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Abstract Consider a large system of N Brownian motions in R
d with some non-

degenerate initial measure on some fixed time interval [0, β] with symmetrised initial-
terminal condition. That is, for any i , the terminal location of the i-th motion is affixed
to the initial point of the σ(i)-th motion, where σ is a uniformly distributed random
permutation of 1, . . . , N . Such systems play an important role in quantum physics
in the description of Boson systems at positive temperature 1/β. In this paper, we
describe the large-N behaviour of the empirical path measure (the mean of the Dirac
measures in the N paths) and of the mean of the normalised occupation measures of
the N motions in terms of large deviations principles. The rate functions are given
as variational formulas involving certain entropies and Fenchel–Legendre transforms.
Consequences are drawn for asymptotic independence statements and laws of large
numbers. In the special case related to quantum physics, our rate function for the
occupation measures turns out to be equal to the well-known Donsker–Varadhan rate
function for the occupation measures of one motion in the limit of diverging time. This
enables us to prove a simple formula for the large-N asymptotic of the symmetrised
trace of e−βHN , where HN is an N -particle Hamilton operator in a trap.
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1 Introduction and main results

1.1 Introduction

In this article, we study the large-N behaviour of a system of N symmetrised Brownian
motions in R

d on a fixed time interval [0, β], i.e. the behaviour of the system under
the measure

P
(sym)
m,N = 1

N !
∑

σ∈SN

∫

Rd

· · ·
∫

Rd

m(dx1) . . .m(dxN )

N⊗

i=1

P
β
xi ,xσ(i) . (1.1)

Here SN is the set of all permutations of 1, . . . , N , P
β
x,y the normalised Brownian

bridge measure on the time interval [0, β] with initial point x ∈ R
d and terminal point

y ∈ R
d [also see (1.4) below], and m is the initial probability distribution on R

d .
Hence, the terminal location of the i-th motion is affixed to the initial location of the
σ(i)-th motion, where σ is a uniformly distributed random permutation. Any of the
N paths is a Brownian motion with initial distribution m, but with a peculiar terminal
distribution at time β. We can conceive P

(sym)
m,N as a two-step random mechanism: First

we pick a uniform random permutation σ , then we pick N Brownian motions with
initial distribution m, and the i-th motion is conditioned to terminate at the initial point
of the σ(i)-th motion, for any i .

One main motivation to consider this model stems from quantum physics, where
one is interested in the description of the canonical ensemble of large Boson systems
at positive temperature, see Sect. 1.5 below. Beside the application in physics, the
problem is also appealing from a mathematical point of view, since the combinatorics
of a random permutation is combined with independent, but not identically distributed,
objects.

We consider the distribution of the tuple of N random paths B(1), . . . , B(N ) : [0, β]→
R

d under P
(sym)
m,N . We are interested in the large-N behaviour of the empirical path

measure

L N = 1

N

N∑

i=1

δB(i) ∈ M1(C), (1.2)

which is a random probability measure on the set C of continuous paths [0, β] → R
d .

More precisely, we derive a large deviations principle for the distributions of L N under
P
(sym)
m,N as N → ∞ (Theorem 1.1). (In Sect. 4 below we recall the notion of a large

deviations principle.) We also obtain a large deviations principle for the means of the
normalised occupation measures,
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YN = 1

N

N∑

i=1

1

β

β∫

0

ds δ
B(i)s

∈ M1(R
d), (1.3)

(Theorem 1.2). Our large-deviation rate functions for the two principles are expli-
cit in terms of variational problems involving an entropy term (describing the large
deviations of the permutations) and a certain Legendre transform (describing the large
deviations of L N and YN , respectively, for a fixed permutation). We draw a number
of corollaries about variants of the principles, laws of large numbers and asymptotic
independence.

Our results are most beautiful and most striking for the important special case that m
is the Lebesgue measure on a bounded box and that P

β
x,y is replaced by the canonical,

non-normalised, Brownian bridge measure, µβx,y [see (1.4)]. In this case, the rate
function for the means YN turns out to be equal to β times the well-known Donsker–
Varadhan rate function, which is explicitly given as the energy of the square root of
the density of the measure considered (Theorem 1.5). This function is well-known as
the rate function for the normalised occupation measure for just one Brownian motion
(or bridge) in the limit of diverging time. We give an interpretation of this remarkable
coincidence in terms of the well-known cycle structure of the permutations in (1.1).
However, let us remark that our proofs do not respect this structure at all and therefore
give no rigorous insight into that.

The mentioned identification of the rate function for the YN ’s as the Donsker–
Varadhan rate function has interesting consequences for the asymptotic description of
the canonical ensemble of a system of N noninteracting Bosons at positive tempera-
ture 1/β ∈ (0,∞). In fact, we obtain in Sect. 1.5 a remarkably simple formula for the
large-N asymptotic of the symmetrised trace of the N -particle Hamilton operator in
a fixed box (Theorem 1.6). We consider this as a first step towards a rigorous unders-
tanding of large Boson systems at positive temperature. This article has stimulated
several recent developments. Adams and Dorlas used a similar symmetrisation tech-
nique in [6] to study symmetrised systems of random processes on integer lattices with
mean-field type interaction, Trashorras derives in [35] general large deviations results
for symmetrised measures, and Adams applies the method for dilute interacting sys-
tems in [3]. Future work will be devoted to the mutually interacting case. Interacting
Brownian motions in trap potentials have been so far analysed without symmetrisa-
tion, in particular, finite systems for vanishing temperature in [4] and large systems of
interacting motions for fixed positive temperature in [5].

Let us make some remarks on related literature. In [28] Schrödinger raised the
question of the most probable behaviour of a large system of diffusion particles in
thermal equilibrium. Föllmer [18] gave a mathematical formulation of theses ideas
in terms of large deviations. He applied Sanov’s theorem to obtain a large deviations
principle for L N when B(1), B(2), . . . are i.i.d. Brownian motions with initial distribu-
tion m and no condition at time β. The rate function is the relative entropy with respect
to

∫
Rd m(dx)Px ◦ B−1, where the motions start in x under Px . Then Schrödinger’s

question amounts to identifying the minimiser of that rate function under given fixed
independent initial and terminal distributions. Interestingly, it turns out that the unique
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minimiser is of the form
∫
Rd

∫
Rd dxdy f (x)g(y)Pβx,y ◦ B−1, i.e. a Brownian bridge

with independent initial and terminal distributions. The probability densities f and g
are characterised by a pair of dual variational equations, originally appearing in [28] for
the special case that both given initial and terminal measures are the Lebesgue measure.
The monograph [25] systematically studies such dual equations and their connections
to the dual time-dependent Schrödinger equations and to Schrödinger processes, i.e.
processes of the form

∫
Rd

∫
Rd q(dx, dy)Pβx,y that are additionally Markov. [19] obt-

ained conditions from minimising the entropy to derive the Markov property of such
processes; the absolute continuity and the product structure of q turn out to be crucial.

An important work combining combinatorics and large deviations for symmetri-
sed measures is [33]. Tóth [33] considers N continuous-time simple random walks
on a complete graph with �ρN� vertices, where ρ ∈ (0, 1) is fixed. He looks at
the symmetrised distribution as in (1.1) and adds an exclusion constraint: there is
no collision of any two particles during the time interval [0, β]. The combinatorial
structure of this model enabled him to express the free energy in terms of a cleverly
chosen Markov process on N0. Using Freidlin–Wentzell theory, he derives an expli-
cit formula for the large-N asymptotic of the free energy; in particular he obtains
a phase-transition, called Bose–Einstein-condensation, for large β and sufficiently
large ρ.

Our proof is partly inspired by the method developed in [24]. The problem there is
the evaluation of the large-k asymptotic of the k-th moments of the intersection local
time in U of p ∈ N \ {1} Brownian motions running in an open subset O of R

2 or R
3.

This moment is known to be equal to

∫

U

dx1 · · ·
∫

U

dxk

⎛

⎝
∑

σ∈Sk

k∏

i=1

G
(
xσ(i−1), xσ(i)

)
⎞

⎠
p

.

Here U is a compact subset of O , and G is the Green’s function of one of the Brownian
motions in O . Even though the motivation for studying this problem is quite different,
similar techniques prove useful for the study of that problem and the one of the present
paper.

The effect of mixing random variables using a random uniformly distributed per-
mutation to large deviation principles has been studied both in [12] and [34], which
were motivated from asymptotic questions about exchangeable vectors of random
variables. [12] studies large deviations for the empirical measures 1

N

∑N
i=1 δYi , where

Y1, . . . ,YN have distribution
∫
�
µ(dθ) P (θ)

N for some distribution µ on some compact
space�, and the empirical measures are assumed to satisfy a large deviation principle
under P (θ)

N for each θ . In [34], a similar problem is studied: given a sequence of ran-

dom vectors (Y (N )
1 , . . . ,Y (N )

N ) such that the empirical measures 1
N

∑N
i=1 δY (N )i

satisfy a

large deviation principle, another principle is established for the process of empirical
measures 1

N

∑�t N�
i=1 δ

X (N )i
, where

(
X (N )

1 , . . . , X (N )
N

) = 1

N !
∑

σ∈SN

(
Y (N )
σ (1), . . . ,Y (N )

σ (N )

)
.
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In both works, the large-deviation rate function is expressed in terms of entropy terms,
like in our main result. However, a substantial difference is that the symmetrisation
mechanism in (1.1) is adequately described only by the pairs (i, σ (i)) for i = 1, . . . , N ,
instead of just the sequence of the σ(i)’s.

The work [2] analyses the cycle structure of the permutations for path measures for
the large N -limit with respect to the Lebesgue measure on boxes which grow with N
such that the quotient has a finite limit. In particular [2] shows a phase transition in
the mean path measure for certain parameters as inverse temperature and density.

Let us also mention that our problem may also be seen as a particular two-level
large deviations result, which has something in common with general multilevel
large deviations as studied in [9]. There a large deviations principle is established
for 1

M

∑M
i=1 δX (N )i

, as M, N → ∞, under the assumption that, for any i , the sequence

(X (N )
i )N∈N satisfies a principle.
The structure of the remainder of this paper is the following. In Sect. 1.2 we describe

our main results. A couple of remarks and consequences are in Sect. 1.3, and in Sect. 1.4
we consider an important particular case, where we identify the rate function in simple
terms. Some remarks on relations to quantum physics are in Sect. 1.5. In Sect. 2 we
prove some facts about the rate functions, and Sect. 3 contains the proof of the large
deviations principles. Finally, the Appendix, Sect. 4, recalls some notions and facts
about large deviations theory.

1.2 Large deviations for P
(sym)
m,N

We are going to formulate our first main result: large deviations principles for the
distributions of L N and YN under P

(sym)
m,N , see (1.2), (1.3) and (1.1). (We refer to Sect. 4

for the notion of a large deviation principle and related notation.) Throughout the paper,
we fix β > 0. Let C = C([0, β]; R

d) be the set of continuous functions [0, β] → R
d .

We equip C with the topology of uniform convergence and with the corresponding
Borel σ -field. We consider N random variables, B(1), . . . , B(N ), taking values in C.
For the reader’s convenience, we repeat the definition of a Brownian bridge measure;
see the Appendix in [32]. We decided to work with Brownian motions having generator
� instead of 1

2�. We write Px for the probability measure under which B = B(1) starts
from x ∈ R

d . The canonical (non-normalised) Brownian bridge measure on the time
interval [0, β] with initial site x ∈ R

d and terminal site y ∈ R
d is defined as

µβx,y(A) = Px (B ∈ A; Bβ ∈ dy)

dy
, A ⊂ C measurable. (1.4)

Then µβx,y is a regular Borel measure on C with total mass equal to the Gaussian
density,

µβx,y(C) = pβ(x, y) = Px (Bβ ∈ dy)

dy
= (4πβ)−d/2e− 1

4β |x−y|2
. (1.5)
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The normalised Brownian bridge measure is defined as P
β
x,y = µ

β
x,y/pβ(x, y), which

is a probability measure on C.
Now we introduce the rate functions. By M1(X) we denote the set of Borel pro-

bability measures on a topological space X . With

H(q |̃q) =
∫

X

q(dx) log
q(dx)

q̃(dx)
(1.6)

we denote the relative entropy of q ∈ M1(X) with respect to q̃ ∈ M1(X). We will
often use this notation for X = R

d ×R
d in the sequel, but also for other spaces X . Let

M(s)
1 (R

d × R
d) be the set of shift-invariant probability measures q on R

d × R
d , i.e.

measures whose first and second marginals coincide and are both denoted by q . Note
that q �→ H(q|q ⊗m) is strictly convex. We write 〈	,µ〉 for integrals

∫
C 	(ω)µ(dω)

for suitable functions 	 on C. Define the functional I (sym)
m on M1(C) by

I (sym)
m (µ) = inf

q∈M(s)
1 (Rd×Rd )

{
H(q|q ⊗ m)+ I (q)(µ)

}
, µ ∈ M1(C), (1.7)

where

I (q)(µ) = sup
	∈Cb(C)

⎧
⎪⎨

⎪⎩
〈	,µ〉 −

∫

Rd

∫

Rd

q(dx, dy) log E
β
x,y

[
e	(B)

]
⎫
⎪⎬

⎪⎭
, µ ∈ M1(C).

(1.8)

Hence, I (q) is a Legendre–Fenchel transform, but not the one of a logarithmic moment
generating function of any random variable. In particular, I (q), and therefore also I (sym)

m ,
are nonnegative, and I (q) is convex as a supremum of linear functions. There seems to
be no way to represent I (q)(µ) as the relative entropy ofµwith respect to any measure.

By πs : C → R
d we denote the projection πs(ω) = ωs . The marginal measure

of µ ∈ M1(C) is denoted by µs = µ ◦ π−1
s ∈ M1(R

d); analogously we write
µ0,β = µ◦ (π0, πβ)

−1 ∈ M1(R
d ×R

d) for the joint distribution of the initial and the
terminal point of a random process with distributionµ. It is easy to see that q = µ0,β if
I (q)(µ) < ∞. Indeed, in (1.8) relax the supremum over all	 ∈ Cb(C) to all functions
of the form ω �→ f (ω0, ωβ) with f ∈ Cb(R

d). This gives that

∞ > I (q)(µ) ≥ sup
f ∈Cb(Rd )

(〈
µ0,β , f 〉−〈 q, log E

β
π0,πβ

[
e f (B0,Bβ)

])

= sup
f ∈Cb(Rd )

〈
µ0,β − q, f

〉
,

and this implies that µ0,β = q. In particular, the infimum in (1.7) is uniquely attained
at this q, i.e.
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Large deviations for symmetrised Brownian bridges 85

I (sym)
m (µ)=

⎧
⎨

⎩
H

(
µ0,β |µ0 ⊗ m

) + sup
	∈Cb(C)

〈
µ,	− log E

β
π0,πβ

[
e	(B)

]〉
if µ0 = µβ,

+∞ otherwise.
(1.9)

In particular, I (sym)
m is convex.

Then our main result reads as follows.

