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Abstract We prove that the Fourier transform of the properly scaled normalized
two-point function for sufficiently spread-out long-range oriented percolation with
index o« > 0 converges to e~CI™™ for some C e (0, 0co) above the upper-critical
dimension d. = 2(«a A 2). This answers the open question remained in the previous
paper (Chen and Sakai in Probab Theory Relat Fields 142:151-188, 2008). Moreover,
we show that the constant C exhibits crossover ata = 2, which is aresult of interactions
among occupied paths. The proof is based on a new method of estimating fractional
moments for the spatial variable of the lace-expansion coefficients.
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Limit theorem - Crossover phenomenon - Lace expansion - Fractional moments
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1 Introduction and the main result

We consider oriented bond percolation on Z¢ x Z., where each time-oriented bond
((x, n), (y, n+1)) is occupied with probability p D(y —x) and vacant with probability
1 — pD(y—x), independently of the other bonds. Here, D is a Z¢-symmetric probability
distribution on Z¢, hence the parameter p € [0, ||D||gol] can be interpreted as the
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436 L.-C. Chen, A. Sakai

average number of occupied bonds per vertex. We say that a vertex (x, j) is connected
to (y, n), and write (x, j) — (y, n),ifeither (x, j) = (y, n) or there is a time-oriented
path of occupied bonds from (x, j) to (y, n). Let P, be the probability distribution of
the bond variables, and define the two-point function as

(ﬂp(x, n) = ]Pp ((0’ O) - (-xv n)) ’

and its Fourier transform as

Zpkin) = D " gy x.n)  (kel-m 7]

xeZ4

Notice that Z,(0; n) = >° .74 ¢p(x, n) is the expected number of vertices at time n
connected from (o, 0). It has been known ([3] and references therein) that there is a
Ppe > 1 such that

Xp =D Zp(0;n)

n=0

=00  (p=po).

In the previous paper [1] (often referred to as Part I from now on), we investigated
critical behavior of long-range oriented percolation defined by

h(x/L)

D(x) = =1
=S o7

where £ is a probability density on R4 satisfying h(x) =< lx|797% (ie., |x 9T R(x) is
bounded away from zero and infinity) for large x. Here, @ > O is the characteristic
index, and L € [1, 0c0) is the parameter that serves the model to spread out. For
example, || D|lcoc = O(X), where

r=L"9

See [1, Sect. 1.1] for the precise definition and other properties of D. Notice that the
variance o2 = > |x|2D(x) does not exist if @ < 2
xeZd = 4

. .. . 2.
Suppose that there is a positive finite constant vy (= 35 if & > 2) such that the
Fourier transform D(k) =>. <7 D(x)e”“‘ obeys the asymptotics

Vg [k[*2 (@ #2),

1-D ~ 1.1
()|k|—>0[v2|k|210gﬁ (@ =2). (4.

The assumption (1.1) with v, = O(L*"?) indeed holds if, e.g., h(x) ~ c|x|~¢~* as
|x| — oo for some constant ¢ (see [7, Sect. 10.5] for the 1-dimensional case). Let

(1.2)

_ 1
b kx [(van) @A),
(vanlog/n)" 2 (a=2),
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Critical behavior and the limit distribution for long-range oriented percolation. II 437

so that
lim n(1 — D(ky)) = [k|*"2. (1.3)
n—0oo

Among various results, we proved that, foro > 0,d > 2(e A2), L > 1, p € (0, pc]
and k € R?, thereexistsc, ¢’ = 1+ O (A) such that the normalized two-point function
satisfies

=W i ing 2200 g ZoEni ) o2,

< (1.4)
n—oo  Z,(0;n) n—oo  Zp(0;n)

Here, d. = 2(a A 2) is the upper-critical dimension of this model. We do not expect
that (1.4) holds for d < d.. Compare this result with the behavior of the two-point
function for the branching random walk on Z¢ whose mean number of offspring per
parentis p > O:

Z?)Rw(kn; n) _ 7|k‘c(/\2

BRW (7. — D\ =
ZP (k;n) = p"Dk)", nLn;o Z?)RW(O; n)

(1.5)

The latter is an immediate consequence of the former and (1.3). We note that ¢ ~¥I* is
the characteristic function of an «-stable random variable (see, e.g., [10]).

The proofin [1] of (1.4) is based on the lace expansion for the two-point function. To
derive information of the sequence Z , (k; n) from its sum (= the Fourier-Laplace trans-
form of the two-point function) and prove (1.4), we established optimal control over
fractional moments for the fime variable of the lace-expansion coefficients. However,
due to the long-range nature of our D, we were unable to optimally control fractional
moments for the spatial variable of the expansion coefficients and squeeze the bounds
in (1.4) to identify the limit. We note that, by the standard Taylor-expansion method,
the limit has been shown to exist at p = p. if « > 2 [6] and for every p € (0, pc]
if the model is finite-range [8]. This standard method does not work for @ < 2 in the
current setting.

