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Abstract We obtain a formula for the distribution of the first exit time of Brownian
motion from the alcove of an affine Weyl group. In most cases the formula is expressed
compactly, in terms of Pfaffians. Expected exit times are derived in the type ˜A case.
The results extend to other Markov processes. We also give formulas for the real
eigenfunctions of the Dirichlet and Neumann Laplacians on alcoves, observing that
the ‘Hot Spots’ conjecture of J. Rauch is true for alcoves.

1 Introduction

The distribution of the first exit time of Brownian motion from the interval (0,1) may
be obtained by the reflection principle. If B is a Brownian motion, Ti the hitting time
of the level i , T0,1 := T0 ∧ T1, and Px denotes the law of B started at x ∈ (0, 1), then

Px (T0,1 > t) =
∑

n∈Z

[Px (Bt ∈ 2n + (0, 1))− Px (Bt ∈ 2n − (0, 1))] . (1)

Using cancellation and the reflection principle, formula (1) may be rewritten as
Px (T0,1 > t) = φ(x, t), where

φ(x, t) = Px (T0 > t)+
∞
∑

n=1

(−1)n[Px (T−i > t)− Px (Ti > t)]. (2)
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352 Y. Doumerc, J. Moriarty

More generally, suppose that B is a standard Brownian motion in a real Euclidean
space V . If B is started inside the alcove A of an affine reflection group acting on V ,
there exists an expression analogous to (1) for the distribution of the first exit time of
B from A, which is given later in equation (13). The expression involves integration
of the Gaussian kernel over the multi-dimensional alcove. The aim of this paper is to
give a formula analogous to (2)—that is, a formula for the exit probability of standard
Brownian motion from the alcove, in terms of exit probabilities from simpler domains.
As an example, in the type ˜A case this formula involves only one-dimensional exit
probabilities and can be written in terms of Pfaffians (see appendix for the definition
of a Pfaffian).

To put our results in context, we state the following proposition. Let B1, . . . , Bk be
independent standard Brownian motions started at x1, . . . , xk ∈ R and let
(ξn = ei2πBn )n∈[k] be their projections onto the circle, where [k] := {1, . . . , k}.
Define the times of first collision

Ti j = inf{t : Bi (t) = B j (t)}, ˜Ti j = inf{t : ξi (t) = ξ j (t)}
T = min{Ti j : 1 ≤ i < j ≤ k}, ˜T = min{˜Ti j : 1 ≤ i < j ≤ k}.

Then T is equal to the first exit time of k dimensional Brownian motion started at
x = (x1, . . . , xk) from a chamber of type Ak−1, and it was proved in [8] that

Px (T > t) =
{

Pf(pi j )i, j∈[k] (k even)
∑k

l=1(−1)l+1Pf(pi j )i, j∈[k]\{l} (k odd)
(3)

where for i < j , pi j = Px (Ti j > t) and p ji = −pi j . As observed in [11], ˜T is equal
to the first exit time of the Brownian motion from an alcove of type ˜Ak−1. A special
case of our main result gives a companion to (3):

Proposition 1 (i) If k is even then

Px (˜T > t) = Pf( p̃i j )i, j∈[k]

where for i < j , p̃i j = Px (˜Ti j > t) and p̃ ji = − p̃i j .
(ii) If k is odd then

Px (˜T > t) =
k
∑

l=1

(−1)l+1Pf(qi j )i, j∈[k]\{l}

where for i < j , qi j = Px (˜Ti j > t)+ 2Px (˜Ti j ≤ t,˜Ti j < Ti j ) and q ji = −qi j .

The relationship between p̃i j and qi j in Proposition 1 is clarified by noting that Bi −B j

is also a Brownian motion and

ψ(x, t) := Px (T0,1 > t)+ 2Px (T0,1 ≤ t, T1 < T0)

= Px (T0 > t)+
∞
∑

n=1

[Px (T−i > t)− Px (Ti > t)], (4)
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Exit problems associated with affine reflection groups 353

which is proved in Lemma 25 and may be compared with (2). In the case k = 3, ˜T
equals the first exit time of Brownian motion from an equilateral triangle, which is
the alcove of type ˜A2. This relates to scaling limits occurring in, for example, a three
player gambler’s ruin problem and a three tower problem [1,5]. As a further example,
if the alcove is of type ˜Ck then ˜T relates to first collision times for k independent
standard Brownian motions on the interval.

The expected exit time is obtained in the type ˜A case, and also a generalisation of
de Bruijn’s formula for multiple integrals involving determinants. The present work
extends that in [8], where the authors consider the exit time from a chamber—that is,
an unbounded domain which is the fundamental region of a finite reflection group.
The extension to ˜Ak−1 with odd k was prompted by Neil O’Connell, who suggested
the solution for k = 3.

The rest of the paper is organised as follows. Sections 2 and 3 present necessary
background material, the main results with applications, a general reflection principle
and an affine generalisation of De Bruijn’s formula. Details of the main result in the
different type cases are given in Sect. 4. Proofs are contained in Sect. 5, and the real
eigenfunctions of the Laplacian with Dirichlet and Neumann boundary conditions are
considered in Sect. 6.

2 The geometric setting

2.1 Finite Weyl groups and chambers

Background on root systems and reflection groups may be found in, for example,
[12]. Let V be a real Euclidean space with a positive symmetric bilinear form 〈x, y〉.
Let � be an irreducible crystallographic root system in V with associated reflection
group W . Let� be a simple system in� with corresponding positive system�+ and
fundamental chamber

C = {x ∈ V : ∀ α ∈ �, 〈α, x〉 > 0}.

We will call �∨ the set of coroots α∨ = 2α/〈α, α〉 for α ∈ �. Then, L := Z−span
of �∨ is a W -stable lattice called the coroot lattice. For α ∈ � and x ∈ V we make
the definitions

Hα = {y ∈ V : 〈α, y〉 = 0}
sα(x) = x − 〈α, x〉α∨.

Thus sα , α ∈ �+ are the reflections in W .

2.2 Affine Weyl groups and alcoves

The affine Weyl group Wa asociated with � is the group generated by all affine
reflections with respect to the hyperplanes H(α,n) = {x ∈ V : 〈x, α〉 = n}, α ∈ �+,
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n ∈ Z. It has a semi-direct product decomposition in terms of the Weyl group W and
the coroot lattice L: each element of Wa may be written uniquely as τ(l)w, where
w ∈ W and τ(l) is the translation by l ∈ L . We may therefore attribute a sign to
each wa = τ(l)w ∈ Wa by ε(wa) = ε(w) := det(w). The fundamental alcove is the
bounded domain defined by

A = {x ∈ V : ∀ α ∈ �+, 0 < 〈x, α〉 < 1}
= {x ∈ V : 〈x, α̃〉 < 1 and ∀ α ∈ �, 〈x, α〉 > 0}

where α̃ is the highest positive root.

2.3 Affine root systems

We refer to [13] for this formalism although we use slightly modified notations for the
sake of consistency.

Definition 2 If � is an irreducible crystallographic root system as previously intro-
duced, the corresponding affine root system is �a := � × Z. For λ = (α, n) ∈ �a

and x ∈ V we define

λ(x) = λ.x = 〈α, x〉 − n

Hλ = {y ∈ V : λ.y = 0}
sλ(x) = x − (λ.x)α∨

Thus sλ is the reflection with respect to the hyperplane Hλ, and we may write
sλ = τ(nα∨)sα . Writing wa = τ(l)w ∈ Wa , we have that Wa acts on V by
wa(x) = w(x)+ l; we define further the action of Wa on �a by

Definition 3 For wa = τ(l)w ∈ Wa and λ = (α, n) ∈ �a ,

wa(λ) = (wα, n + 〈wα, l〉) ∈ �a .

We then have wa(λ).x = λ.w−1
a (x) for wa ∈ Wa, λ ∈ �a, x ∈ V , which is ana-

logous to the fact that W is a group of isometries; we also have wa Hλ = Hwa(λ).
If λ = (α,m), µ = (β, n) ∈ �a then we will refer to the angle between λ and µ,
meaning the angle between α and β; by λ ⊥ µ we mean 〈α, β〉 = 0. The usual pro-
perties of a reflection are then preserved: sλ(λ) = (−α,−n) =: −λ and sλ(µ) = µ if
λ ⊥ µ.

Definition 4 The affine simple system is �a := {(α, 0), α ∈ �; (−α̃,−1)} and the
corresponding positive system is �+

a := {(α, n) : (n = 0 and α ∈ �+) or n ≤ −1}.
This definition is tailor-made so that

A = {x ∈ V : ∀ λ ∈ �+
a , λ(x) > 0} = {x ∈ V : ∀ λ ∈ �a, λ(x) > 0}.
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Exit problems associated with affine reflection groups 355

3 Background and main results

We present here our main results, which extend the main result in [8] to the affine
cases. In Sect. 3.5 we give some applications in the type ˜A case.

3.1 Consistency

Let (W, φ, φ+, δ, F) ∈ {(W,�,�+,�, C), (Wa,�a,�
+
a ,�a,A)} and for I ⊂ φ+

define W I = {w ∈ W : w I ⊂ φ+} and I = {w I : w ∈ W I }. For S ⊂ φ, we define
the set of orthogonal subsets of S:

O(S) := {Y ⊂ S : ∀ λ �= µ ∈ Y, λ ⊥ µ}.

Definition 5 (Consistency)

• We will say that I satisfies hypothesis (C1) if there exists J ∈ O(δ ∩ I ) such that
if J ⊂ A ∈ I then A = I .

• We will say that I satisfies hypothesis (C2) if the restriction of the determinant to
the subgroup U = {w ∈ W : w I = I } is trivial, i.e. ∀ w ∈ U, ε(w) = detw = 1.

• We will say that I satisfies hypothesis (C3) if I is finite.
• I will be called consistent if it satisfies (C1), (C2) and (C3).

Condition (C2) makes it possible to attribute a sign to every element of I by εA := ε(w)

for A ∈ I, where w is any element of W I with w I = A.

3.2 Reflectability

Let X = (Xt , t ≥ 0) be a V -valued process and let Px denote the law of X started at
x ∈ F . We will call X reflectable if it satisfies the conditions of the following:

Definition 6 (Reflectable process)

• X has the strong Markov property.
• The sample paths of X are almost surely continuous.
• The law of X is W-invariant—that is, Px ◦ (wX)−1 = Pwx ◦ X−1 for all
w ∈ W, x ∈ V .

