Singular dissipative stochastic equations in Hilbert spaces

Giuseppe Da Prato • Michael Röckner

Received: 23 November 2007 / Revised: 26 August 2008 / Published online: 14 October 2008
© Springer-Verlag 2008

Erratum to: Probab. Theory Relat. Fields (2002) 124:261-303 DOI 10.1007/s004400200214

An error in the above paper is corrected. All main results of the paper remain correct except for one: we get a slightly modified statement concerning the path regularity of the constructed Markov process at $t=0$.

1 Introduction

We place ourselves entirely into the framework of the above paper [1] and assume the reader to be familiar with the notation introduced there.

There is an error in the proof of Lemma 5.5 which seems impossible to be corrected without a further assumption. This slightly affects the path continuity at $t=0$ of the Markov process constructed subsequently. However, Theorem 7.4, which is the only

[^0]main result relying on Lemma 5.5, remains correct just by changing the topology on the state space to the one naturally given by the Markov process in question. More precisely, the Markov process constructed in Theorem 7.4 which solves the desired martingale problem has the following property for its path space measures \mathbb{P}_{x} :
\[

$$
\begin{equation*}
\mathbb{P}_{x}\left[C\left([0, \infty) ;\left(H_{0}, \tau_{S_{2}}\right)\right]=1, \quad \forall x \in H_{0}\right. \tag{1.1}
\end{equation*}
$$

\]

where $H_{0}:=\operatorname{supp} v$, with v as in [1, Hypothesis 2.1], is equipped with the topology $\tau_{S_{2}}$ generated by the cone S_{2} of α-supermedian continuous functions on H_{0} defined in [1, Section 5].

If H_{0} is equipped with the norm topology induced by H, we only have

$$
\begin{equation*}
\mathbb{P}_{x}\left[C\left((0, \infty) ; H_{0}\right)\right]=1 \quad \forall x \in H_{0} \tag{1.2}
\end{equation*}
$$

The original slightly stronger claim in [1, Theorem 7.4] that

$$
\begin{equation*}
\mathbb{P}_{x}\left[C\left([0, \infty) ; H_{0}\right)\right]=1 \tag{1.3}
\end{equation*}
$$

for $x \in H_{0}$ remains unproven in general, unless $\operatorname{dim} H<\infty$. In this note we prove (1.1) and (1.2) (cf. Theorem 7.4' below) and, under the assumption that $\operatorname{dim} H<\infty$, also (1.3) (see Proposition 2.1).

Finally, we take the opportunity to correct a misprint in the statement of [1, Lemma 5.6]. All applications in [1, Section 9] are still valid, but if $\operatorname{dim} H=\infty$, path continuity at $t=0$ is to be understood with respect to the topology $\tau_{S_{2}}$.

2 Description of the problem

In the proof of Lemma 5.5 it cannot be concluded from the last inequality that $x_{n} \rightarrow x$ in H_{0}. Hence $\left\{g_{n} \mid n \in \mathbb{N}\right\}$, though being point separating on H_{0}, may not generate the topology on H_{0} inherited from H. The proof, however, can trivially be modified to prove that $\left\{g_{n} \mid n \in \mathbb{N}\right\}$ generates this topology if the following condition holds:

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m R_{m} f_{k}=f_{k} \quad \text { uniformly on } H_{0} \quad \text { for all } k \in \mathbb{N} \tag{C.1}
\end{equation*}
$$

with f_{k} as defined in [1, (5.5)]. This condition on the other hand can be hard to check, in particular, if H is infinite dimensional.

Let us now list all places where Lemma 5.5 is mentioned or used in the subsequent part of the paper. In the proof of Lemma 5.6 the map $i: H_{0} \rightarrow i\left(H_{0}\right)$ is clearly continuous, but Lemma 5.5 is quoted there to conclude that it is a homeomorphism. Fortunately, only the continuity of i is used in the rest of the proof, so Lemma 5.5 is not used here. In Corollary 6.4 assertion (i) relies on Lemma 5.5 and should, therefore, be deleted.