Theorem 1.1 (Large deviations for L N ) Fix β ∈ (0,∞) and assume that the initial
distribution m ∈ M1(R

d) has compact support. Then, as N → ∞, under the sym-
metrised measure P

(sym)
m,N , the empirical path measures L N satisfy a large deviations

principle on M1(C) with speed N and rate function I (sym)
m .

To be more explicit, the stated large deviations principle says that

lim
N→∞

1

N
log P

(sym)
m,N (L N ∈ ·) = − inf

µ∈ · I (sym)
m (µ),

in the weak sense, i.e. there is a lower bound for open subsets of M1(C) and an upper
bound for closed ones. The proof of Theorem 1.1 is in Sect. 3. In Sect. 3.1 we give
an outline of its main idea. The assumption that the initial distribution m ∈ M1(R

d)

has compact support is necessary only in the proof of the lower bound. However, we
prove the upper bound and the exponential tightness without using this assumption.
Stimulated by an earlier preprint of this paper, Trashorras [35] gives an alternative proof
of Theorem 1.1, even on general Polish spaces. His proof relies on earlier results on
large deviations systems and clever choices of certain metrics. In [6] a similar result is
obtained for random walks on the integer lattice without compactness restriction for the
initial distribution. Theorem 1.1 does not rely on the Markov property of the Brownian
bridge processes; only some continuity is required, see in particular Lemma 3.3 below.

We also have the analogous result for the mean of the occupation measures, YN ,
defined in (1.3). For formulating this, we define the functional J (sym)

m on M1(R
d) by

J (sym)
m (p) = inf

q∈M(s)
1 (Rd×Rd )

{
H(q|q ⊗ m)+ J (q)(p)

}
, p ∈ M1(R

d), (1.10)

where

J (q)(p) = sup
f ∈Cb(Rd )

⎧
⎪⎨

⎪⎩
β〈 f, p〉 −

∫

Rd

∫

Rd

q(dx, dy) log E
β
x,y

[
e
∫ β

0 f (Bs ) ds
]
⎫
⎪⎬

⎪⎭
. (1.11)

Theorem 1.2 (Large deviations for YN ) Fix β ∈ (0,∞) and assume that the initial
distribution m ∈ M1(R

d) has compact support. Then, as N → ∞, under the symme-
trised measure P

(sym)
m,N , the mean of occupation measures, YN , satisfy a large deviations

principle on M1(R
d) with speed N and rate function J (sym)

m .
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The proof of Theorem 1.2 is in Sect. 3.5. Via the contraction principle [10, Theo-
rem 4.2.1], the large deviations principle for YN in Theorem 1.2 is a consequence of
the one for L N in Theorem 1.1. Indeed, consider � : M1(C) → M1(R

d) defined by
�(µ) = 1

β

∫ β
0 ds µ ◦ π−1

s , where we recall that πs(ω) = ω(s) is the projection. Then
� is continuous and bounded, and YN = �(L N ). Hence, the contraction principle
immediately yields the large deviation principle for YN with rate function given by

J̃ (sym)
m (p) = inf

q∈M(s)
1 (Rd×Rd )

{
H(q|q ⊗ m)+ J̃ (q)(p)

}
, (1.12)

where

J̃ (q)(p) = inf
{

I (q)(µ) : µ ∈ M1(C),�(µ) = p
}
, p ∈ M1(R

d). (1.13)

In Sect. 3.5 below we will show that J̃ (q) = J (q) for any q ∈ M(s)
1 (R

d × R
d), which

implies that J̃ (sym)
m = J (sym)

m and finishes the proof of Theorem 1.2. The proof of
J̃ (q) ≥ J (q) is simple and straightforward. However, a direct analytical proof of the
complementary inequality, J̃ (q) ≤ J (q), seems rather difficult; we prove this indirectly
by showing that J̃ (q) and J (q) govern the same large deviations principle.

Let us give a brief informal interpretation of the shape of the rate functions in (1.7)
and (1.10). As we have remarked earlier, the symmetrised measure P

(sym)
m,N arises from

a two-step probability mechanism. This is reflected in the representation of the rate
function I (sym)

m in (1.7): in a peculiar way (which we roughly describe in Sect. 3.1),
the entropy term H(q|q ⊗ m) describes the large deviations of the uniformly distri-
buted random permutation σ , together with the integration over m⊗N . The measure
q governs a particular distribution of N independent, but not identically distributed,
Brownian bridges. Under this distribution, L N satisfies a large deviations principle
with rate function I (q), which also can be guessed from the Gärtner-Ellis Theorem
[10, Theorem 4.5.20]. The presence of a two-step mechanism makes impossible to
apply this theorem directly to P

(sym)
m,N .

Let us contrast this to the case of i.i.d. Brownian bridges B(1), . . . , B(N ) with starting
distribution m, i.e. we replace P

(sym)
m,N by (

∫
m(dx)Pβx,x )⊗N . Here the empirical path

measure L N satisfies a large deviations principle with rate function

Im(µ) = sup
	∈Cb(C)

⎧
⎪⎨

⎪⎩
〈	,µ〉 − log

∫

Rd

m(dx)Eβx,x
[
e	(B)

]
⎫
⎪⎬

⎪⎭
,

as follows from an application of Cramér’s theorem [10, Theorem 6.1.3]. Note that
Im(µ) is the relative entropy of µ with respect to

∫
m(dx)Pβx,x ◦ B−1. Although

there is apparently no reason to expect a direct comparison between the distributions
of L N under P

(sym)
m,N and under (

∫
m(dx)Pβx,x )⊗N , the rate functions admit a simple
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relation: it is easy to see that I (q) ≥ Im for the measure q(dx, dy) = m(dx)δx (dy) ∈
M(s)

1 (R
d × R

d), since

−
∫

Rd

∫

Rd

q(dx, dy) log E
β
x,y

[
e	(B)

]
≥ − log

∫

Rd

m(dx)Eβx,x
[
e	(B)

]
. (1.14)

In particular, I (sym)
m ≥ Im.

All the preceding remarks apply to the mean of the occupation measures, YN , in
place of L N .

1.3 Extensions and remarks

Let us extend Theorems 1.1 and 1.2 to some larger class of measures P
(sym)
m,N . Obviously,

both theorems remain true if the total mass of the initial measure m is not necessarily
equal to one, but positive and finite. (Here we adapt the notion of a large deviations
principle accordingly, which is easily done by dropping the requirement that the infi-
mum of the rate function be equal to zero; see Sect. 4.) A bit deeper lies the fact that
the Brownian bridge measure does not have to be normalised in order that the results
hold:

Proposition 1.3 Fix β ∈ (0,∞) and assume that m is a positive finite measure on
R

d with compact support. Fix some continuous function g : R
d × R

d → (0,∞) and
replace P

β
x,y by g(x, y)Pβx,y in the definition (1.1) of P

(sym)
m,N . Then

(i) Theorem 1.1 remains true. The corresponding rate function is µ �→ I (sym)
m (µ)−

〈µ0,β , log g〉.
(ii) Theorem 1.2 remains true. The corresponding rate function is

J (sym)
m,g (p) = inf

q∈M(s)
1 (Rd×Rd )

{
H(q|q ⊗ m)+ J (q)(p)− 〈q, log g〉} , p ∈ M1(R

d).

(1.15)

Proof (i) Note that, for any σ ∈ SN and any x1, . . . , xN ∈ supp(m), with probability
one with respect to ⊗N

i=1P
β
xi ,xσ(i) ,

N∏

i=1

g(xi , xσ(i)) = e
∑N

i=1 log g(B(i)0 ,B(i)β ) = eN 〈L N ,	g〉,

where 	g(ω) = log g(ω0, ωβ). Since 	g is bounded and continuous, the prin-
ciple follows from [23, Theorem III.17], and the rate function is identified as µ �→
I (sym)
m (µ)− 〈µ,	g〉 = I (sym)

m (µ)− 〈µ0,β , log g〉.
(ii) In the same way as Theorem 1.2 is deduced from Theorem 1.1 via the contraction
principle [10, Theorem 4.2.1], (ii) is derived from (i). Indeed, using the principle in
(i), the contraction principle implies the desired principle with rate function
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p �→ inf
µ∈M1(C) : �(µ)=p

{
I (sym)
m (µ)− 〈µ0,β , log g〉}

= inf
q∈M(s)

1 (Rd×Rd )

{
H(q|q ⊗ m)+ J̃ (q)(p)− 〈q, log g〉} , p ∈ M1(R

d),

where J̃ (q) is introduced in (1.13), and we recall that q = µ0,β if I (q)(µ) < ∞. As
we mentioned below Theorem 1.2, we will show in Sect. 3.5 that J̃ (q) = J (q). This
finishes the proof. ��

In the situation of Proposition 1.3, the measure P
(sym)
m,N is not necessarily normalised,

and no simple formula for its total mass seems available in general. Therefore, the
following consequence of Proposition 1.3 seems helpful. When applied to discrete
measures m, it may have also some interesting consequences for related combinatorial
questions. We also add a standard consequence of a large deviations principle: an
identification of the minimiser of the rate function and a law of large numbers.

Corollary 1.4 Under the assumptions of Proposition 1.3, the following hold.

(i)

lim
N→∞

1

N
log

⎛

⎜⎝
1

N !
∑

σ∈SN

∫

(Rd )N

N∏

i=1

m(dxi )

N∏

i=1

g
(
xi , xσ(i)

)
⎞

⎟⎠

= − inf
q∈M(s)

1 (Rd×Rd )

{H(q|q ⊗ m)− 〈q, log g〉} . (1.16)

(ii) The unique minimiser of the rate function µ �→ I (sym)
m (µ) − 〈µ0,β , log g〉 is

given by

µ∗ =
∫

Rd

∫

Rd

q∗(dx, dy)Pβx,y ◦ B−1, (1.17)

where q∗ ∈ M(s)
1 is the unique minimiser of the formula on the right hand side

of (1.16).
(iii) Law of large numbers: Under the measure P

(sym)
m,N , normalised to a probability

measure, the sequence (L N )N∈N converges in distribution to the measure µ∗
defined in (1.17).

Proof According to Proposition 1.3, the left hand side of (1.16) is equal to
− infµ∈M1(C)

(
I (sym)
m (µ)− 〈µ0,β , log g〉) (use the large deviations principle for the

measure of the event {L N ∈ M1(C)}). Use (1.9) and substitute q = µ0,β (recall that
I (q)(µ) = ∞ otherwise) to see that this is equal to

− inf
q∈M(s)

1 (Rd×Rd )

[
{H(q|q ⊗ m)− 〈q, log g〉}

+ inf
µ∈M1(C) : q=µ0,β

sup
	∈Cb(C)

(〈
µ,	− log E

β
π0,πβ

[
e	(B)

]〉) ]
. (1.18)
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It is easy to see that the latter infimum over µ is equal to zero. Indeed, for any µ pick
	 = 0 to see that ‘≥’ holds, and the choice µ = ∫

Rd

∫
Rd q(dx, dy)Pβx,y ◦ B−1 and

an application of Jensen’s inequality shows that ‘≤’ holds.
For proving (ii) and (iii) simultaneously, it suffices to show that µ∗ is the unique

minimiser of the rate function,µ �→ I (sym)
m (µ)−〈µ0,β , log g〉. Assume thatµ is a zero

of I (sym)
m . Since the map q �→ H(q|q ⊗ m) is known to have compact level sets, there

is a q∗ ∈ M(s)
1 (R

d × R
d) that minimises the formula on the right hand side of (1.16).

Since in particular I (q
∗)(µ) < ∞, we have µ0,β = q∗ and therefore

0 = I (q)
∗
(µ) = sup

	∈Cb(C)

〈
µ,	− log E

β
π0,πβ

[
e	(B)

]〉
.

Hence, 	 ≡ 0 is optimal in this formula. The variational equations yield, for any
h ∈ Cb(C),

〈µ, h〉 =
〈
µ,Eβπ0,πβ

[h(B)]
〉
.

This identifies µ as µ∗. ��
There is an interesting by-product of Corollary 1.4 for the special case g ≡ 1, in

which case it is easy to see that q∗ = m⊗m: In spite of strong correlations for fixed N
under P

(sym)
m,N , the initial and terminal locations B(1)

0 and B(1)
β of the first motion become

independent in the limit N → ∞. One can prove this also in an elementary way, and
also the fact that, for any k ∈ N and for all i1 < i2 < · · · < ik , the Brownian motions
B(i1), . . . , B(ik ) under P

(sym)
m,N become independent in the limit N → ∞.

1.4 An important special case

In this section we consider an important special case of Proposition 1.3(ii) that will be
important for the applications in physics in Sect. 1.5. We pick a large bounded closed
box� ⊂ R

d and put m equal to Leb�, the Lebesgue measure on�. Furthermore, we
choose the function g in Proposition 1.3 equal to 1/pβ(x, y), where pβ is the Gaussian
density in (1.5). In other words, we replace the normalised Brownian bridge measure
by the canonical, non-normalised one, µβx,y , introduced in (1.4). That is, we look at
the symmetrised measure

µ
(sym)
�,N = 1

N !
∑

σ∈SN

∫

�

dx1 . . .

∫

�

dxN

N⊗

i=1

µβxi ,xσ(i) . (1.19)

Apart from questions motivated from physics (see Sect. 1.5), this measure is also
mathematically interesting, see the discussion at the end of the present section. Accor-
ding to Proposition 1.3(ii), the distribution of the mean of the normalised occupation
measures, YN , under µ(sym)

�,N satisfies a large deviations principle (even though the term

‘distribution’ is wrong since µ(sym)
�,N is not normalised). That is, we have
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lim
N→∞

1

N
log

(
µ
(sym)
�,N ◦ Y −1

N (·)
)

= − inf
p∈ · J (sym)

� (p), (1.20)

in the weak sense on subsets of M1(R
d), where we introduced

J (sym)
� (p) = inf

q∈M(s)
1 (Rd×Rd )

{
H(q|q ⊗ Leb�)+ J (q)pβ (p)

}
, p ∈ M1(R

d), (1.21)

and

J (q)pβ (p) = sup
f ∈Cb(Rd )

⎧
⎪⎨

⎪⎩
β〈 f, p〉 −

∫

Rd

∫

Rd

q(dx, dy) log Ex

[
e
∫ β

0 f (Bs ) ds; Bβ ∈ dy
]/

dy

⎫
⎪⎬

⎪⎭
.

(1.22)

(In the notation of Sect. 1.3, J (sym)
� = J (sym)

Leb�,1/pβ
.) The main goal of the present section

is to identify J (sym)
� in much easier and more familiar terms. It turns out that J (sym)

� (p)
is identical to the energy of the square root of the density of p, in the jargon of
large deviations theory also sometimes called the Donsker–Varadhan rate function,
I� : M1(R

d) → [0,∞] defined by

I�(p) =

⎧
⎪⎨

⎪⎩

∥∥∥∥∇
√

d p
dx

∥∥∥∥
2

2
, if p has a density with square root in H1

0 (�
◦),

∞ otherwise.
(1.23)

Theorem 1.5 Let � ⊂ R
d be a bounded closed box. Then J (sym)

� (p) = β I�(p) for
any p ∈ M1(R

d).