3.3 Exit times

We now introduce some notation for exit times. Let X be a reflectable process in V .
For convenience we may write each λ ∈ φ+ in the form (α, n) by identifying α ∈ �
with (α, 0) ∈ �a . Then for λ = (α, n) ∈ φ+ define Tλ = inf{t ≥ 0 : λ.Xt = 0}
and for A = {λ1, . . . , λk} ⊂ φ+ write TA := Tλ1,...,λk := minλ∈A Tλ. Finally, let T
denote the first exit time of X from the fundamental chamber C—that is, T = Tδ in the
finite case (W, φ+, δ, F) = (W,�+,�, C); and let ˜T denote the first exit time of X
from the fundamental alcove A—that is, ˜T = Tδ in the affine case (W, φ+, δ, F) =
(Wa,�

+
a ,�a,A).
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3.4 Main results

The following Theorem extends the main result of [8] to include those affine Weyl
groups which have a consistent subset; the details of its application to particular affine
Weyl groups are given in Sect. 4. Theorem 8 deals with an important case where a
consistent subset is not available.

Theorem 7 Suppose I is consistent, X is reflectable and x ∈ F. Then :

Px (Tδ > t) =
∑

A∈I
εAPx (TA > t). (5)

Note that the sum is finite even for affine Weyl groups. In the ˜Ak−1 case with odd k,
no consistent subset is available and we require a different formalism: for A ∈ O(�),
define

E A = {v ∈ Span(A) : ∀ β ∈ A, (v, β) ∈ Z}
εA
v = (−1)#{β∈A : 〈v,β〉>0}

|v|A = max{|〈v, β〉| : β ∈ A}

where # is the cardinality function. For v, β ∈ V define

Tβ,v = inf{t ≥ 0 : 〈Xt , β〉 = 〈v, β〉}, TA,v = min
β∈A

Tβ,v.

To clarify, E A is a lattice (equal to the Z-span of A/2) and εA· , | · |A give a sign and
norm respectively on this lattice; and TA,v is the first time that the projections of Xt

and v coincide along some β ∈ A.

Theorem 8 In the case W = ˜Ak−1 with k odd, if X is reflectable and x ∈ A then

Px (˜T > t) =
∑

A∈I

∑

k∈N

∑

v∈E A|v|A=k

εAε
A
v Px (TA,v > t) (6)

if this sum converges, where I and I are taken from the case W = Ak−1.

3.4.1 The ‘orthogonal’ case

We begin this section by recording some definitions.

Definition 9

• We say A ⊂ φ+ is block-orthogonal if it can be partitioned into blocks (ρi ) such
that ρi ⊥ ρ j for i �= j and each ρi is either a singlet or a pair of roots whose
mutual angle is π .

123



Exit problems associated with affine reflection groups 357

• We say A ⊂ φ+ is semi-orthogonal if it can be partitioned into blocks (ρi ) such
that ρi ⊥ ρ j for i �= j and each ρi is either a singlet or a set of roots whose mutual
angles are integer multiples of π/4.

If I is block-orthogonal and X has independent components in orthogonal
directions, (5) factorises and in many cases the expression may be written conve-
niently in terms of Pfaffians; the details are given in Sect. 4. Under slightly stronger
conditions on X , (6) factorises analogously:

Proposition 10 In the case W = ˜Ak−1 with k odd, under conditions on X which hold
for Brownian motion we have

Px (˜T > t) =
∑

A∈I
εA

∏

β∈A

(

Px [Tβ ∧ T(β,1) > t] + 2Px [Tβ > T(β,1) ≤ t]) . (7)

This expression may also be written in terms of Pfaffians, as noted in Proposition 1(ii).

3.5 Applications

3.5.1 Expected exit time in the type ˜A case

The fundamental chamber for Ak−1 is C = {x ∈ V : x1 > x2 > · · · > xk} where
V = R

k or V = {x ∈ R
k : x1 + · · · + xk = 0}. As noted in the introduction, T is

the first ‘collision time’ between any two coordinates of X . The fundamental alcove
for the corresponding affine Weyl group ˜Ak−1 is A = {x ∈ V : 1 + xk > x1 > x2 >

· · · > xk}.
In the Ak−1 case, an explicit formula for the expected exit time of Brownian motion

from the fundamental chamber has been obtained in [8]:

Ex (T ) =
∑

π∈P2(k)

(−1)c(π)Fp(xπ ) (8)

where p = �k/2� and xπ = (xi − x j ){i< j}∈π ∈ R
p
+. Here P2(k) is the set of partitions

of [k] = {1, . . . , k} into k/2 pairs if k is even and into (k − 1)/2 pairs and a singlet if
k is odd. The quantity c(π) is the number of crossings in the partition π (if k is odd,
we consider an extra pair made of the singlet and another singlet labelled 0, and use
this pair to compute the number of crossings); for an illustration see Sect. 4.1. The
notation {i < j} ∈ π means that {i, j} ∈ π and i < j , and the function Fp is given
by

Fp(y1, . . . , yp) = 2p+1�(p/2)

π p/2(p − 2)

∫ y1

0
. . .

∫ yp

0

dz1, . . . , dz p

(z2
1 + · · · + z2

p)
p/2−1

.

We prove an analogous formula:
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Proposition 11 In the ˜Ak−1 case, if X is Brownian motion then

Ex (˜T ) =
∑

π∈P2(k)

(−1)c(π)˜Fp(xπ )

where

˜Fp(y1, . . . , yp) = 22p

π p+2

∑

l∈Op

1

(l2
1 + · · · + l2

p)

p
∏

s=1

1

ls
sin(πls ys)

where O = 2N + 1 if k is even and O = 2N if k is odd, and with the definition
1
ls

sin(πls ys) = 1
2πys when ls = 0.

In the case k = 3 we will recover the known formula

Ex (˜T ) = x12x23(1 − x13), (9)

where 0 < xi j = xi − x j < 1, for the expected exit time of Brownian motion from
an equilateral triangle.

3.5.2 Dual formulae and small time behaviour

Dual to (2) and (4) are the formulae

1 − φ(x, t) = Px (T0 ≤ t)+
∞
∑

n=1

(−1)n[Px (T−i ≤ t)− Px (Ti ≤ t)] (10)

1 − ψ(x, t) = Px (T0 ≤ t)+
∞
∑

n=1

[Px (T−i ≤ t)− Px (Ti ≤ t)]. (11)

In the block-orthogonal case of Sect. 3.4.1, these dual formulae may be used to obtain
asymptotics for the small time behaviour of the exit probability. For example, exact
asymptotics can be obtained in the Brownian case, as in section 4.6.2 of [8] (we omit
the details).

3.5.3 Eigenfunctions for alcoves

In Sect. 6, using results from [4], we obtain formulae for the real eigenfunctions of the
Laplacian on alcoves with Dirichlet or Neumann boundary conditions. This confirms
a version of the ‘Hot Spots’ conjecture of J. Rauch for alcoves. We also prove the
following

Proposition 12 Let A be the fundamental alcove of an affine Weyl group, and let the
corresponding Weyl group have positive system �+. The function

H(x) :=
∏

α∈�+
sin (π〈x, α〉) (12)
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Exit problems associated with affine reflection groups 359

is an eigenfunction for the Laplacian with Dirichlet boundary conditions on A. Since
H is positive on A, it is the principal eigenfunction. Further, each eigenfunction is
divisible by H in the ring of trigonometric polynomials.

3.6 The reflection principle and De Bruijn Formula

In this section we recall a reflection principle in the context of finite or affine reflection
groups, and use it to deduce a generalisation of a formula of De Bruijn for evaluating
multiple integrals involving determinants. For the proof of Theorem 13 we refer to
[10] and references therein.

Theorem 13 Let Px denote the law of a reflectable process X started from x ∈ F.
Then for all measurable sets B ⊂ F,

Px [Xt ∈ B, Tδ > t] =
∑

ω∈W
ε(ω)Px [Xt ∈ ωB]. (13)

We apply this result in the following propositions, whose applications include the
evaluation of Selberg type integrals of eigenfunctions of the Dirichlet Laplacian on an
alcove (see Sect. 6).

Suppose I is consistent. For A ∈ I, denote by WA the group generated by the
reflections sλ, λ ∈ A. Let us write FA = {x ∈ V : ∀ λ ∈ A, λ(x) > 0}. Also, since
� = �+ ∪ (−�+), for β ∈ � and B ⊂ � we may define the absolute values

|β| =
{

β : β ∈ �+

−β : −β ∈ �+ , |B| = {|β| : β ∈ B}. (14)

Assume that FA is the fundamental region for the reflection group WA, which is
certainly the case if I is block-orthogonal or semi-orthogonal. Theorems 7 and 13 in
the Brownian case give

Proposition 14 If I is consistent and f : V → R is integrable, then
∫

F

∑

w∈W
ε(w) f (wy)dy =

∑

A∈I
εA

∑

w∈WA

ε(w)

∫

FA

f (wy)dy. (15)

In many cases, if f factorises this formula may be expressed in terms of Pfaffians
(see [8]); the type A case was first obtained by de Bruijn [6] using different methods.
The next two results work out the corresponding results in the type ˜A case.

Proposition 15 Let W = ˜Ak−1 and let f (y1, . . . , yk) = f1(y1) . . . fk(yk) for inte-
grable functions fi : R → R. If k is even then

∫

A

∑

ω∈Wa

ε(ω) f (ωy)dy = Pf(Ji j )i, j∈[k]

where Ji j = ∫ (−1)�y−z� fi (y) f j (z)dydz.
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Proposition 16 Under the conditions of Proposition 15, if k is odd then

∫

A

∑

ω∈Wa

ε(ω) f (ωy)dy =
k
∑

l=1

(−1)l+1
∫

R

flPf(Hi j )i, j∈[k]\{l}

if

∞
∑

m=1

∫

y−z∈(−∞,−m)∪(m,∞)

| fi (y) f j (z)|dydz < ∞,

where Hi j = ∫ sgn(y − z) fi (y) f j (z)dydz + 2
∑∞

m=1

∫

y−z∈(−∞,−m)∪(m,∞)
sgn(y −

z) fi (y) f j (z)dydz.

