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Abstract In this paper we consider quantile and Bahadur–Kiefer processes for long
range dependent linear sequences. These processes, unlike in previous studies, are
considered on the whole interval (0, 1). As it is well-known, quantile processes can
have very erratic behavior on the tails. We overcome this problem by considering
these processes with appropriate weight functions. In this way we conclude strong
approximations that yield some remarkable phenomena that are not shared with i.i.d.
sequences, including weak convergence of the Bahadur–Kiefer processes, a different
pointwise behavior of the general and uniform Bahadur–Kiefer processes, and a
somewhat “strange” behavior of the general quantile process.
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340 M. Csörgő, R. Kulik

1 Introduction

Let {εi , i ≥ 1} be a centered sequence of i.i.d. random variables. Consider the class
of stationary linear processes

Xi =
∞∑

k=0

ckεi−k, i ≥ 1. (1)

We assume that the sequence ck , k ≥ 0, is regularly varying with index −β, β ∈
(1/2, 1) (written as ck ∈ RV−β ). This means that ck ∼ k−βL0(k) as k → ∞,
where L0 is slowly varying at infinity. We shall refer to all such models as long
range dependent (LRD) linear processes. In particular, if the variance exists, then
the covariances ρk := EX0 Xk decay at the hyperbolic rate, ρk = L(k)k−(2β−1) =:
L(k)k−D , where limk→∞ L(k)/L2

0(k) = B(2β − 1, 1 − β) and B(·, ·) is the beta-
function. Consequently, the covariances are not summable (cf. [13]).

Assume that X1 has a continuous distribution function F . For y ∈ (0, 1) define
Q(y) = inf{x : F(x) ≥ y} = inf{x : F(x) = y}, the corresponding (continuous)
quantile function. Given the ordered sample X1:n ≤ · · · ≤ Xn:n of X1, . . . , Xn , let
Fn(x) = n−1 ∑n

i=1 1{Xi ≤x} be the empirical distribution function and Qn(·) be the
corresponding left-continuous sample quantile function. Define Ui = F(Xi ) and
En(x) = n−1 ∑n

i=1 1{Ui ≤x}, the associated uniform empirical distribution. Denote by
Un(·) the corresponding uniform sample quantile function.

Our purpose in this paper is to study the asymptotic behavior of sample quantiles for
long range dependent sequences. This will be done in the spirit of the Bahadur–Kiefer
approach (cf. [1,15,16]).

Assume that Eε2
1 < ∞. Let r be an integer and define

Yn,r =
n∑

i=1

∑

1≤ j1<···≤ jr

r∏

s=1

c js εi− js , n ≥ 1,

so that Yn,0 = n, and Yn,1 = ∑n
i=1 Xi . If p < (2β − 1)−1, then

σ 2
n,p := Var(Yn,p) ∼ n2−p(2β−1)L2p

0 (n). (2)

Define now the general empirical, the uniform empirical, the general quantile and the
uniform quantile processes respectively as follows:

βn(x) = σ−1
n,1n(Fn(x)− F(x)), x ∈ R, (3)

αn(y) = σ−1
n,1n(En(y)− y), y ∈ (0, 1), (4)

qn(y) = σ−1
n,1n(Q(y)− Qn(y)), y ∈ (0, 1), (5)

un(y) = σ−1
n,1n(y − Un(y)), y ∈ (0, 1). (6)
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Quantiles and LRD 341

Assume for a while that Xi , i ≥ 1 are i.i.d. We shall refer to this as to the i.i.d. model.
Denote by αiid

n , qiid
n , uiid

n the uniform empirical, general quantile, uniform quantile
processes based on i.i.d. samples with the constants σ−1

n,1n in (4), (5), (6) replaced
with

√
n. Fix y ∈ (0, 1). Let Iy be a neighborhood of Q(y) and assume that F is

twice differentiable with respect to Lebesgue measure with respective first and second
derivatives f and f ′. Assuming that inf x∈Iy f (x) > 0 and supx∈Iy

| f
′
(x)| < ∞,

Bahadur in [1] obtained the following Bahadur representation of quantiles

αiid
n (y)− f (Q(y))qiid

n (y) =: Riid
n (y), (7)

with

Riid
n (y) = Oa.s.(n

−1/4(log n)1/2(log log n)1/4), n → ∞, (8)

The process {Riid
n (y), y ∈ (0, 1)} is called the Bahadur–Kiefer process. Later, Kiefer

proved in [15] that (8) can be strengthened to

Riid
n (y) = Oa.s.(n

−1/4(log log n)3/4), (9)

which is the optimal rate. Continuing his study, in [16] Kiefer obtained the uniform
version of (7), referred to later on as the Bahadur–Kiefer representation:

sup
y∈[0,1]

∣∣∣αiid
n (y)− f (Q(y))qiid

n (y)
∣∣∣ =: Riid

n (10)

where

Riid
n = Oa.s.(n

−1/4(log n)1/2(log log n)1/4), n → ∞. (11)

Once again, the above rate is optimal. Kiefer obtained his result assuming

(K1) f has finite support and supx∈R | f
′
(x)| < ∞,

(K2) inf x∈R f (x) > 0.

We shall refer to (K1), (K2) as to the Kiefer conditions.
Further on, Csörgő and Révész [7] obtained Kiefer’s result (10) under the following,

weaker conditions, which shall be referred to later on as the Csörgő–Révész conditions
(cf. also [2, Theorem 3.2.1]):

(CsR1) f exists on (a, b), where a = sup{x : F(x) = 0}, b = inf{x : F(x) = 1},
−∞ ≤ a < b ≤ ∞,

(CsR2) inf x∈(a,b) f (x) > 0,

(CsR3) supx∈(a,b) F(x)(1 − F(x)) | f ′(x)|
f 2(x)

= supy∈(0,1) y(1 − y)
∣∣∣ f ′(Q(y))

f 2(Q(y))

∣∣∣ ≤ γ with

some γ > 0,
(CsR4) (i) 0 < A := limy↓0 f (Q(y)) < ∞, 0 < B := limy↑1 f (Q(y)) < ∞, or

(ii) if A = 0 (respectively B = 0) then f is nondecreasing (respectively
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342 M. Csörgő, R. Kulik

nonincreasing) on an interval to the right of Q(0+) (respectively to the left
of Q(1−)).

In particular, they showed that, under (CsR1), (CsR2), (CsR3), as n → ∞,

sup
n−1 log log n≤y≤1−n−1 log log n

| f (Q(y))qiid
n (y)−uiid

n (y)|=Oa.s.(n
−1/2 log log n). (12)

Additionally, if (CsR4) holds, then, as n → ∞,

sup
y∈[0,1]

| f (Q(y))qiid
n (y)− uiid

n (y)| = Oa.s.(n
−1/2�(n)). (13)

Here, and in the sequel, �(n) is a slowly varying function at infinity, but can be
different at each place it appears (e.g. when Csörgő–Révész conditions hold, then
�(n) = log log n). This, via the special case of (11)

sup
y∈[0,1]

|uiid
n (y)− αiid

n (y)| = Oa.s.(n
−1/4(log n)1/2(log log n)1/4),

yields the Bahadur–Kiefer representation (11) under less restrictive conditions compa-
red to Kiefer’s assumptions. In particular, Csörgő–Révész conditions are fulfilled if F
is exponential or normal. Also, if (CsR4)(i) obtains, then �(n) in (13) is log log n. We
refer to [2,8] and [9] for more discussion of these conditions. We note in passing that
taking sup over [1/(n +1), n/(n +1)] instead of the whole unit interval, the statement
(13) holds true assuming only the conditions (CsR1)–(CsR3) (cf. [3, Theorem 3.1],
or [5, Theorem 6.3.1]).

As to LRD linear processes with partial sums Yn,r above, the first result on sample
quantiles can be found in Ho and Hsing [14], where it is shown under Kiefer-type
conditions that, as n → ∞, one has for all β ∈ ( 1

2 , 1)

sup
y∈(y0,y1)

|Q(y)− Qn(y)− n−1Yn,1| = oa.s.(n
−(1+λ)σn,1), (14)

where 0 < y0 < y1 < 1 are fixed and 0 < λ < (β − 1
2 ) ∧ (1 − β). This means that

the sample quantiles Qn(y), y ∈ (y0, y1) can be approximated by the sample mean
n−1Yn,1 = n−1 ∑n

i=1 Xi independently of y. This quantile process approximation is
a consequence of their landmark result for empirical processes; see also [17,21,22]
for related studies. The best available result along these lines is due to Wu [24].
To state a particular version of his result, let Fε be the distribution function of the
centered i.i.d. sequence {εi , i ≥ 1}. Assume that for a given integer p, the derivatives
F (1)ε , . . . , F (p+3)

ε of Fε are bounded and integrable. Note that these properties are
inherited by the distribution F as well (cf. [14] or [24]).