In this paper, we develop a new method to estimate fractional moments for the
spatial variable of the expansion coefficients and achieve the following result on the
normalized two-point function:

Theorem 1 Leta > 0,d > 2(an2), L > land p € (0, pc]. ThereisaC = 14+0(X)
such that, for any k € R,

lim Zp(kn; I’l) _ e,C|k|o¢/\2’
n—00 Zp(O; n)
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where ky, is defined in (1.2). Moreover,

m
| 1+ p—z” Z IXIzﬂp(x,n)m’,’, (o > 2),
C = - X o (x,n)
1+pmp(z)nnp(x,n)mp 1 (@ <2),
xX,n
(1.6)

where m, is the radius of convergence for Zflio Z,(0; n)m", and 7w, (x, n) is the
alternating sum of the lace-expansion coefficients. The sums in (1.6) are absolutely
convergent.

See, e.g., [1, Sect. 3.1] for the precise definition of 7, (x, n).

The most remarkable observation in the above theorem is that the constant C exhibits
crossover at & = 2. This phenomenon is observable if 7, which is model-dependent
and contains information about interactions of occupied paths, is nonzero. We recall
that, for the branching random walk, occupied paths are independent and 7, = 0,
hence C is always 1 as in (1.5). Therefore, the crossover behavior in (1.6) is a result
of interactions among occupied paths.

We should emphasize that our approach developed in this paper and Part I is widely
applicable, not only to our long-range oriented percolation, but also to various other
(long-range/finite-range) statistical-mechanical models. For example, our methods
also apply to show that a similar result to the above limit theorem holds for long-
range self-avoiding walk with the characteristic index « > 0, studied in [5]. Markus
Heydenreich is working in this direction [4]. His work will be a generalization of the
results in [2,12], where D(x) is proportional to |x|~2 if x is on the coordinate axes,
otherwise D(x) = 0. Since the coordinate axes are 1-dimensional, we should interpret
«a for this particular model as 1.

As another nontrivial application of the fractional-moment method of this paper,
one of the authors (LCC) will report in his ongoing work that the gyration radius & [(,’)
of order r € (0, ) for sufficiently spread-out oriented percolation with d > 2(x A 2)
obeys

1/r 1
1 nan2 (a #12%
(r) — - r ~
£)(n) = 2,0 Z |x|"@p(x, n) = [(n logm)'? (@ =2),

xeZ4

for every p € (0, pcl.

The rest of the paper is organized as follows. In Sect. 2, we summarize the relevant
results from Part I. In Sect. 3, we prove Theorem 1 subject to a key proposition on
fractional moments for the spatial variable of the lace-expansion coefficients. We prove
that proposition in Sect. 4 using a certain integral representation for fractional powers
of positive reals.
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Critical behavior and the limit distribution for long-range oriented percolation. II 439

2 Summary of the relevant results from Part I
In this section, we summarize the results from Part I that will be used in the rest of the

paper.
First, we introduce some notation. Let

pD(x)  (n=1),

qp(x,n) =P (((0,0), (x, n)) is occupied) = [0 (n#1)

We denote the space-time convolution of functions f and g on Z¢ x Z, by

(fx).m= > fy.ngk—yn—1,

(v, t)€ZA X Ty

and the Fourier-Laplace transform of f by

fkay= > fame  (kel-mml? ze0).

(x,n)eZd x 7.
Notice that _71 Ar f (l, 7), defined as

17 - Fd+k.2)+ f -k,
TAkf(l,z)Zf(l,z)—f(+ Z);Lf( 2)

> (I —cos(k-x) fx.n)e" 2", (2.1

(x,n)eZd <7y

is the Fourier—Laplace transform of (1 — cos(k - x)) f (x, n).
In [1, Sect. 3.1], we explained the derivation of the lace expansion

gop(x, I’l) = JTP()C, }’l) + (np *qp * (pp)(x7 n)v

where 7, (x, n) is the alternating sum of the Z4-symmetric nonnegative expansion
coefficients 77" (x, n) for N = 0,1,2,...:

mp.n) = D (=DNx M (x, ). (2.2)

N=0

The precise definition of & ;,N) is unimportant in this paper. However, we will use the
following properties of 77, and ¢,:
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440 L.-C. Chen, A. Sakai

Proposition 1 Leta > 0, d > 2(a A2) and L > 1. Then,

pmp7tp(0,mp) =1, (2.3)
> nlmyte.m)m" < 0, 2.4)
(x,n)
> (1 =costk - x)) |7y (x,m)|m" < 00)(1 = D(k)), 2.5)
(x,n)
and
; o
6p (k. me®)]| < _ o — 2.6)
pmp(l — E) + 101 +1— D(k)
; 1—D(k
Agplimey < _ ®
(j.jH=(0,£1),(1,—1) pmp(l — m_p) +10|+1—=D{ + jk)
1
x o 2.7)

pmp(L= ) 10| +1 = DU+ j'k)

uniformly in p € (0, pc], m € [0,mp), k,l € [-m, 714 and 6 € [—n, ).

Proof The identity (2.3) for every p € (0, p.] was proved in [1, (2.17) and (2.22)].
The bounds (2.4) and (2.6) for p € (0, p.) were also proved in Part I, and can be
extended up to p = pe, as long as m is strictly less than the radius of convergence,
mp, =1 (ct., [1, Corollary 1.3]).