4 Application to the different type cases

Throughout this section we will assume that X has independent components in ortho-
gonal directions, to enable the writing of formula (5) in terms of Pfaffians.

4.1 The ˜Ak−1 case, k even

In this case, W is Sk acting on R
k by permutation of the canonical basis vectors,

V = R
k or V = {x ∈ R

k : ∑

i xi = 0}, �+ = {ei − e j , 1 ≤ i < j ≤ k},
� = {ei −ei+1, 1 ≤ i ≤ k−1}, α̃ = e1−ek , A = {x ∈ V : 1+xk > x1 > · · · > xk},
α∨ = α for α ∈ � and L = {d ∈ Z

k : ∑k
i=1 di = 0}.

For even k = 2p, we take I = {(e2i−1 − e2i , 0), (−e2i−1 + e2i ,−1) ; 1 ≤ i ≤ p}.
Then I is consistent and block-orthogonal, and I can be identified with the set P2(k) of
partitions of [k] as shown in the following example for k = 4. Under this identification,
the sign εA is just the parity of the number c(π) of crossings.

Hence, the formula can be written as

Px (T > t) =
∑

π∈P2(k)

(−1)c(π)
∏

{i< j}∈π
p̃i j = Pf

(

p̃i j
)

i, j∈[k] (16)

where p̃i j = Px (T(ei −e j ,0),(−ei +e j ,−1) > t) = Px (∀s ≤ t, 0 < Xi
s − X j

s < 1) =
φ(xi − x j , 2t) where φ(x, t) is defined in (37).

For odd k, we do not have a consistent subset as the sign εA is not well-defined. The
difference between even and odd k can be seen directly at the level of pair partitions:
interchanging 1 and k in the blocks of π ∈ P2(k) (which corresponds to the reflection
with respect to {x1 −xk = 1}, which is the affine hyperplane of the alcove) changes the
sign ofπ if k is even while the sign is unaffected if k is odd. In this case (which includes,
for example, the equilateral triangle in the case ˜A2), we instead use Theorem 8.
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Exit problems associated with affine reflection groups 361

Fig. 1 Pair partitions and their
signs for ˜A3

4.2 The ˜Ck case

In this case, W is the group of signed permutations acting on V = R
k ,� = {2ek, ei −

ei+1, 1 ≤ i ≤ k − 1}, α̃ = 2e1, A = {x ∈ R
k : 1/2 > x1 > · · · > xk > 0} and

L = Z
k .

For even k = 2p, we take

I = {(e2i−1 − e2i , 0), (2e2i , 0), (−2e2i−1,−1); 1 ≤ i ≤ p}.

For odd k = 2p + 1,

I = {(e2i−1 − e2i , 0), (2e2i , 0), (−2e2i−1,−1), (2ek, 0), (−2ek,−1); 1 ≤ i ≤ p}.

I is semi-orthogonal and again, I can be identified with P2(k); the formula is

Px (T > t) =
∑

π∈P2(k)

(−1)c(π) p̌s(π)

∏

{i< j}∈π
p̌i j (17)
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where

p̌i j = Px (T(ei −e j ,0),(2e j ,0),(−2ei ,−1) > t) = Px (∀s ≤ t, 1/2 > Xi
s > X j

s > 0),

p̌i = Px (T(2ei ,0),(−2ei ,−1) > t) = Px (∀s ≤ t, 1/2 > Xi
s > 0),

and s(π) is the singlet of π , the term p̌s(π) being absent for even k.
Everything can be rewritten in terms of Pfaffians:

Px (T > t) =
⎧

⎨

⎩

Pf
(

p̌i j
)

i, j∈[k] if k is even,
∑k

l=1(−1)l−1 p̌l Pf
(

p̌i j
)

i, j∈[k]\{l} if k is odd.
(18)

Remark This formula can be obtained directly by applying the exit probability formula
for the chamber of type Ck (which is the same as Bk) to the Brownian motion killed
when reaching 1/2. But it was natural to include it in our framework.

4.3 The ˜Bk case

W is the group of signed permutations acting on V = R
k , � = {ek, ei − ei+1, 1 ≤

i ≤ k − 1}, α̃ = e1 + e2, A = {x ∈ R
k : x1 > · · · > xk > 0, x1 + x2 < 1} and

L = {d ∈ Z
k : ∑i di is even}.

For even k = 2p, we take

I = {(e2i−1 − e2i , 0), (e2i , 0), (−e2i−1 − e2i ,−1); 1 ≤ i ≤ p}.

For odd k = 2p + 1,

I ={(e2i−1−e2i , 0), (e2i , 0), (−e2i−1 − e2i ,−1), (ek, 0), (−ek,−1); 1≤ i ≤ p}.

In this case, I is semi-orthogonal and the formula is:

Px (T > t) =
∑

π∈P2(k)

(−1)c(π) p̄s(π)

∏

{i< j}∈π
p̄i j (19)

where

p̄i j = Px (T(ei −e j ,0),(−ei −e j ,−1),(e j ,0) > t) = Px (∀s ≤ t, 1 − X j
s > Xi

s > X j
s > 0),

p̄i = Px (T(ei ,0),(−ei ,−1) > t) = Px (∀s ≤ t, 1 > Xi
s > 0)

and s(π) denotes the singlet of π , the term p̄s(π) being absent for even k.
Everything can be rewritten in terms of Pfaffians:

Px (T > t) =
{

Pf
(

p̄i j
)

i, j∈[k] if k is even,
∑k

l=1(−1)l−1 p̄l Pf
(

p̄i j
)

i, j∈[k]\{l} if k is odd.
(20)
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4.4 The ˜Dk case

W is the group of evenly signed permutations acting on V = R
k , � = {ei −

ei+1, ek−1 + ek, 1 ≤ i ≤ k − 1}, α̃ = e1 + e2, A = {x ∈ R
k : x1 > · · · >

xk−1 > |xk |, x1 + x2 < 1} and L = {d ∈ Z
k : ∑i di is even }.

For even k = 2p, we take

I = {(e2i−1 − e2i , 0), (−e2i−1 + e2i ,−1), (e2i−1 + e2i , 0),

(−e2i−1 − e2i ,−1); 1 ≤ i ≤ p}.

For odd k = 2p + 1,

I = {(e2i − e2i+1, 0), (−e2i + e2i+1,−1), (e2i + e2i+1, 0),

(−e2i − e2i+1,−1); 1 ≤ i ≤ p}.

I is block-orthogonal and the formula then becomes:

Px (T > t) =
∑

π∈P2(k)

(−1)c(π)
∏

{i< j}∈π
p̆i j (21)

where

p̆i j = Px (T(ei −e j ,0),(−ei +e j ,−1),(ei +e j ,0),(−ei −e j ,−1) > t) = ṕi j p̀i j ,

ṕi j = Px (∀s ≤ t, 1 > Xi
s − X j

s > 0) = φ(xi − x j , 2t),

p̀i j = Px (∀s ≤ t, 1 > Xi
s + X j

s > 0) = φ(xi + x j , 2t)

and φ(x, t) is defined in (37). Everything can be rewritten in terms of Pfaffians:

Px (T > t) =
⎧

⎨

⎩

Pf
(

p̆i j
)

i, j∈[k] if k is even,
∑k

l=1(−1)l−1 Pf
(

p̆i j
)

i, j∈[k]\{l} if k is odd.
(22)

4.5 The ˜G2 case

Here, V = {x ∈ R
3,
∑

i xi = 0}, �+ = {e3 − e1, e3 − e2, e1 − e2,−2e1 + e2 +
e3,−2e2 + e1 + e3, 2e3 − e1 − e2}, α̃ = 2e3 − e1 − e2,� = {e1 − e2,−2e1 + e2 + e3}
and L = {d ∈ V : ∀i, 3di ∈ Z}.

We take I = {(e1 − e2, 0), (−e1 + e2,−1), (2e3 − e1 − e2, 0), (−2e3 + e1 +
e2,−1)}, which is consistent and we can describe I as {I, A1, A2} with A1 = {(e3 −
e1, 0), (−e3 + e1,−1), (−2e2 + e1 + e3, 0), (2e2 − e1 − e3,−1)}, εA1 = −1, A2 =
{(e3 − e2, 0), (−e3 + e2,−1), (−2e1 + e2 + e3, 0), (2e1 − e2 − e3,−1)}, εA2 = 1.

In this case, the chamber A is a triangle ABC with angles (π/2, π/3, π/6) as
represented in Fig. 2. If TR denotes the exit time from the region R of the plane and
P(R) = Px (TR > t), then Theorem 7 in this case gives
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Fig. 2 Tiling associated
with ˜G2

P(ABC) = P(ADEC)− P(F JCG)+ P(F HC I ), (23)

where ADEC , F JCG, F HC I are rectangles, as shown in Figure 11.2.

4.6 The ˜F4 case

Recall that V = R
4, �+ = {ei ± e j , 1 ≤ i < j ≤ 4; ei , 1 ≤ i ≤ 4; (e1 ± e2 ±

e3 ± e4)/2}, � = {e2 − e3, e3 − e4, e4, (e1 − e2 − e3 − e4)/2}, α̃ = e1 + e2 and
L = {d ∈ Z

4 : ∑i di is even}.
I := {(e2 −e3, 0), (−e2 +e3,−1), (e1 −e4, 0), (−e1 +e4,−1), (e3, 0), (e4, 0)} turns
out to be consistent and so Theorem 7 applies, although in this case it does not seem
easy to give the formula in a compact way.

5 Proofs

5.1 Theorem 7

All the formalism of affine root systems has been set for the proofs in this section to
be the same as those in [8]. Therefore, we only state the lemmas (without proofs) to
show how they have to be modified in this context.

Lemma 17 If I is consistent then for K ⊂ I and λ ∈ δ ∩ K ⊥ we have sλL = L,
where

L = {A ∈ I : K ⊂ A, λ /∈ A}.

Lemma 18 Suppose condition (C3) is satisfied and that the function f : I → R

and the root λ ∈ δ are such that f (A) = 0 whenever λ ∈ A, and f (A) = f (sλA)
whenever λ /∈ A. Then

∑

A∈I εA f (A) = 0.