Theorem 1.1 Let p be a positive integer. Then, as n → ∞,

E sup
x∈R

∣∣∣∣∣

n∑

i=1

(1{Xi ≤x} − F(x))+
p∑

r=1

(−1)r−1 F (r)(x)Yn,r

∣∣∣∣∣

2

= O(	n + n(log n)2),
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Quantiles and LRD 343

where

	n =
{

O(n), (p + 1)(2β − 1) > 1

O(n2−(p+1)(2β−1)L2(p+1)
0 (n)), (p + 1)(2β − 1) < 1

.

Using this result, under Kiefer conditions as n → ∞, Wu [25] obtained

sup
y∈(y0,y1)

|αn(y)− f (Q(y))qn(y)− σ−1
n,1n−1Y 2

n,1 f
′
(Q(y))/2| = Oa.s.( jn�(n)), (15)

where jn = n−( 3
4 − β

2 ) if β > 7
10 and jn = n−(2β−1) if β ≤ 7

10 . As argued in [25,
Sect. 7.1] this bound is sharp up to a multiplicative slowly varying function �(n).
From (15) and the central limit theorem for the partial sums

∑n
i=1 Xi we may also

deduce under Kiefer conditions and β ∈ ( 1
2 ,

5
6 ), that for the Bahadur–Kiefer process

Rn(y) = αn(y)− f (Q(y))qn(y) (16)

we have weak convergence σ−1
n,1n Rn(y)⇒ f ′(Q(y))Z2/2 in D([y0, y1]), Csörgő–

Révész conditions equipped with the sup-norm topology, where Z is a standard normal
random variable. In particular, if εi , i ≥ 1 are i.i.d. standard normal random variables,
then, as n → ∞,

σ−1
n,1n Rn(y)⇒φ′(�−1(y))Z2/2 in D([y0, y1]), (17)

whereφ and� are the standard normal density and distribution functions, respectively.
This behavior is completely different compared to the i.i.d. case, for it is well

known that the Bahadur–Kiefer process cannot converge weakly in the space of cadlag
functions (cf., e.g., [10, Remark 2.1]).

However, this weak convergence phenomenon was first observed explicitly by
Csörgő, Szyszkowicz and Wang [10] for long range dependent Gaussian sequences.
For the sake of comparison with (17), assume that εi , i ≥ 1 are standard normal
random variables and that

∑∞
k=1 c2

k = 1. Then the Xi defined by (1) are standard
normal. Define Yn = G(Xn), with some real-valued measurable function G. Let
Jl(y) = E

[(
1{F(G(X))≤y} − y

)
Hl(X)

]
, where Hl is the lth Hermite polynomial. In

particular, taking G = F−1� we have that Yn have the marginal distribution F . The
Hermite rank is 1 and J1(y) = −φ(�−1(y)), and we may take Yn = Xn . Note that
for the Hermite rank 1, via L(n) ∼ B(2β − 1, 1 − β)L2

0(n), their scaling factor
d2

n = n2−τD Lτ (n) (cf. (1.5) of [10]) agrees (up to a constant) with σ 2
n,1 of (2). Note

also that J1(y)J ′
1(y) = φ′(�−1(y)). Thus, for the uniform Bahadur–Kiefer process

R̃n(y) = αn(y)− un(y) (18)

we may conclude from [10, Theorem 2.3] that (see also Remark 2.22 in the present
paper), as n → ∞,

σ−1
n,1n R̃n(y)⇒φ′(�−1(y))Z2 in D([y0, y1]). (19)
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344 M. Csörgő, R. Kulik

Comparing (17) with (19), we see that the weak limits in D[y0, y1] of the uniform and
the general Bahadur–Kiefer processes are different.

We note that Csörgő et al. [10] have also established the rate for the deviation
of R̃n(y) from Rn(y) under the Csörgő–Révész conditions. This rate, in the case of
the Hermite rank 1, coincides with the scaling factor for the weak convergence of
the Bahadur–Kiefer processes in (17) and (19). Since the uniform and the general
Bahadur–Kiefer processes have different limits, the rate obtained for their nearness in
[10] cannot be improved.

In this paper we deal with several problems. First, unlike in [14] or [25], we consider
quantile and Bahadur–Kiefer processes on the whole interval (0, 1) under very gene-
ral conditions on the distribution function F . As it is well-known, quantile processes
can have very erratic behavior on the tails. Moreover, it should be pointed out that
in the LRD case, even when we deal with the associated uniform version of quantile
and Bahadur–Kiefer processes, we also have to deal with the general quantile func-
tion of X1. We solve this problem by considering these processes with appropriate
weight functions. With this help, we can conclude various strong approximations, as
well as some remarkable phenomena not shared with i.i.d. sequences, including weak
convergence of the Bahadur–Kiefer processes, or different pointwise behavior of the
general and uniform Bahadur–Kiefer processes. Further on, we deal with the gene-
ral quantile process qn(y). Via its weak convergence, we obtain confidence intervals
for the quantile function Q. Moreover, if one considers the subordinated Gaussian
sequence Yn = G(Xn), then the behavior of the quantile process does not only
depend on the marginals of Yn’s and the dependence structure (i.e. the parameter
β), but also on a “hidden” LRD sequence {Xi , i ≥ 1}. This property cannot occur in
a weakly dependent case.

Although, especially by dealing with weight functions, the paper is fairly techni-
cal, however, the choice of “good” weight functions allow us to obtain reasonable
simultaneous confidence intervals for the quantile function (see Sect. 2.2).

Our results are presented in Sect. 2. That section is concluded with a number of
remarks (see Sect. 2.3), including a discussion of the recent paper [10]. The proofs
are given in Sect. 3

In what follows C will denote a generic constant which may be different at each of its
appearances. Also, for any sequences an and bn , we write an ∼bn if limn→∞an/bn =1.
Further, recall that �(n) is a slowly varying function, possibly different at each place
it appears. Moreover, f (k) denotes the kth order derivative of f .

2 Statement of results and discussion

For discussing our results, we introduce some notation.
Let p be a positive integer and put

Sn,p(x) =
n∑

i=1

(1{Xi ≤x} − F(x))+
p∑

r=1

(−1)r−1 F (r)(x)Yn,r
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Quantiles and LRD 345

=:
n∑

i=1

(1{Xi ≤x} − F(x))+ Vn,p(x),

so that Sn,1(x) = nFn(x) + f (x)
∑n

i=1 Xi , and Sn,0(x) = nFn(x). Setting Ui =
F(Xi ) and x = Q(y) in the definition of Sn,p(·), we arrive at its uniform version,

S̃n,p(y) =
n∑

i=1

(1{Ui ≤y} − y)+
p∑

r=1

(−1)r−1 F (r)(Q(y))Yn,r

=:
n∑

i=1

(1{Ui ≤y} − y)− Ṽn,p(y). (20)

Recall that

Rn(y) = αn(y)− f (Q(y))qn(y), y ∈ (0, 1),

is the Bahadur–Kiefer process and

R̃n(y) = αn(y)− un(y), y ∈ (0, 1),

is the uniform Bahadur–Kiefer process.
We shall consider the following assumptions on the distribution function F .

(A(p)) The functions ( f (r−1) ◦ Q)(1)(y), r = 1, . . . , p, are uniformly bounded. The
integer p will be chosen appropriately in the sequel.

(B) The function ( f ◦ Q)(2)(y) is uniformly bounded.
(C(p)) For r = 0, . . . , p − 1,

sup
y∈(0,1)

f (r+1)(Q(y))

f (Q(y))
(y(1 − y))1/2 = O(1).

2.1 Strong approximations

Let

an = σn,1n−1 log log n = n−(β− 1
2 )L0(n) log log n,

bn = σ 2
n,1n−1an(log log n)1/2 = n−(3β− 5

2 )L3
0(n)(log log n)3/2,

cn = σ−1
n,1bn(log n)1/2 = n−(2β−1)L2

0(n)(log log n)3/2(log n)1/2,

dn,p =
{

n−(1−β)L−1
0 (n)(log n)5/2(log log n)3/4, (p + 1)(2β − 1) > 1

n−p(β− 1
2 )L p

0 (n)(log n)1/2(log log n)3/4, (p + 1)(2β − 1) < 1
,

bn,p = σ 2
n,1n−1dn,p(log log n)1/2,

and

δn = n−(2β−1)L2
0(n)(log log n).
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346 M. Csörgő, R. Kulik

2.1.1 Reduction principles for the uniform quantile process

First, we deal with reduction principles for quantiles. Ho and Hsing [14, p. 1003]
asked, whether there was an expansion for the quantile process which mirrors that in
their Theorem 2.1 for the empirical process. We have the following result.