The proof of Proposition 7.2 uses Lemma 5.5 in its last line. Its assertion must be modified. The correct formulation is as follows.

Proposition 7.2' Let $x \in H_{0}$. Then \mathbb{P}_{x}-a.s.

$$
\begin{equation*}
\lim _{\substack{t \rightarrow 0 \\ t>0}} g_{n}\left(X_{t}^{0}\right)=g_{n}(x) \quad \forall n \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

Because the g_{n} do not generate the topology on H_{0} induced by the norm | $\cdot \mid$ on H, we cannot in general conclude from here that

$$
\begin{equation*}
\lim _{\substack{t \rightarrow 0 \\ t>0}} X_{t}^{0}=x \quad \mathbb{P}_{x} \text {-a.s. } \tag{2.2}
\end{equation*}
$$

(So, only the very last line of the proof of Proposition 7.2 is erroneous.) (2.2) is, however, true, if $\operatorname{dim} H<\infty$.

Proposition 2.1 Assume

$$
\begin{equation*}
\operatorname{dim} H<\infty \tag{C.2}
\end{equation*}
$$

and let $x \in H_{0}$. Then (2.2) holds and thus [1, Theorem 7.4] holds.

Proof Suppose we can prove that there exists $V: H_{0} \rightarrow \mathbb{R}_{+}$with relatively compact level sets (with respect to $|\cdot|$) which for some $\alpha>0$ is α-supermedian for $(p)_{t>0}$, i.e. $e^{\alpha t} p_{t} V \leq V$ on $H_{0} \forall t>0$. Then as in the first part of the proof of [1, Proposition 7.2] the martingale convergence theorem implies that \mathbb{P}_{x}-a.s.

$$
\lim _{\substack{t \rightarrow 0 \\ t>0}} V\left(X_{t}^{0}\right) \text { exists in } \mathbb{R}
$$

Hence for \mathbb{P}_{x}-a.e. $\omega \in \Omega, X_{t}^{0}(\omega)$ is in a compact subset of $H_{0} \forall t \geq t(\omega)$. But all its accumulation point must coincide by (2.1) since the g_{n} are point separating. Hence (2.2) follows.

Claim $V:=\left(1+|\cdot|^{2}\right)^{1 / 2}$ is α-supermedian for $\left(p_{t}\right)_{t>0}$ for some $\alpha>0$.
Indeed, for $n \in \mathbb{N}$ let $\chi_{n} \in C_{b}^{2}(\mathbb{R}), 0 \leq \chi_{n}^{\prime} \leq 1, \chi_{n}(s)=s \forall s \in[-n, n],\left|\chi_{n}(s)\right|=$ $n+1$ if $|s| \geq n+2, \sup _{n} \chi_{n}^{\prime \prime}=: c<\infty, \chi_{n} \leq \chi_{n+1}$. Then it is easy to see that $\chi_{n}\left(|\cdot|^{2}\right) \in D\left(N_{2}\right)$ and that for v-a.e. $y \in H$.

$$
\begin{align*}
N_{2} \chi_{N}\left(|\cdot|^{2}\right)(y) & =\chi_{n}^{\prime}\left(|y|^{2}\right) N_{2}|\cdot|^{2}(y)+\left.\left.\chi_{n}^{\prime \prime}\left(|y|^{2}\right)\left|C^{1 / 2} D\right| \cdot\right|^{2}\right|^{2}(y) \\
& \leq \operatorname{Tr} C+2\langle A y, y\rangle+2\left\langle F_{0}(y), y\right\rangle+c 4\|C\||y|^{2} \leq \alpha u \tag{2.3}
\end{align*}
$$

where $u:=1+|\cdot|^{2}\left(\in L^{2}\left(H_{0}, \nu\right)\right)$ and $\alpha:=\max \left(\operatorname{Tr} C+\left|F_{0}(0)\right|^{2}, 4 c\|C\|+1\right)$ and we used both Hypothesis 1.1(i) (which can, however, be avoided since $\operatorname{dim} H<\infty$, so A is bounded) and the dissipativity of F_{0}. Hence for $u_{n}:=1+\chi_{n}\left(|\cdot|^{2}\right)$ and all
$\lambda>0$ we have v-a.e.