Lemma 19 If I is consistent then we have:
∑

A∈I εA = 1.

Proof of Theorem 7 Appealing to Lemma 19 and the fact that Tδ ≤ TA for all A ∈ I,
it is equivalent to prove

∑

A∈I εAPx (TA > t, Tδ ≤ t) = 0 and therefore sufficient to
prove

∑

A∈I εAPx (TA > t, Tδ = Tλ ≤ t) = 0 for each λ ∈ δ. Since X is reflectable,
f (A) = Px (TA > t, Tδ = Tλ ≤ t) satisfies the conditions of Lemma 18. ��
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5.2 Theorem 8

Before proving Theorem 8 we record some preliminary results. Since a consistent
subset is available in the setting of the finite reflection group Ak−1, we work in this
context. The definitions of V,�, α̃ and�+ when W = Ak−1 have been given in Sect.
4.1. It is proved in [8] that I = {e1 − e2, e3 − e4, . . . , ek−2 − ek−1} is consistent and
orthogonal. In the following we will make use of the notation introduced in Sects. 3.3–
3.4 and (14). Also, for β ∈ �+ define

Lβ = {A ∈ I : β /∈ A}.

Lemma 20 A �→ |sα̃A| is a permutation of Lα̃ and ε|sα̃ A| = (−1)|A\α̃⊥|+1εA for all
A ∈ Lα̃ .

Proof Take A = ωI ∈ Lα̃ . Since the elements of A\α̃⊥ are orthogonal to each other
so are those of sα̃(A\α̃⊥) thus the product p := ∏β∈A\α̃⊥ ssα̃ (β) is well-defined (and

commutative). First, takeα ∈ A∩α̃⊥. Then |sα̃α| = |α| = α. Ifβ ∈ A\α̃⊥ thenβ �= α

hence β ⊥ α. Together with α̃ ⊥ α, we get sα̃(β) ⊥ α and ssα̃ (β)sα̃α = ssα̃ (β)α = α =
|sα̃α|. Thus, p sα̃α = |sα̃α|. Second, take α ∈ A\α̃⊥. Then sα̃α ∈ −�+ and |sα̃α| =
ssα̃ (α)sα̃α. For β ∈ A\α̃⊥ and β �= α we have β ⊥ −α so sα̃β ⊥ −sα̃α = ssα̃αsα̃α.
Therefore p sα̃α = ssα̃αsα̃α = |sα̃α|. We have proved that |sα̃A| = p sα̃A = p sα̃ωI .

Together with |sα̃A| ⊂ �+, this yields |sα̃A| ∈ I and ε|sα̃ A| = (−1)|A\α̃⊥|+1εA.
Moreover α̃ /∈ |sα̃A| since α̃ /∈ A. Consequently |sα̃A| ∈ Lα̃ . It remains to observe
that A �→ |sα̃A| is an involution hence a bijection.

��
Observing that 〈e1 − ek, e1 − e j 〉 = 〈e1 − ek, ei − ek〉 = 1 for 1 < i, j < k gives

Lemma 21 For all β ∈ �+\(̃α ∪ α̃⊥) we have 〈̃α, β〉 = 1.

Also, calculations such as

εA
sαv = (−1)#{β∈A : 〈sαv,β〉>0} = (−1)#{β∈sα A : 〈sαv,sαβ〉>0}

= (−1)#{β∈sα A : 〈v,β〉>0} = εsα A
v

establish

Lemma 22 For all α ∈ �, A ∈ O(�) and v ∈ E A we have

sαE A = Esα A, ε
A
sαv = εsα A

v and |sαv|A = |v|sα A.

Proposition 23 (i)
∑

A∈I
∑

k∈N

∑

v∈E A|v|A=k
εAε

A
v = 1.

(ii) Suppose f : I × V → R is such that f (A, v) = f
(|sα̃A|, psα̃ A(sα̃,1v)

)

when-
ever α̃ /∈ A (pB is the orthogonal projection on Span(B)) and f is sufficiently
decreasing in the second variable (see the precise condition (27) in the proof).
Then

∑

A∈Lα̃
∑

k∈N

∑

v∈E A|v|A=k
εAε

A
v f (A, v) converges and its sum is zero.
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(iii) If f : I × V → R and α ∈ � are such that f (A, v) = f (sαA, sαv) whenever
α /∈ A, then

∑

A∈Lα
∑

k∈N

∑

v∈E A|v|A=k
εAε

A
v f (A, v) converges and its sum is zero.

Proof (i) For A ∈ O(�) and α ∈ A define

S(A, k) =
∑

v∈E A|v|A=k

εA
v and S′(A, α, k) =

∑

v∈E A|v|A=k

1v /∈α⊥ εA
v ,

where 1 is the indicator function. Since εA
0 = 1 for all A ∈ I and

∑

A∈I εA = 1 by
Lemma 19, we have

∑

A∈I

∑

k∈N

∑

v∈E A|v|A=k

εAε
A
v = 1 +

∑

A∈I
εA

∑

k≥1

S(A, k). (24)

If u /∈ α⊥, εA
sαu = ε

sα A
u = ε

A\{α}∪{−α}
u = −εA

u . Thus, setting v = sαu in S′(A, α, k)
and using sαE A = Esα A = E A, |sαu|A = |u|sα A = |u|A, 1sαu /∈α⊥ = 1u /∈α⊥ , we get
S′(A, α, k) =∑ u∈E A|u|A=k

1u /∈α⊥ εA
sαu = −S′(A, α, k) = 0. Therefore

S(A, k) =
∑

v∈E A∩α⊥
|v|A=k

εA
v =

∑

v∈E A\{α}
|v|A\{α}=k

εA
v = S(A\{α}, k).

By iteration S(A, k) = S(∅, k), which is an empty sum (since E∅ = {0} and k ≥ 1)
hence null.

(ii) Take A ∈ Lα̃ and u ∈ E A. Now ε|sα̃ A|
sα̃,1u = (−1)#{β∈|sα̃ A| : 〈sα̃,1u,β〉>0} and sα̃,1u =

sα̃u + α̃; therefore if β ∈ |sα̃A|\α̃⊥ then writing γ = −sα̃β ∈ A\α̃⊥ and applying
Lemma 21 we have

(〈sα̃,1u, β〉 > 0 ⇐⇒ 〈u, γ 〉 < 1
)

. Also, if β ∈ |sα̃A| ∩ α̃⊥ =
A ∩ α̃⊥ then

(〈sα̃,1u, β〉 > 0 ⇐⇒ 〈u, β〉 > 0
)

. We conclude that

ε|sα̃ A|
sα̃,1u = (−1)#{γ∈A\α̃⊥ : 〈u,γ 〉<1}+#{β∈A∩α̃⊥ : 〈u,β〉>0}

= (−1)#{γ∈A\α̃⊥ : 〈u,γ 〉<1}+#{β∈A\α̃⊥ : 〈u,β〉>0} εA
u = (−1)|A\α̃⊥| εA

u .

Since ε|sα̃ A| = (−1)|A\α̃⊥|+1εA by Lemma 20, we have

ε|sα̃ A|ε|sα̃ A|
sα̃,1u f (|sα̃A|, psα̃ A(sα̃,1u)) = −εAε

A
u f (A, u). (25)

For K ∈ N = {0, 1, 2, . . .}, set

SK =
∑

A∈Lα̃

K
∑

k=0

∑

v∈E A|v|A=k

εAε
A
v f (A, v).
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Using the permutation A �→ |sα̃A| of Lα̃ from Lemma 20 and since both E|B| = EB

and |v||B| = |v|B for B ⊂ O(�), we get

SK =
∑

A∈Lα̃

K
∑

k=0

∑

v∈Es̃α A
|v|s̃α A=k

ε|sα̃ A|ε|sα̃ A|
v f (|sα̃A|, v).

For A ∈ Lα̃ and u ∈ E A, define gA(u) = psα̃ A(sα̃,1u) = sα̃u + psα̃ A (̃α). Then
gA(u) ∈ Span(sα̃A) and for all β ∈ A,

〈gA(u), sα̃β〉 = 〈sα̃,1u, sα̃β
〉 = 〈u, β〉 − 〈̃α, β〉 ∈ Z

since u ∈ E A and 〈̃α, β〉 ∈ {0, 1} (Lemma 21). This proves that gA(u) ∈ Esα̃ A and
|gA(u)|sα̃ A = |u|A + ηA(u) where ηA(u) ∈ {−1, 0, 1}. Then, gA : E A → Esα̃ A is
easily seen to be a bijection (check that g−1

A (v) = pA(sα̃,1v)). Using this bijection as
well as (25), we obtain

SK = −
∑

A∈Lα̃

K
∑

k=0

∑

u∈E A|u|A+ηA(u)=k

εAε
A
u f (A, u). (26)

Now, for i ∈ {−1, 0, 1}, let Si (k) = ∑

A∈Lα̃
∑

u∈E A|u|A=k, ηA(u)=i
εAε

A
u f (A, u). Then

(26) reads

SK = −
K
∑

k=0

(

S0(k)+ S1(k − 1)+ S−1(k + 1)
)

.

Since SK =∑K
k=0

(

S0(k)+ S1(k)+ S−1(k)
)

by definition, we get

2SK = −S1(−1)+ S1(K )+ S−1(0)− S−1(K + 1).

Now, S1(−1) and S−1(0) are empty sums hence null. The requirement on f is

lim
k→∞

∑

A∈I,u∈E A|u|A=k

| f (A, u)| = 0, (27)

which clearly implies limK→∞ Si (K ) = 0 and consequently limK→∞ SK = 0.
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(iii) Since sα is a permutation of Lα (Lemma 17),

UK :=
∑

A∈Lα

K
∑

k=0

∑

v∈E A|v|A=k

εAε
A
v f (A, v) =

∑

A∈Lα

K
∑

k=0

∑

v∈Esα A
|v|sα A=k

εsα Aε
sα A
v f (sαA, v)

=
∑

A∈Lα

K
∑

k=0

∑

u∈sαEsα A
|sαu|sα A=k

εsα Aε
sα A
sαu f (sαA, sαu) = −UK ,

where the third equality follows from setting u = sαv and the fourth follows from
Lemma 22, the given property of f and εsα A = −εA. Thus, all partial sums UK are
zero. ��
Proof of Theorem 8 From (i) of Proposition 23, the theorem is equivalent to

∑

A∈I

∑

k∈N

∑

v∈E A|v|A=k

εA ε
A
v

(

Px [TA,v > t] − Px [˜T > t]) = 0.

