical challenges. Thus studying the behavior of solu-
tions to the parabolic Anderson equation is both physically relevant and often requires
a variety of new mathematical ideas. In this paper, we apply techniques developed by
the authors in [1] to deal with large deviations for point to point first passage perco-
lation. We now describe the model treated in this paper. Introduce, on a probability
space (�,F , P), a field {Wx : x ∈ Z

d} of i.i.d. one-dimensional Brownian motions.
Let � denote the discrete Laplacian and let κ be a positive constant. Then consider
the behavior of the solution to

∂u

∂t
(x, t) = κ�u(x, t)+ u(x, t)∂Wx , x ∈ Z

d , t > 0,

u(x, 0) ≡ 1,
(1)

where ∂ denotes the Stratonovich differential. The solution u(x, t) (with the stochastic
integrals appropriately interpreted) has the Feynman Kac representation:

u(x, t) = Ex

[
e
∫ t

0 dWX (t−s)(s)
]

where {X (s), s ≥ 0, Px } is the continuous time pure jump Markov process on Z
d with

infinitesimal generator κ�, independent of {Wx : x ∈ Z
d}, see e.g. [3]. It is known

that the (random in {Wx : x ∈ Z
d}) solution satisfies

lim
t→∞

log u(x, t)

t
= λ(κ) > 0, P a.s.,

for nonrandom λ(κ), see [2,4,9,15] and [17] for more details. This raises the question
of the large deviations regimes for these solutions: for ε > 0, how rapidly do the
probabilities of events P( log u(x,t)

t > λ(κ) + ε) and P( log u(x,t)
t < λ(κ) − ε) tend

to zero as t tends to infinity? Similar questions for other models were considered in
[6,8] and [12].

In [4], it was shown that for some c(ε) > 0,

P

(
log u(x, t)

t
> λ(κ)+ ε

)
≤ e−c(ε)t , as t → ∞,

but the probabilities of small values of u(x, t) were not considered. We remark here
that the random variables {u(x, t), x ∈ Z

d} are identically distributed due to the fact
that the field {Wx : x ∈ Z

d} is iid, but these random variables are correlated. Also,
the above result and all results in this article for the solution to (1) remain true if the
initial condition is replaced by a nontrivial positive function.
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On large deviations for the parabolic Anderson model 351

A closely related question (see [2] or [4]) concerns an additive functional associ-
ated to the Brownian field {Wx : x ∈ Z

d} on (�,F , P) which we now more cleary
define. Throughout most of this paper (the exception being the remark following the
theorems in this section), we shall consider the space of right continuous, left limit
paths which have only jumps of size one. Define, for 0 ≤ a < b and A, B ⊂ Z

d and
k ∈ Z+ ≡ {m ∈ Z : m ≥ 0}, the subspace of this space of paths defined by

�a,b,k(A, B) =
{
γ : [a, b] → Z

d : γ (a) ∈ A, γ (b) ∈ B, N (γ, [a, b]) = k
}
, (2)

where N (γ, [a, b]) is the number of jumps of γ in the interval [a, b]. If A = {x} and
B = Z

d , we use the more compact notation

�x
a,b,k = �a,b,k({x}, Z

d) (3)

when [a, b] = [0, t] we write N (γ, t) = N (γ, [0, t]). Similarly, we simplify the
notation in the special case a = 0, b = n, A = {0}, B = Z

d by writing

�n,k = �0,n,k({0},Zd).

Then we define, for γ ∈ �a,b,k(A, B), the value of γ as

V (γ ) =
b∫

a

dWγ (s)(s). (4)

Crucial to the asymptotic behavior of the random field u(x, t) is the functional

An,k = sup
γ∈�n,k

V (γ ). (5)

It is known that (see [13])

An,n

n
→ α > 0, P − a.s. (6)

for a nonrandom constant α. Scaling considerations give the limiting behaviour of
An,[nθ] where [ · ] denotes, as usual, the integer part. Again the question is raised as

to the behaviour, as n tends to infinity of the probabilities P( An,n
n > α + ε) and

P( An,n
n < α − ε). Our results concerning these probabilities are the following.

Theorem 0.1 For An,n as defined above and for ε > 0, the lower large deviation
satisfies
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− ∞ < lim
n→∞

1

nd+1 log P

(
An,n

n
≤ α − ε

)

≤ lim
n→∞

1

nd+1 log P

(
An,n

n
≤ α − ε

)

< 0, (7)

whereas for the upper large deviations,

− ∞ < lim
n→∞

1

n
log P

(
An,n

n
≥ α + ε

)

≤ lim
n→∞

1

n
log P

(
An,n

n
≥ α + ε

)

< 0. (8)

And for u(0, t) the solution of the parabolic Anderson model described above, we
have

Theorem 0.2 For each ε > 0 for the lower large deviations,

− ∞ < lim
t→∞

1

td+1 log P

(
log u(0, t)

t
≤ λ(κ)− ε

)

≤ lim
t→∞

1

td+1 log P

(
log u(0, t)

t
≤ λ(κ)− ε

)

< 0, (9)

and for the upper large deviations,

− ∞ < lim
t→∞

1

t
log P

(
log u(0, t)

t
≥ λ(κ)+ ε

)

≤ lim
t→∞

1

t
log P

(
log u(0, t)

t
≥ λ(κ)+ ε

)

< 0. (10)

Remark 0.1 The difference in large deviation rates for lower deviations and upper
deviations can be explained qualitatively as follows. Since An,n involves a supre-
mum of an additive functional of a random medium, an upper deviation of the form
{An,n ≥ (α+ε)n} can occur when there is a single path γ for which V (γ ) ≥ (α+ε)n.
However, in order for a lower deviation of the form {An,n ≤ (α − ε)n} to occur one
must have for every path γ it holds that V (γ ) ≤ (α − ε)n. Therefore, the upper
deviation can occur when a small region in the random medium is deviant whereas a
lower deviation can occur only when the entire medium is deviant. Part of the proof
for the lower deviation involves decomposing space into disjoint channels which are
space-time rectangles. These channels are large enough so that with probability at
least 1− e−cn , there is a path γ of duration of order n lying entirely in the channel and
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On large deviations for the parabolic Anderson model 353

having V (γ ) ≥ (α − ε)n. On the other hand, the channels are small enough so that
there are on the order of nd of them. Since the channels are disjoint, events depending
on the field in different channels are independent. As a result, the probability that no
path γ satisfies V (γ ) ≥ (α − ε)n is on the order of (e−cn)n

d = e−cnd+1
. This is the

argument for times in an interval [δn, n]. For small times, i.e. on the interval [0, δn], a
different approach is used. The media can be “bad” (in the sense that the value of paths
is low) near the starting point with relatively high probability. By taking paths which
quickly leave a neighborhood of the origin, we can with relatively high probability
arrive at regions where the media is not “bad”. This is quantified in the section on
Small Times.

Remark 0.2 Using subadditivity arguments, it can be shown that

lim
n→∞

1

n
log P

(
An,n > (α + ε)n

) ∈ (−∞, 0)

and

lim
t→∞

1

t
log P

(
log u(x, t)

t
> λ(κ)+ ε

)
∈ (−∞, 0).

Remark 0.3 Theorem 0.2 implies the frequency of points x ∈ Z
d for which u(x, t) ≤

e(λ(κ)−ε)t are exceedingly rare. Indeed, suppose c > 0 satisfies P(u(x, t) ≤ e(λ(κ)−ε)t )
≤ e−ctd+1

, t → ∞. Now if L(t) satisfies

lim
t→∞L(t)de−ctd+1 = 0,

and Qt = {||x || ≤ L(t) : u(x, t) ≤ e(λ(κ)−ε)t } then

P(|Qt | ≥ 1) ≤ cd L(t)d P
(

u(0, t) ≤ e(λ(κ)−ε)t
)

≤ cd L(t)de−ctd+1
. (11)

Thus in a box �L = {x : ||x || ≤ L} with L = L(t) = o(ec1/d t1+1/d
) there will with

high probability be no x ∈ �L for which u(x, t) ≤ e(λ(κ)−ε)t .