$$
\begin{aligned}
\lambda R_{\lambda+\alpha} u_{n} & =\lambda R_{\lambda+\alpha}\left(R_{\alpha}\left(\alpha-N_{2}\right) u_{n}\right) \\
& =\left(R_{\alpha}-R_{\lambda+\alpha}\right)\left(\left(\alpha-N_{2}\right) u_{n}\right) \\
& =u_{n}-R_{\lambda+\alpha}\left(\alpha u_{n}-N_{2} u_{n}\right) \\
& =u_{n}-R_{\lambda+\alpha}\left(\alpha u-N_{2} u_{n}\right)-\alpha R_{\lambda+\alpha} u_{n}+\alpha R_{\lambda+\alpha} u \\
& \leq u_{n}+\alpha R_{\lambda+\alpha} u-\alpha R_{\lambda+\alpha} u_{n},
\end{aligned}
$$

where we used (2.3) in the last step. Consequently,

$$
(\lambda+\alpha) R_{\lambda+\alpha} u_{n} \leq u_{n}+\alpha R_{\lambda+\alpha} u, \quad v-\text { a.e. }
$$

und letting $n \rightarrow \infty$ by monotone convergence

$$
(\lambda+\alpha) R_{\lambda+\alpha} u \leq u+\alpha R_{\lambda+\alpha} u
$$

i.e. (since all involved functions are finite v-a.e.)

$$
\lambda R_{\lambda+\alpha} u \leq u \quad v \text {-a.e.. }
$$

We conclude that by Jensen's inequality v-a.e.

$$
\lambda R_{\lambda+\alpha} u^{1 / 2} \leq \frac{\lambda}{\lambda+\alpha}\left((\lambda+\alpha) R_{\lambda+\alpha} u\right)^{1 / 2}=\left(\frac{\lambda}{\lambda+\alpha}\right)^{1 / 2}\left(\lambda R_{\lambda+\alpha} u\right)^{1 / 2} \leq u^{1 / 2} .
$$

But since $u^{1 / 2} \in \operatorname{Lip}(H)$ and since it easily follows from (5.3) by approximation that $R_{\lambda+\alpha} f \in \operatorname{Lip}\left(H_{0}\right)$ for all $f \in \operatorname{Lip}(H)$, it follows by continuity that

$$
\lambda R_{\lambda+\alpha} u^{1 / 2} \leq u^{1 / 2} \quad \text { (everywhere) on } H_{0} .
$$

Clearly, this is equivalent with the claim.

3 The correctly modified version of Theorem 7.4

In this section we will state and prove the correctly modified version of [1, Theorem 7.4].

We first recall that our standing assumptions in [1], namely Hypotheses 1.1 and 1.2, are still in force as well as Hypothesis 7.3 (i.e., A is self-adjoint) and the assumption that $C^{-1} \in L(H)$. Furthermore, we consider the countable cone S_{2} of Lipschitz-continuous bounded functions, which are α-supermedian (for $\left(R_{\lambda}\right)_{\lambda>0}$) for some $\alpha \in \mathbb{Q}_{+} \backslash\{0\}$, introduced in preparation of [1, Lemma 5.6]. By Proposition 5.2 we know that

$$
\lim _{\lambda \rightarrow \infty} \lambda R_{\lambda+\alpha} f(x)=f(x) \quad \forall x \in H_{0}, f \in S_{2}
$$

and this limit is in fact a supremum by the resolvent equation. Such α-supermedian functions are called α-excessive functions, so S_{2} consists of α-excessive (with respect to $\left(p_{t}\right)_{t>0}$ or equivalently to $\left.\left(R_{\lambda}\right)_{\lambda>0}\right)$ functions. Let $\tau_{S_{2}}$ be the topology generated by S_{2} on H_{0} (:= supp v with v as in Hypothesis 1.2).