The proof of Theorem 1.5 is in Sect. 2. In the theory and applications of large
deviations, I� plays an important role as the rate function for the normalised occupation
measure of one Brownian motion (or, one Brownian bridge) in �, in the limit as
time to infinity [13–16,20]. It is remarkable that, in Theorem 1.5, in conjunction
with Proposition 1.3(ii), this function turns out also to govern the large deviations
for the mean of the normalised occupation measures under the symmetrised measure
µ
(sym)
�,N , in the limit of large number of motions. Let us give an informal discussion and

interpretation of this fact.
The measure µ(sym)

�,N in (1.19) admits a representation which goes back to Feynman
[17] and which we want to briefly discuss. Every permutationσ ∈ SN can be written as
a concatenation of cycles. Given a cycle (i, σ (i), σ 2(i), . . . , σ k−1(i)) with σ k(i) = i
and precisely k distinct indices, the contribution coming from this cycle is independent
of all the other indices. Furthermore, by the fact that µβxi ,xσ(i) is the conditional dis-
tribution given that the motion ends in xσ(i), this contribution (also executing the k
integrals over xσ l (i) ∈ � for l = k − 1, k − 2, . . . , 0) turns the corresponding k Brow-
nian bridges of length β into one Brownian bridge of length kβ, starting and ending
in the same point xi ∈ � and visiting � at the times β, 2β, . . . , (k − 1)β. Hence,
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µ
(sym)
�,N = 1

N !
∑

σ∈SN

⊗

k∈N

⎛

⎝
∫

�

dyk µ
k,β,�
yk ,yk

⎞

⎠
⊗ fk (σ )

,

where fk(σ ) denotes the number of cycles in σ of length precisely equal to k,
and µk,β,�

x,y is the Brownian bridge measure µkβ
x,y as in (1.4), restricted to the event⋂k

l=1{Blβ ∈ �}. (See [22, Lemma 2.1] for related combinatorial considerations.) If
fN (σ ) = 1 (i.e. if σ is a cycle), then we are considering just one Brownian bridge
B of length Nβ, with uniform initial measure on �, on the event

⋂N
l=1{Blβ ∈ �}.

Furthermore, YN is equal to the normalised occupation measure of this motion. For
such a σ , the limit N → ∞ turns into a limit for diverging time, and the corresponding
large-deviation principle of Donsker and Varadhan formally applies. This reasoning
applies for permutations σ having only cycles whose length is unboundedly growing
with N . Presumably, the contribution from those permutations whose bounded cycles
sum up to something of order N is strictly smaller. A thorough investigation of the
large deviation properties of the cycle structure and the distribution of the cycle lengths
is contained in [2] for the case of boxes� = �N having volume of order N . There, a
phase transition in β for the mean path is obtained. This phase transition is absent in
the present case; the fixed box� forces all cycle lengths to grow unboundedly with N .

1.5 Relation to quantum physics

Let us now describe the relation of our work with the canonical ensemble of large
systems of Bosons at positive temperature. We consider a system of N non-interacting
Bosons in a trap potential W . The system is described by the Hamilton operator

HN =
N∑

i=1

(−�i + W (xi )) , x1, . . . , xN ∈ R
d , (1.24)

where the i-th Laplace operator, �i , represents the kinetic energy of the i-th particle,
and W : R

d → [0,∞] is the trap potential. The trace of the operator e−βHN is the
canonical partition sum of the system at temperature 1/β. However, the characteristic
property of Bosons is expressed by the symmetry of any N -particle wave function
under permutation of the coordinates. This in turn means that the partition sum of a
system of N Bosons is given by the trace of the restriction of e−βHN to the subspace of
symmetric wave functions, denoted by Tr+(e−βHN ). Via the Feynman–Kac formula,
this trace is given as

Tr+
(

e−βHN
)

= 1

N !
∑

σ∈SN

∫

Rd N

dx1 . . . dxN

∫

CN

(
N⊗

i=1

µβxi ,xσ(i)

)
(dω)

× exp

⎧
⎨

⎩−
N∑

i=1

β∫

0

W (ω(i)s ) ds

⎫
⎬

⎭ , (1.25)
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where the canonical Brownian bridge measure was introduced in (1.4), and we wrote
ω = (ω(1), . . . , ω(N )). One of our main results is an explicit formula for the logarithmic
large-N asymptotic of this trace, for a certain class of hard-wall traps W . This will
be a consequence of Theorem 1.2, in conjunction with Theorem 1.5 and Varadhan’s
lemma. The main novelty of this result is the combined application of methods from
combinatorics, variational analysis and the theory of large deviations to the study of
the canonical ensemble.

Let us make some historical remarks. Feynman [17] analysed the partition function
of an interacting Bose gas in terms of the statistical distribution of permutation cycles
of particles and emphasised the role of long cycles at the transition point. These
arguments were pursued further by Penrose and Onsager [26]. The arguments for the
role of the cycle statistics have been known for a long time in various contexts, e.g.
Ginibre [22] used them for virial expansion for quantum gases, Cornu [8] for the Mayer
expansions for quantum Coulomb gases, and Ceperley [7] for numerical simulations
for Helium via path integrals. In a couple of papers in the 1960ies, Ginibre studied the
grandcanonical ensemble, where N is a Poisson random variable; see the summary in
[22]. His main interest was in ‘hard-wall’ traps W = ∞1l�c , where � is a box, in the
limit� ↑ R

d . This corresponds in the canonical ensemble to the thermodynamic limit,
i.e. the limit N → ∞ with a box � = �N ↑ R

d coupled with N in a way that the
particle density per volume, N/|�N |, converges in (0,∞). A precise mathematical
and quantitative formulation of the relation between Bose condensate and long cycles
appeared only recently in work of Sütő [30,31] dealing with the ideal and mean field
Bose gas. However, his methods are only applicable to the ideal gas or the mean field
model, due to the difficult combinatorics of the cycle statistics.

As an application of the large deviations principle in (1.20) and Theorem 1.5, we
identify the large-N asymptotic of the symmetrised trace of HN in (1.25), where the
trap does not depend on the particle number, as follows. Given a box � ⊂ R

d , we
denote by

λ�( f ) = sup
ϕ∈C∞(Rd ) : supp(ϕ)⊂�,‖ϕ‖2=1

(
〈 f, ϕ2〉 − ‖∇ϕ‖2

2

)
(1.26)

the principal (i.e. largest) eigenvalue of�+ f in�with Dirichlet boundary condition.

Theorem 1.6 Fixβ ∈ (0,∞)and let� ⊂ R
d be a bounded closed box. Let W : R

d →
R ∪ {∞} be continuous in � and equal to ∞ in �c. Then

lim
N→∞

1

N
log

(
Tr+

(
e−βHN

))
= βλ�(W ). (1.27)

Proof Recall the measureµ(sym)
�,N from (1.19) and the mean of the occupation measures,

YN , from (1.3). From (1.25) we have that

Tr+
(

e−βHN
)

=
∫

CN

e−Nβ〈W,YN 〉1l{supp(YN ) ⊂ �} dµ(sym)
�,N .
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Recall the large deviations principle of (1.20). Since the map M1(�) � Y �→ 〈W,Y 〉
is bounded and continuous, we may apply Varadhan’s lemma to deduce that

lim
N→∞

1

N
log

(
Tr+

(
e−βHN

))
= − inf

p∈M1(�)

(
J (sym)
� (p)+ β〈W, p〉) .

By Theorem 1.5, we may replace J (sym)
� (p) by β I�(p) defined in (1.23). This gives

that the right hand side is equal to β supp∈M1(�)
[〈W, p〉 − I�(p)]. The substitution

ϕ2(x) dx = p(dx) and a glance at (1.26) yield that this is equal to βλ�(W ). ��
Via Theorem 1.6, also interacting systems can be studied. In [3], dilute systems with

path interaction
∑

1≤i< j≤N N d−1 1
β

∫ β
0

∫ β
0 v(N |B(i)

s − B( j)
t |) dsdt , are studied, where

v is a positive pair potential with finite integral; the specific free energy is given by
the so-called Gross–Pitaevskii variational formula. These systems have been studied
without symmetrisation in the ground state in [4], and at positive temperature β < ∞
in [5]. The Gross–Pitaevskii formula also appeared in Seiringer’s work [29] on the
dilute limit of the trace in (1.25); this work uses entirely different means.

2 Identification of J (sym)

�

In this section, we prove Theorem 1.5. First we consider the rate function J (sym)
� defined

in (1.21). By B[0,β] = {Bs : s ∈ [0, β]} we denote the path of the Brownian motion
B, and C(�) denotes the set of continuous functions � → R.

Lemma 2.1 Fix β ∈ (0,∞) and a bounded closed box � ⊂ R
d . Then, for all

p ∈ M1(R
d) having support in �,

J (sym)
� (p) = inf

q∈M(s)
1 (�×�)

{
H(q|q ⊗ Leb�)+ J (q)�,pβ (p)

}
, (2.1)

where

J (q)�,pβ (p) = sup
f ∈C(�)

⎧
⎨

⎩β〈 f, p〉 −
∫

�

∫

�

q(dx, dy)

× log Ex

[
e
∫ β

0 f (Bs ) ds1l{B[0,β] ⊂ �}; Bβ ∈ dy
]/

dy

⎫
⎬

⎭

Proof Note that H(q|q ⊗ Leb�) = ∞ if the support of q is not contained in �×�.
Hence, in (1.21) we need to take the infimum over q only on the set M(s)

1 (� × �).
From an inspection of the right hand side of (1.22) it follows that the function f
in the supremum must be taken arbitrarily negative outside � to approximate the
supremum. Hence, we may add in the expectation the indicator on the event that the
Brownian motion does not leave � by time β. But then the values of f outside � do
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not contribute. This shows that we need to consider only continuous functions f that
are defined on �; in other words, (2.1) holds. ��
Proof of Theorem 1.5 We start from (2.1) and proceed in three steps: (1) we show
that J (sym)

� (p) ≥ β I�(p) for any p ∈ M1(R
d) with support in �, (2) we show

that the complementary inequality, J (sym)
� (p) ≤ β I�(p), holds if ϕ :=

√
d p
dx exists in

C2(Rd)with �ϕ
ϕ

∈ C(�), and (3) we approximate an arbitrary p ∈ M1(R
d) satisfying

ϕ ∈ H1
0 (�

◦) with suitable smooth functions.
Let us turn to the details. For f ∈ C(�), letϕ f be the unique positive L2-normalised

eigenfunction of � + f in L2(�) with zero boundary condition and corresponding
eigenvalue λ�( f ); see (1.26). Then

D( f )
β := e

∫ β
0 f (Bs ) dse−βλ�( f )1l{B[0,β] ⊂ �}ϕ f (Bβ)

ϕ f (B0)
(2.2)

defines a martingale (D( f )
β )β≥0 under Px for any x ∈ � with respect to the canonical

Brownian filtration (see [27, Proposition VIII.3.1]). Substituting D( f )
β on the right hand

side of (2.1) and using the marginal property of q (i.e.
∫ ∫

q(dx, dy) log(ϕ(y)/ϕ(x)) =
0), we see that

J (q)�,pβ (p)= sup
f ∈C(�)

⎛

⎝β[〈 f, p〉−λ�( f )]−
∫

�

∫

�

q(dx, dy) log
Ex

[
D( f )
β ; Bβ ∈ dy

]

dy

⎞

⎠ ,

where Ex denotes expectation with respect to a Brownian motion with generator �
starting at x . Substituting this in (2.1), we obtain that

J (sym)
� (p) = inf

q∈M(s)
1 (�×�)

sup
f ∈C(�)

⎛

⎝β[〈 f, p〉 − λ�( f )]

+
∫

�

∫

�

q(dx, dy) log
q(dx, dy)

q(dx)Ex

[
D( f )
β ; Bβ ∈ dy

]

⎞

⎠ . (2.3)

By the martingale property of (D( f )
β )β≥0, the measure Ex [D( f )

β ; Bβ ∈ dy] is a proba-
bility measure on � for any x ∈ �. Hence, the double integral in (2.3) is an entropy
between probability measures and therefore nonnegative, by Jensen’s inequality. This
shows that

J (sym)
� (p) ≥ β sup

f ∈C(�)
(〈 f, p〉 − λ�( f )) . (2.4)

Note that the map f �→ λ�( f ) is the Legendre–Fenchel transform of I�, as is seen
from the Rayleigh–Ritz principle in (1.26). According to the Duality Lemma [10,
Lemma 4.5.8], the r.h.s. of (2.4) is therefore equal to β I�(p) since it is equal to the
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Legendre–Fenchel transform of λ�. Hence, we have shown that J (sym)
� (p) ≥ β I (p)

for any p ∈ M1(R
d) with support in �.

Now we proceed with the second step. Let ϕ =
√

d p
dx be in C2(Rd) such that

f ∗ = −�ϕ
ϕ

is in C(�). Then (� + f ∗)ϕ = 0 in �. In other words, ϕ = ϕ f ∗ is
the unique positive normalised eigenfunction of � + f ∗ in � with corresponding
eigenvalue λ�( f ∗) = 0. Consider the measure

q∗(dx, dy) = ϕ(x)ϕ(y)
∫

C
e
∫ β

0 f ∗(ωs ) ds1l{ω[0,β] ⊂ �}µβx,y(dω) dxdy

= ϕ(x)ϕ(y)Ex

[
e
∫ β

0 f ∗(Bs ) ds1l{B[0,β] ⊂ �} ; Bβ ∈ dy
]

dx

on �×�. Then q∗ is obviously symmetric. With the help of the martingal property
of (D( f )

β )β≥0 , the marginal of q∗ is identified as

q∗(dx) = ϕ(x)Ex

[
e
∫ β

0 f ∗(Bs ) ds1l{B[0,β] ⊂ �}ϕ(Bβ)
]

dx = ϕ2(x) dx = p(dx).

Hence q∗ ∈ M(s)
1 (�×�). Using this q∗ in (2.3), we obtain, also using the marginal

property of q∗,

J (sym)
� (p) ≤ sup

f ∈C(�)

⎛

⎝β〈 f, p〉 +
∫

�

∫

�

q∗(dx, dy)

log
Ex

[
e
∫ β

0 f ∗(Bs ) ds1l{B[0,β] ⊂ �} ; Bβ ∈ dy
]

Ex

[
e
∫ β

0 f (Bs ) ds1l{B[0,β] ⊂ �} ; Bβ ∈ dy
]

⎞

⎠ . (2.5)

Now we show that the variational problem on the r.h.s. of (2.5) is solved precisely in
f = f ∗. Indeed, by strict concavity we only have to show that f = f ∗ solves the
variational equation, which reads

∀ h ∈ C(�) :

β〈h, p〉=
∫

�

∫

�

q∗(dx, dy)
Ex

[(∫ β
0 h(Bs) ds

)
e
∫ β

0 f (Bs ) ds1l{B[0,β] ⊂ �}; Bβ ∈ dy
]

Ex

[
e
∫ β

0 f (Bs ) ds1l{B[0,β] ⊂ �}; Bβ ∈ dy
] .