Theorem 2.1 Assume (B), and either (A(1)) or (A(2)) according to β ≥ 3/4 or
β < 3/4. Then, under the conditions of Theorem 1.1, as n → ∞, we have,

sup
y∈(0,1)

∣∣∣∣∣un(y)+ σ−1
n,1 f (Q(y))

n∑

i=1

Xi

∣∣∣∣∣ =
{

Oa.s.(dn,1), if β ≥ 3/4,
Oa.s.(an), if β < 3/4.

(21)

If β < 3
4 , the bound is is optimal.

To remove assumptions (A) and (B) we shall consider a (possibly) weighted
approximation of the uniform quantiles. Define ψ1(y) in the following way. If β < 3

4 ,

then ψ1(y) = 1 if (C(2)) holds, and ψ1(y) = (y(1 − y))γ− 1
2 +µ, µ > 0 otherwise. If

β ≥ 3
4 , ψ1(y) = (y(1 − y))γ+µ.

Theorem 2.2 Let p = 2. Then, under the conditions of Theorem 1.1, as n → ∞, we
have,

sup
y∈(0,1)

ψ1(y)

∣∣∣∣∣un(y)+ σ−1
n,1 f (Q(y))

n∑

i=1

Xi

∣∣∣∣∣ =
{

Oa.s.(dn,1), if β ≥ 3/4,
Oa.s.(an), if β < 3/4.

(22)

If β < 3
4 , the bound is optimal.

From Theorems 2.1 or 2.2 and Lemma 3.6 below we have the following reduction
principle for quantiles, which mirrors that for the empirical process. In order to state
the result, redefine ψ1 to be 1 if, for a given p, (A(p)) holds, and be it as before
otherwise. The result is stated for β < 3

4 , only in order to avoid the additional term
coming from dn,1.

Corollary 2.3 β < 3
4 . Let p ≥ 1 be an arbitrary integer such that p < (2β − 1)−1.

Assume that either (A(p)) and (B), or (C(p)) hold. Under the conditions of Theorem 1.1,
as n → ∞,

sup
y∈(0,1)

σ−1
n,pψ1(y)|y − Un(y)+ n−1Ṽn,p(y)|

= Oa.s.(n
−(2β−p 2β−1

2 )L2−p
0 (n) log log n(log n)1/2).

2.1.2 Approximations of the uniform Bahadur–Kiefer process

Similarly to the uniform quantile process, in Theorem 2.4 we obtain strong approxima-
tion of the uniform Bahadur–Kiefer process on the whole interval (0, 1) on assuming
(A) and (B).
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Theorem 2.4 Assume (B), and either (A(2)) or (A(3)) according to β ≥ 2/3 or
β < 2/3. Under the conditions of Theorem 1.1, as n → ∞,

sup
y∈(0,1)

∣∣∣∣∣∣
R̃n(y)− n−1σ−1

n,1 f (1)(Q(y))

(
n∑

i=1

Xi

)2
∣∣∣∣∣∣
=

{
Oa.s.(dn,2), if β ≥ 2/3,
Oa.s.(cn), if β < 2/3.

(23)

To remove assumptions (A) and (B), we shall consider a weighted approximation of
the uniform quantile and Bahadur–Kiefer processes. Define for arbitrary µ > 0,

ψ2(y) =

⎧
⎪⎪⎨

⎪⎪⎩

(y(1 − y))1+µ, if β < 3
4 and (C(3));

(y(1 − y))1+µ, if β < 3
4 , γ <

3
2 and not(C(3));

(y(1 − y))γ− 1
2 +µ if β < 3

4 and γ ≥ 3
2 ;

(y(1 − y))γ+µ, if β ≥ 3
4 .

Theorem 2.5 Under the conditions of Theorem 1.1, as n → ∞,

sup
y∈(0,1)

ψ2(y)

∣∣∣∣∣∣
R̃n(y)− n−1σ−1

n,1 f (1)(Q(y))

(
n∑

i=1

Xi

)2
∣∣∣∣∣∣
=

{
Oa.s.(dn,2), if β ≥ 2/3,
Oa.s.(cn), if β < 2/3.

.

From Theorem 2.4 or 2.5 and Lemma 3.6 below, we obtain the reduction principle
for the distance between the uniform empirical and the uniform quantile processes,
similar to that of Corollary 2.3. Further, an immediate corollary to Theorem 2.4, via
the LIL for partial sums

∑n
i=1 Xi (see (32) below), is the following result.

Corollary 2.6 Under the conditions of Theorem 2.4, if β < 3
4 ,

lim sup
n→∞

σ−1
n,1n(log log n)−1 sup

y∈(0,1)
|R̃n(y)| a.s.= c(β, 1) sup

y∈(0,1)
| f (1)(Q(y))|, (24)

where c2(β, p) = (∫ ∞
0 x−β(1 + x)−βdx

)
(1 − β)−1(3 − 2β)−1.

Corollary 2.7 Under the conditions of Theorem 2.4, if β < 3
4 ,

σ−1
n,1n R̃n(y)⇒ f (1)(Q(y))Z2.

The corresponding results can also be stated in the setting of Theorem 2.5.

2.1.3 Approximation of the general Bahadur–Kiefer process

As for the general Bahadur–Kiefer process, a typical approach in the i.i.d. case is to
approximate the normalized quantiles f (Q(y))qn(y) via the uniform quantiles and
then use this to generalize all results valid in the uniform case to the general one, as
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348 M. Csörgő, R. Kulik

described in the Introduction [cf. (12), (13)]. This approach was also followed in [10,
Sect. 4] as well. However, this cannot work in the LRD case, for then the uniform
and general Bahadur–Kiefer processes have different limits [cf. (17), (19)]. Moreover,
assumptions (A) and (B) do not help in this case.

With arbitrary µ > 0, define

ψ3(y) =
⎧
⎨

⎩

(y(1 − y))1+µ, if β < 3
4 and (C(3));

(y(1 − y))2γ−1+µ, if β < 3
4 , and not (C(3));

(y(1 − y))2+2γ+µ, if β ≥ 3
4 .

We have the following result.

Theorem 2.8 Under the conditions of Theorem 1.1 we have with some C0 > 0, as
n → ∞,

sup
y∈(C0δn ,1−C0δn)

ψ3(y)

∣∣∣∣∣∣
Rn(y)− n−1σ−1

n,1
f (1)(Q(y))

2

(
n∑

i=1

Xi

)2
∣∣∣∣∣∣

(25)

=
{

Oa.s.(dn,2), if β ≥ 2/3,
Oa.s.(cn), if β < 2/3.

.

If γ = 1 then the above estimate is valid on (0, 1).

The (weighted) almost sure behavior of Rn(·) and (weighted) convergence can be
obtained in the same way as that of R̃n(·) in Corollaries 2.6 and 2.7.

2.2 Weak behavior of the general quantile process and its consequences

Ho and Hsing’s result (14) would suggest that it should be possible to approximate
qn(y) at least on the expanding intevals, (n−1, 1 − n−1). However, as we will explain
below, this is not the case.

Let ψ4(y) = 1 or y(1 − y) according to β < 3
4 or β ≥ 3

4 , respectively.

Proposition 2.9 Assume (CsR1)–(CsR4). Then

sup
y∈(0,1)

ψ4(y)| f (Q(y))qn(y)− un(y)| = Oa

(
σn,1n−1�(n)

)
, (26)

where Oa = Oa.s. if γ = 1, and Oa = OP if γ > 1.

Corollary 2.10 Assume (CsR1)–(CsR4). Then, under the conditions of either
Theorem 2.1 or 2.2, as n → ∞,

sup
y∈(0,1)

ψ1(y) f (Q(y))

∣∣∣∣∣qn(y)+ σ−1
n,1

n∑

i=1

Xi

∣∣∣∣∣ = OP

(
n−(β− 1

2 )�(n)
)
.
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Corollary 2.11 Assume (CsR1) – (CsR4). Then, under the conditions of either
Theorem 2.1 or 2.2, as n → ∞,

sup
y∈(n−1,1−n−1)

(y(1 − y))ν
∣∣∣∣∣qn(y)+ σ−1

n,1

n∑

i=1

Xi

∣∣∣∣∣ = oP (1),

where

ν > γ − (β − 1
2 ), if β < 3

4 and either (A(2)) or (C(2));
ν > 2γ − β, if β < 3

4 and neither (A(2)) nor (C(2));
ν > 2γ − (β − 1

2 ), if β ≥ 3
4 .