The same extension applies to the bounds (2.5) and (2.7), if they hold uniformly in
p € (0, pc) and m € [0, m)). In Part I, we showed that

Z (1 —cos(k - x)) |, (x, )| m" < O(L) (1 L b(k)) ,

) p

uniformlyin p € (0, pc),m € [0, mp)andk € [—m, n]d.However, since the left-hand
side is increasing in m < m, we obtain

Z (1 —cos(k - x)) |7 (x, n)|m" < lim Z (1 = cos(k - x)) |7 (x, n)| m"
(x.n) e G
. m ~
<O0®) lim (l -—+1- D(k))
mtmp mp

<o (1 - D),

as required. Using this stronger bound and following the steps in [1, Sect. 4.2], we
also obtain (2.7). This completes the proof. O
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Critical behavior and the limit distribution for long-range oriented percolation. II 441

Finally, we summarize the results for the n't coefficient Z p(k;n) of the series
expansion of ¢,(k, m) in powers of m: ¢p(k,m) = > > Z,(k;n)m". Let (cf.,
[1, (2.33)—(2.3D)])

) . Oty (K,
AVK) = D) + 2T E mp) 2.8)

pmpﬁp(kv mp)2 '
Ap0,mp) — 7p(k, mp)

By(k)=1—D(k) + : 2.9)

where 9,7, (k, mp) = limypm,, 97, (k, m). Notice that, by (2.4)-(2.5),

m p 7, (k, mp)| < lim Zn|7‘rp(x,n)|m" <0o®), (2.10)
mtm

P (x.n)

17p 0, mp) = Ftpkomp)l < > (1= cos(k - x)) [y (x, n)| m"

(x,n)

< 0()(1— D), 2.11)

where the O(A) terms are uniform in p € (0, p.] and k € [—m, 71¢. Moreover,
since 7, (x, 0) equals the Kronecker delta 6, , (cf., [1, (3.2)]), we have frp (k,mp) =
1 4+ O() and thus A (k) + B,(k) = 1+ O(%) uniformly in p € (0, p.] and
ke[-m, m]9.

In [1, Sect. 2.4], we showed that, for« > 0,d > 2(@ A2), L > land ¢ €
©.1A d—2(an2)

an2

0o 1 AY (k) 8 .
m[,Z,,(k, l’l) = " - =0 - + 0(}’1 )’
pmp (A;,”(k) 4 B,,(k)) AV (k) + B, (k)

hence

Zykin)  AD(0) ( A (k)

__ ) _ ) + 0™, 2.12
Zp(O:n) " AY (k) + By (k) A$)<k>+3p(’<>) v

uniformly in p € (0, pc] and k € [—m, 7]¢. To prove Theorem 1, it thus suffices to
investigate the first term in (2.12).

3 Proof of Theorem 1 subject to a key proposition

In this section, we prove Theorem 1 assuming convergence of fractional moments for
the spatial variable of 7, as stated in the following proposition:
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Proposition 2 Leta > 0,d > 2(ae A2), L > 1 and

8[6(0,0[/\2/\(6[—2(0[/\2))) (@ #£2), G.1)
=0 (a=2).
Then, for any p € (0, pcl,

D, (e, m) | my < oo 3.2)

(x,n)

We will roughly explain why § is chosen as in (3.1), after the proof of Theorem 1
is completed. The proof of Proposition 2 is deferred to Sect. 4.

Proof of Theorem 1 subject to Proposition 2 As explained at the end of Sect. 2, it suf-
fices to investigate the term

n(1=Dk)) Bp)

~(1 N
A\ iDw 1-b®

AR\ (14 B0
AY (k) + By (k) A (k)

Notice that, by (2.8)—(2.11) and (1.3),

A(l)(k)
~ ——i ~
By(k)\ “r® . n(1 — D(ky)) |k |12
1 D) o€ A n:)oo O
A (k) k|0 A (k) A% (0)
where
AS)(O) =1+pm, > nip(x,n)my.
(x,n)
Moreover,
By )y B0 Oomp) ApOomy) = Ay my)
1= D(k) P 7,k mp) 1= D)
7,0, — 7, (k,
— 1+ pm, lim 7p(0, mp) Arrp( mp)
k|0 Ik|—>0 1 — D)

if the limit exists. To complete the proof of Theorem 1, it remains to show

1 2
#p O, myp) — plemy) | 2z 2 WPTp e mmy (@ > 2),

m ~
=0 1=D 0o (@ <2).

(3.3)
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Now we choose 6 as in (3.1) and use Proposition 2 to prove (3.3) for (i) « < 2 and
(i) o > 2, separately.
(i) Letx <2 and a + § < 2. Then, we have

0<1—cosk-x) < O(k-x|*").

By the spatial symmetry of the model and using (3.2) with § satisfying « 4+ < 2 and
(3.1),

17,0, mp) — A,k mp)| = ' Z (I —cos(k - x)) mp(x, n) m;’,

(x,n)eZd <7,y

SOk ™y >0 P, ) ml)

(x,n)eZd X7,y

= O(Jk|*T?).

By (1.1), we thus obtain that, for small |k|,

|7p (0. mp) = ptkomp)| | O(KI?) (@ <2),
1 — D(k) “lod/loggy  (@=2).