Theorem 7.4' (i) There exists a conservative (normal) strong Markov process $\mathbb{M}=\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0},\left(X_{t}\right)_{t \geq 0},\left(\mathbb{P}_{x}\right)_{x \in H_{0}}\right)$ with $\tau_{S_{2}}$-continuous sample paths having transition semigroup $\left(p_{t}\right)_{t \geq 0}$ (as defined in [1, Proposition 5.7(iii)]). In particular, v is an invariant measure for v.
(ii) For $x \in \mathbb{P}_{x}$ the paths $t \mapsto X_{t}$ are $|\cdot|$-continuous on $(0, \infty) \mathbb{P}_{x}$-a.s..
(iii) For every $x \in H_{0}, \mathbb{P}_{x}$ solves the martingale problem for N_{2} with test function space

$$
D_{0}:=\left\{\varphi \in D\left(N_{2}\right) \cap C_{b}(H) \mid N_{2} \varphi \in L^{\infty}(H, v)\right\}
$$

and initial condition x, i.e., under \mathbb{P}_{x}

$$
\begin{equation*}
\varphi\left(X_{t}\right)-\int_{0}^{t} N_{2} \varphi\left(X_{s}\right) d s, \quad t \geq 0 \tag{3.1}
\end{equation*}
$$

is an $\left(\mathcal{F}_{t}\right)$-martingale with $X_{0}=x$ for all $\varphi \in D_{0}$.
Proof Let D denote the dyadics and $\Omega:=H_{0}^{D}$. Replacing the metric d in [1, Section 7] by the one generated by $|\cdot|$ and realizing that by the same arguments as in the first part of the proof of [1, Proposition 7.2] we obtain that for all $f \in S_{2}$

$$
\lim _{t \rightarrow 0} f\left(X_{t}^{0}\right)=f(x) \quad \mathbb{P}_{x} \text {-a.s. } \forall x \in H_{0}
$$

the same proof as that of [1, Theorem 7.4] implies (i)-(iii).
Remark 3.1 It is possible to show that the set of all $x \in H_{0}$, for which the process $X_{t}, t \geq 0$, is not weakly continuous at $t=0 \mathbb{P}_{x}$-a.s., is polar, i.e. is not hit by $X_{t}, t \geq 0, \mathbb{P}_{y}$-a.s. for all $y \in H_{0}$. This fact will be proved in a forthcoming paper.

Finally, in [1] there was a mistake in the statement of Lemma 5.6. The correct formulation and what was actually proved and used in the subsequent part of the paper is the following
Lemma 5.6' Let $f \in S$. Then there exists a v-version $\bar{p}_{t} f$ of $P_{t} f, t>0$, such that for all $x \in H_{0}$

$$
t \mapsto \bar{p}_{t} f(x) \text { is right continuous on }[0,+\infty)
$$

and for $\lambda>0$

$$
\begin{equation*}
\int_{0}^{\infty} e^{-t \lambda} \bar{p}_{t} f(x) d t=R_{\lambda} f(x) . \tag{3.2}
\end{equation*}
$$

Acknowledgments We would like to thank Luigi Ambrosio and Lorenzo Zambotti for pointing out the error in the proof of [1, Lemma 5.5] to us. Furthermore, we would like to thank Lucian Beznea for very helpful discussions.

References

1. Da Prato, G., Röckner, M.: Singular dissipative stochastic equations in Hilbert spaces. Probab. Theory Relat. Fields 124(2), 261-303 (2002) [MR MR1936019 (2003k:60151)]

[^0]: G. Da Prato was supported in part by "Equazioni di Kolmogorov" from the Italian "Ministero della Ricerca Scientifica e Tecnologica".
 M. Röckner was supported by the DFG through SFB 701 and IRTG 1132, by NSF—Grant 0603742, as well as by the BiBoS Research Center.

 The online version of the original article can be found under doi:10.1007/s004400200214.

 ## G. Da Prato (\boxtimes)

 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
 e-mail: daprato@sns.it
 M. Röckner

 Universität Bielefeld, Fak. Mathematik, Abt. Mathematik I, Universitätsstr. 25, 33615 Bielefeld, Germany
 e-mail: roeckner@mathematik.uni-bielefeld.de