From this result one obtains the following simultaneous confidence bounds, which
cover all the data available for y ∈ (n−1, 1 − n−1),

Qn(y)− σn,1n−1cνzα(y(1 − y))−ν ≤ Q(y) ≤ Qn(y)+ σn,1n−1cνzα(y(1 − y))−ν,

where zα is the (1 − α/2)-quantile of the standard normal law, and

cν = sup
y∈(0,1)

(y(1 − y))ν .

Another consequence of Corollary 2.10 is that for some kn = kn(γ, β) → 0, as
n → ∞,

sup
y∈(kn ,1−kn)

∣∣∣∣∣qn(y)+ σ−1
n,1

n∑

i=1

Xi

∣∣∣∣∣ = oP (1),

and thus

qn(y)1{y∈(kn ,1−kn)}⇒Z . (27)

Optimally, one would hope to obtain weak convergence on (n−1, 1 − n−1), but
this is not a good way to treat quantiles in the LRD case at all. To see this, recall
the subordinated Gaussian model Yn = G(Xn). Take G = F−1�. For the uniform
sample quantile process un(y) associated with the sequence {Yn, n ≥ 1} one obtains
in the spirit of [10, Proposition 2.2] (see [6] for a correct proof)

sup
y∈(0,1)

∣∣∣∣∣un(y)+ σ−1
n,1φ(�

−1(y))
n∑

i=1

Xi

∣∣∣∣∣ = OP

(
n−(β− 1

2 )�(n)
)
. (28)

Moreover, from [10, Proposition 4.2], if the distribution F of Y = G(X) fulfills
(CsR1) – (CsR3), then for some k′

n → 0,
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sup
y∈(k′

n ,1−k′
n)

∣∣∣∣∣ f (Q(y))qn(y)+ σ−1
n,1φ(�

−1(y))
n∑

i=1

Xi

∣∣∣∣∣ = OP

(
n−(β− 1

2 )�(n)
)
, (29)

where qn(y) is the general quantile process associated with Yn . Thus,

qn(y)1{y∈(k′
n ,1−k′

n)}⇒
φ(�−1(y))

f (Q(y))
Z , (30)

provided φ(�−1(y))
f (Q(y)) is uniformly bounded. In particular, if f is exponential, then this

is not the case. Consequently, we may have two LRD models, both with the same
covariance structure, both with the same exponential marginals, say, so that in case of
(1) the general quantile process converges, while in the subordinated Gaussian case
it does not converge [cf. (27) and (30), respectively)]. On the other hand, in both
cases, the empirical processes have normal limits sclaed by a deterministc function. In
other words, subordination can completely change convergence properties of quantile
processes, even if the empirical processes behave in the same way in the subordinated
and non-subordinated cases. The weight function (y(1 − y))ν solves this problem
somehow.

2.2.1 Trimmed means

In the model (1), assume that Xi are symmetric. From (27) one easily obtains

σ−1
n,1

∣∣∣∣∣∣

[n(1−kn)]∑

i=[nkn ]
Xi

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

1−kn∫

kn

qn(y)dy

∣∣∣∣∣∣∣

d→ |Z |.

On the other hand, since EX1 = 0,
∣∣∣
∫ 1

0 qn(y)dy
∣∣∣ = σ−1

n,1

∣∣∑n
i=1 Xi

∣∣ d→ |Z |. If kn <

ln → 0 then the result remains true by considering weak convergence in (27) on
(ln, 1 − ln) and then arguing as in the case of kn . Summarizing,

Corollary 2.12 Assume (CsR1)–(CsR4) and that Xi are symmetric. Let kn ≤ ln → 0.
Then, under the conditions of either Theorem 2.1 or 2.2,

σ−1
n,1

[n(1−ln)]∑

i=[nln ]
Xi

d→ Z . (31)

The result (31) states essentially that, whatever trimming we consider, the deleted part
is negligible.

However, it should be mentioned that this approach to the trimmed sums is not the
optimal one. The problem is considered in more details in [18] and [19] via studying
integral functionals of the empirical process (see e.g. [4] for the description of the
method in the i.i.d case).
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2.3 Remarks

We start with pointing out some phenomena which are exclusive for LRD sequences.

Remark 2.13 As mentioned in the Introduction, it was observed explicitly in [10] and
can be concluded from [25] that the uniform Bahadur–Kiefer process (in case of [10])
and, under appropriate conditions, the general Bahadur–Kiefer process [25] converge
in D([y0, y1]) for a particualt choice of the parameter β. From our results we conclude
that both processes converge weakly in D([0, 1]) if β < 3

4 . This is striking difference
compared to the i.i.d. case, for in the latter case these processes cannot converge weakly
(cf. [15,16]). Considering pointwise convergence, in the i.i.d. case the uniform and
the general Bahadur–Kiefer processes converge to the same limit (cf. [9] for a review).
Here, the pointwise limits are different, on account of different weak limits.

Remark 2.14 Unlike in the i.i.d case, to study the distance between the uniform
empirical and the uniform quantile processes, we need to control the general quantile
process, which can be done via controlling the quantile and density quantile functions
associated with Xi . The reason for this is that the uniform quantile process contains
information regarding the marginal behavior of random variables Xi . This is visible
from Theorems 2.1 and 2.2, the uniform quantile process depends on the density-
quantile function f (Q(y)) associated with X1. As can be seen in (28), this remains
true in the subordinated case Yi = G(Xi ) as well, namely the uniform quantile process
contains information about the marginals of Xi , not of Yi . This has a impact on the
behavior of general quantiles, as described in Sect. 2.2.

We continue with some technical remarks concerning assumptions and results
above.

Remark 2.15 We comment on the different rates in our theorems, according to dif-
ferent choices of β.

If p = 1 then an = o(dn,1), if p = 2 (so that β < 3/4), then dn,2 = o(an), and then
optimal rates are attained in Theorems 2.1 and 2.2. Taking higher order expansions
(p ≥ 3) does not improve rates and requires additional restrictions on β and conditions
conditions on F , either (A(p)) or (C(p)).

Likewise, if p = 1, 2, then cn = o(dn,p). If p = 3 (β < 2
3 ), then dn,3 = o(cn). Then

we can identify (but not prove !!) optimal rates in Theorems 2.4, 2.5. We conjecture,
that the bound in Theorem 2.4 (at least for β < 2

3 ) is valid without the (log n)1/2 term
due to the following conjecture.

Conjecture 1 For any p ≥ 1,

lim sup
n→∞

σ−1
n,p(log log n)−p/2Yn,p

a.s.= c(β, p),

where c(β, p) is as in Corollary 2.6.
Further, on comparing Theorem 2.8 with (15) we can see that the method in [25]

leads to better rates for β close to 1. We loose some rates for β close to 1, since then
the error in the reduction principle dominates. On the other hand, Wu’s method is
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unlikely to work when one wants to deal with approximations on the whole interval
(0, 1), which was our main goal. In fact, in view of a weighted law of the iterated
logarithm (see Lemma 3.10), it is not likely that in the case β ≥ 3

4 the estimates on
(0, 1) can be obtained with optimal rates, unless the rate dn,p is improved.

Remark 2.16 Wu in his paper [24] has in fact some weaker conditions on Fε , than
those stated in Theorem 1.1. Also, here, we avoid the boundary case (p+1)(2β−1)=1.
Furthermore, under stronger regularity conditions on the distribution of ε1, the
reduction principle (with worse rates) for the empirical process remains true pro-
vided E|ε|2+δ < ∞, δ > 0 (see [12]). Thus, some of the results here remain valid
under the Giraitis and Surgailis conditions in [12]. However, to prove Theorems 2.2
and 2.5 we require Lemma 3.9 below, where the rates in the reduction principle fo
Theorem 1.1 are crucial.