This yields (3.3) for o < 2.
(ii) Let @ > 2 and § < 2. By the Taylor expansion,

1 —cos(k - x) = + O(lk - x|**?).

(k- x)?
2
Then, by the spatial symmetry of the model and using (3.2) with § satisfying (3.1),

R . |k|?
7p(0,mp) = 7y (k,mp) = > xPrymymh + 0k, (34

(x,n)eZd X7,y

The limit (3.3) for « > 2 follows from (3.4) and the asymptotics (1.1) with v, = ‘2’—:1.
This completes the proof of Theorem 1 subject to Proposition 2. O

Before closing this section, we roughly explain why § < o A2 A (d — 2(x A 2))
for o # 2 (the necessity of § = 0 foro =2 and § > O for o # 2 is obvious from the
above proof of Theorem 1). This is a sort of preview of Sect. 4.

In Sect. 4, we will use diagrammatic bounds on the expansion coefficients n;,N)
in (2.2). In each bound (cf., (4.1)—(4.3) below), there are two sequences of two-point
functions from (o, 0) to (x, n). To bound Z(x’n) |x|°‘A2+5nI(,N) (x, n)m", we will split
the power o A 2 4 § into &1 and 8, and multiply one of the aforementioned two
sequences of two-point functions by |x|%" and the other by |x|®2. Here, we choose
81 and § both less than o A 2, so as to potentially control the weighted two-point
functions, like |y|51g0[,(y, s).
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444 L.-C. Chen, A. Sakai

Then, > |x|*" 287V (x, n)m™ will be bounded by the product of diagram
functions (cf., Lemma 3 below). Those diagram functions are the “triangle” T), ,,
which is independent of §; and &5, its weighted version T[’,’m((Sl) and the weighted
“bubbles” Wl’,,m (82) and W[’,/’m((Sl, 82) (cf., (4.4)—(4.7) below). As shown in Sect. 4.3,
it is not hard to bound W;/;,m(SZ) uniformly in p and m ford > 2(a¢ A2) and L > 1
as long as 62 < a A 2. However, to bound T1/7,m (81) and W;/;,m(‘sl’ 87) uniformly in
p and m, we will have to choose 61 to be small depending on how close d is to the
upper-critical dimension 2(ax A 2). As described in Lemma 5 below, we will choose
81 less than d — 2(a A 2).

To summarize the above, we have
0<8i<aAn2A(d—2aAN2), 0<d <aA2, 81 +Hh=an2+36.

To satisfy all, it suffices to choose 61 “slightly” larger than § and let 6 = a A2—(51—9).
This is why we choose § < o A2 A (d —2(a A 2)) when « # 2.

4 Proof of Proposition 2

Finally, in this section, we prove Proposition 2. First, in Sect. 4.1, we bound fractional

moments for the spatial variable of the expansion coefficients ;,N) in (2.2) in terms

of certain diagram functions. In Sect. 4.2, we use an integral representation of a’ for
a > 0and § € (0,2), which is the key to the proof of Proposition 2. In Sect. 4.3,
we show that the aforementioned diagram functions are convergent, and complete the
proof of Proposition 2.

4.1 Diagrammatic bounds on the expansion coefficients
In this subsection, we bound Z(X’n) |x|"|7wp(x, n)|m" for r > O in terms of the
diagram functions T}, ,, Tlgym, ng),m and W;’;,m defined in Lemma 3 below.
First, we show the following elementary inequality:
Lemma 1 Foranyr > 0andm > 0,
o

Dl mp ) m" <d2T YT g O (e, ) m",

(x,n) N=0 (x,n)
where x1 is the first coordinate of x = (x1, ..., Xq).

Proof For any r > 0, we have

r/2 r/2

d d

2 2

"= D Ixl <2 lixl;
Jj=1 j=1

d
=dPxlp=d? Y )
j=1
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By this inequality and using the nonnegativity and the spatial symmetry of & ,(,N ), we
obtain

d 0
Dol G, mm™ < d2 " x| D (=D (x, n) | m”
(x,n) j=1(x,n) N=0
d oo
SPEDID I UTT TG
Jj=1N=0 (x,n)
o
=d T oy m”,
N=0 (x,n)
as required. O

Next, we use [9, Lemma 1] to investigate Z(x,n) |x1|’7r;,N)(x,n) m™. For nota-

tional convenience, we denote vertices in Z94+! by bold letters, e.g., 0 = (0, 0) and
X = (x, tx), where #x is the temporal part of x. Let

Yp(X) = (gp * ¢p)(X).

Given a sequence of vertices yi, ...,y; € Z4H, we write
J

J
yi= D v
i=1

Foryi,z1,y2, 22, . .. € Z¢t!, we define

L. o ep(Vi —Zi) + ¢p(Zi — ¥i)
Ap(io1.Zio1: ¥ Zi) = Yp(yi) ¥p(zi) == lzsﬁ_p =,

0p(¥i —Z) + ¢p(Zi — i)
285, .3

Yp(Yitr1) Up(Zit1).