This is indeed solved for f = f ∗, because the right hand side of the variational
equation then equals
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∫

�

∫

�

dxdy ϕ(x)ϕ(y)Ex

⎡

⎣

⎛

⎝
β∫

0

h(Bs) ds

⎞

⎠ e
∫ β

0 f ∗(Bs ) ds1l{B[0,β] ⊂ �} ; Bβ ∈ dy

⎤

⎦

=
∫

�

dx ϕ2(x)Ex

⎡

⎣D( f ∗)
β

β∫

0

h(Bs) ds

⎤

⎦ =
β∫

0

ds Ê
( f ∗) [h(Bs)] ,

where Ê
( f ∗) is expectation with respect to the Girsanov transform with martingale

(D( f ∗)
β )β≥0 defined in (2.2), starting in its invariant distribution, ϕ2(x) dx = p(dx).

Note that the transformed Brownian motion does not leave � and is stationary, when
started with distribution p. Hence, Ê

( f ∗)[h(Bs)] = 〈h, p〉 for any s ∈ [0,∞). There-
fore f = f ∗ solves the variational equation and is a maximiser on the right hand side
of (2.5). Hence,

J (sym)
� (p) ≤ β〈 f ∗, p〉 = −β〈�ϕ, ϕ〉 = β||∇ϕ||22 = β I�(p).

Now we finish the proof. Let p ∈ M1(R
d) be arbitrary with support in�. We need

to show that J (sym)
� (p) ≤ β I�(p). Certainly, we may assume that ϕ =

√
d p
dx exists and

lies in H1
0 (�

◦). Hence, there is a sequence of smooth functions ϕn ∈ C∞ such that
supp(ϕn) ⊂ �◦ and ϕn → ϕ in H1-norm.

We need to approximate ϕn with suitable smooth functions ϕ̃n such that �ϕ̃n
ϕ̃n

is
continuous in �. For this purpose, choose δn > 0 such that supp(ϕn) ⊂ �δn =
{x ∈ � : dist(x,�c) ≥ δn}. Pick some small εn > 0 and some smooth function
κn : R

d → [0, 1] satisfying supp(κn) ⊂ �◦ and κn(x) = 1 for x ∈ �δn such that

�κn/κn and ∇κn/κn are continuous in �. Then we put ϕ̃n = κ
1/2
n (ϕ2

n + εn)
1/2. Then

ϕ̃n is smooth with support in �◦, and ϕ̃n converges towards ϕ in L2. Furthermore,
�ϕ̃n
ϕ̃n

is continuous in�. If εn is small enough (depending on δn and κn only), we also
have that lim supn→∞ ‖∇ϕ̃n‖2 ≤ ‖∇ϕ‖2 (use that ϕn(x) = 0 for x ∈ � \�δn ).

Along a suitable subsequence, ϕ̃n converges almost everywhere to ϕ. Let pn ∈
M1(R

d) be the measures with density ϕ̃n/‖ϕ̃n‖2. By the second step of the proof, we
have J (sym)

� (pn) ≤ β I�(pn) for any n ∈ N. With the help of Fatou’s lemma, we see
that 〈 f, p〉 ≤ lim infn→∞〈 f, pn〉 for any f ∈ C(�). Hence, it is clear that

J (sym)
� (p) ≤ lim inf

n→∞ J (sym)
� (pn) ≤ lim inf

n→∞ β I�(pn) ≤ β I�(p).

This ends the proof. ��

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. The following is a reformulation of that theorem,
making explicit what a large deviations principle is.

Theorem 3.1 (Reformulation of Theorem 1.1) Fix β ∈ (0,∞) and m ∈ M1(R
d).
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(i) Assume that m has compact support. Then, for any open set G ⊂ M1(C),

lim inf
N→∞

1

N
log P

(sym)
m,N (L N ∈ G) ≥ − inf

µ∈G
I (sym)
m (µ). (3.1)

(ii) For any compact set F ⊂ M1(C),

lim sup
N→∞

1

N
log P

(sym)
m,N (L N ∈ F) ≤ − inf

µ∈F
I (sym)
m (µ), (3.2)

(iii) The sequence of distributions of L N under P
(sym)
m,N is exponentially tight.

An outline of the proof is in Sect. 3.1. The respective parts of Theorem 3.1 are
proved in the remaining subsections.

3.1 Outline of the proof

Let us briefly outline the main idea in the proof of Theorem 3.1(i) and (ii). The
methods of the proof consist of a discretisation argument similar to [24], combined
with combinatorial considerations (see, e.g. [1]) and large-deviations arguments.

For technical reasons, we first replace R
d by a large ball�, which contains supp(m)

in the proof of the lower bound, respectively is later sent to R
d in the proof of the upper

bound. The first main idea is that there is no problem in proving a large deviations prin-
ciple for L N under a measure of the form

⊗
r,s(P

β
xr ,xs )

⊗Nη(r,s) if the integers Nη(r, s)
sum up to N over a finite index set of r ’s and s’s, and if the xr ∈ � are fixed. Such a
large deviations principle follows in a standard way from the Gärtner-Ellis Theorem
[10, Theorem 4.5.20]. Here we consider the mean of N random variables δB(i) , who are
independent, but not identically distributed, but the number of distributions is fixed.

However, the problem is that, in (1.1), for fixed σ ∈ SN and for fixed integration
variables x1, . . . , xN , the variety of measures P

β
xr ,xs appearing is much too large for an

application of this idea; the complexity is too high. Therefore, we introduce a partition
of � into finitely many small subsets Ur . For any s, we treat all P

β
xi ,xσ(i) as equal if

xσ(i) lies in the same Us . More precisely, we relax the condition that the motion ends
precisely in xσ(i) by the requirement that it ends somewhere in Us . If the fineness is
small enough, the replacement error will be small. Then we integrate out with respect
to m over all xi within their partition set Ur , say. In this way, we have replaced the
‘microscopic’ picture of the P

β
xi ,xσ(i) by a ‘macroscopic’ one that registers only the

partition sets, Ur and Us , in which the motion starts and terminates, respectively. This
we do for any r and s simultaneously. In this way, we now obtain a finite complexity
of different types of Brownian bridges, ordered according to their initial and terminal
partition sets. Say, for any r, s, we have Nη(r, s) motions that start in Ur and end in
Us . Certainly, we have to sum over all admissible multi-indices η.

So far, we have not talked about the role of the permutations. For a given admissible
η and given integration variables x1, . . . , xN , only thoseσ ∈ S contribute that have the
property that, for any r, s, precisely Nη(r, s) indices i satisfy xi ∈ Ur and xσ(i) ∈ Us .
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98 S. Adams, W. König

The point is that these σ ’s yield precisely the same contribution. Therefore only their
cardinality is to be examined. This causes some combinatorial work that can be done in
an elementary way. The result is expressible in terms of quotients of factorials, which
can asymptotically be well approximated by entropies, using Stirling’s formula. In this
way, one arrives at a discrete version of the variational formula on the right hand sides
of (3.1) and (3.2), respectively. Some analytical work has to be done when letting the
fineness of the partition vanish.

3.2 Proof of Theorem 3.1(i)

We have to introduce some notation, which will be used frequently in the entire section.
For any compact set � ⊂ R

d and any partition U = {Ur : r ∈ �} of � we denote
by fU = maxr∈� diam(Ur ) its fineness. We always tacitly assume that the sets Ur

are measurable and satisfy m(Ur ) > 0 for any r ∈ �. In particular, for the proof of
the lower bound (3.1), we choose � such that supp (m) ⊂ �. By m(r) = mU (r) =
m(Ur )/m(�) we denote the coarsened and normalised version of m on �; hence
m ∈ M1(�). Furthermore, we introduce the set of probability measures η on �2

having equal marginals η(r) = ∑
s∈� η(r, s):

M(s)
1 (�

2) =
{
η ∈ M1(�

2) :
∑

s∈�
η(r, s) =

∑

s∈�
η(s, r), ∀r ∈ �

}
. (3.3)

Additionally, let M(N )
1 (�2) = M1(�

2) ∩ 1
N N

�2

0 be the set of those pair measures η

such that all the numbers Nη(r, s) are integers, and M(s,N )
1 (�2) = M(s)

1 (�
2)∩ 1

N N
�2

0 .
We also need to introduce the probability measure

Pβ
η,N ,U =

⊗

r,s∈�

(
P
β
Ur ,Us

)⊗Nη(r,s)
, η ∈ M(s,N )

1 (�2), (3.4)

where

P
β
Ur ,Us

=
∫

Ur

m(dx)

m(Ur )
Px (·|Bβ ∈ Us)=

∫

Ur ×Us

m(dx)pβ(x, y)dy

m(Ur )
∫

Us
pβ(x, z)dz

P
β
x,y for r, s ∈�,

(3.5)

is a coarsened version of the Brownian bridge measure, see (1.5). The entropy of
measures on �2 is also denoted by H , that is,

H(η|η ⊗ m) =
∑

r,s∈�
η(r, s) log

η(r, s)

η(r)m(s)
(3.6)

is the relative entropy of η ∈ M(s)
1 (�

2) with respect to the product η ⊗ m. By d we
denote the Lévy metric on M1(C), which generates the weak topology; see (3.13)
below. By dist(µ, A) = infν∈A d(µ, ν) we denote the distance to a set A ⊂ M1(C).
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Our first main step is presented now; it basically summarises all combinatorial
arguments needed in the proof of Theorem 3.1(i).

Proposition 3.2 Let an open set G ⊂ M1(C) be given, fix δ > 0 and put Gδ = {µ ∈
G : dist(µ,Gc) > δ}. Let� ⊂ R

d be a compact set such that supp (m) ⊂ � and pick
any partition U = {Ur : r ∈ �} of � with fineness ≤ δ. Then, for any N ∈ N,

P
(sym)
m,N (L N ∈ G) ≥ (C N )−

1
2 (��)

2 ∑

η∈M(s,N )
1 (�2)

e−N H(η|η⊗m)Pβ
η,N ,U (L N ∈ Gδ),

(3.7)

where C ∈ (0,∞) is an absolute constant, introduced in (3.24) below.

Proof According to (1.1),

P
(sym)
m,N (L N ∈ G) = 1

N !
∑

σ∈SN

∫

�N

m(dx1) . . .m(dxN )

(
N⊗

i=1

P
β
xi ,xσ(i)

)
(L N ∈ G).

(3.8)

Let U = {Ur : r ∈ �} a partition of �. Hence, � = ⋃
r∈� Ur , and Ur ∩ Us = ∅ for

r �= s. We split the integration over � into sums of integrations over the subsets as

∫

�N

=
∑

r1,...,rN ∈�

∫

Ur1

· · ·
∫

UrN

. (3.9)

For the ease of notation we sometimes write r(i) instead of ri . Using (3.9), we can
estimate

P
(sym)
m,N (L N ∈ G)

= 1

N !
∑

σ∈SN

∑

r1,...,rN ∈�

∫

Ur1

m(dx1) · · ·
∫

UrN

m(dxN )

N⊗

i=1

(
P
β
xr(i),xr(σ (i))

)
(L N ∈ G)

≥ 1

N !
∑

σ∈SN

∑

r1,...,rN ∈�

∫

Ur1

m(dx1) · · ·
∫

UrN

m(dxN )

× inf
yi ∈Ur(i),1≤i≤N

(
N⊗

i=1

P
β
xr(i),yσ(i)

)
(L N ∈ G). (3.10)

Introduce

P
β
Ur ,y

=
∫

Ur

m(dx)

m(Ur )
P
β
x,y, y ∈ R

d , r ∈ �. (3.11)
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Using this notation, (3.10) reads

P
(sym)
m,N (L N ∈ G)

≥ 1

N !
∑

σ∈SN

∑

r1,...,rN ∈�

N∏

i=1

m(ri ) inf
yi ∈Ur(i),1≤i≤N

(
N⊗

i=1

P
β
Ur(i),yσ(i)

)
(L N ∈ G). (3.12)

In the following we replace the measures P
β
Ur(i),yi

on the right hand side of (3.12)

with the measures P
β
Ur ,Us

defined in (3.5). To that end, we need to make the set G
a bit smaller, more precisely, we have to replace it by the set Gδ . Recall the Lévy
metric d on the Polish space M1(C) [11], defined for any two probability measures
µ, ν ∈ M1(C) as

d(µ, ν) = inf{δ > 0 : µ(�) ≤ ν(�δ)+ δ and ν(�) ≤ µ(�δ)+ δ for all � = � ⊂ C},
(3.13)

where Fδ = {µ ∈ M1(C) : dist(µ, F) ≤ δ} is the closed δ-neighbourhood of F .

Lemma 3.3 Let δ > 0. Pick a partition U with fineness fU ≤ δ. Then, for any
r1, . . . , rN ∈ �, any y1 ∈ Ur(1), . . . , yN ∈ Ur(N ) and any σ ∈ SN , we have,

(i) for any open set G ⊂ M1(C),

N⊗

i=1

P
β
Ur(i),yσ(i)

(L N ∈ G) ≥
N⊗

i=1

P
β
Ur(i),Ur(σ (i))

(L N ∈ Gδ), (3.14)

(ii) for any closed set F ⊂ M1(C),

N⊗

i=1

P
β
Ur(i),yσ(i)

(L N ∈ F) ≤
N⊗

i=1

P
β
Ur(i),Ur(σ (i))

(L N ∈ Fδ). (3.15)

Proof For any i = 1, . . . , N , we construct a Brownian bridge B(i) under the measure
P
β
Ur(i),yσ(i)

and a conditioned Brownian motion B̃(i) under the measure P
β
Ur(i),Ur(σ (i))

jointly on one probability space as follows. Let W1, . . . ,WN be independent Brownian
motions on [0, β] starting with distributions mUr(1) , . . . ,mUr(N ) , respectively, where

mUr := m|Ur
m(Ur )

for r ∈ �. Put, for t ∈ [0, β],

B(i)
t = Wi (t)+ t

β
(yσ(i) − Wi (β)),

B̃(i)
t = Wi (t)+ t

β
(Zσ(i) − Wi (β)),
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where Zσ(i) has distribution P
β
Ur(i),Ur(σ (i))

◦ B−1
β and is independent of W1, . . . ,WN .