Remark 2.17 We comment on assumptions (A(p)), (B) and (C(p)) on the distribution
function F . Note that −( f ◦ Q)(1)(y) = J (y) is the so-called score function (cf.
e.g. [2, p. 7]), thus (A(1)) requires uniform boundness of the latter. This is not valid
if one takes the standard normal distribution for example. The assumptions (A(p)),
p ≥ 1 are fulfilled if one takes the exponential, logistic, or Pareto distribution f (x) =
α(x1+α)−1, x > 1, α > 0. Assumption (B) is fulfilled if one takes exponential,
logistic, or Pareto with α > 1. The latter constrain α > 1 is relevant, since in view of
Theorem 1.1 we work under the condition Eε4 < ∞ and, consequently, EX4 < ∞.
Further, (C(p)), p ≥ 1, is fulfilled in the Pareto case and for the standard normal case.
Thus, essentially, most of the “practical” parametric families fulfill either (A(p)) or
(C(p)).

Further, in the LRD case (1) it is very unlikely that f has bounded support (from
either side). Moreover, to use of Theorem 1.1, we need Eε = 0 and fε = F

′
ε to be

smooth. Consequently, the same properties are transferred to X and its density f .
Therefore, to make use Theorem 1.1 and assumptions (A(p)) and (B) simultaneously,
we should consider the above comments for double exponential or symmetric Pareto,
appropriately smoothed around the origin. Nevertheless, the main issue of assumptions
(A(p)), (B) and (C(p)) is the tail behavior.

Remark 2.18 As for the general quantile and the general Bahadur–Kiefer processes,
in order to obtain their approximations on the whole interval, we assumed the monoto-
nicity property (CsR4). In principe, as in the i.i.d case, (cf. [3]), it should be possible to
obtain their approximations on the “practical” interval (n−1, 1−n−1)without (CsR4).

Remark 2.19 We now discuss the weights which appear in our theorems. As mentioned
in Remark 2.14, the LRD sequences based uniform quantile process “feels” the general
quantile function. In the i.i.d. case one knows that for µ > 0

lim sup
n→∞

sup
y∈(0,1)

(y(1 − y))µ|Q(y)− Qiid
n (y)| < ∞

almost surely if and only if
∫ ∞
−∞ |u|1/µd F(u) < ∞ (see [2, p. 98] for a tribute to

David Mason in this regard). Therefore, our weight functions (y(1 − y))κ , with some
κ > 0, appear to be natural to use.
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We also note that instead of the weight (y(1 − y))1+κ , κ > 0, we may consider
f κ

′
(Q(y)) as a weight function, where κ ′ depends on both κ and γ .

Remark 2.20 In Theorem 2.8, in case γ > 1, the approximation in probability remains
valid on (0, 1) (see also Proposition 2.9). We are not able to do this almost surely, since
we do not have a precise knowledge about the LRD behavior of order statistics (see
the proof of Proposition 2.9).

Remark 2.21 The bound in Theorem 2.1 is determined by the behavior of the Bahadur–
Kiefer process R̃n(y) [compare Theorem 2.1 with (24)]. This is somehow similar to the
i.i.d. case. One knows that on an appropriate probability space, supy∈(0,1) |αiid

n (y)−
Bn(y)| = Oa.s.(n−1/2 log n), where Bn(·) are appropriate Brownian bridges. Further,
via (10) we can see that with the same Brownian bridges we have supy∈(0,1) |uiid

n (y)−
Bn(y)| = Oa.s.(n−1/4(log n)1/2(log log n)1/4). We may for example refer to [8] and
[9] for more details.

Remark 2.22 Recall, from Sect. 2.2, our lines the subordinated Gaussian case Y =
G(X). We have J1(y) = −φ(�−1(y)), where φ, � are the standard normal density
and distribution function. Csörgő, Szyszkowicz and Wang in [10] proved their Propo-
sition 2.2 assuming (cf. also their Remark 2.1) their Assumption A. However, what
is really used in their proof is that J1 has, in particular, uniformly bounded first order
derivative, which is not true, since J ′

1(y) = −�−1(y). Consequently, their Proposition
2.2 and all its consequences in their Sects. 2.1 and 2.2 are valid only if one restricts
them to intervals [y0, y1], or assumes that Y = G(X) has finite support. This actually
is the reason that we considered assumptions (A(p)), (B) and/or weighted approxima-
tions. Clearly, the non-subordinated Gaussian case can be treated as in the setting of
Theorems 2.2, 2.5 and 2.8 with γ = 1 (recall that (C(p)) holds in the Gaussian case).
For the general treatment we refer to [6].

Also, as noted already in our Sect. 2.1.3, results for the general Bahadur–Kiefer
process cannot be concluded from an approximation of the latter by the uniform one.
Hence, the proposed proofs for Theorems 4.1, 4.2 of [10] via the invariance principle
of Proposition 4.2 cannot work and, in view of [25], the claimed limiting processes
can at best be correct if multiplied by 1/2.

In Sect. 3 of [10] the authors consider Vn(t) = 2σ−1
n,1n

∫ t
0 R̃n(y)dy and Qn(t) =

Vn(t)−α2
n(t), the so-called uniform Vervaat and Vervaat Error processes. As a conse-

quence of our comments so far on paper [10], we note that the results in this section are
valid only if G(X) has finite support. An extension is possible if one has assumptions
like (A(p)) and (B). This, however, is out of the scope of this paper.

3 Proofs

3.1 Preliminary results

We recall the following law of the iterated logarithm for partial sums
∑n

i=1 Xi (see,
e.g., [23]):
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lim sup
n→∞

σ−1
n,1(log log n)−1/2

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣
a.s.= c(β, 1), (32)

where c(β, 1) is defined in Corollary 2.6.

Lemma 3.1 Let p ≥ 1 be an arbitrary integer such that p < (2β − 1)−1. Then, as
n → ∞,

Yn,p = Oa.s.(σn,p(log n)1/2 log log n). (33)

Proof Let B2
n = σ 2

n,p log n(log log n)2. By (2), [25, Lemma 4] and Karamata’s
Theorem we have

∥∥∥∥
|Yn,p|
B2d

∥∥∥∥
2

2
≤ 1

B2d

⎛

⎝
d∑

j=0

2(d− j)/2σ2 j ,p

⎞

⎠
2

≤ 2d

B2d

⎛

⎝
d∑

j=0

2 j (1−p(2β−1))/2 L p
0 (2

j )

⎞

⎠
2

∼ 2d

B2d
22d−dp(2β−1)L2p

0 (2
d) ∼ d−1(log d)−2.

Therefore, the result follows by the Borel–Cantelli lemma. ��
As an easy consequence of (32) and (33) we obtain the next result.

Lemma 3.2 Let p ≥ 1 be an arbitrary integer such that p < (2β − 1)−1. We have

lim sup
n→∞

σ−1
n,1(log log n)−1/2 sup

y∈(0,1)
|Ṽn,p(y)| a.s.= c(β, 1). (34)

Using Theorem 1.1 and the same argument as in the proof of Lemma 3.1, we obtain

σ−1
n,p sup

x∈R

|Sn,p(x)|

=
{

Oa.s.(n−( 1
2 −p(β− 1

2 ))L−p
0 (n)(log n)5/2(log log n)3/4), (p + 1)(2β − 1) > 1

Oa.s.(n−(β− 1
2 )L0(n)(log n)1/2(log log n)3/4), (p + 1)(2β − 1) < 1.

Since (see (2))

σn,p

σn,1
∼ n−(β− 1

2 )(p−1)L p−1
0 (n), (35)

we obtain

sup
x∈R

|βn(x)+ σ−1
n,1 Vn,p(x)|

= σn,p

σn,1
sup
x∈R

∣∣∣∣∣σ
−1
n,p

n∑

i=1

(1{Xi ≤x} − F(x))+ σ−1
n,pVn,p(x)

∣∣∣∣∣ = oa.s.(dn,p).
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Consequently, via {αn(y), y ∈ (0, 1)} = {βn(Q(y)), y ∈ (0, 1)},

sup
y∈(0,1)

|αn(y)+ σ−1
n,1 Ṽn,p(y)| = Oa.s.(dn,p). (36)

Remark 3.3 For convenient reference, we collect here various relations between
constants. Recall that dn,2 = o(an) provided β < 3

4 , and dn,3 = o(cn), provided
β < 2

3 . Further, σ−1
n,1bn,p = o(dn,p). It is not necessarily true that σ−1

n,1 = o(dn,p), but

it is always true that σ−1
n,1 = o(an).

3.2 Proof of Theorems 2.1 and 2.4

First, we bound the distance between the uniform empirical and uniform quantile
processes.

Lemma 3.4 Let p ≥ 1 be an arbitrary integer such that p < (2β − 1)−1. Assume
(A(p)). Under the conditions of Theorem 1.1 we have, as n → ∞,

sup
y∈(0,1)

|un(y)− αn(y)| = Oa.s.(an)+ Oa.s.(dn,p).