Ap (Vi Zi: Yig1, Zig1) =

Lemma 2 (Equivalent to Lemma 1 [9]) For N =0,

0 <7 (X) = bxo < ¥p(x)°. “.1)
For N > 1,
N
a0 < D ep) ep@) [ | ApGis Ei Vivr, Fig), (4.2)
Yiseees YN+1 i=1

_ZlnZNt ]
(YN+1=ZN+1=X)
(ty, =tz;)

and, forany j € {2,..., N + 1},
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Jj—1
V< D e ep@) ey —z) | [ ApGior.Fi: i )

Y1 s YN+1 i=2
Z],...,ZN+1

(YN +1=EN41=X)

N
< YN V@) [ []ApGi 2 ¥in1 7)) |, (43)
i=j

where an empty product is regarded as I (Fig. 1).

For further notational convenience, we let

P (X) = pp(x) ™,

YUX) = Yy () m,
A i1, Zi-13¥i, 7)) = Ap(i-1,Zi-1; i, i) m™
AC(¥is 705 Vi1, Zig1) = Ap(is i Yirr, Zig1) met,

Given arbitrary 81, 8, > 0, we define T), ,, Tz/J,m = Tlg,m 81), W;)’m = W;,,m((Sz) and

W[Z,m = W;;ym(&, 82) as

Typm = sup D Yp(y) ((wg’” £y —X) + D 0 —y) Yz~ x)), 4.4)
x5 Z

Tyon =0 2 NI, () (w;;“ £ Q)Y —X) + D ¢pE—y) Y@ - x)),
y z

(4.5)
W = 50D 2 p(¥) Iyt — 127 (v = %), (4.6)
y
Wy = sup > [y ¥, (y) [y — x>y 5" (y — x). 4.7)
X
y
Using the above diagram functions and Lemma 2, we obtain the following:
Lemma 3 Forany N > 0andm > 0,
D PR (e, m”
(x.n)
< (N + D)oo (T, )V 2 ((N(l + Tpn) + Tp) Tpm Wi
+N (N = D+ Tpn) +3Tpm) T) W;,,m) . (4.8)

@ Springer



Critical behavior and the limit distribution for long-range oriented percolation. II 447

Tp’m ) h m N H ) Wp/,m _ S, m

-------- S E S
/ _ & m (/. 81 82, m
Tp,m : hm _I— 81‘/‘ Wp,m E
= = = = = =

Fig. 1 Schematic representations of the diagram functions. Each pair of horizontal short line segments
represents ¢ p, and the other longer line segments represent . A bold line segment representing ¢ (x, 1)
is weighted by the factor m" if the line segment is indexed by m, and by the factor | x| |3 if the line segment
is indexed by 8. A dashed arrow represents the supremum over its terminal point X € 74+ with its initial
point fixed at the origin o

Proof First of all, by (4.1), we immediately obtain

8146 s s
S P mt < S P ) [ PP ) < W,

(x,n) (x,n)

as required.

Let N > 1. We denote the first coordinate of the spatial part of y; by y; 1:
Yi = (Vi1s ... Vi), ty;). Similarly, we write, e.g.,¥; = ((Ji.1, - - ., Yi.a), tj,). Notice
that, since

N+1 51 N+1
Fveal® = | D yja| =W +DY max ;. Pr< N+ DDyl
j=1 j=1

we have that, for yy+1 = Zy+1 = X,
N+1
1P = S P R < (V4 D22y Pz
J.j'=1
By this inequality and using (4.2)—(4.3), we obtain
N+1
D PRy mt < (N + DM S) (4.9)

(x,n) j'=1
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where
N+1
8y, (m) (m)
=> D il i Pep @) H AP §i % Yiv1. Zig),

j=1 YL, YN+1 i=1

_)Z] ..... le+|

(YN+1=ZN+1)

(tylzlzl)

and, for j/ > 1,

N+1
Sir=> > 1yl ey e @) 9p(y1 — 21)
j=1 Y, YN+1

Z15-ZN+1
(YN+1—ZN+1)

i=1
m) /= - .2 - 8 m

[T A Gt Zii: ¥ 2) | Yoy 21 1295 (20)
i=2

N

[TAY G2 ¥, 7i40)

i=j'

It remains to estimate each S;. To do so, we follow the same line of argument

in [9, Sect. 2]. Here, we explain in detail how to estimate S;. First we note that, by
translation-invariance,

sup > AW (0. WX, x+y) < Tpm. (4.10)
y W, X
sup > [yiM A (0. wix.x+y) < T} . (4.11)
y w,X

Then, by repeated use of translation-invariance, the contribution to S; from j = 1 is
bounded as

N
§1 & (m) A("l)
i1 ep (Y1) 21,112 03" (21) (¥is Zis Yit1: Zig1)
A L =1
FN+1=ZN+1)
(ty, >tz,)
5 ) 5 5
=D AW xx) > Iyl ey 211”0y @)
w,X Yis- YN
L2l 2N
Zn=yN+W)
(ty, =t2,)

N—
< [T A G Zis Yirr. Zig)
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N—1
s 5 Tme 2.2 3
<Tpmsup > Iyl e,y 21120y @) [ A Gin & Fir. Zigr)
1. YN i=1
_)Zl,A_.).,ZN
(Zn=yNn+W)
(ty, =1z;)
< (T 2 81 8, (m)
< (Tp,m)” sup Iyl ep(y) 121,117,  (21)
w Yis-es YN-1
N
(ZN-1=YN-11W)
(tylztzl)