Since diam Ur(σ (i)) ≤ δ, we have ||B(i) − B̃(i)||∞ ≤ δ. This implies that

d

(
1

N

N∑

i=1

δB(i) ,
1

N

N∑

i=1

δB̃(i)

)
≤ δ,

and therefore both assertions. ��

Using Lemma 3.3, we arrived, for any δ > 0, at the estimate

P
(sym)
m,N (L N ∈ G) ≥ 1

N !
∑

σ∈SN

∑

r1,...,rN ∈�

N∏

i=1

m(ri )

(
N⊗

i=1

P
β
Uri ,Ur(σ (i))

)
(L N ∈ Gδ),

(3.16)

for any partition U of�with fineness fU ≤ δ, where Gδ = {µ ∈ G : dist(µ,Gc) > δ}.
An important observation is that the probability term on the right of (3.16) does not

really depend on the full information contained in σ and r1, . . . , rN , but only on the
frequency of all the pairs ∈ �2 in the sequence (r1, r(σ (1)), . . . , (rN , r(σ (N ))). In
order to take advantage of this observation, we rewrite the right hand side of (3.16) in
terms of probability measures η on �2. For η ∈ M(s,N )

1 (�2) and R = (r1, . . . , rN ) ∈
�N , let

SN (R, η) = {
σ ∈ SN : �{i : ri = r, rσ(i) = s} = Nη(r, s), ∀r, s ∈ �}

(3.17)

be the set of those permutations σ such that η is equal to the empirical measure of
the sequence (r1, r(σ (1)), . . . , (rN , r(σ (N ))). Recall the path probability measures
Pβ
η,N ,U defined in (3.4) and note that

N⊗

i=1

P
β
Uri ,Ur(σ (i))

= Pβ
η,N ,U , η ∈ M(s,N )

1 (�2), σ ∈ SN (R, η), r1, . . . , rN ∈ �.
(3.18)

Note that the measure in (3.18) does not depend on σ , as long as σ ∈ SN (R, η). Fur-
thermore, note that η is the empirical measure of the configuration R = (r1, . . . , rN ),
and therefore

N∏

i=1

m(ri ) =
∏

r∈�
m(r)Nη(r). (3.19)

On the right hand side of (3.16), we insert a sum on η ∈ M(s,N )
1 (�2) and restrict

the sum on σ to σ ∈ SN (R, η). Substituting (3.18) and (3.19), we arrive at

P
(sym)
m,N (L N ∈ G)

≥
∑

η∈M(s,N )
1 (�2)

(
∏

r∈�
m(r)Nη(r)

)
Pβ
η,N ,U (L N ∈ Gδ)

1

N !
∑

R∈�N

�SN (R, η). (3.20)
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Now we compute the counting term
∑

R∈�N �SN (R, η). For R = (r1, . . . , rN )

and σ ∈ SN , we write Rσ = (r(σ (1)), . . . , r(σ (N ))). Let L(R)(r) = 1
N �{i ∈

{1, . . . , N } : ri = r} denote the empirical measure of the configuration R. In the fol-
lowing, we also sum over all configurations ψ = Rσ with empirical measure L(ψ).
Then, for any η ∈ M(s,N )

1 (�2), we compute

∑

R∈�N

�SN (R, η)

=
∑

σ∈SN

∑

R∈�N

∑

ψ∈�N

1l{Rσ = ψ}1l{∀r, s : #{i : ri = r, ψi = s} = Nη(r, s)}

=
∑

R∈�N :
η=L(R)

∑

ψ∈�N :
η=L(ψ)

1l{∀r, s : #{i : ri = r, ψi = s} = Nη(r, s)}
∑

σ∈SN

1l{Rσ = ψ}

= N !∏
r∈�(Nη(r))!

∑

ψ∈�N

1l{∀r, s : #{i : ri = r, ψi = s} = Nη(r, s)}
∏

r∈�
(Nη(r))!.

(3.21)

The last equality is explained as follows. First, it is easy to see that, for fixed R, ψ
having empirical measures equal to η, there are precisely

∏
r∈�(Nη(r))! permutations

of the coefficients of R which are indistinguishable from ψ . Second, observe that the
term

∑

ψ∈�N :
η=L(ψ)

1l{∀r, s : #{i : ri = r, ψi = s} = Nη(r, s)}

does not depend on R as long as L(R) = η. It is elementary that the number of confi-
gurations R, whose empirical measure is equal to η, is equal to N !/∏

r∈�(Nη(r))!.
Now the remaining counting factor may be evaluated using

∑

ψ∈�N

1l{∀r, s : #{i : ri = r, ψi = s} = Nη(r, s)} =
∏

r∈�(Nη(r))!∏
r,s∈�(Nη(r, s))! , (3.22)

as is e.g. seen via a well-known formula for the number of Euler trails in a complete
graph (cf. [1] and references therein), but also follows from elementary combinatorial
considerations. Thus we get from (3.20)

P
(sym)
m,N (L N ∈ G)

≥
∑

η∈M(s,N )
1 (�2)

(
∏

r∈�
m(r)Nη(r)

) ∏
r∈�(Nη(r))!∏

r,s∈�(Nη(r, s))! Pβ
η,N ,U (L N ∈ Gδ). (3.23)

Using Stirling’s formula, we know that there is an absolute constant C ∈ (0,∞) such
that
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1 ≤ N !
(N/e)N

√
2πN

≤
√

C

2π
for any N ∈ N. (3.24)

Hence one sees that, for any η ∈ M(s,N )
1 (�2),

(
∏

r∈�
m(r)Nη(r)

) ∏
r∈�(Nη(r))!∏

r,s∈�(Nη(r, s))! ≥ (C N )−
1
2 (��)

2
e−N H(η|η⊗m). (3.25)

Here H is the entropy made explicit in (3.6). Substituting (3.25) in (3.23), we arrive
at the assertion. ��

Now we let the partition U = UN = {U (N )
r : r ∈ �N } depend on N such that the

fineness fUN vanishes. We also write m N (r) = m(U (N )
r )

m(�) for r ∈ �N , and HN for the

relative entropy of pair measures on �2
N .

The proof of Theorem 3.1(i) directly follows from a combination of Proposition 3.2
and the following.

Proposition 3.4 There is a sequence (UN )N∈N of partitions UN = {U (N )
r : r ∈ �N }

of � satisfying δN = fUN → 0 and ��N = o(N 1/4) such that

lim inf
N→∞

1

N
log

⎛

⎜⎝
∑

η∈M(s,N )
1 (�2

N )

e−N HN (η|η⊗m N )Pβ
η,N ,UN

(L N ∈ GδN )

⎞

⎟⎠

≥ − inf
µ∈G

I (sym)
m (µ).

(3.26)

Proof Recall (1.6)–(1.8). It suffices to construct, for anyµ ∈ G and q ∈ M(s)
1 ((R

d)2),
some µN ∈ M(s,N )

1 (�2
N ) such that

lim sup
N→∞

(
HN (ηN |ηN ⊗m N )− 1

N
log PβηN ,N ,UN

(L N ∈ GδN )

)
≤ H(q|q ⊗ m)+ I (q)(µ).

(3.27)

Fixµ ∈ G and q ∈ M(s)
1 ((R

d)2). We may assume that H(q|q⊗m) < ∞. This implies
that supp (q) ⊂ �×�, because H(q|q ⊗m) = H(q|q ⊗q)+ H(q|m) and the support
of m is contained in �. We choose a sequence of partitions UN = {U (N )

r : r ∈ �N } of
� such that ��N = o(N 1/4) and δN = fUN → 0 as N → ∞. We write Ur = U (N )

r
for any r ∈ �N in the following.

First consider η ∈ M(s)
1 (�

2
N ) defined by η(r, s) = q(Ur × Us), r, s ∈ �N . The

sequence of probability measures q̃N ∈ M(s)
1 ((R

d)2) having Lebesgue density

q̃N (dx, dy)

dx dy
=

∑

r,s∈�N

η(r, s)

|Ur × Us |1lUr ×Us (x, y),
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is easily seen to converge weakly towards q as N → ∞. The main technical task
consists in finding a measure ηN in M(s,N )

1 (�2
N ) that approximates η well enough:

Lemma 3.5 Let (UN )N∈N be a sequence of partitions UN = {U (N )
r : r ∈ �N } of �

satisfying δN = fUN → 0 and ��N = o(N 1/4). Then, for any N sufficiently large
and for any η ∈ M(s)

1 (�
2
N ), there is ηN ∈ M(s,N )

1 (�2
N ) such that

max
r,s∈�N

|η(r, s)− ηN (r, s)| ≤ 2
(��N )

2

N
. (3.28)

Proof Due to the assumption that ��N = o(N 1/4), we may assume that there is a
(r0, s0) ∈ �2

N with

η(r0, s0) ≥ 2
(��N )

2

N
for all N ∈ N, (3.29)

because, if otherwise all entries are strictly smaller than 2(��N )
2/N , then η would

have, for all large N , total mass
∑

r,s∈�N
η(r, s) < 2(��N )

2(��N )
2/N < 1. Without

loss of generality, we assume that r0 �= s0. The case r0 = s0 is in fact easier and
follows analogously. We denote by �x� the largest integer smaller or equal to x ∈ R+.
We define ηN : �N ×�N → R by

ηN (r, s) = �Nη(r, s)�
N

for r ∈ �N \ {r0}, s ∈ �N \ {s0}; (3.30)

ηN (r, s0) = �Nη(r)�
N

−
∑

s∈�N \{s0}
ηN (r, s) for r ∈ �N \ {r0}; (3.31)

ηN (r0, s) = �Nη(s)�
N

−
∑

r∈�N \{r0}
ηN (r, s) for s ∈ �N \ {r0, s0}; (3.32)

ηN (r0, r0) = 1 −
∑

r∈�N \{r0}

�Nη(r)�
N

−
∑

r∈�N \{r0}
ηN (r, r0); (3.33)

ηN (r0, s0) = 1 −
∑

(r,s)∈�2
N :

(r,s) �=(r0,s0)

ηN (r, s). (3.34)

Obviously, ηN (r, s) ∈ 1
N Z for any r, s ∈ �N . Furthermore, by (3.34), they sum up

to one. It remains to show that ηN (r, s) ≥ 0 for any r, s ∈ �N , that ηN satisfies the
marginal property, and that (3.28) holds.

From (3.30) it is clear that 0 ≤ ηN (r, s) ≤ η(r, s) for r ∈ �N \ {r0} and s ∈
�N \ {s0}. Using the estimate �x + y� ≥ �x� + �y� for any x, y ∈ R+, we see from
(3.31) and (3.32) that ηN (r, s0) ≥ 0 for r ∈ �N \ {r0} as well as ηN (r0, s) ≥ 0 for
s ∈ �N \ {r0, s0}. Using �x� ≤ x we estimate

ηN (r0, r0) ≥ 1 −
∑

r∈�N \{r0}
η(r)−

∑

r∈�N \{r0}
η(r, r0) = η(r0)−

∑

r∈�N \{r0}
η(r, r0) ≥ 0.
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Using now the estimate x − 1/N ≤ �N x� /N ≤ x for x ∈ R+, we see from (3.31)
that ηN (r, s0) ≤ η(r, s0) + (��N − 1)/N for any r ∈ �N \ {r0}, and we see from
(3.32) that ηN (r0, s) ≤ η(r0, s)+ (��N −1)/N for any s ∈ �N \{r0, s0}. In the same
way, we see from (3.33) that

ηN (r0, r0) ≤ 1 −
∑

r∈�N \{r0}
η(r)+ 2

��N − 1

N
−

∑

r∈�N \{r0}
η(r, r0) = η(r0, r0)

+2
��N − 1

N
.

Using all the preceding estimates, we see that

∑

(r,s)∈�2
N :

(r,s) �=(r0,s0)

ηN (r, s) ≤
∑

(r,s)∈�2
N :

(r,s) �=(r0,s0)

η(r, s)+ 2
(��N − 1)2

N
+ 2

��N − 1

N
,

and (3.34) implies that ηN (r0, s0) ≥ η(r0, s0)− 2(��)2/N , which is nonnegative by
(3.29). Hence, we have shown that ηN is a probability measure on �N × �N . From
the preceding, it is also clear that (3.28) holds.

It remains to show the marginal property of ηN . The first marginals, i.e. the sum
over the right entries, are identified as

∑

s∈�N

ηN (r, s) = �Nη(r)�
N

for r ∈ �N \ {r0} and
∑

s∈�N

ηN (r0, s)

= 1 −
∑

r∈�N \{r0}

�Nη(r)�
N

. (3.35)

We check that they coincide with the second marginals, i.e. the sums over the left
entries. For r ∈ �N \ {r0, s0} we get from (3.30) and (3.31) that

∑
s∈�N

η(N )(s, r) =
�Nη(r)�

N ; hence the marginals coincide for r ∈ �N \ {r0, s0}. Using (3.33) we see that
∑

r∈�N
ηN (r, r0) = ηN (r0, r0)+∑

r∈�N \{r0} ηN (r, r0) = 1−∑
r∈�N \{r0}

�Nη(r)�
N , and

hence the marginals coincide also in r0. Since all marginals of ηN are probability mea-
sures on�N , the two marginals coincide also in s0. This shows that ηN ∈ M(s,N )

1 (�2
N ).��

Let ηN be as in Lemma 3.5 for η defined by η(r, s) = q(Ur × Us) as above.
Consider the probability measures qN ∈ M(s)

1 (R
d × R

d), having Lebesgue density

qN (dx, dy)

dx dy
=

∑

r,s∈�N

ηN (r, s)

|Ur × Us |1lUr ×Us (x, y).
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From (3.28) and the convergence of q̃N towards q we have that also qN converges
weakly towards q. To see this, note that for any g ∈ Cb(R

d × R
d),

|〈g, q〉 − 〈g, qN 〉| ≤ |〈g, q〉 − 〈g, q̃N 〉 |
+

∑

r,s∈�N

∫

Us

∫

Ur

|η(r, s)− ηN (r, s)|
|Ur × Us | |g(x, y)| dxdy

≤ o(1)+ 2||g||∞
∑

r,s∈�N

(��N )
2

N
≤ o(1)

+2||g||∞ (��N )
4

N
= o(1), as N → ∞. (3.36)

Observe that the marginals q N of qN have Lebesgue density x �→ ∑
r∈�N

ηN (r)1lUr

(x)/|Ur |; in particular q N (Ur ) = ηN (r). Note further that the relative entropy can be
written as

H(qN |q N ⊗ m) = H(q N |m)+ H(qN |q N ⊗ q N ). (3.37)

Jensen’s inequality, applied for the function ϕ(z) = z log z, gives for the first entropy
on the right of (3.37),

H(q N |m) =
∫

Rd

dm
dq N

dm
log

dq N

dm
=

∑

r∈�N

m(Ur )

∫

Ur

dm

m(Ur )
ϕ

(
dq N

dm

)

≥
∑

r∈�N

m(Ur )ϕ

⎛

⎜⎝
∫

Ur

dm

m(Ur )

dq N

dm

⎞

⎟⎠ =
∑

r∈�N

q N (Ur ) log
q N (Ur )

m(Ur )

=
∑

r∈�N

ηN (r) log
ηN (r)

m N (r)
= HN (ηN |m N ). (3.38)

In the same way one shows that H(qN |q N ⊗ q N ) ≥ HN (ηN |ηN ⊗ ηN ), resulting in

H(qN |q N ⊗ m) ≥ HN (ηN |ηN ⊗ m N ).

By [21, Proposition. 15.6], we have limN→∞ H(qN |qN ⊗m) = H(q|q ⊗m). Hence,
we have shown that

lim sup
N→∞

HN (ηN |ηN ⊗ m N ) ≤ H(q|q ⊗ m).