Proof Note that

un(y) = σ−1
n,1n(En(Un(y))− Un(y))− σ−1

n,1n(En(Un(y))− y)

= σ−1
n,1n(En(Un(y))− Un(y))+ Oa.s.(σ

−1
n,1) = αn(Un(y))+ O(σ−1

n,1). (37)

Thus, by (36),

sup
y∈(0,1)

|un(y)− αn(y)|

= sup
y∈(0,1)

|αn(Un(y))− αn(y)| + Oa.s.(σ
−1
n,1)

≤ σ−1
n,1 sup

y∈(0,1)
|Ṽn,p(y)− Ṽn,p(Un(y))| + Oa.s.(σ

−1
n,1)+ Oa.s.(dn,p). (38)

Accordingly, in view of Assumptions (A(p)), (B), we have to control

sup
y∈(0,1)

| f (Q(y))− f (Q(Un(y)))|
∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ ≤ C sup
y∈(0,1)

|y − Un(y)|
∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ (39)
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and

sup
y∈(0,1)

p∑

r=2

∣∣∣ f (r−1)(Q(y))− f (r−1)(Q(Un(y)))
∣∣∣ |Yn,r |

≤ C sup
y∈(0,1)

|y − Un(y)|
∣∣∣∣∣

p∑

r=2

Yn,r

∣∣∣∣∣ . (40)

From (34) and (36) one obtains

lim sup
n→∞

(log log n)1/2 sup
y∈(0,1)

|αn(y)| a.s.= c(β, 1).

Consequently, as n → ∞,

sup
y∈(0,1)

|y − Un(y)| = sup
y∈(0,1)

σn,1n−1|un(y)| = sup
y∈(0,1)

σn,1n−1|αn(y)|

= Oa.s.(σn,1n−1(log log n)1/2) = Oa.s.(an). (41)

Therefore, on combining (32), (39), (41), as n → ∞, one obtains

sup
y∈(0,1)

σ−1
n,1 | f (Q(y))− f (Q(Un(y)))|

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ = Oa.s.(an). (42)

Having (33), (40) and (42), as n → ∞, we conclude

sup
y∈(0,1)

σ−1
n,1 |Ṽn,p(y)− Ṽn,p(Un(y))| = Oa.s.(an). (43)

Thus, by (38) and (43), as n → ∞,

sup
y∈(0,1)

|un(y)− αn(y)| = Oa.s.(an)+ O(σ−1
n,1)+ Oa.s.(dn,p),

and hence the result follows. ��

If β ≥ 3/4, take p = 1 and assume (A(1)). If β < 3/4, take p = 2 and assume
(A(2)). As a consequence of Lemma 3.4, (33), (36) and Remark 3.3 we obtain (21).

3.2.1 Proof of Theorem 2.4

In Lemma 3.4 we have a bound on the distance between the uniform empirical and
the uniform quantile processes, but it does not say anything about its optimality.
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To obtain this note, that for any 1 ≤ p < (2β − 1)−1 we have by (36) and as in (37)

sup
y∈(0,1)

∣∣∣αn(y)− un(y)+ σ−1
n,1(Ṽn,p(y)− Ṽn,p(Un(y)))

∣∣∣

≤ sup
y∈(0,1)

∣∣∣αn(y)− αn(Un(y))+ σ−1
n,1(Ṽn,p(y)− Ṽn,p(Un(y)))

∣∣∣

+ sup
y∈(0,1)

|αn(Un(y))− un(y)| = Oa.s.(dn,p)+ Oa.s.(σ
−1
n,1). (44)

Now, it is sufficient to deal with the process (Ṽn,p(y)− Ṽn,p(Un(y))). We approximate
this process via several lemmas.

Lemma 3.5 Let p ≥ 1 be an arbitrary integer such that p < (2β − 1)−1. Assume
(A(p)) and (B). Under the conditions of Theorem 1.1 we have as n → ∞,

sup
y∈(0,1)

∣∣∣∣∣Ṽn,1(y)− Ṽn,1(Un(y))+ f (1)(Q(y))

f (Q(y))

Ṽn,p(y)

n

n∑

i=1

Xi

∣∣∣∣∣

= Oa.s.(bn)+ Oa.s.(bn,p).

Proof Applying second order Taylor expansion and recalling that ( f ◦ Q)(1)(y) =
f (1)(Q(y))

f (Q(y)) , one obtains

sup
y∈(0,1)

∣∣∣∣∣( f (Q(y))− f (Q(Un(y))))
n∑

i=1

Xi + n−1 f (1)(Q(y))

f (Q(y))
Ṽn,p(y)

n∑

i=1

Xi

∣∣∣∣∣

≤ sup
y∈(0,1)

∣∣∣∣∣
f (1)(Q(y))

f (Q(y))
σn,1n−1

n∑

i=1

Xi

(
un(y)+ σ−1

n,1 Ṽn,p(y)
)∣∣∣∣∣

+ sup
y∈(0,1)

|( f ◦ Q)(2)(y)| sup
y∈(0,1)

(y − Un(y))
2

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

= Oa.s.(σn,1n−1anσn,1(log log n)1/2)+ Oa.s.(σn,1n−1dn,pσn,1(log log n)1/2)

+Oa.s.(σ
3
n,1n−2(log log n)3/2) = Oa.s.(bn)+ Oa.s.(bn,p).

The above bound follows from (32), (36), (41) and (21) Theorem 2.1. ��

Lemma 3.6 Let p ≥ 1 be an arbitrary integer such that p < (2β − 1)−1. Assume
(A(p)) and (B). Under the conditions of Theorem 1.1 we have as n → ∞,

sup
y∈(0,1)

n−1 f (1)(Q(y))

f (Q(y))
|Ṽn,p(y)− Ṽn,1(y)|

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ = Oa.s.(bn(log n)1/2).
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Proof We have

sup
y∈(0,1)

n−1
∣∣∣Ṽn,p(y)− Ṽn,1(y)

∣∣∣

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

≤ sup
y∈(0,1)

| f (1)(Q(y))|n−1|Yn,2|
∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ + Oa.s.

(
n−1

∣∣∣∣∣

p∑

r=3

Yn,r

∣∣∣∣∣

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

)
.

Using (32), (33), we obtain the result. ��

Similarly to Lemma 3.6, the next result holds true as well.

Lemma 3.7 Let p ≥ 1 be an arbitrary integer such that p < (2β − 1)−1. Assume
(A(p)) and (B). Under the conditions of Theorem 1.1 we have as n → ∞,

sup
y∈(0,1)

|Ṽn,1(y)− Ṽn,1(Un(y))− (Ṽn,p(y)− Ṽn,p(Un(y)))| = Oa.s.(bn(log n)1/2).

From Lemmas 3.5, 3.6, 3.7 we obtain

Corollary 3.8 Let p ≥ 1 be an arbitrary integer such that p < (2β − 1)−1. Assume
(A(p)) and (B). Under the conditions of Theorem 1.1 we have as n → ∞,

sup
y∈(0,1)

∣∣∣∣∣Ṽn,p(y)− Ṽn,p(Un(y))+ n−1 f (1)(Q(y))

f (Q(y))
Ṽn,1(y)

n∑

i=1

Xi

∣∣∣∣∣

= Oa.s.(bn(log n)1/2)+ Oas(bn,p).

Recall that R̃n(y) = αn(y)− un(y). Then, by (44),

sup
y∈(0,1)

|R̃n(y)+ σ−1
n,1(Ṽn,p(y)− Ṽn,p(Un(y)))| = Oa.s.(dn,p)+ Oa.s.(σ

−1
n,1).

Consequently, via Corollary 3.8,

sup
y∈(0,1)

∣∣∣∣∣R̃n(y)− n−1σ−1
n,1

f (1)(Q(y))

f (Q(y))
Ṽn,1(y)

n∑

i=1

Xi

∣∣∣∣∣

= Oa.s.(dn,p)+ Oa.s.(σ
−1
n,1bn(log n)1/2)+ Oa.s.(σ

−1
n,1bn,p)+ Oa.s.(σ

−1
n,1)

= Oa.s.(dn,p)+ Oa.s.(cn)+ Oa.s.(σ
−1
n,1).

If β ≥ 2/3, then the bound is Oa.s.(dn,2) on assuming (A(2)). If β < 2/3, taking
p = 3, via Remark 3.3, we obtain the statement (22) of Theorem 2.4.
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3.3 Proof of the optimality in Theorem 2.1

If β < 3
4 , then the dominating term in Theorem 2.1 is Oa.s.(an).