N-2
X H A (§isZis Yit1, Zig1)

i=1

< @)™ sup DT il ey 2111208 21)

Witw>0 V1,21
(y1=21+wW)

< (Tpm)"W/ (4.12)

p.m?

where we have used ¢, (x) < dx o + ¥p(x). Similarly, the contribution to S; from
j > 1is bounded as

N
S S g - = -
D ialPepa lzlPey @) [ [ A Gis %s Yivt, Ziv1)
Y1, YN+1 i=1
Zis s IN+L
(YN+1=ZN+1)
(ty, >tz))

< @)V 7', sup DT ey 2111708 (@)
Witw>0 Y1.Z1
(y1=21+W)

S (Tp,m)N_lT/ W/

p,m " p,m:*

Therefore,

SI < NTp)V ') W+ (Tp)N W) (4.13)

p.m*

To estimate S for j* > 1, we first use (4.10)—(4.11). For example, the contribution
from j = j’ is bounded, similarly to (4.12), as

-l
> e @) epyi —zo) [ [[ AV Gicr i il E)

Y1, YN+1 i=2

qZ],...,Z_])v+1

(YN+1=ZN+1)
N

P B R . >
x|y Iy 1z a2, (z0) H AY iy Zis Yit1, Zit1)

i=j
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< @)V sup DT () 08 (@0) 9p(yi — 21)

Yis-os y]-/
z,..., Z/-/
(ij/:ij/—i-x)
Ji-1
S 8 s
X AP i1, 213 ¥ 2) | 1yjr 1P () |21 12 (z0).
p p
i=2
N+1—j v/
< @)Wy L sup DT ey 08 (21) @p(y1 — 1)
X
Yisen¥ i
Zl,..,,Z‘/-/_l
(2_//_1=§7j/_|+x)
j=1
X HA;Zz)(g’i—lvii—l;g’i’zi) . (4.14)
i=2
Notice that
sup D AP (0.X:.2) < Tp . sup D [y AV (0, x:y,2) < T} .
Ry x Y7

By repeated use of translation-invariance, we obtain

(4.14) < (1 + Ty ) (Tp )V W/

p,m*

Itis not hard to see that the contribution from j notbeing either j’ or I, which is possible

only if N > 2, is bounded by (1 + Tp’m)(Tp’m)N_zT[/,’mW[/)’m, and the contribution

from j = 1 is bounded by 2(Tp,m)N_1T,/,’m W;),m. Therefore, for j > 1,

Sy < ((N=DU+Tpm)+2Tpm) (Tp,m)Nsz;’le’,’m

+(+ Ty ) (T )N W) .
(4.15)

The proof of (4.8) is completed by assembling (4.9), (4.13) and (4.15). O

4.2 Integral representation of fractional-power functions

In this subsection, we use an integral representation of al fora > 0and§ ¢ 0,2) to

bound the diagram functions 7, ,,,, W, , and W, .

First we note that, for § € (0, 2),

o0
P 1 —cost d
8= AR
0
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is a positive finite constant. Replacing ¢ by u = ¢/a with a > 0, we obtain

1

s_ L
K
0

w1 +o

which is the key inequality.
To describe bounds on 77

pm’

Yell, 2) =

and, by denoting i = (u, 0, ...,

d4i

Ii(u) = e

/

[-7.7]d

/

[—JT,T[]‘I

/

[-m.7]¢

/

[-m,7m]d

i (o) — d?1
2(”)_ (zﬂ)d
fa) = i
a4

La(u, v) = Gy

o
1 — cos(ua)

1

8

2

)

1 — cos(ua)

u <
ult+s

(]

0

du |, (4.16)

o and W7

».m below, we define

IAD D] 19p (L, 2] + |8y (L, 2,

0) € [-m, 7]9,

Yall, €Y 1@, (1, e 1gpU, me?)],  (4.17)

[d@
/d@

19,1, €9)| Y5(1, me®), (4.18)

-7

d9

Y,;(l, ¢y 14,1, me')|, (4.19)

—7T

Yadl, ) Ys(l, me'?). (4.20)

T
/ do
2

—1T

Taking the Fourier—Laplace transform of (4.5)—(4.7) (also recalling (2.1)) and using
(4.16), we obtain the following:

Lemma 4 Forany p € (0, pc) and m € [0, m)),

1
T/ L (27, 450 du_ 421
p’m_K_al ap,m“‘ p m PR 1w |, (4.21)
0
w) ! ! 4.22
pm =g g 1+82 L) |, (4.22)
0
1 2 5p%m du
1 !
Wp,m = K_él g p.m K(S 52/ 148, 3(“)
1 1
25p du dv .
T | e Iy(u, v) (4.23)
0 0
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Proof We only prove (4.22), since the other two inequalities can be proved in the same
way.