That is, we have shown the first half of (3.27).
In our final step, we are going to use the Gärtner-Ellis Theorem to deduce that

lim inf
N→∞

1

N
log Pβ

ηN ,N ,UN
(L N ∈ Gδ) ≥ −I (q)(µ).
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For doing this, we first introduce, for any 	 ∈ Cb(C),

LN (	) := log E
β

ηN ,N ,UN

[
eN 〈	,L N 〉] = log

⎛

⎝
∏

r,s∈�N

E
β
Ur ,Us

[
e	(B)

]NηN (r,s)

⎞

⎠

= N
∑

r,s∈�N

ηN (r, s) log E
β
Ur ,Us

[
e	(B)

]

= N
∫

Rd

∫

Rd

qN (dx, dy) log E
β
UrN (x),UrN (y)

[
e	(B)

]
, (3.39)

where rN (x) ∈ �N is defined by x ∈ UrN (x). From the proof of Lemma 3.3 it is easily
seen that

lim
N→∞ E

β
UrN (x),UrN (y)

[
e	(B)

]
= E

β
x,y

[
e	(B)

]
,

uniformly in x, y ∈ �. Recall that qN → q as N → ∞ weakly. Hence, the limit
L(	) = limN→∞ 1

N LN (	) exists, and

L(	) =
∫

Rd

∫

Rd

q(dx, dy) log E
β
x,y

[
e	(B)

]
.

Since it is easily seen that L is lower semi continuous and Gâteaux differentiable, and
by the exponential tightness of the family (Pβ

ηN ,N ,UN
)N∈N (see Lemma 3.10), [10,

4.5.27] implies that

lim inf
N→∞

1

N
log Pβ

ηN ,N ,UN
(L N ∈ Gδ) ≥ −I (q)(µ). (3.40)

This shows the second half of (3.27) and ends the proof. ��

3.3 Proof of Theorem 3.1(ii)

Our proof of the upper bound uses the same machinery as the proof of the lower
bound. Recall that we assume that m is a probability measure on R

d , not necessarily
having compact support. Also recall the notation from the beginning of Sect. 3.2, in
particular, the partition U = {Ur : r ∈ �} of a given set � ⊂ R

d and (3.3)–(3.6).
In the following, we will have to work with probability measures on � × � that

satisfy the marginal property only approximatively. For ε ∈ (0, 1) and n ∈ N introduce
the set

M(ε)

1 (�
2) =

{
η ∈ M1(�

2) : d(η(1), η(2)) ≤ 2ε
}
,
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where d is some metric on M1(�
2) that induces the weak topology, and η(1) and η(2) are

the two marginal measures of η. By M(ε,n)
1 (�2) we denote the set M(ε)

1 (�
2)∩ 1

n N
�2

0 .
Our first main step is the following.

Proposition 3.6 (Combinatorics) Fix a closed set F ⊂ M1(C) and a compact set
� ⊂ R

d . Then, for any δ > 0, any partition U of � having fineness fU ≤ δ and for
any ε > 0 and N ∈ N,

P
(sym)
m,N (L N ∈ F) ≤ 2N m(�c)εN + (C N )

1
2 (��)

2
eNCε

∑

(1−2ε)N<n≤N

×
∑

η∈M(ε,n)(�2)

e−nH(η|m⊗η(2))Pβ
η,n,U (Ln ∈ F2ε+δ), (3.41)

where C > 0 is given in (3.24), and Cε > 0 vanishes as ε ↓ 0.

Proof Consider (1.1). We split each of the N integrations over the starting points of
the Brownian bridges into an integration over � and over the complement �c. Thus
we can write

∫

(Rd )N

=
∑

a∈{1,c}N

∫

�a1

· · ·
∫

�aN

, (3.42)

where we used the notation �1 = �. The sum on a is split into the two sums where
more than εN integrals are on � and the remainder:

∫

(Rd )N

=
∑

a∈{1,c}N :
�{i : ai =c}≥εN

∫

�a1

· · ·
∫

�aN

+
∑

a∈{1,c}N :
�{i : ai =1}>(1−ε)N

∫

�a1

· · ·
∫

�aN

. (3.43)

Using this in (1.1), we write P
(sym)
m,N = P

(sym),I
m,N + P

(sym),I I
m,N , with obvious notation. It is

clear that

P
(sym),I
m,N (L N ∈ F) ≤ 2N m(�c)εN . (3.44)

This is the first term of the right hand side of (3.41), and now we show that the second
part is an estimate for P

(sym),I I
N ,β (L N ∈ F). For doing this, we distinguish all the sets I

of indices i such that ai = 1:

P
(sym),I I
m,N (L N ∈ F) = 1

N !
∑

σ∈SN

∑

I⊂{1,...,N }
�I>(1−ε)N

∑

a∈{1,c}N
I={i : ai =1}

∫

�a1

· · ·
∫

�aN

m(dx1) . . .m(dxN )

(
N⊗

i=1

P
β
xi ,xσ(i)

)
(L N ∈ F).

(3.45)
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In the product over the Brownian bridges we only want to consider those Brownian
bridges whose initial and terminal points are in�. Given σ ∈ SN and I ⊂ {1, . . . , N },
we consider the subset Iσ = {i ∈ {1, . . . , N } : σ(i) ∈ I } = σ−1(I ). We want to
replace the measure

⊗N
i=1 P

β
xi ,xσ(i) by the measure

⊗
i∈Iσ∩I P

β
xi ,xσ(i) , i.e. we want to

forget about all the motions whose initial point xi or whose terminal point xσ(i) is not
in �. We do this by replacing the empirical path measure L N by the empirical path
measure L Iσ∩I , where

L J = 1

�J

∑

i∈J

δB(i) , J ⊂ {1, . . . , N }.

Recall that we work with sets I ⊂ {1, . . . , N } satisfying �I > (1 − ε)N and have
therefore d(L N , L Iσ∩I ) < 2ε, since �(Iσ ∩ I ) > (1 − 2ε)N . Hence, if Fδ = {µ ∈
M1(C) : dist(µ, F) ≤ δ} denotes the closed δ-neighbourhood of F , then

�I > (1 − ε)N �⇒
(

N⊗

i=1

P
β
xi ,xσ(i)

)
(L N ∈ F) ≤

⎛

⎝
⊗

i∈Iσ∩I

P
β
xi ,xσ(i)

⎞

⎠ (L Iσ∩I ∈ F2ε).

(3.46)

Using this in (3.45), we can freely execute the N − �I integrations over those m(dx j )

with j /∈ I since they do not contribute anymore. These integrations may be estimated
from above by one, and we are left with the �I integrations over those xi satisfying
i ∈ I , which means that xi ∈ �. Hence, all the remaining integration areas are equal
to �. Note that then the sum on all a ∈ {1, c}N satisfying I = {i : ai = 1} just yields
a factor of one. This gives

P
(sym),I I
m,N (L N ∈ F)≤ 1

N !
∑

σ∈SN

∑

I⊂{1,...,N }
�I>(1−ε)N

∫

�I

∏

i∈I

m(dxi )

⎛

⎝
⊗

i∈Iσ∩I

P
β
xi ,xσ(i)

⎞

⎠ (L Iσ∩I ∈ F2ε).

(3.47)

Now we introduce a partition U = {Ur : r ∈ �} of � and split the integration over
�I into a sum on integrations like in (3.9):

∫

�I

∏

i∈I

m(dxi ) =
∑

R∈� I

∏

i∈I

∫

Ur(i)

m(dxi ), R = (r(i))i∈I . (3.48)

For fixed R ∈ � I and for multi-indices xi ∈ Ur(i) with i ∈ I , we may estimate

⎛

⎝
⊗

i∈Iσ∩I

P
β
xi ,xσ(i)

⎞

⎠ (L Iσ∩I ∈ F2ε) ≤ sup
yi ∈Ur(i),

i∈I

⎛

⎝
⊗

i∈Iσ∩I

P
β
xi ,yσ(i)

⎞

⎠ (L Iσ∩I ∈ F2ε).

(3.49)
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The right hand side does not depend on the xi with i ∈ I \ Iσ . Hence, after substituting
(3.48) and (3.49) in (3.47), the integrations over xi ∈ Ur(i) with i ∈ I \ Iσ may be
executed freely and their contribution gives a factor of m(r(i)), where we recall that
m(r) = m(Ur ) for r ∈ �. Now we perform the integrations over all the remaining xi ,
i.e. over xi ∈ Ur(i) with i ∈ Iσ ∩ I . Recall the notation in (3.11), to obtain, also using
(3.48) and (3.49),

∫

�I

∏

i∈I

m(dxi )

⎛

⎝
⊗

i∈Iσ∩I

P
β
xi ,xσ(i)

⎞

⎠ (L Iσ∩I ∈ F2ε)

≤
∑

R∈� I

∏

i∈I

m(r(i)) sup
yi ∈Ur(i),

i∈I

⎛

⎝
⊗

i∈Iσ∩I

P
β
Ur(i),yσ(i)

⎞

⎠ (L Iσ∩I ∈ F2ε)

≤
∑

R∈� I

∏

i∈I

m(r(i))

⎛

⎝
⊗

i∈Iσ∩I

P
β
Ur(i),Ur(σ (i))

⎞

⎠ (L Iσ∩I ∈ F2ε+δ). (3.50)

In the last step, we introduced some small δ > 0, assumed that the fineness fU =
maxr∈� diam(Ur ) is smaller than δ, and used Lemma 3.3 (recall the notation in (3.5)).
So far, we have deduced that

P
(sym),I I
m,N (L N ∈ F) ≤ 1

N !
∑

σ∈SN

∑

I⊂{1,...,N }
|I |>(1−ε)N

∑

R∈� I

∏

i∈I

m(r(i))

×
⎛

⎝
⊗

i∈Iσ∩I

P
β
Ur(i),Ur(σ (i))

⎞

⎠ (L Iσ∩I ∈ F2ε+δ). (3.51)

Put n = �(Iσ ∩ I ). Observe that the probability measure
⊗

i∈Iσ∩I P
β
Ur(i),Ur(σ (i))

does
not depend on the full information contained in σ , but only on the frequencies of i ∈ I
such that r(i) = r and r(σ (i)) = s, for any r, s ∈ �. In the next step we add a sum
over pair measures η in M(n)

1 (�
2), the set of probability measures �2 → 1

n N0, and
add the constraint that these frequencies are equal to nη(r, s). Under this constraint,⊗

i∈Iσ∩I P
β
Ur(i),Ur(σ (i))

does not depend on σ , but only on η, such that we may just count
all the σ ’s that satisfy the constraint. Note that these η’s do not necessarily have equal
marginals. More precisely, their left marginal η(1) is equal to the empirical measure of
(ri )i∈Iσ∩I , and its right marginal η(2) is equal to the empirical measure of (rσ(i))i∈Iσ∩I .
However, since n > (1 − 2ε)N , these η’s are elements of the set M(ε,n)

1 defined prior
to the lemma. Thus,

P
(sym),I I
m,N (L N ∈ F)≤

∑

Ĩ⊂I⊂{1,...,N };
n=� Ĩ>(1−2ε)N

∑

η∈M(ε,n)
1 (�2)

∏

r∈�
m(r)nη

(1)(r)

⎛

⎝
⊗

r,s∈�

(
P
β
Ur ,Us

)nη(r,s)

⎞

⎠

×(Ln ∈ F2ε+δ)
∑

R∈� I

∑

σ∈SN

1l{ Ĩ = Iσ ∩ I } 1

N !1l
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×{σ ∈ SN : ∀ r, s : �{i ∈ Ĩ : ri =r, rσ(i)=s}=nη(r, s)}
∏

i∈I\ Ĩ

m(ri )

≤
∑

(1−2ε)N<n≤N

∑

η∈M(ε,n)
1 (�2)

∏

r∈�
m(r)nη

(1)(r)Pβ
η,n,U (Ln ∈ F2ε+δ)

×
∑

Ĩ⊂I⊂{1,...,N };
� Ĩ=n

∑

R∈� I

1

N !�SN (R, Ĩ , η)
∏

i∈I\ Ĩ

m(ri ), (3.52)

where we used the notation in (3.4) and introduced

SN (R, Ĩ , η) = {
σ ∈ SN : ∀ r, s : �{i ∈ Ĩ : ri = r, rσ(i) = s} = nη(r, s)

}
.

Let us estimate the combinatorial terms in the last line of (3.52) as follows. Fix
(1 − 2ε)N < n ≤ N , η ∈ M(ε,n)(�2) and Ĩ ⊂ I ⊂ {1, . . . , N } satisfying � Ĩ = n.
Furthermore, fix R = (ri )i∈I ∈ � I such that η(1) is equal to the empirical measure of
(ri )i∈ Ĩ . We add a sum on ψ ∈ � Ĩ with the constraint that ψ = (rσ(i))i∈ Ĩ . Recall that
L(ψ) ∈ M(n)

1 (�) is the empirical measure of ψ . This gives

�SN (R, Ĩ , η) =
∑

ψ∈� Ĩ

L(ψ)=η(2)

1l{∀ r, s : �{i ∈ Ĩ : ri = r;ψi = s} = nη(r, s)}

×
∑

σ∈SN

1l{ψi = rσ(i), ∀ i ∈ Ĩ }. (3.53)

The last term is written and estimated as follows:

∑

σ∈SN

1l{ψi =rσ(i), ∀ i ∈ Ĩ }=
∑

I ′⊂I : �I ′=� Ĩ

�
{
σ : Ĩ → I ′ bijective : ψi =rσ(i),∀ i ∈ Ĩ

}

×� {
σ : {1, . . . , N } \ Ĩ → {1, . . . , N } \ I ′ bijective

}

≤
(
�I

n

)(
∏

r∈�

(
nη(2)(r)

)!
)
(N − n)!. (3.54)

The remaining term in (3.53) is identified as

∑

ψ∈� Ĩ

L(ψ)=η(2)

1l{∀ r, s : �{i ∈ Ĩ : ri = r;ψi = s} = nη(r, s)} =
∏

r∈�
(
nη(1)(r)

)!
∏

r,s∈� (nη(r, s))! ,

(3.55)

which is derived in the same way as (3.22) above. Note that the estimates in (3.54)–
(3.55) do not depend on R as long as η(1) is equal to the empirical measure of (ri )i∈ Ĩ .
The number of these (ri )i∈I\ Ĩ is equal to n!/∏

r∈�(nη(1)(r))!. We write the sum on
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R ∈ � I as sums on (ri )i∈ Ĩ ∈ � Ĩ and on (ri )i∈I\ Ĩ ∈ � I\ Ĩ . Taking into account the
term

∏
i∈I\ Ĩ m(ri ) in the last line of (3.52), the latter sum can be estimated against

one. Hence, the last line of (3.52) can be estimated as follows.

∑

Ĩ⊂I⊂{1,...,N };
� Ĩ=n

∑

R∈� I

1

N !�SN (R, Ĩ , η)
∏

i∈I\ Ĩ

m(ri )

≤
∑

Ĩ⊂I⊂{1,...,N };
� Ĩ=n

�
{
(ri )i∈ Ĩ ∈ � Ĩ : L

(
(ri )i∈ Ĩ

) = η(1)
}

×
(
�I

n

)∏
r∈�

(
nη(1)(r)

)! ∏
r∈�

(
nη(2)(r)

)!
∏

r,s∈� (nη(r, s))!
(N − n)!

N !

=
(
�I

n

)3

N
n!∏

r∈� (nη(1)(r))!
∏

r∈�
(
nη(1)(r)

)! ∏
r∈�

(
nη(2)(r)

)!
∏

r,s∈� (nη(r, s))!
(N − n)!

N !