Fix y = y0. Via (36) and as in (24) we obtain

lim sup
n→∞

σ−1
n,1n(log log n)−1

∣∣∣∣∣un(y0)+ σ−1
n,1 f (y0)

n∑

i=1

Xi

∣∣∣∣∣

= lim sup
n→∞

n(σn,1 log log n)−1|un(y0)− αn(y0)+ (αn(y0)+ σ−1
n,1 Ṽn,p(y0))|

= c(β, 1)| f (1)(Q(y0))|.

Therefore, via (21), for any y0 ∈ (0, 1),

c(β, 1)| f (1)(Q(y0))| ≤ lim sup
n→∞

n

σn,1 log log n
sup

y∈(0,1)

∣∣∣∣∣un(y)+ Ṽn,p(y)

σn,1

∣∣∣∣∣ = Oa.s.(1)

which means that the bound is optimal. ��

3.4 Proof of Theorems 2.2 and 2.5

3.4.1 Properties of the density-quantile function

Note that under an appropriate smoothness of f , (CsR3) is equivalent to

(CsR3(i)) f (Q(y)) ∼ yγ1 L1(y−1), as y ↓ 0,
(CsR3(ii)) f (Q(1 − y)) ∼ (1 − y)γ2 L2((1 − y)−1), as y ↑ 1,

for some numbers γ1, γ2 > 0 and some slowly varying functions L1, L2. The para-
meter γ in (CsR3) and γ1, γ2 are related as γ = γ1 ∧ γ2 (see [11]). Let γ0 = γ1 ∨ γ2.
Under (CsR3(i)) and (CsR3(ii)) we have for any µ > 0,

sup
y∈(0,1)

(y(1 − y))γ+µ

f (Q(y))
= O(1). (45)

Further, note that if 0 < γ1 < 1 (0 < γ2 < 1) then F has bounded support from the
left (from the right) (see [20]). Thus, we assume without loss of generality that both
γ1 and γ2 are not smaller than 1. In this case, for any ε > 0,

f (Q(y)) = O(y1−ε), y → 0. (46)

Note also, that (CsR3(i)) and (CsR3(ii)) together with γ0 > 1 imply that for any
µ > 0,

sup
y∈(0,1)

| f (1)(Q(y))|
f (Q(y))

(y(1 − y))µ = O(1). (47)
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Further, by [20, p. 116],

( f ◦ Q)(2)(y) ∼ κ
( f (1)(Q(y)))2

f 3(Q(y))
(48)

as y → 0. The parameter κ is positive if γ1 > 1 or κ = 0 if γ1 = 1. A similar
consideration applies to the upper tail.

3.4.2 Weighted law of the iterated logarithm

From (32), (36), (46) and δ−1/2
n dn,p = O(1) if p ≥ 2 (i.e. β < 3

4 ) one obtains

Lemma 3.9 Let β < 3
4 . Under the conditions of Theorem 1.1, as n → ∞,

sup
y∈(δn ,1−δn)

|αn(y)|
(y(1 − y))1/2

= Oa.s.((log log n)1/2).

Using now the same argument as in [7, Theorem 2], we obtain a corresponding result
for the linear LRD based uniform quantile process.

Lemma 3.10 Let β < 3
4 . Under the conditions of Theorem 1.1, with some C0 > 0,

as n → ∞,

sup
y∈(C0δn ,1−C0δn)

|un(y)|
(y(1 − y))1/2

= Oa.s.((log log n)1/2).

From Lemma 3.10, by the same argument as in [7, Theorem 3], as n → ∞,

sup
y∈(0,δn)

|un(y)| = Oa.s.(an), (49)

provided β < 3
4 . Further, via (32), (36) and (46), as n → ∞, we obtain for arbitrary

β ∈ (1/2, 1) and 1 ≤ p < (2β − 1)−1,

sup
y∈(0,δn)

|αn(y)| = Oa.s.(δ
1−ε
n (log log n)1/2)+ Oa.s.(dn,p) = Oa.s.(an)+ Oa.s.(dn,p).

Recall (41). Let θ = θn(y) be such that |θ− y| ≤ σn,1n−1|un(y)| = Oa.s.(n−(β− 1
2 )

L0(n)(log log n)1/2). Arguing as in [7, Theorem 3], uniformly for y ∈ (C0δn, 1 −
C0δn), as n → ∞,

y(1 − y)

θ(1 − θ)
= Oa.s.(1). (50)
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3.4.3 Proof of Theorem 2.2

First, we need estimates which will replace a part of the proof of Lemma 3.4. All
random variables θ below are as in (50).

Lemma 3.11 Let p ≥ 1 be an arbitrary integer such that p < (2β−1)−1 and assume
that (C(p)) is fulfilled. Under the conditions of Theorem 2.2, for any r = 0, . . . , p −1,
as n → ∞,

sup
y∈(C0δn ,1−C0δn)

ψ1(y)| f (r)(Q(y))− f (r)(Q(Un(y)))|

= Oa.s.

(
n

−
(
β− 1

2

)

L0(n)(log log n)1/2
)
.

Proof Let β < 3
4 . Take first ψ1(y) = (y(1 − y))γ− 1

2 +µ. Taking a first order Taylor
expansion and bearing in mind that f (r+1) are uniformly bounded, we have

ψ1(y)| f (r)(Q(y))− f (r)(Q(Un(y)))| = (θ(1 − θ))γ+µ

f (Q(θ))

×
(

y(1 − y)

θ(1 − θ)

)γ+µ |y − Un(y)|
(y(1 − y))1/2

.

Further, under the condition (C(p)),

| f (r)(Q(y))− f (r)(Q(Un(y)))|
= f (r+1)(Q(θ))

f (Q(θ))
(θ(1 − θ))1/2

(
y(1 − y)

θ(1 − θ)

)1/2 |y − Un(y)|
(y(1 − y))1/2

.

Thus, the result follows by Lemma 3.10, (45) and (50).
If β ≥ 3

4 , assume (C(1)). We use the appropriate form of ψ1, (45) and (50). ��
From Lemma 3.11, and exactly as in the proof of Lemma 3.4, as n → ∞,

sup
y∈(C0δn ,1−C0δn)

ψ1(y)|un(y)− αn(y)| = Oa.s.(an)+ Oa.s.(dn,p).

Consequently, by (49) and the comment below it, as n → ∞, we have for β < 3
4 and

p < (2β − 1)−1,

sup
y∈(0,1)

ψ1(y)|un(y)− αn(y)| = Oa.s.(an)+ Oa.s.(dn,p).

The same estimates are valid for β ≥ 3
4 , since in this case ψ1(y) = O(y). Conse-

quently, (22) follows. ��
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3.4.4 Proof of Theorem 2.5

First, we show that Lemma 3.5 remains valid when multiplying by ψ2(y).
From (47), Theorem 2.2 and estimating as in Lemma 3.5, as n → ∞, we conclude

sup
y∈(0,1)

(y(1 − y))ψ1(y)

∣∣∣∣∣
f (1)(Q(y))

f (Q(y))
σn,1n−1

n∑

i=1

Xi

(
un(y)+ σ−1

n,1 Ṽn,p(y)
)∣∣∣∣∣

= Oa.s.(bn)+ Oa.s.(cn). (51)

In view of (48), for the term in Lemma 3.5 involving ( f ◦ Q)(2)(y), we estimate

(y(1 − y))µ
(

f (1)(Q(θ))
)2

f 3(Q(θ))
(y − Un(y))

2

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

=
(

f (1)(Q(θ))

f 2(Q(θ))
θ(1−θ)

)2
f (Q(θ))

(θ(1 − θ))1−µ

(
y(1 − y)

θ(1−θ)
)1+µ

(y − Un(y))2

y(1 − y)

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

= Oa.s.(bn), (52)

uniformly for y ∈ (C0δn, 1 − C0δn), on account of (CsR3), (46), (50), Lemma 3.10
and (32). A similar argument yields the same bound for the right tail.

Further, as n → ∞,

sup
y∈(0,C0δn)

(y(1 − y))1+µ|Ṽn,1(y)− Ṽn,1(Un(y))|

≤ C0δ
1+µ
n sup

y∈(0,1)
f (Q(y))

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ = Oa.s.

(
δ1+µ

n σn,1(log log n)1/2
)

= oa.s.(bn). (53)

and by (47)

sup
y∈(0,C0δn)

(y(1 − y))1+µ
∣∣∣∣∣

f (1)(Q(y))

f (Q(y))

∣∣∣∣∣

∣∣∣∣∣n
−1Ṽn,p

n∑

i=1

Xi

∣∣∣∣∣

= δ
1+µ/2
n sup

y∈(0,C0δn)

(y(1 − y))µ/2
∣∣∣∣∣

f (1)(Q(y))

f (Q(y))

∣∣∣∣∣ Oa.s.