Remark 0.4 It may be illuminating to compare Theorem 0.1 with an analogous result
in our previous work [1]. There we considered the graph G = (
, E) where


 = {(x, n) ∈ Z × Z+ : |x | + n ≡ 0 mod 2}

and E denotes the set of directed nearest neighbour edges from vertices (x, n) to ver-
tices of the form (x ± 1, n + 1). On the edge set there is a field {Xe : e ∈ E} of i.i.d.
N (0, 1) random variables defined on some probability space (�,F , P). Set


n = 
 ∩ (Z × {n}) (12)
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and define the set of connected paths in G

ℵn = {γ : γ (0) = 0, γ (n) ∈ 
n}. (13)

If e ∈ E is an edge along γ write e ∈ γ . Then define

Zn = sup
γ∈ℵn

∑
e∈γ

Xe, (14)

which is the “point-to-plane” supremum. Again, simple subadditive considerations
lead us to the conclusion that

lim
n→∞

Zn

n
= µ, P a.s. for µ nonrandom.

It was shown in [1] (see also [6–8,10,11] and [12] for related work) that

lim
n→∞

1

n
log P

(
Zn

n
> µ+ ε

)
∈ (−∞, 0).

However the deviations below for a Gaussian field satisfy

− ∞ < lim inf
n→∞

log n

n2 log P

(
Zn

n
< µ− ε

)

< lim sup
n→∞

log n

n2 log P

(
Zn

n
< µ− ε

)
< 0. (15)

At first one might think the upper large deviation rates for Zn and An should be the
same since they are both the supremum of a Gaussian field and the graph structures
are relatively similar. However, the case of Zn is analogous to a discrete time random
walk. A path γ in 
 is obliged to “use” a definite proportion of the random variables
close to the origin in the graph (
, E). On the other hand, An arises in a case analogous
to a continuous time random walk. For An , the candidate paths for the supremum have
the possibility of “quick escape” by passing through “bad regions” near the origin in
Z × Z+. That is, there are candidate paths which have a lot of jumps in a short, initial
time interval. This accounts for the presence of log n in the case of large deviations
for Zn and its absence for those of An . That is, the field near the origin plays a crucial
role in the order of lower large deviations.

The proof of our results split naturally into a consideration of the field near the
starting point and a consideration of its behavior at some remove from the starting
point. The field “near the starting point” is indexed by a relatively smaller number of
sites. As a result, the probability of a uniform aberration in the field near the starting
point causing a lower deviation is relatively high compared to aberrations in the field
far from the starting point required to cause a similar lower deviation. Accordingly, the
remainder of the paper is split into two sections labelled Small Times and Large Times
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in which we present the proofs of our theorems. The authors gratefully acknowledge
a patient and very helpful referee.

1 Large times

We first prove some propositions which deal with the value of the relevant functionals
over portions of the random field {Wx : x ∈ Z

d} for points x far from the starting
point. Recalling the definition of �x

δn,n,k at (3), define

Mδ2n ,2n ,k(1−δ)2n =
{

x ∈ [−δ2n, δ2n]d : ∃γ ∈ �x
δ2n ,2n ,k(1−δ)2n , V (γ )

≥
(
α − ε

5

)√
k(1 − δ)2n

}
, (16)

where α is the constant introduced at (6). We take a moment to explain the appearance
of

√
k in (16). This is due to Brownian scaling. Taking a path γ ∈ �a,b,k(b−a), the

path γ̃ ∈ �ka,kb,k(b−a) defined by γ̃ (r) = γ ( r
k ) satisfies

V (γ ) =
b∫

a

dWγ (s)(s)

=
kb∫

ka

dWγ ( r
k )

( r

k

)

D= 1√
k

kb∫

ka

dWγ̃ (r)(r), (17)

where
D= denotes equality in distribution. Accordingly, V (γ )

D= 1√
k

V (γ̃ ), so the exis-

tence of a γ̃ ∈ �ka,kb,k(b−a) such that

V (γ̃ ) ≥
(
α − ε

5

)
k(b − a)

implies the scaled version γ ∈ �a,b,k(b−a) defined by γ (r) = γ̃ (kr) satisfies, at least
in law,

V (γ ) ≥
(
α − ε

5

)√
k(b − a).

Our first result says that a majority of points in the box [−δ2n, δ2n]d are the starting
points of paths defined on the time interval [δ2n, 2n] with a “good” value. Namely, if
we denote by |C | the cardinality of a set C , then

Proposition 1.1 Given any a > 0, for all ε > 0, δ > 0 there exists a constant
c(ε, δ) > 0, so that
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356 M. Cranston et al.

P

(
|Mδ2n ,2n ,a(1−δ)2n | ≥ 9

10
(2δ2n)d

)
≥ 1 − e−c(ε,δ)(

√
a2n)d+1

. (18)

for all n sufficiently large.

Remark 1.1 By elementary scaling considerations it is only necessary to consider
a = 1.

This immediately gives

Corollary 1.1 If B ⊂ R+ is a finite set then with c(ε, δ) as in Proposition 1.1

P

(
∀a ∈ B, |Mδ2n ,2n ,a(1−δ)2n | ≥ 9

10
(2δ2n)d

)
≥ 1 − |B|e−c(ε,δ)(

√
a∗2n)d+1

(19)

for n sufficiently large, where a∗ denotes the smallest element of B.

Denote for xεZd and M > 0,

uM (x, (1 − δ)t) = Ex

[
e
∫ (1−δ)t

0 dWX ((1−δ)t−s)(s)1{N (X,t)≤Mt}
]
. (20)

Then similarly, we also have,

Proposition 1.2 For M, ε, δ > 0 there exists a positive constant c(M, ε, δ) so that
for all t sufficiently large,

P

(
|{x ∈ [−δt, δt]d : uM (x, (1 − δ)t) ≥ e(λ(κ)−ε)(1−δ)t }| ≥ 9

10
(2δt)d

)

≥ 1 − e−c(M,ε,δ)td+1
. (21)

The reader might have noted that in Proposition 1.1 only the media between times
δ2n and 2n is involved. In Proposition 1.2 the media between times 0 and (1 − δ)t
comes into play. These are equivalent in distribution, (when t = δ2n), by stationarity
in time of the time increments of the Gaussian field {Wx : x ∈ Z

d}. The form of
Proposition 1.2 is suited to an application of the Markov property in the course of the
proof of Theorem 0.2. The proof of these propositions follows the pattern of proof of
Proposition 2.1 from [1]. The idea is to establish the existence of disjoint channels
which with high probability contain paths with values near their predicted asymptotic
value.

2 An FKG argument

In this section, we use the FKG inequality to establish a key lemma used to prove
Proposition 1.1. The proof of Proposition 1.1 appears in the next section. Here, we are
concerned with behavior between the times δ2n and 2n for n large. We refer to these
as large times. In the next section, we deal with behavior between time 0 and δ2n . To
begin we define
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Definition 2.1 For a path γ ∈ �a,b,k(A, B) and a subset C ⊂ Z
d , we say γ ⊂ C if

γ (s) ∈ C for all a ≤ s ≤ b. The set of such paths will be denoted by �a,b,k(A, B,C).
If A = {x}, then write �x

a,b,k(B,C) = �a,b,k({x}, B,C). We shall write �x
a,b,k(C) =

�x
a,b,k({x},Zd ,C). Then �x

a,b,k = �x
a,b,k(Z

d) is consistent with the notation estab-
lished at (3).