First we use (4.16) to bound |y; — x1|%2 in (4.6). The first term in (4.22) is due to
the first term in (4.16) and the trivial inequality

1
2 VWYY =% = S Tpm.
y

To complete the proof of (4.22), it thus remains to show

2
L (4.24)

D Up(y +x) (1= cos(uy)) ¥4 (y) <
y

However, since 1 — cos Z,J':l 1 <@2J+1) Z{zl(l —cost;) (cf., [11, (4.50)]), we
have ' ‘

(1 = cos(uy1) ¥ (y) = (1 = cos(uy1)) (@p * 9p)(¥)
<5p > (1 —cos(uw)) (D(w) g, (y — W) + 9, (W) D(y — w)).

Applying this to the left-hand side of (4.24), then taking the Fourier—Laplace transform
and using ¢, (1, ey = 1@p(, e%)|, we obtain (4.24). This completes the proof of
(4.22). O

4.3 Bounds on the diagram functions

In this subsection, we complete the proof of Proposition 2 using the following lemma:

Lemma5 Leta > 0andd > 2(a A 2), and choose § as in (3.1) and 61, 5, € (0, 2)
as

§<d1<aA2A(d—-2AN2)), o =aAr2+5—76.

Then,
Tym =00, w’ = 0(1), (4.25)

uniformly in p € (0, pc) and m € [0, m).
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Proof of Proposition 2 First, by Lemmas 1 and 3 withr =61+ =a A2+ <4,
we obtain that, for any p € (0, pc],

246
D x4, (e, ) |

(x,n)

o
< Z(N + 10T, YN ((N(l + Tpny) + Tpny) Tpon, Wyom,
N=0

N ((N = 1)U+ Ty ) +3Tp) T W, ) . (4.26)

p.mp " p,mp

Since the diagram functions (4.4)—(4.7) are increasing in m > 0 for every p > 0 and
in p > 0 for every m > 0, the uniform bounds in (4.25) imply that these diagram
functions at m = m obey the same bounds uniformly in p € (0, p.]. Therefore, the
right-hand side of (4.26) is convergent, if A is sufficiently small. This completes the
proof of Proposition 2. O

Proof of Lemma 5 It is not hard to extend [1, Lemma 4.1] to show that T}, ,, = O (&)
uniformly in p € (0, pc) and m € [0, m)). Recall Lemma 4. To complete the proof
of Lemma 5, it thus suffices to show that the integrals in (4.21)—(4.23) of fl, e, f4
are bounded uniformly in p € (0, pc) and m € [0, m ).

The integrals of I> and I3 are easy and can be estimated similarly. For example, by
(2.6)-(2.7) and |A; D()| < 2(1 — D(®)) (cf., (2.1)),

5 a1 do , L 4 . .
hw = W/E 60, )] (185DW 130 me™)] + 185051, me™)])

<0(1—13(6))/ il /d—e ! !
- @m) ) 27 19|+1=D@) \ 18] +1— D)

+ > !

holds uniformly in p € (0, pc) and m € [0, m)). Using the Holder inequality twice
and the translation-invariance of D, we have

do 1 1
27 19|+ 1—=D(@) (16|+ 1 — DA+ jo)(0|+ 1 — DU + j'D))

1/2
_ do 1 ( 1 )2 /
- 27 19| +1—D() \|9|+ 1 — D( + jv)

1/2
5 do 1 ( 1 )2 /
27 19|+ 1—D(@) \10|+1—D( + j'D)
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(V2 (i) (2 Gi))
“\J 2t 9| +1-D®) 27 \|6] + 1 — D( + jv)

do 1 N( 1 as 1 3\
X(/E (|9|+1—13(1))) (/E (|9|+1—ﬁ(l~|—j’ﬁ)))
[ (ian)
S o2 g +1-Dday/
Since, by (1.1),
a4 /ﬁ( 1 )3< a1 om_ _
em)d ] 27 \|9|+1-Dw)) ~J @0 (1 - D))

holds for d > 2(a A 2), we conclude that, for 6 =a A2 — (6§ —§) < a A 2,

1

1
dv . dv A
U1+52 IQ(U) < m 0(1 — D(U)) < o0
0

0

as required.

Next, we consider the integral of I 1. In fact, we only need consider the contribution
from |A;¢, (1, ¢?)] in Y;(l, ') of (4.17), because the contribution from the other
term in I?;l (1, ¢'?) can be estimated similarly to the integral of b, as explained above.
Using (2.6)—(2.7) and ignoring some factors of |0|, we obtain

d?] do o o
(2n)d/ 18:¢p(L, e D19y, €19, (1, me'?)]
< Z/ dd] O (1 — D(ii)) /ﬁ (;)2
~ &) eoT (A= D+ jan - ba+ jin ) 2w \lel+1- D)
1
o(1-b ] ) -
@) Z/(Z”)d — D(+ ju))(1 = DU+ j'u))(1 — D))

G.J"
4.27)

where Z(j,j/) isthe sumover (j, j/) = (0, £1), (1, —1). By the translation-invariance
and Z¢-symmetry of D, the integral for (j, j') = (0, £1) equals

J(u) = / il ! (4.28)
B Qo) (1= DU = DU — i) '

[—7,7]¢
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Moreover, by the Schwarz inequality, the integral for (j, j') = (1, —1) is bounded by