For A ∈ I, v ∈ E A and β ∈ A we have 〈v, β〉 ∈ Z hence 〈v, β〉 /∈ (0, 1). Thus,
˜T ≤ Tβ,v and so ˜T ≤ TA,v . This implies

Px [TA,v > t] − Px [˜T > t] = Px [TA,v > t, ˜T ≤ t]
=
∑

λ∈�a

Px [TA,v > t, ˜T = Tλ ≤ t]. (28)

(If the events in (28) are not disjoint (up to a set of probability zero) we may easily
redefine the Tλ to make them disjoint, without affecting the following reflection argu-
ment.) Now fix λ = (α, n) ∈ {�× {0}} ∪ {(̃α, 1)} (this set is more convenient than
�a since we have (̃α, 1) instead of (−α̃,−1)). We will prove that

∑

A∈I

∑

k∈N

∑

v∈E A|v|A=k

εA ε
A
v Px [TA,v > t, ˜T = Tλ ≤ t] = 0.

Since Px [TA,v > t, ˜T = Tλ ≤ t] = Px [˜T = Tλ ≤ t] − Px [TA,v ≤ t, ˜T = Tλ ≤ t]
and using (i) of Proposition 23 again, this is equivalent to

S :=
∑

A∈I

∑

k∈N

∑

v∈E A|v|A=k

εA ε
A
v f (A, v) = Px [˜T = Tλ ≤ t],

where f (A, v) = Px [TA,v ≤ t, ˜T = Tλ ≤ t]. We first prove that

f (A, v) = f (sαA, sλv). (29)
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Since f (A, v) = Px [˜T = Tλ ≤ t] − g(A, v) where g(A, v) = Px [TA,v > t, ˜T =
Tλ ≤ t], it is enough to prove g(A, v) = g(sαA, sλv). We define ̂Xu = Xu1u≤Tλ +
sλXu1u>Tλ and use obvious ‘hat notations’ for stopping times associated with ̂X . The

reflectable process X has the same law as ̂X so that g(A, v) = Px [̂TA,v > t, ̂˜T =
̂Tλ ≤ t]. Since X and ̂X coincide before Tλ = ̂Tλ, we have ̂˜T = ˜T . Together with
̂TA,v 1

̂TA,v>Tλ = Tsα A,sλv 1Tsα A,sλv>Tλ , this yields

g(A, v) = Px [Tsα A,sλv > t, ˜T = Tλ ≤ t] = g(sαA, sλv),

which proves the claim.
In addition to the equality f (A, v) = f (|A|, pAv), Eq. (29) ensures that f has the

relevant property for Proposition 23 to yield

∑

A∈Lα

∑

k∈N

∑

v∈E A|v|A=k

εA ε
A
v f (A, v) = 0

so that S =∑A∈I
α∈A

∑

k∈N

∑

v∈E A|v|A=k
εA ε

A
v f (A, v). If α ∈ A then f (A, v)= f (A, sλv)

(thanks to (29)) and if λ(v) �= 0 then εA
v = −εA

sλv . Then as in the proof of Proposition
23(ii) we can use the bijection v �→ sλv to remove cancelling pairs and appeal to
property (27) to conclude that

∑

k∈N

∑

v∈E A|v|A=k

1λ(v) �=0ε
A
v f (A, v) = 0

so that S = ∑

A∈I
α∈A

εA S(A), where S(A) := ∑

k∈N

∑

v∈E A|v|A=k
εA
v 1λ(v)=0 f (A, v). If

α ∈ A and λ(v) = 0 then f (A, v) = Px [˜T = Tλ ≤ t] and

S(A) = Px [˜T = Tλ ≤ t]
∑

k∈N

∑

v∈E A|v|A=k

εA
v 1λ(v)=0.

For β ∈ A\{α}, the bijection v �→ sβv flips the sign εA
v creating pair cancellations

for the terms with v not orthogonal to β. Repeating this for all β �= α as in the proof
of Proposition 23(i), we are left only with that v which is a multiple of α such that
λ(v) = 0, i.e. v = nα/2 : we have

S(A) = εA
nα/2Px [˜T = Tλ ≤ t].

It remains only to show that
∑

A∈I
α∈A

εAε
A
nα/2 = 1. When α ∈ � this follows from the

proof of Lemma 19, which can be found in [8]; for α = α̃, observe that
εA
α̃/2 = −1 if α̃ ∈ A. Identifying A ∈ I with π ∈ P2(k) as in section 4.1, we have
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( α̃ ∈ A ⇐⇒ {1, k} ∈ π). Now {1, k} crosses the pair containing 0, and no other pair.
It follows that c(π) = 1 + c(π\{1, k}), so

∑

A∈I
α̃∈A

εA =
∑

π∈P2(k){1,k}∈π

(−1)c(π) = −
∑

π∈P2(k−2)

(−1)c(π) = −1

by Lemma 19. ��

5.3 Proposition 10

Lemma 24 For A ∈ O(�+), if projections of X in orthogonal directions are inde-
pendent then for x ∈ A ,

∑

k∈N

∑

v∈E A|v|A=k

εA
v Px [TA,v > t] =

∏

β∈A

∑

n∈N

∑

k∈Z|k|=n

σ(k)Px [T(β,k) > t], (30)

where σ(k) = −1 if k > 0 and σ(k) = 1 otherwise, if these sums converge.

Proof Set A = {β1, . . . , βp}. Rewriting and expanding the respective partial sums
gives, for N ∈ N,

p
∏

i=1

N
∑

n=0

∑

k∈Z|k|=n

σ(k)Px [T(βi ,k) > t] =
N
∑

n=0

∑

�k=(k1,...,kp)∈Z
p

|�k|∞=n

p
∏

i=1

σ(ki )Px [T(βi ,ki ) > t].

Now, �k = (k1, . . . , kp) �→ v = 1
2

∑p
i=1 kiβi is a bijection from Z

p to E A satisfying
〈v, βi 〉 = ki so that T(βi ,ki ) = Tβi ,v , |v|A = |�k|∞ and εA

v = ∏p
i=1 σ(ki ). By inde-

pendence
∏p

i=1 Px [T(βi ,ki ) > t] = Px [mini T(βi ,ki ) > t] = Px [TA,v > t], and letting
N → ∞ concludes the proof. ��
Lemma 25 If X is reflectable then for x ∈ A,

Px [Tβ ∧ T(β,1) > t] + 2Px [Tβ > T(β,1) ≤ t] =
∑

n∈N

∑

k∈Z|k|=n

σ(k)Px [T(β,k) > t].

Proof Let

S1 =
∞
∑

k=1

(

Px [T(β,−k) > t, Tβ ∧ T(β,1) > t] − Px [T(β,k) > t, Tβ ∧ T(β,1) > t])

S2 =
∞
∑

k=1

(

Px [T(β,−k) > t, T(β,1) > Tβ ≤ t] − Px [T(β,k) > t, T(β,1) > Tβ ≤ t])

S3 =
∞
∑

k=1

(

Px [T(β,−k) > t, Tβ > T(β,1) ≤ t] − Px [T(β,k) > t, Tβ > T(β,1) ≤ t])
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Then the implication (Tβ ∧ T(β,1) > t ⇒ ∀k, T(β,k) > t) shows that all summands
in S1 are 0. For S3 set ak =Px [T(β,−k) > t, Tβ > T(β,1)≤ t] and bk = Px [T(β,k) > t,
Tβ > T(β,1) ≤ t]. Set X ′

u = Xu1u≤T(β,1) + sβ,1 Xu1u>T(β,1) . Then X and X ′ have the
same law so ak = Px [T ′

(β,−k) > t, T ′
β > T ′

(β,1) ≤ t]. For k ∈ Z, the definition of X ′
gives

T ′
(β,−k) = T(β,−k)1T(β,−k)≤T(β,1) + (T(β,2+k) ◦ θT(β,1) + T(β,1))1T(β,−k)>T(β,1) (31)

where θ is the shift operator. With k = −1 this gives T ′
(β,1) = T(β,1). With k = 0 we

get {T ′
β > T(β,1) ≤ t} = {Tβ > T(β,1) ≤ t} and for all k,

ak = Px [T ′
(β,−k) > t, Tβ > T(β,1) ≤ t]. (32)

If k ≥ 1 and Tβ > T(β,1) then T(β,−k) ≥ Tβ > T(β,1), so (31) gives T ′
(β,−k) =

T(β,2+k) ◦ θT(β,1) + T(β,1). So (32) becomes

ak = Px [T(β,2+k) ◦ θT(β,1) + T(β,1) > t, Tβ > T(β,1) ≤ t].

For k ≥ 0, T(β,2+k) > T(β,1) so T(β,2+k) = T(β,2+k) ◦ θT(β,1) + T(β,1) and

ak = Px [T(β,2+k) > t, Tβ > T(β,1) ≤ t] = b2+k .

In this way we get S3 = 2 limk→+∞ ak − b1 − b2. Now b1 = 0, b2 = a0 and since
{X (s) : 0 ≤ s ≤ t} is almost surely bounded we have limk→+∞ ak = Px [Tβ >
T(β,1) ≤ t] so that

S3 = 2Px [Tβ > T(β,1) ≤ t] − Px [T(β,1) ≤ t, Tβ > t].

The same line of reasoning gives S2 = 0. Finally observe that

∞
∑

k=1

(

Px [T(β,−k) > t] − Px [T(β,k) > t]) = S1 + S2 + S3.

��
Proof of Proposition 10 Apply Lemmas 24 and 25 to Theorem 8.