Lemma 2.1 Given k > 0, ε > 0 and l > 0 let

Al,k(ε) =
{
∀x ∈ [0, l)d ∩ Z

d , ∃γ ∈ �x
0,l,kl([0, l)d), V (γ ) ≥ (α − ε)

√
k l
}
.

Then for any ε > 0 for all l sufficiently large (depending on ε, )

P(Al,kl(ε)) ≥ 1 − ε

2(α + 3)
.

Proof For notational convenience, we restrict our exposition to d = 1. We only need
prove the lemma with k = 1, the case of arbitrary k follows by the scaling argument
preceding Proposition 1.1. Given α > ε > 0, set ε′ = ε

α+3 . Then there exists l0 so
that for l ′ ≥ l0, (for notational convenience, we will suppose that l ′ and l ′/ε′ are even
integers)

P
(
∃γ ∈ �0

0,l ′,l ′ , V (γ ) ≥ (α − ε′)l ′
)

≥ 1 −
(
ε′3

100

)2

.

Consider the equally probable, decreasing events

A1 = {� ∃ γ ∈ �0
0,l ′,l ′ , γ (l

′) ∈ Z+, V (γ ) ≥ (α − ε′)l ′}
A2 = {� ∃ γ ∈ �0

0,l ′,l ′ , γ (l
′) ∈ Z−, V (γ ) ≥ (α − ε′)l ′},

where Z− ≡ {m ∈ Z : m ≤ 0}. From the F K G inequality applied to these events we
have

(
ε′3

100

)2

≥ P(A1 ∩ A2)

≥ P(A1)P(A2), FKG

= P(A1)
2

and consequently,

P(Ac
1) = P(Ac

2) ≥ 1 − ε′3

100
. (22)

Notice that the γ under consideration in either Ac
1 or Ac

2 must satisfy γ ⊂ [−l ′, l ′] since
such a γ starts at 0 and has only l ′ steps of size 1. We now concatenate paths. First find,
with high probability, a path γ1 ∈ �0

0,l ′,l ′ for which V (γ1) ≥ (α − ε′)l ′ by selecting a
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path as prescribed in A1. This path satisfies both γ1 ⊂ [−l ′, l ′] and γ1(l ′) ≥ 0. Treat

(γ1(l ′), l ′) as the new origin, and continue by selecting a path γ2 ∈ �γ1(l ′)
l ′,2l ′,l ′ in an appro-

priately shifted version of A.2 (require γ2(2l ′) ≤ γ1(l ′).) By stationarity of the medium,
the shifted versions of Ac

1 and Ac
2 also satisfy (22). Note this path stays in [−2l ′, 2l ′]

and has γ2(2l ′) ∈ [−l ′, γ1(l ′)] ⊂ [−l ′, l ′] and V (γ2) ≥ (α − ε′)l ′. Repeating this
procedure 2

ε′ times of going back and forth to stay in [−2l ′, 2l ′] and concatenating the

resulting paths gives a path γ ∈ �0
0, 2l′

ε′ ,
2l′
ε′
([−2l ′, 2l ′]) with V (γ ) ≥ (α − ε′) 2l ′

ε′ . By

the independence of the field {Wx : x ∈ Z} and (22), we have for all l ′ ≥ l0,

P

(
∃γ ∈ �0

0, 2l′
ε′ ,

2l′
ε′

([−2l ′, 2l ′]) , V (γ ) ≥ (α − ε′)2l ′

ε′

)
≥ 1 − ε′2

50
.

This, by translation invariance and independence of the field {Wx : x ∈ Z}, yields that
with probability at least 1 − ε′

10 , for all of the (no more than) 4
ε′ points

y ∈
[
− l ′

ε′
+ l ′, l ′

ε′
− l ′
]

∩ Zl ′

there is a path γ 1
y ∈ �y

2l ′, 2l′
ε′ +2l ′, 2l′

ε′
([y − 2l ′, y + 2l ′]) with

(i) |γ 1
y (i)− y| ≤ 2l ′, ∀ i ∈ [0, 2l ′

ε′ ]
(ii) V (γ 1

y ) ≥ (α − ε′) 2l ′
ε′ .

That is if, we define the event A by conditions (i) and (ii) holding for every y ∈
[− l ′

ε′ + l ′, l ′
ε′ − l ′] ∩ Zl ′ then

P(A) ≥ 1 − ε′

10
. (23)

Now to each x ∈ [− l ′
ε′ − l ′, l ′

ε′ + l ′] ∩ Z, we associate a

y ∈
[
− l ′
ε′ + l ′, l ′

ε′ − l ′
]

∩ Zl ′,

with |y − x | ≤ 2l ′. For each such x and its associated point y, pick (arbitrarily) a
path γ 2

x ∈ �x
0,2l ′,2l ′([− l ′

ε′ − l ′, l ′
ε′ + l ′]) with γ 2

x (2l ′) = y. For these x denote the

concatenation of γ 2
x and γ 1

y by γx . We then have

V (γx ) ≥ (α − ε′
) 2l ′

ε′
+ Z
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On large deviations for the parabolic Anderson model 359

where Z = minx V (γ 2
x ) and each path satisfies, γx ⊂ [− l ′

ε′ − l ′, l ′
ε′ + l ′]. If Z ≥ −4l ′,

then since ε′ = ε
α+3 ,

V (γx ) ≥ (α − ε′
) 2l ′

ε′
− 4l ′

= (α − 3ε′
) 2l ′

ε′

=
(
α − 3ε

α + 3

)
2l ′

ε′

=
(
α − ε + αε

α + 3

)
2l ′

ε′

= (α − ε)

(
2l ′

ε′
+ αε

(α + 3)(α − ε)

2l ′

ε′

)

≥ (α − ε)

(
2l ′

ε′
+ 2l ′

)
. (24)

Thus, on the event A ∩ {Z ≥ −4l ′},

V (γx ) ≥ (α − ε)

(
2l ′

ε′
+ 2l ′

)
.

But the random variables V (γ 2
x ), for x ∈ [− l ′

ε′ − l ′, l ′
ε′ + l ′]∩Z, are centered Gaussian

random variables with variance 2l ′. Thus, for some c > 0,

P
(
Z ≥ −4l ′

) = P

⎛
⎝ min

x∈
[
− l′
ε′ −l ′, l′

ε′ +l ′
]
∩Z

V (γ 2
x ) ≥ −4l ′

⎞
⎠

= 1 − P

(
V (γ 2

x ) ≤ −4l ′, for some x ∈
[
− l ′

ε′
− l ′, l ′

ε′
+ l ′
]

∩ Z

)

≥ 1 − 2l ′

ε′
P
(

V (γ 2
x ) ≤ −4l ′

)

= 1 − 2l ′

ε′
1√

2π2l ′

−4l ′∫

−∞
e− y2

4l′ dy

= 1 − 2l ′

ε′
1√
2π

−√
8l ′∫

−∞
e− y2

2 dy

≥ 1 − c

√
l ′
ε′

e−4l ′ , for some positive constant c. (25)

Now shift the interval [− l ′
ε′ − l ′, l ′

ε′ + l ′] to the right by l ′
ε′ + l ′ and set l = 2l ′

ε′ + 2l ′.
Then we see from (23) and (25) and the independence of the events A and {Z ≥ −4l ′}
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that

P(Al,1(ε)) ≥
(

1 − ε′

10

)(
1 − c

√
l ′
ε′

e−4l ′
)
.

By taking l ′ large enough we get

P(Al,1(ε)) ≥
(

1 − ε

2(α + 3)

)
.

As remarked earlier, the case of general k follows from scaling. ��
We need a (crude) bound on the lower tail of the distribution of the random variable

min
x∈[0,l] max

γ∈�x
0,l,kl ([0,l)d )

V (γ ) = Yl,k .