≤
(

N

n

)2

N

∏
r∈�

(
nη(2)(r)

)!
∏

r,s∈� (nη(r, s))! . (3.56)

In (3.52), we substitute (3.56) and use Stirling’s formula in a similar way as in (3.25),
to arrive at the assertion. ��

Now we use large-deviation arguments for identifying the large-deviation rate of
the last line of (3.41). Introduce the rate function

I (η)U (µ) = sup
	∈Cb(C)

⎛

⎝〈	,µ〉 −
∑

r,s∈�
η(r, s) log E

β
Ur ,Us

[
e	(B)

]
⎞

⎠ . (3.57)

Lemma 3.7 (Large deviations) Fix a closed set F ⊂ M1(C) and a compact set
� ⊂ R

d . Then, for any ε, δ > 0, and any partition U of � with fineness ≤ δ,

lim sup
n→∞

1

n
log

⎛

⎜⎝
∑

η∈M(ε,n)
1 (�2)

e−nH(η|m⊗η(2))Pβ
η,n,U (Ln ∈ F2ε+δ)

⎞

⎟⎠

≤ − inf
µ∈F2ε+δ

inf
η∈M(ε)

1 (�2)

{
H(η|m ⊗ η(2))+ I (η)U (µ)

}
. (3.58)

Proof From Lemma 3.10 it follows that there is a sequence of compact sets KL ⊂
M1(C) such that

lim
L→∞ lim sup

n→∞
1

n
log

⎛

⎝ sup
U : fU≤ 1

2

sup
η∈M(n)

1 (�2)

Pβ
η,n,U (L N ∈ K c

L)

⎞

⎠ = −∞. (3.59)

Hence, it suffices to assume that F2ε+δ is a compact subset of M1(C).
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We consider the logarithmic moment generating function of the distribution of Ln

under Pβ
η,n,U ,

L(η)

n,U (	) = log Eβ
η,n,U

[
en〈	,Ln〉] = n

∑

r,s∈�
η(r, s) log E

β
Ur ,Us

[
e	(B)

]
. (3.60)

Let now ηn ∈ M(ε,n)
1 (�2) be maximal for η �→ e−nH(η|m⊗η(2))Pβ

η,n,U (Ln ∈ F2ε+δ).
Since M(ε)

1 (�
2) is compact, we may assume that limn→∞ ηn = η for some ηn ∈

M(ε)

1 (�
2). Certainly, the limit

L(η)

U (	) = lim
n→∞

1

n
L(ηn )

n,U (	) =
∑

r,s∈�
η(r, s) log E

β
Ur ,Us

[
e	(B)

]

exists, and is lower semi continuous and Gâteaux differentiable. Observe that I (η)U is
the Fenchel–Legendre transform of �(η)

U . Now the Gärtner–Ellis theorem yields that

lim sup
n→∞

1

n
log Pβ

ηn ,n,U (Ln ∈ F2ε+δ) ≤ − inf
µ∈F2ε+δ

I (η)U (µ).

Since the cardinality of M(ε,n)
1 (�2) is polynomial in n, and by continuity of η �→

H(η|m ⊗ η(2)), the assertion follows. ��
Substituting Lemma 3.7 on the right hand side of (3.41) we obtain that for any

ε > 0, δ > 0, and any compact set � ⊂ R
d and any partition U of � having fineness

smaller than δ

lim sup
N→∞

1

N
log P

(sym)
m,N (L N ∈ F) ≤ − min

{
− log 2 − ε log m(�c),

Cε + inf
µ∈F2ε+δ

inf
η∈M(ε)

1 (�2)

{
H(η|mU ⊗ η(2))+ I (η)U (µ)

} }
. (3.61)

In order to finish the proof of Theorem 3.1(ii), let δ ↓ 0 on the right hand side of
(3.61), replace ε and� by sequences εN ↓ 0 and�N ↑ R

d such that εN log m(�c
N ) →

−∞, and use the following lemma.

Lemma 3.8 Fix a closed set F ⊂ M1(C). Then, for any sequence (εN )N∈N in (0, 1/2]
satisfying εN → 0 as N → ∞ and any sequence (�N )N∈N of compact sets�N ⊂ R

d

satisfying �N ↑ R
d as N → ∞,

lim inf
N→∞ lim inf

δ↓0
inf

µ∈F2εN +δ
inf

η∈M(εN )
1 (�2)

{
H(η|mUN ⊗ η(2))+ I (η)UN

(µ)
}

≥ inf
µ∈F

inf
q∈M(s)

1 (Rd×Rd )

{
H(q|q ⊗ m)+ I (q)(µ)

}
, (3.62)

where UN is a partition of �N with fineness smaller or equal to δ.
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Proof Let us first roughly explain the nature of the argument. We pick approximating
sequences of η’s and µ’s and employ a compactness argument in order to extract a
convergent subsequence. This easily finishes the proof by lower semi continuity. The
compactness argument relies on the compactness of the level sets of the entropy term
(which is well-known) and on that of the I -term, which we derive from exponential
tightness of certain probability measures whose large deviation principle is governed
by the I -term (this is in the spirit of the proof of [10, Lemma 1.2.28 (b)]). Let us come
to the details.

We proceed in two steps. First we consider the limit δ ↓ 0. Fix ε > 0 and a compact
set� ⊂ R

d . Note that there is a compact set K� ⊂ M1(C) such that, for every δ > 0,
the set F2ε+δ can be replaced by F2ε+δ ∩ K� without changing the value of the
infimum on the left hand side of (3.62). This can be seen as follows. From (3.59),
together with the lower bound in the large deviations principle for L N (see the proof
of Proposition 3.4), one deduces that the set {µ ∈ M1(C) : infU ,η I (η)U (µ) ≤ C} is
compact for all C ∈ [0,∞), where the infimum is taken over all partitions U of� and
over all η ∈ M1(�

2) (adapt the proof of [10, Lemma 1.2.28 (b)]). Hence, also the set

K�,C :=
{
µ ∈ M1(C) : inf

U ,η
{

H(η|m ⊗ η(2))+ I (η)U (µ)
} ≤ C

}

is compact. Choosing C large enough we can pick K� = K�,C .
For µ ∈ M1(C) and q ∈ M1(�×�), introduce

I (q)U (µ) = sup
	∈Cb(C)

⎡

⎣〈	,µ〉 −
∫

�

∫

�

q(dx, dy) log E
β
Ur(x),Ur(x)

[
e	(B)

]
⎤

⎦ , (3.63)

where r(x) ∈ � is defined by x ∈ Ur(x). Then we have,

inf
µ∈F2ε+δ∩K�

inf
η∈M(ε)

1 (�2)

{
H(η|mU ⊗ η(2))+ I (η)U (µ)

}

≥ inf
µ∈F2ε+δ∩K�

inf
q∈M(ε)

1 (�2)

{
H(q|mU ⊗ q (2))+ I (q)U (µ)

}
, (3.64)

as is seen from considering

q(dx, dy) =
∑

r,s∈�

η(r, s)

|Ur × Us |1lUr ×Us (x, y) dxdy.

Here mU (dx) = ∑
r∈�

m(r)
|Ur | 1lUr (x)dx ∈ M1(�).

Fix 	 ∈ Cb(C) and note that there is C	,δ > 0 satisfying limδ↓0 C	,δ = 0 such
that, for any q ∈ M1(�

2),
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∫

�

∫

�

q(dx, dy) log E
β
Ur(x),Ur(x)

[
e	(B)

]
≤

∫

�

∫

�

q(dx, dy) log E
β
x,y

[
e	(B)

]
+ C	,δ,

(3.65)

as follows from the proof of Lemma 3.3 (we used that the fineness fU is not larger
than δ). We recall the representation of the entropy as a Legendre transform (see [11,
Lemma 3.2.13]): for any q ∈ M1(�×�),

H(q|mU ⊗ q (2)) = sup
g∈Cb(�×�)

[〈g, q〉 − log〈eg,mU ⊗ q (2)〉] . (3.66)

We now write Uδ instead of U . For δ > 0, letµδ ∈ F2ε+δ ∩ K� and qδ ∈ M(ε)

1 (�
2)

be minimisers for the variational formula on the right hand side of (3.64). Since
� is compact, as δ ↓ 0, along suitable subsequences, µδ and qδ converge weakly
towards suitable µ ∈ F1 ∩ K� and q ∈ M1(�

2), respectively. In particular, q (2)δ
converges weakly towards q (2) and q (1)δ converges weakly towards q (1). Certainly, we
have µ ∈ ∩δ>0 F2ε+δ ∩ K� = F2ε ∩ K� since F2ε is closed, and q ∈ M(ε)

1 (�
2).

From (3.63), (3.65) and (3.66), we have, for any δ > 0,

inf
µ∈F2ε+δ∩K�

inf
q∈M(ε)

1 (�2)

{
H(q|mUδ ⊗ q (2))+ I (q)U (µ)

}

≥ 〈g, qδ〉 − log〈eg,mUδ ⊗ q (2)δ 〉 + 〈	,µδ〉
−

∫

�

∫

�

qδ(dx, dy) log E
β
x,y

(
e	(B)

)
− C	,δ, (3.67)

where g ∈ Cb(� × �) and 	 ∈ Cb(C) are arbitrary. Note that mUδ → m� weakly
as δ ↓ 0, where m� is the conditional distribution of m given �. Hence, mUδ ⊗ q (2)δ
converges, as δ ↓ 0, weakly towards m� ⊗ q (2). Consequently, letting δ ↓ 0 on the
right hand side of (3.67) and recalling (3.64), we obtain that

lim inf
δ↓0

inf
µ∈F2ε+δ∩K�

inf
η∈M(ε)

1 (�2)

{
H(η|m ⊗ η(2))+ I (η)U (µ)

}

≥ 〈g, q〉 − log〈eg,m� ⊗ q (2)〉 + 〈	,µ〉
−

∫

�

∫

�

q(dx, dy) log E
β
x,y

[
e	(B)

]
. (3.68)

Since this holds for any g ∈ Cb(� × �) and 	 ∈ Cb(C), the left hand side is not
smaller than H(q|m�⊗q (2))+ I (q)(µ), where we extended q trivially to a probability
measure on R

d × R
d (with support in �×�). Hence,

l.h.s. (3.68) ≥ inf
µ∈F2ε

inf
q∈M(ε)

1 (Rd×Rd )

{
H(q|m� ⊗ q (2))+ I (q)(µ)

}
. (3.69)
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In the second step of the proof, we replace ε by εN ↓ 0 and � by �N ↑ R
d and

consider the limit as N → ∞. Clearly, m�N → m weakly. For any N ∈ N, pick
µN ∈ F2εN and qN ∈ M(εN )

1 (Rd ×R
d) such that the sequence (H(qN |m�N ⊗q (2)N )+

I (qN )(µN ))N∈N converges to the left hand side of (3.62) and may therefore be assumed
to be bounded. Since

H(qN |m�N ⊗ q (2)N ) = H(q (1)N |m�N )+ H(qN |q (1)N ⊗ q (2)N ),

the sequence (H(q (1)N |m�N ))N∈N is also bounded. Since H(q (1)N |m) = H(q (1)N |m�N ),
the sequence (q (1)N )N∈N is tight, because the level sets of the relative entropy are
compact (see [10, Lemma 6.2.12]). Since d(q (1)N , q (2)N ) ≤ 2εN → 0 as N → ∞,
also (q (2)N )N∈N is tight. By boundedness of (H(qN |q (1)N ⊗ q (2)N ))N∈N, also the set Q :=
{qN : N ∈ N} is tight. According to Prohorov’s theorem, we may assume that qN ⇒ q
for some q ∈ M1(R

d×R
d). Since also q (1)N ⇒ q (1) and q (2)N ⇒q (2) and d(q (1)N , q (2)N )→0,

we have that q ∈ M(s)
1 (R

d × R
d).

For sufficiently large C > 0, the sequence (µN )N∈N is contained in the set {µ ∈
M1(C) : inf N∈N I (qN )(µ) ≤ C}. It turns out that this set is relatively compact. For
proving this, it suffices to find a family of compact sets KL ⊂ C, L > 0, such that

lim
L→∞ inf

q∈Q
inf
K c

L

I (q) = ∞.

Consider a sequence of compact sets�N ↑ R
d (not necessarily those we picked above)

and a sequence of partitions UN = {Ur : r ∈ �N } of �N whose fineness vanishes as
N → ∞. Given q ∈ Q, pick η(q)N ∈ M(N )

1 (�2
N ) such that the probability measures

q (q)N (dx, dy) :=
∑

r,s∈�N

η
(q)
N (r, s)

|Ur × Us |1lUr ×Us (x, y) dxdy

converge weakly to q. Then the sequence of empirical path measures, (L N )N∈N, is
exponentially tight under Pβ

η
(q)
N ,N ,UN

, uniformly in q ∈ Q (see Lemma 3.10). Further-

more, it satisfies a large deviations principle with rate function I (q). This is seen as
follows. The logarithmic moment generating function of L N under Pβ

η
(q)
N ,N ,UN

, defined

in (3.60), is easily shown to converge towards the function	 �→ ∫
Rd

∫
Rd q(dx, dy) log

E
β
x,y[e	(B)]. Since its Fenchel–Legendre transform is equal to I (q), the Gärtner–Ellis

theorem implies the mentioned large deviations principle.
For L ∈ N, pick a compact set KL ⊂ C such that Pβ

η
(q)
N ,N ,UN

(L N ∈ K c
L) ≤ e−N L

for all L , N ∈ N and q ∈ Q. Using the lower bound in the mentioned large deviations
principle, this implies that

inf
q∈Q

inf
K c

L

I (q) ≥ − lim inf
N→∞

1

N
log Pβ

ηN ,N ,UN
(L N ∈ K c

L) ≥ L .

Hence, the sequence (µN )N∈N is tight.
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Therefore, we may assume that µN ⇒ µ for some µ ∈ F (1). Since µN ∈ F (2εN )

for any N ∈ N and since εN → 0, we even have that µ ∈ F , since F is closed. Now
in the same way as we derived (3.69), one derives that (3.62) holds. ��

3.4 Exponential tightness

In this section, we prove the necessary exponential tightness assertions for the sequence
of the empirical path measures under the symmetrised measures, P (sym)

m,N , and under the

mixed product measures, Pβ
ηN ,N ,UN

. The proof of the latter exponential tightness is a
variant of the standard proof for laws of empirical measures. Here, the main ingredient
is the product structure of the probability measure. The proof of the first exponential
tightness exploits a compactification argument due to the starting distribution m ∈
M1(R

d).

Lemma 3.9 Let m ∈ M1(R
d) be the initial distribution. Then the family of distri-

butions of the empirical path measures L N under the symmetrised measure P
(sym)
m,N is

exponentially tight.

Proof The proof is in the spirit of the proof of [10, Lemma 6.2.6]. For l ∈ N, choose
a box Ql ⊂ R

d such that m(Qc
l ) ≤ e−l2

. Furthermore, choose δl > 0 so small that

sup
x,y∈Ql

P
β
x,y

(
sup

|s−t |≤δl
|Bs − Bt | > 1

l

)
≤ e−l2

. (3.70)

Consider

Al =
{

f ∈ C : f (0) ∈ Ql , f (β) ∈ Ql , sup
|s−t |≤δl

| f (s)− f (t)| ≤ 1

l

}
.