5.4 Consistency in the different type cases

5.4.1 ˜Ak−1, k even

Let us first determine I. If wa = τ(d)σ ∈ W I
a , then

wa{(e2i−1 − e2i , 0), (−e2i−1 + e2i ,−1)}
= {(eσ(2i−1) − eσ(2i), n), (−eσ(2i−1) + eσ(2i),−1 − n)},
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372 Y. Doumerc, J. Moriarty

where n = dσ(2i−1) − dσ(2i). Thus, n ≤ 0 and −1 − n ≤ 0, ie n ∈ {0,−1}. If n = 0,
dσ(2i−1) = dσ(2i) and σ(2i − 1) < σ(2i). If n = −1, dσ(2i−1) = dσ(2i) − 1 and
σ(2i − 1) > σ(2i). In any case,

wa{(e2i−1 − e2i , 0), (−e2i−1 + e2i ,−1)}
= {(emin(σ (2i−1),σ (2i)) − emax(σ (2i−1),σ (2i)), 0),

(−emin(σ (2i−1),σ (2i)) + emax(σ (2i−1),σ (2i)),−1)}.

Thus, we identifyπ = {{il < jl}, 1 ≤ l ≤ p} ∈ P2(k) and A = {(eil −e jl , 0), (−eil +
e jl ,−1) ; 1 ≤ l ≤ p} ∈ I. Then we take Ja = {(e2i−1 − e2i , 0) ; 1 ≤ i ≤ p} ∈
O(�a). From the previous description of I, (C1) and (C3) are obvious. Now it is clear
that

Ua = {τ(d)σ : σ permutes sets {1, 2}, {3, 4}, . . . , {k − 1, k} and ∀i ≤ p,

(dσ(2i−1) = dσ(2i), σ (2i − 1) < σ(2i)) or

(dσ(2i−1) = dσ(2i) − 1, σ (2i − 1) > σ(2i))}.

Thus if τ(d)σ ∈ Ua we can write σ = σ1σ2, where σ2 permutes pairs (1, 2), . . . ,
(k − 1, k) and σ1 is the product of the transpositions (σ (2i − 1), σ (2i)) for which
dσ(2i−1) = dσ(2i)−1. Then ε(σ2) = 1 from [8] so that ε(σ ) = ε(σ1) = (−1)m , where
m = |{i : dσ(2i−1) = dσ(2i) − 1}|. But since d ∈ L ,

0 =
∑

j

d j =
p
∑

i=1

(

dσ(2i−1) + dσ(2i)
)

(33)

= 2
∑

i, dσ(2i−1)=dσ(2i)

dσ(2i) + 2
∑

i, dσ(2i−1)=dσ(2i)−1

dσ(2i) − m, (34)

which proves that m is even. Hence ε(σ1) = 1. The fact that εA = (−1)c(π) comes
from the analogous fact in [8].

Remark In the case of odd k = 2p + 1, the same discussion carries over by adding
singlets to the pair partitions and with σ(k) = k if τ(d)σ ∈ Ua . But equality (33) is
no longer valid, which explains why the sign is not well-defined for such k.

5.4.2 The cases ˜Bk and ˜Ck

The argument for the cases ˜Bk and ˜Ck is the same; we give the details in the ˜Bk case.
Let us first suppose k is even, k = 2p. Suppose d ∈ L , f is a sign change with support
f̄ and σ ∈ Sk such that wa = τ(d) f σ ∈ W I

a . Then,

wa
{

(e2i−1 − e2i , 0), (e2i , 0), (−e2i−1 − e2i ,−1)
}

= { ( f (eσ(2i−1))− f (eσ(2i)),m − n
)

,
(

f (eσ(2i)), n
)

,
(− f (eσ(2i−1))− f (eσ(2i)),−1 − m − n

) } := S,
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with m = f (σ (2i − 1))dσ(2i−1) and n = f (σ (2i))dσ(2i). Thus, m − n ≤ 0, n ≤ 0,
− 1 − m − n ≤ 0, which forces m = n = 0 or m = −1, n = 0. If m = n = 0, then
f (eσ(2i−1))− f (eσ(2i)) ∈ �+, f (eσ(2i)) ∈ �+, which implies σ(2i − 1), σ (2i) /∈ f
and σ(2i − 1) < σ(2i). If m = −1, n = 0, then − f (eσ(2i−1)) − f (eσ(2i)) ∈ �+,
f (eσ(2i)) ∈ �+, which implies σ(2i − 1) ∈ f , σ (2i) /∈ f and σ(2i − 1) < σ(2i).
In any case,

S = { (eσ(2i−1) − eσ(2i), 0), (eσ(2i), 0), (−eσ(2i−1) − eσ(2i),−1)
}

and

W I
a =

{

τ(d) f σ ∈ Wa : ∀i,
(

dσ(2i−1) = dσ(2i) = 0, σ (2i − 1), σ (2i) /∈ f ,

σ (2i − 1) < σ(2i)
)

or
(

dσ(2i−1) = 1, dσ(2i) = 0, σ (2i − 1) ∈ f ,

σ (2i) /∈ f , σ (2i − 1) < σ(2i)
)

}

.

Then I clearly identifies with P2(k) through the correspondence between π =
{{il < jl}, 1 ≤ l ≤ p} ∈ P2(k) and A = {(eil − e jl , 0), (e jl , 0), (−eil − e jl ,−1) ;
1 ≤ l ≤ p}. So, (C1) and (C3) are obvious by taking Ja = {(e2i−1 − e2i , 0),
(−e1 − e2,−1)}. Now,

Ua = {τ(d) f σ ∈ W I
a : σ permutes pairs (1, 2), . . . , (2p − 1, 2p)},

so that if τ(d) f σ ∈ Ua , ε(τ (d) f σ) = ε( f )ε(σ ) = (−1)| f |. But | f | =∑i dσ(2i−1) =
∑

j d j is even, which proves (C2).
For odd k = 2p + 1, I identifies with P2(k) through the correspondence between

π={{il< jl}, 1≤ l ≤ p; {s}}∈ P2(k) and A={(eil −e jl , 0), (e jl , 0), (−eil −e jl ,−1),
1 ≤ l ≤ p; (es, 0), (−es,−1)}. Elements τ(d) f σ ∈ Ua are described in the same
way with the extra condition that σ(k) = k and dk = 0, k /∈ f or dk = 1, k ∈ f . So
the proof of (C2) carries over.

5.4.3 The ˜Dk case

Let us first suppose k is even, k = 2p. Suppose d ∈ L , f is an even sign change and
σ ∈ Sk such that wa = τ(d) f σ ∈ W I

a . Then,

wa { (e2i−1 − e2i , 0), (−e2i−1 + e2i ,−1), (e2i−1 + e2i , 0) (−e2i−1 − e2i ,−1) }
= {( f (eσ(2i−1))− f (eσ(2i)),m − n

)

,
(− f (eσ(2i−1))+ f (eσ(2i)),−1−(m − n)

)

,
(

f (eσ(2i−1))+ f (eσ(2i)),m+n
)

,
(−f (eσ(2i−1))− f (eσ(2i)),−1−(m+n)

)}:=S,

with m = f (σ (2i − 1))dσ(2i−1) and n = f (σ (2i))dσ(2i). Thus m − n ≤ 0, −1 −
(m−n) ≤ 0, m+n ≤ 0, −1−(m+n) ≤ 0, which forces m = n = 0 or m = −1, n =
0. If m = n = 0, then f (eσ(2i−1)) ± f (eσ(2i)) ∈ �+, which implies σ(2i − 1) /∈ f
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and σ(2i − 1) < σ(2i). If m = −1, n = 0, then − f (eσ(2i−1)) ± f (eσ(2i)) ∈ �+,
which implies σ(2i − 1) ∈ f and σ(2i − 1) < σ(2i). In any case, we have

S = {(eσ(2i−1) − eσ(2i), 0), (−eσ(2i−1) + eσ(2i),−1) ,

(eσ(2i−1))+ eσ(2i), 0) (eσ(2i−1))+ eσ(2i), 0)
}

,

and

W I
a =

{

τ(d) f σ ∈ Wa : ∀i,
(

dσ(2i−1) = dσ(2i) = 0, σ (2i − 1) /∈ f ,

σ (2i − 1) < σ(2i)
)

or
(

dσ(2i−1) = 1, dσ(2i) = 0, σ (2i − 1) ∈ f ,

(2i − 1) < σ(2i)
)

}

.

The correspondence between π = {{il < jl}, 1 ≤ l ≤ p} ∈ P2(k) and A =
{(eil − e jl , 0), (−eil + e jl ,−1), (eil + e jl , 0), (−eil − e jl ,−1) ; 1 ≤ l ≤ p} identifies
I with P2(k). (C1) and (C3) are obvious with Ja = {(e2i−1 − e2i , 0), 1 ≤ i ≤ p;
(ek−1 + ek, 0)}. Moreover,

Ua = {τ(d) f σ ∈ W I
a : σ permutes pairs (1, 2), . . . , (2p − 1, 2p)},

which makes (C2) easy since ε( f ) = 1 for τ(d) f σ ∈ Wa .
The case of odd k is an obvious modification.

5.4.4 The ˜G2 case

Call α1 = e1 − e2, α2 = 2e3 − e1 − e2 = α̃ and take Ja = {(α1, 0), (−α2,−1)}. We
remark that I can be written

{(α1, 0), (−α1,−1), (α2, 0), (−α2,−1)} with α1 short, α2 long, α1 ⊥ α2. (35)

If wa = τ(d)w ∈ W I
a then (wαi , d) ∈ Z, (wαi , d) ≤ 0 and −1 − (wαi , d) ≤ 0,

which imposes (wαi , d) ∈ {0,−1} for i = 1, 2. Thus, A = wa I can also be written as
in (35) for some α′

1, α
′
2. This guarantees condition (C3) and if Ja ⊂ A then obviously

α1 = α′
1, α2 = α′

2 so that A = I , which proves condition (C1). Writing I as in (35)
allows us to see that if wa = τ(d)w ∈ Wa , then wa I = {(wα1,m1), (−wα1,−1 −
m1), (wα2,m2), (−wα2,−1 − m2)} where mi = (wαi , d) ∈ Z. Since W sends long
(short) roots to long (short) roots, wa ∈ Ua implies wαi ∈ {±αi } for i = 1, 2. If
wαi = αi for i = 1, 2 (respectively wαi = −αi for i = 1, 2), then w = id (respecti-
vely w = −id) and ε(w) = 1 (recall that dim V = 2). If wα1 = α1 and wα2 = −α2
then (α1, d) = 0 and (α2, d) = 1. This implies d = (−1/6,−1/6, 1/3) /∈ L , which
is absurd. The same absurdity occurs if wα1 = −α1 and wα2 = α2.