If Yl,k can take on big negative values with high probability, then there would also
potentially be a high probability that V (γ ) ≤ (α− ε)2n on a path γ of length 2n . The
following will suffice to show such an outcome is unlikely.

Lemma 2.2 There exists c > 0, l0 and r0 so that for all l ≥ l0

P
(
Yl,k ≤ −r l

) ≤ lde−crl , forall r > r0. (26)

Proof For each x ∈ [0, l]d consider the constant path γx (s) ≡ x , and the random
variable

V (γx ) =
l∫

0

dWγx (s)(s) = Wx (l)− Wx (0).

Then for r > r0,

P (V (γx ) ≤ −rl) = P (−r0V (γx ) ≥ r0rl)

≤ e−r0rl E[e−r0V (γx )]
= e−r0rl+ lr2

0
2

≤ e− r0
2 rl .

Thus

P

(
min

x∈[0,l]d
max

γ∈�x
0,l,kl ([0,l)d )

V (γ ) ≤ −r l

)
≤ lde−crl .

��
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3 Proof of Propositions 1.1 and 1.2

In the proof of Proposition 1.1, we need

Definition 3.1 For (i, r) ∈ {0, 1, . . . , 2n

l − 1} × {0, 1, . . . , 2n

l − 1} say Cl(i, r) ≡
[li, l(i + 1)) × {rl} is k − good if for all x ∈ [li, l(i + 1)) ∩ Z, there exists a path
γx ∈ �x

rl,(r+1)l,kl([li, l(i + 1))) such that V (γx ) ≥ (α − ε
100 )

√
k l.

Although the definition is stated for the case d = 1, it can be readily adapted to the
case d ≥ 1.

Proof of Proposition 1.1 We continue to give proof in the case d = 1. The strategy
of the proof is to use Lemma 2.1 to show there are on the order of 2n channels of
width l starting at time δ2n and ending at time 2n . There is a high probability that each
channel contains a path with value not less than (α − ε)(1 − δ)2n . Then we exploit
the independence of the field in different channels.

Recall that given ε ∈ (0, α), by Lemma 2.1, we can fix l so large that

P(Al,k(ε)) > 1 − ε

2(α + 3)
. (27)

Thus

P(Cl(i, r) is k − good) > 1 − ε

200(α + 3)
.

Suppose also that δ > 0 is given. Without loss of generality we take δ2n and 2n to be
multiples of l.

Denote the set of k-good intervals by Gk and set

ψ(i, r) = 1Gk ([li, l(i + 1))× {rl}).

By (27) and the fact that the field {Wx : x ∈ Z
d} is i.i.d. Brownian, theψ(i, r), (i, r) ∈

{0, 1, . . . , 2n/ l − 1}× {0, 1, . . . , 2n/ l − 1} are i.i.d. Bernoulli random variables with
parameter exceeding 1 − ε

200(α+3) . Now for each such (i, r), define

Y(i,r) = min
x :(x,rl)∈Cl (i,r)

max
γ∈�x

rl,r(l+1),kl ([li,l(i+1))
V (γ ). (28)

Then we have that the random variables Y(i,r) are i.i.d. with lower tail behaviour
governed by (26) in Lemma 2.2. We now partition

[−δ2n, δ2n] × {[δ2n]} =
R⋃

m=1

Cm × {[δ2n]}

into R = δ2n+1

l disjoint subintervals with Cm = [−δ2n + (m −1)l,−δ2n +ml), m =
1, 2, . . . , R of side length l. (In the case of arbitrary dimensions, d, we have
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R = ( δ2
n+1

l )d . This is the source of the dimensional dependence in the lower large
deviation rates.) Also partition the channels, Cm × [δ2n, 2n), as follows

Cm × [δ2n, 2n) =
(1−δ)2n

l⋃
j=1

Cm × [δ2n + ( j − 1)l, δ2n + jl)

into (1−δ)2n

l disjoint squares, Cm ×[δ2n + ( j −1)l, δ2n + jl), of side length l. Abbre-
viate the notation by writing

Rm, j = Cm × [δ2n + ( j − 1)l, δ2n + jl).

Fix m ∈ {1, 2, . . . , R} and let Ym, j be the, so-to-speak “worst good situation” random

variables as in (28), for the squares Rm, j , j = 1, 2, . . . , (1−δ)2n

l . That is,

Ym, j = min
x∈Cm

max
γ∈�x

δ2n+( j−1)l,δ2n+ jl,kl (Cm )
V (γ ). (29)

Notice that the Ym, j , j = 1, 2, . . . , (1−δ)2n

l are independent. For c1 a small constant,
set

A(c1,m) =
⎧⎨
⎩∃J ⊆

{
1, 2, . . . ,

(1 − δ)2n

l

}
, |J |

≤ c1(1 − δ)2n

l
,
∑
j∈J

Ym, j ≤ − ε

10

√
k (1 − δ)2n

⎫⎬
⎭. (30)

In words, lower deviations arise from the event A(c1,m). We now establish some
control over the number of sub-blocks Rm, j , j = 1, 2, . . . , (1−δ)2n

l in a channel,
Cm × [δ2n, 2n], which are “bad” as specified in the definition of the event A(c1,m).

Lemma 3.1 There exists c > 0 so that for c1 small and n, l sufficiently large,

P(A(c1,m)) ≤ e−cε(1−δ)2n
. (31)

Proof First note that

(
(1 − δ) 2n

l

c1
2n

l

)
≤ e(1−δ)I (c1/(1−δ)) 2n

l

for I (θ) = −θ log θ − (1 − θ) log(1 − θ), by large deviations for binomial random
variables. This bounds the number of subsets J under consideration.
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Let J be a subset as described in (30). Using Lemma 2.2 and the constants c and
r0 there and Chebychev bounds, for c > c′ > 0 not depending on ε, L or n, we have

P

⎛
⎝∑

j∈J

Yl, j ≤ − ε

10

√
k (1 − δ)2n

⎞
⎠ ≤ e−c′ ε

10

√
k (1−δ)2n

(
E
[
e−c′Y

])|J |

=
(

E
[
e−c′Y ; Y ≥ −r0

√
k l
]

+ E
[
e−c′Y ; Y ≤ −r0

√
k l
])|J |

×e−c′ ε
10

√
k (1−δ)2n

≤ e−c′ ε
10

√
k (1−δ)2n

(
ec′r0

√
k l + c2le(c

′+c)l
) c1(1−δ)2n

l

≤ e−(cε/20)(1−δ)2n
, if c1 is small enough. (32)

Thus P(A(c1,m)) ≤ e−(I (c1/(1−δ)) 1
l −cε/20)(1−δ)2n

. Again by taking l to be large we
obtain the desired bound. ��

Now returning to the proof of Proposition 1.1 consider, with fixed m,

Vm =
(1−δ)2n

l∑
j=1

1Gk (Cm × {δ2n + ( j − 1)l}).