⎛

⎝
(

n∑

i=1

Xi

)2

/n

⎞

⎠

= Oa.s.

(
δ

1+µ/2
n σ 2

n,1n−1 log log n
)

= Oa.s.(bn). (54)

The same argument applies to the interval (1 − C0δn, 1). Consequently, by (51),
(52), (53), (54) and comparing (y(1 − y))1+µ with (y(1 − y))µψ1(y), the statement
of Lemma 3.5 remains true when multiplying by ψ2(y). The same holds true for
Lemmas 3.6, 3.7 and Corollary 3.8. Consequently, Theorem 2.5 is proven.
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The optimality of the bound in Theorem 2.2 follows from Theorem 2.5 in the same
way we proved optimality in Theorem 2.1. ��

3.5 Proof of Theorem 2.8

Let β < 3
4 . Applying a third order Taylor expansion to f (Q(y))qn(y), one has

∣∣∣∣∣un(y)− f (Q(y))qn(y)+ σn,1n−1 f (1)(Q(y))

2 f 2(Q(y))
u2

n(y)

∣∣∣∣∣

= σ 2
n,1n−2 f (Q(y))(y(1 − y))3/2

6
Q(3)(θ)σ−3

n,1n3 |y − Un(y)|3
(y(1 − y))3/2

.

We have

Q(3)(y) = f (2)(Q(y))

f 4(Q(y))
− 3

(
f (1)(Q(y))

)2

f 5(Q(y))
.

By the same argument as the one leading to (52), it suffices to control the second term.
We have

(y(1 − y))1/2 f (Q(y))

(
f (1)(Q(θ))

)2

f 5(Q(θ))
(y(1 − y))3/2

= f (Q(y))

f (Q(θ))

(
f (1)(Q(θ))

f 2(Q(θ))
θ(1 − θ)

)2 (
y(1 − y)

θ(1 − θ)

)2

.

Under (CsR3(i)), (CsR3(ii)), in view of [7, Lemma 1] one has

f (Q(y))

f (Q(θ))
≤

{
y ∨ θ
y ∧ θ × 1 − (y ∧ θ)

1 − (y ∨ θ)
}γ
. (55)

From this (41), (50) and Lemma 3.10, as n → ∞, one concludes

sup
y∈(C0δn ,1−C0δn)

(y(1 − y))1/2
∣∣∣∣∣un(y)− f (Q(y))qn(y)+ σn,1

n

× f (Q(y)) f (1)(Q(y))

2 f 3(Q(y))
u2

n(y)

∣∣∣∣∣ = Oa.s.

(
σ 2

n,1n−2(log log n)3/2
)
. (56)

Next, taking Taylor expansion for (Ṽn,1(y)− Ṽn,1(Un(y))), one obtains

σ−1
n,1(Ṽn,1(y)− Ṽn,1(Un(y)))

= σ−1
n,1

f (1)(Q(y))

f (Q(y))
(y − Un(y))

n∑

i=1

Xi + σ−1
n,1( f ◦ Q)(2)(θ)(y − Un(y))

2
n∑

i=1

Xi .
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Like in (52), as n → ∞,

sup
y∈(C0δn ,1−C0δn)

(y(1 − y))µσ−1
n,1( f ◦ Q)(2)(θ)(y − Un(y))

2

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

= Oa.s.

(
σ 2

n,1n−2(log log n)3/2
)
. (57)

If β ≥ 3
4 , (56) and (57) remain valid if one replaces the weight functions with

(y(1 − y))2.
Thus,

sup
y∈(C0δn ,1−C0δn)

ψ3(y)

∣∣∣∣∣∣
αn(y)− f (Q(y))qn(y)− σ−1

n,1n−1 f (1)(Q(y))

2

(
n∑

i=1

Xi

)2
∣∣∣∣∣∣

≤ left hand side of (56)

+ sup
y∈(C0δn ,1−C0δn)

ψ3(y)|R̃n(y)+ σ−1
n,1(Ṽn,1(y)− Ṽn,1(Un(y)))|

+ sup
y∈(C0δn ,1−C0δn)

ψ3(y)

∣∣∣∣∣∣
σ−1

n,1(Ṽn,1(y)− Ṽn,1(Un(y)))

+σn,1n−1 f (1)(Q(y))

2 f 2(Q(y))
u2

n(y)+ σ−1
n,1n−1 f (1)(Q(y))

2

(
n∑

i=1

Xi

)2
∣∣∣∣∣∣

= Oa.s.

(
σn,2n−2(log log n)3/2

)
+ Oa.s.(dn,p)+ Oa.s.

(
σ−1

n,1bn(log n)1/2
)

+σn,1n−1 sup
y∈(C0δn ,1−C0δn)

ψ3(y)

∣∣∣∣∣
f (1)(Q(y))

2

∣∣∣∣∣

∣∣∣∣∣
un(y)+ σ−1

n,1

∑n
i=1 Xi

f (Q(y))

∣∣∣∣∣

2

+Oa.s.

(
σ 2

n,1n−2(log log n)1/2
)

by (56), (57) and (44) together with Lemmas 3.7, 3.8. Moreover, by (CsR3) and via
Theorem 2.2 the bound is of the order Oa.s.(cn)+ Oa.s.(dn,p), as n → ∞.

Further, as n → ∞,

sup
y∈(0,C0δn)

ψ3(y)σ
−1
n,1n−1

(
n∑

i=1

Xi

)2

= Oa.s.(δ
1+µ
n σn,1n−1(log log n)) = Oa.s.(cn),

and supy∈(0,C0δn)
ψ3(y)|αn(y)| = Oa.s.(cn).

Next, having tail monotonicity assumption (CsR4) we may proceed as in [7]. Let
(k − 1)/n < y ≤ k/n. If Uk:n ≥ y, then

sup
y∈(0,C0δn)

ψ3(y)| f (Q(y))qn(y)|≤ sup
y∈(0,C0δn)

ψ3(y)|un(y)|= Oa.s.(δ
(1+µ)
n )= Oa.s.(cn).
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Further, if Uk:n ≤ y, then

sup
y∈(0,C0δn)

ψ3(y)| f (Q(y))qn(y)| ≤ Cσ−1
n,1n sup

y∈(0,C0δn)

y(y(1 − y))1+µ log(δn/Uk:n)

for γ1 = 1. Now,

P(U1:n ≤ n−2(log n)−3/2) ≤
n∑

i=1

P(Ui ≤ n−2(log n)−3/2) ≤ n−1(log n)−3/2. (58)

Consequently, via the Borel–Cantelli Lemma, as n → ∞, U−1
k:n = oa.s.(n2(log n)3/2).

Therefore,

sup
y∈(0,C0δn)

ψ3(y)| f (Q(y))qn(y)| = Oa.s.(cn) (59)

follows for γ1 = 1. ��

3.6 Proof of Proposition 2.9

We follow lines of the proof from [7, Theorem 3]. In view of Lemma 3.10 and the
Taylor expansion of f (Q(y))qn(y), the approximation is valid on (C0δn, 1 − C0δn),
provided β < 3

4 . For β ≥ 3
4 it remains true by the choice of ψ4(y).

Having tail monotonicity assumption (CsR4), let (k−1)/n < y ≤ k/n. If Uk:n ≥ y,
then (cf. (3.13) in [7])

sup
y∈(0,C0δn)

ψ4(y)| f (Q(y))qn(y)| ≤ sup
y∈(0,C0δn)

ψ4(y)|un(y)| = Oa.s.(an)

from (49) if β < 3
4 , and by the choice of ψ4(y) if β ≥ 3

4 .
If Uk:n ≤ y and β ∈ ( 1

2 , 1), then for γ = 1, as n → ∞,

sup
y∈(0,C0δn)

| f (Q(y))qn(y)| = Oa.s.(σn,1n−1�(n))

by (58). Moreover, as in (58), U−1
k:n = oP (n(log n)3/2), as n → ∞. Therefore, for

γ > 1, as n → ∞,

sup
y∈(0,C0δn)

| f (Q(y))qn(y)| = OP (σn,1n−1�(n)).

��

123



366 M. Csörgő, R. Kulik

References

1. Bahadur, R.R.: A note on quantiles in large samples. Ann. Math. Stat. 37, 577–580 (1966)
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