( a1 1 )”2
Q@) (1= Dd + w)*(1 — D))

441 1 iz
X ( = = ) = J(u).
2m)? (1 — D3 —i)2(1 — D))
Therefore,
“.27) < 0(1 = D@@))J (). (4.29)
Now we show

J(u) < O @3@r2n0) (4.30)

which is sufficient for the integral of I 1 tobe convergent for §; < a A2A(d—2(aA2)).
Let

R = {1 el—m x|l > %u}, 4.31)
Ry = {l el—mxld |1 < 3u, 1 <1l - ﬁ|}, (4.32)
Ry = {1 e [—m w141 < 3u, |1 —ii| < |l|] (4.33)

Notice that 1 — D(I — ii) > O(|l — ii|*"?) forany | € [—7, 7]¢ and u € [0, 1] (cf.,
[1, Proposition 1.1]). Since |l — i| > |I| —u > %|l| forl € R, we have

ddi 1 o )/ ( (d—3(om2))/\0).
J Qm)d (1 - D@21 - D — u)) |l|3<‘“2>
1

Moreover, since || — u| > 5 forl € Ry and |I| > 5 forl € R3, we have

d/1 1 o e
0] oan 19) an2)y
Qm) (1-D)2(1—D(—it)) = 0w ) / |1|2(w2) = (” )

Ry ll<3u

and

ddl 1 ddl
O (2@ 2) / 0 (yd-3@ Y
<2ﬂ)d (1-D()*(1—D(~ii)) = o ) 1z = (“ )

lfu
2

This completes the proof of (4.30), as required.
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Finally, we discuss the integral of Is. We only need consider the contribution from
1A:¢, (L, €| A3¢, (1, me?)| in Yz(l, ) Y5(1, me'®) of (4.20), since the contribu-
tions from the other combinations are bounded similarly to the integrals of I, 1 fz, f3
aslongasd > 2(axAN2),81 <aA2A(d—2(aA2))and § < o A 2. Using (2.7)
and ignoring some factors of |6, we have

d4i do §
(Zﬂ)d |Au§0p(l e )||Av(pp(l me )|

d?] O(1 — D(ii))
= 2 /(

2m)d (1 — — i
1D G2 ) W (1= DA + j1i)(1 — DA + j{id))

a0 1 — D®@)
27 (10141 — D+ )10 + 1 — DU + j}v))
(4.34)

Notice that

1
z /271 (o1 +1- D(l+]2v))(|9| +1- D(l+j v))

SZ

(j2+Jp )

1 2
< _
= DU+ job) v DU+ j5B) ~ 47, 1= DU+ j)

The contribution from j = 0 is bounded, similarly to (4.29), by O(1 — D(ii))J (u)
(1= D(®)), where (1 — D(ii))J () /u' T is integrable if §; < @ A2 A (d —2(cx A2))
and (1 — lA)(T)))/vl“"32 is integrable if §2 < a A 2 (see around (4.30)). On the other
hand, the contribution from j = +1 is bounded, due to the Schwarz inequality and
the Z¢-symmetry and translation-invariance of D, by

Z / 0(1 — D(ii)) 1 — D(®@)
G Qo) (1 = D( + j1i))(1 — DU + ji) 1 — D + jD)

-y ( 441 0(1 — D(ii))> )1/2

a7 Qo) (1 — DU + j1i)2(1 — D + j|ii))

Ao 1/2
y d4] (1 — D(v))?
@m)? (1 = DU + j{i) (1 — D + jv))?

01— D@)(1=D@) > J (= jijpu) Jv = jjjup'?
)

=0(1 - D@@)(1 - D®) ((f(u)1/2 + I %) T+ jup'?

IA

+F @' 2 (v = jud'?). 4.35)
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It is not hard to show that J (2u) and J (v 4+ u) obey the same bound as J (u) for
u,v € [0, 1]. Therefore, the contribution to (4.35) from J (v + u) is bounded by
O(1 — D@))(1 — D(¥))J (u), which divided by u!T91v!+% i integrable if d >
2 N2),81 <aA2A(d—2(xn2))and &y < a A2, as explained above. Moreover,
since

3u

dv A 7 1/2
[~ (1= 6@) dw -
%

IA

5
/dr j(r)l/z " o0 (u(a/\2—32—1)/\0) (Ol # 2)
) 0 (u=2"010g 1) (¢ =2)

—_—
0 (1,4 d—3(20m2) A0+1)

d—3(aN2)
50(14 2 AO),

and

d AL\ o —3(n
| s (1-D@) dau-un'” < 0 (u25200)
v

[0,11\[%,34]

o —_
<
T &
.ét IS
—
=
|
>
~~
S
N—
S—"

IA

0 (u d73(20m2)/\0) ,

we have

1
dv A S\ » d=3(an2)
/ S (1 - D(v)) J(v—up'? <0 (u 2 A0) , (4.36)
0

i.e., the left-hand side of (4.36) obeys the same bound as J (1)1/2. Therefore, the
contribution to (4.35) from J (Jv — ul), divided by ultoyl+92 g also integrable if
d>2an2),51 <aA2A(d—2(xA2))and § < o A2, asrequired. This completes
the proof of Lemma 5. O
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