We have that

Vm is stochastically larger than a binomial random variable , Xm,

with parameters
(1 − δ)2n

l
and 1 − ε

200(α + 3)
. (33)

On the event

B ≡
{

Vm ≥
(

1 − c1

l

)
(1 − δ)2n

}
∩ A(c1,m)c,

for each point x ∈ Cm , there exists a path γx ∈ �x
δ2n ,2n ,k(1−δ)2n (Cm) which is con-

structed by concatenating paths with values exceeding (α − ε/100)
√

k l through the
k − good squares Rm, j and on A(c1,m)c, the total value for paths in the squares which
aren’t k − good can not be less than − ε

10

√
k (1− δ)2n , so we find that on B, the value

of such a concatenated path satisfies,

V (γx ) ≥ Vm

(
α − ε

100

)√
kl − ε

10

√
k (1 − δ)2n

≥
(
(1 − c1)(α − ε

100
)− ε

10

)√
k (1 − δ)2n

≥ (α − ε/5)
√

k (1 − δ)2n, for c1 small enough. (34)
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Define the event

Dm =
{
∀x ∈Cm, ∃γx ∈�x

δ2n ,2n ,k(1−δ)2n (Cm), V (γx )≥(α−ε/5)√k (1−δ)2n
}
. (35)

Then it follows from Lemma 3.1 and (33) that for l large enough, there is a constant
c(ε) > 0,

P (Dm) = P

(
A(c1,m)c

⋂
{Vm ≥

(
1 − c1

l

)
(1 − δ)2n}

)

= P(A(c1,m)c)+ P

(
Vm ≥

(
1 − c1

l

)
(1 − δ)2n

)
− 1

≥
(

1 − e−cε(1−δ)2n
)

+ P

(
Xm ≥

(
1 − c1

l

)
(1 − δ)2n

)
− 1

≥
(

1 − e−cε(1−δ)2n
)

+
(

1 − eI (c1− ε
200(α+3) )(1−δ)2n/ l

)
− 1

≥ 1 − e−c(ε)2n
. (36)

Now the events Dm, m = 1, 2, . . . , δ2
n

l , are independent so
∑R

m=1 1Dc
m

is stochasti-
cally bounded by a Bernoulli random variable with parameters R and e−c(ε)2n

. Thus,
with p = e−c(ε)2n

and�p(θ) = θ log θ
p + (1 − θ) log 1−θ

1−p and recalling R = δ2n

l , we
have by large deviations

P

(
R∑

m=1

IDc
m

≥ R

10

)
≤ e

−
(
�p(

1
10 )+o(1)

)
R

=
[(

1

10p

) 1
10
(

9

10(1 − p)

) 9
10
]−R

p
R
10 (1 − p)

9R
10 eo(1)R

=
[(

1

10

) 1
10
(

9

10

) 9
10
]− δ2n

l

e−c(ε) δ2
2n

10l (1 − e−c(ε)2n
)

9δ2n
10l eo(1) δ2

n
l

≤ e−c(ε)22n
, for a new value of the constant c(ε). (37)

But the discussion above shows that {∑R
m=1 IDc

m
≤ R

10 } is a subset of

{
|x ∈ [−δ2n, δ2n] : ∃γx ∈ �x

δ2n ,2n ,k(1−δ)2n , V (γx )

≥ (α − ε/5)
√

k (1 − δ)2n| ≥ 9

10
δ2n+1

}
(38)

and Proposition 1.1 is proven for d = 1. The case of arbitrary d follows on noting that
instead of “R = δ2n

2l disjoint intervals with Cm, m = 1, 2, . . . , R of side length l,” we

would have R = ( δ2
n

2l )
d disjoint d-dimensional cubes with Cm, m = 1, 2, . . . , R of
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side length l. This changes the bound in (37) from e−c(ε)22n
to e−c(ε)2(d+1)n

. This gives
the result in d > 1 dimensions and Proposition 1.1 is proven. ��

We now sketch the proof of Proposition 1.2 drawing on results in [4] using the
following steps. First we note that, since we are dealing with a fixed time t , we may
consider

u′(0, t) = E0[e
∫ t

0 dWX (s)(s)]

which is equal to u(0, t) in distribution but which has better subadditive properties.
Secondly, we note that for all ε > 0, with probability tending to 1 as � tends to

infinity

u′(0, �) ≥ e(λ(κ)−ε/106)�

and then argue that for k not depending on �.

P
(

E0[e
∫ �

0 dWX (s)(s) I{N (X,�)≤k�}] ≥ e(λ(κ)−ε/105)�
)

≥ 1 − ε/105

if � is sufficiently large.
We then note that since there are only a polynomial number (in �) of final positions,

X (l), for a path starting at 0 making at most k� jumps, we have

P
(

max
x

E0[e
∫ �

0 dWX (s)(s) I{X (�)=x} I{N (X,�)≤k�}] ≥ e(λ(κ)−ε/104)�
)

≥ 1 − ε4/106

provided � is large enough.
From this, in the one dimensional case for simplicity, we can use the F K G inequal-

ity to deduce that

P

(
max
x≥0

E0[e
∫ �

0 dWX (s)(s) I{X (�)=x} I{N (X,�)≤k�}] ≥ e(λ(κ)−ε/104)�

)
≥ 1 − 2ε2/102.

and

P

(
max
x≤0

E0[e
∫ �

0 dWX (s)(s) I{X (�)=x} I{N (X,�)≤k�}] ≥ e(λ(κ)−ε/104)�

)
≥ 1 − 2ε2/102.

for � large.
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Next we use the fact that for any x = x0, . . . , x 1
ε

with probability exceeding

1 − ε/104, we have

Ex0 [e
∫ �/ε

0 dWX (s)(s) I{|X (s)|≤2k�, 0≤s≤�/ε}]

≥ max
x1,...,x1/ε

1/ε∏
i=1

Exi−1[e
∫ �

0 dWX (s)((i−1)�+s) I{X (�)=xi } I{N (X,�)≤k,�}]

≥ e(λ(κ)−ε/104)�/ε

where the maximum is taken over x1, x2, . . .with |xi |, |xi −xi−1| ≤ k�, i = 1 . . . 1/ε.
Given this we arrive at the following analogue of Lemma 2.1.

Lemma 3.2 Fix ε > 0. Then

lim
L→∞ P

(
∀x ∈ [0, L)d , sup

z
E x [e

∫ L
0 dWX (s)(s) I{X (s)∈ [0,L)d ,0 ≤ s ≤ L , X (L)= z}]

≥ e(λ(κ)−ε)L
)

= 1. (39)

We can prove an analogue of Lemma 2.2 after which the path to Proposition 1.2 is
entirely analogous to the proof of Proposition 1.1 given Lemmas 2.1 and 2.2.

This concludes the proof of Proposition 1.2.

4 Small times

Next we examine the influence of the field {Wx : x ∈ Z
d} for points x near the starting

point 0 and small times. We seek paths that leave a neighborhood of the origin in a
hurry so that they can avoid a potentially bad realization of the media {Wx : x ∈ Z

d}
near the starting point. For the upper bound to the lower large deviation probabilities,
lim

n→∞
1

nd+1 log P( An,n
n ≤ α − ε) < 0, we consider a basic path space

�δ2n =
{
γ : [0, δ2n] → Z

d , γ (0) = 0
}

(40)

whose paths are right continuous with left limits and again all jumps of size one. Recall
that for γ ∈ �δ2n and for I ⊆ [0, δ2n],

N (γ, I ) = |{s ∈ I : |γ (s)− γ (s−)| = 1}|,

denotes the number of jumps of γ on the interval I . Define, for a positive function
f (k, n) to be fixed later but having values not exceeding 1, the values ak by a0 = 0
and ak+1 = ak + 2k f (k, n) and intervals

Ik = [ak, ak+1) = [ak, ak + 2k f (k, n)).
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Define subintervals of Ik by

Ii,k = [ak + (i − 1) f (k, n), ak + i f (k, n)), i = 1, 2, . . . , 2k . (41)

Denote the interior of an interval I by I o. We will restrict attention to paths in

�δ2n , f =
{
γ ∈ �δ2n : N (γ, Ii,k) = N (γ, I o

i,k) ≤ 1, k ≥ 0, i = 1, . . . , 2k
}
. (42)

We define, for ||x ||∞ ≤ 2k

4d , the random variables

Zk
x,i = sup{Wx (t)− Wx (s) : s, t ∈ Ii,k, s > t},

which are i.i.d.
The following follows simply from the reflection principle bounds on the maximum

and minimum of Brownian motion on an interval

Lemma 4.1 For all t > 0,

P
(

Zk
x,i > t

)
≤ 4

(
1 −�

(
t

2
√

f (k, n)

))

where � is the standard normal distribution function.