For the determination of I, it is easy to see that the sets of the form (35) are I, A1, A2.
The sign of the transformation sending (α1, α2) to (e3 − e1,−2e2 + e1 + e3) is 1 so
that εA1 = −1 and A2 is obtained from A1 by transposing e1 and e2, which finishes
the proof.
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5.4.5 The ˜F4 case

Call α1 = e2 − e3, α′
1 = e3, α2 = e1 − e4, α′

2 = e4. Then I can be written

{(α1, 0), (−α1,−1), (α′
1, 0), (α2, 0), (−α2,−1), (α′

2, 0)}, (36)

with α1, α2 long, α′
1, α

′
2 short, {α1, α

′
1} ⊥ {α2, α

′
2} and (αi , α

′
i ) = −1. The same kind

of reasoning as in the ˜G2 case shows conditions (C1) and (C3), with Ja = {α1, α
′
2}.

Let us prove (C2). If wa = τ(d)w ∈ Ua , then wa I =

{(wα1,m1), (−wα1,−1 − m1), (wα
′
1,m′

1),

(wα2,m2), (−wα2,−1 − m2), (wα
′
2,m′

2)},

with mi = (wαi , d), m′
i = (wα′

i , d). Since w sends long (short) roots to long (short)
roots, necessarily w{α′

1, α
′
2} = {α′

1, α
′
2} and m′

1 = m′
2 = 0.

Suppose wα′
i = α′

i , i = 1, 2. Since (wα2, α
′
1) = (α2, α

′
1) = 0 �= −1, we have

wα1 ∈ {α1,−α1} and wα2 ∈ {α2,−α2}. If wα1 = −α1, wα2 = α2 then m1 = 1,
m2 = 0 = m′

1 = m′
2, which leads to d = (0, 1, 0, 0) /∈ L , absurd! If wα1 = α1,

wα2 = −α2, a similar reasoning leads to the absurdity d = (1, 0, 0, 0) /∈ L .
Hence, wα1 = α1, wα2 = α2 or wα1 = −α1, wα2 = −α2. Then, using the basis
(α1, α

′
1, α2, α

′
2), ε(w) = 1 is easily checked.

Suppose nowwα′
1 = α′

2, wα
′
2 = α′

1. Similar arguments show thatwα2 ∈ {α1,−α1}
and wα1 ∈ {α2,−α2}. If wα1 = α2, wα2 = α1 or wα1 = −α2, wα2 = −α1 then
ε(w) = 1. Suppose wα1 = α2, wα2 = −α1, then m1 = 0, m2 = −1, which, as
before, leads to d = (0, 1, 0, 0) /∈ L . If wα1 = −α2, wα2 = α1, then m1 = −1,
m2 = 0, which also gives d = (1, 0, 0, 0) /∈ L . ��

5.5 Proposition 1

The definition of the Pfaffian is given in the appendix. We refer to (16) for even k and
(7) and for odd k. ��

5.6 Proposition 11

We will use the following expansions involving the exit time T(0,1) from (0, 1) and the
hitting times T0 and T1 of 0 and 1 respectively for one-dimensional Brownian motion:
for (x, t) ∈ (0, 1)× [0,∞),

φ(x, t) := Px (T0,1 > t) =
∑

l∈2N+1

cle
−λl t sin(πlx)

ψ(x, t) := Px (T0,1 > t)+ 2Px (T0 > T1)− 2Px (T0 > T1 > t)

=
∑

l∈2N

cle
−λl t sin(πlx)

(37)
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with cl = 4/(lπ), λl = (lπ)2/2 and the definition cl sin(πlx) = 2x when l = 0. The
first expansion may be found in, for example, [3]; in the case of even k, it may be used
to rewrite (16) into the form (38). The second expansion is obtained using

Lemma 26 If X is Brownian motion and β = ei − e j then

Px [Tβ > T(β,1) > t] = 2
∞
∑

n=1

(−1)n+1

πn
e−π2n2t sin(πnxi j )

where xi j = xi − x j ∈ (0, 1).

Proof The series satisfies the diffusion equation for (xi j , t) ∈ (0, 1)× (0,∞), takes
the value 0 if xi j ∈ {0, 1}, and equals xi j if t = 0. Xi j := Xi −X j is a Brownian motion
with the same diffusion coefficient. Therefore by applying for example Theorem 4.14
of [3], the series equals

Ex [Xi j (t); Tβ ∧ T(β,1) > t] = Ex [Px [Tβ > T(β,1) > t |X (t), 1Tβ∧T(β,1)>t ]]
= Px [Tβ > T(β,1) > t].

��
We record the following corollary, which follows from integration, interchanging

integration with summation, and inversion of Fourier series:

Corollary 27 Under the conditions of Lemma 26,

∞
∫

0

Px [Tβ > T(β,1) > t]dt = 1

6
xi j (1 − x2

i j ).

In the case of odd k, the second expansion in (37) may be inserted in Proposition
10 to give (38):

Px (˜T > t) =
∑

π={{is< js }, 1≤s≤m}
(−1)c(π)

m
∏

s=1

⎛

⎝

∑

l∈O

cle
−2λl t sin(πlxis js )

⎞

⎠

=
∑

π={{is< js }, 1≤s≤m}
(−1)c(π)

∑

l∈Om

e−π2(l2
1+···+l2

m )t
m
∏

s=1

cls sin(πls xis js )

(38)

for x ∈ A, where m = �k/2� ∈ N, xi j = xi − x j , O = 2N + 1 if k is even and
O = 2N if k is odd. Now for π = {{is < js}, 1 ≤ s ≤ m} define

Gr (x, π) =
∑

l∈Om , N (l)=r

m
∏

s=1

cls sin(πls xis js ) (39)
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where N (l) = l2
1 + · · · + l2

m , and let Fr (x) =∑π∈P2(k)(−1)c(π)Gr (x, π). (Since the
sum defining Gr (x, π) runs over a Sm-invariant set of indices, it does not depend on
the enumeration of the blocks of π but only on π itself.) With those definitions we
can write

Px (˜T > t) =
∑

r>0

e−π2r t Fr (x) (40)

(note that by Proposition 2.4 of [8],
∑

π∈P2(k)(−1)c(π)
∏m

s=1 xis js = 0 and so the
terms corresponding to r = 0 cancel.) As for expectations, we have

Ex (˜T ) =
∞
∫

0

Px (˜T > t) dt =
∑

r>0

1

rπ2 Fr (x)

and the result follows. ��
When k = 2 the previous formula becomes

Ex (˜T ) =
∑

n∈N

4

π3

sin (π(2n + 1)x12)

(2n + 1)3
= 1

2
x12(1 − x12), (41)

0 < x12 < 1, which is a well-known formula in Fourier series. When k = 3 we may
use the above and Corollary 27 to obtain

Ex (˜T ) =
∑

π={is< js }
(−1)c(π)

∑

n∈N

4

π3

sin
(

2πnxi j
)

(2n)3
= x12x23(1 − x13), (42)

0 < xi j < 1. It is easy to check that (41) and (42) both solve Poisson’s equation
1
2�u = −1 inside the interval and an equilateral triangle respectively and vanish
on the boundary, which confirms that they are the expected exit times for Brownian
motion from these domains. Formula (42) has also been obtained using scaling limits
for random walks (see [1,5] ).

5.7 The reflection principle and De Bruijn Formulae

5.7.1 Proposition 14

From (13), if TA is the exit time of Brownian motion from FA then

Px [TA > t] =
∫

FA

∑

ω∈WA

ε(ω)pt (x, ωy)dy (43)

where pt is the Brownian transition density and x ∈ FA. The finite case was proved
in [8]; in the affine case it is easy to check that the same proof applies.
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5.7.2 Propositions 15 and 16

We treat first the case of odd k. Let β ∈ �+ = {ei − e j : 1 ≤ i < j ≤ k} and x ∈ A.
Then (x, β) ∈ (0, 1) and from (43), for k ≥ 1

Px [T(β,k) > t] =
∫

〈y,β〉<k

pt (x, y)− pt (x, sβ y + kβ)dy

=
∫

〈u,β〉>−k

pt (x, sβu)− pt (x, u + kβ)du

where u = sβ y. Also if k ≤ 0 then

Px [T(β,k) > t] =
∫

〈y,β〉>k

pt (x, y)− pt (x, sβ y + kβ)dy. (44)

Write β = ei − e j . Rewriting Theorem 8 using Lemma 24, equation (44) and using
the identification of I with P2(k) from Sect. 4.1 we have

Px [˜T > t] =
∑

π∈P2(k)

(−1)c(π)
∏

{i< j}∈π

( ∫

yi>y j

pi j (0)dyi dy j

+
∞
∑

k=1

∫

yi −y j>−k

pi j (0)+ pi j (k)dyi dy j

)

(45)

where pi j (k) = ψ(xi , yi +k)ψ(x j , y j −k)−ψ(xi , y j −k)ψ(x j , yi +k) andψ(x, y) =
1√
2π t

e−(x−y)2/2t . Now
∫

−k<yi −y j<k pi j (0)dyi dy j = 0 and making the substitution

(ui , u j ) = (yi + k, y j − k) we have

∫

yi −y j>−k

pi j (k)dyi dy j =
∫

ui −u j>k

pi j (0)dui du j ,

so the infinite sum in (45) may be written 2
∑∞

k=1

∫

yi −y j>k pi j (0)dyi dy j . From (43)
we have the alternative expression

Px [˜T > t] =
∫

A

∑

ω∈Wa

ε(ω)pt (x, ωy)dy

so integrating both expressions over R
k with respect to fi (xi )dxi , i = 1, . . . , k and

applying Fubini’s theorem,
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∫

A

∑

ω∈Wa

ε(ω)Pt f (ωy)dy =
∑

π∈P2(k)

(−1)c(π)

∫

R

flπ

∏

{i< j}∈π

( ∫

yi>y j

Pi j dyi dy j + 2
∞
∑

k=1

∫

yi −y j>k

Pi j dyi dy j

)

where {lπ } is the singlet in the partition π and Pi j = Pt fi (yi )Pt f j (y j ) − Pt fi (y j )