According to Arzelà–Ascoli’s theorem, Al is relative compact in C. Put Ml := {µ ∈
M1(C) : µ(Ac

l ) ≤ 1
l } and note that Ml is closed by Portmanteau’s theorem. Let L ∈ N

be given and consider KL := ⋂∞
l=L Ml . It is easy to see that KL is tight, hence K L

is compact by Prohorov’s theorem. We shall show that P
(sym)
m,N (L N ∈ K

c
L) ≤ e−L N for

any N ∈ N, which implies the assertion. Observe that

{L N ∈ Mc
l } ⊂

{
�{i ∈ {1, . . . , N } : B(i) ∈ Ac

l } >
N

l

}

⊂
{
�{i : B(i)

0 ∈ Qc
l } ≥ N

3l

}
∪

{
�{i : B(i)

β ∈ Qc
l } ≥ N

3l

}

∪
{
�

{
i : B(i)

0 ∈ Ql , B(i)
β ∈ Ql , sup

|s−t |≤δl
|B(i)

s − B(i)
t | > 1

l

}
≥ N

3l

}
.
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Clearly,

P
(sym)
m,N

(
�{i : B(i)

β ∈ Qc
l } ≥ N

3l

)

= P
(sym)
m,N

(
�{i : B(i)

0 ∈ Qc
l } ≥ N

3l

)

≤
∑

I⊂{1,...,N } :
|I |≥ N

3l

1

N !
∑

σ∈SN

∫

(Rd )N

N∏

i=1

m(dxi )

N⊗

i=1

Pxi ,xσ(i)

(∀ i ∈ I : B(i)
0 ∈ Qc

l

)

≤
∑

|I |≥ N
3l

m(Qc
l )

|I | ≤ 2N e−l N/3. (3.71)

Furthermore,

P
(sym)
m,N

(
�

{
i : B(i)

0 ∈ Ql , B(i)
β ∈ Ql , sup

|s−t |≤δl
|B(i)

0 − B(i)
β | > 1

l

}
≥ N

3l

)

≤
∑

I⊂{1,...,N } :
|I |≥ N

3l

1

N !
∑

σ∈SN

∫

(Rd )N

N∏

i=1

m(dxi )

N⊗

i=1

P
β
xi ,xσ(i)

(
∀ i ∈ I : B(i)

0 ∈ Ql , B(i)
β ∈ Ql , sup

|s−t |≤δl
|B(i)

s − B(i)
t | > 1

l

)

≤
∑

|I |≥ N
3l

sup
(yi )i∈I ∈QI

l

∫

QI
l

∏

i∈I

m(dxi )
∏

i∈I

P
β
xi ,yi

(
sup

|s−t |≤δl
|B(i)

s − B(i)
t | > 1

l

)

≤
∑

|I |≥ N
3l

e−l N/3 ≤ 2N e−l N/3. (3.72)

Hence,

P
(sym)
m,N (L N ∈ K c

L) ≤
∞∑

l=L

P
(sym)
m,N (L N ∈ Mc

l ) ≤ 3 × 2N
∞∑

l=L

e−l N/3 ≤ 6 × 2N e−N L/3

≤ e−N L/5

for all large N if L > 24. This ends the proof. ��

Now we prove the exponential tightness of the empirical path measures L N under
the measures Pβ

η,N ,U introduced in (3.4). We continue to use the notation introduced
at the beginning of Sect. 3.2.
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Lemma 3.10 Let (�N )N∈N be a sequence of compact subsets of R
d and let (UN )N∈N

be a sequence of partitions UN = {Ur : r ∈ �N } of �N . For any N ∈ N, let ηN be in
M(N )

1 (�2
N ) such that the sequence of probability measures qN defined by

qN (dx, dy) =
∑

r,s∈�N

ηN (r, s)

|Ur × Us |1lUr ×Us (x, y) dxdy,

is tight. Then the families of distributions of the empirical path measures L N and
the one of the means YN of occupation measures under the measures Pβ

ηN ,N ,UN
are

exponentially tight.

Proof We prove the exponential tightness for the empirical path measures, the one for
the means YN follows analogously. As we have seen at the beginning of the proof of
Lemma 3.9, for any l ∈ N there exists a compact set Ql ⊂ R

d such that for all N ∈ N

we have qN ((Ql × Ql)
c) ≤ 1

6l . Furthermore, there exists a compact set �l ⊂ C such
that

sup
x,y∈Ql+1

P
β
x,y(B ∈ �c

l ) ≤ e−2l2
(el − 1). (3.73)

The set Ml = {ν ∈ M1(C) : ν(�c
l ) ≤ 1/ l} is closed by Portmanteau’s theorem.

For L ∈ N define KL = ⋂∞
l=L Ml . By Prohorov’s theorem, each KL is a relative

compact subset of M1(C). We may assume that diam Ur < 1 for any r ∈ �N . Then
Chebycheff’s inequality gives that for any N ∈ N, any partition UN of �N and any
ηN ∈ M(N )

1 (�2
N )

Pβ
ηN ,N ,UN

(L N /∈ Ml)

= Pβ
ηN ,N ,UN

(
L N (�

c
l ) >

1

l

)
≤ Eβ

ηN ,N ,UN

[
e2Nl2(L N (�

c
l )−1/ l)

]

= e−2Nl Eβ
ηN ,N ,UN

[
exp

(
2l2

N∑

i=1

1l{B(i) ∈ �c
l }

)]

= e−2Nl
∏

r,s∈�N

E
β
Ur ,Us

[
exp

(
2l21l{B ∈ �c

l }
)]NηN (r,s)

= e−2Nl
∏

r,s∈�N

(
P
β
Ur ,Us

(B ∈ �l)+ e2l2
P
β
Ur ,Us

(B ∈ �c
l )

)NηN (r,s)

≤ e−2Nl

⎛

⎜⎜⎜⎝
∏

r,s∈�N :
Ur ×Us⊂Q2

l+1

(el)NηN (r,s)

⎞

⎟⎟⎟⎠ (e
3l2
)NqN ((Ql×Ql )

c) ≤ e−Nl/2, (3.74)

where in the last line we also used that [see (3.5)]

P
β
Ur ,Us

(B ∈ �c
l ) ≤ e−2l2

(el − 1) if Ur × Us ⊂ Q2
l+1,
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that 1 + e2l2 ≤ e3l2
and that qN ((Ql × Ql)

c) ≤ 1
6l . Therefore,

Pβ
ηN ,N ,UN

(L N /∈ KL) ≤
∞∑

l=L

Pβ
ηN ,N ,UN

(L N /∈ Ml) ≤
∞∑

l=L

e−Nl/2 ≤ 2e−N L/2,

(3.75)

which implies the exponential tightness. ��

3.5 Proof of Theorem 1.2

In this section we prove Theorem 1.2. We recall that a large-deviation principle for YN

under P
(sym)
m,N with rate function J̃ (sym)

m [see (1.13)] directly follows from the principle
of Theorem 1.1 for L N via the contraction principle [10, Theorem 4.2.1], since YN =
�(L N ), where �(µ) = 1

β

∫ β
0 µ ◦ π−1

s ds. The rate function is given as J̃ (sym)
m defined

in (1.12). Therefore, it suffices to show that J̃ (sym)
m coincides with J (sym)

m introduced
in (1.10). For this, it suffices to show that the two functions J̃ (q) and J (q), defined in
(1.13) and (1.11), coincide for any q ∈ M(s)

1 (R
d × R

d).
Fix q ∈ M(s)

1 (R
d × R

d) and let us first show that J̃ (q) ≥ J (q). Given µ ∈ M1(C),
we specialise the supremum over	 ∈ Cb(C) in the definition (1.8) of I (q) to functions
of the form 	(ω) = 1

β

∫ β
0 ds f (ω(s)) with f ∈ Cb(R

d), to obtain that

I (q)(µ) ≥ sup
f ∈Cb(Rd )

⎧
⎪⎨

⎪⎩

∫

C
µ(dω)

1

β

β∫

0

ds f (ω(s))

−
∫

Rd

∫

Rd

q(dx, dy) log E
β
x,y

[
e

1
β

∫ β
0 f (Bs ) ds

]
⎫
⎪⎬

⎪⎭

= J (q)(�(µ)). (3.76)

Taking the infimum over all µ satisfying �(µ) = p, it is clear that J̃ (q)(p) ≥ J (q)(p)
for any p ∈ M1(R

d).
It remains to show the complementary bound, J̃ (q)(p) ≤ J (q)(p). Proving this

directly in an analytical way seems to cause major difficulties. Therefore, we proceed
in an indirect way by showing that both J̃ (q) and J (q) are the rate function for the
same large deviations principle. By the uniqueness of the rate function, this implies
the assertion [even without using (3.76)].

Measures that satisfy a large deviations principle with rate function I (q) have been
constructed at the end of the proof of Lemma 3.7. Indeed, consider a sequence of
compact sets �N ↑ R

d and a sequence of partitions UN = {Ur : r ∈ �N } of �N
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whose fineness vanishes as N → ∞. Pick ηN ∈ M(N )
1 (�2

N ) such that the probability
measures

qN (dx, dy) :=
∑

r,s∈�N

ηN (r, s)

|Ur × Us |1lUr ×Us (x, y) dxdy

converge weakly to q. According to Lemma 3.10, the sequence of empirical path
measures, (L N )N∈N, is exponentially tight under Pβ

ηN ,N ,UN
. As has been explained

in the proof of Lemma 3.7, it satisfies a large deviations principle with rate function
I (q). According to the contraction principle, the sequence (YN )N∈N satisfies, under the
measures Pβ

ηN ,N ,UN
, a large deviations principle with rate function J̃ (q).

Now we show that (YN )N∈N satisfies, under the measures Pβ
ηN ,N ,UN

, a large
deviations principle with rate function J (q), which ends the proof. For this, we have to
consider the logarithmic moment generating function of YN under Pβ

ηN ,N ,UN
, which

is identified, for any f ∈ Cb(R
d), as

LN ( f ) := log E
β

ηN ,N ,UN

[
eN 〈 f,YN 〉] = log

⎛

⎝
∏

r,s∈�N

E
β
Ur ,Us

[
e
∫ β

0 f (Bs ) ds
]NηN (r,s)

⎞

⎠

= N
∑

r,s∈�N

ηN (r, s) log E
β
Ur ,Us

[
e
∫ β

0 f (Bs ) ds
]

= N
∫

Rd

∫

Rd

qN (dx, dy) log E
β
UrN (x),UrN (y)

[
e
∫ β

0 f (Bs ) ds
]
, (3.77)

where rN (x) ∈ �N is defined by x ∈ UrN (x). From the proof of Lemma 3.3 it is seen
that

lim
N→∞ E

β
UrN (x),UrN (y)

[
e
∫ β

0 f (Bs ) ds
]

= E
β
x,y

[
e
∫ β

0 f (Bs ) ds
]
,

uniformly in x, y on compact sets. Recall that qN → q as N → ∞ weakly. Hence,
the limit L( f ) = limN→∞ 1

N LN ( f ) exists, and

L( f ) =
∫

Rd

∫

Rd

q(dx, dy) log E
β
x,y

[
e
∫ β

0 f (Bs ) ds
]
.

It is easily seen thatL is lower semi continuous and Gâteaux differentiable. Note further
that the Fenchel-Legendre transform of L is equal to J (q). Furthermore, according to
Lemma 3.10, the sequence (YN )N∈N is exponentially tight under (Pβ

ηN ,N ,UN
)N∈N.

Hence, the Gärtner-Ellis theorem [10, 4.5.27] implies that (YN )N∈N satisfies, under
the measures Pβ

ηN ,N ,UN
, a large deviations principle with rate function J (q), which

ends the proof.
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4 Appendix: large deviations

For the convenience of our reader, we repeat the notion of a large-deviation principle
and of the most important facts that are used in the present paper. See [10] for a
comprehensive treatment of this theory.

LetX denote a topological vector space. A lower semi-continuous function I : X →
[0,∞] is called a rate function if I is not identical ∞ and has compact level sets, i.e. if
I −1([0, c]) = {x ∈ X : I (x) ≤ c} is compact for any c ≥ 0. A sequence (X N )N∈N of
X -valued random variables X N satisfies the large-deviation upper bound with speed
aN and rate function I if, for any closed subset F of X ,

lim sup
N→∞

1

aN
log P(X N ∈ F) ≤ − inf

x∈F
I (x), (4.1)

and it satisfies the large-deviation lower bound if, for any open subset G of X ,

lim inf
N→∞

1

aN
log P(X N ∈ G) ≤ − inf

x∈G
I (x). (4.2)

If both, upper and lower bound, are satisfied, one says that (X N )N satisfies a large-
deviation principle. The principle is called weak if the upper bound in (4.1) holds only
for compact sets F . A weak principle can be strengthened to a full one by showing
that the sequence of distributions of X N is exponentially tight, i.e. if for any L > 0
there is a compact subset KL of X such that P(X N ∈ K c

L) ≤ e−L N for any N ∈ N.
One of the most important conclusions from a large deviation principle is Va-

radhan’s Lemma, which says that, for any bounded and continuous function F: X →R,

lim
N→∞

1

N
log

∫
eN F(X N ) dP = − inf

x∈X
(
I (x)− F(x)

)
.

All the above is usually stated for probability measures P only, but the notion easily
extends to sub-probability measures P = PN depending on N . Indeed, first observe
that the situation is not changed if P depends on N , since a large deviation principle
depends only on distributions. Furthermore, the connection between probability distri-
butions P̃N and sub-probability measures PN is provided by the transformed measure
P̃N (X N ∈ A) = PN (X N ∈ A)/PN (X N ∈ X ): if the measures PN ◦ X−1

N satisfy a
large deviation principle with rate function I , then the probability measures P̃N ◦ X−1

N
satisfy a large deviation principle with rate function I − inf I .

One standard situation in which a large deviation principle holds is the case where
P is a probability measure, and X N = 1

N (Y1 + · · · + YN ) is the mean of N i.i.d. X -
valued random variables Yi whose moment generating function M(F) = ∫

eF(Y1) dP

is finite for all elements F of the topological dual space X ∗ of X . In this case, the
abstract Cramér theorem provides a weak large deviation principle for (X N )N∈N

with rate function equal to the Legendre–Fenchel transform of log M , i.e. I (x) =
supF∈X ∗(F(x)− log M(F)). An extension to independent, but not necessarily identi-
cally distributed random variables is provided by the abstract Gärtner–Ellis theorem.
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In our large deviations results we shall rely on the following conventions. For
X = C or X = R

d , we conceive M1(X) as a closed convex subset of the space
X = M(X) of all finite signed Borel measures on X . This is a topological Hausdorff
vector space whose topology is induced by the set Cb(X) of all continuous bounded
functions X → R. Then Cb(X) is the topological dual of M(X) [11, Lemma 3.2.3].
When we speak of a large deviation principle for M1(X)-valued random variables,
then we mean a principle on M(X) with a rate function that is tacitly extended from
M1(X) to M(X) with the value +∞.
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