Remark 4.1 This is in fact a poor upper bound, see e.g. [16].

Consequently, for

W k
x,i =

(√
f (k, n)

)−1
Zk

x,i

and M sufficiently large and all k, n, W k
x,i IW k

x,i ≥M is stochastically less than V IV ≥M

for V a N (0, 8) random variable. Thus, we obtain

Lemma 4.2 There exists finite K so that for c sufficiently small and all k, n, if
t ≥ K 2k−n then

P

⎛
⎜⎝

∑

||x ||∞≤ 2k
4d ,i=1,...,2k

2−dk W k
x,i ≥ 2nt

⎞
⎟⎠ ≤ e−c22n−k(d−1)t2

.
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Proof Using independence and Chebychev’s inequality we have for λ > 0,

P

⎛
⎜⎝

∑

|x |∞≤ 2k
4d ,i=1,...,2k

2−dk W k
x,i ≥ 2nt

⎞
⎟⎠ ≤ e−λ2n t E

[
�||x ||∞≤ 2k

4d ,i=1,...,2k eλ2−dk W k
x,i

]

= e−λ2n t E
[
eλ2−dk W k

x,1

](2k+1+1)d+1

≤ e−λ2n t+c′λ22−2dk (2k+1+1)d+1
, by Lemma 4.1

≤ e−c22n−k(d−1)t2
, (43)

with a constant c, which depends only on d, by taking the optimal choice of

λ = 2nt
22dk

2c′(2k+1 + 1)d+1 .

��
Remark 4.2 The appearance of 4d in the spatial restriction ||x ||∞ ≤ 2k

4d is due to our
soon to be introduced random selection of path procedure. We will look at paths that

begin in the box {x ∈ Z
d : ||x ||∞ ≤ 2k

4d } and finish in {x ∈ Z
d : ||x ||∞ ≤ 2k+1

4d } and
take at most 2k steps. The factor 4d insures the path can begin and end at arbitrary
points in this box.

The following lemma is clear.

Lemma 4.3 For any γ ∈ �δ2n , f , with sups∈Ik
||γ (s)||∞ ≤ 2k

4d , we have

∫

Ik

dWγ (s)(s) ≥ −
2k∑

i=1

(
Zk
γ (ak+i f (k,n)),i + Zk

γ (ak+(i−1) f (k,n)),i

)

We now specify a random selection procedure for paths γ k : Ik → Z
d as follows:

1. Pick γ k(ak) uniformly on
{

x ∈ Z
d : ||x ||∞ ≤ 2k

4d

}
.

2. Pick (independently of γ k(ak)) γ k(ak+1) uniformly on
{

x ∈ Z
d : ||x ||∞ ≤ 2k+1

4d

}
.

3. Pick γ k(ak + i f (k, n)), i = 1, 2, . . . , 2k , as follows.

Let n j = ||γ k(ak+1) j − γ k(ak) j ||, j = 1, 2, . . . , d, and let e1, . . . , ed denote the
unit basis vectors in Z

d . For 1 ≤ i ≤ n1,

γ k(ak + i f (k, n))− γ k(ak + (i − 1) f (k, n)) = e1 sgn(γ k(ak+1)1 − γ k(ak)1),

for n1 + 1 ≤ i ≤ n1 + n2,

γ k(ak + i f (k, n))− γ k(ak + (i − 1) f (k, n)) = e2 sgn(γ k(ak+1)2 − γ k(ak)2)

etc.
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for
∑d

1 ni + 1 ≤ i ≤ 2k ,

γ k(ak + i f (k, n)) = γ k(ak + (i − 1) f (k, n)).

Let P̃ denote the probability measure involved in this random selection of path which
is independent of the field {Wx : x ∈ Z

d}. The selection procedure yields the following
result.

Lemma 4.4 There is a constant c = cd so that ∀(x, i) ∈ {u : ||u||∞ ≤ 2k+1

4d } ×
{0, 1, 2, . . . , 2k}

P̃
(

x = γ k(ak + i f (k, n))
)

≤ cd

2dk
.

Proof The case i = 0 is clear so we take i ≥ 1. Let u = γ k(ak) and v = γ k(ak+1) be

the initial and final points of γ k . Let
→
n = (n1, . . . , nd) be the vector defined above by

specifying n j = ||γ k(ak+1) j −γ k(ak) j ||∞. For a given i , there are d +1 possibilities
for the position of i relative to the sum of the n j . Namely, for x = γ k(ak + i f (k, n)),
one of these two possibilities occurs:

(1)
d∑

j=1

n j < i

(2) for some 1 ≤ m ≤ d,
m−1∑
j=1

n j < i ≤
m∑

j=1

n j with

(44)

∑0
j=1 taken to be 0.

The event {∑d
j=1 n j < i} is contained in the event {v = x}, which is an event of

probability bounded by c2−kd for some c.
On the other hand, for the event {∑m−1

j=1 n j < i ≤∑m
j=1 n j } we must have that for

� = 1, 2, . . . ,m − 1, x� = v� and for � = m,m + 1, . . . , d, x� = u�. In this case, we
say that v, u are m-compatible with (x, i). Given n1, n2, . . . , nm−1, for all choices of
nm there are at most two choices of vm, um so that x = γ k(an + i f (k, n)) with

m−1∑
j=1

n j < i ≤
m∑

j=1

n j .

Thus we can choose the number of v, u that are m-compatible with (x, i) as follows

(1) choose u1 and hence n1 (there are at most 2k choices)

(2) choose u2 and hence n2 (there are at most 2k choices)
·
·
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(m − 1) choose um−1 and hence nm−1 (there are at most 2k choices)
(m) choose nm and sgn(um − vm) (there are at most 2k choices)
(m + 1) choose vm+1 and hence nm+1 (there are at most 2k choices)
·
·

(3) choose vd and hence nd (there are at most 2k choices).

Therefore, the lemma follows. ��
An immediate consequence is:

Corollary 4.1 For cd from Lemma 4.4 and γ k selected as above

Ẽ

⎡
⎣

2k∑
i=1

Zk
γ k (ak+i f (k,n)),i +

2k∑
i=1

Zk
γ k (ak+(i−1) f (k,n)),i

⎤
⎦≤2cd 2−dk

∑

||x ||∞≤ 2k
4d ,1≤i≤2k

Zk
x,i

We now set

f (k, n) = (n − k)−32−(d−1)(n−k), 0 ≤ k ≤ n + log δ

and with tn,k =
(√

f (k, n)(n − k)3
)−1

, define the event A(k, n), 0 ≤ k ≤ n + log δ

by

A(k, n) =

⎧
⎪⎨
⎪⎩

2−dk
∑

||x ||∞≤ 2k
4d ,1≤i≤2k

W k
x,i ≤ 2ntn,k

⎫
⎪⎬
⎪⎭
.

Then by Lemma 4.2,

Corollary 4.2 For n sufficiently large,

P
(
∩n+log δ

k=0 A(k, n)
)

≥ 1 − e−c2n(d+1)
.

Furthermore, on ∩n+log δ
k=0 A(k, n) we have for any 0 ≤ k ≤ n + log δ,

Ẽ

⎡
⎣

2k∑
i=1

Zk
γ (ak+i f (k,n)),i + Zk

γ (an+(i+1) f (k,n)),i

⎤
⎦ ≤ 2cd

√
f (k, n) 2−dk

×
∑

||x ||∞≤ 2k
4d ,1≤i≤2k

W k
x,i 2cd

√
f (k, n)2ntn,k ≤ 2cd (n − k)−3/2 2n

and so we have
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Corollary 4.3 There exists positive constant Cd such that on the event∩n+log δ
k=0 A(k, n),

there exists a path from 0 to x, call it γx , for 9
10 of x ∈ {u : ||u||∞ ≤ 2nδ

4d } such that
both

(i)

an+log δ∫

0

d Bγx (s) ≥ −Cd 2n
(

log

(
1

δ

))−1/2

and
(ii) N (γx , [0, an+log δ]) ≤ 2nδ.