Pt f j (yi ). To complete the proof for the case of odd k we obtain uniform bounds in
t to justify the use of dominated convergence to let t → 0 inside the infinite sum,
and finally apply the definition of the Pfaffian. Dividing the domain of integration into
(−k + √

t, k − √
t) and its complement and applying the bound

∫

pi j (0)dyi dy j ≤ 2
on the latter we have for t < 1/4

∣

∣

∣

∣

∣

∣

∣

∫

yi −y j>k

Pi j dyi dy j

∣

∣

∣

∣

∣

∣

∣

≤
∫

xi ,x j ∈R

∫

yi −y j>k

|pi j (0) fi (xi ) f j (x j )|dyi dy j dxi dx j

≤
∫

xi −x j<k−√
t

∫

yi −y j>k

ψ(xi , yi )ψ(x j , y j )(| fi (xi ) f j (x j )| + | fi (x j ) f j (xi )|)

×dyi dy j dxi dx j + 2
∫

xi −x j ∈(−∞,−k+1/2)∪(k−1/2,∞)

| fi (xi ) f j (x j )|dxi dx j

and
∫

xi −x j ∈(−∞,−k)∪(k,∞)
| fi (xi ) f j (x j )|dx is summable in k by assumption. The stan-

dard estimate for the tail of the Gaussian distribution gives

∫

yi −y j>k

ψ(xi , yi )ψ(x j , y j )dyi dy j ≤ e−(k−(xi −x j ))
2

when xi − x j < k − √
t , and

∫

x∈R
e−(k−(xi −x j ))

2 | f (x)|dx is summable in k.
When k is even we have a consistent subset I as described in Sect. 4.1 and so

Proposition 14 applies. The proof is similar to that in section 7.6.1 of [8], with the
difference that here we have the bijection

(l ∈ Lπ , η ∈ {±1}π ) �→ wl,η = τ(l)
∏

{i< j}∈π
τ
η′

i j
i j ∈ WA

where π ∈ P2(k) is the pair partition associated with A ∈ I, and Lπ is the coroot
lattice associated with the affine Weyl group WA; and now FA corresponds with
Fπ = ∩{i< j}∈π {y : 0 < yi − y j < 1}. ��
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6 Eigenfunctions and eigenvalues for alcoves

It follows from Eq. (40) that Fr is a real eigenfunction for the Dirichlet Laplacian on
the alcove of type ˜Ak−1, with eigenvalue −2π2r . As an example, when k = 3 the
alcove is the equilateral triangle and we have

1

c2n
Fr (x) =

{

sin(2πnx12)+ sin(2πnx23)− sin(2πnx13) if r = 4n2

0 otherwise,

giving the eigenfunctions with simple eigenvalues (see [14]), a feature which can be
anticipated from the symmetry of the equilateral triangle. Bérard [4] obtained a general
formula for the eigenfunctions of the Dirichlet and Neumann Laplacians for alcoves
of any type, and we provide here a characterisation of the real eigenfunctions.

Defining

f p(x) =
∑

w∈W

ε(w) exp(2π i 〈x, wp〉), gp(x) =
∑

w∈W

exp(2π i 〈x, wp〉), (46)

the eigenfunctions for the Dirichlet Laplacian on A are { f p : p ∈ P ∩ C}, where
ε(w) = detw and P = {x ∈ V : 〈α∨, x

〉 ∈ Z ∀ α ∈ �}, and the eigenfunctions for
the Neumann Laplacian on A are {gp : p ∈ P ∩ C}.
Remark It is immediate from (46) that if gp is real then for every y ∈ A we have
gp(y) < supx∈∂A gp(x). The ‘Hot Spots’ conjecture of J. Rauch (see [2]) is therefore
true for alcoves. Note that in the two-dimensional case, the alcoves are the equilateral
triangle and the right triangles with an angle of either π/4 or π/3.

Proposition 28 (i) For p ∈ P ∩C, the eigenfunction f p of the Dirichlet Laplacian
on A is real iff

∃ w1 ∈ W such that w1 p = −p. (47)

If (47) holds then, up to a constant factor,

f p(x) =
∑

w∈W

ε(w)cs(2π 〈x, wp〉)

where cs = sin if ε(w1) = −1 and cs = cos if ε(w1) = 1.
(ii) For p ∈ P ∩ C, the eigenfunction gp of the Neumann Laplacian on A is real iff

(47) holds and then, up to a constant factor,

gp(x) =
∑

w∈W

cos 2π 〈x, wp〉 .

Proof (i) We have

f p(x) =
∑

w∈W

ε(w) cos 2π 〈x, wp〉 + i
∑

w∈W

ε(w) sin 2π 〈x, wp〉 .
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Suppose first thatw1 p = −p for somew1 ∈ W. Then by conjugation, for anyw ∈ W
there exists vw ∈ W such that vw(wp) = −wp. The orbit W p may therefore be
partitioned into pairs {wp,−wp}, and

cs(2π 〈x, wp〉)± cs(2π 〈x,−wp〉) = 0

where ± = +,− if cs = sin, cos respectively. The sufficiency of condition (47) is
proved by noting that ∀ w ∈ W, ε(vww) = ε(vw)ε(w) = ε(w1)ε(w).

Conversely, suppose that

∑

w∈W

ε(w)cs2π 〈x, wp〉 = 0 ∀ x ∈ V . (48)

By restricting x to a ray x = tr (t ∈ R) chosen such that 〈r, wp〉 = 〈r, p〉 only
when w = id and 〈r, wp〉 = − 〈r, p〉 only when wp = −p and appealing to linear
independence, we conclude that (47) holds.

Part (ii) is proved similarly. ��
Using standard facts about the longest element of a Weyl group (see [13]) we obtain

Corollary 29 For the cases W = A1, Bk,Ck, D2k, E7, E8, F4,G2, H3 and H4, all
the eigenfunctions of the Laplacian on A with Dirichlet or Neumann boundary condi-
tions are real. In all other cases, the eigenfunctions f p, gp given by (46) are real iff
p = τ(p), where τ is the unique involution of the Coxeter graph of W .

The root systems covered by the second case of Corollary 29 are

Type Ak−1, k > 2 Here τ(ei − ei+1) = ek−i − ek−i+1 and so we require
p =∑k−1

i=1 ai (ei − ei+1) with ai = ak−i ∀ 1 ≤ i ≤ k − 1.

Type D2k+1 Here τ leaves ei − ei+1 invariant for 1 ≤ i ≤ 2k − 1, and τ(e2k −
e2k+1) = e2k + e2k+1. We therefore require p = ∑2k

i=1 ai (ei − ei+1)+ a2k+1(e2k +
e2k+1) with a2k = a2k+1.

Proof of Proposition 12 Defining ρ = 1
2

∑

α∈�+ α, we have ρ ∈ P ∩ C (see for
example [13]). Then setting p = ρ in (46), the Weyl identity gives that up to a
constant factor,

fρ(x) =
∏

α∈�+
sin(π〈x, α〉). (49)

The next lemma establishes the final claim of Proposition 12.

Lemma 30 Suppose that F(X)= F(X j ) j∈J is a polynomial in the (sin X j , cos X j ) j∈J

which vanishes whenever sin X j vanishes. Then sin X j divides F(X) in the ring
of trigonometric polynomials.

Proof Let F(X) = P
(

ei X j , e−i X j
)

j∈J ∈ R := C[ei X j , e−i X j ; j ∈ J ]. The given

cancellation property assures that P is divisible in R by the monic polynomial ei X j −1

and that the quotient is divisible by ei X j + 1. Hence P is divisible in R by e2i X j −1
2iei X j

=
sin X j . ��
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Since the eigenfunctions are alternating under the action of the affine Weyl group
(see for example [4]), and putting J = �+ and Xα = π〈α, x〉, the Lemma applies.
Using continuity and Lemma 30 again establishes the final claim of Proposition 12. ��
Remark In the type ˜A case, the principal eigenfunction was obtained by Hobson and
Werner in [11]; we give a direct proof in the appendix. See also [7].
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Appendix

Direct proof of Proposition 12 in the type ˜A case

Set xi j = xi − x j and h(x) = ∏

1≤i< j≤k sin xi j . Computation of the logarithmic
derivative gives

∂i h = h
∑

j ( �=i)

cos xi j

sin xi j
,

which yields

∂2
i h = h

⎧

⎨

⎩

∑

j, l ( �=i)

cos xi j cos xil

sin xi j sin xil
+
∑

j ( �=i)

(

−1 − cos2 xi j

sin2 xi j

)

⎫

⎬

⎭

= h

⎧

⎨

⎩

∑

j �=l ( �=i)

cos xi j cos xil

sin xi j sin xil
− (k − 1)

⎫

⎬

⎭

,

so that �h = h(S(x)− k(k − 1)) with

S(x) =
∑′ cos xi j cos xil

sin xi j sin xil
,

where
∑′ runs over i, j, l pairwise distinct. By circular permutation, we get

3S(x) =
∑′ cos xi j cos xil

sin xi j sin xil
+ cos x jl cos x ji

sin x jl sin x ji
+ cos xli cos xl j

sin xli sin xl j

=
∑′ cos xi j cos xil sin x jl − cos x jl cos xi j sin xil + sin xi j cos xil cos x jl

sin xi j sin xil sin x jl
.

But trigonometry shows that each term in the previous sum equals −1, so that
S(x) = −k(k − 1)(k − 2)/3, which concludes the proof.
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The Pfaffian

For completeness we define the Pfaffian. If car K �= 2, any skew-symmetric matrix
A ∈ Mn(K) can be written A = P D Pt with P ∈ GL(n,K), D = diag(B1, . . . , Bq)

and Bl = 0 ∈ K or Bl = J = ( j − i)1≤i, j≤2 ∈ M2(K). Hence, if n is odd, det A = 0.
If n is even, one can use the previous decomposition to prove

Proposition 31 There exists a unique polynomial Pf ∈ Z[Xi j , 1 ≤ i < j ≤ n]
such that if A = (ai j ) is a skew-symmetric matrix of size n, det A = Pf(A)2 and
Pf(diag(J, ..., J )) = 1.

The Pfaffian has an explicit expansion in terms of the matrix coefficients:

Proposition 32

Pf(A) =
∑

π∈P2(n)

(−1)c(π)
∏

{i< j}∈π
ai j .

For more on Pfaffians and their properties, see [9,15].
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