Proof From Lemma 4.3.

an+log δ∫

0

d Bγ k (s) ≥ −
n+log δ∑

k=0

2k∑
i=1

(
Zk
γ k (ak+i f (k,n)),i + Zk

γ k (ak+(i−1) f (k,n)),i

)
. (45)

By Corollary 4.1,

Ẽ

⎡
⎣

2k∑
i=1

(
Zk
γ k (ak+i f (k,n)),i + Zk

γ k (ak+(i−1) f (k,n)),i

)⎤⎦ = 2cd 2−dk
2k∑

i=1

∑

||x ||∞≤ 2k
4d

Zk
x,i .

So, by Chebychev,

P̃

⎛
⎝

2k∑
i=1

(
Zk
γ k (ak+i f (k,n)),i +Zk

γ k (ak+(i−1) f (k,n)),i

)

> 200 cd 2−dk
2k∑

i=1

∑

|x |∞≤ 2k
4d

Zk
x,i

⎞
⎟⎠ ≤ 1

100
. (46)

Consequently, for 9
10 of the points x in {u : ||u||∞ ≤ 2k

4d } there is a path γx,y : Ik → Z
d

for 9
10 of the points y in {u : ||u||∞ ≤ 2k

4d } for which γx,y(ak)= x, γx,y(ak+1)= y,

sups∈Ik
||γx,y(s)||∞ ≤ 2k

4d and

2k∑
i=1

(
Zk
γx,y(ak+i f (k,n)),i + Zk

γx,y(ak+(i−1) f (k,n)),i

)
≤ 100 cd 2−dk

2k∑
i=1

∑

||x ||∞≤ 2k
4d

Zk
x,i .

(47)
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By an induction argument we conclude that for 9
10 of the points x ∈ {u : ||u||∞ ≤ δ2n

4d }
we can select successive pairs (xk, yk), k = 1, 2, . . . , n + log δ with xk+1 = yk and
concatenating the resulting paths, γk ≡ γxk ,yk to obtain a path γ ∈ �δ2n , f satisfying
γ (δ2n) = x, sups∈[0,δ2n ] ||γ (s)||∞ ≤ δ2n, N (γ, [0, δ2n]) ≤ δ2n and

n+log δ∑
k=0

2k∑
i=1

(
Zk
γ (ak+i f (k,n)),i + Zk

γ (ak+(i−1) f (k,n)),i

)

≤ 200 cd 2−dk
n+log δ∑

k=0

∑

||x ||∞≤ 2k
4d

Zk
x,i . (48)

Thus, by (45) and (48) we have

an+log δ∫

0

d Bγ k (s) ≥ −
n+log δ∑

k=0

2k∑
i=1

(
Zk
γ k (ak+i f (k,n)),i + Zk

γ k (ak+(i−1) f (k,n)),i

)

≥ −100cd

n+log δ∑
k=1

2k∑
i=1

∑

||x ||∞≤ 2k
4d

2−dk Zk
x,i . (49)

Observe that on ∩n−log( 1
δ
)

k=0 A(k, n)

200cd

n+log δ∑
k=0

2k∑
i=1

∑

||x ||∞≤ 2k
4d

2−dk Zk
x,i ≤ 200cd

n+log δ∑
k=0

(√
n − k

)−3/2
2n

≤ Cd

(
log

1

δ

)−1/2

2n (50)

for a universal Cd . By (49) and (50), on the event ∩n−log 1
δ

k=0 A(k, n)

an+log δ∫

0

d Bγ k (s) ≥ Cd

(
log

1

δ

)−1/2

2n .

This concludes the proof. ��
The developments to this point will now be used to prove Theorem 0.1.

Proof We first prove lim
n→∞

1
nd+1 log P(An,n < (α − ε)n) < 0. By Corollarys 4.2, 4.3

and Proposition 1.1 we can, with probability at least 1 − 3e−c2n(d+1)
select a common

point x in the intersection of the two sets involved in those results which occupy 9
10

of the points in [−δ2n, δ2n]d together with a path γ ∈ �0,2n ,2n such that
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(i)

γ (t) = x, an+log δ ≤ t ≤ δ2n,

(ii)

an+log δ∫

0

d Bγx (s)(s) ≥ − Cd2n

(log 1
δ
)1/2

,

(iii)

Bx (δ2
n)− Bx (an+log δ) ≥ − ε

100
(δ2n − an+log δ),

(iv)

2n∫

δ2n

d Bγx (s)(s) ≥ (α − ε)(1 − δ)2n .

Thus, with probability at least 1 − 3e−c2n(d+1)
we find a γ ∈ �0,2n ,2n for which

V (γ ) ≥ − Cd2n

(log( 1
δ
))1/2

− ε

100
(δ2n − an+log δ)+ (α − ε)(1 − δ)2n

≥ (α − 2ε)2n . (51)

That proves the upper bound. We now prove the lower bound

limn→∞
1

nd+1 log P
(

An,n < (α − ε)n
)
> −∞. (52)

For the Brownian field, {Wx : x ∈ Z
d} there exists a natural decomposition

Wx (t) = Bn
x (t)+ t

n
Wx (n), 0 ≤ t ≤ n,

where {Bn
x : x ∈ Z

d} are independent Brownian bridges over the time interval [0, n]
independent of the Gaussian field {Wx (n) : x ∈ Z

d}. In the following we use this
decomposition �n = {x ∈ Z

d : ||x ||∞ ≤ n}. Now we have for a vector u ∈
R(2n+1)d , |�n| = (2n + 1)d , the function ω → F(u, ω) is measurable with respect
to σ {Bn

x : ||x ||∞ ≤ n} given by F(u, ω) = An,n for the trajectories

W
u
x (t) = Bn

x (t)+ t

n
u(x),
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that is

F(u, ω) = sup
γ∈�0

0,n,n

n∫

0

dW
u
γ (t)(t).

So of course F(W.(n), ω) gives the original functional An,n where we take W.(n) to
be the vector (Wx (n))||x ||∞≤n . We have the following obvious bound:

‖F(u, ω)− F(u′, ω)‖∞ ≤ ‖u − u′‖∞. (53)

Also, for each ω, u → F(u, ω) is a nondecreasing function of the components of u.
Monotonicity of F by components of u and (53) give that, with probability at least
1/2, for large n

F(n2/3, ω) ≤ (α + ε)n

where n2/3 is the vector each of whose components equals n2/3. Now define the event

Aε(n) = {Wx (n) ≤ −2εn,∀x ∈ �n} ∩ {F(n2/3, ω) ≤ (α + ε)n}. (54)

Then we have easily that for n large

• P(Aε(n)) ≥ 1
2 e−ε2nd+1cd for a positive constant cd not depending on n

and
• on the event Aε(n), An,n ≤ F(n2/3, w)− 2εn − n2/3 ≤ (α − ε)n.

This proves the lower bound (52) and the proof of (8) of Theorem 0.1 is complete.
The proof of (7) is relatively easy. By Borell’s inequality (see ([4] for a justification
of its use in this context), we have limn→∞ 1

n E[An,n] = α and there exist K , c′ such
that

P(An,n − E[An,n] ≥ an) ≤ K e−c′a2n .

Thus,

P(An,n ≥ (α + ε)n) = P(An,n − E[An,n] ≥ (α + ε − E[An,n]/n)n)

≤ K e−c′ε2n, (55)

with some positive c′. This implies the upper half of (7). On the other hand, if one
takes the path γ (s) ≡ 0, then we easily see that

P(An,n ≥ (α + ε)n) ≥ P(W0(n) ≥ (α + ε)n)

≥ e−cn, (56)

for some positive c, which gives the proof of the lower estimate in (7). This completes
the proof of Theorem 0.1. ��
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We now use the previous results to deal with the large deviations for the solution
to the parabolic Anderson model (1). We first remark that the distribution of u(x, t)
is independent of x . Also,

u(x, t)
L= Ex

[
e
∫ t

0 dWX (s)(s)
]
.

As remarked earlier, the right hand side is more convenient for applications of the
results on An,n , (time is running in the same direction in X and in W .) Therefore in

our arguments we shall use E0[e
∫ t

0 dWX (s)(s)] instead of u(x, t). We now extend this
approach to solutions of (1). The point is that the paths γx created in the proof of The-
orem 0.1, are chosen randomly and uniformly: their law is thus absolutely continuous
with respect to that of a random walk. The arguments for large deviations for An,n tell

us that outside of a set of probability e−c(ε,δ)2n(d+1)
for 9/10 of x ∈ � 2n δ

4d
there exists

a sequence of values in Z
d

γx (ak + i f (k, n)) i = 1, 2, . . . , 2k k = 0, 1, . . . , n + log δ

with |γx (ak + (i + 1) f (k, n)) − γx (ak + i f (k, n))|1 ≤ 1 for all i and k, so that for
any curve γx : [0, an+log δ] → Z

d , if γx (ak + i f (k, n)) = γx (ak + (i + 1) f (k, n))
then for all s ∈ [an + i f (k, n), ak + (i + 1) f (k, n)],

γx (s) ≡ γx (an + i f (k, n)),

and if

|γx (ak + i f (k, n))− γx (an + (i + 1) f (k, n))|1 = 1

then γx makes exactly one jump on [an + i f (k, n), an + (i + 1) f (k, n)], necessarily
from γx (ak + i f (k, n)) to γx (ak + (i + 1) f (k, n)). Then

an+log δ∫

0

d Bγx (s)(s) ≥ −Cd

(
log

1

δ

)−1/2

2n .

Now take random γx (for suitable x) according to the above recipe with (in the
case of γx (ak + i f (k, n)) �= γx (ak + (i + 1) f (k, n)) the jump time in the interval
[ak + i f (k, n), an + (i + 1) f (k, n)] chosen uniformly on this interval independently
of other jumps. The random walk probability of such a path is

p =
n+log δ∏

k=0

2k∏
j=1

(e−κ f (k,n)�k j + e−κ f (k,n) κ f (k, n)

2d
(1 −�k j ))
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where �k j = 1 if and only if there is no jump on interval [ak + j f (k, n), ak +( j +1)
f (k, n)] and otherwise is equal to 0. Then, if δ is fixed small,

p = e−κ∑n+log δ
k=0 2k f (k,n)

n+log δ∏
k=0

2k∏
j=1

(
�k j + (1 −�k, j )

κ f (k, n)

2d

)

≥ e−κ2nnδ
n+log δ∏

k=0

e
log
(
κ f (k,n)

2d

)
2k ≥ e−2nε/100.

Thus, we have that outside the event ∩n+log δ
k=1 A(k, n), for 9/10 of x ∈ � 2n δ

4d
,

E0

[
e
∫ an+log δ

0 dWX (s)(s) | X (an+log δ) = x

]
≥ e− ε

100 −Cdδ/

√
log( 1

δ
)2n
.

Staying at x , obviously gives

Ex

[
e
∫ δ2n

an+log δ
dWX (s)(s)

]
≥ Ex

[
e
∫ δ2n

an+log δ
dWX (s)(s)1N (X,t)=0

]

and for any r > 0,

P

(
Ex

[
e
∫ δ2n

an+log δ
dWX (s)(s)1N (X,t)=0

]
≥ eε(δ2

n−an+log δ)

)

≤ e−rε(δ2n−an+log δ)

×Ex

[
E

[
e

r
∫ δ2n

an+log δ
dWX (s)(s)

]]

= e(
r2
2 −rε)(δ2n−an+log δ)

≤ e− ε2
2 (δ2

n−an+log δ). (57)

But applying Proposition 1.2, we have for 9/10 of x ∈ � 2n δ
4d

,

Ex

[
e
∫ 2n

δ2n dWX (s)(s)
]

≥ e(λ(κ)−ε/3)(2n−δ2n).

Thus, there is an x with

E0

[
e
∫ 2n

0 dWX (s)(s)
]

≥ E0

[
e
∫ an+log δ

0 dWX (s)(s) | X (an+log δ) = x

]

×Ex

[
e
∫ δ2n

an+log δ
dWX (s)(s)1N (X,t)=0

]
Ex

[
e
∫ 2n

δ2n dWX (s))(s)
]

≥ e−2nε/100−Cdδ/(log 1
δ
)1/22n+(λ(κ)−ε/3)(2n−an)

≥ e−(λ(κ)−ε)2n
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provided δ is chosen small enough. We next show that the large deviation can be
achieved in this order of probability. We can argue similarly to the above that ∀m, ∃cm

< ∞ so that for all large n

P
(

E0

[
e
∫ t

0 dWX (s)(s) I{|X (s)|1≤mt, ∀ 0≤s≤t}
]

≤ e(λ(κ)−2ε)t
)

≥ e−cmε
2d t (d+1)

.

This will suffice since ∃m0 so that

P
(

E0

[
e
∫ t

0 dWX (s)(s) I{∃0≤s≤t :|X (s)|≥m0t}
]

≤ e(λ(κ)−2ε)t
)

≥ 1/2.

We now make appeal to the FKG inequality applied to the positively correlated events

A =
{

E0

[
e
∫ t

0 dWX (s)(s) I{|X (s)|1≤mt, ∀ 0≤s≤t}
]

≤ e(λ(κ)−2ε)t
}

and

B =
{

E0

[
e
∫ t

0 dWX (s)(s) I{∃0≤s≤t :|X (s)|≥m0t}
]

≤ e(λ(κ)−2ε)t
}

to conclude

P
(

u(t, 0) ≤ 2e(λ(κ)−2ε)t
)

≥ 1

2
e−cm0 ε

2d t (d+1)

for t large. Of course, for t large,

2e(λ(κ)−2ε)t ≤ e(λ(κ)−ε)t

and we are done with the proof of (9).
Again the proof of (10) is easier. Observe that

E0

[
e
∫ t

0 dWX (s)(s)
]

≥ e−κt+W0(t)

and so there is a positive constant c such that

P
(

E0

[
e
∫ t

0 dWX (s)(s)
]

≥ e(λ(κ)+ε)t
)

≥ P
(

e−κt+W0(t) ≥ e(λ(κ)+ε)t
)

≥ e−ct . (58)

Thus,

lim
t→∞

1

t
P

(
log u(0, t))

t
≥ λ(κ)+ ε

)
> −∞.
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For the other direction, if r > 0,

P
(

E0

[
e
∫ t

0 dWX (s)(s)
]

≥ e(λ+ε)t
)

≤ e−r(λ(κ)+ε)t E
[

E0

[
er
∫ t

0 dWX (s)(s)
]]

= e−r(λ(κ)+ε)t E0

[
E
[
er
∫ t

0 dWX (s)(s)
]]

= e−(λ(κ)+ε)r t+ r2
2 t , (59)

which gives, on selecting r small,

lim
t→∞

1

t
P

(
log u(0, t)

t
≥ λ(κ)+ ε

)
< 0.

That completes the proof of Theorem 0.2.
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mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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